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ABSTRACT

For most applications in radar data processing, the Fourier
transform performs satisfactorily. However, cother methods of
spectral analysis can offer some advantages when a data set is
too short for a Fourier transform to resolve or detect important
spectral features. This repurt describes one alternative
technique, maximum entropy spectral analysis (MESA), and suggests
possible radar applications including range-Doppler sizing and
the coherent measurement of range rate. Practical examples
demonstrate an improvement in velocity resolution and cross-
range resolution. Computer codes are listed that calculate

MESA power spectra for a real or complex discrete time series.
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1, INTRODUCTION

The interpretation of coherent radar signals often involves
the calculation of & power spectrum or a periodogram that
describes the frequency content of data. The conventional
Fourier approach, based on the work of wWiener (1950) and of
Blackman and Tukey (1959), relates the autocorrelation function
of a signal and its power spectrum through the Fourier transform.
Cooley and Tukey (1965) popularized the Fourier approach with
the computationally efficient fast Fourier transform (FFT),
which has dominated the analysis of radar data until the present
time.

Notwithstanding the speed and mathematical elegance of the
Fourier transform with its entourage of weighting functions and
tapering schemes, it is troubled by several unavoidable limita-
tiens that become serious as the temporal length of the data
set shortens. However, alternative methods of spectral analysis
do exist that have not as yet found wide application in radar.
Among these techniques is "maximum entropy spectral analysis"
(MESA), an outgrowth of the predictive deconvolution filtering
techniques developed by geophysicists for o0il exploration. The
primary purpose of this report is to introduce MESA to radar as
a means of improving the velocity resolution and cross-range

resolution currently limited by conventional Fourier concepts.
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Section 2 briefly identifies some of the problems with the
Fourier approach to spectral analysis. Seztion 3 describes the
MESA procedure for which more detailed derivations are given in
the appendices. Comparing conventional and MESA spectra,
Section 4 treats several radar applications to include the
measurement of range rate and the range-Doppler sizing of hard
bodies. Many other applications are feasible. In principle,
MESA can replace a Fourier transfcrm wherever the latter may
occur, whether a transformation is to be made from the time
domain to the frequency domain, or from the frequency domain to

the time domain.
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2. CONVENTIONAL FOURIER TECHNIQUES

Conventional methods of spectral analysis make unrealistic
assumptions about the nature of data outside of the observation
interval. The periodogram approach (Jones, 1965) projects the
data set as an infinite periodic repetition of itself, while
the familiar autocorrelation approach (Blackman and Tukey,
1959) assumes 4 zero extension. These schemes attempt to
lessen the effects of the finite length of a data set upon

Fourier transformation.

One may think of a data set truncated in the time domain
as the product of an infinite data set and a window function
that has non-zero amplitude only within the observation interval.
The measured power spectrum of this product is the convolution
in the frequency domain of the true spectrum of the data set
(which one would like to have measured) and the spectrum of the
window function itself. The measured spectrum is unavoidably a
distortion of the true spéctrum; the convolution allows the
calculation of the spectrum at one frequency to be contaminated
by energy at all! other frequencies (loosely termed "leakage
through the sidelobes" of the window function). The measured
power spectrum can even take on physically meaningless negative
values if negative lobes in the window spectrum are being

convolved with streng frequency components in the true spectrum.

B Tt o o et 1 st i, B st A A o b AN e R




S LA cosi]

For example, a rectangular window (the default window) has

a spectrum of the form
W{f) = sin(nfT)/nfT

where T is the length of the data set. The first zero occurs
at f = 1/T and, by rule of thumb, frequency components in the
true spectrum spaced more closely than 1/T are not easily
resolved in the measured spectrum owing to the smearing caused
by convelution, The frequency resolution of the measured

spectrum is therefore 6f ~ 1/T,

In radar applications, frequency shift and velocity are

related by the equation
v = \f/2

so that velocity resolution becomes the familiar result
8v = A8f/2 = )A/2T.

Here A is the radar wavelength, We observe that this limitation
on the resolution of velocity is a result of using conventional
Fourier spectral analysis and does not necessarily apply if

another method of spectral analysis is used.

The rectangular window is sometimes replaced by a tapering
function (Hamming, Bartlett, and Taylor windows are a few
examples). designed to reduce the effect of the window sidelobes

when the window spectrum is convolved with the true spectrum.
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The choice of a window always involves a compromise between
frequency resolution and the extent to which window sidelobes
allow the calculation of the measured spectrum at one frequency

to be contaminated by components at all other frequencies,

The Fourier transform loses resolution when the data set
is short compared to the periods of the spectral components in
the data. Toman (1965) and Juckson (1967) have shown, for
example, that most of the energy of a sinusoid will appear near
zero frequency in a spectrum calculated with a Fourier transform
if the length of the data set is less than 58% of the period of
that sinusoid. Interference effects caused by the window

sidelobes can also produce spectral shifts as large as 16%.

Basically, the problems from which conventional techniques
suffer are caused by the finite length of the data set. While
window theory is elegant, it treats only the symptoms of trunca-
tion and, in doing so, corrupts perfectly good data with weight-
ing functions. Ables (1974) cites what he calls the "First

Principle of Data Reduction":

The result of any transformation imposed
on experimental data shall incorporate
and be consistent with all relevant
data, and be maximally non-committal
with regard to unavailable data.

Conventional Fourier techniques clearly violate this

principle: data not in evidence are unrealistically assumed
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and true data are changed by weighting functions. Conventional

techniques are therefore philosophically objectionable and
become¢ less reliable when the data set becomes short — and it

is precisely the short data set with which radar is usually

concerned,




3. MAXIMUM ENTROPY SPECTRAL ANALYSIS (MESA)
3.1 Deconvolution Filtering

The maximum entropy approach to spectral analysis is a
variation of the deconvolution filtering techniques developed
by geophysicists for processing seismic signals. A deconvolu-
tion filter whitens the spectrum of the signal on whicl it
operates; that is, when convolved with the original signal, it
outputs a new signal with a constant (white) spectrum. Mathemat-
ically expressed, the convolution of a discrete-time series

x(n) with a digital filter with coefficients a(n) is

M
f(n) = X x(n) a(n — k). (3-1)

k=0

The spectrum of f(n), which is the product in frequency space
of the spectrum of x(n) and the transfer function (or impulse

response function) A(f) of the filter, is a constant:

F(f) = constant = X(f) A(f). o-2)
The power spectrum of x(n) is thea

P(£) = |X(B)|% = k/|A(D)|? (3-3)

where K is a constant. Simply stated, deconvolution filtering
involves finding the digital filter that changes the input
signal into an output signal with a constant spectrum.

A
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This approach to spectral analysis is also known as the
Markov spectrum or the autoregressive spectrum described by
statisticians (see, for example, Parzen, 1969). Burg (1967;
1968; 1975) realized that this approach yields the spectrum
~having the "maximum entropy'" (explained below) of all possible
spectra that are consistent with the measured autocorrelation
function of x(n). Burg also devised methods of efficiently
calculating the filter coefficients from which A(f) can be

determined.

One advantage of deconvolution filtering is immediately
obvious: finding X(f) does not involve a convolution in frequen-
cy space with a cumbersome window spectrum that (unavoidably)
destroys spectral resolution. The convolution has already
taken jplace in the time domain between the input signal and the
digital filter. Therefore, there arc no window sidelobes or
serious end effects as occur upoan conventional Fourier transfor-
mation. The truncation of the data set is important only to
the extent that enough data must be available to allow the
construction of an efficient whitening filter that can reduce

the data to a random series.

Other comparisons between the characteristics of Fourier
and MESA spectra will “e drawn later and are summarized in the
appendices. However, a discussion of the philosophy of maximum

entropy is first in order.
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3.2 The Maximum Entropy Philosophy

Choosing the best spectral-domain representation of a
truncated discrete time series, for which only an imperfectly
determined autocorrelation function can be calculated, is a
major problem in signal analysis. Among the countless spectra
that may be consistent with a given autocorrelation function,
only one spectrum can be optimal., A set of rules governing

that choice must be established.

Jaynes (1957) introduced a method of statistical inference
called the '"maximum entropy estimate'. He showed that informa-
tion theory (Shannon and Weaver, 1949) provides a criterion for
selecting the best statistical description of a process when
only a partial knowledge of that process is available. The
optimal choice is the one which is maximally non-committal with
regard to any missing data, and which is simultaneously con-
strained to be consistent with all available data. The result
is the best estimate that could have been made on the basis of
the data at hand. (Actually, Ables's first principle is a

rectatement of Jaynes's conclusion.)

The term "entropy'" is used in an informational sense, such
that a measure of the entropy of a process is a measure of our
ease in coping with data that we do not have. We must make no
assunptions and impose no constraints that cannot be justified

directly with the data that we do have.
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What is needed is an expression for the entropy of a
process in terms of its spectrum. That expression is then

maximized subject to the constraints imposed on the spectrum by
the available data.

Shannon and Weaver (1949) have shown that the appropriate

‘expre551on for the entropy of a proceas 1n terms of its power

spectrum P(f) is

J 1og P(£) af. - (3-4)

-00

The values of the autocorrelation function calculated from the
available data comprise the constraints on P(f). Ideally,

every value ¢(m) of the autocorrelation function calculated at

lag m is related to P(f) by

o0
o(m) = [ P(£) exp [-i2nmfAt] df (3-5)

- 00

where At is the time spacing of the data.

Maximizing Eq. (3-4) subject to the constraints of Eq. (3-
5) (one for each known value of ¢(m)) becomes a problem in the

calculus of variations. In the case where the ¢(m) are equally
spaced and centered at zero lag, P(f) may be determined with

Lagrange multipliers (Edwards and Fitelson, 1973).

10
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However, a more direct approach, which is equivalent to
the formal use of Lagrange multipliers but which allows a more
tangible appreciation of the MESA procedure, is the determina-
tion of the deconvolution digital filter that transforms a
given time series into a random series with a white spectrum.
The next section and Appendix I outline this calculation from

which A(f) in Eqs. (3-2) and (3-3) is found.

3.3 Predictio-Error Filtering

The whitening of a discrete-time series can be done with a
prediction-error filter (Peacock and Treitle, 1969; Makhoul,
1975). A complex measurement x(n) is approximated by the
weighted average of the preceding M terms, or by the weighted
average of the successive M terms. The former is a forward

prediction, and the latter is a backward prediction:

M
xe(n) = 3 ay  x(n-k) (3-6)
k=1 °’
M *
xy () = é{iaM’k x (n+k) (3-7)

where the asterisk denotes complex conjugation, and Ay x is the
)
kth filter coefficient out of a total of M coefficients, The

prediction filter is a linear combination of M data points that

g AR A i MRS i 3
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predicts the data point immediately preceding (or following)

‘thé M points. The errors in the forward or backward prediction

cf a given data point x(n) are

ef(n) x(n) - xf(n) (3-8)

ey (n) = x(n) — x (n) . (3-9)

and, for the linear prediction to be optimal, the errors should
be minimized simultaneously in a least squares sense. Therefore,

we minimize the total error power
P, = 2: e (n)2 + e (n)z] (3-10)
M = f b

with respect to the M coefficients. Py is the power of the
output error series left behind after the x(n) have been predic-
ted. The spectrum of the output series is a constant because,
if the spectrum contained any recognizable frequency components,
then we could use the knowledge of those components to improve
the prediction by editing the filter coefficients until the

spectrum does become white,

Therefore, the prediction filter can be used to transform
the data x(n) into another series (the e.ror series) that has a
constant spectrum: each point x(n) is replaced by the error in

its prediction. The prediction-error filter is represented by

12
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Eqs. (3-8) and (3-9) which use the prediction filter. The

output of the former is the error in the prediction of a known
measurement; the output of the latter is simply the prediction

itself.

Van Den Bos (1971) has shown that the prediction-error (P-
E) filter is equivalent to the least-squares fitting of a
discrete-time all-pole model to the data. Anderson (1974) ex-
tended this work in real form, and a complex formulation of
Anderson's algorithms, which calculate the P-E filter coeffi-

cients, is derived in Appendix I.

The impulse response function of the P-E filter is its z-

transform
M -k
A(f) =1+ X a 2 (3-11)
= M,k
z = exp [iZ2nfAt]. (3-12)

There is one coefficient Ay x for each of the M constraints put
?

o

on the power spectrum during entropy maximization.

The choice of M is somewhat arbitrary, although Akaike

AR IR

(1969a, b; 1970) has argued that the length M of the filter

should be chosen so as to minimize the error power Py. An M ;

should be chosen so that increasing the filter length to M + 1 . E
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no longer significantly reduces the error in prediction; that
is, PM+1 is not much smaller than PM. Of course, M cannot
exceed the number of data points. (See the review article by
Ulrych and Bishop, 1975.) Using too small an M results in a
highly smoothed spectrum, obviating the impreoved resolution
capabilities of MESA; using too long a filter allows noise to
introduce spurious detail into the spectrum. A reasonable
initial value of M is one fifth the number of the data points

of the input sequence.

3.4 Power Spectrum and Power Spectral Density

Both Lacoss (1971) and Burg (1975) have pointed out that
the MESA power spectral density function is a better measure of
the amount of power in a small bandwidth than is the power
spectrum. The two are related by

f+8f/2

PSD(f) = [ P(£) df/sf (3-13)

f-8£/2
where PSD(f) is the power spectral density, P(f) is the power
spectrum (Eq. (3-3)), and 8f is the small bandwidth over which
P(f) is integrated. Since P(f) is calculable at any frequency,
A(f) being an analytic and continuous complex polynomial,
Eq. (3-13) is easily implemented using.numerical integration

(see appendices).
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3.5 MESA and Non-Linearity

One attractive property of conventional Fourier techniques
is linearity: the power spectral density of the sum of several
signals is the sum of the power spectral densities of the
individual signals. Moreover, the square root of the Fourier

PSD(f) gives a reliable amplitude spectrum of the input signal.

Unfortunately, MESA is ultimately not a linear technique.
Indeed, Eq. (3-3) is the inverse of the square of a complex
polynomial. Therefore, a comparison of relative power at
different frequencies can be misleading. Parseval's theorem
notwithstanding, the integral of the MESA PSD(f) may not equal

the total power of the input signal.

The value of MESA lies in frequency detection and frequency
resolution, as discussed later in Section 3.7. It is not as
useful for determining the relative strengths of different
frequency components. MESA can be used in conjunction with
Fourier techniques, for example, by identifying the important
frequency components with MESA and then performing a DFT (dis-
crete Fourier transform) only at those frequencies to estimate
their strengths and phases. Section 3.6 offers another alterna-
tive in which a Fourier transform can be taken for a data set
extended beyond the observation period by the linear prediction

filter.
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It is worthwhile at this point to mention the non-linear
effects of noise on the MESA spectrum., We can rewrite Eq. (3-
3) as

-1 2

P(E) = K/|z 7tz )% 127 tg, 12 o 2 g1 (3-14)

z = exp (i0) = exp (i2nfAt)

where we have factored A(f) in the denominator. If we plot the
poles z) (4=1 to M) of P(f) in the complex plane, as demonstrat-
ed in Fig. -1 for M=5, they will all lie within the uni+*
circle. (This is because the set of prediction filter coeffi-
cients is '"minimum phase™, as explained, for example, in Robinson
(1967) or Claerbout (1976).) As A(f) is evaluated on the unit
circle, the angle 0=2nfAt varies from —m to w. Therefore, f
varies between ~1/2At and 1/2At, that is, between minus and

plus the Nyquist frequency. For a given frequency at point F,
each factor in the denominator of Eq. (3-14) is the square of
the distance between point F and one of the poles. As f changes
and point F passes by a pole near the unit circle, P(f) will

exhibit a local maximum,

The frequency components in the input data set will corre-
spond to those poles of P(f) closest to the unit circle,
Clearly, there can be no more maxima detected in P(f) than

there are poles of P(f) or coefficients of the filter. In the

16




case where there are actually fewer frequency components in the
data than there are poles available for placement, the extra
poles can be eliminated by reducing the number of filter coeffi-
cients, as M is the degree of the complex polynomial A(f) that

is factored to locate the M poles,

Noise can affect the locatioﬁ of the poles in the complex
plane. Since Fq, (3-14) involves the inverse squares of the
distances between a point on the unit circle and the poles, a
small change in the position of a pole that is already near the
unit circle can cause a large change in the magnitude of P(f)
near that pole, It is for this reason that the amplitude of
P(f) may not accurately reflect the true power spectrum. Also,
since the PSD(f) is the line integral of P(f) over a small arc

t
on the unit circle (& small frequency interval &f), the ampli-

tuces of the power spectral density similarly may not be accurate.

Burg (1975) has recognized that both the peak value and
width of an avnparert spectral line in P({) strongly deperd on
the backgrond noise. However, he maintains that the product
of the peak value and line width, which is proportional to the
total power in the spectral line, will be estimated accurately
if the samplirng of the~spe:trum is fine enough (o trace out the
shape of the spectrum. In general, the unequivocal detection

of a spectral component is much more reliable than an estimate

17

T T T T T TR T T oI T I T oot s 1 spei o0 © % g

TR 5 T

D T T




i T T A G et 1y o e

of its strength in a MESA spectrum. Therefore, locating the

poles of P(f) may be sufficient for frequency detection.

Akaike (1269), Baggeroer (1976), and others cited therein
have investigated some confidence intervals and the statistical

variability of the MESA technique.

The MESA user must decide if the non-linearity poses a
problem for his specific application. If the detection of
frequency cbmponents in a data set is the primary goal, MESA
will inudeed be useful. However, the procedure may not be
totally adequate if precise amplitude and phase information is
also required. In that case, a DFT can be computed at the

frequencies already identified by the MESA procedure.

3.6 Linear Prediction and the Fourier Transform

The MESA procedure is linear up to the point at which the
prediction filter is calculated. The filter itself is a linear
operator that, as we have seen, uses a weighted average of M

data points to estimate the adjacent data points.

We propose the following procedure to take advantage of
the linearity of both the prediction filter and the Fourier
transform: A prediction filter is calculated from a data set
of Ny points. The filter is then used to extend (or predict)

the original data set to a total of N, points, outside of the

18




observation interval in both forward and backward directions,
Then . conventional Fourier spectrum is calculated with the

larger data set of N, points.

The data points that are predicted by the filter will have
essentially tho same spectral composition as the original data,
as a knowledge of the spectrum of the original data is contained

in the filter coefficients,

Since additional signal is being created and subsequently
transformed, the normalization of the power spectrum of. the
extended data set should be done with respect to the total
number of samples Nz. Any weighting window should be applied

across the N2 samples, gfter the extension has been done.

The deterministic spectral components having been reinforced
in the process of prediction, the apparent signal-to-noise
ratio is improved; the contribution of noise cannot be predicted
and therefore does not appear in the extension. Of course, the
quality of the prediction will depend on the extricable determin-
ism and the SNR of the original data. If the original data are
pure noise, the poles of P(f) will be near zero (clustered at
the origin of the complex plane) and the magnitudes of the
predicted points will be very small or zero. Otherwise, the

sinusoidal components of the original data dominate the extension.

19
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Linear preaiction is less likely to improve the regions of
a power spectrum for which a band or continuum of frequencies
contains energy. In this case, discrete poles will position
themselves in the complex plane in the vicinity of the arc on
the unit circle corresponding to that band of frequencies.
Some frequencies in the band may be enhanced slightly more than
others because the poles are points, each of which is closest
to a single point (frequency) on the unit circle. The uneven
effect will be small, however, and the poles will move farther
away from the arc on the unit circle as the band of frequencies
broadens. Indeed, if there is equal energy at all frequencies
(roise), the poles cluster near the origin, which is the only

point equidistant from every point on the unit circle.

Predicting the data beyond the observation interval is
more palatable than assuming such data are zeroes. The predic-
tion. is as self-consistent with the original data as is possible
with the information at hand., Conventional zeroes would be no
more consistent with the original data as would be any other

constant randomly chosen.

The appendices contain a FORTRAN program "LNPRED'" that
linearly extends a complex data set from N1 to N, points. A
user-supplied Fourier transform can then be performed on the N,

points output from this prediction subroutine.

20
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3.7 Improved Frequency Resolution with MESA

Because a data set could, in principle, be extended to
infinity, spectra based on linear prediction have a better
chance both of separating closely spaced frequency components
and of locating them more precisely in frequency space. In
this section, we demonstrate that MESA can more accurately
estimate the frequency of a single noisy sinusoid, as well as
detect two closely spaced sinusoids, than can conventional

techniques,
First consider a noisy sinusoid sampled in time:
x(nat) = A sin(waonAt + 3) + N(naAt) (3-15)

where fo is the basic frequency, ¢ is a phase constant, At is
the sample spacing, A is the sinusoid amplitude, n is a sample
counter, and N is Gaussian noise. We want to calculate the
error in measuring fo’ as a function of a given signal-to-noise
power ratio (A/N)2 and of a fixed number of data samples, when

either MESA or conventional techniques are used.

We assemble an ensemble of 100 data sets {x(nAt)} by
making 100 random draws on ¢ between 0 and 2n, Each data set
has the same number of samples and the same signal and noise
amplitudes, A spectral transform is done on each of the 100
data sets in an attempt to extract fo' Then the standard

deviation of the 100-member set {f - fo} is calculated,

measured

21
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and c/fo becomes a measure of the precision with which we can
find f0 for a given SNR and number of samples. We can con-
struct a family of curves by holding the SNR constant and

varying the number of samples, or vice versa.

As long as fo < 0.5/At, the sinusoid is properly sampled
and the actual values of fo and At are irrelevant,

Figures 3-2(a-b) compare the expected error in measuring

fo for a data set that is processed with either MESA or an FFT,.

We have taken fo = 0.25/At (four samples per period).

As expected, either an improvement in SNR or an increase
in the number of samples reduces the error. However, for a
given SNR and length of data set, the error in the MESA estimate

of fO is consistently smaller than the error in the FFT estimate

of fo.

This reduction in expected error demonstrates that conven-
tional Fourier techniques do lose some information owing to the
problems discucsed in Section 2. Although we do not expect the
Fourier transiorm of a linearly predicted data set to render an ‘ i
error as small as MESA, it should show improvement over the 1

conventional Fourlier transform that uses an extension of zeroes. !

As an example of the ability of MESA and Fourier tech-

niques to resolve closely spaced frequencies, consider a two-

component signal sampled in time ' n

TR LTI T
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2
x(nat) = ¥ A [cos(2nf nat) + i sin(2nf nAt)] + N(nAt)

m=1
(3-16)

The shaded part of Fig. 3-3 displays 25 samples of the

real part of Eq. (3-16), for which A1=A2= 2 units, At = 0.01 sec,

f; = -15.3 Hz, and f, = -13.3 Hz. Enough white noise is added
to give a SNR of 10 dB.

Since only 0,25 sec of data is transformed, conventional
Fourier techniques (zero extension) will be unable to resdlye
frequencies spaced more closely than 1/0.25 = 4 Hz. In Rig. 3-
4 the conventional power spectral density shows only one peak, .
as expected. The MESA PSD of Fig. 3-5, however, detects the
presence of both frequencies in the 25 samples; the unequal

power amplitudes are the result of non-linearity.

If we extend the 25 samples to 100 samples with a 5-point
prediction filter (the extension is fhe unshaded region of
Fig. 3-3), then the conventional Fourier PSD does resolve both
frequencies, as is shown in Fig. 3-6. The power amplitudes in
Fig. 3-6 are almost equal and yield a more reliable estimate of

the relative strengths of the two frequency components.

Thus, we find that both the MESA spectrum of the original
data set and the Fourier spectrum of the lineerly-predicted
data set can resolve closely spaced frequencies with more

success than can the traditional Fourier spectrum.
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3.8 Additional Use of the z-Transform

The calculation of a power spectrum or a power spectral
density is réally unnecessary if only frequency information is
required. The z-transform A(f) of the prediction filter can be

factored to give
AE) = (27l tzy) e 2Tl (3-17)

as in Eq. (3-14),.where z£(1= 1 to M) are the zeroes of A(f)
and z = exp(i®) = exp(i2nfAt). The magnitudes of the zeroes
|zll are always between zero and unity, and the zeroes with the
largest magnitudes are likely to correspond to the frequency
components in the data. If we choose some minimum magnitude
which 2y must have to be considered as a candidate frequency

component (|21| > 0.8, for example), then we can calculate the

corresponding frequency since

0 = 2nfAt = arctan[Im(zl)/Re(zl)]. (3-18)
For radar applications, range rate ﬁ = Af/2 so that

é = Vamb arctan[Im(zl)/Re(zi)]/Zn (3-19)

where Vamb = A/2At is the ambiguous velocity. FEquation (3-19)
is easily interpreted geometrically because one trip around the
unit circle is one foldover in velocity. A target's range rate

can be estimated accurately in this way without the use of a

Fourier transform.
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3.9 Additional Comments

This section has presented the essence of the linear
prediction — maximum entropy approach to spectral analysis,
avoiding many of the mathematical complexities that are treated
g ' extensively in the literature and briefly here in the appendices.
: The reader interested in more detail is referred to the biblio-

é graphy in the review article by Ulrych and Bishop (1975) and to

Burg's (1975) dissertation which explores many topics not

discussed here.
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Fig.3-1. Zeroes of the z-transform of a five-point '}
prediction error filter are plotted in the complex plane.
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Fig.3-4. Conventional Fourier PSD of shaded region in Fig.3-3.
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4. MESA APPLICATIONS FOR RADAR

4.1 Radar Data Preparation

A coherent radar records the amplitude and phase of the
energy coming from each range cell along the radar line of
sight (RLOS). For a given range cell or range gate, we form a

complex sample at time t
x(t) = A(t) cosoO(t) + iA(t) sino(t) (4-1)

where A(t) is the radar cross section in volts (or in meters or
an equivalent linear unit) and ©(t) is the phase. Since the
data are recorded pulse by pulse, x(t) is a discrete-time

series.

If the object is moving, then 6(t) changes in time since

phase is governed by
O(t) = 4nR(t)/x, (4-2)

where R(t) is the one-way distance between the object and the
radar, and A is the radar wavelength. Pulses must occur often
enough that 6(t) does not change more than 2m between pulses;

otherwise, the phase is aliased and becomes ambiguous.

The amplitude A(t) may change in time if the orientation
of the radiation pattern of the object changes with respect to
the RLOS, owing to the overall body velocity or to body motion

about the center of mass (spin, tumble, precession, etc.).
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Hence, x(t) contains information about the scintillation
of reflected energy and about the velocities of objects in the

range cell. Indeed, A(t) and ©(t) represent the resultant
vector sum of the individual returns from all unresolved scatter-

ers in the same range cell, each of which contributes a frequency
component to A(t), to O(t), or to both.
A non-coherent radar does not record phase, for which case
we take O(t) = 0 in Eq. (4-1) and x(t) reduces to the real
series
x(t) = A(t) + i0 = A(t). (4-3)
In this section, we present examples of the use of Fourier

and MESA algorithms to measure body velocity (range rate) and

to perform range-Doppler sizing of an object with motion about

its center of mass.,

4,2 Measurement of Range Rate

The projection of the velocity vector of an object along
the RLOS is its range rate, which can be eStimated from a
coherent data set by the spectral analysis of x(t). For the
moment we assume A(t) is a constant and temporal changes in

x(t) can be ascribed to changes in R(t) [Eqs. (4-1) and (4-2)].

The frequency axis of the PSD function can be scaled in

velocity since v = Af/2, One ambiguous velocity interval spans
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the Nyquist range from -1/2At to 1/24At, such that Vamb "
A(2/72at)/2 = A/2at. An object may be seen to fold over as the
range rate, which is measured modulus vamb’ moves from one

ambiguous interval to another.

This effect is shown in Fig. 4-1 where the range rate of
an object observed by a UHF radar gradually changes in time
(A = 0.69 m, At = 1/160 sec). Here, consecutive data sets of
16 pulses are transformed with a conventional FFT. A zero
extension to 256 samples begins at sample 17 and a rectangular
window is used., There is a 50% overlap of data from line to
line, 8 o0ld pulses dropped and 8 new pulses added each time a

new PSD is calculated and plotted.

The main lobe of each power spectral density function
locates the range rate of the object during the processing
interval T. Here T = 0,1 second. The third dimension, a
linear scale from 0 to 1, shows the sidelobe structure of the
sin (n£€T)/ (nfT) window spectrum that has been convolved with the

true spectrum (a delta function at the true range rate).

We can extend each set of 16 pulses to 48 pulses with a 4-
point linear prediction filter before Fourier transformation,
as if we were processing 0.3 second of data instéad_of 0.1 sec-
ond. Figure 4-2 shows a marked reduction in sidelobe 1levels

and a proportional narrowing of the main lobe., A zero extension
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to 256 samples and a rectangular window are used, although the
¢ zero extension here begins at sample 49. A 50% overlap of
original data points allows Figs. 4-1 and 4-2 to be compared

line-by-~1line.

Figure 4-3 dispiays the analogous MESA results. The

T I T T

sharpness of the peaks and the absence of sidelobes are two
immediately apparent features. As we have seen earlier, the

é error in locating the position of each peak is considerably

less with MESA than with the conventional techniques. Rather
than computing the full MESA PSD, the ''largest zero'" procedure
suggested in Section 3.8 could-have been used to locate the

peaks in Fig. 4-3 with the same precision.

Even when the data set is short and only a few radar
pulses are processed, conventional Fourier techniques may
perform satisfactorily if there is only one velocity to be

estimated. However, when the data are limited, the conventional

techniques are less able to detect closely-spaced velocities of

multiple objects unresolved in range. For this application the

, B
e e s e e e e e Cr e rr — i e e s e e e e m e e rere e e e e L I TP U e e Srma e o aeme e emal e et e Lo s St ]
. . . Sl L
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linear prediction and MESA algorithms may prove useful.

4.3 Range-Doppler Sizing

The size estimation and imaging of a hard body rely on

cross-range (Doppler) measuremcnts made in each of the range
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cells that overlay the target. For example, if an object is
spinning, then each frequency component fi (that is, each
velocity component vi) in the radar return is proportional to
the distance T, from the spin axis at which a scattering center

on the target is located. That is,

r.sin@ (4-4)

Vi T Afi/z = wspin i

1

where )\ is the radar wavelength,. is the spin angular

Yspin
frequency, and Q is the aspect angle between the spin axis and
the RLOS. We seek the frequency componeﬁts fi' With a knowledge

of w and Q, a range-Doppler image can be constructed from a

spin
collage of the cross-range plots from all range cells containing

the object.

Figure 4-4 displays the evolution of the conventional
Fourier PSD for the radar return coming from the base of a
spinning and precessing conical target. The wavelength A is
5.3 cm, At is 0.01 sec, and 32 pulses are processed at once
with a 50% overlap of pulses from line to line. Because the
spin period is 0.5 second and 0.32 second of data is being
transformed per line, the velocity spectrum is not time station-
ary and, therefore, becomes smeared within a band of frequencies
thrcugh which many scattering centers move during the processing
interval, The band is modulated by the precessional motion,

which changes the aspect angle in time. However, the base
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radius can be estimated with Eq. (4-4) and a knowle@ge of the
spin rate and time-dependent aspect angle. The edgés of the
precessiona} envelope correspond to the horizons of the base
that are spinning toward and away from the radar, so a lower

% limit on the base radius can be made with Eq. (4-4) where the

velocity spectrum has its greatest width,

Analogous to Fig. 4-4 is Fig. 4-5, for which the 32 pulses

are extended to 96 before Fourier transformation. Because the
data are not initially time-stationary owing to the long process-
ing interval, there is not a significant improvement. Use of

the MESA procedures in Fig. 4-6, however, does suppress the
sidelobes and hllows a clearer definition of the precessional

envelope. -

A reduction in the length of the data set makes time-
stationarity approachable. When the processing interval is
small, the scattering centers on the target base cannot exhibit
as large a change of range rate and hence severely smear the

velocity spectrum. However, conventional Fourier techniques

have poorer resolution as the data set becomes shorter; in the

effort to detect single frequency compononts in approximately

time-stationary data, we paradoxically lose the ability to !

resolve them.

LY
A TR TR TS AT

38

vt R e AL e b ondliboted G s




For example, Fig. 4-7 shows conventional Fourier spectra
when only 8 pulses are processed at a time, as opposed to the
32 pulses used earlier (aISO% overlap is retained). Even
though Fig. 4-7 is centered where the precessional envelop#s
necks down (about t = 7.5 seconds in Fig. 4-4), there is no

distinct indication that the target is precessing.

If, however, the 8 pulses are linearly extended with a 3-
point filter to 24 pulses before Fourier transformation, the
precessional envelope becomes evident in Fig. 4-8. In this
example, linear prediction has prnvided the same information
about the dynamic motion of the body with one-fourth the amount

of data previously used.

Analogous MESA spectra are shown in Fig. 4-9. The absence
of sidelobes more clearly reveals the precessional envelope.
Moreover, there are suggestions of the paths of individual
scattering centers where the spectral peaks sweep diagonally
from right to left as time increases (see arrows). An ability
to track individual scattering centers would be sufficient to

estimate, for example, the spin rate of a target unambiguously.

On the one hand, any of the three methods of Doppler
processing seems to provide essentially the same spectral
information if the data set is long or if it is not time-

stationary. The spectra computed with the linear prediction
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and MESA algorithms are, however, less cluttered with sidelobes

to allow better definition of the qualitative features in the
spectra.

On the other hand, the linear prediction and MESA algorithms
can analyze short data sets with more success than can conven-
tional Fourier techniques. Features which the latter may fail

to resolve may be detected by the alternative techniques.

4.4 Other Radar Applications

Only two applications have been mentioned here that,
nevertheless, demonstrate the utility of predictive deconvolution

concepts. Other applications might include

(1) Radar metrics — updating Kalman filters
' with fewer radar pulses;

(2) Drag measurements - measuring target
range rates in less time and with more

precision;

(3) Discrimination in clutter — detecting
objects in velocity space that scatter
weakly compared to the background noise;

(4) Pulse compression — improving range
resolution when frequency data are
digitally transformed into the time our
range pulse shape.

This list is by no means exhaustive., The potential user
must decide if the linear prediction and MESA procedures
afford an advantage for his own application. In any case,
these new techniques are well worth trying and offer an alterna-

tive to the conventional Foutrier transform.

40

R e B e L A A A i kA £ s S et e

-

z
i
¥
-

i

]

T



S Paik

[RMP-122 (4-1) ]

8 BN \/me“
; 7Y NS e
! w . e et e ...-_—/‘;:—v‘

: A e T ]

e,

)
2
N

(

2 35

W

(

§.<
i
J

T Y T

/ S

’

>

TIME (SEC)

e
e
0 28 %
VELOCITY (MISEC)

Fig.4-1. Range rate history calculated with conventional
Fourier transform.




[RMP-122 (4-2) |

o — ot e S e s .+ g
———— —— e ¢ P
—— et e i S

TIME (SEC)

VELOCITY (M/SEC)

Fig.4-2. Range rate history calculated with a Fourier
transform after data have been linearly extended.
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Fig.4-4. Doppler history of base range cell of spinning
and precessing cone using conventional Fourier transforma-

tion of 32 samples.

VELOCITY (M/SEC)

44

P ten AOTy il Prpr gl i

TR T
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Fig.4-5. Similar to Fig.4-4, but data are linearly extended
before Fourier transformation. R
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[RMp-122 (4-6) |
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Fig.4-6. MESA Doppler history analogous to Fig.4-4.
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Fig.4-7. Similar to Fig.4-4, but only eight pulses 4
are Fourier transformed at a time.
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Fig.4-8. Doppler history similar to Fig.4-7, but data
are linearly extended before Fourier transformation.’
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[RMP-122 (4-9) |
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Fig.4-9, MESA Doppler history analogous to Fig.4-7,

Precessional envelope becomes apparent, and tracks of
individual scattering centers are perceptible (arrows).
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APPENDIX I

CALCULATION OF PREDICTION-ERROR FILTER COEFE{CIENTS
FOR COMPLEX DATA

Van Den Bos (1971) has shown that MESA is equivalent to a
least-squares all-pole model of the data being aunalyzed. This
means that a data point is predicted by the weighted average of
its neighbors. The all-pole model is also known as the autoregres-
sive model (Box and Jenkirs, 1970). Anderson (1974) used this
formalism to develop nlgorithms for calculating the prediction
filter coefficients for a real input time serjes. Since a complex
time series 1s often of interest, we shall modify Anderson's work
here and extend it to complex form. The same notation is used
for ease in comparison. The reader should note that Anderson

defines his filter coefficients as -a instead of +a (the
m,n m,n

. latter is the convention in most MESA literature). Then, the

MESA power spectrum is written

P At (1-1)
2

P(f) =
m
-2nfnAt
1- ann ©
n=1

The frequency f is limited to the Nyquist range |[f| < (1/2At).

Pm (the residual error power remaining after an (m+1)-point
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filter is convolved with the data) and each filter coefficient

(the nth coefficient out of the total m coefficients) are

a
m,n
determined by the solution of the equation
[~ 7] B = [~ -
6 (0) ¢ (1) ¢ (m) 1 P
$(-1) ¢ (0) ¢ (m-1) 2,1 0
. . = . (1-2)
¢ (-m) ¢ (-m+1) ¢(0) | Lm0

where ¢(R) is the value of the autocorrelation function at lag ¢.

For £=0, we have

= 1 *
Po = X ) X Xy (I-3)
t=1

as the (real) variance of the complex series {xt} of N points.

The solution of (I-2) involves the stepwise increase of the
matrix dimension by one and the determination of (m+2) unknowns
as the known autocorrelation function is being calculated. These
unknowns include the m filter coefficients, the next value of the
autocorrelation function, and the error power: (am,l’ oo am’m,
¢ (m), Pm). There are only (m+l) equations in Eq. (I-2), so an
additional relation is necessary. Burg (1968) suggested that the
additional relation is the minimization of the total error power

(the sum of the forward error power and backward error power).

For example, the forward and backward error power for a two-point

51




prediction-error filter (1, a; 1) are
, 1.

=z

-1

2 1 2
®f T ITIN=Iy tz_:l lxgoy =31, 1% 7 (I-4)
N-1
2 1 * 2
e’ = TNy zgllxt - al,lxt+1I (I-5)

C s s 2 . .
Minimizing the sum e " + eb2 with respect to a; , gives
’

N-1 N-1 . .
33,1 = ¢ z;lxtxt+1/ t;%(xtxt * Xpe1Xp4q) (1-6)

In general, for an (m+l)-point filter (1 with the m coefficients),

) ] N-m m 2 i
ee” = TN =mY tzi Xpam — k_lam,kxt+m-k (1I-7) E
N-m m 2
2 1 * ‘
e = X, — a X (1-8) j
b N — t 2 k™t+k ;
R k=1 j
The sum e 2 . e 2 is minimized with respect to a . Adding a i
f b m,m f

new coefficient will require editing the old coefficients (k=1,

.+« , m-1) by the rule

* ;o
m,k ~ %m-1,k T Zm,m%m-1,m-k (1-9) P

to update the filter. Equation (I-9) is the result of the Levin-

son recursion relations (Wiener, 1949; Robinson, 1967) for the




solution of Toeplitz matrix equations like Eq. (I-2). The updated

error power becomes

).

%
Py = pm-l(1 ~ 4, mem,m

If we set am,o ,

Eqs. (I-7) and (I-8) as

2 1 Nm | m
€ © 2(N = m) 2: 2:
t= k=0

2 1 N-m m
°p = Z(N = m) 2: 2:
. t=1 k=o

(1-10)

0 for k > m, we can rewrite

2
B 1 X ek (I-11)
. 2
%m, k¥t+m-k (1-12)

Inserting Eq. (I-9) into Eq. (I-11) and Eq. (I-12) we obtain

N-m
el = 1 |b!
f Z(N = m) m,t
t=1
2 1 N'm
° T TN - t;% |bm,t

where we have defined the series

moo
b = =
n, t éELam~l,kxt+k

m
bn;l,t = E3‘m-l,k"t+m-k =
k=0
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— a (I-13)

2
m,mbm,t|

—~ a (I-14)

2
1
m,mbm,t|

m

*

EE 3m-1,m-kXt+m-k (1-15)
=0

m

P -1, m-kXt+k" (1-16)
k=0
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The alternate forms of bm N and b& t are obtained by changing the
1 ’

index k to m-k and reversing the order of summation (commutativ-

ity). Minimizing the sum ef2 + eb2 with respect to an m gives
H

N-m . N-m . .
Ay m = 2 2z b, tPm,t 2 O, tPm, e ¥ Pm,ePm, el
t=1 t=1 .

(I-17)

It is easy to show that

*
= — ' -
bm,t bm-l,t am-l,m-lbm-l,t (1-18)

b’;l’t = bl;l‘].,t""l - am-l’m-lbmul’t+1 (I'lg)
so that the series b and b'! can be constructed from their
m,t m,t

previous values as m increases by one. The initial values are

bo,t = Po,t = Xt (1-20)
and
byt = X¢
bi,t = X4 (I-21)
Then b and b' can be calculated from Eqs. (I-18) and (I-19)
m,t m,t

as m is incremented from 1 to the desired filter length M,

Clearly, the solution of (I-Zj is a "bootstrap' process
based on a recursion fromm = 1 to M., Figure I-1 shows a flow
chart for the recursive procedure that calculates the complex

‘filter coefficients, Following Anderson's Figure 1, bm ¢ is bl
. »
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and bﬁ,t is b2, The array aa(t) is temporary storage of the
filter coefficients before being updated into array a(t) by

Eq. (I-9), and array P(m) is the error power updated by Eq. (I-
10) as m ranges from one to its maximum specified value. Element

P(M) is the final error power used in the MESA spectrum.

Figure I-2 gives a FORTRAN listing for the flow chart of

Fig. I-1. The arguments of the subroutine are

NPTS number of data samples

X complex array of data samples

NC@EFF number of filter coefficients to be
calculated

A complex array of coefficients

PM real array of updated error power

p@ initial variance

AA

Bl work arrays.

B2

The storage for all arrays must be supplied by the calling pro-
gram. Inputs are NPTS, X, and NCQEFF,

This subroutine can be used with the program CPSPEC given in
Fig. I-3 to calculate a MESA power spectrum. The argument names
are

NC@EFF number of filter coefficients

A complex array of coefficients

55




PSPEC array of valves of power spectrum

FREQ array of frequencies at which PSPEC is
calculated

NPSPEC number of frequencies in array FREQ

PLAST PM(NC@PEFF) from above = Pm in Eq. (I-1)

DT sample spacing of data points.

Inputs are NCPEFF, A, FREQ, NPSPEC, PLAST, and DT. Sub-
routine CPSPEC is written with Anderson's negative coefficient
convention (Eq. (I-1)). Again, array storage must be supplied by

the calling program.

Figure I-4 lists the subroutine LNPRED by which complex data
may be linearly extended. All arguments are input, but array X
must be large enough to accommodate the extension. Anderson's

negative coefficient convention is incorporated into the code.

N1 original number of data points

N2 number of data points after extension
X complex data array

NC@EFF number of coefficients

A complex array of filter coefficients.
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| a—
Trep-122 (1-1) | memil )

Goer) BN
,qn(t) = q(t)
P = 0 t='.(~"m)
bi(t) = bi(t) - aalm-1) #*b2(t)
ta F:-NP” Wl b2(t)=b2(t *1) -aa(m-1) # bi(t +])
= X =
P(o) = YN J
me| nom 3 den = (0,0)
bI(1) = x(1) t=1,(N-m) A
b2{(N-1) = x(N) nom=nom ¢ bi(t)e
X *1| den=den ¢ [bi¢e)i2 + [b2(t)[2 ’
t=2,(N-1)
bI() = x(t) a(m)= 2 *nom/den ]
b2 (t-1) = x(t) P(m) = P(m-1)s(i-la(m)}2) -
3 —— ‘
Q
t=1,(m-l) .
alt) = aa(t)- a{m)+ aa(m-t)

( sTOP )e . Yes @—-NL ——

Fig.I-1. Flow chart describing calculation of complex
prediction filter coefficients.
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T e (T,

SUDRGUTINE COEPP (NPTS,X,NCOEPP,A, PN, PO, AN, BY1,B2)

THLS SUBKOUTIME CALCULATES THE CONPLEX PILTER CORFPICIENTS.

THE ALGORITHNS USED MERR ARE A MODIPICATION OF THE

ALGORITHNS DESCRIBED BY ANDBRSOM (GROPHYSICS,VOL. 39,PEB. 1974)
YOR THE CASE OF A CONPLEX SERIES, HRBAL DATA CAW BE PROCESSED BY
SETTING THE IMAGINARY PART OF THZ DATA STOKED IN X TO LERO,
INPUTS AGE NPTS,X,NCOERP

NPTS = THE NUMBEA OF DATA POINTS {N THE DATA SET

X = A COMPL3X ARRAY CONTALNING THE ORIGINAL DATA

RCORFF = THE NUNBER OF FILTER CORFFICIENTS TO BE CALCULATED

A = THE ARRAY CONTAINING THX COMPLEX PILTER COEFPICIENTS
Pa = nBAL ARRAY CONTAINING THE UPDATED BRROR POWER

PO = REAL VARIANCE OF TH:Z DATA

AR, B1, B2 ARE WO&K ALRAYS h

STORAGE FOR THE ARRAYS MUST BE SUPPLIED BY THE CALLING .
PAOGRAN: X (NPuS) ,A (NCOEFF) o AA(NCOZFF) ,BI(NPTS) ,B2 (NPTS), PN (NCOEFP)
ARL TH& MININUM STORAGE RUQUIRSMENTS FOR THIS SURROUTINE,

PROGEAMNEL BY S.Bbe DJUNLING, MIT-LINCOLN LABORATORY, FEB, 1977.

[+
<
C
C
.
C
c
C
.
c
c
C
<
c
C
C
C
c
C
C
C
c
c
c

COMPLEX X,A,AN,B1,82,XNON,DEN,THO
DIMeNSION X(1),A(MNAA(N),B1(Y),B2(1),PR{1)
TwO=CKPLX(2.0,0.0)
Pu=0.0
DO 10 IT=1,NPIS
DUMMY= X (IT)*CONJG(X(IT))
10 PFO= PO+ DUNNY
pO= PO/PLOAL (NP IS)
NH““PIS"
B (N =X
B2 (N81) =X (NPTS)
LO 29 IT=2,NM1
B1(IT)=X(IT)
THaIT=1 : :
20 BZ(ITH1)=X(IT) .
DO 50 M=Y,NCOEFF i
[ARLLER] [
NRH=NPIS-H B
IF(M +EQ. 1) GO TO 25
DO 21 IT=1,MHY
21 MALIT) =A(IT)
DO 22 IT=1,Nnn
BI(IT) = BY(IT)~-CONJG{AN(MNNT))*B2(IT)
22 B2(IT)= BI(IT+V1)~AA(BM1)*B1(ITeY)
25 XNORaCMPLX(0.0,0.0)
DEN=CNFLX(0.0,0.0)
DU 30 IT=1,haM b
tHORaXNON + BI(IT)*CORJIG(BI(IT))
30 DEM=DEN ¢ BA(IT)®CONJG(BI(IT)) ¢ B2(IT)*CONIG(D2 (IT))
IP( REAL(DEW) .BEQ. 0.0) GO TO 23S i
A(N)= THOS (XBON/DEN) {

i

i
5
&
'i
&
143
L

5
i
g

I
&

60 TO 36 :
45  A{M) =CYPLX (2.0,0,0) :
36 FOWER=PO 1

IE(Y .GT. 1) POWER=PA (M-1) i

DUMNY=A (M) *CONJG (A (M)) ;
PM {M) =POMER™ (1.0 - DUNNY) i
IP(M .8Q. 1) GO TC S50 ;
DO 40 IT=1,aM1 !
40  A(IT)= AA(IT)=A(N)*CONJIG(AA(N-IT)) :

50 CUNTINUB
I;TURN RMP-122 (1-2

;
END i

Fig.I-2. FORTRAN listing for flow chart in Fig.I-1.
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SUBROUTINE CPSPEC (NCOSPP,A, PSPRC, PREQ, WPSPIC,PLAST,DY) i

THIS SUBHCUTINE COMPUTES THE POWEM SPEZCTRUE PSPEC AT THRE FREQUENCIES
STORED IN PRBQ. IT USES RECURSION RELATIONS POR COS(WeTHETA)

AND SIN(N®THELA) TO SAVE TINR, IT IS CAST IN CONPLEX FORM

SINCE THE PREDICTION COBFPICIENTS AR GENBRALLY COMPLEX.

INPUTS ARE NCOEFF,A,FuBQ, NPSPBC, PLAST, DT,

WCORFF = NUMBER OF FILTER COEPPICIENTS
A = CONPLEX AREAY OF PILTER COSPPICIENTS
PEEQ = ARRAY OF FRLQUENCIES AT WHICH THE POWER SPICTRUM
1S TO BE CALCULATED .
PSPEC = ARRAY OF VALUES OF TUE POWER SPECTRUM ;
NPSPEC = NUMBER OF FREQUENCIES AT WHICH THE POWER SPRECTRUN N
1S TO BE CALCULATED = DIARNSION OF FREQ AND PSPEC ;
PLASY = ATSIDUAL EREOR POWER APTER THE PILTER HAS OPERATED
ON THE DATA = SLENSHT PN(NCOSFP) PROM SUBROUTINE ‘*COEFPF!
DI = SPACING OF THE DATA

STORAGE POR AREAYS IS SUPPLIED BY TAR CALLING PROGRAN. ALNINUN s

STORAGR REQUIRENENTS ARE A(NCORPP),PSPEC(RPSPELC), PREQ (NPSPEC)
POR THIS SUBROUTINE.

PROGRAMMEL BY 5,8, DOWLIRS, NIT-LIMCOLN LABOAATORY, FEm, 1977.

GO0 oCcnCoGraonaoroconance

COMPLEX A,2K,DEN

CIMENSION A(V) ,PSPEC(1),PREQ(Y)
PACTOR= -6,2811353*D7 : |
Do 100 TI=1,NPSPEC . ;
Ca=1,0 N 7
SN=G,. 0

CEN=CNPLL(1.0,0.0)

EET gt AAUBLE (P

TiMde CARGYCN - SALGWSYN
Sh= CAEG®SN + SaRGscN
CNa T35E
ZH= CHFLX{CN,SN)
DEN= LiN = A{N) *2N
50 CONTINUE
T3Q= DEN®CORJIG(DiN)
IF{ DSQ +EQ: 0.9 } DSY"1.9E-1)
PSPEC(1)= (1.0/D5y)*PLAST*DT
100 CONTINUE
RETURN

2o |

Fig.I-3. FORTRAN listing to calculate MESA
power spectrum,

NN 5 B SRS

b e 2
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e e A N e K e e e X s e KN e A v K e K M e K e X 0 X 2]

coc

acec

SUBRQUTINE LWPRED(M1,¥2,X,NCOZFF,A)

THLS SUBROUTINE LINEARLY BXZBNDS THE COMPLEX DATA X! -

PRON N1 POINTS TO M2 POINTS. THT ORIGINAL DATA , POSITIONRD

IN THE FIRST N1 BLENERTS OF ARRAY X, ARE SHIFTED TO THR WIDDLE OF X.
FORWARD AND BACKWARD PREDICTIONS ARE DOME UNTIL THE TOTAL

NURBER OF CATA POINTS 1S N2.

NOTE THAT THE B2 POUINTS CONTAIN THE ORIGIMNAL N1 POINTS.
INPUTS ARE N1,N2,X,NCOEPR,A.

ARRAY X IS MODIPIED ; THE ORIGINAL DATA POINTS HAVE BEEN
SLIFLED TO THE MIDDLT AND PRSDICTIONS ARE DOMNE ON BOTH SIDES.

THE FILTEL COLFFICIZMTS SHOULD ALREADY wWAVE BEEM CALCULATED
BY PROGRAN °*COEFL,.* -

[} = QRIGINAL NUNUER OF POINTS IN ARRAY X

N2 = NUMBER OF PCLNT3 TO WHICH ARRAY X IS TC¢C BE EXTEWDED
b3 = COMPLEX AKRAY QF DATA SAnPLES

NCOEFF = NUNMDZR OF PREDICIION PILTER COBPFICIENTS

A = COMPLEX ALK4Y OF FILTER COEPFICIENTS

STORAGE FOR T{E ARRAYS SHOULD BS SUPQLIBD BY THE CALLING
PROGRAN: MINIMUN STORAGE UFQUIRENENTS ARE X(N2),A (NCORFF)
FOR THI3 SUBROUTINE.

PrOGRANNELD BY S.B. BIWwLING, NIT-LINCOLN LABORATOLY, PEB.1377.

CUNPLEX X,A
CIMENSION X(1),A(1)

SET UP LINITIS FOR DO LOOPS

Li= w272 - N2
L2= 8272 + W\/2 ‘.
IF( NOD(NY,4) «BQ. V) L2aLl+t Ny

SHIFT CRIGINAL DATA TO NIDDLz OF AkRAY X

Ke L2 = (I-1)

100 X(K)=X{J)

non

.
Lo 100 I=1,N1 B M

J= K1 - (I-1) ‘!t~‘£r\

DO FORGARL PRIDICTION 0/0}/
N3= N2-12 ’

TO <00 Is1,N3

J= L2¢2

X (J) =CAPLA (0.0, ¢ V)
DO 20C K=1,NCOEFF

60 X = X (J) + A(K)*X(I-K)

Lo ¥ + ¥ ¢

DO BACKWARD PELDICTION

Lo 30C I=1,11

Js L1=- (I-V)
X(J)=CHAPLX (L.Q,C.Q)
LU 300 K=1,NCOLPP

300 X(D)mX(J) ¢ CONIG (A (K)) *X (3+K)

END

Fig.1-4., FORTRAN listing to linearly extend a complex
data set.
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APPENDIX 11

A COMPARISON OF SOME OF THE CHARACTERISTICS
OF MESA AND CONVENTIONAL FOURIER SPECTRAL ANALYSIS

Here we tabulate some of the salient features of the two
methods of spectral analysis., For a more mathematical presen-
tation, the reader is referred to Lacoss (1971) and to Chen and

Stegun (1974). The notation in the table is

N = number of values of known autocorrelation
function

P = power of a pure tone in the spectrum

At = spacing of input data

NPTS = number of data samples.
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- APPENDIX III

E ON INTEGRATING THE MESA POWER SPECTRUM
fi-
| TO FIND THE POWER SPECTRAL DENSITY

Lacoss (1971) has pointed out that it is the MESA power

spectral density which is the more appropriate measure of the

relative power of spectral components. Since the power spectrum | ‘I
P(f) is calculable at any frequency |f]| < 1/2At (assuming the

data are band-limited and properly sampled), in principle it is

easy to perform a numerical integration over a‘small bandwidth &f

to calculate a power spectral deﬁéity. However, some of the

peaks in P(f) may be so narrow and sharp that they may be diffi-

cult to detect if the initial grid spacing in frequency is coarse.

Radoski _t al. (1975) emphasize that if the signal-to-noise
ratio is high, a coarse frequency grid can be insufficient to

determine the actual locations of spectral peaks in the MESA

power spectrum. As the number of filter coefficients increases,

the peaks tend to approach line spectra (delta functions).

Radoski et al. (1975) have suggested a systematic search procedure

T R R O K S mr

(used in this report in a modified form) to calculate the power

spectral density from the MESA power spectrum:

(1) The data are normalized to unit variance. Each datum x
is replaced by (x — X)/o where X and o are the (com-

plex) average value and (real) standard deviation of

TR L S T A e oo ae
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the original data. By Parseval's Theorem, the integral
of the power spectral density (PSD) must be unity.
Therefore we can feel confident that the PSD has been
correctly estimated, the spectrum integrated, and all

spectral lines detected, if numerically JbSD(f)dffsl.

(2) Triplets nof points in the power spectrum are examined

such that, for (f,

i+1 — fi-q) = 81, whenever

P(fi_l) < P(f;) > P(fi+1) (;II~1)¢
the midpoint is near a possible spectral peak. P(f) at
two intermediate points is calculated and the five are
examined to extract a new triplet. Simpson's rule is
used to integrate P(f) as the search procedure works
its way up into the peak until two calculations of tHe
integral over the bandwidth &f are within 1% of each
other. Then the procedure shifts to the next triplet
of poiﬁts in the power spectrum spanning &éf and the
integration process is repeated. If Eq. (III-1) is not
satisfied, Simpson's rule integrates P(f) over &f with
enough points so that two successive integrations are

within 1% of each other. See Radoski et al. (1975) for

details.

Normalizing the data to unit variance removes the dc or zero

frequency part of the spectrum, which may not be gppropriate for




some applications, If the data are not normalized, then ijD(f)df
should equal the variance 02 of the data (which is equal to the
zero-lag value of the autocorrelation function). Depending on

the form of Parseval's Theorem used, ijD(f)df and 02 may differ
by a factor of 27 or (Zn)l/z. (Parseval's Theorem states that

the total average power (or mean-square value) of x(t) is equal

to the integral of the power spectral density over all relevant

frequencies.)
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