
ESD-TR-77-147

- ESD ACCESSION LIST
31 KO. %mf1

Copy r
, /

Jo.JHA'RrDWARJByseSTIMATION OF A PROCESS
PRIMARY MEMORY REQUIREMENTS

Massachusetts Institute of Technology
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA 02139

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 Wilson Boulevard
Arlington, VA 22209

k\)Am^^

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily-
representing the official policies, either expressed or implied,
of the Advanced Research Projects Agency or the U.S. Government.

• LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

e.iM
PAUL A. KARGER, Captain, USAF ROGM R. 3CHELL, Lt Colonel, USAF
Techniques Engineering Division ADIvSystem Security Program Manager

FOR THE COMMANDER

~7/^aWe w.
FRANK J. EMM^ Colonel, USAF
Director, Computer Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-77-f47

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT 4 PERIOD COVERED

HARDWARE ESTIMATION OF A PROCESS
PRIMARY MEMORY REQUIREMENTS

6. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TM-81
7. AUTHORfs.)

David Kenneth Gifford

8. CONTRACT OR GRANT NUMBERS

Fr9628-74-C-0f93
ARPA Order No. 2641

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA 02139

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

A023

II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hnnsrnm AFR MA ni7^f

I UAlllT^Dl.if- **Clirw ktAWC A. *

12. REPORT DATE

January 1977
13. NUMBER OF PAGES

56
14. MONITORING AGENCY NAME 4 ADDRESSf;/ diilerent trom Controlling Office)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

IS. SECURITY CLASS, (ol this report)

UNCLASSIFIED

I 5a. DECLASSIFI CATION/DOWNGRADING
SCHEDULE

N7A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side if necessary and identify by block number)

Process' Primary Memory
Multiprogramming
Memory

Virtual Memory

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This thesis examines the task of correctly assessing a process'
primary memory requirements. First, an approximation of each
process' primary memory requirements is needed to insure optimal
operation of a time shared system. Second, an approximation is
required to equitably charge for usage of primary memory, one of
the most expensive components of a virtual memory system.

DD
FORM

1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

MIT/LCS/TM-81

HARDWARE ESTIMATION OF A PROCESS'

PRIMARY MEMORY REQUIREMENTS

by

David Kenneth Gifford

This Technical Memorandum is a minor revision of a thesis
submitted on May 7, 1976 in partial fulfillment of the
requirements for the degree of Bachelor of Science in Computer
Science and Engineering at the Massachusetts Institute of
Technology.

The work reported here was performed in the Computer Systems
Research Division of the M.I.T. Laboratory of Computer Science,
an interdepartmental laboratory. The work was supported in part
by Honeywell Information Systems Inc., and in part by the
Computer Science Department of Ford Motor Company Car
Engineering. Publication of the work was supported by the Air
Force Information Systems Technology Applications Office (ISTAO)
and by the Advanced Research Project Agency (ARPA) of the
Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0198.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGMENTS

I would like to thank ray thesis advisor, Professor Fernando

J. Corbato, for the many helpful suggestions he provided over the

course of this thesis.

Many thanks are due to Ron Bierraan of the Ford Motor

Company, for first providing me with the opportunity of pursuing

this thesis research.

I would like to thank Bob Montee and Charlie Clingen of

Honeywell for arranging for permission to modify the 6180,

machine time, and ray transportation which enabled the experiments

in this thesis.

This is for Katrina.

HARDWARE ESTIMATION OF A PROCESS'

PRIMARY MEMORY REQUIREMENTS

by

David Kenneth Gifford

ABSTRACT

It is shown that a process' primary memory requirements can be

approximated by use of the miss rate in the Honeywell 6180's page

table word associative memory. This primary memory requirement

estimate was employed by an experimental version of Multics to

control the level of multiprogramming in the system, and bill for

memory usage. The resultant system's tuning parameters were

shown to be configuration insensitive, and it was conjectured

that the system would also track shifts in the referencing

characteristics of its workload and keep the system in tune. The

limitations of the assumptions made about a process' referencing

characteristics are examined, and directions for future research

are outlined.

THESIS SUPERVISOR: Fernando J. Corbato

TITLE: Professor of Computer Science and Electrical Engineering

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS 2

ABSTRACT 3

SECTIONS

1. Introduction

1. Overview 7

2. The Resource Balance 7

3. Previous Work 11

4. Scope of the Thesis 12

2. Estimation of a process' primary memory requirements

1. Functional representation of a process' primary 14
memory requirements

2. Dynamic determination of f 15

3. Establishment of a desired mean headway between 16
page faults

4. Estimation of a process' primary memory 17
requirements

5. Inaccuracies inherent in the estimate 18

3. Implementation

1. Virtualizing the raw associative memory miss rate 21

2. Maintenance of R(16) 22

3. Mechanics for computing a process' pmr 22
estimate

4. When a process' pmr is computed 23

5. Approximating a new interaction's pmr 23

6. Determination of level of multiprogramming 24

7. Billing for memory usage 28

8. Self tuning of the system 29

4. Experimental Results

1. Design of the experiments 33

2. Validity of the pmr estimator 34

3. Performance of the pmr system 39

4. Memory usage charging 44

5. Self tuning results 46

6. Analysis of error 51

5. Conclusion

1. Summary of thesis proposal and results 52

2. How a net performance increase might be realized 53

3. Future work 53

REFERENCES 55

LIST OF FIGURES

Figure Page

1.2.1 Effect of number of eligible processes on paging 10
overhead and multiprogramming idle time

3.6.1 Pmr estimation information flow 26

3.6.2 Eligibility control logic 27

3.8.1 tune_system subroutine flowchart 31

3.8.2 Block diagram of system self tuning 32

4.2.1 Typical values for a pmr system on two different 36
configurations

4.2.3 Sample pmr histogram 256K system 37

4.2.3 Sample pmr histogram 256K system 38

4.3-1 prar system performance on configuration A 42

4.3-2 pmr system performance on configuration B 43

4.4.1 Memory usage of PL/1 compiler and ALM assembler 45
averaged over 10 typical commands

4.5.1 Parameter values and configuration information 47
for experiment 12

4.5.2 Dynamic response of the system to the pmr self tuning 48
algorithm

4.5.3 Control variable ws_coff plotted against time of day 49

4.5.4 System task switching ratio under the influence of 50
self tuning

Section 1 Introduction

1. Introduction

1.1 Overview

Virtual memory systems are now enjoying increasing

popularity due to the automatic management of memory they provide

a programmer. Because of their high cost and the desirability of

information sharing, they are generally time shared, which

introduces a host of technological problems.

In this thesis we will be examining the task of correctly

assessing a process' primary memory requirements. This

assessment is important for two reasons. First, an approximation

of each process' primary memory requirements is needed to strike

the balance necessary to insure optimal operation of a time

shared system. Secondly, an approximation is required to

equitably charge for usage of primary memory, one of the most

expensive components of a virtual memory system.

1.2 The Resource Balance

Before virtual memory the task of multiplexing processors

among the processes competing for them was rather

straightforward. Jobs had a fixed size, and primary memory was

filled until it could hold no more. The jobs that were wholly

contained in primary memory were eligible for processor cycles in

Section 1 Introduction

the multiplexing process.

However, virtual memory has complicated this scheme. As

virtual memory presents an arbitrarily large virtual space to a

process by multiplexing primary memory, processes will run in any

amount of primary memory. Naturally with less real memory the

simulation overhead of a large virtual memory increases, and it

is much more efficient to have a larger real memory.

Somehow the operating system must determine which processes

to make eligible in the time division multiplexing of the central

processors. Inherent in this selection process is a trade off.

Multiplexing too many processes simultaneously creates an

excessive demand for the finite primary memory available, and

each process can not obtain enough pages. This results in each

process spending a high percentage of its time in paging

overhead, instead of doing useful work.

If too few processes are made eligible then the time when

all processes are waiting for page I/O to complete and are

incapable of receiving processor time rises. This

"multiprogramming idle time" represents unrealized processing

capability.

Thus when too many processes are made eligible paging

overhead increases and the fraction of the processor available

for users' useful computation drops off. Likewise when too few

processes are made eligible multiprogramming idle time increases,

and users' useful computation drops off. Figure 1.2.1 shows the

typical relationship between the number of eligible processes,

Section 1 Introduction

paging overhead, and multiprogramming idle.

Sekino [S2] has shown that the fraction of the processing

capability of a system available for users' useful computation is

linearly related to system throughput. After Sekino we shall

call the fraction available "percentile throughput", and it is

this quantity that we would objectively like to maximize.

The needed information then is an approximation of how much

primary memory a process requires. With this information we

could rationally select a subset of the ready processes to make

eligible, with the knowledge they would not cause a performane

collapse of the computing system by collectively demanding more

primary memory than is configured.

8

O

V Q
•H •
•P O

<w
O

c
o

is
o

8
01

8

paging overhead/real time

multiprogramming idle/real time

0.00 2.00 U.00 6.00 "8.00 10.00
average number of eligible users

12.00

Figure 1.2.1

Effect of number of eligible
processes on paging overhead and multiprogramming

idle time

10

Section 1 Introduction

1.3 Previous Work

Various algorithms have been devised to approximate how much

real memory a process needs to run in a virtual memory

environment. Peter Denning [D1, D2] has suggested that each

process has a "working set" of information. This set of

information is represented by W(t,d), the collection of

information referenced from t-d to t. Denning's model has been

popularized as the set of pages that a process needs in primary

memory to run optimally, and the amount of primary memory that

needs to be set aside for a process is often called its working

set size. To avoid confusion in this thesis we define the term

primary memory requirement to represent the number of pages of

primary memory a process requires.

Most operating systems that support virtual memory attempt

to approximate through software each process' primary memory

requirements. VM/370 [V1], CP/67 [S3, R1], The Michigan Terminal

System [A1J, MANIAC II [M2], and Multics [01] all maintain

primary memory requirement (pmr) estimates which are used in the

process of deciding what processes to make eligible in the time

division multiplexing of the central processor.

The estimation schemes used by these systems suffer from a

number of common ailments. The behavior of a process is colored

by the behavior of the processes it is being multiplexed with, as

global page replacement algorithms are employed. The observable

behavior of a process is noisy and generally does not accurately

depict the true characteristics of the process. In addition, the

11

Section 1 Introduction

information available to the estimation scheme is limited as the

hardware supporting virtual memory systems is generally minimally

augmented traditional equipment.

To compensate for the limited noisy environment they operate

in, primary memory requirement estimation algorithms have grown

in complexity. Some provide reasonable estimates but they

require careful tuning and are sensitive to system change.

Reed [R3J explored the problems of using a model similar to

the one proposed by this thesis without hardware assistance for

prar estimation. He demonstrated the potential usefulness of the

model, and provided a very rough measure of a process' primary

memory requirements.

1.4 Scope of the Thesis

This thesis proposes a simple model of process behavior that

can be utilized to estimate a process' primary memory

requirements. It is shown in Section 2 that this model can be

fitted to a process with information provided by a simple

hardware extension to the associative memory of the Honeywell

6180 processor. The estimates generated with this scheme are

load and configuration independent.

A prototype implementation for Multics is proposed in

Section 3, with the results of numerous experiments on this

implementation reviewed in Section 4. Multics was chosen for the

prototype implementation due to the availability of equipment,

12

Section 1 Introduction

however the thesis could have been implemented on a number of

different systems. Section 5 summarizes the utility of the

thesis in light of the results of Section 4.

13

Section 2 Estimation of a process' pmr

2. Estimation of a process' primary memory requirements

2.1 Functional representation of a process' primary memory

requirements

As outlined in Section 1.2 the amount of primary memory a

process is allowed to utilize is related to the amount of paging

overhead it will experience. We define the mean headway between

page faults (mhbpf) to be the mean time a process runs before it

causes a page fault and is forced to incur a page fault handling

time (pfht) in addition to the time it takes to retrieve the

needed page from secondary store, the page fetch time (pft).

We now can formalize the concept of a process' primary

memory requirements. Imagine a function f relating the mhbpf for

a process to the number of pages it requires to obtain this

mhbpf. That is:

M = f(mhbpf)

-1
mhbpf = f (M)

Naturally f will not be a static function. The next section

deals with the problem of dynamically determing f for a process.

Inherent in this discussion is that the scope of f is limited to

the time frame in which process behavior was observed to

determine it.

14

Section 2 Estimation of a process' pmr

2.2 Dynamic determination of f

The problem of determing a process' primary memory

requirements is now reduced to the problem of determing what f

looks like for the given process. With f we can analyze what

type of performance return to expect from an additional

commitment of primary memory to a process.

To determine f for a period of time in a process' life we

can observe the process for this period and then use the

information collected to estimate f. The naive approach is taken

by this thesis, that is that f for the next period is equivalent

to f for the period just measured.

If we imagine a per process least recently used (LRU) stack

model of primary memory [M1] the rate of references past level x

shall be represented as R(x). Thus if we have M pages that can

be utilized by a process, R(M) is the page fault rate. It is

assumed that primary memory is managed under an LRU replacement

algorithm, as it essentially is in Multics [C1].

The hardware extension this thesis proposes to the 6180 is

the maintenance of R(16) in a program accessible register. R{16)

is easily determined due to the LRU management of the sixteen

word page table associative memory in the 6180.

Knowing R(16) we can approximate R(K). Saltzer [S1] has

shown through measurements that R(K) is roughly linear in memory

size at the system level for Multics, making the following a

tentative approximation for R(K) at the process level:

15

Section 2 Estimation of a process' prar

16
R(K) = — * R(16)

K

Now:

1
mhbpf =

R(M)

Alternatively:

M -1
mhbpf = = f (M)

16 * R(16)

Allowing us to deduce for this first order model:

M = f(mhbpf) = mhbpf * 16 * R(16)

2.3 Establishment of a desired mean headway between page faults

Having been able to determine f, we must specify the

performance level we desire a process to operate at in terms of

its mhbpf to estimate its primary memory requirements. Direct

specification of the desired mhbpf of a process as a tuning

parameter did not seem to provide an eloquent solution. It was

felt that specification in terms of the maximum fraction of time

that could be devoted to paging overhead would be a much easier

to conceptualize tuning variable than an absolute value of mhbpf

in microseconds.

As each page fault incurs a page fault handling time (pfht),

and this pfht has a low variance, we can characterize one aspect

of process efficiency, the fraction of time the process is not

16

Section 2 Estimation of a process' prar

spending in paging overhead as:

rahbpf
eff =

mhbpf + pfht

For historical reasons in the implementation of this thesis the

term "efficiency" was retained for this application. Thus the

reader must not confuse it with a representation of total system

efficiency. Note that

paging overhead in system
1 _ eff =

busy time

is an approximation that could be made on the gross expenditure

of time at the total sytem level.

To obtain a specified "efficiency" for a process the above

expression allows us to calculate its mhbpf as:

efficiency_wanted * pfht
mhbpf_wanted =

(1 - efficiency_wanted)

Thus with a system administrator specified value of

efficiency_wanted it is straightforward for Multics to compute

the value of mhbpf_wanted, as the page fault handling time is

currently metered by the system.

2.4 Estimation of a process1 primary memory requirements

From Section 2.2 we have the approximation:

M = mhbpf * 16 * R(16)

17

Section 2 Estimation of a process' pmr

and from Section 2.3 we have:

efficiency_wanted * pfht

(1 - efficiency_wanted)
mhbpf_wanted

Thus M_wanted, a process* primary requirement estimate, can be

expressed as:

efficiency_wanted * pfht * 16 * R(16)

(1 - efficiency_wanted)
M wanted

To allow for error in the approximation process a simple linear

multiplier is provided, ws_coff, allowing us to replace M_wanted

by M. The name ws_coff is also historical in origin. The final

par estimate is then:

ws_coff * efficiency_wanted * pfht * 16 * R(16)

(1 - efficiency__wanted)
M

2.5 Inaccuracies inherent in the estimate

In Section 2.2 we made the assumption that R(K) was roughly

linear in memory size. If we let p(x) be the stationary

probability distribution of referencing level x in the LRU stack

on any reference, and generalize p to be continuous, we know

that:

/inf

p(x) dx = 1

18

Section 2 Estimation of a process' prar

In addition the probability of referencing past level y on any

reference is:

/inf

F(y) = p(x) dx

/y

Now for R(K) to be linear in memory size:

F(y) = 2 * F(2 * y)

Or:

/inf /inf

p(x) dx = 2

/y

p(x) dx

/2 • y

With the constraints presented for p(x) we find

1
p(x) = —

2
x

Thus, for the assumption that R(K) is linear in memory size the

static probability of referencing level x in the LRU stack must

be as shown above.

The accuracy of the estimate then depends on how a process'

referencing characteristics differ from the ideal characteristics

assumed by this first order model. A serious departure from p(x)

by a process will degrade the estimate provided. The more

serious the departure, the worse the estimate will become.

Greenberg [G1] discusses possible representations of p(x) in

view of his experimental observations of Multics. More

19

Section 2 Estimation of a process* prar

information about the typical form of p(x) would allow R(16) to

be used in higher order approximations of R(K), and provide

improved accuracy.

20

Section 3 Implementation

3. Implementation

3-1 Virtualizing the raw associative memory miss rate

The associative memory for the page table words in the 6180

holds sixteen page table words, and is managed under an LRU

replacement algorithm. Thus the number of non-matches, or

misses, in the associative memory is the same as the number of

page faults that would be incured in a sixteen page real memory

being managed under LRU replacement.

The number of raw misses in the associative memory is

relatively easy to obtain through hardware. However Multics

frequently clears the associative memory to reflect changes in

the in core page tables, causing superfluous misses. In addition

page fault and interrupt handling cause a substantial number of

misses that are counted by the hardware.

The problem of taking a per processor raw miss count and

maintaing a per process virtual miss count is very similar to

billing processes for virtual cpu time, although more complex.

As indicated above the virtualized miss count represents the

number of page faults the process would have incured running in a

sixteen page LRU managed primary memory.

A separate board (645HK) containing the additional logic for

maintaining the raw page table word associative memory (PTW AM)

miss count in program accessible form was added to the 6180 in a

spare board slot. Software compensation is provided for

21

Section 3 Implementation

associative memory clearing and page fault and interrupt

handling. The number of page table words missed on while

refilling the associative memory is calculated at page fault or

interrupt time by a compare of the current PTW AM with a

previously saved copy from the last page fault or interrupt. A

subroutine, called adjust_vpfs, was added to the system to

perform this compensation.

3-2 Maintenance of R(16)

A virtual cpu timer is maintained for each process, allowing

R(16) to be calculated as:

virtual PTW AM misses
R(16) =

elapsed virtual time

3.3 Mechanics for computing a process' pmr estimate

To facilitate varying experimental approaches the

computation of a process' primary memory requirement was made a

subroutine of pxss [S4], the scheduler of Multics. To compute a

process' pmr one calls compute_working_set (once again called

this for historical reasons), and a pmr is estimated using

information collected since the last compute_working_set call

according to the equation derived in Section 2.4.

22

Section 3 Implementation

3.4 When a process' pmr is computed

For the experiments descired in Section 4 a process' pmr was

computed at three times: timer runout, process block, and at

preemption for a higher priority process. Before a process' pmr

is computed a check is made to insure it has amassed min_vcpu

microseconds of virtual time since its last compute_working_set

call. If it hasn't, compute_working_set returns without

calculating a new estimate.

The min_vcpu parameter was a safeguard after early

experiments showed erratic estimation due to the systems tendency

to look through very small windows at a process' behavior. Fifty

milliseconds was the standard setting of rain_vcpu.

3.5 Approximating a new interaction's pmr

When using a process' pmr for control purposes, i.e.

deciding whether to let a process become eligible or not, there

is an underlying assumption that the previous behavior of a

process is indicative of what its future behavior will be. What

then can be said of a process' behavior after it has interacted

with a human? Different types of requests generate greatly

differing resource requirements.

The assumption made by this thesis is identical to the

traditional scheme used in estimating a running process' future

23

Section 3 Implementation

requirements: resource requirements for a new interaction can be

estimated from resource requirements of previous interactions.

In the case of primary memory requirements, a moving average

is maintained on each call to compute_working_set:

pmr_average + pmr
prar_average =

2

The average is used as the process' pmr on each new interaction.

On process creation each process assumes a preset pmr until it

goes blocked, is preempted, or incurs a timer runout.

3.6 Determination of level of multiprogramming

Figures 3-6.1 and 3.6.2 outline the flow of information and

decision process used for the implementation of eligibility

control in this thesis. They are simplified representations of

the actual implementation but they characterize the decision

process well as all of the logic from the standard system was

removed.

In both the standard system and the one proposed in this

thesis a preemptive priority discipline is used for processor

scheduling within the eligible processes. This discipline

mitigates the effect of lower priority processes with large prar's

displacing pages of higher priority processes. Thus the decision

in the control logic for the pmr system to make processes with

extremely large pmr's eligible concurrently with other processes

24

Section 3 Implementation

seemed reasonable in view of the fact they would always be of

lower processor priority.

25

raw PTW AM miss count

accumulated
virtual cpu
time

1
adjust_vpfs -t memory billing

virtualized miss count

process
data
segment

1

done at fault/interrupt time

done at timer runout, preempt, block

tuning parameters

compute
working
set

pmr

active
process
table
entry

selection
of new
eligible
process(es)

done whenever a process
loses eligibility due to
quantum exhaustion or block

T
level of
multiprogramming

Figure 3.6.1
pmr estimation information flow

page I/O interrupt

i
running process blocks,
is preempted, or incurrs
a timer runout

post I/O completion
i

J
if process has lost eligibility,
deduct its pmr from pmr_sum

eligible process available
to dispatch to?

I no

yes >dispatch

find next process waiting
to be made eligible

none • idle

1
pmr larger than total -
real memory available?

I no

y »oversized process-
eligible already?

no

es

1

summation of eligible —
processes pmrs (pmr_sum)
plus this process' pmr
less than total real
memory available?

yes

add process' pmr into
pmr_sum

J
mark process eligible
and dispatch

multiprogram idle until
a page comes in for an eligible
process

Figure 3.6.2

Eligibility control logic

Section 3 Implementation

3.7 Billing for memory usage

Memory usage is billed for as a time product:

U(M) = a * pmr * virtual_cpu_time

Where a is a constant multiplier. Each time a new pmr is

computed the virtual time span it applies to must be used to

integrate U. That is

1 1
T T
\

U = > a * (pmr computed) * (vcpu time computed over)
/
1 1
T T

all pmr
computations

If we let a be the constant:

(1 - efficiency_wanted)
a =

ws_coff * efficiency__wanted * pfht * 16 * 1000

Then using the equation in Section 2.4 for a process' pmr we

find:

R(16) * virtual_cpu_time
U =

1000

Knowing:

virtual PTW AM misses
R(16) =

virtual cpu time

We find:

virtual PTW AM misses
U =

1000

Thus with the estimation algorithms employed in this thesis a

time product memory charge is simply the absolute number of

28

Section 3 Implementation

references past level 16 in the LRU stack. The factor of 1000

was added to reduce the magnitude of the charge for user

consumption. The subroutine adjust_vpfs maintains the virtual

PTW AM miss count for memory billing in the implementation of

this thesis.

3.8 Self tuning of the system

As indicated in Section 2.5 the first order model proposed

in Section 2.2 was not expected to be very accurate. To help

determine the correct value of ws_coff several experiments were

run with the self tuning algorithms in Figure 3.8.1 enabled.

As depicted in the flow chart the algorithm attempts to

adjust ws_coff such that the system administrator specified

efficiency_wanted is maintained by the system. The parameters

delta_to_ws_coff, tune_interval, and rain_busy control the dynamic

response of the feedback mechanism.

In addition to the self tuning of the pmr estimator, self

tuning of scheduler quanta was implemented. The system

administrator is allowed to specify what percentage of

interactions should complete without exhausting their time

quanta. The system will automatically tune the scheduler quanta

to reach the "task switching ratio" specified by the system

administrator.

Note that the stability problems encountered in any feedback

system are present here. Figure 3.8.2 is a block diagram of the

29

Section 3 Implementation

feedback loop. In Section 4 the stability of this feedback

system is examined.

30

I
no

has tune_interval—
elapsed yet?

has system been
min_busy?

4
compare paging overhead
in last period with
1 - efficiency_wanted

-> exit

•> exit
no

gt,

ws_coff * ws_coff •
delta to ws coff

It.

ws_coff • ws_coff -
delta to ws coff

gt. s

compare percentage of
processes going blocked
in first quantum last
period with task switching
ratio wanted

tefirst • tefirst -
delta_to_tefirst
telast • telast -
delta to tefirst

It.

tefirst • tefirst •
delta_to_tefirst

telast • telast •
delta to tefirst

start new observation
period

\
exit

Figure 3.8.1

tune_system subroutine
flowchart

performance feedback

\

tune_system
control N

system

nonlinear
delayed
responses

> performance)

goals /

Figure 3.8.2

Block diagram of system
self tuning

32

Section 4 Experimental Results

4. Experimental Results

4.1 Design of the experiments

A total of 67 controlled experiments were run varying both

software design and system configuration. The experiments were

conducted at three different sites: the Ford Motor Company

Research and Engineering Center in Dearborn, Michigan; Honeywell

Information Systems Inc. in Phoenix, Arizona; and Honeywell

Information Systems Inc. in Cambridge, Massachusetts.

Each experiment consisted of applying a synthetic script

driven load to a dedicated system and measuring the systems

resultant behavior. The scripts were designed by M.I.T.'s

Information Processing Center, and were used in a packaged

environment they designed to initiate, terminate, and collect

statistics on performance experiments [R2]. The so called

"M.I.T. performance test" allows the specification of an

arbitrary number of users to be simulated with random based think

times. Ten simulated users were used for each thesis experiment.

Multics is typically operated with a small capacity paging

device of bulk core (usually a few million words). As the page

fetch time from the "bulk store" is negligible no

multiprogramming occurs on page faults that can be statisfied

from the bulk store. The experiments for this thesis were run

without bulk store to magnify the effects of the pmr estimator.

33

Section 4 Experimental Results

During each experiment the software monitor Aware [M3]

developed by the Ford Motor Company was run to record system

performance statistics. The graphs reproduced in this section

representing individual experiments were produced by Aware.

Both the standard version of Multics and the one modified to

incorporate the ideas in this thesis were doctored to make the

simulated users appear more like a real user load. This was

accomplished by providing interaction credit on timer wakeups.

4.2 Validity of the pmr estimator

Two experiments were run on different configurations with

the system's self tuning turned off. The experimental load was

identical, thus affording an opportunity to examine how the pmr

estimator behaved on vastly different configurations.

Table 4.2.1 outlines the results of the experiments, along

with the configurations employed. Figures 4.2.2 and 4.2.3 show

the histograms of pmr sizes calculated for the 512K and 256K

experiments, respectfully.

The first observation that can be made is that the pmr

estimator does indeed discriminate between the varying memory

requirements of processes. The histograms show that the miss

rate in the PTW associative memory is far from constant, and

probably contains significant information about a process'

primary memory requirements.

The second observation that can be made is that the pmr

34

Section 4 Experimental Results

estimates are fairly configuration independent. The averages are

resonably close across configurations, and the distribution of

pmr's as depicted by the histograms are very similar.

The amount of virtual cpu time that elapses on the average

before a process' pmr is computed is significantly less in the

512K experiment. This can be attributed to a higher number of

preempt interrupts, caused by a higher degree of

multiprogramming.

The parameter ws_coff was estimated to be .157 by an

experiment where the system was allowed to self tune ws_coff.

The experiment found that .157 was value that most accurately

targeted the specified efficiency_wanted into system performance.

The reason ws_coff is so low is possibly due to the high

percentage of time the system spends in so called "wired core".

This memory is paged, and figures in the PTW associative memory

miss rate. However it is never considered for removal and its

contribution to a process* pmr can essentially be considered as

overhead.

35

Effective memory size
(pages)

efficiency_wanted

user time

busy time

pmr_ceff

resulting

page fault handling time
(msec)

average virtual cpu time
between pmr computations
(msec)

average virtualized misses
between pmr computations

average K(l6)
(misses/msec)

average pmr
(kept by compute_pmr)

Configuration

A B

440 IP?

•50

.62

.15?

3.35

103-?

1048

10.15

83.98

.50

.46

• 157

3.224

141. c

1475

10.39

77.05

Configuration information

total primary memory
(words)

disk channels

bulk storage device for
paging (LCS)

experiment number

512K

2

no

37

256K

2

no

58

Table 4.2.1

Typical vnlues for ?

pmr system on two diffrrent

conf i'^urat iors

in

4-1
IH
o
ul
to
3

o
lO

0)
4-1

I.

CM

01
1-1

60

U
60
O

si m QJ
eg 4J

M iH to
E m >*
D. CO

(X

CO

CO

P
CU

.a
a
w

13
tfl
O

M
o
en

14-1

0)

*
I I

O

ooH4Nin!sno\oON^nOOOO
OavO»*\oCOr^t-lOO\r-lOOOOO

CMi-lOCTiu0<f00r-lu-|OOOOOOO
r-t i-l CM I-l i-l

4J

3 CNCs|00cslr^u-|CTi>*co
O Hrlmifl^rlrl\OMlO00NOOOO

CO vOCs|OOstO\OC\IOOvtOvOCMOO<tOvD
CU H(O-*vD00CTlHN^»ONOvON^in
60 HHHHHHNNNCN
cd i i i i i i i i i i i i i i i i
D. OvOMW^OvONCOstOiOMOO>tO

rH{^^vOCOCTiHN>J»orsCT>OM>J
HrlHHrlrlNNN

37

o
°l 1

00
o

O
t-l

CO •u M T3 o • U] 00 (0
m eg •H u~l O • • X .-1

<±

1/1

B •U
II I 0)

•u
•u a

(U 3 >> •r-(u •u 00 OJ U] U o
C ••-1 .—1 <U UJ
n) h (X a
5 § H ^ VI
o s
0)

vtioHo\Hin\ONN>ooooooo
JJ nnOt-it-iuimcovO'-ioooooo
C ••••••• •
O CMCMi-lOCMi-iCMvO>-iOOOOOOO
IX rlHNOH

c
o
o

o ty> <t CM <r in o\
riOion^nnioai
<T>i-lvi-<l-0\i-lu-|CMvor~000000

w
<u
oo
tfl a.

vO(SW<tO>ONCO^OvO(N»>*OvO

CM CM CM CM
I I

<!• O
ON-*
CM CM CM

I—I*—li—It—I i-H i—ICNCMCNO
I I I I I I I I I I I I I I I I

OvOCMOO^tO^OCMOO-d-OvOCMOO-d-C
i-invtvoooo^i-*^1- M sj VO N »

38

Section 4 Experimental Results

4.3 Performance of the pmr system

A series of experiments was conducted to compare the

performance of the system with and without the pmr estimator

proposed in this thesis. The configurations and loading used

were the same as outlined in Secions 4.1 and 4.2.

The standard system (without the pmr estimator) was tuned by

locking the tuning variables min_e and max_e together, fixing the

level of multiprogamming at the specified level. The pmr system

was tuned by varying efficiency_wanted through its range from 0.0

to 1.0.

Figures 4.3.1 and 4.3-2 depict the results of the

experiments. The x-axis is the efficiency_wanted specified, and

the y-axis is the resulting performance of the system as measured

by three variables. Note the horizontal lines represent an

optimally tuned locked eligibility standard system, as it does

not have an efficiency wanted variable.

The top graph in 4.3*1 and 4.3.2 is the elapsed real time of

the ten scripts. The gaps between the pmr system and the

standard system are within the measurment noise, and are not

significant. Note that the 256K configuration has a much sharper

null as shown in Figure 4.3.2 due to its smaller primary memory

size. Raising min_e and max__e to 3 for a run of the standard

system on the 256K configuration drove the elapsed time to over

70 minutes. The 512K configuration was much less sensitive to

such changes.

From the information in Figures 4.3.1 and 4.3.2 it is

39

Section 4 Experimental Results

obvious that the prar estimator does not increase percentile

throughput as hoped. The best the pmr system can do is match the

performance of the locked eligibility system.

Also note the relationship between the ratio of user time to

busy time and efficiency_wanted. The relationship is linear over

the range measured in the 256K experiments due to the control

afforded by the small memory size.

For both configurations the optimum performance of the pmr

system was found at the same value of efficiency_wanted. This

seems very significant, as ideally one would like to tune a

system once using configuration insensitive parameters. Most

user sites do not have the inclination or expertise necessary to

tune their system. Thus tuning a system once "at the factory"

would allow user sites to enjoy optimum performance without

burdening them with the difficult task of system tuning.

The standard system could be tuned for an optimal level of

multiprogramming by taking the number of available pages,

dividing by a constant, and fixing the level of multiprogramming

at the resulting quotient. However the constant would contain

information about the referencing characteristics of a specific

site's workload, and could not be expected to be applicable to

other sites.

The pmr estimator described in this thesis would probably

track a workload characteristic shift due to its actual

measurement of the needs of processes. We have already seen

evidence that it tracks over configuration changes. Thus even

40

Section 4 Experimental Results

though no performance gain was demonstrated, it looks like it is

much easier to achieve optimum performance with the proposed pmr

estimator.

41

or 09*

II

05
>>
cn

U

•B
ct)

93 *7Z ZZ 03

(UfUl) 3UIT3 p3SdB"[3

05* or oe*

1 I

u
o

c
0

•I-l

3
60

cn

O

M-l Ni
c CM
0 ^
U m

cn
1-1
a) a)
G u
a o
as 4J
X «> u

00 3
•H .O
TJ

O
CN C

a^

00

^O

to

c
o

<4-l

13 O
<1) O
•U T-*

C • c
ni CO 0
5 •

1 <t cu
>^ 0
0 a> c
C (J
CU 3 p

•H on M
O •H O
•H fe IH
IW W
CW <u

<U

•u
cn
>>
cn

u I
CSI

42

£' Y
3UTT3 JO UOfaOBaj

e- z' zv

05

<u
0) .§

•u 4J
a

•r4 >d
u <u
o CO
(0 a

cd
o r-l
.-1 a)

CM

II

•5 e

u
01
>!

-a
s
I
•u
en

CM

II

I
C3
a;

(-1
0)
CO

3

w S

T3

4-1
a

5
s
0)

89 99 <79 39 09 85

(upn) aui-p^ pasdB|3

43

Section 4 Experimental Results

4.4 Memory usage charging

In Section 3»7 it was shown that the number of virtual PTW

AM misses could be used directly as a time product memory charge.

Two experiments were run using the memory charging algorithm

proposed on configuration B as described in Table 4.2.1, with the

loading outlined in Section 4.1.

Table 4.4.1 shows the average memory charges for two

translators averaged over ten commands. As expected the ALM

assembler has a considerably lower charge due to its smaller

memory requirements. Also note the difference in R(16) between

translators, further substantiation that the pmr estimator can

discriminate between processes with varying pmr's.

The memory usage measure in use here is theoretically

configuration and load independent as the data from the

associative memory is ideally noise free. However for the

reasons outlined in Section 2.5 there may be inequity in the

usage charge.

44

memory
charge

translator

average
virtual

cpu
time (sec)

average
virtualized
PTW AM

misses (/1000)
R(16)

(misses/

ALM 4.39 48.16 10.96

PL/1 4.96 123.65 24.91

Table 4.4.1

Memory usage of PL/l compiler

and ALM assembler averaged over 10

typical commands

Section 4 Experimental Results

4.5 Self tuning results

Figures 4.5.2, 4.5.3, and 4.5.4 depict typical system

behavior with the self tuning algorithm in Section 3-8 enabled.

Experiment 12 was conducted on configuration C as described in

Table 4.5.1, with the load described in Section 4.1. The

settings for the feedback parameters and average observed

behavior are also given in Table 4.5.1.

Figure 4.5.2 shows the pmr self tuning algorithm trying to

keep efficiency_got, the observed ratio of user time to busy

time, the same as efficiency_wanted by adjusting ws_coff. Figure

4.5.3 shows ws_coff plotted against time of day.

Figure 4.5.4 shows the system trying to maintain tsr_got,

the percentage of processes going blocked in their first time

quantum, to percent_complete, the system administrator specified

goal.

The self tuning algorithm was developed primarily to hunt

for a value of ws_coff that targeted efficiency_wanted into

corresponding system behavior. It is obvious from Figures 4.5.2

and 4.5.4 that there was a great deal of error looking for the

proper values of system tuning paramters.

46

Configuration

192K words primary memory
124 pares available to user
2 disk channels
no bulk store device

Feedback parameters

tsr_wanted 75

efficiency_wanted .10

delta_to_tefirst . 050 seconds

delta_to_ws_coff .1

tune_interval 30 seconds

Observed behavior

mean standard deviatior

tefirst .171 .082
ws eoff .289 .186
tsr rot 73.3 17.66
efficiency_pot .325 .108

Table 4.5.1
Parameter values and

configuration information for

Experiment 12

47

experiment number 12 08'20'7B 20:02 - 08'20'75 23»Ot

T

*Vo.OO 20.60 21.00 21.SO 22.00
• .ti««.of.day

22.SO 28.00

Figure 4.5.2

Dymanic response of the

system to the pmr self tuning

algorithim

48

experiment number 12 08'20'7S 20:02 - 08'20'76 23«03

• .time_ot_d«y)

Figure ^.5*3

Control variable ws_coff
plotted against time of day

49

experiment number 12 OB'20'76 20:02 - 08'20'76 23«0(

20. SO 21.00 21.SO 22T00
a.tia«.of.day

22.60 28.00

Figure 4.5-**

System task switching
ratio under the influence of

self tuning

50

Section 4 Experimental Results

4.6 Analysis of error

The M.I.T. performance test is far from a perfect measure of

the performance of a given Multics system. For identical

experimental runs variance of elapsed time of up to ten percent

was noted. Thus critical experiments were run at least twice to

provide a more stable measure.

The scripts determine for the most part was is being

measured, as they provide as a whole a set of resoure

requirements. The scripts in use for the experiments described

in this thesis were designed by the M.I.T. Information Procesing

Center, and were used unmodified.

Thus the results reported in this thesis must be viewed

within the limitations through with they were obtained. A

typical command employed in the M.I.T. scripts used 100

milliseconds of cpu time, making it difficult to assess a

process* prar before it changed. Section 5 will discuss the types

of system loads that would derive greater benefit from pmr

estimation for eligibility control.

51

Section 5 Conclusion

5. Conclusion

5.1 Summary of thesis proposal and results

We have seen how a simple hardware addition to measure the

page table word associative memory miss rate in the 6180

processor allows a process' primary memory requirements to be

estimated. Assumptions were made about a process' behavior that

enabled this estimation, and they were outlined.

Experimental results showed that the primary memory

requirement estimator was indeed discriminating between processes

with differing primary memory requirements. However, no

incremental performance gain could be demonstrated using the

estimated primary memory requirements (pmr) to control the level

of multiprogramming in the system.

The major result of this thesis was that the pmr estimator

proposed simplified the tuning of the system for an optimal level

of multiprogramming. Experimental results showed that the system

stayed in tune across a large change in configuration. It was

conjectured that the system probably would also track changes in

the profile of its load and adjust accordingly.

The problem of charging for memory usage was also explored.

It was shown that the number of misses in the page table word

associative memory could be used directly as a time product

memory charge.

52

Section 5 Conclusion

5.2 How a net performance increase might be realized

At the outset of this thesis research it was hoped that

providing better estimates of a process1 pmr than were currently

available would increase the percentile throughput of the system.

As explained in Sections 1.2 and 1.3 the problem of estimating a

process' pmr has traditionally been associated with performance

gains.

Most of the theoretical work in this area has dealt with a

process running under steady state conditions, and does not

consider transient behavior. However the load used for the

experiments in this thesis was extremely transient in nature.

The load was designed to reflect what a general purpose time

sharing system saw under a production load at M.I.T..

It is difficult to utilize a good estimate of a process1 pmr

if it is changing very dynamically. Thus a contributing factor

to the failure to demonstrate a performance gain using the pmr

estimator proposed was the nature of the load used for assessing

the estimators effect. If workload characteristics were such

that processes began to reach steady state in their referencing

behavior then estimates of memory requirements would be of

greater utility.

5.3 Future work

Naturally this thesis has left great amounts of territory

53

Section 5 Conclusion

unexplored.

As described in Section 2.5 the accuracy of the first order

estimation is predicated on the form of p(x). A simulator for

the the 6180 could be implemented, allowing p(x) to be calculated

for various commands and programs. With typical forms of p(x)

the limitations of the estimation would be better understood, and

the accuracy could be quantitatively described.

Software was used to compensate for superfluous misses in

the PTW associative memory, inducing additional overhead on each

page fault and interrupt. Most of the compensation could be

performed in hardware, making the overhead cost of calculating a

process1 pmr completely negligible.

The conjecture that the pmr system described in this thesis

will track changes in the referencing characteristics of the

system's workload and optimally set the degree of

multiprogramming should be verified.

The utility of pmr information in a dynamic process

environment should be investigated. If a process' past behavior

can not be used effectively to predict the process' future

behavior then investment in a pmr estimator only lets one control

the average level of multiprogramming. No optimization would be

possible that required distinguishing between processes with

varying requirements.

Finally, the stability of a self tuned system should be

examined. Typical feedback system problems have to be dealt with

to reduce erratic system behavior.

54

REFERENCES

[A1] Alexander, Mike, Private Communication, (1975).

[C1] Corbato, F. J., "A Paging Experiment with the Multics
System" in J_n Honor of P.M. Morse. M.I.T. Press, Cambridge,
Massachusetts, (1969), pp. 217-228.

[D1] Denning, Peter, "Resource Allocation in Multiprocess
Computer Systems", Ph.D. Thesis, M.I.T. Department of Electrical
Engineering, May, 1968.

[D2j Denning, Peter, "The Working Set Model for Program
Behavior", Communications of the ACM 11. 5 (May, 1968), pp.
323-333.

[G1] Greenberg, Bernard, "An Experimental Analysis of Program
Reference Patterns in the Multics Virtual Memory", S.M. Thesis,
M.I.T. Department of Electrical Engineering, January, 1974.

[M1] Mattson, R. L., et. al., "Evaluation Techniques for Storage
Hierarchies", IBM Systems Journal 9_, 2 (1970), pp. 78-117.

[M2] Morris, James B., "Demand Paging Through Utilization of
Working Sets on the MANIAC II", Communications of the ACM 15, 10
(October, 1972), pp. 867-872.

[M3] Morenc, Rodger S., "Aware", MJDM-5.0, Computer Sciences
Department, Ford Motor Company, Dearborn, Michigan.

[01] Organic, E. I., The Multics System: An examination of its
structure. M.I.T. Press, Cambridge, Massachusetts, 1972.

[R1] Rodriguez-Rosell, Juan and Dupy, Jean-Pierre, "The Design,
Implementation, and Evaluation of a Working Set Dispatcher",
Communications of the ACM 16, 4 (April, 1973), PP • 247-253.

[R2] Roach, Rodger A., "Revision of Multics Performance Tests",
Internal Honeywell Memo MTB-126, Cambridge Information Systems
Laboratory, Honeywell Information Systems, Inc., Cambridge,
Massachusetts.

[R3J Reed, David, "Estimation of Primary Memory Requirements of
Processes in Multics", S.B. Thesis, M.I.T. Department of
Electrical Engineering, June, 1973.

[S1] Saltzer, J. H., "A simple linear model of demand paging
performance", Communications of the ACM 17. 4 (April, 1974), pp.
181-185.

[S2] Sekino, Akira, "Performance Evaluation of Multiprogrammed
Time-Shared Computer Systems", Ph.D. Thesis, M.I.T. Department of

55

Electrical Engineering, September, 1972.

[S3] Schatzoff, M. and Wheeler, L. H., "CP-67 Paging Priority
Dispatcher", Report No. G320-2088, International Business
Machines Corporation, Cambridge Scientific Center, Cambridge,
Massachusetts (March, 1973) -

[S4] Saltzer, J. H., "Traffic Control in a Multiplexed Computing
System", Sc.D. Thesis, M.I.T. Department of Electrical
Engineering, July, 1966.

[V1] IBM Virtual Machine Facility/370, Introduction, Form No.
GC20-1800, IBM Data Processing Division, White Plains, New York
(1972).

56

