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SUMMARY

The DOD AIMS program investigated the magnitnde of altimeter errors
due to pressure fields and equipment. The error due to static system
leaks was recognized as an unknown quantity. A test program on a T-38
identified the altimeter errors at several flight conditions for known
leak rates. The test program on the AFFTC NKC-135A was established
to investigate the effects of leaks in the pitot-static system of a large
aircraft and to determine what variables, including system volume,
affected the magnitude of leak-induced altimeter and airspeed errors.
Major emphasis was placed on altimeter error information.

Laboratory tests were conducted to establish calibrations for the
leak valves used on the test flights and to attempt to create a gener-—
alized model which could be applied to analysis of flight test data
and used to predict the errors in a different aircraft static system.
Static system volume was found to be one of the principal parameters
affecting the results of a leak test on a static system, i.e., a small
volume system caused a more rapid altimeter response to a ground test
leak than did a large volume system. A method to determine system
volume was confirmed by laboratory tests and the effect of volume on
leak rate through the calibrated leak valves was ascertained. The
volumes of the test pitot-static systems on the test aircraft were
measured and found to be less than those on a typical fighter-class
aircraft.

Pressure differential across a leak valve was found to be a key
parameter in both laboratory and flight test data. 1In order to correlate
ground test data and develop a generalized presentation of leak effects
on KC-135A aircraft, ground test leak rate data was analyzed at one
particular leak valve pressure differential. New leak check procedures
based on a constant pressure differential were developed for utilization
of KC-135A leak effects presented in this study.

Pneumatic—-mechanical instruments were not sensitive enough to pro-
duce data which delineated the trends and relative effects of the various
parameters affecting the leak-induced errors. Use of electrical digital
output altimeters produced data with less scatter.

Altimeter errors were found to depend primarily on leak hole size
and cabin pressure differential and secondarily on altitude, airspeed,
and leak location relative to the altimeter. An increase in the primary
parameters caused an increase in the altimeter error (indicated alti-
tude less than actual flight altitude). The leak closest to :he altimeter
caused the greatest error. 1Increasing airspeed caused slightly greater
altimeter errors. The computed pressure error sensed by the altimeter
increased slightly with increasing flight altitude. Thus, the altimeter
error for a leak at a high altitude would be greater than predicted by
use of the standard atmosphere equations applied to pressure error data
acquired at a lower flight altitude. Leak-induced airspeéd errors were
found to depend on leak hole size, airspeed, and cabin pressure differ-
ential. Static system leaks caused lower airspeed readings and pitot
system leaks caused higher readings at the airspeeds flown during the
tests. Pitot-leak induced airspeed errors increased with increasing
leak hole size and cabin pressure differential and decreased with in-
creasing airspeed.

Leak check rate of descent was found to increase with increasing




hole size, increasing pressure differential, and decreasing sycstem
volume. For the same indicated leak rate, a large volume system could
be expected to have a greater altitude error because the leak hole and
stabilized leak flow rate would be larger. System configuration can
affect the altimeter error by the extent that the stabilized leak flow
is restricted beyond the leak hole.

It appears that current Air Force leak rate criteria result in
negligible altitude errors. Leak rates must reach several thousand
feet per minute before their effect is noticeable. The relationship
between the maximum allowable leak-induced altitude error for an air-
craft and the AIMS criteria will depend on the altitude error curve
resulting from all other causes.
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PREFACE

The test program was initiated at the request of the AIMS System
Program Office (SPO) and was initially authorized by AFFTC Project
Directive 74-3, 6 July 1973. Before the test was cusrleted, the AIMS
flight test program was terminated and the AIMS SPGC was deactivated.
The test was then completed as an AFFTC in-house project under AFFTC
Project Directive 74-3A, 16 May 1974.

The author wishes to acknowledge the contributions of several
people associated with this project. Lt Col Michael V. Love was the
program manager. Captains Paul J. Mathieu and Gary W. Clark were
assigned consecutively as project engineers. Mr. Willie L. Allen and
Mr. Albert G. DeAnda assisted the engineering effort during parts of
the planning, testing, and data analysis phases of the program.
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INTRODUCTION

BACKGROUND

A 1966 study (reference 1) determined that the maximum acceptable
error in aircraft altimetry systems should be +250 feet for flight in
positively controlled airspace with 1000 feet vertical separation
between flight levels. The Department of Defense AIMS program involved
a considerable effort to dete.nmine and reduce errors caused by pressure
fields, static sources, computers, and altimeters. During the flight
testing for the AIMS program, it became apparent that there was only
limited knowledge about the errors resulting when leaks existed in
pitot-static systems,

The investigation reported in a 1971 AFFTC Technical Information
Memorandum (reference 2) was conducted to determine the relationship
between leak rates and the corresponding altimeter error for several
in-flight conditions. The tests were conducted on a T-38 aircraft using
the standard 4.8 pounds per square inch (psi) (9.77 inches of mercury
(in. Hg)) cabin pressure differential and various size leak holes. It
was apparent from the test results that a further effort should be made
to completely define the functional relationships affecting leak-induced
pitot-static system errors.

These follow-on tests were conducted as a result of the
recommendation to conduct further testing in a cargo aircraft with a
large pitot-static system volume. The AFFTC possessed NKC-135A aircraft
was considered ideal for the test because of its large airspeed and
altitude envelope and capability to change the cabin differential pres-
sure in an analog manner from 0 to 8.6 psi (17.51 in. Hg).

The test flights were conducted in two phases using NKC-135A air-
craft S/N 55-3135. 1In the first phase, eight data collection flights
were conducted using C-19 altimeters as part of the test instrumentation.
Subsequently, a set of Hamilton Standard digital altimeters was installed
on the aircraft. Using the digital altimeters, five data collection
flights were accomplished totalling approximately nine hours. The
results of this report are based on the data collected during the
second series of flights.

OBJECTIVES

The overall program objective was to determine the magnitude of
leak-induced altitude and airspeed errors, using a KC-135A, to aid in
establishing pitot—-static system leak rate criteria for AIMS equipped
aircraft. Current Air Force leak rate criteria are not related to
nor are they based on the resultant in-flight altitude errors. The
detailed objectives were:

1. To determine static svstem leak-induced altitude and airspeed
errors for various airspeeds, altitudes and cabin differential
pressures.

2. To determine pitot system leak-induced airspeed errors for
various airspeeds, altitudes, and cabin differential pressures.

3. To investigate the effects of static system volume and leak
location on leak-induced altitude and airspeed errors. It
was recognized that system confiauration would affect results.




INSTRUMENTATION

The test instrumentation used on the final five flights consisted
of two calibrated Hamilton Standard HSA 101 Digital Encoding altimeters,
two calibrated C-19 altimeters, four calibrated F-1 airspeed indicators,
three leak control valves, three calibrated leak valves, associated
tubing, and a valve to provide additiona’ static system volume consisting
of 100 feet of 3/8 inch inner diameter hose (figure 1). A calibrated
airspeed indicator and AAU~19 altimeter were installed in each of the
pilot's, copilot's, and navigator's instrument panels. In addition,
an auxiliary panel was mounted on the table at the navigator's station
(figure 1). This panel contained the Hamilton Standard altimeters and
a calibrated F~1 airspeed indicator in addition to the seven valves
used in the testing. These instruments were designated altimeters No.

1 and No. 2 and airspeed indicator No. 3. The leak control systems
associated with these indicators were numbered in a like manner so that
the No. 1 leak control system was associated with altimeter No. 1, etc.
The altimeter and airspeed indicators in the pilot's panel were each
designated as No. 4. The remaining instruments were not assigned
numbers since that was not necessary to simplify data acgquisition or
reduction.

The pitot and static lines of the test installation were each
connected to the standard pilot's pitot and static system shown in
figure 2. The test pitot line, about 17 feet long, was connected to
the pilot's system several feet from the CPU-66 air data compuv*er.

The line to the pilot's instruments branched off the line neaic:r the
pitot head. The nine feet long test static line was attached to the
pilot's static line between the instruments and the static ports about
ten feet from the point at which the line branched to the two static
ports.

Each leak control system cconsisted of an ON-OFF valve in series with
an indexed valve which had been calibrated to provide known leak rates.
The indexed valves were vented to the cabin through the ON-OFF valves.
This permitted accurate setting of the indexed valves prior to inducing
a leak, and provided redundancy to insure a no-leak system for flight
operations unrelated to this test. Twelve marks were placed 30 degrees
apart on each of the valve shafts. The marks were numbered 0 through
11. Valve settings were recorded in terms of the number of full and
fractional turns open, e.g., 1-6 was 1 + 6/12 turns open and 2~0 was
2 full turns open.

The two altimeter leak test units were connected by the ON-OFF
volume valve. This allowed testing with an enlarged system volume, and
it also allowed investigation of the effects of leak location and line
length.

An additional calibrated C-19 altimeter was mounted at the navigat .'s
panel and vented to the cabin. Cabin differential pressure was main-
tained by setting the cabin pressure to the desired altitude using this
altimeter.

Several different ground tests were conducted to calibrate the
leak valves and to develop information necessary to evaluate flight
test data. Pressure data were measured by electrical pressure trans-
ducers. The instruments used were Kollsman Instrument Corporation

Model KM60-Cl Precision Pressure Monitors. During tests related to
pitot leaks, the volume flow rate of air was measured by a Fischer

and Porter Flowrator Meter.
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TEST METHODS AND CONDITIONS

GROUND TESTS

Ground testing pertaining to this program consisted of two parts;
tests in the laboratory and tests performed on the aircraft. The test
instrumentation was designed to measure the in-flight parameters ccn-
sidered to be of primary importance. Prior to the flight tests, it
was postulated that for a given static system an altimeter error due
to a leak would be primarily a function of leak hole size, leak loca-
tion, and pressure differential across the hole (essentially cabin
differential pressure if the entire static system is contained in the
pressurized portion of the aircraft). Additionally, it was considered
desirable to be able to present the results of the investigation in a
format which could be used directly in a ground check to determine what
in-flight effect a given leak would have. The most direct format is
in-flight altimeter error as a function of the static system leak check
rate of descent. It was further postulated that the pressure change
in a static system due to a leak would be a function of the leak hole
size, pressure differential across the hole, and the system volunme.
Thus, it was necessary to know the volume of the pitot-static systems
on the test aircraft and to know, via calibrations, the effect of
specified valve settings for each leak valve.

Laboratory Tests:

To determine the effects of volume on the pressure change (rate
of descent) due to a leak, several different tank volumes (131, 169,
205 in.3) were fabricated and tested. The internal volumes of these
test tanks were determined by filling each with water several times
and measuring the water volume in a beaker graduated in milliliters.

Leak hole sizes (of unknown but presumably repeatable dimensions)
were represented by specific settings on the indexed leak valves. Data
concerning the effects of hole sizes (leak valve settings) and volume
were collected by experiments utilizing the apparatus depicted in figure
3. The procedure was to measure the atmospheric pressure using the
Kollsman Precision Pressure Monitor. Then the test volume was evacuated
to a predetermined pressure and the valve on the pump line was turned
off. With the leak valve at a particular setting, the ON-QOFF valve
was turned on. Pressure readings (in the foim of counts) were recorded
at five-second intervals by using the display hold feature of the
pressure monitor. This procedure was repeated five to seven times
depending on the proper choice of the initial pressure and the timing
accuracy of data measurements. Each pressure reading was converted to
pressure altitude by using the Kollsman supplied calibration tables.

The data for one such series of tests is shown in figure 4.

Curves faired through the data are nonlinear. Thus, the slope
(rate of descent) at any point on a curve is a function of the pressure
altitude (also pressure differential across the valve.. To consistently
interpret data obtained on different days, the rate ~. descent effect
of each valve setting and volume was determined at a constant pressure
differential across the valve. The value chosen was AP = 9,344 in. Hg.
This number represents sea level pressure minus the pressure at 10,000
feet in the standard atmosphere.

12
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The rate of descent of each set of data was determined by measuring
the slope of a fairing through the data at the point of interest. The
average rates of descent for each valve setting and test volume are
shown in figure S.

Laboratory tests were also performed to develop and verify a method
of volume measurement. A test apparatus was set up as depicted in
figure 5. In the laboratory the "unknown volume"” was actually one of
the test volumes of known size. The procedure used was as follows:
equalize and record the pressure in the two volumes, change the pressure
in the volume connected to the pump and record it, equalize the pressures
in the volumes again and record it. A mass balance equation was
solved for the unknown volume in terms of the reference volume and the ;
three recorded pressures. A constant temperature model gave consistent
results.

In order to determine the correct value for the "unknown volume"
it was necessary to account for the volume of each piece of the apparatus
including the valves, fittings, and lines. The pressure monitor volume
was not known and could not be determined directly. However, the
volume was calculated indirectly by two methods. In the first method,
the mass balance equation was rewritten and the definition of unknown
and reference volume was interchanged. Using the constant temperature
model, the calculated value of the unknown volume was found to differ
from the actual value by a constant which was taken to be the pressure
monitor volume. Use of this computed volume with other laboratory
data gave consistent results in the attempt to determine a system's
internal volume. The pressure monitor volume was also determined by
using it alone as the unknown volume. The results of the two methnds
for volume determination of the pressure monitor were consistent. The
isothermal model of the process was found to give correct values :or
the unknown volume.

Tests concerning the effects of a leak in the pitot system were
related only to the pilot's pitot system on the KC-135A type aircraft.
For this reason the effects of pitot system volume were not ccensidered.

Calibration data for the pitot leak valve No. 3 were obtained in
the laboratory tests. The equipment set up depicted in figure 7 was
used to collect the necessary information. Volume flow rates and pres-
sure drop through the leak valve were recorded for several different
pressures on the upstream side of the valve. The pressure drop was
plotted against the calculated mass flow rate.

Aircraft Tests:

After the volume determination method was confirmed in the laboratory,
the method was applied to the test aircraft according to the schematic
in figure 6. When the volume of the pilot's static system was determined
(156 cubic inches) it was used as the entry point in figure 5 to determine
the rate of descent for each valve's setting used in the tests and for
the specified pressure differential.

Leak rate tests were conducted on the test aircraft's pilot pitot
system. The test equipment depicted in figure 7 was used to measure
the rate of airspeed decrease due to a leak and the volume flow rate
through the leak hole. The leak flow was generated by pumping a high
pitot pressure into the pitot system (over 450 knots (kt) showed on the

15
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airspeed indicator) and setting the pump at a low pitot pressure (50 kt)
during the leak test. The rate of airspeed decrease measured on the
pilot's airspeed indicator was plotted against the calculated mass flow
rate.

Ground tests pertaining to pitot leaks were not repeated or dupli-
cated. Thus, there was no obvious indication of repeatability or scatter
in the measured parameters for any given conditions.

The pilot's and copilot's pitot-static systems were leak checked
and leaks were eliminated until the leak criteria established for this
project were achieved. The leak criteria for the pilot's pitot-static
system was zero leak rate. The copilot's pitot-static system leaks
were no greater than 50 feet per minute decrease in indicated altitude
from 10,000 feet and 3 knots increase in airspeed in 5 minutes from 300
knots indicated when the pitot and static systems were pressurized to
those starting values using a TTU-205 pressure test set.

FLIGHT TESTS

The flight test method used was termed no leak/leak in reference
2. With the aircraft stabilized at a specified speed and altitude on
the copilot's instruments, instrument readings were recorded with the
leak control valve off. Then the instrument readings were again recorded
with one of the leak control valves on and the associated indexed leak
valve set to a specified opening.

Leaks into the pitot and static systems were always made from the
aircraft cabin with the cabin pressure higher than ambient. No attempt
was made to leak out of a system into a compartment with pressure less
than ambient.

Pneumatic altimeters were used for the first eight test flights.
Analysis indicated that the data contained too much scatter to demon-
strate the desired repeatability and expected trends. The eclectrical
Hamilton Standard altimeters installed for the final five test flights
presented a combination digital and discrete clock-face readout. The
resolution of the clock-~face presentation was 20 feet. Thus each
measurement of the basic altitude data contained an uncertainty of 10
feet.

None of the airspeed indicators were replaced by pressure transducers.
All airspeed error data was measured by the calibrated pneumatic air-
speed indicators.

On the first leak test flight with pneumatic instruments, leak
valve settings of 0-9, 1-0, and 1-3 were tested. tlowever, the altim-
eter error magnitudes were not large enough to show trends. Scatter
in the reduced data was too large. On the second leak test flight,
settings of 1-6, 1-9, and 2-0 were used. This increased error magni-
tudes enough that some expected relationships were identifiable. low-
ever, these settings produced ground leak check rates of descent of
12,000 to 19,000 ft/min for valve No. 1 with the altimeter recading
10,000 feet and an airfield altitude of 2,300 feet (AP = 6.94 in. Hg.).
The ground check leak rates were measured with the test instrumcntation,
including the additional tubing volume, installed. The test instru-
mentation approximately doubled the static system volume and thus sig-
nificantly lowered the indicated rate of descent due to the leak. When
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the digital altimeters were installed, flight tests continued using the
larger leak holes. No tests were performed with smaller leak holes
giving leak rates closer to the currently accepted leak rates.

During the first flight ten sets of data were recorded for each
parameter of interest. With each succeeding flight the number of
repetitions was reduced. Three sets of data were recorded for each
parameter value on the last flight.

During the test it was confirmed that the primary parameters
affecting altimeter error for a given system were leak size, leak loca-
tion, and cabin differential pressure, APo. Cabin pressure was recorded
by the extra altimeter at the navigator's panel. The pressure differ-
ential conditions used on the last series of flights are shown on
figure 8.

Airspeed data were recorded for the conditions of no leak and leak
through the static and total system leak valves. The primary parameters
affecting airspeed errors due to a pitot system leak were leak size,
airspeed, and cabin differential pressure. A leak-induced airspeed
indicator error is caused by a pitot pressure error at the indicator.
The pressure error is due to pressure loss mechanisms affecting the
leak flow (system geometry and viscosity) and the relative locations
of the leak and the indicator. When there is no leak flow, there can
be no pressure error. Thus if the pitot (total) pressure equals the
cabin pressure, there will be no flow through the hole and no error
signal. Another representation of the same conditioi: is that when
impact pressure, de, (total minus static) equals cabin differential
pressurc. ’‘Pe, (cabin minus static), there will be no error. Figure
9 snws the relationship of airspeed to cabin pressure differential fo:
whics there will be no airspeed error with a hole in the pitot system.
The citot leak test conditions are also indicated.
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TEST RESULTS

Analysis of data from the first series of flight tests hau indicatea
that there was no definitive dependence of altimeter error upon varying
airspeeds. After the installation of the digital altimeters, the first
test flight again explored the effects of airspeed on the altimeter crrors.
The data (figure Bl) indicated that increasing the airspeed caused a
slight increase in the altimeter error. I!owever, the c¢ffect was not
considered significant enough to include airspeed investigation on
subsequent flights most of which were flown at 225 kt indicated air-
speed.

The static pressure error due to a leak increased with increasinag
Mach number (figure B2). Only the data from one flight was acqguir:d
at constant altitude (30,000 ft) and varying airspeed. The Mach nuno::r
variation of the other data is due mainly to altitude variation. In
addition to the pressure error variation with Mach number, four pairs
of data points (see 43,000 feet data) indicate that the pressure error
1 also increased with increasing flight altitude.

h The mechanism for the pressure error increase was probably relateld

to the variation of true airspeed (figure B3). The leak air flowing

out the static ports probably disturbed the boundary layer, and possibly
the free stream, flow pattern near the ports. The external flow distur-
bance probably caused a pressure increase at the static ports. 1In
general, the boundary layer thickness at a point on a surface is inverscly
proportional to the square root or fifth root of the free stream velocity
depending on whether the boundary layer is laminar or turbulent. 1In-
creasing airspeed, through boundary layer thinning or some other mechanism,
may cause a pressure increase at the static ports so that the pressure
error at the altimeter increases with airspeed.

The average altimeter error at each test point was converted to
static pressure error. The static pressure error data is shown plotted
against cabin differential pressure (/Ps) in figure B4 throuch {i:ure
B6. The fairings shown are linear regressions throuch all the data.
With few exceptions the data show that the pressure error increased
with increasing flight altitude for any cabin differential pressure.

Pihlgren (reference 2) found no static pressure error relation
with changing flight altitude for fixed “Pr conditions. Pressure dos:
showed some scatter but no altitude correlation. The different rosulss
of this study may result from the use of more sensitive instrumenta‘“ion
or from the different pitot-static sources used on the two test zivcraft.

Certainly, part of the pressure error increasc with altitudc re-
sulted from the increase in true airspeed. However, there are prokably
1 other effects involved since the altitude parameter appeared in ficure
B2 and figure B3.

The effects of leaks through valves No. 1 and No. 2 measured at
altimeter No. 1 are compared on figure B7. The linear fairings werc
used to extract the data necessary to produce the final results in
this report for the KC-135A aircraft. Due to insufficient data ani
the scatter in the data available, data from cach test altitude w:re
not faired nor were individual fairings used to produce the final
results. The figure B7 plots show that leaks through valwve No. 2
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produced larger static pressure errors. The reason for the different
effects was that valve No. 2 created a larger hole than valve No. 1
for any given valve setting (number of turns open). The larger hole

size allowed a greater flow rate through the static system (figure 5).
Additionally, it was assumed that pressure drop in the static system
and flow rate through the line were linearly related. For that reason
it was felt that the altimeter No. 1 data for valves No. 1 and No. 2
could be correlated.

The fairings through the altimeter No. 1 and No. 2 data for leaks
through valve No. 1 are compared in figure B8. The data showed that the
pressure in a part of the static system upstream from the leak location
would reach the same pressure as that at the leak lorcation. The upstream
location is a part of the system through which there is no leak airflow.

The data and appropriate fairings for measurements at altimeters
No. 1 and No. 2 with leaks through valve No. 2 are compared in figure
B9. The difference between the pressures at the two altimeters is due
to the pressure losses caused by the viscous resistance to the flow
through the 100 feet of static line between the two altimeters.

Figure B9 shows that a leak at the altimeter case would cause a
greater error than a leak at a location upstream which would cause flow
through the line past the junction to the altimeter. A similar sized
leak hole at a downstream location between the altimeter and the static
ports would cause less error than if that leak occurred at the altimeter.
Less pressure error would be transmitted to the altimeter because the
shorter tubing length between the leak and the outlet would cause less
viscous pressure loss. Thus, a leak at the altimeter can be expected
to cause the greatest altimeter error.

The methods discussed in Appendix A and shown in figure Al and
figure A2 were used to create plots of altimeter errors for the parameters
of significance in a production static system. Quadratic curves were
fit through the data and the origin using a least squares routine to
compute the coefficients of the equations. Examples of the derived
data points and the guadratic fairings are shown in figure B10 and
figure Bll. The results pertain to leaks in the KC-135A pilot's static
system.

Effects cf different static system volume are shown in figure B12
through figure B15. The curves represent only the effect that system
volume has on the leak check rate of descent. System configuration
effects were not included. Since all the altimeter error values are
based on the KC-135A tests, a different system configuration, with
the same volume, could give different results; for example, a con-
figuration causing greater resistance to leak flow (long static lines,
smaller lines, or smaller static orifices) would create greater leak-
induced altimeter errors. The curves were hand faired through data
points derived as previously discussed. The 100 cubic inch valuc was
chosen arbitrarily. The 156 cubic inch value represents the pilot's
static system in the KC-135A. The 240 cubic inch value represents the
production static system in the RF-4C aircraft. In support of a study
of the sensitivity of the pitot-static systems on the AFFTC pacers, the
volumes of the pitot-static systems on the RF-4C pacer were determined
using the methods previously described. The production system volume
was estimated by subtracting the estimated volume of the pressure
transducer connected to it.
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The fairings in figure Cl through figure Cl0 represent the predicted
results for the leak-induced altimeter errors in the pilot's static
system of a KC-135A. The expected trends are demonstrated. Greater
altimeter errors are caused by increasing cabin pressure, increasing
cruise altitude, and larger leak holes.

For cruise flight at 40,000 feect a cabin altitude of 8,000 feet
can be maintained by a differential pressure (AP.) of 16.69 in. Hg.
For those conditions a leak test rate of descent of 20,000 feet per
minute would not cause an altimeter error as large as the 2250 feet
AIMS criteria.

The +250 feet AIMS criteria is the allowable altitude error due
to all causes. In order to establish a leak rate criteria for an
aircraft which would meet the AIMS criteria, the altitude error of the
particular aircraft must be known because the allowable leak-induced
error depends on the existing error due to other causes. If an air-
craft had an altimeter error of -250 feet at some particular cruise
altitude, then no leak-induced error could be allowed. However, if
the aircraft exhibited a constant error of +250 feet at all altitudes,
then the static system could leak at a rate which would create a -500
foot error at the maximum cruise altitude and cabin pressure conditions.

If the results of this report were applied to the development of
leak rate criteria to take advantage of the available AIMS criteria
"error budget," the allowable leak rate might be 20,000 feet per
minute (2,000 foot altitude band in 6 seconds). However, if it is
assumed that leaks develop at and because of loose fittings, a leck
rate approaching 20,000 ft/min would probably cause more concern for
the physical integrity of the system and the associated safety aspects
of a complete failure than any altimeter error which might result fror
the leak.

Current leak rate criteria will result in reasonably small altinm-
eter errors on most aircraft and the physical integrity of the systenrs
should not be a concern. If maintenance of pitot-static system intc-
grity to current leak rate criteria causes an excessive expenditurc oY
time and money, the criteria for most aircraft could probably be re-
laxed. However, any change to existing criteria should be accomplished
with an understanding of existing altitude error of the aircraft ani
the postulated leak effects based on the aircraft's static systen
volume. It might be possible to standardize the leak criteria ‘or all
aircraft in the inventory. The most probable limiting case would Lc
the aircraft with large volume pitot-static systems and large ne.gative
altitude errors in their altimetry systems.

Airspeed errors result from leaks in both the pitot and the static
systems. Leaks from a pressurized cabin into the static system cause
negative airspeed errors, i.e., lower indicated airspeeds for leak
conditions. Figure Bl6 is a correlation of expected airspeed errors and
leak-induced altimeter errors for specified altitudes on the basis of
the pressure error in the static system due to a leak. The fairings
are based on the equations relating airspeed and altitude to pressurc
in the standard atmosphere. The curves show that for any given static
leak condition, the airspeed error decreases with increasing airspeed.
Increasing cabin pressure differential causes areater airspeed error
because of increased pressure error.




Pitot system leaks cause alrspeed errors which depend both on air-
speed and cabin pressure differential. The airspeed effect on airspeed
errors for particular cabin pressure differentials is shown in figure
Cll through figure Cl4. The plots apply to the KC-135A pilot's airspeed
indicator. 1Increasing airspeed and decreasing hole size caused decreasing
airspeed errors for any given cabin differential pressure. The figures
also show the effects of varying the airfield altitude at which the leak
check is performed.

The cabin pressure differential effect on airspeed errors for
certain airspeeds is shown in figure Cl5 through figure Cl7. Those
plots also apply to the KC-135A pilot's system. The fairings show that
increasing cabin differential pressure causes increased airspeed errors
for given airspeed.

Variables such as leak location and system volume were not inves-
tigated in the pitot leak tests. However, effects similar to those
shown for the static leak investigation (figure B8 and figure B9) would
probably occur. A leak in the airspeed indicator fittings would probably
cause the greatest errors. The leak check airspeed decrease rate would
be higher for a smaller volume pitot system if the leak hole and test
conditions were similar.
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CONCLUSIONS AND RECOMMENDATIONS

The major variables affecting altimeter errors due to static system
leaks were leak hole size and the difference between cabin and ambient
pressure. Airspeed errors were affected by the same variables as well
as airspeed. Ground test leak rate was found to depend on leak hole
size, system volume, and the pressure differential at which the test

was conducted.

In general, the leak effects tests showed that small pitot-static
leaks do not result in significant altitude or airspeed errors. Signi-
ficant errors can result as the leak rate increases to levels at least
an order of magnitude greater than current leak rate criteria will
allow. A static pressure system leak check criteria based solely on
permissible altitude error might allow leaks which are unacceptably
large when system integrity is considered. The continued use of
current Air Force pitot-static system leak check criteria should result
in negligible airspeed and altitude errors. The leak rate criteria
for any aircraft could probably be relaxed if maintenance man-hours
expended to stop leaks were found to be excessive. Adjustments could
also be made in the interest of standardizing leak check criteria for
all Air Force aircraft. Any changes to the present procedures must
consider that the allowance for leak-induced altitude errors depends
on the existing altitude error curves for static system installations
as they relate to the AIMS criteria.

1. Current Air Force leak rate criteria should be
maintained.

2. Leak rate criteria for new aircraft and changes to
the current criteria used for Air Force aircraft
should be based on the aircraft's altitude error
curve, its relation to the AIMS criteria, and the
effect that the static system volume will have on
the relationship between the leak rate criteria
and the expected altitude error.
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APPENDIX A

DATA ANALYSIS METHODS

Due to the original desire to produce a generalized model of leak-
induced altimeter errors which could later be applied to any aircraft
type, a number of ground tests were performed which might not have been
necessary to define the static system leak effects on just the KC-135A
aircraft type. Depicted in figqure Al is the process by which data
collected in the laboratory and during aircraft ground tests were corre-
lated to produce generalized effects and unique values of the principal
parameters (figure 5) characteristic of ground leak checks.

Flight test data used to generate the final altimeter error results
presented in this report consisted of instrument corrected pressure
altitudes for no leak and leak conditions and the associated cabin
pressure altitudes. The altimeter readings were converted to pressures
(figure A2). From each set of altimeter data the equivalent pressure
differential was computed, i.e., cabin differential pressure,

APc = Pcabin - Par, and leak-induced altimeter pressure error, APg =

Pic leak ~ Pic no leak. The cComputed pressure errors were then plotted

against the associated cabin differential pressures (figure A2). Data ,
for the final plots were obtained from the fairings through the pressure

error plots.

The predicted altimeter errors for the KC-135A aircraft type shown .
in this study were generated by combining the results of the ground and
flight tests (figure A2 ). Cabin differential pressure, AP-, was one of
the significant parameters. A value of altimeter pressure error, APe,
was obtained for each valve setting and the selected AP. value from the
fairings through the measured data. Each valve setting was converted
to a leak check rate of descent by way of the ground test calibrations.
Each pressure error was converted back to a series of altimeter errors,
one for each specified cruise altitude, by using the equations for the
standard atmosphere or tabular data of same. Thus, the final plots of
altimeter error as a function of leak check rate of descent could be
plotted for the parameters of cruise altitude and cabin differential
pressure.

The data resulting from ground tests on the leak valves and test
volumes was correlated by using a fixed pressure differential botween
ambient pressure and pressure inside the test volume. To extend the
methods and results of this program to a leak check on a KC-135 aircraft
at some other location the check should simulate the conditions (primarily
pressure differential) used to obtain the test data. Rather than evacuate
the static system to an indicated pressure altitude of 10,000 feet, the
static system should be evacuated so that the leak check can be accom-
plished at an indicated pressure altitude corresponding to a pressure
differential of 9.344 in. Hg. Figure A3 shows the schedule which should
be followed to maintain this pressure differential. For an airfield
pressure altitude of 2,300 feet, for example, the leak check should be
accomplished at an indicated pressure altitude of 13,150 feet (using
an altimeter setting of 29.92).

The airspeed errors recorded for static system leaks were not used
to develop a model for predictions of these errors for any arbitrary
leak. Instead the equations relating pressures to calibrated airspeed
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and pressure altitude were used to relate airspeed errors to altimeter
errors for particular pressure errors, airspeeds, and altitudes.

Tests to determine the effects of leaks in the pitot system were
designed to apply specifically to the pilot's pitot system on the KC-135A
aircraft. Tests to establish a generalized model based on system volume

were not conducted.

Ground test data was plotted according to the description shown in
figure A4. The data measured in the laboratory tests were plotted as
computed mass flow as a function of pressure drop across the leak valve
for particular values of pressure at the volumetric flow meter and leak
valve setting (figure A5 through figure A7). The resulting fairings
were then cross plotted as pressure drop as a function of pressure at
the flow meter for particular mass flow rates and valve settings /(figure
A8 through figure Al0).

The leak test data measured during ground tests on the test aircraft
pitot system consisted of airspeeds and pressure altitudes pumped into
the pitot-static system, volumetric flow rates, and times for the indicated
airspeed to decrease through specified bands about the test conditions.
Initially a mass flow rate was calculated for each test by assuming that
the pressure at the flow meter was the value determined by the airspeed
dialed into the TTU-205 pressure test unit during each leak (50 kt).

The TTU-205 was assumed to be an ideal sink (evacuator). The pressure
at the flow meter was not independently measured. The computed rate
of airspeed decrease due to each leak was plotted as a function of the
computed mass flow rate (figure All).

It was assumed that the ground test data and flight test data could
be correlated by choosing a pressure drop across the leak valve (corre-
sponding to a g¢ or V. as the leak check standard), by determining a
mass flow for each valve setting and thus predicting the leak check rate
of airspeed decrease. This final parameter value would be plotted against
the airspeed errors determined from the flight test data for the chosen
valve setting and the other parameters involved.

The aircraft pitot leak tests were conducted under conditions which
were assumed to create a pressure drop across the leak valve of eight
in. Hg. Application of this value to the laboratory data indicated
that the mass flow should have been higher than the values which were
calculated for the conditions assumed for the aircraft leak tests (figure
A8 through figure Al0). Since the results of the two differcnt tests were
expected to be similar for given conditions of pressure, pressure drop,
and valve setting, the differences between the mass flow predicted by
the laboratory data and the calculated results were attributed to thc
pressures assumed in the aircraft tests. Thus it was suspected that the
TTU-205 test unit was unable to evacuate the test apparatus rapidly
enough to maintain the eight in. Hg pressure drop across the leak valve.
The calculated pressure at the flow meter was based on test total pressure
(from Ve) and assumed valve pressure drop.

The aircraft leak test data (mass flow at assumed pressure) was
plotted on the cross plots of the laboratory mass flow fairings (figure
A8 through figure Al0). The valve pressure drop interpreted for each
data point was considerably below the value of eight in. Hg used in the
calculations.

The mass flow computations were corrected by appplying a pressure
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correction to cach test condition based on the difierence between the
assumed and plotted valve pressure drops. The plotted lower pressure
drops for the computed mass flows implied that the pressure at the volume
flow meter was higher than expected. After computing the corrected pres-
sure conditions at the volume flow meter, a new set of pressure dependent
volume flow correction factors were determined. New corrected volume
flow rates and densities were computed. From those values a set of ;
corrected mass flow rates were computed. The corrected mass flow rates :
were plotted on the laboratory cross plots (figure A8 through figure
Al0) and as the leak test rate of airspeed decrease against mass flow
rate (figure All).

Since the leak test data was not measured under consistent pressure
conditions, it was necessary to assume that the laboratory data fairings
represented the pressure and mass flow relationships for any given
controllable conditions in a leak test on the aircraft. That is, for
given conditions of pressure and pressure drop, the mass flow through
the leak hole could be interpolated from the cross plots of lab data.

Flight test airspeed data consisted of instrument corrected airspeeds
for no leak and leak conditions and the associated cabin and flight
pressure altitudes. The altitude data was converted to cabin differential
pressure, APc = Pgapbin — Par as for tho static system leak tests (figure
Al2). The airspeeds were converted to impact pressure, dcic, and the
airspeed errors were converted to the equivalent total pressure errors,
APe = decic leak — 9cic no leak: The total pressure error, /Pe, was then
plotted against the pressure differential between cabin pressure and the
no leak total pressure, A4Pp = Peabin - Ptic no leak = "Pc - deic no leak
(figure Al3).

For the purposes of this report the ground test data was correlated
by using a pressure drop of 4.5 in. Hg and pressures of 29.92 in. Hg
(sea level standard pressure) and 24.90 in. Hg (5,000 feet standard
pressure). The pressure drop of 4.5 in. Hg is the leak check g¢ condition
(total minus static, hence pressure differential) which is obtained by
sealing a pressure in the pitot system which causes a calibrated rcading
of 300 kt on the airspeed indicator with the static system exposed to
ambient pressure. Since the data was affected by the statlic pressure
at the flow meter, the results were generated by assuming two pressure
conditions; sea level and 5,000 feet in the standard atmosphere. The
300 kt leak check condition was used because the results fall within
the range of data measured in the aircraft leak tests.

The procedure (see figure Al4) used to correlate the ground test
data was to enter the lab data cross plots at the specified pressure drop
and static pressure (4.5 in. Hg and 29.92 in. Hg or 24.90 in. Hg) and
interpolate a mass flow rate for each valve setting. Then the expected
rate of airspeed decrease for each mass flow rate was determined from
the fairing through the aircraft leak test data on figure All.

The predicted airspeed errors for a leak in the pilot's pitot system
in a KC-135A aircraft which are shown in this study were generated by
using the results of the ground and flight tests (figure Al4). The prirmary
parameters affecting the maynitude of the airspeed errors were cabin
pressure differential (APc), impact pressure (dc), and the leak hole size.
For given conditions of AP and qg, the pressure drop across the leak
hole, 'Pr, can be ccoemputed. For each value of APp thus chosen, the
fairings through the APe vs APp flight test data enable one value of




APe to be determined for each valve setting used. The pitot pressure
errors, APe, thus determined were converted to airspeed errors, .V,

based on the airspeed chosen. Each valve setting was converted to a

leak check rate of airspeed decrease based on the ground test calibrations.
The computed AV values for each valve setting were plotted against the
leak check parameter and a curve was faired through the points.

The ground test data was utilized by determining the effects of a
4.5 in. Hg pressure drop across the leak valve. A calibrated airspeed
of 300 kt results when the difference between total and static pressure
is about 4.5 in. Hg. Thus the pitot leak results of this report can be
applied to KC-135 pilot's pitot systems configured like the test system
1 if the leak check is performed with the pitot system pressurized so that
the airspeed indicator reads 300 kt for the static system at ambient
pressure. This condition would develop 4.5 in. Hg pressure differential
across any leak hole. '
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Farrings are /[irnear regress/ons
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GROUND DATA
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APPENDIX B

TEST DATA
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NOTES: Symbo/s represeat average of ten readings,
Bars on symbo/s show max. and run. readings,

Fairings are linear resrcss/ans fhr*ough average values.
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Dota from valve no. /| and alfimeter no./
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Data from valve rno./ and al/timefer
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Data obtained from altimeter no. /
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Note: Apply fo HC-/35A

Original data from valves no. | € 2 and altimeter no. /

Fairings based on data derived from figures %
and B7 per Appendix A
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Note: Apply to KC-/35A |
Oviginal data from valves no. ! §2 and altimeter no. /

Fairings based en data derived from F/gures s
and 7 per Appendix A,
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Note: Apply to KC-135A
Original data from valves no. ! € 2 and altimeter ro. /

Farrings based on datm derived from Ffigyres 35 |
and 87 per Appendix A |

Altimeter Error (Ft)

0 10 20 30 90 50 60

Leak Check Rate of Descent (1,000 ft/min)

FIGURE C¥ EFFECT OF LEAK ON ALTIMETER, H.= 40,000 £+

68




Note: Apply to KC-I35A
Original data fFrom vailves no. | £ 2 and altimeter pno. /

Fairings based on data derived from Ffigures 5
and B7 per Appendix A

F//’ghf
O e Altituae (F?)
Y (~¥'2.5 =
~/00 ’ , T~ e _20,000
T~ 30000
~200 ) 45000
Iy
'S
S -300
-
Ly
L
T
Y 400
Y]
£
h
< -s00
* 1
-600
%
L - L e —
o) /0 20 zo0 qYO Lo 60

Leak Check Rate of Descent (1oco ft/min

FIGURE C5 EFFECT OF LEAK ON ALTIMETER, AR= & in #




Note: Apply to KC-I35A

Oviginal data from valves no. ! § Z and altimeter no./

Fa/rings based on data derived from figures S
and 7 per Appendix A.
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Note: Apply to HAC-/135A
Om‘g’mql data from valves no | 22 and altimeter no. |
Fairrings based on data derived Ffrom figures 5
and 87 per Appendix A.
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Leak Check Rate of Descent (1,000 Fft/min)

FIGURE C7 EFFECT OF LEAK ON ALTIMETER, AR = 10 in. Hg
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Note:

Flight
AlFitade (£1)
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Leak Check Rate of Descent (1000 ft/min)
FIGURE C8 EFFECT OF LEAK ON ALTIME TER/, AR =12 in. /y

Apply to HC-I35A

Original data from wajves ro. 1t 2 and altimeter no. |/

Fairings based on data derived from fiqures &
and 87 per Appendix A.

72

e s




Note: Apply to (C-/35 A
Origina/ data from valves ne. 1$2 and alttmeter no. /
Fairings based on datec der:ved from figures £
and 87 per Appendix A.
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FIGURE C? EFFECT OF LEAR ON ALTIMETER , AR.= /9 /n. Hy
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Note:

Apply to KC-/35A

Original data. from valves no. ! € 2 and altimeter no. I,

Fairings based on data derived from figures §5 and
87 per Appendix A.
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FIGURE ClIO EFFECT OF LEAK ON ALTIMETER, AR = /6in. Hg
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Note: Apply to KC~I35A. .
‘ Perform f[eak check at 300 knotfs.

Lleak Check .
Air€ield Altituyde
e S‘éa Lev;el
% —~ — -~ = 5000 f¢
|
10 Ve no (s

Airspeed Indicator Error (Knots)

o

Leak Check Airspeed Decrease Rate (k#s/sec)

FIGURE Cll PITOT LEAK AIRSPEED ERROR WITH
AP.= 10 tn. Hg
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_Note: Apply to KC- 1354 o
Perform leak check at 300 knots.
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FIGURE Cl2 PITOT LEAK AIRSPEED ERRORS WITH
: AFP. = 12 in. Hg
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Note: Apply to KC-/35A
Perform leak check aft 300 knots.

leak Check
Airfield Aitifude
Sea Level| Ve ots
s T 5000 ft
/
4 200
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Airspeed Indicator Error

Leak Check Aivspeed Decvease Rafe (kts/sec)

FIGURE CI3 PITOT LEAK A/IRSPEED ERRORS WITH
Af.= 1Y . Hg
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Note: Apply to KC-/35A
Perform leak check at %0 knots

leak Check Ve (Knots)
Aivfield Altrfude Y,
Sea Level y
/51 —— ——=— £000 ft 200

(knots)

Alrspeed Indicator E'r*ror;

(o} 10 20 30 “40 50 60
Leak Check Airspeed Decrease Rate (kts/sec)

FIGURE Ci4 PITOT LEAK AIRSPEED ERRORS WITH
AR, = 16 in. Hg




Note: Apply to HKC-/35A
Perform leak checek at 300 knots

Leak Check . AR (n #y)
Aiv freld Altitude /

" ————— Sea Leve/

E s T gooco ftr , e

{24

Airspeed ZIndicator Error (knots)

/0 20 30 40 SO 60

Leak Check Airspeed Decrease Rate (kts/sec)

FIGURE CI5 AJIRSPEED ERROR DUE TO PI7OT LEAK
FOR CRUISE AT 200 KNOTS
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Note: Apply fb HMC-I35A _
Perform leak check at 300 Kknofts.

leak. Check
Airtield Altitude

—— Sea Level
7 < S E,OOO ;7‘

(knol's)

Airspedd Indicator Error

teak Checek Aiv?spee.d Decrease Rate (kfs/sec)

VSR E C16 AIRSPEED ERROR DUE TO PITOT LEAK
FOR CRUISE AT 300 KNOTS




Note: Apply to KC-I135A
Perform leak check af 300 Knots.
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FIGURE C|7 AIRSPEED ERROR DUE 7O PITOT [LEAK
FOR CRUISE AT 400 ANOTS
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Item

AIMS

AH

=0

No.

APg

APe

APg

Pic

Ps

AP

APy

dc

dcic

R/D

AV

Ve

V. S.

LIST OF ABBREVIATIONS AND SYMBOLS

Definition
Air traffic control radar beacon system,
Ldent%f%cat%on friend or foe, Mark XII
identification system, System
pressure altitude (geopotential altitude)
leak-induced altimeter error
mass flow rate
number
atmospheric or ambient pressure

Pecabin ~- Pa., cabin differential pressure

Pic leak = Pic no leak. leak-induced static
pressure error

dcic leak -~ dcic no leak: Pt leak ~

Pt no leak, leak-induced total pressure
error

instrument corrected system pressure
static pressure (at a point in a system)

total pressure

Pcabin - Ptic no leak: APc - decic no leak:
pressure drop across leak hole in total
system

pressure drop through valve

Pt - P5, impact pressure, differential
pressure related to calibrated airspeed

Py - Pg, indicated impact pressure
corrected for instrument error and related
to Vie

rate of descent

leak-induced airspeed error

calibrated airspeed

valve setting, related to angular position
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Units
ft

ft
lbyp/min
in. Hg
in, Hg
in. Hg
in. Hg
in. Hg
in. Hg
in. Hg
in. Hg
in. Hg
in. Hg
in. Hg
ft/min
knots
knots




