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ABSTRACT 

It is shown that a process' primary memory requirements can be 

approximated by use of the miss rate in the Honeywell 6180's page 

table word associative memory.  This primary memory requirement 

estimate was employed by an experimental version of Multics to 

control the level of multiprogramming in the system, and bill for 

memory usage.  The resultant system's tuning parameters were 

shown to be configuration insensitive, and it was conjectured 

that the system would also track shifts in the referencing 

characteristics of its workload and keep the system in tune. The 

limitations of the assumptions made about a process' referencing 

characteristics are examined, and directions for future research 

are outlined. 
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Section 1 Introduction 

1. Introduction 

1.1 Overview 

Virtual memory systems are now enjoying increasing 

popularity due to the automatic management of memory they provide 

a programmer.  Because of their high cost and the desirability of 

information sharing, they are generally time shared, which 

introduces a host of technological problems. 

In this thesis we will be examining the task of correctly 

assessing a process' primary memory requirements.  This 

assessment is important for two reasons.  First, an approximation 

of each process' primary memory requirements is needed to strike 

the balance necessary to insure optimal operation of a time 

shared system.  Secondly, an approximation is required to 

equitably charge for usage of primary memory, one of the most 

expensive components of a virtual memory system. 

1.2 The Resource Balance 

Before virtual memory the task of multiplexing processors 

among the processes competing for them was rather 

straightforward.  Jobs had a fixed size, and primary memory was 

filled until it could hold no more.  The jobs that were wholly 

contained in primary memory were eligible for processor cycles in 
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the multiplexing process. 

However, virtual memory has complicated this scheme.  As 

virtual memory presents an arbitrarily large virtual space to a 

process by multiplexing primary memory, processes will run in any 

amount of primary memory.  Naturally with less real memory the 

simulation overhead of a large virtual memory increases, and it 

is much more efficient to have a larger real memory. 

Somehow the operating system must determine which processes 

to make eligible in the time division multiplexing of the central 

processors.  Inherent in this selection process is a trade off. 

Multiplexing too many processes simultaneously creates an 

excessive demand for the finite primary memory available, and 

each process can not obtain enough pages.  This results in each 

process spending a high percentage of its time in paging 

overhead, instead of doing useful work. 

If too few processes are made eligible then the time when 

all processes are waiting for page I/O to complete and are 

incapable of receiving processor time rises.  This 

"multiprogramming idle time" represents unrealized processing 

capability. 

Thus when too many processes are made eligible paging 

overhead increases and the fraction of the processor available 

for users' useful computation drops off.  Likewise when too few 

processes are made eligible multiprogramming idle time increases, 

and users' useful computation drops off.  Figure 1.2.1 shows the 

typical relationship between the number of eligible processes, 
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paging overhead, and multiprogramming idle. 

Sekino [S2] has shown that the fraction of the processing 

capability of a system available for users' useful computation is 

linearly related to system throughput.  After Sekino we shall 

call the fraction available "percentile throughput", and it is 

this quantity that we would objectively like to maximize. 

The needed information then is an approximation of how much 

primary memory a process requires.  With this information we 

could rationally select a subset of the ready processes to make 

eligible, with the knowledge they would not cause a performane 

collapse of the computing system by collectively demanding more 

primary memory than is configured. 
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1.3 Previous Work 

Various algorithms have been devised to approximate how much 

real memory a process needs to run in a virtual memory 

environment.  Peter Denning [D1, D2] has suggested that each 

process has a "working set" of information.  This set of 

information is represented by W(t,d), the collection of 

information referenced from t-d to t.  Denning's model has been 

popularized as the set of pages that a process needs in primary 

memory to run optimally, and the amount of primary memory that 

needs to be set aside for a process is often called its working 

set size.  To avoid confusion in this thesis we define the term 

primary memory requirement to represent the number of pages of 

primary memory a process requires. 

Most operating systems that support virtual memory attempt 

to approximate through software each process' primary memory 

requirements.  VM/370 [V1], CP/67 [S3, R1], The Michigan Terminal 

System [A1J, MANIAC II [M2], and Multics [01] all maintain 

primary memory requirement (pmr) estimates which are used in the 

process of deciding what processes to make eligible in the time 

division multiplexing of the central processor. 

The estimation schemes used by these systems suffer from a 

number of common ailments.  The behavior of a process is colored 

by the behavior of the processes it is being multiplexed with, as 

global page replacement algorithms are employed.  The observable 

behavior of a process is noisy and generally does not accurately 

depict the true characteristics of the process.  In addition, the 

11 
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information available to the estimation scheme is limited as the 

hardware supporting virtual memory systems is generally minimally 

augmented traditional equipment. 

To compensate for the limited noisy environment they operate 

in, primary memory requirement estimation algorithms have grown 

in complexity.  Some provide reasonable estimates but they 

require careful tuning and are sensitive to system change. 

Reed [R3J explored the problems of using a model similar to 

the one proposed by this thesis without hardware assistance for 

prar estimation.  He demonstrated the potential usefulness of the 

model, and provided a very rough measure of a process' primary 

memory requirements. 

1.4 Scope of the Thesis 

This thesis proposes a simple model of process behavior that 

can be utilized to estimate a process' primary memory 

requirements.  It is shown in Section 2 that this model can be 

fitted to a process with information provided by a simple 

hardware extension to the associative memory of the Honeywell 

6180 processor.  The estimates generated with this scheme are 

load and configuration independent. 

A prototype implementation for Multics is proposed in 

Section 3, with the results of numerous experiments on this 

implementation reviewed in Section 4.  Multics was chosen for the 

prototype implementation due to the availability of equipment, 

12 
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however the thesis could have been implemented on a number of 

different systems.  Section 5 summarizes the utility of the 

thesis in light of the results of Section 4. 

13 



Section 2 Estimation of a process' pmr 

2. Estimation of a process' primary memory requirements 

2.1 Functional representation of a process' primary memory 

requirements 

As outlined in Section 1.2 the amount of primary memory a 

process is allowed to utilize is related to the amount of paging 

overhead it will experience. We define the mean headway between 

page faults (mhbpf) to be the mean time a process runs before it 

causes a page fault and is forced to incur a page fault handling 

time (pfht) in addition to the time it takes to retrieve the 

needed page from secondary store, the page fetch time (pft). 

We now can formalize the concept of a process' primary 

memory requirements.  Imagine a function f relating the mhbpf for 

a process to the number of pages it requires to obtain this 

mhbpf.  That is: 

M = f(mhbpf) 

-1 
mhbpf = f  (M) 

Naturally f will not be a static function.  The next section 

deals with the problem of dynamically determing f for a process. 

Inherent in this discussion is that the scope of f is limited to 

the time frame in which process behavior was observed to 

determine it. 

14 
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2.2 Dynamic determination of f 

The problem of determing a process' primary memory 

requirements is now reduced to the problem of determing what f 

looks like for the given process.  With f we can analyze what 

type of performance return to expect from an additional 

commitment of primary memory to a process. 

To determine f for a period of time in a process' life we 

can observe the process for this period and then use the 

information collected to estimate f. The naive approach is taken 

by this thesis, that is that f for the next period is equivalent 

to f for the period just measured. 

If we imagine a per process least recently used (LRU) stack 

model of primary memory [M1] the rate of references past level x 

shall be represented as R(x).  Thus if we have M pages that can 

be utilized by a process, R(M) is the page fault rate.  It is 

assumed that primary memory is managed under an LRU replacement 

algorithm, as it essentially is in Multics [C1]. 

The hardware extension this thesis proposes to the 6180 is 

the maintenance of R(16) in a program accessible register.  R{16) 

is easily determined due to the LRU management of the sixteen 

word page table associative memory in the 6180. 

Knowing R(16) we can approximate R(K).  Saltzer [S1] has 

shown through measurements that R(K) is roughly linear in memory 

size at the system level for Multics, making the following a 

tentative approximation for R(K) at the process level: 

15 
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16 
R(K)   =  —  *   R(16) 

K 

Now: 

1 
mhbpf  =    

R(M) 

Alternatively: 

M       -1 
mhbpf = = f  (M) 

16 * R(16) 

Allowing us to deduce for this first order model: 

M = f(mhbpf) = mhbpf * 16 * R(16) 

2.3 Establishment of a desired mean headway between page faults 

Having been able to determine f, we must specify the 

performance level we desire a process to operate at in terms of 

its mhbpf to estimate its primary memory requirements.  Direct 

specification of the desired mhbpf of a process as a tuning 

parameter did not seem to provide an eloquent solution.  It was 

felt that specification in terms of the maximum fraction of time 

that could be devoted to paging overhead would be a much easier 

to conceptualize tuning variable than an absolute value of mhbpf 

in microseconds. 

As each page fault incurs a page fault handling time (pfht), 

and this pfht has a low variance, we can characterize one aspect 

of process efficiency, the fraction of time the process is not 

16 
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spending in paging overhead as: 

rahbpf 
eff =  

mhbpf + pfht 

For historical reasons in the implementation of this thesis the 

term "efficiency" was retained for this application.  Thus the 

reader must not confuse it with a representation of total system 

efficiency.  Note that 

paging overhead in system 
1 _ eff =   

busy time 

is an approximation that could be made on the gross expenditure 

of time at the total sytem level. 

To obtain a specified "efficiency" for a process the above 

expression allows us to calculate its mhbpf as: 

efficiency_wanted * pfht 
mhbpf_wanted =   

(1 - efficiency_wanted) 

Thus with a system administrator specified value of 

efficiency_wanted it is straightforward for Multics to compute 

the value of mhbpf_wanted, as the page fault handling time is 

currently metered by the system. 

2.4 Estimation of a process1 primary memory requirements 

From Section 2.2 we have the approximation: 

M = mhbpf * 16 * R(16) 

17 
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and from Section 2.3 we have: 

efficiency_wanted * pfht 

(1 - efficiency_wanted) 
mhbpf_wanted 

Thus M_wanted, a process* primary requirement estimate, can be 

expressed as: 

efficiency_wanted * pfht * 16 * R( 16) 

(1 - efficiency_wanted) 
M wanted 

To allow for error in the approximation process a simple linear 

multiplier is provided, ws_coff, allowing us to replace M_wanted 

by M.  The name ws_coff is also historical in origin.  The final 

par estimate is then: 

ws_coff * efficiency_wanted * pfht * 16 * R(16) 

(1 - efficiency__wanted) 
M 

2.5 Inaccuracies inherent in the estimate 

In Section 2.2 we made the assumption that R(K) was roughly 

linear in memory size.  If we let p(x) be the stationary 

probability distribution of referencing level x in the LRU stack 

on any reference, and generalize p to be continuous, we know 

that: 

/inf 

p(x) dx = 1 

18 
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In addition the probability of referencing past level y on any 

reference is: 

/inf 

F(y) = p(x) dx 

/y 

Now for R(K) to be linear in memory size: 

F(y) = 2 * F(2 * y) 

Or: 

/inf /inf 

p(x) dx = 2 

/y 

p(x) dx 

/2 • y 

With the constraints presented for p(x) we find 

1 
p(x) = — 

2 
x 

Thus, for the assumption that R(K) is linear in memory size the 

static probability of referencing level x in the LRU stack must 

be as shown above. 

The accuracy of the estimate then depends on how a process' 

referencing characteristics differ from the ideal characteristics 

assumed by this first order model.  A serious departure from p(x) 

by a process will degrade the estimate provided.  The more 

serious the departure, the worse the estimate will become. 

Greenberg [G1] discusses possible representations of p(x) in 

view of his experimental observations of Multics.  More 

19 
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information about the typical form of p(x) would allow R(16) to 

be used in higher order approximations of R(K), and provide 

improved accuracy. 

20 



Section 3 Implementation 

3. Implementation 

3-1 Virtualizing the raw associative memory miss rate 

The associative memory for the page table words in the 6180 

holds sixteen page table words, and is managed under an LRU 

replacement algorithm.  Thus the number of non-matches, or 

misses, in the associative memory is the same as the number of 

page faults that would be incured in a sixteen page real memory 

being managed under LRU replacement. 

The number of raw misses in the associative memory is 

relatively easy to obtain through hardware.  However Multics 

frequently clears the associative memory to reflect changes in 

the in core page tables, causing superfluous misses.  In addition 

page fault and interrupt handling cause a substantial number of 

misses that are counted by the hardware. 

The problem of taking a per processor raw miss count and 

maintaing a per process virtual miss count is very similar to 

billing processes for virtual cpu time, although more complex. 

As indicated above the virtualized miss count represents the 

number of page faults the process would have incured running in a 

sixteen page LRU managed primary memory. 

A separate board (645HK) containing the additional logic for 

maintaining the raw page table word associative memory (PTW AM) 

miss count in program accessible form was added to the 6180 in a 

spare board slot.  Software compensation is provided for 

21 
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associative memory clearing and page fault and interrupt 

handling.  The number of page table words missed on while 

refilling the associative memory is calculated at page fault or 

interrupt time by a compare of the current PTW AM with a 

previously saved copy from the last page fault or interrupt.  A 

subroutine, called adjust_vpfs, was added to the system to 

perform this compensation. 

3-2 Maintenance of R(16) 

A virtual cpu timer is maintained for each process, allowing 

R(16) to be calculated as: 

virtual PTW AM misses 
R(16) =   

elapsed virtual time 

3.3 Mechanics for computing a process' pmr estimate 

To facilitate varying experimental approaches the 

computation of a process' primary memory requirement was made a 

subroutine of pxss [S4], the scheduler of Multics.  To compute a 

process' pmr one calls compute_working_set (once again called 

this for historical reasons), and a pmr is estimated using 

information collected since the last compute_working_set call 

according to the equation derived in Section 2.4. 

22 
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3.4 When a process' pmr is computed 

For the experiments descired in Section 4 a process' pmr was 

computed at three times:  timer runout, process block, and at 

preemption for a higher priority process.  Before a process' pmr 

is computed a check is made to insure it has amassed min_vcpu 

microseconds of virtual time since its last compute_working_set 

call.  If it hasn't, compute_working_set returns without 

calculating a new estimate. 

The min_vcpu parameter was a safeguard after early 

experiments showed erratic estimation due to the systems tendency 

to look through very small windows at a process' behavior.  Fifty 

milliseconds was the standard setting of rain_vcpu. 

3.5 Approximating a new interaction's pmr 

When using a process' pmr for control purposes, i.e. 

deciding whether to let a process become eligible or not, there 

is an underlying assumption that the previous behavior of a 

process is indicative of what its future behavior will be.  What 

then can be said of a process' behavior after it has interacted 

with a human?  Different types of requests generate greatly 

differing resource requirements. 

The assumption made by this thesis is identical to the 

traditional scheme used in estimating a running process' future 

23 
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requirements: resource requirements for a new interaction can be 

estimated from resource requirements of previous interactions. 

In the case of primary memory requirements, a moving average 

is maintained on each call to compute_working_set: 

pmr_average + pmr 
prar_average =   

2 

The average is used as the process' pmr on each new interaction. 

On process creation each process assumes a preset pmr until it 

goes blocked, is preempted, or incurs a timer runout. 

3.6 Determination of level of multiprogramming 

Figures 3-6.1 and 3.6.2 outline the flow of information and 

decision process used for the implementation of eligibility 

control in this thesis.  They are simplified representations of 

the actual implementation but they characterize the decision 

process well as all of the logic from the standard system was 

removed. 

In both the standard system and the one proposed in this 

thesis a preemptive priority discipline is used for processor 

scheduling within the eligible processes.  This discipline 

mitigates the effect of lower priority processes with large prar's 

displacing pages of higher priority processes.  Thus the decision 

in the control logic for the pmr system to make processes with 

extremely large pmr's eligible concurrently with other processes 

24 
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seemed reasonable in view of the fact they would always be of 

lower processor priority. 

25 
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3.7 Billing for memory usage 

Memory usage is billed for as a time product: 

U(M) = a * pmr * virtual_cpu_time 

Where a is a constant multiplier.  Each time a new pmr is 

computed the virtual time span it applies to must be used to 

integrate U. That is 

1   1 
T T 
\ 

U =  >   a * (pmr computed) * (vcpu time computed over) 
/ 
1   1 
T T 

all pmr 
computations 

If we let a be the constant: 

(1 - efficiency_wanted) 
a =  

ws_coff * efficiency__wanted * pfht * 16 * 1000 

Then using the equation in Section 2.4 for a process' pmr we 

find: 

R(16) * virtual_cpu_time 
U =  

1000 

Knowing: 

virtual PTW AM misses 
R(16) =   

virtual cpu time 

We find: 

virtual PTW AM misses 
U =  

1000 

Thus with the estimation algorithms employed in this thesis a 

time product memory charge is simply the absolute number of 
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references past level 16 in the LRU stack.  The factor of 1000 

was added to reduce the magnitude of the charge for user 

consumption.  The subroutine adjust_vpfs maintains the virtual 

PTW AM miss count for memory billing in the implementation of 

this thesis. 

3.8 Self tuning of the system 

As indicated in Section 2.5 the first order model proposed 

in Section 2.2 was not expected to be very accurate.  To help 

determine the correct value of ws_coff several experiments were 

run with the self tuning algorithms in Figure 3.8.1 enabled. 

As depicted in the flow chart the algorithm attempts to 

adjust ws_coff such that the system administrator specified 

efficiency_wanted is maintained by the system.   The parameters 

delta_to_ws_coff, tune_interval, and rain_busy control the dynamic 

response of the feedback mechanism. 

In addition to the self tuning of the pmr estimator, self 

tuning of scheduler quanta was implemented.  The system 

administrator is allowed to specify what percentage of 

interactions should complete without exhausting their time 

quanta.  The system will automatically tune the scheduler quanta 

to reach the "task switching ratio" specified by the system 

administrator. 

Note that the stability problems encountered in any feedback 

system are present here.  Figure 3.8.2 is a block diagram of the 
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feedback loop.  In Section 4 the stability of this feedback 

system is examined. 
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4. Experimental Results 

4.1 Design of the experiments 

A total of 67 controlled experiments were run varying both 

software design and system configuration.  The experiments were 

conducted at three different sites: the Ford Motor Company 

Research and Engineering Center in Dearborn, Michigan; Honeywell 

Information Systems Inc. in Phoenix, Arizona; and Honeywell 

Information Systems Inc. in Cambridge, Massachusetts. 

Each experiment consisted of applying a synthetic script 

driven load to a dedicated system and measuring the systems 

resultant behavior.  The scripts were designed by M.I.T.'s 

Information Processing Center, and were used in a packaged 

environment they designed to initiate, terminate, and collect 

statistics on performance experiments [R2].  The so called 

"M.I.T. performance test" allows the specification of an 

arbitrary number of users to be simulated with random based think 

times.  Ten simulated users were used for each thesis experiment. 

Multics is typically operated with a small capacity paging 

device of bulk core (usually a few million words).  As the page 

fetch time from the "bulk store" is negligible no 

multiprogramming occurs on page faults that can be statisfied 

from the bulk store.  The experiments for this thesis were run 

without bulk store to magnify the effects of the pmr estimator. 
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During each experiment the software monitor Aware [M3] 

developed by the Ford Motor Company was run to record system 

performance statistics.  The graphs reproduced in this section 

representing individual experiments were produced by Aware. 

Both the standard version of Multics and the one modified to 

incorporate the ideas in this thesis were doctored to make the 

simulated users appear more like a real user load.  This was 

accomplished by providing interaction credit on timer wakeups. 

4.2 Validity of the pmr estimator 

Two experiments were run on different configurations with 

the system's self tuning turned off.  The experimental load was 

identical, thus affording an opportunity to examine how the pmr 

estimator behaved on vastly different configurations. 

Table 4.2.1 outlines the results of the experiments, along 

with the configurations employed.  Figures 4.2.2 and 4.2.3 show 

the histograms of pmr sizes calculated for the 512K and 256K 

experiments, respectfully. 

The first observation that can be made is that the pmr 

estimator does indeed discriminate between the varying memory 

requirements of processes.  The histograms show that the miss 

rate in the PTW associative memory is far from constant, and 

probably contains significant information about a process' 

primary memory requirements. 

The second observation that can be made is that the pmr 
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estimates are fairly configuration independent.  The averages are 

resonably close across configurations, and the distribution of 

pmr's as depicted by the histograms are very similar. 

The amount of virtual cpu time that elapses on the average 

before a process' pmr is computed is significantly less in the 

512K experiment.  This can be attributed to a higher number of 

preempt interrupts, caused by a higher degree of 

multiprogramming. 

The parameter ws_coff was estimated to be .157 by an 

experiment where the system was allowed to self tune ws_coff. 

The experiment found that .157 was value that most accurately 

targeted the specified efficiency_wanted into system performance. 

The reason ws_coff is so low is possibly due to the high 

percentage of time the system spends in so called "wired core". 

This memory is paged, and figures in the PTW associative memory 

miss rate.  However it is never considered for removal and its 

contribution to a process* pmr can essentially be considered as 

overhead. 
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Effective  memory   size 
(pages) 

efficiency_wanted 

user time 

busy  time 

pmr_ceff 

resulting 

page fault handling time 
(msec ) 

average virtual cpu time 
between pmr computations 
(msec) 

average virtualized misses 
between pmr computations 

average K(l6) 
(misses/msec) 

average pmr 
(kept by compute_pmr) 

Configuration 

A B 

440 IP? 

•50 

.62 

.15? 

3.35 

103-? 

1048 

10.15 

83.98 

.50 

.46 

• 157 

3.224 

141. c 

1475 

10.39 

77.05 

Configuration information 

total primary memory 
(words) 

disk channels 

bulk storage device for 
paging (LCS) 

experiment number 

512K 

2 

no 

37 

256K 

2 

no 

58 

Table 4.2.1 

Typical vnlues for ? 

pmr system on two diffrrent 

conf i'^urat iors 
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4.3 Performance of the pmr system 

A series of experiments was conducted to compare the 

performance of the system with and without the pmr estimator 

proposed in this thesis.  The configurations and loading used 

were the same as outlined in Secions 4.1 and 4.2. 

The standard system (without the pmr estimator) was tuned by 

locking the tuning variables min_e and max_e together, fixing the 

level of multiprogamming at the specified level.  The pmr system 

was tuned by varying efficiency_wanted through its range from 0.0 

to 1.0. 

Figures 4.3.1 and 4.3-2 depict the results of the 

experiments.  The x-axis is the efficiency_wanted specified, and 

the y-axis is the resulting performance of the system as measured 

by three variables.  Note the horizontal lines represent an 

optimally tuned locked eligibility standard system, as it does 

not have an efficiency wanted variable. 

The top graph in 4.3*1 and 4.3.2 is the elapsed real time of 

the ten scripts.  The gaps between the pmr system and the 

standard system are within the measurment noise, and are not 

significant.  Note that the 256K configuration has a much sharper 

null as shown in Figure 4.3.2 due to its smaller primary memory 

size.  Raising min_e and max__e to 3 for a run of the standard 

system on the 256K configuration drove the elapsed time to over 

70 minutes.  The 512K configuration was much less sensitive to 

such changes. 

From the information in Figures 4.3.1 and 4.3.2 it is 
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obvious that the prar estimator does not increase percentile 

throughput as hoped.  The best the pmr system can do is match the 

performance of the locked eligibility system. 

Also note the relationship between the ratio of user time to 

busy time and efficiency_wanted.  The relationship is linear over 

the range measured in the 256K experiments due to the control 

afforded by the small memory size. 

For both configurations the optimum performance of the pmr 

system was found at the same value of efficiency_wanted.  This 

seems very significant, as ideally one would like to tune a 

system once using configuration insensitive parameters.  Most 

user sites do not have the inclination or expertise necessary to 

tune their system.  Thus tuning a system once "at the factory" 

would allow user sites to enjoy optimum performance without 

burdening them with the difficult task of system tuning. 

The standard system could be tuned for an optimal level of 

multiprogramming by taking the number of available pages, 

dividing by a constant, and fixing the level of multiprogramming 

at the resulting quotient.  However the constant would contain 

information about the referencing characteristics of a specific 

site's workload, and could not be expected to be applicable to 

other sites. 

The pmr estimator described in this thesis would probably 

track a workload characteristic shift due to its actual 

measurement of the needs of processes.  We have already seen 

evidence that it tracks over configuration changes.  Thus even 
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though no performance gain was demonstrated, it looks like it is 

much easier to achieve optimum performance with the proposed pmr 

estimator. 
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4.4 Memory usage charging 

In Section 3»7 it was shown that the number of virtual PTW 

AM misses could be used directly as a time product memory charge. 

Two experiments were run using the memory charging algorithm 

proposed on configuration B as described in Table 4.2.1, with the 

loading outlined in Section 4.1. 

Table 4.4.1 shows the average memory charges for two 

translators averaged over ten commands.  As expected the ALM 

assembler has a considerably lower charge due to its smaller 

memory requirements.  Also note the difference in R(16) between 

translators, further substantiation that the pmr estimator can 

discriminate between processes with varying pmr's. 

The memory usage measure in use here is theoretically 

configuration and load independent as the data from the 

associative memory is ideally noise free.  However for the 

reasons outlined in Section 2.5 there may be inequity in the 

usage charge. 
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memory 
charge 

translator 

average 
virtual 

cpu 
time (sec) 

average 
virtualized 
PTW AM 

misses (/1000) 
R(16) 

(misses/ 

ALM 4.39 48.16 10.96 

PL/1 4.96 123.65 24.91 

Table 4.4.1 

Memory usage of PL/l compiler 

and ALM assembler averaged over 10 

typical commands 
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4.5 Self tuning results 

Figures 4.5.2, 4.5.3, and 4.5.4 depict typical system 

behavior with the self tuning algorithm in Section 3-8 enabled. 

Experiment 12 was conducted on configuration C as described in 

Table 4.5.1, with the load described in Section 4.1.  The 

settings for the feedback parameters and average observed 

behavior are also given in Table 4.5.1. 

Figure 4.5.2 shows the pmr self tuning algorithm trying to 

keep efficiency_got, the observed ratio of user time to busy 

time, the same as efficiency_wanted by adjusting ws_coff. Figure 

4.5.3 shows ws_coff plotted against time of day. 

Figure 4.5.4 shows the system trying to maintain tsr_got, 

the percentage of processes going blocked in their first time 

quantum, to percent_complete, the system administrator specified 

goal. 

The self tuning algorithm was developed primarily to hunt 

for a value of ws_coff that targeted efficiency_wanted into 

corresponding system behavior.  It is obvious from Figures 4.5.2 

and 4.5.4 that there was a great deal of error looking for the 

proper values of system tuning paramters. 
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Configuration 

192K words primary memory 
124 pares available to user 
2 disk channels 
no bulk store device 

Feedback parameters 

tsr_wanted 75 

efficiency_wanted .10 

delta_to_tefirst . 050 seconds 

delta_to_ws_coff .1 

tune_interval 30 seconds 

Observed behavior 

mean      standard deviatior 

tefirst .171 .082 
ws eoff .289 .186 
tsr rot 73.3 17.66 
efficiency_pot .325 .108 

Table 4.5.1 
Parameter values and 

configuration information for 

Experiment 12 
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experiment number 12  08'20'7B 20:02 - 08'20'75 23»Ot 

T 

*Vo.OO    20.60 21.00    21.SO    22.00 
• .ti««.of.day 

22.SO    28.00 

Figure 4.5.2 

Dymanic response of the 

system to the pmr self tuning 

algorithim 
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experiment   number   12     08'20'7S   20:02   -   08'20'76   23«03 

• .time_ot_d«y ) 

Figure ^.5*3 

Control variable ws_coff 
plotted against  time of day 
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experiment   number   12     OB'20'76   20:02   -   08'20'76   23«0( 

20. SO 21.00 21.SO 22T00 
a.tia«.of.day 

22.60 28.00 

Figure 4.5-** 

System task  switching 
ratio under the  influence of 

self tuning 

50 



Section 4 Experimental Results 

4.6 Analysis of error 

The M.I.T. performance test is far from a perfect measure of 

the performance of a given Multics system.  For identical 

experimental runs variance of elapsed time of up to ten percent 

was noted.  Thus critical experiments were run at least twice to 

provide a more stable measure. 

The scripts determine for the most part was is being 

measured, as they provide as a whole a set of resoure 

requirements.  The scripts in use for the experiments described 

in this thesis were designed by the M.I.T. Information Procesing 

Center, and were used unmodified. 

Thus the results reported in this thesis must be viewed 

within the limitations through with they were obtained.  A 

typical command employed in the M.I.T. scripts used 100 

milliseconds of cpu time, making it difficult to assess a 

process* prar before it changed.  Section 5 will discuss the types 

of system loads that would derive greater benefit from pmr 

estimation for eligibility control. 
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5. Conclusion 

5.1 Summary of thesis proposal and results 

We have seen how a simple hardware addition to measure the 

page table word associative memory miss rate in the 6180 

processor allows a process' primary memory requirements to be 

estimated.  Assumptions were made about a process' behavior that 

enabled this estimation, and they were outlined. 

Experimental results showed that the primary memory 

requirement estimator was indeed discriminating between processes 

with differing primary memory requirements.  However, no 

incremental performance gain could be demonstrated using the 

estimated primary memory requirements (pmr) to control the level 

of multiprogramming in the system. 

The major result of this thesis was that the pmr estimator 

proposed simplified the tuning of the system for an optimal level 

of multiprogramming.  Experimental results showed that the system 

stayed in tune across a large change in configuration.  It was 

conjectured that the system probably would also track changes in 

the profile of its load and adjust accordingly. 

The problem of charging for memory usage was also explored. 

It was shown that the number of misses in the page table word 

associative memory could be used directly as a time product 

memory charge. 
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5.2 How a net performance increase might be realized 

At the outset of this thesis research it was hoped that 

providing better estimates of a process1 pmr than were currently 

available would increase the percentile throughput of the system. 

As explained in Sections 1.2 and 1.3 the problem of estimating a 

process' pmr has traditionally been associated with performance 

gains. 

Most of the theoretical work in this area has dealt with a 

process running under steady state conditions, and does not 

consider transient behavior.  However the load used for the 

experiments in this thesis was extremely transient in nature. 

The load was designed to reflect what a general purpose time 

sharing system saw under a production load at M.I.T.. 

It is difficult to utilize a good estimate of a process1 pmr 

if it is changing very dynamically.  Thus a contributing factor 

to the failure to demonstrate a performance gain using the pmr 

estimator proposed was the nature of the load used for assessing 

the estimators effect.  If workload characteristics were such 

that processes began to reach steady state in their referencing 

behavior then estimates of memory requirements would be of 

greater utility. 

5.3 Future work 

Naturally this thesis has left great amounts of territory 
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unexplored. 

As described in Section 2.5 the accuracy of the first order 

estimation is predicated on the form of p(x).  A simulator for 

the the 6180 could be implemented, allowing p(x) to be calculated 

for various commands and programs.  With typical forms of p(x) 

the limitations of the estimation would be better understood, and 

the accuracy could be quantitatively described. 

Software was used to compensate for superfluous misses in 

the PTW associative memory, inducing additional overhead on each 

page fault and interrupt.  Most of the compensation could be 

performed in hardware, making the overhead cost of calculating a 

process1 pmr completely negligible. 

The conjecture that the pmr system described in this thesis 

will track changes in the referencing characteristics of the 

system's workload and optimally set the degree of 

multiprogramming should be verified. 

The utility of pmr information in a dynamic process 

environment should be investigated.  If a process' past behavior 

can not be used effectively to predict the process' future 

behavior then investment in a pmr estimator only lets one control 

the average level of multiprogramming.  No optimization would be 

possible that required distinguishing between processes with 

varying requirements. 

Finally, the stability of a self tuned system should be 

examined.  Typical feedback system problems have to be dealt with 

to reduce erratic system behavior. 
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