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1. Introduction

In this paper we discuss the test of fit that a random sample comes

from the extreme value distribution
(1) F(x) = expl-exp{-(x-£)/06}] , o < x < o,

This is the most important of the three distributions which arise as the
asymptotic distribution of the largest wvalue, suitably normalized, of a

sample taken from any of a wide class of distributions (see e.g. Johnson
and Kotz (1970), p. 272). It arises also in applied research;

the present work was motivated by a question srising ip hiology Suppose

the sample is in ascending order x < x, < x

5 < ece < x , and the null
— - 'n

3 =
hypothesis is formally stated as HO : the sample comes from distribution
(1), with possibly one or both of the location and scale parameters & ,
8 unknown. Following Stephens (1974, 1976) we distinguish four situa-

tions:

Case 0: Both & and 0 are known, so that F(x) is completely
specified.

Case 1: 0 known, & to be estimated.

Case 2: & known, € to be estimated.

Case 3: & , 6 Dboth unknown, and to be estimated.

We suppose the parameters will be estimated by maximum likelihood
from the given example; the estimates, for Case 3, are given by the equa-

tions (Johnson and Kotz (1970), p. 283):

(2) 6 = ijj/n = [ZJXJ exp(nxj/é)]/[zJ exp(—xj/g)]



and

(3) E=.8 ln[Zj exp(—xj/é)/n] .

Equation (2) is solved iteratively, and then (3) can be solved. In Case 1,

Il

® 1is known; then £ is given by (3) with © replacing 8§ . 1In Case 2,

"~

£ is known; suppose then that y = X - £ 3 0 is given by solving
) § = {2 - L.y, expl-y./8)}/n .
(b 373~ Ly p( yj/ )}/

2. The Goodnessg-of-Fit Tests

The tests discussed below are based on EDF statistics, measuring the
discrepancy between the empirical distribution function and the theoretical
distribution (1); in Cases 1, 2, and 3, the m.l. estimates are inserted
for unknown parameters in (1). The statistics discussed are those usually
called W2, U2 and A2 . Asymptotic theory for the statistics will be
given in Section 3; this is based on work of Anderson and Darling (1952),
for Case 0, and on papers by Darling (1955), Sukhatme (1972), Durbin {(1973)
and Stephens (1976) for situations where parameters must be estimated.

The reader is referred to these papers for the theory behind the methods
which follow; in. particular, we follow closely the general lines of
Stephens (1976). In that paper, for example, will be found the defini-
tions of Wz, U2 and A2 3y here we shall give only the practical steps

in making a test of H These are:

0
(a) Calculate z; = F(xi) where F(x) is as given in (1) with the
appropriate m.l. estimates inserted for unknown parameters in Cases 1, 2,

or 3. Recall that the x, are supposed in ascending order, giving 2.:.L

also in ascending order. Let 2z be the mean of the s



(b) Calculate the test statistic desired:
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i

= -[Z;(21-2){In 2z, + In(l~z - )}]/n - n .

(c) Refer to Table 1, first calculating the modified statistic and

then comparing these with the (upper tail) pdints given in the table,
for the appropriate case. For example, if a sample of size 10, Case 3,
WE . w2 . % ,
gave = 0,119 , the modified is, say, W ﬁo.119(1-o.2/J10) = 0.1265;

this is just significant at the 5% level.

3. Asymptotic Theory of the Tests

The following is a summary, taken from the papers referenced above,
of the steps needed to calculate the asymptotic distributions of Wz, U2
or A2 in the various cases.

For Case 0, when F({(x) is completely specified, it is well-known
that z = F(x) gives a random variable z which is uniformly distributed
between O and 1 ; further, if 3z, = F(xi) , i=1,2,...,n , and if
Fn(z) is the EDF of the =z, sample, then yn(z) = /E{Fn(z) - z} tends

asymptotically to a Gaussian process y(z) , 0 < 2z <1 , with

E(y(z)) = 0 for all =z , and
(5) E(y(s)y(t)) = ppls,t) = s - st , 0<s<t<l,

where I is the expectation operator.



Unknown parameters, Suppose now that the (continuous) distribution

under test is F(x) (not necessarily (1)), with density f(x) , con-
taining k parameters 61,62,...,8 3 these are unknown and will be
estimated by maximum likelihood. Suppose Z 1is the matrix with entries

Zij given by

2
S 371n f(x) s
(6) zij = '56;"565" . i, 3 =1,2,...,k ,

and let I Dbe its inverse. Further, define s = F(x) , and

_ 08
(T) gi(S) = 86. .
1
Let uls) be a k-vector whose i-th component is gi(s) . Then, under

appropriate regularity conditions (see e.g. Durbin (1973)), yn(z) now
tends to a Gaussian process y(z) with mean zero as before, and with

covariance

(8) ols,t) = po(s,t) - u'{s)zult) .

1
The statistic W2 is J yi(z) dz and, again under regularity con-

0 1
ditions, its asymptotic distribution will be that of J yg(z) dz .
0
Anderson and Darling (1952) and Darling (1955) have shown how another
Gaussian process may be constructed, with mean O and given covariance

function p(s,t) and the distribution (the word asymptotic will be

dropped) of W2 is calculated from the new process. We must first solve

1

9) £(x) = A [ olx,y) 2ly) dy
4]



for eigenfunctions fi(y) and corresponding eigenvectors Ai . If D(XA)
is the Fredholm determinant associated with (9), the characteristic func-—

2

tion of the distribution of W will be {D(2it)}"1/2 1. atstribution

of W2 will then be the same as that of
(10) S= ) w /X,

where the wi are independent xi variables. The cumulants of the

distribution are

’

. 1 :
(11) K, = 297 (3-1)1 I 0.(s,8) ds
J 0 dJ

where pl(s,t) = p(s,t) , and, for j >2, pj(s,t) is defined by

1
pyls,t) = Jo pi_plssu) plu,t) qu .

The cumulants can also be found from the representation (10):

(12) K, = 29" (5-1)1 ¥ (1/2,) .
J e 2t
i=1

Statistics U2 and A2. These statistics are respectively functionals
-1/2
-1/

of yn(z)T. in(z) and of yn(z) w(z) where w(z) = {z(1-2) ;Yn(Z)—Yn(Z)
these processes tend asymptotically to Gaussian processes with covariances
o(s,t) , which, for a given case, can be found from the corresponding
covariance for W2 ; then Equation (9) must again be solved, and the sum

S in (10), with the new Ai , will give the distribution of U2 or A2 .

The characteristic function comes from the Fredholm determinant of (9) as

before.



Thus the practical problem is to find p(s,t) for different cases,
then to solve (9) for ki , and then to use (12) to approximate the
distribution (assuming, as is nearly always so except for Case 0, that

the characteristic function cannot be inverted).

4,  Asymptotic Results for the Extreme Value Distribution

The above results apply to any suitably regular distribution. For

the distribution (1) considered here, we find, after some algebra,

1 1 Y-1
(13) Z =
0 y-1 2

where Y = 57712 is Fuler's constant and e? is
I"(3) + I"(1) - 2I"(2) - 1 = 7°/6 + (y-1)% = 1.82368 ,

giving ¢ = 1.350437 ; TP"(x) 4is the second derivative of the Gamma

A A
function I'(x) . The asymptotic variances of & (Case 1) and 6 (Case 2),
when 0 =1 , are then ot and (c2n)—l , respectively. The functions

g(s) , with subscript to indicate the case, are

s ln s
g (s) = =202

gz(s) _slns [—én(-ln s)1 ,

and these give covariance functions pj(s,t) for Case j, J = 1,2 :

(L) pj(s,t) = po(s,t) - ¢j(s) ¢j(t)



with

¢l(s) =5 1ln s
and
¢2(s) =g Ins [-1n(-1n s)]/1.350437 .
. . 2 2 i ik =1
For Case 3 we first define Gl > 02 » and p by writing 2 (=.Z&
as
02 a
1 PT,9
(15) L = .
g, q, 0’2
P97 2

The large-sample variances of £ and 6 , in Case 3, are then ofln and

dg/n respectively, and the correlation between them is p . Inversion of

% gives (for 6 = 1), oﬁ = 1.10867 , og = 0.60793 &nd p = 0.313 .

Note that the variances are different from those in Cases 1 and 2 because
of the presence of correlation.

Since I 1is positive definite, it can be written I = BB' where B
is upper triangular; an example given by Sukhatme (1972) is

2)1/2

{
Ul \1l-p pGl

I

(16) B

If we define v(s) = B'u(s) , with two components wl(s) 3 we(s) , the

covariance for Case 3 becomes, from (8),

(a7) p5ls,8) = pgls,6) = W (e) by (8) - bole) Y, (t) .



Another possible matrix decomposition is Z = CC' where

oo (1-p

2

la) A
If there were no asymptotic correlation between & and 6 in Case
3, p3(s,t) would take the form of (17), but with ¢i(-) replacing

Y. () .

1

5. Calculation of Weights

With covariance pj(s,t) known for Case J, the next problem is to
solve (9) for the weights Ai . This is done as follows.

Let 0 < Al < Ae <A, ... Dbe the weights and fi(x) the associated

3
normalized eigenfunctions, for Case 0. (For W2 , these are

A, = l/ﬂzig and f.(x) = /2 sin mix .) Set D.(A) =1 (A-A,) . Expand
i i 0 i i

' 00
¢l(x) = g aifi(x) , so that a; = J ¢l(x) fi(x) dx 3 similarly let

-0

b, = J ¢2(x) fi(x) dx . Let

OO

sa(x)

1
—
+
>

o~
>
1

sb(x) =

[
=
+
>

~1
1=

s, () =] o :



In general, the Ki of Cases 1 and 2 are then given by setting the
Fredholm determinant to zeroj; this implies, for Case 1, solving

Do(x) sa(x) =0, and for Case 2, Do(x) sb(k) =0 . For Case 3,
suppose wl(x) , wz(x) replace ¢l(x) . ¢2(x) in the definitions of

a; and bi above, and define
- 2,
T(A) = 8, () 5, (\) - {8 (V)}* 3

solutions for Case 3 are then given by DO(A) T(A) =0 .

Weights for'Ez. For W2, the Ai of Case 0, which we call the
standard weights, each occur only once. In, say, Case 1, if a value i
exists so that a; = 0, then A= Ai would be a solution of

DO(X) Sa(X) = 0 ; otherwise _(AfAi) in DO(A) cancels (A-Ai) in the
term in §_(A) and A = A; is not a solution. For distribution (1)
the a, are never zero for W2, so the Ai are then given only by

Sa(A) = 0 . Similarly, for Case 2 we solve Sb(A) =0 , and for Case 3,

T(A) = 0 (see Stephens (1976) for examples where a, = 0).

Weights for A2 and U2. For A2 a similar situation exists; the

functions fi(x) for Case 0 are Pi(Zx—l) , Where Pi(t) are Ferrer
associated Legendre functions, and the standard Xi = i(i+l) . No coeffi~
cient a, or bi is zero, and solﬁtions for Xi for Cases 1, 2, and 3
are given by sa(x) =0, sb(x) =0, and T(A) = 0, respectively.
For U2 the discussion is more complicated. The roots Xi of
2

DO(X) = 0 are double roots, given by Xi = Wi , and the corresponding

, %
eigenfunctions are fi(x)==/? sin 2mix and fi(x) = Y2 cos 2nmix. Suppose a



and ai » b, and bi are the coefficients obtained using fi(x) and

fﬁ(x) respectively. Then Sa(X) becomes

2 %2
ai ai
s, =1+ 2\ Vs Lo )
1 1 1 1
and
aibi a?bi
S =M it Lo ) -
1 1 1 1

sb(x) is defined similarly to sa(k) . In Case 1, although no coefficient
* . .
a, s 85 bi or bi is zero, one factor X =~ Xi in DO(X) cancels

denominators in Sa(X) ,» but the other factor remains, so A = Xi is a
solution of DO(X) Sa(X) = 0 ; other solutions are given directly by
Sa(X) = 0 . Similarly, for Cases 2 and 3, the standard weights occur once
in addition to those given respectively by Sb(A) =0 and T(A) =0 .
As a check on.calculations, the weights for Case 3, for all three
statistics, were found using the ¢l(s) and ¢2(s) given by both trans-
formations B and C of Section'Q; these, of course, give different coefficients

* *
a;»2;,0,,b, but the same final distribution for S in (10).

6. Direet Calculation of Means and Variances

The means and variances of the various distributions can be found

directly from (11). For example, for the mean uj for Case j, (11) gives

1 1 1

¢i(s)ds = Uy - J ¢i(s)ds .

1
pl(s,s)ds = Jo po(s,s)ds - I .

(18) My = J

0 0

-

The mean drops from its Case 0 value (uo = 1/6) by the last integral

10



in (18), which we will call 4, ; this can sometimes be directly cal-

J

culated. For example, for W2 Case 1, using integration by parts,

1 1
Al = J ¢i(s) ds = I sangs ds = .0TLOT .
0 0

Similarly, for Case 2, let b be (1.350&37)‘2 ; then
1 1
b, = J ¢2(S) ds =D J sglngs{ln(«ln s)}2 ds .
2 2
0 0
Let s =¢€e ° 3 then

(o]
A2 = b J e"32221n2z dz .
0

Integrals of this type can easily be evaluated by use of appropriate

substitutions and the identities

p 00
- m-1
T(m) = eV N dy
0
[ 1
Tt {m) = Yy iy ay,
70
[ 1.2
() = VR 0y oay .
‘0

For A2 above, substitute u = 3z ;

b

o0
S et ug(ln u ~ 1ln 3)2 du
2 27 o

= b{I"(3) - 2 1n 3 T'*(3) + 1n°3 T(3)}/271

0.01750 .

11



o
For W Case 3, using the notation of Section 4, after Equation (16),

we have
(1 2 1 5
A3 = wl(s) ds + J wg(s) ds

‘0 0
rl

= vt (s) v(s) ds
‘0
rl

= u'(s)Zuls) as
‘0

_ 2
= 1A1 * 200,050 5 + 0l

where we define

i

o = | #20) 500 as

Let ¢ be 1/1.350437 ; then

s2ln2s{—ln(—ln s)}ds = ¢ J e 32,2 1n 2 dz = 0.0096445 .

b = |
12 0

0]

Thus finally A3 = 0.1083 . The three means for Cases 1, 2, 3 are then

u, = 0.0926 , My = 0.1k92 , My = 0.0584 ., For U%  the calculations

1
are on similar lines but are somewhat more complicated; the results are
My = 1/12 , B = 0.0718 , U, = 0.0683 , uy = 0.0559 . For A2 the
integrals are intractable and have been calculated numerically to give
By = 0.5959 , u, = 0.8619 , My = 0.3869 .

In principle, variances could be calculated from (11), as was done
in Stephens (1976) for the case of the normal distribution, but here the

integrals were too complicated. It is important, however, to have the

exact means, as (12) usually converges too slowly to give them correctly.

12



e Calculation of Percentage Points

When the ki are found, and the exact means, the percentage points
of 8 in (10) can be found by a modification of Imhof's method, given
by Durbin and Knott (1972). Alternatively, the first four cumulants can
be found from (12) and Pearson curves fitted to thé data. Imhof's method
can be made very accurate for a finite sum in (10), though it is expen-
sive in computer time; in adapting it for an infinite sum an element of
approximation is introduced. Thus both techniques give approximate
percentage points. The Imhof method gives more accurate points in the
lower tail (see Solomon and Stephens (1975) for a fuller discussion), but
this is not, of course, the tail which would generally be used in goodness
of fit work. Both techniques will depend on the accuracy of the Ai 5
in turn dependent on the accuracy of the numerical integrations in a;
and bi 5
Both methods were used here to find the percentage points &iven in Table 1;
they were in agreement to the accuracy given. Points for Case 0O are included to

show how much the points drop in the other cases (and to show, therefore, how

important it is to use the correct points).

8. Monte Carlo Results for Firite n

Monte Carlo studies were made to determine the percentage points of
the various statistics, for sample sizes n = 10, 20, and 50 ; 5,000
samples were used for each case. Previous experience had suggested
(Stephens (19T74)) that convergence to the asymptotic points would be

rapid, and a plot of percentage points against 1/n proved this to be so.

13



The Monte Carlo points were used to calculate the modified forms given
in Teble 1; for further details on how these are found, see Stephens
(1970, 1976).

Comment., It is interesting that the asymptotic process in Case 1
above has exactly the same covariance (pl(s,t) in (14)) as in a test for
the exponential distribution F(x) = 1 - exp(-x/6) , with 6 unknown;
see Case 4 of Stephens (1976). The asymptotic distributions of all the
EDF statistics are therefore the same in Case 1 above as in the exponen-

tial test.
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