ON DECOMPOSITIONS OF A MULTI-GRAH INTO SPANNING SUBGRAPHS,

Ram Prakash Gupta

AMS Subject Classification 05C15.

Key Words and Phrases. Multigraph, bipartite graph, balanced hypergraph, spanning subgraph, cover, matching, cover index, chromatic index.

This research was supported in part by ONR contract N00014-67-A-0232-0016.

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
1. Let G be a multi-graph, i.e., a finite graph with no loops. $V(G)$ and $E(G)$ denote the vertex-set and edge-set of G, respectively. For $x \in V(G)$, $d(x, G)$ denotes the degree (or valency) of x in G and $m(x, G)$ denotes the multiplicity of edges at x in G, i.e. the minimum number m such that x is joined to any other vertex in G by at most m edges.

A graph H is called a spanning subgraph of G if $V(H) = V(G)$ and $E(H) \subseteq E(G)$. Let k be any positive integer. Let

$$
\sigma : G = H_1 \cup H_2 \cup \ldots \cup H_k
$$

be a decomposition of G into k spanning subgraphs so that (1) H_1, H_2, \ldots, H_k are spanning subgraphs of G, (2) H_1, H_2, \ldots, H_k are pairwise edge-disjoint, and (3) $\bigcup_{1 \leq i \leq k} E(H_i) = E(G)$. For each $x \in V(G)$, let $\nu(x, \sigma)$ denote the number of subgraphs H_i in σ such that $d(x, H_i) \geq 1$. Evidently, $\nu(x, \sigma) \leq \min(k, d(x, G))$ for all $x \in V(G)$.

2. Given a multi-graph G and any positive integer k, we consider the problem of determining a decomposition σ of G into k spanning subgraphs such that $\nu(x, \sigma)$ is as large as possible for each vertex $x \in V(G)$. In particular, we have proved the following two theorems.
Theorem 2.1: If \(G \) is a bipartite graph, then, for every positive integer \(k \), there exists a decomposition \(\sigma \) of \(G \) into \(k \) spanning subgraphs such that

\[
\forall(x, \sigma) = \min(k, d(x, G)) \quad \text{for all} \quad x \in V(G).
\]

Theorem 2.2: If \(G \) is a multi-graph, then for every positive integer \(k \), there exists a decomposition \(\sigma \) of \(G \) into \(k \) spanning subgraphs such that

\[
\forall(x, \sigma) \geq \begin{cases}
\min(k - m(x, G), d(x, G)) & \text{if } d(x, G) \leq k \\
\min(k, d(x, G) - m(x, G)) & \text{if } d(x, G) > k
\end{cases} \quad \text{for all} \quad x \in V(G).
\]

Moreover, if \(W \subset V(G) \) is such that

\[
W \cap \{x \in V(G): k - m(x, G) < d(x, G) < k + m(x, G)\}
\]

is independent, then \(\sigma \) can be so chosen that in addition to (2.2), we have

\[
\forall(x, \sigma) = \min(k, d(x, G)) \quad \text{for all} \quad x \in W.
\]

3. The above theorems generalize some well-known theorems in graph theory.

Let \(G \) be a multi-graph; let \(H \) be a spanning subgraph of \(G \). \(H \) is said to be a matching of \(G \) if for every vertex \(x \), \(d(x, H) \leq 1 \); \(H \) is said to be a cover of \(G \) if for every vertex \(x \), \(d(x, H) \geq 1 \).
The chromatic index of G, denoted by $\chi_1(G)$, is defined to be the minimum number k such that there exists a decomposition of G into k spanning subgraphs each of which is a matching of G. The cover index of G, denoted by $\kappa_1(G)$ is the maximum number k such that there exists a decomposition of G into k spanning subgraphs each of which is a cover of G.

Theorems 3.1 and 3.2 below are obtained from Theorem 2.1 by taking $k = \max \limits_{x \in V(G)} d(x, G)$ and $k = \min \limits_{x \in V(G)} d(x, G)$, respectively.

Theorem 3.1 [1]: If G is a bipartite graph, then,

$$\chi_1(G) = \max \limits_{x \in V(G)} d(x, G).$$

Theorem 3.2 [2]: If G is a bipartite graph, then,

$$\kappa_1(G) = \min \limits_{x \in V(G)} d(x, G).$$

Similarly, Theorems 3.3 and 3.4 are seen to be special cases of Theorem 2.2.

Theorem 3.3 [3, 4]: If G is a multi-graph, then,

$$\chi_1(G) \leq \max \limits_{x \in V(G)} (d(x, G) + m(x, G)).$$

Theorem 3.4 [5]: If G is a multi-graph, then,

$$\kappa_1(G) \geq \min \limits_{x \in V(G)} (d(x, G) - m(x, G)).$$
Remark: We have also generalized Theorem 2.1 to a theorem for balanced hypergraphs which contains as special cases some theorems due to C. Berge [6].
References

The Ohio State University
Columbus, Ohio 43210