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A ROBUST ENVIRONMENT FOR PROGRAM DEVELOPMENT * 

by 

Harold Jeffrey Goldberg 

ABSTRACT 

This thesis examines the problems of debugging and preservation of the 
user programming environment and proposes a scheme by which the program 
development environment can be protected. 

Typically, designers of timeshared or multiprogrammed computer systems 
only consider inter-user interference as a source of problems and do not worry 
about what users do in their own environments. Thus, users can, by writing 
incorrect programs, cause the destruction of the programming environment and 
personal data bases. A protection scheme is proposed that satisfies the needs 
of the user by employing a protection mechanism, rings, that allows the 
program development environment to be protected from user written programs and 
yet be outside of the supervisor. Having these programs outside the 
supervisor satisfies the goals of creating a "security kernel", which is a 
supervisor containing only security related programs. 

The thesis presents a model of the user environment wherein the concept 
of a "procedural package" is explained. The procedural package contains not 
only the code for the procedure, but in addition, environment components 
necessary for the proper execution of the procedure such as dynamic, static, 
and allocate/free storage. The thesis describes the "inter-procedure 
interference" problem in terms of the model and proposes an ideal solution 
based on a domain architecture. Problems with the ideal solution are 
presented and an alternate solution suggested. 

In addition, the thesis identifies and discusses, in detail, environments 
that are needed to control a user's process, and examines error signalling 
mechanisms, particularly in their use in an environment like the one proposed 
to solve the inter-procedure interference problem. 

THESIS SUPERVISOR: David D. Clark 
TITLE: Research Associate of Electrical Engineering and Computer Science 

* This report reproduces a  thesis of  the same  title submitted  to  the 
Department  of Electrical Engineering and Computer Science on January 21, 1977 
in partial fulfillment of the  requirements  for  the  Degree  of  Master  of 
Science. 
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Chapter One 

Introduction 

The need for increased efficiency in the use of large systems led 

to the development of multiprogrammed systems. This led the way to the 

development of interactive timesharing systems. Of major concern in the 

design of these systems was the separation of users so that one user 

could not affect the programs, data, or operation of others and yet 

users could still be allowed controlled sharing. This concern evolved a 

frame of mind which based system design decisions on whether or not a 

user, by any action, could affect the system or another user. 

Self-annihilation (of programs) was considered legal and permissible 

under  these rules as long as this could not affect the system security. 

It is this "laissez faire" attitude towards user programs that is 

dealt with in this thesis. Systems should provide some self-protection 

mechanisms to help users detect and limit the scope of errors, thus 

speeding up the development of programs. This thesis describes how to 

accomplish this goal by employing a protection mechanism (rings) to 

protect a "program execution environment", containing program support 

functions, from user-written programs. 
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1.1 Motivation 

As hardware costs come down, the cost of software begins to 

dominate the cost of a computer based product. Helping the programmer 

would therefore reduce software expense and project cost. Numerous 

methods of helping a programmer write a correct program the first time 

have come about and/or are being studied including high-level languages, 

structured programming, module specification, and a programmer's 

apprentice (see "Related Work" section). In the long run, current 

research might pay off; but until that happens many programmers will 

face the problem of debugging their software in the "old fashioned" way. 

The proposed program execution environment will help programmers 

catcli errors during testing and limit the scope of those errors. This 

capability will undoubtedly speed up program development and thus reduce 

software cost. 

Unfortunately, programs are never completely bug free even after 

years of development. Constant upgrading and changing patterns of use 

may exercise portions of a program that were not considered important 

and therefore not thoroughly tested at the time of the first writing. 

To help in these situations a protected program execution 

environment can be employed that would be safe from user program 

modification and could notify the user immediately upon detection of an 
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error  instead  of  letting the error propagate and cause more extensive 

damage.  This monitoring will be referred to as "guarded execution". 

Program development and guarded execution justify the work done in 

this thesis, in general. However, the actual motivating force that led 

to this research was the Multics kernel design project being carried on 

in the Computer Systems Research division of Project MAC at M.I.T. 

(presently the M.I.T. Laboratory for Computer Science) [Schroeder 75]. 

Appendix A contains a brief discussion of that work and should be 

reviewed if the reader is unfamiliar with the concepts. In summary, 

certification of correctness of the security features of the supervisor 

would be easier if the supervisor were made smaller. Modules unrelated 

to security would be removed from the supervisor and placed in the user 

domain. This increase in the number of support modules existing in the 

user domain increases the fragility of the user domain and the possible 

scope of damage that errors can cause there. Thus program development 

becomes a more difficult task. 

The combination of the requirements of certification and the 

traditional "don't care" attitude of the systems developers (described 

in the introduction) resulted in the research reported in  this  thesis. 
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1.2 Plan of the Thesis 

The thesis proper begins in chapter 2 with the description of a 

basic model of a process in a multiprogrammed timesharing system, in 

which Supervisor/User modes are briefly discussed. The User domain is 

then dissected into procedural packages containing basic environment 

components (as opposed to functions) and the problems of access by the 

wrong procedure to those components are discussed. Efficiency 

considerations that led to the coalescing of distinct components into a 

single object on a particular system are discussed and studied. How 

this coalescing aggravates the problems of incorrect access to 

environment components is explained. 

An ideal solution to the inter-procedure  interference  problem is 

proposed wherein each procedure would exist in its own protection domain 

and  could  not  affect  any  of  the  environment components of another 

procedure.  Some basic problems of complexity and  efficiency  of  using 

this approach are discussed. 

A new model of the user domain based on functional units is then 

described in chapter 3. The concept of support routines and command and 

control routines are explained. A new, simpler solution to the 

inter-procedure interference problem is proposed in which the support 

routines are protected as a unit. A mechanism for implementing this new 

proposal Is then discussed. 
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Chapter 4 takes a closer look at the support  routines and offers 

suggestions  for  their proper coding so  that  their protection is 

facilitated.  Examples of major modules  that  need  not  exist  in  the 

supervisor  and  could  benefit  from  protection in the user domain are 

discussed. 

In chapter 5 the programs that a user controls a process with, the 

command and control routines, are studied in detail. Command line 

processing and process control are discussed. The reason for protecting 

these routines is explained and possible methods of protection are 

considered, including a separate process "front end" approach. 

Chapter 6 discusses error signalling mechanisms and their problems. 

These problems can be ignored in a single domain implementation but must 

be considered in order for a multi-domain environment (such as the one 

proposed in this thesis) to work. 

Finally, chapter 7 presents conclusions, a summary of results, and 

comments about a test implementation. Possible areas for future 

research are also discussed. 

Appendix A contains a detailed discussion of certification and 

explains why reducing the size of a system supervisor facilitates 

verifying its correct operation. 
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1.3 Related Work. 

This research was motivated by the kernel design work in the 

Computer Systems Research division of Project MAC at MIT (now the 

Laboratory for Computer Science). [Schroeder 75] discusses the CSR 

kernel design project and the method of attack. [Janson 74] and 

[Bratt 75] describe how programs responsible for dynamic linking and 

namespace management, respectively, can be removed from, and thus 

simplify the supervisor. [Montgomery 76b] discusses how process 

creation can be partially removed from the supervisor thus aiding in the 

simplification goals. 

Many researchers are investigating techniques to prove programs 

correct and/or help users write correct programs. [Parnas 72a] 

describes module specification techniques. [Liskov 76] is developing a 

language, CLU, which is thoroughly type-checked with hopes that it will 

prevent (or reduce) programming errors and allow automatic program 

verification. It allows the creation of extensible objects which are 

manipulated by type managers or "CLUsters" and prevents all other 

programs but the appropriate type managers from directly touching the 

"insides" of the extended type object. [Hewitt] describes a 

programmer's apprentice which should help a program writer avoid such 

errors as incorrect number of parameters to subroutines and wrong types 

of arguments, thus maintaining consistency of specifications, and answer 

the programmer's questions about dependencies between modules. 
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There are many theses and papers related to the ideal solution 

presented in chapter 2, which is basically a domain architecture. 

[Dennis 64] and [Dennis and Van Horn 65] describe spheres of protection. 

[Schroeder 72] describes the hardware that could support mutually 

suspicious domains. [Redell 74] discusses type extension and revokable 

capabilities.  [Jones 73] describes capabilties in a very formal  sense. 

The concepts of command and control environments are discussed in 

this thesis. The General Electric Mark II time-sharing [Montgomery 76a] 

is an example of a system which contains these functions in supervisory 

code which I claim is unnecessary given the proposed protected 

environment within the user domain. [IBMCP] is an example of a system 

that contains the control environment, but not the command processor, 

within the supervisor. [TENEX] contains the command processing 

functions coded as system calls while the program that accepts user 

commands is in the user domain. [NSW] and [DCS] are examples of current 

research that promote the approach of a front end processor. 

Of course there is much literature on Multics but I have chosen 

[Organick 72] for an overall description of concepts although the 

details have changed somewhat, and [TR123] because of its extensive list 

of references. [Schroeder and Saltzer 72] describe the ring hardware in 

use on Multics today. 

Debugging and maintaining the user's process is of prime 

consideration in this thesis. Having a debugger protected from user 

written code certainly helps in the )oh of debugging and guarantees that 
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some portion of the process is preserved despite user programming 

errors. [IBMCP] has a primitive debugger in supervisory code that is 

protected. The debugging system, "NURSE", described by Gould [Gould 75] 

is more extensive than the IBM debugger, but it too is in the 

supervisor. Yates' thesis [Yates 62] contains a proposal for a 

protected debugger that would be an "administrative routine", which is 

also in the supervisor. A better approach is found in [PSN25] and 

[PSN26] which proposes to protect a debugger in the user domain using 

user controlled base and bound registers on [CTSS] . This approach is 

much like the ring structure proposed in this thesis. 
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Chapter Two 

The Process Model and the User Domain 

In order to describe more accurately the details of this research, 

a model of a user's computation is needed. The model chosen was based 

on the Multics system; however, there are not that many Multics specific 

items in the model. Those items that are not present in a given system 

can simply be ignored without loss of applicability. The model is 

intended to reflect a typical process in a multiprogrammed computer 

environment. 

The term "process" appears throughout this thesis. The association 

one should make with this word, while reading this thesis, is an active 

agent, a processor (real or virtual, i.e. multiplexed), following a 

sequence of instructions. The past, present, and future effects of the 

instructions executed is a process. The terms "procedure" and "program" 

are used interchangeably, as are the terms "parameter"  and  "argument". 
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2.1 Supervisor and User Domains 

First the process is broken down into two scopes of access, or 

"domains", namely "supervisor" and "user", as shown in figure 2.1. The 

figure is intended to indicate that the access privileges of the user 

domain are a subset of the privileges of the supervisor domain. The 

access privileges of the supervisor include access to I/O channels and 

devices, which may be controlled by a different means from data access. 

(1) All interrupts and faults are directed to the supervisor domain so 

that it may properly control the user domain and I/O. There may be one 

or more real or virtual (multiplexed) processors executing the process, 

but for simplicity only a single processor is assumed. 

Now the user domain is examined, which is where the  problem being 

attacked exists. 

(L) For example, Multics uses a privileged state bit in the processor to 
allow execution of I/O instructions. PDP/ll's have no I/O instructions; 
the device registers are addressed as memory locations. 
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2.2 Dissecting the User Domain 

The user domain is considered to be the collection of procedures 

that execute there. The code is not the only item that allows a 

procedure to function, though. The description of the user domain will 

consist of what environment is "seen" by programs that run in that 

domain. The user domain is examined in this peculiar way so that the 

program interference problem can more accurately and precisely be 

described. 
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Programs are viewed as "packages" containing the code and 

additional objects that are needed for execution. This section 

identifies those objects that make up the environment necessary for most 

program execution. Much of the environment has been established as 

conventions, but these conventions are indeed necessary for the proper 

execution of programs written in higher level languages. Only passive 

objects are mentioned in this analysis. Functionality that exists 

because of either user or system programs is simply and grossly 

categorized as user programs accessible via call, and supervisory 

programs accessible via gates (an abstract entity for supervisor calls) . 

The passive objects that this research has identified are small in 

number,  but  are  intended  to capture a particular view of the process 

which will be examined shortly.  The components are 1) dynamic  storage, 

2)  allocate/free  storage,  3)  "own"  storage,  4)  parameter list, 5) 

parameters, 6) linkage, and 7) databases. 

The dynamic storage area is where blocks of storage are 

automatically allocated each time a procedure in called, and 

automatically freed when the procedure returns. The class of storage is 

known as "automatic" in PL/I. Temporary work areas are typically 

allocated in this area. The allocate/free area is where blocks of 

storage are allocated and freed under direct program control. These 

allocated blocks remain in use even after the procedure that performed 

the allocation has returned. A typical use for this type of area is for 

the allocation of I/O buffers and I/O access method control blocks (e.g. 
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the index of an ISAM file) . "Own" storage, or internal static, is 

automatically allocated upon first entering a procedure and is not 

usually released. The allocation may be implicit, since some systems 

provide this storage class as a physical part of the executing program 

(impure procedures). A typical use for this type of storage is for 

saving information between program invocations, such as whether the 

procedure has initialized a data base, or pointers to blocks of 

Allocate/Free storage. (2) 

The parameter list identifies arguments to the called procedure, 

and may include descriptions of these arguments including type and 

length information. The parameters themselves are typically located in 

some storage external to the called procedure. A linkage section, or 

transfer vector, is used to bind named objects to physical machine 

addresses. Finally, the last component of the procedural package is the 

collection of data bases that are in use by programs. On some systems 

this component can be considered the open files for the program. 

Note that only the parameters and databases are, or need to be, 

external to the procedural package; the other components either should 

exist only in the procedural package, or be copied in. In no case 

should these other components be referenced by external procedures 

unless explicitly passed as parameters. The violation of this maxim is 

exactly the problem that this thesis examines in the next section. 

(2) The compiler does not know the address of Allocate/Free blocks 
because the programmer may allocate them in any procedure and pass 
pointers around. The compiler, however, assumes that internal static is 
allocated in a certain place, possibly pointed to by a register. 
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2.3 The Problem 

The reason for discussing this particular breakdown of the program 

execution environment is that implementation of the specified components 

tend to cause unnecessary common mechanisms between procedures in the 

user domain. For instance, the dynamic storage area is typically 

implemented as a single object shared between programs - the "stack". 

Usually the Allocate/Free area is a single area for all of the programs 

in the user domain to share. Linkage is usually implemented as a single 

common transfer vector for an entire collection of programs. On systems 

where programs are kept pure, internal static is not part of the program 

object module and is allocated in an area with all the other static 

sections in the user domain. Parameter lists are typically allocated in 

the dynamic storage area, causing further entaglement of objects. On 

systems which have virtual memory (segmentation), every known segment is 

a potential data base. (3) These examples of the concentration of 

multiple objects into one object which is global, allows one procedure 

to access another's "piece" of the object. This is possible because 

access control usually extends only to individual objects and not to 

sub-objects. Because of this, one faulty procedure can modify and 

destroy another's dynamic, allocated, or static storage. 

(3) A known segment is a file of which the address can  be  constructed. 
On  Multics,  the  address  is  a  two-dimensional  quantity (S,0).  "S" 
represents an index into an array of "open" files, and "0" is the offset 
into the segment S.  Hence an arbitrary value for S can  select any of 
the open, or known, segments. 
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This data concentration may result in unpredictable results of 

tested and debugged programs. A process may be totally destroyed 

because of one modified bit. Programs may reference the wrong block in 

an allocated/freed, static, or linkage area. File access information 

can be destroyed, causing jumbling and loss of records. Data bases may 

be written instead of read. The stack may be overwritten or deleted. 

Programs and linkage may be written over. For those systems (like 

Multics) where gates are actual programs found by the normal linking 

mechanism (as opposed to SVC type instructions) , destroying linkage can 

prevent any further calls to the supervisor. 

An example of the merging of unrelated small objects into one large 

one with no specific access control to prevent erroneous access is found 

in the current implementation of the Multics stack. In the original 

Multics design, segments were supposed to contain only data requiring 

identical access. This was not followed on Multics when the current 

stack design is examined. Efficiency, related to reduced page faults, 

caused the merging of unrelated data into one object. One segment was 

used for all stack frames, and at the low end of the stack the infamous 

"base of the stack" was designed. 

This  base  of  the  stack  contains many   special   environment 

definitions  including  pointers  to important entries in PL/I operators 

(i.e. call, save, return, and stack manipulations), to the procedure to 

do  the  signalling in that ring, and to the Linkage and Internal Static 
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Offset  Tables, (4) to name a few.  Again, these objects were all merged 

simply for increased memory utilization. 

Because of the merging of all the above areas into one segment 

which was writeable, one bad stack, reference could destroy the entire 

execution environment. 

Until recently, linkage and internal static sections were always 

combined into one static section. This allowed out of range references 

to internal static to affect linkage of programs. 

In order to prevent these types of errors from occurring, and 

possibly to catch them as they occur (for debugging), it would be 

reasonable to protect these elements of the execution environment which 

are common mechanisms. There are in existance machines which prevent 

this sort of wild access from occurring, but are limited to stack 

references and a few data types [Organick 73]. Current research has 

shown ways for preventing this type of behavior in general, (5) but they 

are just not applied because of efficiency considerations. In the next 

section an ideal solution and the problems with it will be discussed. 

(4) The Linkage and Internal Static Offset Tables are used by procedures 
to locate their linkage and internal static areas within the segments 
containing all linkage and internal static areas. 

(5) tnterpreters and extended type objects and type managers for 
example. 
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2.4 An Ideal Solution 

To prevent the type of interprocedure interference that could arise 

due to sharing of environment components, a protection mechanism of some 

kind is needed. This protection is required not only for the components 

of the execution environment discussed in the previous section, but for 

the actual code of the procedures as well. Ideally, the procedural 

package concept would be enforced by the system; each procedure would 

be housed in its own protection domain and be allowed to access only 

objects that it required for operation. These objects might be 

catalogued in a list which would quickly identify all those objects that 

the program in that environment could ever reference. (6) Among those 

objects would be the components of the execution environment. Only 

required access to each component would be granted so that, for example, 

only read access is allowed for linkage sections and only execute access 

for object segments. Furthermore, the components would not be 

accessible at all outside the program domain unless explicit permission 

were given.  This structure is depicted in figure 2.2. 

There should be ways of adding and removing objects from the 

"list". These addition and removal operations are necessary so that 

blocks that are allocated and then freed would not be accessible to  the 

(6) This could lead to an easily implementable system given appropriate 
hardware. 
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original allocator once they are freed, and so that parameters could be 

passed for use, then removed from the "list" when the procedure 

returned. These parameter capabilities are shown as dotted capabilities 

in figure 2.2. 
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There is some expense incurred when dealing with a system with this 

architecture, however. Maintenance of the individual capability lists 

for each domain requires an extra database for each program. With a 

sufficiently large collection of programs (as on a typical large 

system), this could involve many such objects. In addition, each 

environment component would be a distinct object. Thus, the 

implementation is faced with the management and storage of all these 

objects that exist as independent entities. (7) During execution, 

domain changing with every procedure call would undoubtedly be expensive 

because dynamic capabilities would have to be stacked and maintained 

[Schroeder 72]. Excessive paging overhead due to a new capability list 

and environment components would also decrease efficiency. As pointed 

out earlier in the Multics example, excessive paging overhead is in fact 

what led to some of the problems being attacked in this thesis. 

Returning to the original state of affairs just for the promise of 

better debuggability is probably not sufficient motivation to reduce 

performance. 

Besides performance issues there may still be a problem in using a 

program per domain system. Examining in detail how a user could create 

and develop programs points out some problems that have to be overcome 

if such a system is to be considered useable. In particular, consider 

the set of privileges that have to be granted when a new program is 

created.  First,  the source must be entered and edited, which requires 

(7) Tliis problem has come to be known as the "small objects" problem. 
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that an "editor domain" have read and write access to the source. Then 

a compiler must be able to read the source and write the object segment. 

A debugger must be able to read and write the object segment (perhaps 

only temporarily) so that code can be examined and breakpoints set. 

All seems fine so far, but it is in the execution of the procedure 

where the more complex access problems and controls come into view. The 

new procedure must be given the privilege to call all the subroutines it 

uses. Similarly, if it is called by another procedure, that other 

procedure must be given the right to call it. All the support programs 

(e.g. linker, dynamic area manager, etc.) must be given the appropriate 

access so that they may operate on the parts of the domain that they are 

intended to (linkage section, dynamic storage, etc.). Clearly, if users 

had to establish all of these privileges manually, they simply would not 

do it; and what good is a protection mechanism if it is not used? 

To help in this problem one might decide that a group of programs 

should be encapsulated together to alleviate some of the complexity of 

establishing the new protection environment. One can, for example, 

group "system routines" into classes of domains which require similar 

access, thereby requiring only one access control term or capability for 

each group. With appropriate constraints, it might even be possible to 

reduce the overhead of procedural packages by having relatively few of 

these groups. This approach is exactly what is considered in the next 

chapter where problems and other useful properties of such a design is 

discussed. 
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Chapter Three 

A New Model 

Because of the efficiency problems related to maintaining 

independent protection domains for every procedure, the use of a 

simpler, more efficient means of separation was investigated. In this 

new approach, the user domain is viewed in a different light. Instead 

of trying to separate and protect every user environment program from 

every other, a separation by classes is considered. This new separation 

divides the environment by functions rather than by components and a new 

solution to the problems posed in the previous chapter, based on this 

new division, is proposed. 

3.1 Functional Components in the New Model 

The basic idea of this new approach is to reexamine the user 

process and functionally divide the programs in it. In figure 3.1 the 

gross functionality boundaries are depicted. In this picture it is easy 

to illustrate the goals of the supervisor simplification work discussed 

in appendix A, that strongly motivated this research. This goal is 

simply to move the user/supervisor boundary down to the resource sharing 

and multiplexing functions. By examining the picture, the effect that 

moving this boundary has on the size and complexity of the user domain 

is clearly demonstrated.  Moving the boundary places more  functionality 
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in the user domain, thus increasing the harm that an unchecked program 

error can cause. For the rest of this work it is assumed that the 

user/supervisor boundary is in fact moved to the point established as a 

goal for the supervisor simplification effort. 

The user domain is considered to be broken down into three classes 

of programs: command and control, support routines, and user programs. 

The command and control programs are those programs that allow users to 

control the execution of their processes (e.g. stop and start) and to 

tell their processes what to do (i.e. what programs to run). These 

programs  are  unlike  any other  programs  in  the user domain and are 
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therefore considered independently in a later chapter. Until then, the 

command and control programs shall be ignored. Procedures that fall 

into the support routine class are those that serve no other purpose but 

to provide a more elegant abstract machine for the user programmer. 

These procedures include stack, management, call - save - return macros, 

Input/Output access methods, software for floating point support, 

conversion routines, free storage management, dynamic linking, and 

namespace management, to name a few. These procedures are usually 

provided by the system itself. The user programs are those programs 

written by the user to perform a desired task, and make extensive use of 

the support routines. 

Partitioning the user domain in this way allows the support 

routines to be protected, as a group, from the user programs. It is 

assumed that the support routines are tested and debugged, and seldom 

change. Thus, a manual review of the support routines can verify that 

they will not interfere with each other. Therefore, protecting the 

support routines as a group should pose no additional problems. 

The support routines are common routines, shared by the user 

programs. A failing support routine would have a more widespread effect 

than a single failing user program. Thus, protecting the support 

routines is in fact protecting some of the common mechanisms of the user 

domain. 
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Protection of the actual code is not the only thing that is wanted 

though. Protecting those components of the user execution environment 

discussed earlier so that the support routines can function 

independently from the user programs is desired. The support routines 

cannot be allowed to share those components with user programs. 

However, because the correctness of the support routines can be assumed, 

the support routines can be allowed to share the environment components 

among themselves. In this way, breakage and therefore inefficiency in 

memory utilization is held to a minimum above that of the original 

combination of user and support routines. This compares favorably with 

the ideal solution proposed in the previous chapter, where no such 

sharing was possible. The "working set" [Denning 68], or number of 

pages of memory required by a computation in this scheme would be a 

maximum of twice the number required by the original, single environment 

implementation. This is so because there are only two domains where the 

pages can be and in each domain those pages can be as packed as they 

were in the original implementation. 

In summary, two environments have been created within the user 

domain. The next step is to choose a protection mechanism for keeping 

the environments separate. By examining the dependencies and 

interactions between the two environments, a suitable mechanism can be 

decided upon. 
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3.2 Deciding on a Protection Mechanism 

The types of functions performed by the support routines are simple 

and likely to be invoked often. With functions such as the call-return 

sequence and stack management implemented as support routines, it would 

clearly be impossible to have them exist in an independent address space 

where some outside active agent performs the communication between the 

two, since these functions are necessary to perform the communication. 

Thus, a "distributed processing" approach involving parallel processes 

is unfeasible. 

Some form of linked address space between the two environments is 

needed so memory can be shared. The support routines must be able to 

manipulate elements of the user programs (stack, linkage, etc.). On the 

other hand, it is desired to prevent programs from interfering with any 

of the elements of the support environment. This type of nesting of 

privileges very closely parallels the user/supervisor modes discussed 

earlier. 

At first, placing the support routines in the supervisor might be 

considered. However, appendix A presents reasons why programs which are 

not necessary for correct operation of the system should not be in the 

supervisor. Recent research in system certification [Schroeder 75] has 

crystallized these reasons. Appendix A contains a brief description of 

this work. 
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However, besides certification there are very simple reasons for 

not placing programs in the supervisor. These reasons have to do with 

extendability and maintainability. Sophisticated users of Multics 

greatly appreciate the ease with which they can change and replace 

almost all parts of their execution environment. If the code were in 

the supervisor a user dissastisfied with the particular implementation 

would be unable to change it. Furthermore, bugs in the code would 

require supervisor changes to correct, which is more often a harder job 

than replacing user programs. A simpler supervisor is obviously more 

easily maintained and upgraded, and can be more quickly learned by new 

system support personnel. 

This point has been reached by noting that the nested privileges 

offered by the familiar user/supervisor modes would be useful for 

protecting the support routines. But reasons for not actually making 

use of this scheme have been pointed out. However, the concept of 

"rings of protection" [Graham 68, Schroeder and Saltzer 72] can be used 

here with much success. 

Rings of protection, or more simply just rings, are a 

generalization of the supervisor/user domains discussed earlier. Rings 

are an ordered set of protection environments such that ring j has at 

least as much access to data and programs in rings j + 1 through the 

maximum ring number as each of the higher rings themselves do, but only 

controlled access (call, read, or no access) to data and programs in 

rings 0 through j - 1. 
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The domains of interest here are totally ordered in terms of access 

privileges. Therefore, rings can be used for their separation. Thus, 

for example, the supervisor can be put in ring 0, the user environment 

in ring 2, and have the critical programs of the user execution 

environment in ring 1. This proposed structure is shown in figure 3.2 

below. The user support routines are protected from user programs in 

the same way that the supervisor is, and yet are not part of the 

supervisor. 
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The significance of this last statement must be emphasized since it 

is a major design goal of this research. In a correctly designed 

system, the supervisor contains only those programs that enforce the 

security of the system.  Outside the supervisor, no code can do anything 
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to interfere with the supervisor or another user.  So even  though the 

support  routines  are  protected  from  the user written code, they are 

outside the supervisor and thus cannot affect system security.  This is 

a  major  aid  in  assuring the correctness of the inter user protection 

mechanisms or system security. 

From the user standpoint, having the support routines outside the 

supervisor is beneficial in that users can be granted the privilege to 

modify or replace the support routines so that their environments can be 

tailored to their needs. However, we need not be concerned about 

malicious users since as already explained, they cannot affect the 

supervisor of any user;  they can only degrade their own environment. 

Now that the model and the protection mechanism have been chosen, 

it is time to consider how the finalized design solves the original 

problems stated in chapters one and two. Recall that the major goal was 

to trap errors as soon as they occurred so that the process would not be 

destroyed and so that debugging could immediately take place. 

With the proposed design, any attempt to wildy store data on the 

support routines themselves or in their environmental components, would 

cause the hardware to "trap" the offending instruction, preventing it 

from continuing. An error condition would then be signalled (see 

chapter six for more information on signalling), notifying the user that 

the error had occured. The exact instruction and location causing the 

problem could be determined and subsequently fixed either by patching 

and continuing, or rewriting and recompiling the program. 
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Although It may not always be possible to continue, at least the 

process as a whole would be saved. Saving the process allows the user 

to continue working on the development of the program and prevents any 

damage to databases that might have occured if the error was not caught. 

The ideal solution would work just as well but would extend the 

protection to each and every program. However, as stated earlier, the 

support routines change infrequently and could therefore be checked to 

insure that they operate properly together. Thus, the only protection 

needed, at a gross level, is for the support routines, allowing the 

robust environment for program development to be realized. 
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Chapter Four 

A Closer Look at the Support Routines 

This chapter presents more detail on identifying and protecting 

support routines. It describes two methods of protection: One for 

procedures that have no static storage, and another for the more complex 

functions of the user environment with static storage. 

4.1 Two Cases of Support Routines 

Some of the low level support routines on a system require no 

static storage, linkage, or databases for their operation. Simple 

mathematical algorithms are examples of such routines, where, for 

instance, only processor registers are used. The only protection 

necessary for these type of routines is for the code itself. Systems 

that feature direct sharing usually provide low level support routines 

in a shared area that is not writeable by any process. This obviously 

prevents one user from interfering with another. This same protection 

also prevents users from writing over the code and harming themselves. 

Therefore, rings are not needed for these routines; but on systems where 

every user gets a personal, writeable copy of the routines, rings can be 

used. 
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The more complex and interesting protection is for those routines 

with static storage (either internal static, linkage, or external data 

bases). (8) In these cases, those static elements must be placed in a 

lower ring for protection. In order for the routines to access the 

areas and function properly, they too must be in the same ring as the 

static areas (or lower but would have no additional advantage from being 

there) . Code in the lower ring does not prevent the sharing of that 

code between users, since the code is (or can be) pure; The impure 

sections (linkage and internal static) are allocated per process, 

however. 

4.2 Guidelines for Support Routine Coding 

Dependencies among routines must be established to insure  that no 

procedure  in the lower ring depends on (uses) a procedure in the higher 

ring for its correct operation.  If this occurs, then the module in the 

higher ring must also be brought into the lower ring. 

Once a module is brought into the lower ring, suitable entry points 

are made into gates, allowing the outer ring programs to call the inner 

ring procedures only at the specified entry points. Internal interfaces 

are thus protected. 

(8) If allocate/free areas are used some static storage is  required to 
remember  the location of the allocated block.  Otherwise, if the blocks 
are used only during the execution of the procedure and then  discarded, 
it is essentially being treated as automatic storage. 
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Parameters that are passed on user calls to gates are validated by 

the ring mechanism to insure that access to the parameters is allowed in 

the calling ring. This prevents the calling ring from specifying areas 

that are inaccessible in the outer ring, but accessible in the inner 

ring. Without such checks, the outer ring could declare that an area 

used for static storage in the inner ring was the area for an output 

argument, thus causing the inner ring to destroy itself. This problem 

is exactly the same as that faced by a user/supervisor interface 

[Schroeder and Saltzer 72] except that here the protection is mainly for 

self protection and debuggability, not system integrity. 

Modularity of the procedures [Parnas 72a, Liskov 72] is necessary 

to help in identifying and separating the user domain into functions so 

that appropriate ones may be protected. Modules that interact strictly 

by standard parameter passing via calls to procedure entrypoints are 

likely to be the best candidates for separation and protection. 

However, modules that interact via a shared database pose a problem. 

Although parameters are usually passed internally as a shared database, 

there are specific rules for dealing with those parameters. Module 

specifications can specify the range of, and the legal manipulations to 

be performed on the parameters. However, there are no specification 

techniques yet devised to specify a limited set of operations when 

dealing with shared databases directly. Thus, the boundaries of modules 

that share a database are not well defined and the dependency between 

modules is hard to establish. [Janson 76] discusses this in some detail 

and has termed modules that share a database as weakly modular. 
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The way that weak modularity prevents protection of a module is 

straightforward.   If  one module  is placed in an inner ring, it still 

depends on the shared area to operate correctly.  The shared area must 

remain  in  the  outer  ring so that the other module can manipulate it. 

But if the area is in the outer ring, any program there can write on it 

and therefore affect the correct operation of the inner ring module. 

Support routines that can be protected are therefore limited to 

those that do not interact in ways other than through the standard 

call/return mechanism. A poorly designed system (i.e. one in which 

shared databases are the usual means of communicating parameters) can 

thus limit the number of modules protected. Interestingly enough, the 

goals of "clean modular programming" exactly identify those modules that 

can be protected. Functional abstractions and data hiding both provide 

for the type of modules that are acceptable [Parnas 72a, Liskov 72]. 

4.3 Examples 

This section presents examples of support routines that may be in 

the supervisor but could be moved to the user environment. Although the 

routines could be in the supervisor, they are not there due to a desire 

for a well designed, certifiable system. Examples chosen are event 

management, timer managenment, Input Output management, and namespace 

management. This section also describes how rings can be used for the 

direct protection of linkage. 
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In this section, it must be rembered that should one of the support 

routines fail, the process would no longer be able to continue program 

development and debugging. The reason why keeping the current process 

is considered is due to both the time and expense that went into 

creating the process, which may contain a considerable amount of 

volatile state information useful for continued work. Therefore 

throwing away the "broken" process and acquiring a new, Rood one is less 

desirable than continuing with the old process. The failure modes 

considered in this section are those due to "wild" storage of data in 

sensitive databases needed for continued execution of the process. 

Interprocess communication can be accomplished by direct writing 

into shared memory. However, to avoid busy waiting (9) processes can go 

to sleep or "blocked" and wait to be "awakened" by another process. 

Only the minimal amount of software necessary for the actual process 

blocking and awakening need be in the supervisor. Multiplexing the 

blocking for various events can be handled by the user. 

In use, a process goes blocked and is resumed when any event is 

sent to it. The user block routine then requests from the supervisor a 

list of all the event messages that were sent. If the one that the 

process was waiting for is in the set, the user block routine returns to 

the waiting program. Otherwise, the received messages must be saved for 

future reference, and the process goes blocked again. 

(9) Looping while waiting for an event to occur, 
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The integrity of the area containing the list of  events  known by 

the  process  and those messages that have arrived but not yet processed 

is vital to the normal execution of the process.  Thus this area and its 

manager are ideal candidates for protection. 

Another multiplexed mechanism can be real and virtual timers. 

Suppose that the supervisor provides for only two timers per process, 

one for absolute time and the other for elapsed virtual (chargeable) cpu 

time. These timers can then be multiplexed in the user domain thus 

reducing supervisor complexity. One way of accomplishing this 

multiplexing is to maintain a list of timers in use, sorted by "alarm" 

time, with the time closest to the present in the actual timer supported 

by the system. When that timer goes off, or when a closer time to the 

present is added to the list, the real timer will be set to the real 

closest time to the present. This list of timers for the timer manager 

is considered another important, but fragile, support facility of the 

user environment. 

If the hardware of a system is correctly designed, and users do not 

share I/O devices, only a minimal mechanism need be in the supervisor to 

support user requested input and output. Users can be allowed to write 

a channel program to control "their" devices and no others. The 

supervisor need only start the channel for the appropriate device and 

possibly assign storage for the duration of the operation. (10)  Only a 

(10) Multics allows users to request that the supervisor not page out a 
page of memory for a short duration so I/O to fixed addresses can be 
accomplished. 
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simple interface to the supervisor is needed to identify a set of I/O 

instructions for a particular channel to execute. Device control 

modules should be in the user environment along with all device access 

programs. Higher level database access programs and code reflecting a 

device independent environment should also reside in the user domain. 

Of course I recommend that all these functions reside in the protected 

portion of the user domain. 

Multiplexed devices can be harder to handle. If two users are 

allowed to share portions of a single device (e.g. sections of a single 

disk pack), it would be impossible to keep this code in the user domain. 

By definition it must reside in the supervisor since it deals with 

resource sharing and multiplexing among independent users. However, in 

the case of one controller with multiple devices (drives), correct 

design of the controller can allow it to be shared by many users. All 

that is required is to prevent an I/O channel program from switching 

devices during its execution. Then only allow the supervisor, at the 

time the channel program is started, to specify the device on the 

controller. This approach has in fact been used by Honeywell on their 

single controller, multiple drive tape units for Multics [Greenberg 76]. 

Short reference names are local user  defined  names  that  can be 

associated  with  long global names to simplify talking about an object. 

Once the relationship between a reference name and global name is made, 

only the short name need be used.  As an example, a reference name might 

be  "square root"  for a procedure that computes square roots, while the 
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global name might indicate the  location of  that  procedure within a 

naming hierarchy such as: 

"ROOT>system library>math routines>9quare root". (11) 

Typically a linker, or binder, associates the reference name as 

used in programs (e.g. x = square_root (y)) with a particular module in 

the system. As Bratt [Bratt 75] explains in his thesis, the reference 

name facility need not be in the supervisor. Bratt describes how that 

facility can be removed from the supervisor and be placed in the user 

domain. However, this facility is greatly depended on by all programs 

in the user domain. If the reference name manager should fail, 

inter-program linkage would fail and no new programs could be found or 

executed. Thus it is imperative that this facility be protected from 

damage by user programs. Placing the reference name manager in the 

protected environment is essential to the goal of providing an 

"unbreakable" user environment. 

All the above modules contain significant state information in 

static storage. Therefore, it would be desirable to place those 

programs in the protected environment so their important state 

information is protected. 

Finally, consider dynamic linking. Janson [Janson 74] explains in 

detail how dynamic linking can be removed from the supervisor of an 

operating system.  However, here too,  the  eventual  placement  of  the 

(11) A>B indicates B is in directory A.  ROOT is the root  directory of 
the naming heirarchy. 
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linker module is in the user domain. The set of search rules, guiding 

the linker to find a specific copy of a named procedure, constitutes a 

static database used by the linker. To protect the search rules, and 

thus the linking mechanism, the linker should be placed in the protected 

environment. 

Another part of the linking mechanism that Janson termed 

environment initialization is also important to protect. In Janson's 

design, a procedure locates its static storage and linkage section when 

it is entered. The first time that the procedure attempts to do this 

will trigger a mechanism which will allocate and initialize these 

sections. This allocation and initialization processes can be 

protected. 

The tables that procedures use to find their linkage and internal 

static sections, the Linkage Offset Table and Internal Static Offset 

Table (LOT and ISOT), can also be protected. The LOT and ISOT only have 

to be read by procedures; it is an error if a user program writes in 

them. Similarly, linkage sections are only read by programs. Thus the 

LOT, ISOT and linkage sections can, and should be protected from errors 

caused by user programs. To do this requires placing not only the 

environment initializor in the protected environment, but the linker as 

well, since the linker modifies linkage sections. This approach 

realizes at least part of the original goal of protecting the components 

of the user environment. 
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Chapter Five 

Command and Control Routines 

A human user of a system is aware of other environments besides the 

execution environment. Any program that accepts input from the user's 

console interprets what the user types in a different way; hence the 

appearance of different environments. This chapter examines those 

environments that are used to control a process. This research has 

identified two environments used for this purpose, which have slightly 

different properties. These environments are embedded in the code that 

was classified as command and control programs in an earlier section. 

These two environments and their properties are discussed below. 

5.1 Structure of Environments 

The relationship between the user at a terminal, the program 

execution environment and the command and control environments is shown 

in figure 5.1 below. Between the terminal and the program execution 

environment flows user program input and program output. Between the 

terminal and the command and control environment flows program loading, 

stop, and start requests, as well as messages from the command and 

control environment (e.g. "program not found"). Finally, between the 

program execution environment and the command and control environment 

flows a program generated command stream and control messages  such as 
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start,  stop,  and load a particular program.  All these streams will be 

discussed in more detail in later sections. 

Control Imk) 
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Consider the components of figure 5.1. The program execution 

environment has already been discussed in previous chapters and the 

reader is probably familiar with some terminal on a timesharing system; 

thus, an examination of the command and control environment is needed to 

complete the picture. Although these environments are shown merged into 

one in the figure, they have different properties in reality. An 

attempt will be made to describe these differences, but as you will see, 

it is hard to separate them entirely. They will then be considered 

merged for the rest of the thesis. 
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5.1.1 Command Environment 

The command environment is seen as the program that the user is in 

communication  with  immediately  after  being  given  a  process.  In 

particular, the command  environment  responds  to  user  requests  that 

describe  what  programs  to  run  for  the  user.   After the specified 

programs have completed, the user is again  in  communication  with  the 

command  environment.   Typical  requests to the command environment are 

"run  the  editor"  or  "compile my  program"  in  whatever  syntax is 

understood by the command environment. 

The types of messages that are sent between the command environment 

and the rest of the user domain are basically "load this program and 

transfer to it" in response to a user command, and in the other 

direction "execute this command line as though the user typed it" for 

programs which generate command lines. These messages are shown in the 

figure below as user requests and program requests, respectively. 

User requests are generally familiar to all computer users. It may 

be some form of job control language ("// exec pgm=basic") or one word 

command lines on a timesharing system ("basic"). The use or need of 

program requests might be doubtful though. However, use of this feature 

could be made, for example, for the implementation of a command file 

facility (more will be said about  this in a later  section) .  This 
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facility allows users to create a file containing a sequence of commands 

to be executed, and invoiced by running the command file program 

specifying that file as it's input. The command file program then 

simply calls the command and control environment with each command line 

in sequence. The command lines are passed to the command environment 

via the program request stream. 

Another use for this stream is to allow programs to pass a 

"canned", or user supplied command line to the command environment under 

special circumstances. This feature might be employed in a procedure 

that could accept a generic command string and append or substitute 

generated information into the string. Then the command processor would 

be called with each such generated command string thus relieving the 

user from having to type the same command over many times. An example 

of such a procedure would be one that simply generates a list of new or 

modified information files; invoking this command would generate a list 

of modified or new file names. If the user wanted each one of the new 

or modified files to be printed, he/she could supply the generic command 

string  "print %"  to  the  list_new_files  command,  which would  then 

generate the commands  "print  new_file_a",  "print help_file_3",    

(etc.). The "%" in the generic command string would be replaced by 

actual file names in each generated command. Then the command processor 

would be called with each of the formatted command lines. (12) 

(12) This is just an example and not a proposal, 
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5.1.2 Control Environment 

Whereas the command environment quietly waits for requested 

programs to complete, the control environment is always awake and 

listening to the user (at least conceptually). The exact mechanism that 

is used is not important here; what is important is that at any time the 

user can say "hey you (computer or process), stop and talk to me !". In 

this way, the user can stop an infinite loop in a program and not waste 

time and/or resources waiting for a failing program to complete. Along 

with the power to say "stop", the user would also like to say "OK, go 

ahead", or "forget that". 

Functionally, the user generates a signal causing  the  process to 

enter the control environment.  (13)  Users then have a choice of 

debugging and continuing, or forgetting the computation.  They may also 

run any other program first, before returning to  the  stopped program. 

In  this way,  a  calculator  program can be used to check intermediate 

results.  Similarly, an inter-user message facility can be used to ask 

the author of a program "hey, what's wrong ?", get a response, then 

continue the interrupted program.  This general program calling can be 

implemented by allowing the control environment to call the command 

(13) On Multics, users generate this signal  by using  the  "break" or 
"attention"  key on their terminals.  On TENEX, control-C generally does 
the same thing. 
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environment to process all but control environment requests. However, 

control environment requests might actually be parsed by the command 

environment and invoke control environment functions. (14) This 

apparent double dependency can be resolved by joining the two 

environments, thus providing a single command environment to the user 

which is simpler in structure and more easily understood. 

In summary, the major difference between the control and command 

environments is that the control environment is asynchronous with the 

rest of the user process flow, and responds to simple, base level 

requests, with possible extensions to include full command processing. 

For the rest of this thesis, the two environments are considered merged 

into one. 

5.2 Processing Commands 

This section examines the details of how a command may be 

processed. There are, of course, numerous ways to accomplish the type 

of processing described in this section (see [Broughton] for example), 

but the ones chosen are useful for explaining some protection problems 

that will be described later in this chapter. The processing described 

covers a large variety of known systems. 

(14) This is done on Multics where the command environment processes all 
requests, some of which invoke control environment modules. 
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In an overall view, the command environment performs four 

operations in response to a user request to execute a module. First it 

parses the command line and performs possible substitutions, parameter 

evaluations, and conditional evaluations. It then searches for the 

identified (possibly ambiguously named) module using a set of search 

rules. The module is then brought into the address space of the user. 

Finally, the module is transferred to and it begins executing. 

Note that none of these functions require that the command 

environment be part of the supervisor; no special privileges are needed 

to perform all of the functions stated. Even so, some systems [TENEX, 

CTSS] have the command environment as part of the supervisor. Placing 

the command environment in the supervisor suffers from the problems 

discussed in chapter three. If the reasons for having the command 

environment protected is solely for the benefit of the users (i.e. they 

cannot destroy the command environment), then the discussion on 

protection, later on in this chapter, should help in choosing a new 

approach to solving that problem. 

The functions of the command environment are now examined in 

detail. The tranlating and parameter evaluation mechanisms are examined 

first because they are particularly important in this work. A modular 

design of command processing is described. The modules are classified 

into two categories: 1) those that look, at every command line, and 2) 

those that are optional and look at command lines only when asked. This 

classification will be referred to later on in this chapter when the 

protection of the command and control environment is discussed. 
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5.2.1 Text Substitution 

Translation, or substitution of text, can be a complicated task if 

it  is not restricted.  What is meant here is simply the substitution of 

one string of characters for another in the command line.  A frequently 

used form of this type of processing is for abbreviations.  For example, 

a user types "fortlm" and gets "fortran -list -map" which might execute 

the Fortran compiler and provide a listing and statement map.  This type 

of processing can be neatly packaged in a "front-end  filter"  preceding 

the actual command processor as shown in figure 5.2 below. 

This  approach is useful because the abbreviation processor can be coded 

in a separate module (allowing easier debugging) and  inserted  only if 

desired.   This module  is  considered  a member of the "always used" 

category since,  once  it  is  selected  and  inserted  in  the  command 

processing  path,  it  examines  every  command  line  to  determine if 

substitutions are necessary. 

5.2.2 Parameter Evaluation 

A second aspect of command processing that is considered here deals 

with how commands can be affected or controlled by the user's total 

environment. With this flexibility users can control the execution of a 

command  based on the date, a list of files in a catalogue or directory, 
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or on the name of the person who sent them the last message (for 

example). Use of these controls easily allows printing of only new 

messages (those that have been created today), compilation of all 

FORTRAN programs in a certain directory, or replying to the last person 

who sent you an interactive message, without ever having to specify the 

date, list of files, or the name of the last message sender. 

Such features can be implemented as a special cases in the command 

processor and use special keywords. However, the most general approach 

is simply to call procedures which implement each function and return a 

string to  the command processor as a result.  Such an approach is used 
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on Multics; these special functions nrc referred to as "active 

functions" [MPM]. The active functLon processor evaluates all active 

functions in a command line and then calls the command processor with 

the resulting string. Figure 5.3 shows how the example stated earlier 

works in combination with the abbreviation processor. 
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The program invocation mechanism of the active function processor 

and command processor are very similar since both call procedures. 

Therefore it is possible to merge these two functions into one. (15) 

However, the modules will be considered independent to facilitate the 

protection discussion later in this chapter. The active function 

processor also looks at every command line to see if active functions 

must be invoked. Thus, it too belongs to the "always used" category of 

command processing functions. Notice that the active functions 

themselves are not always used and thus the collection of active 

functions are members of the "optional" category. 

5.2.3 Command Files 

On many systems long sequences of commands may be stored in a file 

and executed by only typing a single command line. This type of 

processing is useful for reducing typing time and eliminating errors, 

for providing complex "abbreviations", and for providing a simpler 

interface to a complex system (e.g. catalogued procedures). Most such 

implementations allow parameter substitutions and offer a language to 

control execution and flow within the command file (e.g. "if ..." and 

"go to ..."), including error handling (e.g. "on error go to .."). 

(15) This is done on Multics. 
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Such processing can be merged into the command processor, but for 

the sake of modularity and clean design it should be a separate module 

which reads the command file and calls the command processor with each 

command line. This type of processing also need not be protected in any 

way (at least for system security reasons) and therefore can execute in 

the user domain making use of the "program request" stream described 

earlier. If implemented as a separate program, the command file 

interpreter does not look at every command line; it is only invoked 

when the user specifies that it should be. Thus, the command file 

interpreter is considered a member of the "optional" command processing 

functions. 

5.2.4 The Command Processor 

After all the command line  processing  is  complete,  the  command 

processor  is  called to invoke the specified program.  The program name 

in the command line is used to find  the  actual  procedure  within the 

naming  heirarchy.   The  linker  search mechanism may be used for this 

purpose which, if used, would provide a single search  strategy  in the 

user  domain for both dynamic linking and command program locating; one 

search strategy is obviously more easily remembered than two. 

The parameters supplied on the command line are formatted 

appropriately for passage to the specified procedure. The "load 

program" signal is sent to the program execution environment, which may 

-60- 



cause, the program module to be read into main memory, or merely assign 

the module a virtual address (making it "known"; see [Bratt 75] for 

details) . Finally, the "go" signal (which may simply be a transfer 

instruction), starts the loaded procedure. 

Obviously, the command processor is the key module in  the  command 

environment and thus is a necessary and always used function. 

5.3 Getting to the Control Environment 

The simplistic approach to entering the control environment is 

merely to transfer control from the executing program directly to the 

control environment procedures, much like an interrupt sequence. 

However, there are times when users wish to program their subsystems 

with internal "attention" procedures which get invoked at the time a 

stop request is issued from the control environment. These procedures 

can be used to cancel the effects of a request that is currently being 

worked on, or to make a database consistent (e.g. unlock it). For 

example, when LISP on Multics [Reed 76a] recognizes that the user wishes 

to stop the computation, it first updates all bindings in memory from 

the working registers so that the most recent effects will be seen by 

the user without explicit knowledge of register optimization built into 

the LISP subsystem. Only then does LISP allow the "stop" to take 

effect. 
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However, if the subsystem is malfunctioning, it would be impossible 

for a user to abort it and return to the command environment. 

Therefore, there is a need for at least two kinds of stop signals; one 

which allows attention procedures to be invoked, and a second which goes 

directly to the control environment. Then users can first attempt the 

more elegant stop, allowing the procedure to recover, but if that fails, 

they can use the "panic stop". 

To implement this type of feature there must be a way of specifying 

the type of stop desired. The "break" or "attention" key found on most 

terminals is usually used as the "stop button" but there is only one of 

them. This can be multiplexed by having users type a single character 

after the break key denoting what type of stop is desired, or by some 

coding in the number of breaks sent. The latter approach is prone to 

misuse however, because impatient users would wonder whether a single 

break got through if no result of that fact is quickly demonstrated and 

then would send a second break which would get them into the wrong 

environment. The TENEX system [TENEX] has the useful feature of 

allowing all control characters (16) to generate a variety of process 

interrupts. In this way no multiplexing of the break key need be done, 

and simple one character strokes can effect desired responses. Each 

control character can then invoke a special independent function. 

TENEX, for example, responds to control T by first beeping (indicating 

that the system is still there), and then giving a system load estimate 

and resources used since the last request. 

(16) A keyboard character sent  with  the  control  (CTRL)  key  pressed 
simultaneously. 
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5.4 Implementation of Command and Control Environments 

How the command and control environments are implemented is of 

concern because they may be implemented as user programs running 

unprotected in the user execution environment, as on Multics. If this 

is the case, then these programs are also subject to interference from 

other user programs as discussed earlier. Control of a process is an 

essential feature; therefore in providing a robust environment it is 

necessary to protect the command and control environment. How these 

programs can be protected is now considered. 

5.5 Protecting the Command and Control Environments 

Protecting the command and control environment means that the 

procedural packages implementing that environment must be protected. 

The choices for doing this basically fall into two categories. The 

programs can exist in independent processes with separate address 

spaces, or they can share an address space and memory with the user 

programs, as the support routines were allowed to do. The types of 

interactions between these programs and the others of the user domain 

can help in deciding which one to choose. 
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The messages to the command environment are simple character 

strings. For the control environment, messages are, more or less, 

"stop" and "go". Because of the nature of these messages, they are sent 

infrequently (usually once per user request). For this reason tight 

coupling, by memory sharing, between the two environments is not 

necessary, and efficiency of communication is not that important. Thus, 

virtual processors, or physical separation might prove to be feasible, 

particularly in light of the current trend towards "distributed 

computing". 

The National Software Works project [NSW] uses the approach of a 

"front end" computer as a user to computer network interface. The front 

end has some memory and a moderate amount of processing power. It can 

parse user requests and format them into a more rigid syntax easily 

processed on a variety of host computers. Thus, front end processing 

can alleviate some load on the host. The front end can also provide a 

more reliable computing utility by having low level software choose 

different computers to perform actual requests, in the event of failure. 

The Distributed Computing System [DCS] has this goal in mind. 

A front end processor can also support local editing, allowing a 

user to compose and edit text without making use of the host computer, 

thus further reducing the load on the host. Character at a time echoing 

can be supported by the front end with special "action" keys forcing the 

transmission of words or lines to the host. This approach alleviates 

the  need  for  the  host computer to respond to each character typed by 
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each user and thus also helps in reducing system load. This last 

facility is in fact currently being implemented on the ARPANET [ARPANET, 

RCTE]. 

There are, however, problems with this approach, one of which has 

to do with the program "loading" feature of the command environment. 

The other problem is that some form of communication is needed between 

the control, command and user environments. The loading function and 

communication mechanism can, of course, be in the supervisor, but 

arguments have already been presented for not placing similar basic 

functions not relating to system security there. The best place for 

these features is in the user environment, but as mentioned many times, 

programs are subject to failure there. To prevent this, the 

communication mechanism at the user environment end, and the program 

loading function, can be placed in the protected support routine 

environment described earlier. 

Another reason for not using multiple processes is that the "stop 

and go" features of the control environment can very simply be 

implemented if there is only one execution point in the user's 

computation. It is obvious that if some signal from the user causes 

immediate transfer to the control environment, the user program will 

automatically be stopped (much like an interrupt). Similarly, when the 

control environment transfers back to the user program (much like a 

return from interrupt sequence), the "go" function is obtained. 
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There are arguments for not having interrupts, however, mainly 

based on complexity and design of programs that service them. The 

environment that the interrupt handlers run in is generally fragile and 

not completely specified due to possible functions affecting it that 

were in progress at the time of the interruption. The preferred option 

is to use processes where appropriate. These processes simply wait for 

the desired signal, then act accordingly in a synchronous manner. When 

the job is done, the process then goes "blocked" waiting for the signal 

to occur again. In this way, the environment that the interrupt 

handlers run in is well defined. 

This scheme does not eliminate the need for interrupts, however, 

but limits the code that must be run during the actual interrupt 

processing to that which performs scheduling functions. By nature, 

these scheduling functions are designed to execute in a manner that does 

not require full system capabilties. For the actual stopping of the 

user execution environment, real interrupts must also be used so that 

control can be torn away from the executing code. 

I have no argument against the use of processes for such functions 

except that on a large system, like Multics, where processes are very 

powerful processing agents, the expense is simply too great. It would 

be advantageous to provide cheap, weaker processes to perform these 

functions for simplicity of coding and understandibility. How processes 

can be implemented cheaply is discussed by Reed in his thesis 

[Reed 76b].  Such processes were used by a memory management design with 
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much  success [Huber].  Lacking these cheap processes, it was decided to 

place these functions in the environment already set up for the  support 

routines.   This  gives us the simple control over the process discussed 

above  (because  of  the  single  execution  point),  and  requires  no 

additional  tools  for multi-process intercommunication to be developed. 

5.6 Design Decisions Based on the Protection Scheme 

The following sections describe decisions that were made solely 

because of the decision to place the command and control environment in 

the protected half of the user domain. In using a different approach, 

such as multiple processes, it is not immediately clear that the same 

decisions would have been made although given some thought, it would 

seem that they are not totally unreasonable because of other criteria 

such as delay time and load transfer to the front end processor. 

5.6.1 Command Processing Revisited 

As a result of placing the command and control environment in the 

protected half of the user domain, design decisions have to be made 

regarding the placement of each of the command environment modules. The 

major factor that influenced the decisions discussed below was the 

desire to provide a path to the command processor that was unaffected 

by failures in the unprotected half of the user domain so  that  control 
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over the process could be maintained. Thus the "always used" modules, 

categorized earlier, are precisely the ones that must be in the 

protected environment. The "optional" ones need not be, however. 

Unlike the decisions made in the certification work discussed in 

appendix A, there is no exact minimal set of programs that have to be 

protected. The choice can therefore be based on considerations other 

than security. One rule that can be used is "if it can be protected it 

should be", but this might lead to protecting the entire collection of 

programs in the user domain. While this is not a real problem, it 

clutters up the protected environment with many simple programs that are 

not essential support modules. Although it would be desirable to 

protect all programs, as in the ideal solution presented in chapter two, 

we must remember that the preservation of the process and control over 

it is of paramount importance and the loss of a simple function could be 

remedied dynamically when it is discovered. Keeping the protected 

environment simple also helps in understanding and maintaining it 

leading to a more robust environment. 

Obviously the command processor itself must be placed in the 

protected environment, as it is the essential component of the command 

environment. The active function processor must also exist in the 

protected environment because if it fails, no command line will get 

through to the command processor. However, the active functions 

themselves should not execute within the protected environment for three 

reasons. First of all, they may be user supplied and might be in the 

process of being debugged.   Secondly,  the protected environment is 
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different from the one the user "sees". The working environment is 

supposed to be the one that controls the execution of the command. But 

by executing in the protected environment, active functions refer to the 

wrong working environment. Within the protected environment the active 

functions have access to more areas than the normal user programs, and 

know about more files or information than the user intended. 

Consequently, they might specify operations that should not or cannot be 

done (e.g. compile the command processor because its name matched "all 

PL/I programs"). There can also be naming conflicts between the 

protected environment and the normal execution environment. The user 

may request the compilation of a new version of a program but get the 

old one because it is found in the protected environment. Finally, 

active functions are not required in order to pass a simple command line 

to the command processor, which is all that is desired for process 

control. 

The abbreviation processor must exist in the protected environment 

because it looks at every command line and could prevent any commands 

from getting through to the command processor if it fails. 

Finally, the command file processor need not be in the protected 

environment since it is not used for simple command lines and can 

therefore execute in the unprotected part of the user domain without 

fear of loss of control over the process. The choice of placement of 

this module was just a matter of taste and could have, just as easily, 

been placed in the protected environment.  However, the decision for its 
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placement was also due  to a desire to not clutter up the protected 

environment with non-essential support modules. 

5.6.2 Command Processor Escape Mechanism 

Since the placement of the command and control environment programs 

are in the protected environment, some user commands have to be executed 

in the protected environment. In particular, all control environment 

commands such as "start", to continue a stopped computation, and 

"release", to abandon a computation, have to be executed within the 

control environment. Since only one command interpreter exists, it has 

to know that it should treat these commands differently. Thus, a table 

of commands to execute in the protected environment can be used which is 

looked at by the command interpreter. 

It is also useful to provide an additional mechanism for users to 

specify execution of a command in the protected environment for just 

that one instance. An example of such a program might be the access 

control setting program. Executing in the user program environment, the 

access control program could not affect programs in the protected 

environment; this could only be done from within the protected 

environment (this is exactly what is wanted, normally). However, a user 

might want to invoke the access control program once for specifically 

setting the access control list on a protected program, possibly for 

installing  a  new version of the command processor, and at another time 
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to merely add someone's identifier to a user program's access control 

list. The access control program should not always execute in the 

protected environment or it will have more access than it needs most of 

the time. This extra "freedom" allows mistakes to have more serious 

effects than they would have had otherwise. (17) Thus, the escape 

mechanism allows users to explicitly specify the times when commands 

should execute with increased privilege. All other times, commands 

execute in the less privileged user execution environment (except for 

those listed in the "special" list). Letting a program execute with 

only enough access and privilege to do its job has been a design goal 

known for many years and is discussed in [Saltzer and Schroeder 75] . 

The command processor escape mechanism coupled with the feature of 

allowing user programs to call the command processor seems to point out 

a gaping hole in the protection of the support routines and the command 

and control environment programs. Apparently, any user program could 

call the command processor with the escape mechanism and cause a failing 

user program to execute in the protected environment and destroy it. 

One simple and obvious solution to this problem is to have the 

command processor recognize from which environment it is being invoked 

and ignore the escape mechanism in calls from user programs. However, 

this presents a different user interface and might possibly confuse 

users who wish to make use of the escape mechanism from within another 

program,  such as the editor.  For this reason, I feel that allowing the 

(17) This is similar to the major problem reported in this thesis. 
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escape mechanism is necessary. Justification for allowing this and 

still claiming to offer some protection for the support routines Is 

found in the belief that the type of error described is a rare one and 

not expected to occur. After all, it is assumed that the user programs 

are not malicious in nature. Thus maintaining this feature provides a 

single user interface to the command processor. 

An important question that might be puzzling the reader at this 

point is "why should anyone trust user programs to behave respectably 

?". This question deserves a good answer and is an important part of 

the overall design. Recall that all system security related programs 

exist in the supervisor and are protected from all users; once beyond 

the supervisor boundary, one user cannot affect another. Partitioning 

the user domain only helped the user from self harm; no additional side 

effects could occur. Thus, a truly malicious user, using the proposed 

system, could only affect the user portion of the process. No other 

user process, nor system program could be damaged. The proposed design 

is merely an optional aid to a willing user and not a must. 
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Chapter Six 

Signalling 

Signalling is discussed in this separate chapter mainly because it 

is a subject that can be factored out for simplicity. The reason for 

discussing signalling at all is due to the problems that appear when two 

domains interact so that signals can pass between them. This structure 

is relevant because of the method chosen to protect support routines of 

the execution environment. 

To treat this subject properly a model of signalling is described. 

Extensions to this basic model are then introduced so that it is useable 

in real world situations. Problems with signalling are then discussed 

to point out basic pitfalls in the original model of signalling. A 

solution to those problems is suggested that is based on a newly 

designed language (CLU). Finally, problems explicitly related to 

signalling in multiple rings are presented and discussed in the context 

of the model, its problems, and the solution presented. 
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6.1 Purpose of Signalling 

Signalling allows the establishment of a procedure that knows how 

to deal with a particular situation, usually an error condition, and 

invokes that procedure at the time the condition is detected. Return 

codes (an output parameter whose value indicates success or failure of 

an operation) are often used to denote error situations. Signalling 

differs from simple return codes because the procedure to handle the 

error is called at the time the error is detected and may allow the 

computation to proceed instead of simply undoing the computation and 

returning. 

6.2 A Model for Signalling 

The PL/I language has a facility, described in the next paragraph, 

for dynamically setting up, calling, and removing condition handlers 

[Noble 69]. The method used for choosing which condition handler to 

invoke is straightforward and generally familiar and thus will be used 

as the basic model for signalling. The signalling mechanism used on 

Multics is based on this structure. I believe that Multics is the only 

system on which the entire collection of software operates under a 

common signalling framework. Thus it seems reasonable to use PL/I as a 

model. 
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In PL/I, handlers for various conditions are established by the 

execution of the "ON" statement. Multiple handlers may be set up for 

any condition in different procedures. The most recently established 

handler will be the one that is invoked upon detection of the condition. 

Handlers are automatically reverted when the establishing procedure 

returns. 

This mechanism allows any procedure to handle an error  locally or 

pass  handling on to a system default handler or handler supplied by the 

calling procedure.  Local handling is  considered  more  appropriate by 

some since the local procedure is more aware of the actual situation at 

hand at  the time of the error.  Parnas [Parnas 72b] however, describes 

how a high level routine may, in fact, be better equipped to  handle an 

error  than a low level procedure simply because it understands the more 

global context and significance of the error.  More will be  said about 

this later. 
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6.3 Extensions to Signalling 

It has been found that being able to note the occurrence of an 

error but not handle it explicitly is useful. Similarly, taking only 

partial action towards fixing the problem might be desired. Using 

Parnas' example, an I/O routine may discover a read error but does not 

explicitly handle the error since it is not aware of the use or need of 

the record. It may however desire to maintain local error statistics 

and then ask its caller whether it should retry or ignore the operation. 

In these types of cases Goodenough's [Goodenough 75] PASS operation 

might prove useful. PASS allows a handler to "...explicitly disclaim 

interest in (further) processing of an exception, directing that the 

exception be passed on to some higher handler". 

Working in harmony with PASS is the useful extension of having a 

handler for any condition that is not explicitly named in a procedure. 

The condition name "any_other" [MPM] is used on Multics for this 

purpose. This extension is useful in light of the previous example 

where the tape I/O routine wanted to detect all errors and just make a 

note of them, then pass them on. It would be extremely awkward to list 

all possible conditions that could arise at any point and have the same 

processing for each. Furthermore, since error conditions can be user 

defined, it may not even be possible to identify all the errors that 

could arise.  The any_other handler solves these problems. 
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A third extension to the signalling mechanism is the "cleanup" 

condition [MPM, Goodenough 75]. This condition is signalled in every 

block that is abnormally terminated (i.e. does not execute a "return" 

sequence). A handler that specifies the termination of a procedure 

because of an error automatically triggers this mechanism in the 

procedure(s) implementing that operation. This allows the procedure(s) 

to restore the original state of and/or eliminate "impossible states" 

[Parnas 72b] in its operation. 

6.4 Signalling Problems 

With the basics explained, it is now possible to discuss the 

problems associated with a PL/I-like signalling mechanism. The problems 

all arise from the ability for a handler to be set up in one procedure 

that can handle conditions arising in another procedure. This "feature" 

was introduced to overcome the "inconvenience" of specifying a single 

handler in separately compiled external procedures (multiple times). 

This "dynamic descendence" rule [Noble 69] of PL/I violates modularity 

and thus understandability of programs in two ways. 

First a low level procedure must know how its callers will react to 

errors arising in the procedure so that it will know what to expect from 

incomplete operations within itself (e.g. overflow). Thus, it cannot be 

programmed without knowledge of "layers" that use it and so it is not 

modular.  A procedure may not be expecting any  particular  action  from 
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its callers; it could depend on the system default handlers. However, 

any procedure may handle its own errors and unintentionally also handle 

errors of programs that it calls simply because it has a handler for 

itself. 

Secondly, a high level procedure that handles errors of  low level 

procedures must  know the way in which the error was caused in the low 

level so that it can  handle  it  properly  (e.g.  overflow results in 

highest positive or negative value). 

A final problem arises when error handlers themselves generate 

errors. In this situation the wrong handler may be chosen to handle the 

error. Consider two procedures <A> and <B> both having condition 

handlers for various conditions. <A> calls <B> resulting in an error in 

<B>. <B> does not have a handler for that error, expecting that the 

system default error handler will suffice, or that its caller will know 

what to do. Assuming <A> does have a handler for that error (call the 

handler <A'>), the call stack will look like the figure 6.1 below. Now 

if <A'> should take an error like overflow, <B>'s handler could get 

invoked even though the module <A> was prepared for handling <A'>'s 

errors! <B>'s handler could obviously choose a completely different 

method than <A> for handling the error and thus <A'> will not function 

properly. 

These problems all arise from the incomplete specification of error 

handling within each module. I am not arguing for not allowing higher 

level  handlers to "handle" errors of low level procedures; I agree with 
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Stuck 

o r 

Parnas that this is reasonable,  subject  to  certain  restrictions.  I 

contend  (like  Parnas) that these mechanisms should be explicitly coded 

into the procedures.  The "inconvenience" of doing this  would  be more 

than paid off  in terms of understandability and ease of debugging of 

such software. 

Thus, every module would explicitly detail its error handling 

intentions with possible options like "ON ANY_OTHER CALL 

SYSTEM_DEFAULT_HANDLER" or "ON ANY_OTHER ABORT" for the conditions not 

explicitly handled in the procedure itself. For passing of conditions 

upward the "pass" mechanism may be employed but I think that passing on 

the same condition that arose in the low level procedure is a violation 

of modularity since the operation of the low level procedure must be 

known by the high level procedure in order to effectively deal with the 

error. A better approach would be to have the low level call a high 

level  routine allowing it to return values such as "abort", "continue", 
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"retry", or "use this answer" in a more global sense.  In this way the 

types of responses are known in advance. More will be said on this in 

the next section.  Either  way,  the  error  handling  should  still be 

explicit  and have the  programmer and program reader aware of what is 

going on. 

The CLU language [Liskov] provides for just such explicitness in 

error handling [CLUnote 43, CLUnote 60]. Any error not handled by a 

procedure automatically causes that procedure to be terminated and 

results in a "failure_of_mechanism" condition to be signalled to its 

caller. Any upward "traps" [Parnas 72b] (higher level handling of low 

level errors) must be explicitly coded. 

The only problem with CLU has to do with debugging. This aspect is 

extremely important since it is a major topic of concern in this thesis. 

On Multics there is a default error handler at the "base of the stack" 

that performs the "standard fixup" or reports an unhandled error to the 

user and enters a new level of command environment for debugging. Since 

the default error handler is called, the stack history is preserved and 

debugging is possible. Unfortunately, in CLU, an unhandled error 

terminates the procedure so no dynamic debugging is possible. CLU 

enthusiasts claim that "debugging mode" can be turned on thus preventing 

any terminations due to a failure_of_mechanism, but this has two 

problems associated with it. 
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First, debugging mode must be explicitly enabled; the Multics 

default handler is always there. Of course it could always be enabled 

but that leads to another problem. This second problem is that a 

normal, expected failure_of_mechanism error that can be properly handled 

by the calling procedure is also flagged and told to the user. Thus the 

computation could not continue without getting annoying messages and 

having to type "continue" or something semantically equivalent. 

The only solution I have come up with to this problem is that 

termination of the procedure should not occur unless the caller is 

prepared to handle that condition (failure_of_mechanism) and be willing 

to continue gracefully and not abnormally terminate also. If rio 

procedure is prepared for this then the default error handler or user 

fault notifier should be called and the stack, will still be available 

for debugging. 

Given that such a mechanism could be put in CLU, it would seem that 

the ideal signalling mechanism would be available. 
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6.5 Multi-Ring Signalling 

Assuming standard PL/I signalling is provided for in a multi-ring 

environment, the first problem that arises follows a simple inward call. 

If an error occurs in the lower ring and is not handled there 

explicitly, PL/I dictates that the signal should propagate to the 

caller. However, since the caller is in a higher ring and has less 

privileges, chances are that it could not deal with the actual error 

since it cannot affect databases in the lower ring. Thus, it seems 

useless to allow signals to pass outward. But not allowing signals to 

pass outward apparently contradicts what was said earlier regarding high 

level handling of errors. Since the higher ring knows more about the 

global situation it should have a say in what should occur if an error 

is detected. This apparent conflict can be resolved by the proper 

coding of the lower ring. The lower ring should not allow the higher 

ring to handle internal errors like "OVERFLOW", rather it should just 

indicate a logical error in the lower ring. Then the higher ring can 

simply indicate that the lower ring should either retry the operation or 

abort. It is situations like this that Parnas may have been alluding to 

in discussing "upward traps" [Parnas 72b] , but he does not explicitly 

say it. Similarly, Goodenough's "PASS" operation seems to pass on the 

handling of the original error. This is where I disagree; the fact that 

an  error occurred  should  be made known and a higher level should be 
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allowed to decided whether to continue or abort, but should  not  handle 

the original error. 

It is in situations like this that Multics falls down. On Multics, 

if an unhandled error is detected in a lower ring the computation Is 

aborted. The outer ring is notified of this fact but cannot ask. for a 

retry or continuation from that point. There is currently no general 

mechanism for inner ring programs to specify a "checkpoint" and wait for 

outer ring intevention to continue. (18) The checkpoint feature allows 

some inner ring history to be preserved so that if continuation is 

desired, the inner ring need not recompute everything up to the point of 

the error; it would merely continue from the checkpoint. The checkpoint 

feature, however, should not allow the partial results to be seen by the 

outer ring. Any other request given in between the time of the error 

and the continuation or abort should function normally and independently 

of the partial results held in the inner ring. The checkpoint is merely 

a technique to help improve efficiency in cases where the precomputation 

involves a sinificant amount of resource usage. However, the checkpoint 

feature is not required for the proper operation of the signalling 

mechanism. 

The second problem in multi-ring signalling has to do with outward 

calls. Outward calls is how the command environment that exists in an 

inner ring would call a user procedure.  If the default  error handler 

(18) Errors during dynamic linking are an exception to this;   they  are 
handled as a special case and are "restartable". 
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should be protected as a common mechanism, signals have to travel from 

the outer ring to the inner ring to activate the default error handler. 

But there is no way to guarantee that the mechanism used to transmit the 

condition from the outer ring to the inner ring is breakproof since it 

would involve outer ring mechanisms to operate. 

To solve this problem the procedure that does the signalling in the 

outer ring can be placed in the inner ring (the protected environment). 

It would then be able to signal conditions normally on the outer ring 

stack, and then switch over to the inner ring stack if no handler were 

found or if there were an error while attempting to signal such as a 

misthreaded stack in the outer ring. 

A final problem discovered in multi-ring signalling has to do with 

an outward call followed by an inward call. In this case there are two 

outstanding invocations of the inner ring. Now, if the second 

invocation of the inner ring were a subprocedure of the first, the 

second invocation might depend on condition handlers in its parent 

procedure. However, in the normal PL/I signalling structure first the 

outer ring would have a chance of fielding an error in the second 

invocation of the inner ring before the expected handlers of the parent 

procedure in the inner ring would get control (if ever). 

Using a debugger and figure 6.1 as an example, consider <A>  to be 

the  main procedure of the debugger and <A"> to be an internal procedure 

called by an activated breakpoint.  Let <B> be the program that is being 

debugged.  Now if <A'> signals a condition, <B> would have a  chance to 
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field it, not allowing <A>, the main debugger program, to properly 

handle it. This example is somewhat contrived and may not seem 

realistic enough to the reader. However, programs are written with 

internal procedures and the error handling may be expected to work this 

way. Because of the lexical proximity of the internal procedures, the 

programmer might not consider the problem discussed. Again the solution 

is complete specification of error handlers even in subprocedures, and 

elimination of the "dynamic descendence" rule. 
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Chapter Seven 

Implementation, Conclusions, and Future Research 

7.1 Implementation 

An implementation of some of the ideas in this thesis was 

undertaken to show that 1) the user environment can be partitioned in 

the manner described, 2) all the interactions between the environments 

were identified, and 3) rings are efficient for this separation. 

Multics was chosen as the system on which to implement the test 

environment because it supports the process model described in chapter 

two and suffers from the problems described in chapters one and two. 

Furthermore, Multics has rings implemented in hardware which would 

undoubtedly help make the implementation efficient. Finally, Multics 

was an easily available system to experiment on. 

Chapter four discusses guidelines for support routine coding that 

facilitate their separation and protection. Those guidelines are 

basically modular design providing functional abstractions and data 

hiding. Experience with the test implementation reinforces the belief 

that protection would be simpler for those routines that followed the 

guidelines suggested, and harder for those that did not. In particular, 

both the event manager and timer manager (discussed in chapter four) 

were designed and coded as functional  abstractions.  Thus,  by merely 
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assigning those procedures to the lower user ring and writing simple 

transfer vectors as gates to the entrypoints, the event and timer 

mechanisms were protected. 

On the other hand, the design of the I/O system programs did not 

provide for information hiding. This forced I/O access programs to know 

the exact layout of the control blocks and to manipulate the blocks 

directly because of the lack of functional abstractions. Although the 

ideas in the I/O system are good (streams with high level interactions) 

[Feiertag and Organick 71], the implementation made it impossible to 

protect any of the features of the I/O system. Not protecting the I/O 

system as a whole did not affect the "connection" between the user and 

the command and control environment, however. The attachment of the 

terminal was "owned" by the inner ring and thus could not be affected by 

user written programs. 

With the modules identified, the protected environment was 

established and a scheme for making outward calls and subsequent inward 

returns was designed and implemented. The functionality at this point 

was that of the original Multics process; a user typed a command line 

and the specified programs were found, executed, and followed by a ready 

message. The only difference was that the specified command was 

executing in a ring of less privilege than the "normal" user ring, which 

might  cause  the  program  to trip over incorrect access problems. (19) 

(19) Since users were basically not concerned with rings,  and programs 
only  ran  in  a  single ring, access was usually granted only to ring 4 
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Incorrect access to the command and control  environment programs was 

just what was desired, though. 

Earlier 1 described how a user gets into the control environment. 

Briefly repeating it here, the user presses the break or attention key 

on the terminal and is then talking to the control environment. 

Examining how this is actually accomplished identifies a problem on 

Multics. 

The break is noted by terminal control software in the supervisor. 

A process interrupt is generated which causes the computation in the 

user's process to cease, and a condition "quit" is signalled on the 

user's stack in the PL/I defined manner. (20) Usually, the only handler 

for the quit condition is a default handler called when no other 

handlers have been found, and the bottom of the stack is reached looking 

for one. At this point, the listener/command processor modules are 

called, essentially entering the command environment. The process 

interrupt acts just like an interrupt on other systems in the sense that 

control is torn away from the executing procedure and is transferred 

elsewhere. This process interrupt essentially implements the "stop" 

mechanism of the control environment. Some of the commands the user may 

type actually execute in the protected environment, as described 

earlier, and perform the other control environment functions. 

(the default when setting access is to choose the current ring).   Thus, 
initially, many access problems were encountered. 

(20) See chapter six for details on signalling. 
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Because the control environment is in a different ring now, care 

must be exercised to be sure that the quit signal is directed to that 

ring. Unfortunately, in the current system, all signals, including 

those arising from process interrupts, are signalled on the stack of the 

current ring of execution. This means that when actually executing a 

user program, the quit signal would be first signalled on the user 

program stack, and then, if directed properly, would continue on the 

protected environment stack. Thus, a destroyed user program stack could 

prevent returning to the control environment forever I 

Timers are implemented as process interrupts too. Thus an inner 

ring wishing to be notified at a certain time, or after a certain amount 

of chargeable execution time, would be subject to user stack integrity. 

This sort of dependency obviously violates ring structure and the goals 

set forward in chapters one and two. 

Recently a proposal  a been made  to  solve  this  problem.   The 

solution  is  simply  to poll inner rings first when a process interrupt 

condition is to be signalled.  Thus an inner ring has "first  crack" at 

handling  these  conditions and would allow user programs to handle them 

only if they were of no interest to the inner ring at that time. 

The problem of user programs wanting to handle quits comes up again 

here. (21)  The solution proposed in chapter five  is useable here as 

well;   the  quit  key can  be multiplexed by some means and the proper 

(21) This was discussed in chapter five. 
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process interrupt will be generated depending on the "severity"  of  the 

abort that the user wanted. 

Error condition handling resulted in a study of error signalling 

mechanisms in detail. The results of the study are presented in chapter 

six. The implementation finessed some of the problems discussed in 

chapter six with special case code that handled the more common 

problems. 

In summary, the implementation proved that the proposed separation 

could be done, and furthermore, was relatively easy given a certain good 

style of coding to deal with. Simple experiments indicated that the 

cost of using the implementation was approximately two to three times 

that of the original system when executing a program that did nothing 

more than return. For more complicated programs, the cost was 

essentially a fixed overhead (of two or three times the normal program 

invocation cost, as in the "nothing" program) which becomes 

insignificant when compared to a PL/I compilation, for example. The 

cost can be expected to decrease if more users were sharing the code, 

but the amount is not determinable. 
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7.2 Conclusions 

This thesis shows how system designers, interested in a system with 

verifiable security properties, and users of system, interested in 

self-protection measures, can both be satisfied by a rather simple 

hardware mechanism that provides (at least) three protection 

environments. Digital Equipment Corporation included three protection 

environments in the PDP 11/45 (and extensions to it), but failed to 

provide an ordering for all three; one environment, "kernel" mode, was 

given usual supervisory privileges but the remaining two were left 

unordered. This thesis discusses why the ordering of privileges is 

needed and useful to facilitate the establishment of a program 

development environment. In addition, this thesis shows that rings are 

indeed useful, and suggests that designers should consider including a 

ring-like mechanism in new systems. 
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7.3 Areas for Future Research 

Many of the concepts discussed in this thesis constitute areas 

needing more research. Primarily, the problems of the "ideal solution" 

require research and experience with domain oriented systems to 

determine how the various components of the user environment should be 

managed. It may turn out that to solve some of the problems pointed out 

in chapter two, such as the access required by a linker or debugger, 

rings may be needed. 

Better high level languages with more intelligent compilers can 

help solve some of the problems of the programmer. More often than not 

it is the problem of representation of information that causes 

programmers to invent unclean techniques in their programming. CLU 

[Liskov 76] might help in this respect, allowing users to define 

extended type objects and procedures to manage them and preventing any 

other procedures from manipulating the internal structure of the 

extended type objects. 

The programmer's apprentice concept [Hewitt] can be a very valuable 

aid to the programmer, but this seems years off. The concept of front 

end processors requires more research to decide the functionality and 

level of independence from the host required by the front end to make it 

suitable for use with differing machines,  a collection of similar 
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machines (as in a network), and a combination of these  two  ideas.  In 

the  future we might encapsulate  the complete command and control 

environment, discussed in chapter five,  in a personal  computer  that 

would  determine  the  resouces required for any command and dynamically 

acquire them from a network of resources. 
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Appendix A 

Certification and Kernel Simplification 

With the growing trend of entrusting computer based systems with 

important company information and/or finances, as well as computerized 

cash flow, it becomes important to many companies to have a guarantee or 

proof that the system will not malfunction nor produce erroneous 

results, because the system is now dealing with real dollars. Thus the 

concept of certifying a system came about which meant that someone was 

willing to guarantee that a system functions properly under all 

circumstances and will not allow unauthorized modes of access to the 

system or data. In particular, the system has to be shown to 1) not 

release information to unauthorized personnel, 2) not allow unauthorized 

modification of information, and 3) not allow one user to deny service 

to another. It is hard to prove these types of negative attributes 

about a computer system because modern systems are so large and have 

many complex transactions going on within them. Many researchers are 

working on developing methods that can automatically verify that a 

system performs as specified, but even the specification techniques have 

not yet been perfected. One problem with developing specifications is 

that all the types of interactions are not fully known or understood 

especially in a system which has some degree of undecidedness built into 

it (i.e. multiple processes and their scheduling). Automatic program 

verification techniques are stLll in their infancy and furthermore would 
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usually require rewriting the entire system in a new language with other 

constraints. Thus, the only alternative at this time is to review the 

code of the system manually and understand It fully so that it would 

then be possible to decide if the system is "secure". 

An approach to ease the burden on a system certifier, or even make 

it possible, is to concentrate those programs dealing with security into 

a security kernel and leave all other functions outside. This approach 

enables a certifier to ignore all those programs outside the security 

kernel, and thus leaves behind a smaller amount of code to be examined. 

It is obvious that less code would be easier to review and comprehend. 

Thus, any programs not dealing with the security of the system, as 

described by the  three points mentioned above, should be removed from 

the supervisor.  In keeping with this aim,  Janson and  Bratt have 

described  how  the dynamic linker and name space manager can be removed 

from the Multics supervisor [Janson 74, Bratt 75]. 

In the past, however, there was another reason why programs, which 

were primarily user programs, should not be in the supervisor. This 

reason was based on the "principle of least privilege" 

[Saltzer and Schroeder 75] when deciding proper placement of a module. 

This principle, stated simply, means that a program should only have as 

much access as it needs to do its job. Otherwise programming errors in 

one program may lead to the destruction or unrelated databases and other 

programs, which obviously is fatal in a supervisor. (22)  This guideline 
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was followed as a simple rule of good design; but now, certification 

researchers realize that uneeded access makes it harder to certify a 

system correct because it must be shown that programs do not take 

advantage of extra privileges they might posess in addition to showing 

that they do their job correctly. It is not unusual to discover that 

good design principles also fit in well with certification work, as seen 

in this thesis. 

As a result of the certification work, it became apparent that the 

user environment would fill up with modules that were previously 

protected, and now these programs would be subject to the same 

programming errors that harm other user programs. This loss of function 

due to the increased fragility of the user domain is what this thesis 

is about. 

(22) In fact, this is the same problem that is being attacked in this 
thesis, only this time the effects are more serious than a lost user 
process. 
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