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Foreword

A dissertation prospectus is primarily a research proposal and

is not normally published or released outside the academic institution

involved. This prospectus contains an unusual amount of background

material, and the state of the research is advanced for such a docu-

ment. This prospectus is being published to make this background

material and the analytical methods immediately available.

The problem of gravity modeling for terrestrial inertial naviga-

tion is discussed at length. This historical and technical perspective

provides a survey of this area not available in the literature. Since

this discussion will not be repeated in its entirety in the dissertation,

publication of this prospectus will provide this material to other

interested researchers.

The analytical development in the proposed approach (Part III)

includes results which apply to more general model evaluations than

the subject research. These methods can be applied to current studies

of geodetic effects on navigation accuracy. Publishing these results

will make them immediately available.
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Abstract

A historical perspective of gravity modeling for terrestrial navi-

gation is presented. The traditional ellipsoidal model is explained,

and the consequent errors are discussed. The propagation of these

errors into navigation estimation errors is presented. A brief survey

of advanced modeling methods and the pertinent theory is presented.

The system design problem of selecting an advanced gravity

model is presented as a scenario to motivate the proposed research.

To address this problem, a new theoretical analysis '.echnique is

developed. This technique includes the effects of navigation error

p'opagation, the statistics of the anomalous field (the residual after

ellipsoidal or other reference field modeling), the statistics of gravity

survey errors, and the advanced gravity modeling. These effects are

combined to yield a measure of system performance cost as reflected

in the navigation error state covariance due to gravity modeling errors

acting alone.

This report contains 8Z references to the open literature in this

subject area.

xiii



I. Purpose

This prospectus defines my dissertation research topic and

provides a basis for comments or approval. To this end, it:

a. Places the proposed work in perspective;

b. Specifies the research question to be addressed;

c. Specifies the proposed approach and, where necessary,
points out areas which will not be addressed;

d. Specifies the method for confirming the final result;

e. Outlines the Final Report;

f. Describes the applicability of this research to the mission
of the Air Force Avionics Laboratory; and

g. Discusses the aspects of this research perceived to be
original.

,/1
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I. Background

The proposed study concerns changes to the current methods of

accounting for gravitational acceleration in inertial navigation; a brief

discussion of the state-of-the-art is in order. The gravity model* is a

closed-form mathematical expression, or algorithm, which together

with a set of predetermined parameters, or data, define a vector

valued function which approximates the Earth's gravitational accelera-

tion throughout some three-dimensioned region of operation. Such a

model is an integral part of an inertial navigation system (INS). Tech-

nological advances in INS instrument designs and new mission require-

ments call for a reappraisal of gravity modeling errors. Improvements

to the model must be based on available gravity data; on our knowledge

of gravitational theory; and on our knowledge of the time spectral

response of the navigation filter. Of course, this study must branch

from the past and current gravity modeling research. We begin with

an assessment of where gravity modeling evolution has led to date.

*The term "gravity model" can be m sleading. The term

"gravitation" will always refer to the mass attraction (G) effect alone,
whereas "gravity" will usually refer to the combined effect of mass
attraction and Earth's rotation (g).
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A. The Role of the Gravity Model in an INS

A gravity model is a fundamental component of any precision

INS. We shall restrict our attention to "precision" navigation. * An

inertial navigation system senses inertial translational acceleration

and rotational velocity, tracks attitude by integrating the rotationalI1 velocity, and calculates translational position and velocity as integrals

of acceleration from the Newton's Second Law equation: Force equals

mass times acceleration. The mathematical form of the translational

solution algorithm depends on both the coordinate frame in which theI, sensors are mounted, instrument or platform frame, and the coordi-

nate frame in which the computations are carried out; computational

frame (Ref 1). Usually, the rotational velocity is sensed by a set of

gyroscopes. For the translational acceleration, sensors called accel-

erometers are used. The accelerometers use a test mass suspended,

in some manner, within the instrument case as an acceleration

detector. Thus, the accelerometer only senses the differential accel-

eration between the test mass and the instrument case which is mounted

through a suspension system to the body of the vehicle. This differ-

ential acceleration is called specific foice, f, and results from forces

which act directly on the vehicle such as thrust or aerodynamic lift.

Gravitational attraction acts simultaneously on the test mass and .he

*Examples of systems not included are those which do not

inertially instrument the vertical channel (Ref-l:109) and systems with
modeling assumptions which would mask any improvement in the
gravity model (e.g. Ref Z:133).



e vehicle, hence it cannot be sensed by the accelerometers (Ref 3.230-

251, and Ref 1:2). The total inertial acceleration is the sum of the

sensed specific force and the unsensed gravitational acceleration.

Since gravitational attraction is not sensed directly, an INS must con-

tain a gravity model to complete the information needed for the trans-

lational navigation task.

B. Traditional Modeling Approaches

The nature of past INS gravity models for airborne use (Ref 4:

pp. 1-4, 6 ) has been driven by two predominant factors. First, com-

puter memory space and computation time represent a precious system

resource. Other mission requirements are frequently asynchronous to,

and higher priority than, the navigation function: for example the

attitude control function. The second factor is the existence of inertial

instrument errors. The sensed specific force and the computed gravity

are, symbolically at least, summed before entering the first level of

integration. Thus, there is little incentive for creating a gravity model

which is much better than the accelerometer uncertainty level. These

factors have led to the use of simple models which are based on an

intuitive, but effective, idealization. In this section we shall discuss

the historical basis for this ideal or nor cnal gravity model, we shall

evaluate the effectiveness of this ideal field as an approximation to the

true field, and we shall discuss the practical approximations to this

ideal model which are actually used.

4



The fundamental shape of the Earth is well-described by an

ellipsoid (an ellipse of revolution about its minor axis through the

poles). This notion was conceived by Newton (Ref 8). It is based on

the concept of water, the seas, not flowing on an equipotential surface,

mean sea-level for example. This lack of flow also indicates the force,

gravity in this case, is perpendicular to the surface (hence the term

"normal field"). It is interesting to note that the shape of a homo-

geneous fluid rotating at Earth rate would be an ellipsoid with eccen-

tricity very near that of the reference ellipsoids used in geodetic

surveys and systems (Ref 9). The term "ellipsoid gravity model"

refers to a model based on the gravity vector being perpendicular to the

surface-approximating ellipsoid.

This ellipsoidal model requires only three parameters, but it is

impressive in terms of the small residual error between model gravity

and true gravity. This error never exceeds 400 mgal (I mgal r 10-Sm/

sec , approximately 1 Ag)--an drror of approximately one part per

2500. Kayton (Ref 5:Vol II p 289) suggests that the ellipsoidal model is

adequate for systems with accelerometer uncertainty levels greater

than 20 mgal. This results from the premise that we view acceler-

ometer and gravity model errors in a static sense. A more precise

measure would consider the time spectral properties of these different

system error sources. We must understand more about the application

of the ellipsoidal model before this point can be pursued.

5



t o

The ellipsoidal model is cumbersome to program since it calls

for terms not necessary for any other navigation function. The result

is approximations of the approximation. That is, computationally

efficient simplifications are used in place of the complete ellipsoidal

formulae. The simplifications are developed around readily available

navigation quantities, and this set varies with specific navigation

algorithm. Two examples are the local-level computational frame and

the inertial computational frame. An INS which computes in a local-

level (Ref 1:109) coordinate frame tends to have latitude and altitude

available. Hence, approximations are made based on these inputs

(Ref 4:1-11, 1-16, 1-23, and 1-28). For Earth-centered inertial* (a lb

known as geocentric inertial, ECI, or i-frame) or in Earth-centered

Earth-relative* (Geocentric relative, ECE, or e-frame), the "gravita-

tional" field resulting from an ellipsoid "gravity" model is computed

directly from the Cartesian components of the position vector. For

this case, the formula used is based on a truncated series expansion of

the ellipsoidal potential. This spherical harmonic model requires lie

definition of a number of coefficients called J-terms. These J-terms

are based on satellite and ground survey gravity data. This approach

is well-documented (see Ref 1:49-53; Ref 5:309-313; Ref 6:195-225;

Ref 9:Appendix; Ref 10:App.B; Ref ll:App.E; Ref 12:35-43; Ref 13:36-

42; Ref 14:20-35; Ref 15:139-142; and Ref 16:419-423). We shall return

*Typically these frames are centered at the Earth's center of

mass (Ref 5:Vol I, pp 6-9 and Vol D., pp 288-289); the i-frame is non-
rotating with respect to the distant stars.

6



to this particular model later, but for now, consider the results of

these approximations to the ellipsoid gravity model.

TL standard for comparison of modeling simplifications is

the WGS 72 ellipsoid (Ref 17). The local-level models vary as much

as 20 mgal from this reference. This result is due to the altitude

correction simplifications. The spherical harmonic model can be more

precise; it reproduces the ellipsoidal model to within 0. 1 mgal in one

example (Ref 4:1-5).

Direct comparison of these simplified ellipsoid models with

true gravity have not been made. Geodetic gravity surveys measure

gravity on the Earth's surface and extrapolate to a reference ellipsoid.

This measure of gravity at the ellipsoid surface can be compared

directly to the ellipsoid gravity model value (Refs 9, 14, and 17). A

good ellipsoid can rc 3ult in global maximum error of approximately 400

mgal. The ellipsoid can also be varied to produce a better local fit in

some region of interest. The nature of Ihese errors in modeling is

important and merits further discussion.

C. The Nature of Modeling Errors

The Earth's gravity field varies with position and with time.

The time variations can be subdivided into categories:

a. The Earth's rotation with respect to inertial space,

b. Celestial bodies (primarily the Sun and Moon), and

c. Earth's mass redistributions (primarily tides).

7



The effects due to b. and c. are on the order of tenths of a milli-gal

(Ref 18:76-77). The effects due to a. are on the order of hundreds (not

hundredths) of milli-gals. Although modeling the effects due to b. and

c. would be relatively simple, this effort would be pointless without a

major resolution of the a. effects. So, we shall restrict our attention

to the Earth rotation effect which is simpler from an Earth-relative

observer's point of view. Since we are ignoring the tidal and celestial

body effects, an Earth-relative observer would see a static gravity

field at each point. The true (time-average, Earth-relative) gravity

field is then a vector function of an Earth-relative position vector

(e-frame for convenience). Symbolically, we are stating that

Ge _,t) _( )( )

The model we seek is a closed-form mathematical relationship either

Gn(r.?e ) to approximate gravitation G(re) or g. (re) to approximate

gravity &(re).

Going back to our inertial observer, we may mathematically

express what he will see in terms of the above function definitions.

i e i e riGi(re) =Ce  ( =! ) e-_ (

where C e is the c-frame to i-frame coordinate transformation matrix;

C9 is its inverse. Elements of Ci are trignometric functions of the
I e

product of time and Earth rotation rate, w, t (Ref 1:36 for example).

So, for a fixed r, the gravity field is periodic at Earth rate. Then,

8
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'G is an explicit function of time through Ce and an implicit function
___ 1

of time through re(t). With our assumptions, we consider G e() to be

only an implicit function of time via re(t).

We may now formally define the gravitation, or gravity, model-

ing errors by

6 .&(e) ~(re)- ~(e).(3)

Since, G - - ie X (1ie X r), (4)

we also have

,5 j(re) = Gm(re) ".. Xw.ie Xr - 2(1e) -ie X--ie XKI.

Hence, .,(re) = _(re) - a(re). (5)

The gravitational and the gravity modeling errors are the same. This

process is depicted in flow-chart form in Figure 1.

D. Propagation of Errors in an INS

The resulting error vector, 6a, is an explicit time function in

the i-frame and an implicit function of time in the e-frame. Since Ge H

models the Earth-relative time-average gravitational field, Ge( ),we

must view 6ge( • ) as the time average gravitational error for each

argument re. Having defined this error, we now turn our attention to

the effect it has on navigation performance. We need '.o understand how

these errors enter the navigation algorithm, what in mathematical

9



Earth's True Gravity

(s, t0

Time average in
Earth relative frame

I&(.E e) representative Earth4, gravity

eeX (Vie X.)

+ ~(.re)
r - gravity

K&(r e modeling ____

model errorGre
gravity repres entative

gravitation

l~e ieXi

G m(re)

Earth's Gravitation Model

Figure 1. The Gravity Modeling Error
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terms the algorithm does to these errors, and the nature and extent of

corruption of navigation estimates.

The INS solves for position and velocity by a double integration

of an estimate of acceleration. This estimate is formed by summing

the specific force sensed by accelerometers with the model-computed

gravitational acceleration. We must clearly distinguish between the

modeling error, by,, and the INS propagation error which results from

an error in the INS position estimate. This propagation error can be

formally defined as the gravitation at the estimated position, G(r), less

the gravitation at the true position, G(r). With this distinction between

the different types of gravitational modeling errors, we may proceed

with an INS error analysis.

We are interested in INS estimates, so we need to define posi-

tion and velocity error quantities. Let

i _(t) - ) (6)

and
6j(t) = .t) i (t) .(7)

The exact form of the relationships between SR, ar, and 6i depends on

the specific navigation mechanization and computational approach.

Such matters as independently-sensed velocity feedback and vertical

channel altimeter aiding introduc'e analysis complexities that would

obscure the fundamental point we are pursuing .at this time. These

issues must be dealt with, but we shall table them for now. We can see

11



the basic interrelationship by considering a first-order perturbation of

the navigation differential equation

f +G(_), (8)

where f is the true specific force.

The specific form of (8) depends on the computational coordinate frame.

Reference 1 presents a full description of this topic and introduces the

notation used herein. References 2 and 19 are extensions, corrections

and clarifications of this work. Many error sources must be included

to perform a complete navigation error analysis. We are rastricting

our scope to gravity modeling errors and their propagation (e. g.

&f = 0). The first-order differential equation from (8) becomes

6_- 6 (r e ) + r(re) 6r (9)

where I(re) is the gravitation tent.er G(re)/3r (see Appendix A).

This equation describes the propagation of both types of gravity

errors: gravity modeling errors given by 6Fg(re) and the error in

calculating gravity with an error in the position estimate. Since we

assume no velocity or altitude aiding, we may obtain 6 r by a double

integration of (9). Appendix B shows the inherent instability of the

"vertical channel" of (9). In practice altimeter aiding is used to

stabilize this channel and this will complicate the analysis. It will suit

our purposes to consider only the horizontal channels for a simple

example of error propagation. Again, Appendix B develops the

12



homogeneous portion of (9) for one horizontal coordinate. Adding the

modeling error back in yields

26= 6g x - w ax (10)

where w. is the Schuler rate given by Nf 7-.

This undamped, second-order error differential equation has

well-known characteristics. Sinusoidal steady-state analysis shows a

high sensitivity to time-frequencies near this Schuler rate. The steady-

state analysis fails for inputs of 6gx at the Schuler rate since the par-

ticular solution to (10) is unbounded. This case can be analyzed in the

time domain and can give some insigh't into the problemz, that gravity

modeling errors might cause.* Reference 20 provides data on the vari-

ation of gravity, or gravitation, from a reference ellipsoidal field

along a transcontinental path across the 350 latitude line of the United

States. The horizontal component is recorded as the angle true

gravity is deflected from the ellipsoidal gravity in East-West, prime,

and North-South, meridian, directions. The root-mean -square value

for each direction is near five arcseconds (Ref 21), which translates

to approximately 25 mgal. Suppose the 6g, driving term in (10) is

sinusoidal in its argument for horizontal motions. Let d be the spatial

period so

*This example is contrived to show the worst accuracy degrada-

tion, however it provides a simple closed-form demonstration of some
basic concepts.
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&gx(Z e = gx(x) Z125 sin (Zi X) rngal. (1 1)

Now suppose the vehicle travels at constant velocity such that

vx = sd/Zir. Express xas: x = vxt+ 0 = (wsd/27r)t. Then

6gx = 25 sin (wst) mgal. (12)

Identify 6k as 6vx and assume zero initial conditions on (10).

We can solve the particular problem now by LaPlace transforms and

find IvX(t) = (25 mgal) t sin (wst). (13)

Note that the amplitude of the sinusoid grows linearly with

time--an unbounded response. Take for example the air launch of an

ICBM as a way of gauging our concern with (13). We know (Ref 16:305)

that at ICBM ranges a one foot-per-second velocity error can cause a

one nautical mile miss. At this rate, we would only have two minutes

of cruise time before (13) would indicate error divergence with the

potential for a 0. 1 n. mi. miss from gravitational modeling effects alone.

The point of this much-contrived example is that there are conceivable

applications where present gravity models are inadequate. Also, it

should be clear that the extent to which our estimates are corrupted by

this gravity noise depends on the spatial frequency of the gravity model-

ing errors, on the time frequency response of the INS, and on the

mission velocity which translates the spatial gravity modeling error

function into the time domain.

E. Magnitude of Resulting INS Errors

With this background, let us consider more complete studies of
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gravity modeling effects on INS estimates. The open literature con-

tains two distinct types of studies on navigation accuracy with gravity

modeling errors: statistical and deterministic. The statistical studies

(Refs 21, 22 and 23) are covariance analyses or Monte Carlo analyses

based on a statistical model of the gravity modeling disturbance. The

deterministic studies (Refs 24 and 25) are simulation analyses which

include detailed local gravity models for the region of interest. The

statistical studies provide parametrically the expected accuracy degrada-

tion, whereas the deterministic studies give specific case data which

include error time histories.

1. Statistical Analyses. Historically the statistical studies

appear first. The gravity modeling error is itself statistically modeled.

The disturbance vector, 6j, is not necessarily modeled directly; in

Reference 21, the deflection angles, g and 9], are modeled as the outputs

of spatial linear systems driven by white gaussian noise (Ref 26).

Statistical model details vary, and a great deal of research has been

devoted to defining a statistical model which is consistent with both

observed gravity data and with gravitational field theory. The statisti-

cal model issues are discussed in Appendix C; our concern here is the

effect of gravity modeling errors on navigation accuracy.

The Levine and Gelb paper. (Ref 21) is the classic in the statisti-

cal studies category. Their approach is a steady-state-covariance

analysis (Ref 27) which requires the total problem to be cast in the
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-form of a linear, time-invariant stochastic differential equation. The

statistical model for the gravity error is based on an exponential auto-

correlation function, for example

e -d(14)

where is the meridian vertical deflection,

x is the shift distance,

c is the variance of g, and

dg is the correlation distance.

With (14), o and de completely specify the statistical model. Gravity

disturbance components are assumed uncorrelated, so g and T) (the

prime deflection) are uncorrelated. This assumption statistically

uncouples the horizontal channels. The INS model, also, dynamically

uncouples these channels. Rate feedback from a non-inertial sensor is

assumed and the error propagation is governed by (10) with the addition

of the rate feedback term:

2
6=-K 6 x- xs x- 6gx  (15)

where K is the feedback gain for the non-inertial velocity damping.

Recall that the disturbance term is a function of Earth-relative position.

To implement (15) we must convert the disturbance term to the tine

domain. This is accomplished through two steps: model (14) as a

first-order, linear, time-invariant stochastic differential equation in
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the argument x and use velocity to convert x, hence (14), to the time

domain. First,

d =(x) (x) +q, (x) (16)

dx T9

where qV(x) is a zero-mean, white, gaussian noise process with auto-

correlation function of _. 6 (x). S(x) is the Dirac delta function which

dg.
satisfies 8(W = 0 for all x 0

dx = 1 for all >0. (17)

The entire analysis is performed in a quasi-static sense with a constant

velocity assumed then varied parametrically. Then,

dx vx dt, (18)

and

5[x(t)]6(v X t) = .. 6(t). (19)
VX

So,
(t) I 4 (t) + qI(t) (20)

where qI(t) is zero-mean white gaussian noise with autocorrelation of

2r (_ .2 ) 6(t). Because deflection angles are small we assume

bgx = g. (21)
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With (21), equations (15) and (20) form the required stochastic time

differential relationship for the steady-state covariance analysis. In

retrospect, it is interesting to compare the transition from spatial, (11),

to time, (12), domain in the simple closed-form example above to the

transition in this stochastic analysis from (16) to (20).

With this system of differential equations driven by white

gaussian noise, the steady state covariance of navigation position and

velocity errors can be found using LaPlace transform techniques on the

system covariance matrix equation. The structure of the Levine and

Gelb analysis is easier to summarize than the results. Velocity, corre-

lation distance, and INS damping, K, are varied parametrically. The

independent variations of vx and d are unnecessary since in the final

results they always appear in the ratio

: vx/dg (22)

This result is important in its own right; this implies that the same

rms navigation error results from an increase in velocity as in a

decrease in correlation distance. In the limit, increased velocity or

decreased correlation distance cause the gravity disturbance to approach

white noise (which is precisely what zero correlation distance would

mean in the spatial domain) with the exponential function approaching

the delta function and correlation time (1/pg) approaching zero. In the

limit in this direction, both position and velocit'y rms errors approach

zero,
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For the other extreme, consider either velocity decreasing or

correlation distance increasing (P approaching 0). Then, the disturb-

ance looks more like a constant. Since we have a non-inertial, and for

now presumably perfect, velocity sensor, the steady-state velocity

error goes to zero. The position error approaches the constant value

that reflects the position offset, incurred while nulling the velocity,

required to exactly cancel the gra-it- disturbance. From (15), this

offset can be seen as the gravity disturbance divided by the square of

the Schuler rate.

While the position rms error is maximum for this near-constant

disturbance, the velocity rms error behaves quite differently. As dis-

cussed, the velocity rms error approaches zero for the cases of

approaching either zero or infinity. This result is predicated on G-2

staying finite and some further analysis is really required if we want to

let 6gx(t) approach white noise. The velocity rms error per unit of

standard deviation has a maximum when f equals the Schuler rate W s.

The 6 gx spectral characteristics are best aligned with the navigation

filter under these velocity/correlation distance conditions. Hence, in

studying gravity error propagation, we need to pay attention to this type

alignment since the error sensitivity is highest there. In particular, if

we decompose the gravity disturbance into a Fourier series from the

spatial domain, we get a sum of sinusoidal terms similar to (11). The

velocity interpolation can then be used, as in (12), to convert to the

time domain. Then, we can identify those frequencies which will cause
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the greatest navigation rms errors.

Other observations can be made on the various interplays

between the statistical model and the INS dynamics; however these

results are somewhat intangible. What we need is a perspective on

how realistic gravity disturbances compare with other navigation error

sources. The traditional way of presenting these data is an error

budget whichfor a specified set of hardware and a specified missionp

allocates the expected error into compartments labeled by the various

recognized error contributors. This more satisfying approach was

taken by Nash, D'Appolito, and Roy in Reference 23.

For a given polar flight profile, a gravity-error-alone analysis

shows, over the first phase of the mission, a 0. 03 n. m. position error

per hour of flight per arcsecond rms deflection of the vertical. Next,

an integrated system based on a 0. 5 n. m. /hr. INS hardware. Doppler

radar velocity aiding and Loran position aiding were included in the

integrated system analysis. A severe gravity disturbance model was

used with a 20 arcsecond rms deflection and 20 n. m. correlation

distance. In the final analysis, the errors due to vertical deflections

were substantial. Approximately seventy-five percent (75%o) of the

radial velocity error, thirty percent (30%) of the radial position error,

and fifteen percent of the heading error were nt ributed to the vertical

deflections. Even if the input deflections were reduced to a more

globally representative rms level, say seven afcseconds, the resulting

navigation errors would constitute a significant and irreducible error
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term with the traditional gravity model. More significantly, the verti-

cal deflection induced errors would be on the same level as the gyro and

accelerometer induced errors. A significant improvement in the

inertial sensors, say to a 0. 1 n. m. /hr system, would not correspond-

ingly improve integrated system accuracy since the gravity modeling

error would remain.

2. Deterministic Analyses. From both parametric and specific

mission studies, the statistical approaches have shown the nature and

extent of navigation errors induced by gravity modeling errors. The

deterministic approach allows a means of comparing these statistical

results with a gravity field which is very nearly a duplication of the

actual field in some area of the world. Also, by forming a truth model

to simulate the actual field we can simulate a navigation mission and

produce error time histories. These data complement the average, or

expected, data from statistical analyses.

Chatfield, Bennett, and Chen presented such an analysis in

Reference 24. For a specific flight path in the western United States,

they constructed an extensive point-mass anamolous gravity model from

available measured gravity data. We shall discuss this modeling tech-

nique later; for nov,, it is sufficient to note that this point-mass model

together with the reference ellipsoid model form a much closer approx-

imation of the true field in a deep volume of space surrounding the

flight path. The comparison of model gravity with the surface gravity
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data shows residuals within a mgal directly over the grid midpoints.

With this near-perfect model, simulated aircraft test runs were

made assuming both aided and unaided INS. The point mass truth model

was used to generate true position and velocity. The simulated INS

used only the ellipsoidal model. Differences between the two gravity

calculations were as high as 50 mgals during the simulated missions.

The differences in position and velocity between INS estimates and the

truth model output represent the INS estimation errors. These errors

are indicative of what one could expect in an actual flight.

The unaided INS errors reached peaks of near 2000 ft in posi-

tion, 2 ft/sec in velocity, and 15 arcseconds in heading. The aided INS

case assumed position checkpoints periodically spaced along the flight

path and assumed doppler radar velocity measure. Since only gravity

anomaly errors were simulated, these aids were noise-free and sub-

stantially improved performance. The position errors were suppressed

below 400 ft, while velocity error stayed under 1 ft/sec. The heading

angle, while smaller than in the unaided case most of the time, did

reach a peak value near 20 arcseconds. A cursory comparison of the

error time histories shows for the unaided case that the statistical

methods of Levine and Gelb (Ref 21) would have accurately character-

ized the rms errors. The time histories of errors, of course, would

not be available from a purely statistical approach.

Reference 25 contains results from a continuation of the Refer-

ence 24 studies. These results are interesting because they point out
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a problem associated with gravity modeling beyond the INS estimate

errors. In a flight test of an INS, one goal is to assess INS accuracy

and to also determine the accuracy of individual components and sub-

systems. The usual approach is to structure the analysis along filter-

ing theory lines. Component error sources are modeled and integrated

with the INS error dynamics model to form a system model. Check-

point and other tracking data give a measure of the INS error at various

points during the mission. Post flight data processing typically employs

regression analyses to find the component error model parameters

which best fit the observed data in the sense that the error residuals are

minimized in some way. These error parameters can only be identified

by the spectral properties of their resulting INS errors. When gravity

model errors are not included in the above analysis, the gravity model-

ing induced errors spill over spectrally into this component parameter

identification process thus corrupting the results. This problem has

been ignored heretofore since INS component errors were large in com-

parison. This study (Ref 25) was conducted for Holloman AFB INS test-

ing and is evidence that the day has arrived when we can no longer

ignore this factor. Plans for testing state-of-the-art inertial systems

are beginning to include the requirement for detailed local gravity data

for use in the regression analyses.

F. Impetus for Improvements

We have seen the nature of gravity modeling errors and the
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magnitude of INS errors they cause. It is easy to understand why a

detailed new model might be used in a flight test environment where data

purity is important. One could question the need for model refinements

since the errors induced are not unacceptable for most navigation appli-

cations. The impetus comes from the potential military application--

where the impetus for inertial navigation originated. In the delivery of

weapons, any error diminishes weapon system's effectiveness, so these

gravity induced errors cannot be ignored. The self-contained nature of

inertial navigation virtually assures a continued dependence even with

advanced radiometric navigation systems available. The evolution of

strategic force concepts provides the prime motivation for the increased

emphasis on refining the traditional gravity modeling techniques.

The United States' lead in quality of ICBMs is expected to

decline (Ref 26) in the next decade. One proposed response to a growing

counterforce threat is to mobilize the currently silo-based ICBMs (Refs

27 and 28). Leaving the static silo environment for a dynamic, air

launch, or intermittently dynamic, revetment launch, environment will

certainly decrease the expected accuracy of this force (Ref 29). One

cause for this loss, is the fact that silo-based missiles are targeted

with the aid of extensive point-mass models for the launch region (Ref

30). While this loss could eventually be recovered by modeling all the

possible mobile launch regions, we still have to deal with the problem

of initial conditions for the missile navigativn algorithm.
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The silo-based missile INS can be initialized with the known

position and with an (expected) zero Earth-relative velocity prior to

launch activities. In any dynamic launch, these data must be provided

by navigation. Our earlier example of the nature of INS error propaga-

tion indicated that in that contrived case only minutes would elapse

before gravity modeling errors would blunt the weapon system's effec-

tiveness. The deterministic study (Ref 24) of the last section indicates

that for that case, even with many external aids, the velocity errors

can grow to the one-foot-per-second level. At ICBM ranges this error

has the potential to cause a 1 n mi miss (Ref 16:305). From Reference

26, this type of accuracy virtually eliminates such a weapon system

from use against targets hardened to nuclear attack.

The ICBM concern is not the only one. Proposed air-launched

cruise missiles (Ref 31) will encounter similar problems. The potential

degradation may be greater due to the longer navigating flight time of

the missile. Also, one must consider the counterforce mission these

cruise missiles are postulated to perform.

From these uniquely military applications, we can sae a need

to refine gravity modeling. The nature of the refinements must be

predicated on the real-time and on-board need for the data. The

dynamic nature of future missions is likely to preclude the extensive

ground-based pre-mission targeting which compensates for these

gravity effects today. So, whatever new methods evolve, they must be

computationally efficient: yielding the greatest accuracy improvement

25

Li~t ____ -



for the investment of on-board computer storage space and executtion

time.

G. Improvement Approaches

There are many current and past activities that either directly

or indirectly suggest approaches to this problem. The "software"

approaches fall into several categories. The statistical approach

simply employs filter theory to fcrm an estimate of the gravity distur-

bance. The point-mass model is an example of finite-element

approaches which, in essence, build mass distribution perturbat.on

models. Another software approach simply employs fundamental

potential integral relationships. These integrals are approximated

using observed gravity data. Then transform techniques can be

employed to decrease the computational burden. Aside from these

approaches, new inertial instruments are being developed for gravity

mapping (Ref 32). As McKinley has noted (Ref 29), it is ironical that

the instrument (gradiometer) developed for the mapping application can

simultaneously make the mapping unnecessary. We need to delve into

all these areas before addressing a plan of attack on the model refine-

ment problem.

1. Statistical

Statistical methods can be employed pre-mission (; priori)

or during the missLon (real-ti'ne). Pre-mission data preparation might

include forming a mission-dependent ellipsoid model to lower the rms
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anomalous gravity for that specific mission trajectory or area.

Another a priori approach is to define the navigation mission in great

detail, simulate the trajectory with an accurate gravity model, and off-

set the initial conditions of the navigation filter to compensate for the

expected errors. Such a priori methods are open-loop in that the actual

trajectory may vary considerably from the planned one due to environ-

mental effects or other modeling errors. Changing the INS algorithm

to reject the short spatial wavelength gravity noise is unacceptable

because we would also reject any measured acceleration which fell into

the same time spectrum. The real-time role for statistics has little

more potential.

In real-time, we can use statistical methods to predict the

near-term influence of anomalous gravity on navigation estimates. To

implemenit such a scheme, we need external navigation fixes which allow

us to observe the navigation errors periodically. With anomalous grav-

ity modeled as a Gauss-Markov process (see Appendix C) in our Kalman

filter, the estimated states associated with this model will allow us to

statistically predict our near-term anomalous gravity effects. This

approach has been considered for INS flight tests (Ref 25) as a means

of removing the effects of gravity noise from INS component perform-

ance estimates.

These statistical methods have limited scope because they do

not take advantage of all available gravity data except in an average

sense from the empirical autocorrelation function (see Appendix C).
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The following methods, in one form or another, use the gravity data.

2. Finite Element Methods

The term "finite element" to some connotes a recursive

approximation based on a tri-diagonal Grammian matrix. We use the

term to denote all gravitation or geopotential modeling which are based

either on a finite partition of the geoid surface for integration approxi-

mation, on a finite number of mass distribution elements, or on a finite

set of local approximating (interpolating) functions. Of all the methods

we shall discuss, only the point-mass method has ever been used for

INS aiding--and this aiding was pre-mission,not in-flight (Ref 30). So,

these methods are discussed because they have the capability to form

improved INS gravity models. All of these models have been proposed

to support the basic task of Physical Geodesy: defining the geoid (Refs

8 and 34).

Since we already have Legendre polynomial spherical harmonic

functions as a spanning set of functions, one might ask why we do not

fill out the coefficients to the degree and order necessary. The trun-

cated spherical harmonic series forms a finite element model by the

above definition, so we shall treat it as such and discuss its merits as

an improvement candidate. Since this model is global in scope, it

requires global data for complete coefficient identification. * The Earth

*Local models can, however, be created by using restricted-

area data.
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is large and we must have informati-rn in our model of relatively short

spatial wavelength. Shannon's sampling theorem tells us to collect data

on a grid finer than the shortest wavelength that we wish to represent--

such a survey is not economically or politically feasible. With extensive

new data from GRAVSAT/GEOPAUSE, Koch (Ref 35) points out the

potential for rather severe aliasing at the order-and-degree 12 trunca-

tion level. The message is clear, if you want to significantly improve

the gravity model, you should concentrate your model and your survey

in the local area of operation.

As mentioned, the subject methods are all suggested for sub-

tasks in defining the geoid. The most basic methods come directly from

potential theory: the surface integrals of anomalous potential (equivalent

to undulation) or gravity anomaly. These integrals map the anomalous

potential or gravity anomaly over some closed surface onto the gravity

disturbance vector at any point outside the closed surface (see Section

H below). These integrals are approxim ted by partitioning this refer-

ence surface into a finite number of elemental areas and forming the

sum of the products of the approximated integrand and the respective

elemental area. The global nature of this task czn be ameliorated by a

variable grid spacing: a fine grid in the immediate vicinity of the evalu-

ation nested in a sequence of grids of ever-increasing coarseness (Ref

14:120). The number of elements for a coarse global 5OX50 partition is

over 2500, so the number of parameters for such a model could easily

reach 10, 000. The number of multiply and add operations would be on
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that order also for each gravity evaluation.

Morrison (Ref 36) suggests another integral approach based on

integrating over a geoidal surface density model. In the geopotential

application he suggests partitioning the geoid surface into 1640 equal-

area elements. Although more flexibility can be formulated, the compu-

tationally efficient form is to assume constant density layers within each

block. In this form, the model seems no different for our application

than the point mass model.

The point mass model is the prime candidate from the mass

distribution modeling area. Other mass distribution models appear in

geophysical prospecting (Refs 18 and 37), but they offer no special

advantage for our purpose. The mass distribution techniques allow a

direct gravity calculation using Newtonian gravity formula, in turn, on

each mass element. We can model the anomalous field as closely as we

wish by increasing the number of elements and decreasing the grid spac-

ing (Ref 38). Such a modeling technique has global (Ref 39) as well as

local (Refs 24 and 30) possibilities.

The MINUTEMAN Launch Region Gravity Model is an applica-

tion of point mass modeling to aid INS periormance. As mentioned

previously, this model was not stored in and executed by the airborne

computer; the effect of anomalous gravity was compensated for in pre-

mission targeting calculations using a larger ground-based computer.

The point mass grid spacing, similar to our integral approximation, is

based in a nested sequence of grids of ever-increasing coarseness.
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The finest grid is, naturally, in the area immediately surrounding the

silo. The point masses are submerged below the reference surface a

depth equal to the grid spacing to enhance parameter identification con-

vergence (Ref 40:5-6). This method has built-in upward continuation in

the Newton gravitation inverse-square equation. The problems associ-

ated with parameter identification and the computational burden of the

inverse-square calculation for a large number (2520 for MINUTEMAN)

of point masses must be considered when evaluating this modeling tech-

nique. A method which eliminates these costly global calculations might

prove more useful.

The local functional expansions might fill this expectation.

Paraphrasing Junkins (Ref 41), we may build a global (or less) family

of locally valid functional expansions rather than one globally valid

series expansion. These techniques are closely associated with interpo-

lation techniques- -indeed it can be argued that that is all they really are.

Junkins (Ref 41, 42 and 43) builds a general technique of partitioning the

shell of space out to some radius above the geoid into prisms. Then,

gravity is modeled by a functional expansion within each prism. Special

interpolation techniques are discussed should some order of continuity

be desired from block to block. The functional form is discussed in

general, but Chebychev polynomials are stressed. Other potential

modeling functions could come from bicubic spline functions (Ref 44),

multiquadric equations (Ref 45), binary sampiing functions (Ref 46), or

Walsh functions (Ref 46). Some extension, say from bicubic to tricubic
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.splines, and some additional development is required to put any of these

latter functicas in a form compatible with airborne use.

3. Transformed Integrals

The concept of applying integral transform techniques to

gravity data processing is not a new one. Geophysical interpretation by

"wave-number" filtering techniques have been used by the petroleum

industry since about 1955 (Ref 18:158). An example application is solv-

ing the inverse gravity problem (mass distribution from gravity meas-

urements) to surmise the shape and location of ore deposits (Ref 18:

179-185). This process requires a downward continuation of measured

gravity; we are concerned with an upward continuation of this same type

data.

Transform techniques have only recently been considered for

gravity survey purposes. Heiskanen and Moritz make no mention of

this possibility in Physical Geodesy (Ref 14) published in 1967 and the

standard reference in the field. In 1974, Davis, et al (Ref 47) used

Fourier transform analysei in comparing relative errors for several

algorithms used in computing vertical deflections. Then, Davis (Ref 48)

used one- and two-dimensional Fourier transform error analyses as a

basis for designing geophysical surveys. In 1975, Long (Ref 49:44-45)

suggeste-1 applying Fast Fourier Transform (FFT) techniques to solu-

tions of Stokes and Vening-Meinesz integrals. More recently (1976),

Thomas and Heller (Ref 50:Chapters 3 and 4) proposed a comprehensive
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gravity data processing system based on frequency domain techniques.

These works and suggestions have dwelled on surface gravity

calculations. The obvious extension is to apply these methods to air-

borne gravity calculations. Pradc. (Refs 51 and 52) has developed this

strategy using Hilbert transforms to convert the spatial convolution

integral equations (upward continuation and Vening-Meinesz) into spatial

frequency domain multiplications. Closed-form expressions are pre-

sented for the flat-Earth case; the spherical-Earth case remains an

area of active research. Reference 52 also provides an analytical

approach for specifying the density and extent of the survey required.

Presumably, the transformed data from a gridded survey would be

stored in-flight, so gravity model parameter storage requirements can

also be assessed.

A definite consideration is the existence of specific hardware

to p.rform the "butterfly" operation (Ref 53:296-297) that is the heart of

the FFT. One can conceive of an anomalous gravity computer as a

separate functional module. Such a unit would accept navigation position

estimates from the airborne computer as input; would perform the

necessary transform inverse and interpolation; and would provide

anomalous gravity as the output. Such a unit would allow this technique

to be incorporated in present systems with modest interface and compu-

tational burden on existing airborne computers.
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4. Gradiometry

We cannot overlook the one development which treats the

gravity error not as a modeling problem but as a measurement problem.

The gradiometer research and development addresses the real-time

measurement of the gravity tensor, r(re), which will allow computation

of anomalous gravity in a manner which permits real-time compensation

for its effect on navigation estimates. Although gradiometers date back

to the late nineteenth century experiments of Baron Von Ebtv6s, research

has been concentrated in the last decade. The motivation for this

research is the desire to mobilize the gravity survey.

Gravimeters used in static gravity measurements are accel-

erometers which, in that role, measure the acceleration required to

keep a test mass stationary with respect to an Earth-bound observer.

If we use a gravimeter in the dynamic environment of a mobile survey,

say airborne, we must compensate for base motions. From the

Principle of Equivalence (Ref 1:2), we cannot measure gravitation

directly; so, the gravimeter has the same gravitation observation as

the accelerometers in an INS. The combination of an INS and a gradi-

ometer can provide the basis for a statistical estimate of gravitation

(Refs 54 and 55), but these procedures are not compatible with real-

time compensation. Moritz (Ref 56) demonstrated that the spatial deriv-

ative of gravitation can be measured, in principle, in a dynamic environ-

ment. Conceptually, we could calculate gravity from this measurement

through a spatial integration if we know our path through space and we
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are given an initial condition for gravity at our original coordinates.

Thus, a gravity survey could be conducted. In reality, we would need

real-time position information which could come from an INS. So, the

optimal combination of gradiometer and INS evolves naturally. Since

the INS needs gravitation, either model or measured, as an input, we

can improve overall system performance by using the results of the

gradiometer measurements. To avoid the open-loop propagation of

gradiometer errors, the reference field can be used to make gradiometer

biases observable (Ref 57 or Ref 58). We need a mathematical formula-

tion for computing anomalous gravity from gradiometer measurements

and from the reference field properties.

The first step in this formulation is to recall the definition

6.(r_e) = G m(re) - G(r.e). (5)

Nbw consider the time derivative of 6y, from an e-frame observer's

point of view. Operating on (5) we get

d8F~ e). dmre)] dre)

ee -

~rm(rEe) _(r(,e)-

where the subscript e denotes the time derivative with respect to an

e-frame observer. Extending (23) to other coordinate frames follows

from a straightforward application of vector calculus. We have rm.,
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where the subscript here refers to the model not the frame, from our

low-order reference model. We are proposing to measure r(.) with

gradiometers. We can form an estimate of d6g/dte with the additional

position and velocity from our navigation filter:

[d6&(re)/dt]e -[r_( e) [(_e)] j (24)

Given initial conditions, we can estimate S& by integrating (24).

Given this g we can estimate total gravitation by inverting (5):

10 _ AeGr) m(l_ ) + 6y. (25)

This demonstrates the possibility of using gravity gradient measure-

ments to calculate total gravitation; again, we must put such a caicula-

tion into a total navigation algorithm which will identify and account for

gradiometer bias for practical use of the new information (Refs 57 and

58).

We have discussed the use of these gravity gradient measures

without discussing how such measures could be made. The Principle of

Equivalence eliminates the accelerometer, or gravimeter, as a gravi-

tation sensor. However two accelerometers in the same dynamic environ-

ment, with input axes parallel and separated by a small distance can be

used to sense differential acceleration. Since the dynamics are essen-

ially the same for such an accelerometer pair mounted on a space-

stable inertial platform, any differential acceleration can be attributed

to variations in gravitation. We do not require in inertial platform; if
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the accelerometer pair is allowed to rotate with respect to inertial space

we must sense this rotation and compensate for its affect when process-

ing the a.celerometer measurements, however. A simple way of seeing

the nature of the measurement, is to view the two accelerometers as the

simple test masses they embody. One gradiometer design by The

Charles Stark Draper Labcratory is based on this simple mass dipole*

concept. If we treat these test masses as point masse, separated by a

lever arm, the difference in gravitation between the pa'r will create a

torque requirement based on maintaining a constant relative orientation

of the axis passing through the mass elements. This torque has two

degrees of freedom in that a two dimensional vector space of torques is

required to counteract any possible torque generated by gravity vari-

ations. Decomposing this torque into coordinates perpendicular to the

dipole axis and dividing each component by the product of elemental mass

and mass separation distance squared yields a discrete approximation of

two components of the gravity tensor (see Figure 2 for an example).

With this method for computing the measured gravity tensor

components, let us investigate the number of gradiometers required to

completely bpecify the full tensor. In Appendix A we show that the nine

elements of the gravity tensor are related through LaPlace's equation

and continuity such that only five of the components are independent.

Then three of our two-degree-of-freedom gradiometers can provide

*Dipole is used here for two positive mass units which is at

variance with the electromagnetic use of this term.
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m(x)2  
Gyx = Gxy

Fig. 2. Example Gradiometer Output

measurements which span this five dimensional space- -similar to two

two-degree-of freedom gyroscopes spanning the three dimensional

angular rotation space for an INS.

With the implementation concepts ourlined, we return to the

question of gradiometer errors. We have Lidicated, in general terms,

how the reference field can be used as an aid to eliminate gradiometer

bias effects from our estimates. The gradiometer error models are in

a formative stage. Some parametric studies have been completed (Refs

57 through 61) which give an indication of how much relief we can expect

from these instruments. The goal for these residual errors is on the

order of 0. 1 Ebtv~s units (1 Ebtvi6s unit = 1 EU 10- 9 sec- 2 ). This

goal is based on gravity survey, not navigation, requirements. These
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studies indicate that substantial navigation improvements are attained

with instrument errors an order of magnitude higher.

With such devices in prototype testing, one might question the

need for improving the traditional gravity modeling techniques. The

fact is that operational gradiometers are no near-term certainty. The

additional weight, space and power required to suspend this gradiometer

triad, in a manner which allows us to isolate from or compensate for

inertial effects of rotation, will limit gr.-diometer use to relative large

systems. So gradiorreters are t ot a panacea for our gravity modeling

problems. They may, however, provide the only economical method

for collecting the gravity survey data which will support the model

improvements we may propose.

H. Basic Theory

Each of these candidate gravity modeling improvements con-

sists of a process for producing a local gravity estimate using available

gravity measurements. The gravity data is collected where and how

economical measurements can be made; we require gravity estimates

throughout the region of possible INS operation. This practical problem

must be approached by appealing to Newtonian gravitational theory. This

theory has developed over the centuries, but only a small subset applies

to our problem. While some theoretical aspects have arisen in previous

discussions, our attention was directed elsewhere and the theoretical

aspects were incompletely covered. The following account recapitulates
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and amplifies those areas directly applicable to the proposed research.

In Newtonian gravitational theory, the fundamental information

is encoded in the mass distribution. We conceive an Earth mass distri-

bution function expressed as a density (mass per unit volume) function of

the radius vector: p(f). * This information is transmitted in the form of

gravita.tional force by the relationship

(r) =fff Kp() (r' -_ d v (26)
Irl - r71 -

du

P

0

where the triple integral is over the set E which encompasses all Earth

mass, K is the Newtonian gravitational constant, r' is the Earth-relative

radius vector to the incremental volume element symbolically called dv,

and r is the radius vector to the point P where gravitational force evalu-

ation is made. The gravitational potential function, V(.), summarizes

this information as a scalar by

V(r) v dv (27)

*We drop the superscript e since these equations do not involve
time derivatives and are generally valid for any choice of coordinate
frame.
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These fundamental gr;:- itational quantities are related by

G(r) = dV(.)/dr (28)

We may derive (26) by formally applying (28) to (27).

These equations are necessary theoretical concepts, but a

direct approximation of either (26) or (27) requires a measure of density

throughout the Earth's volume which is impractical if not impossible.

Fortunately, the information necessary to reproduce the external gravityI field is completely summarized in the form of either potential or normal

gravitational force, Gn , over a closed surface* S which encloscs the set

E. There are some drawbacks to this simplification; however we now

have a problem that is merely impractical, not impossible. That is, we

can collect sufficient Earth surface gra-ity data to produce useful repre-

sentation of the Earth's gravitational field.

We can measure gravity directly on tie Earth's surface with

accelerometers, called gravimeters, which are held fixed with respect

to the rotating Earth. These measurements can be processed ("reduced"

in the parlance of Physical Geodesy) to produce a representative free-

air gravity on the geoid such that Earth mass above the geoid is accounted

for and can be neglected (Ref 14:Chapter 3 and 242). The gravitational

*Potential theory includes much broader classes of closed

surfaces, but this depth will suffice for our purposes. The simply-
closed surface is analogous to the Jordan curve from complex variable
theory. It is a two-dimensional, connected and closed manifold of finite
area and enclosing a finite, non-zero volume (open set) in Euclidian

three space.
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potential can also be measured. This indirect measurement treats the

sea-surfaces as (on the average) equipotential surfaces and uses

satellite-to-sea altimetry as a measure, albeit noisy, of the geoidal

height or undulation, N, above the reference surface. For example, if

the satellite altimeter measure is h and if we estimate the altitude using

A
both satellite ephemeris and our Earth surface model to be h, we may

define a measure of geoldal height by

A
N =h-h. (30)

We get anomalous potential T by a simple first order calculation

T = Y N (31)

A

where 7 is the reference gravity value on the reference surface directly

below the sea surface point representative of the footprint illuminated

in the measurement. Gravitational potential V varies from the refer-

ence value by this anomalous amount T, so we can form a measure of V

by

+A A. .. A A
V =T +Vref =7 h(-) +Vref* (32)

Other methods exist for measuring gravity anomalous behavior. Most

are based on variational techniques; for example, attributing satellite

.)rbit perturbations to unmodeled gravitational effects (Ref 14:341-357).

We are concerned here with demonstrating the possibility of

such measurements, not an exhaustive recounting of the methods. Now,
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having demonstrated the possibility of measuring either gravity or

potential over the surface of the Earth, we can direct our attention to

Newtonian potential theory. This theory justifies these data sets as

sufficient to predict gravitation throughout space above the Earth's

surface.

We start with the fact that V from (27) satisfies Poisson's

Equation

AV = - 4rKP (33)

where 4 is the LaPlacian operator. * In regions outside the Earth's

mass (ignoring the atmosphere and extraterrestrial bodies for now) p

is zero so V satisfies LaPlace's Equation

AV = 0. (34)

Equation (34) is an elliptic partial differential equation which leads to

Fredholm type integral equations (Ref 62:230). Solutions to (34) are

called harmonic functions and, in general, form an infinite dimensional

algebraic vector space. The general solution can be expressed as a

linear combination of some basis set of functions with component coef-

ficients to be determined by constraints placed on the solution by the

particular problem. By selecting coefficients which meet the boundary

conditions of our surface gravity measurements, for example, we

*In Cartesian coordinates A =+ +

43yZ
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produce a solution which both satisfies (34) and reproduces the observed

data. The only questions of such a solution are existence, uniqueness,

and continuous dependence on the data.

The continuity question is easily answered since the data is

inside the Fredholm integral. A.3 long as the data is reasonably well

behaved (and we have it completely), the derivatives are assured. The

solution exists according to Diriclhet Principle and is uniquely defined

by boundary conditions of potential or normal gravity by Stoke's Theorem

(Ref 14:16-17). When the potential is the boundary condition, we call

this the Dirichlet Problem; when the normal gravity is the boundary con-

dition we call this the Neumann Problem.

Thus, knowledge of V or Gn over an enclosing surface is suf-

ficient information to recreate the gravitational field of the Earth's

mass distribution. While this condensed information can recreate the

gravitational field, it does not uniquely characterize the mass distribu-

tion which created it. This non-uniqueness for the inverse problem--

determining mass distribution from potential on a surface--is the bane

of geophysical prospecting and Physical Geodesy where the mass distri-

bution is inherently valuable information. This issue is important to us

since some modeling techniques (e.g. point mass models) are based on

mass distribution representation.

Geophysical, or geological, prospecting has been the prime

motivation for development of the inverse solution techniques. The

problem is not only ambiguous; it can be ill-posed as well (Ref 40) since
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-we will never have data at every point on an enclosing surface. These

difficulties have not prevented the use of inverse techniques (Refs 18 and

37) since human interpretation can be used to filter out obvious trends.

Also, the recognition that most calculations can be posed as multi-

dimensional digital filtering problems has resulted in the more success-

ful techniques (Ref 18:157-185).

While we must be aware of the possible ill-posed nature of

identifying model parameters, we must keep in mind that our final

objective is to model the gravitational force, not the underlying mass

distribution. Lee (Ref 63) expresses the appropriate point of view for

this situation: objective-oriented identification. Interpreting this con-

cept in terms of the model identification tasks we shall face: We must

judge our parameter identification not by how well the Earthts mass

distribution is represented but by how well measured gravity data is

recreated and how consistent this process is with respect to gravitational

theory extant. Since we are modeling for an INS, we should judge the

final model performance weighted by the spectral response of the navi-

gation filter. That is, we shall search for models that are most accur-

ate in the passband of the INS algorithm with special emphasis on

behavior near the Schuler frequency.

Returning now to our discussion of (34), we may formally solve

for the potential at any point outside S, the enclosing surface, by identi-

fying the coefficients for the previously mentioned basis functions. In

gravitational theory, the most common set of basis functions are the
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spherical harmonics. We generate these solutions by first expressing

(34) in spherical coordinates:

AV- a2V ++ i ;2v tanO av+ 1 aZv -o
r r ar rZ aP r Z TO- r 2 cos24 XZ

(34a)

where r is the radius, 4' is geocentric latitude, and X is longitude (either

inertial or Earth-relative longitude applies in this case). By separation

of variables, the solution V(r, 4, X) is formed. The familiar spherical

harmonics are the outcome of this development. Heiskanen and Moritz

(Ref 14:18-35) give a lucid description of this method. The general solu-

tion can be written as

V(r, 0, X) =E'' 1 ' E [an, mcos(mX)+bn, msin(m X Pn,m

n=0 r m=0

(cos4')l (35)

where Pn, m is the Legendre function of degree n and order m, and where

n, ma n, m and bn, m are the associated undetermined coefficients. As

previously mentioned (page Z8), determination of these coefficients in a

global sense is an inefficient means of producing a detailed, localized

gravity model.

Another approach to solving (34) subject to boundary conditions

on V or Gn over S is to form the associated integral equation. This

approach is simpler when the enclosing surface is a spherical shell.
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Our surface measurements can be reduced to the geoid which is well-

approximated by a Bjerhammer sphere. This approximation introduces

errors (Ref 14:241-242) on the order of Earth flattening (1/298. 26, Ref

17:16) which is troublesome if we deal with full-valued V and Gn . This

problem is ameliorated if we subtract the reference field contribution

from the reduced data. The remaining anomalous quantities can be

treated as first-order errors and since the flattening is of the same

order, the resulting products can be neglected as second order terms.

This method is analogous to INS modeling techniques (Ref 1), and thus,

this approximation of the geoid by a sphere is consistent with our other

analytical tools.

This approach leads to the Poisson Integral characteristic of

the upward continuation of a harmonic function:

Zr 7

T(r, ,X) R(rZ-RZ) T(R ,') os @'d b'dk (36)
4r IR' - r'i 3

where R is Bjerhammar sphere radius; R' is the radius vector to the

sphere surface incremental area defined by geocentric latitude 40 and

longitude X'; and r is radius vector to point defined by r,4d, and X (Ref

14:37). Hereinafter the set 1r,4,X and r will be used interchangeably;

also, the integral over the unit sphere will be abbreviated to ( ) d

where a represents unit sphere surface (the limits of integration in

(36)) and da represents cos Id 4'd V.
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This equation assumes we have as input data the function T(R')

over the surface of the reference sphere. Another form for expressing

T(R') in integral form comes from the relationship of T to the gravity

anomaly Ag (Ref 14:89):

Ag - T/or - 2T/r . (37)

This relationship, applied to (36), leads to Stoke's Formula:

S fAg(R') S(r, ) do (38)

where * is the central angle between r and RI and where S(r, 0) is Stoke's

function given by (Ref 14:233)

S(r,)- 2R + R 3RIR'-r I RZ
IR'-rI r r 2  r2

[5+ 31n - r + +R'r _ (39)

Equation (38) requires input data of gravity anomaly over the

sphere. The set (36) and (38) then provide two direct methods of com-

puting T(yr) from measured data. Since we ultimately want the gravity

disturbance vector function, SR(y_, we can use

6R(r) = dT/dr (40)

For spherical coordinates, this becomes
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6gr = aT/ar, (40a)

S= - 8T/ la , (40b)*

and1
agn = aT/O . (40c)

X Lr cos 0

We can now apply (40) to (36) and (38), in turn, to yield integral relation-

ships between the input data (T or Ag, respectively) and the desired

final result 8&. In applying (40) ic is convenient to express it in terms

of the latitudes and longitudes or the defining vectors R' and r:

* = cos - ' [sin sin ' + cos@ cos€' cos (X' - )] . (41)

Now since IR'-rl = IR 2 + r2 - ZrRcosll1/2 (42)

by the Law of Cosines, we have

IR-r_ i R + r Z - ZrR [sin 0sin ' + cos coso'cos (XI-)1)/ .

(43)

With (43) the necessary partial derivatives are straightforward, and we

get from (36):

_ r 4w M(r, )TOR') d a(44a)

where

5RZr - r 3 - Rr 2 cos ' - 3R 3 cos (e)M(r, IR) -= (Ref 14:37)IR' -r l

(44b)
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5 3R 2 (rZ-R 2 )f T(R') [cosOsin'- sin cos 0'cos (' -X)] do
4 w f0  BR' - r15

(44c)

3RZ(rZ-RZ) T(R') co sin (X - X)(4d)8gk 4= a ;R' - r I 5d 4d

Now, in applying (40) to (38) it is convenient to defire an azimuth a of

the line segment, or arc, from r to R I (see Figure 3).

tan a = cos *' sin_()' -4
cos 0 sin 0' - sin 0cos 'cos (x' -)X) (45)

And note that a / = - cos a (46a)

and /x = -cos g qin a. (46b)

Then, (38) becomes

6go A g(R1) aS(r, 0) do, (47a)

-"-' S cos a do, (47b)

-=- 
4 Ag(R') S(r, sina do (47c)

where

S(r, R(rZ - R2 4R R + 6R:R'- ri
rr rR"ri r I'-r rZ  r 3

+ R- cos 1 3 + 6 ln r-Rcos '+ IR' (d
2r (47d)
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Figure 3. Geometry on the Unit Sphere (Ref 14:113)

an 8S(r,'P 0 in0 R 6A2Z 8R 2
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+ [RZ rRcos 0 - i R-ri + -nr Ro IIr
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Equations (45), (46) and (47) are adaptations of the development(4e



presented in Reference 14 on page 234.

Equations (44) and (47) present the direct methods for computing

the disturbance vector from either type of input data: T orAg. Since

this disturbance vector represents the error in our model or reference

gravity formula, we may compensate the reference model by adding this

computed disturbance acceleration to the reference gravitation accelera-

tion vector. Hence, our algorithm for approximating either (44) or (47)

provides one alternative gravitational modeling improvement as we

discussed in the last section.

Another method for calculating the disturbance vector uses the

technique of replacing the disturbing masses by an equivalent surface

mass layer (see Theorem of Chasles (Ref 14:13).Once this surface mass

distribution function has been defined from the input data, we simply

apply (26) taking advantage of the fact that the volume integral can now

be replaced by a surface one. This "coating method" requires both types

of input data (T or N and Ag) to compute the surface density function

(Ref 14:236-238). The resulting formulae are simpler than those for the

direct methods. This factor might offset the costs of additional meas-

urementt. and calculation in forming the surface density function.

These three methods (Poisson Integral, Stoke's Integral and

coating) have approximately the same accuracy (Ref 14:243). To imple-

ment one of these integral methods, we must face the issue of a discrete

approximation method. One can see for the coating method that the most

important data is that near i 0. This idea carries over to the other
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direct methods but with less intuitive appeal than the surface distribu-

tion case. Hirvonen and Moritz (Ref 64) considered this factor in a

comparison study on the direct Stoke's (47) and the coating methods.

The idea is to investigate the effect of ignoring distant data in approxi-

mating these integrals. They statistically predict the root-mean-

square (rms) residual gravity for each component of the disturbance

vector when the integration set a is approximated by the points within a

central angle 40 of r. The statistical error estimation made use of the

anomaly covariance function (see Appendix C) as a basis for statistically

characterizing the effects of the distant zones.

To interpret the results of this study, we should point out that

each component of the disturbance vector on the Earth's surface is an

approximately 35 regal rms process (Ref 50). This figure corresponds

to a 4' = 0 when the compensating integral covers no area. For a

h = 90, the estimated rms rZ.sidual is down to 8 mgal and 6 mgal for

the direct and coating methods, respectively. So, covering 0. 6%0 of the

Earth's surface decreases our expected rms gravity disturbance to, on

the order of, 2016 of the uncompensated level. We require a central

angle coverage of 900, or one-half the Earth's surface, to lower the

estimated rms disturbance to 107 of the uncompensated value demon-

strating a severe Law of Diminishing Return for increasing 0

We conclude that we will require a gravity survey over a vast

area to support any of these integral approaches-. We can diminish the

computational burden by variable grid spacing of the area necessary for

53



adequate compensation accuracy. This variable spacing policy was

mentioned earlier and is the basis of point mass modeling techniques.

We can use the integral kernels and our knowledge of expected flight

path to select a grid schedule of approximately equal statistical influ-

ence. That is, the error introduced by the finest grid spacing terms

should be on the same order as that expected from the coarsest grid

spaces. Such a technique, it must be noted, will place flight path

restrictions on the mission if we intend tc salvage the accuracy for

which we are building the compensation.

The problem of approximating these integrals, as noted in the

previous section, might be handled with integral transform methods.

The computational structure of the Fast-Fourier Transform makes it

attractive. The data could conceivably be transformed pre-mission

leaving only the interpolative inverse transform as real-time computa-

tional burden. Some research is required to adapt these FFT methods

to the variable grid spacing that we must consider.

These, then, are some of the basic theoretical concepts and

concerns relating to our gravity modeling task. We are at a point

where concrete plans can be made for futare research. The subject of

gravity modeling, as we have seen, is broad and reaches into the fields

of Physical Geodesy and Inertial Navigation. Some thought must be

given to a proper division of responsibilities in the oveaI resea,, h of

this subject.
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.3. The Geodesy Connection

To get the total view of this process, it is instructive to consider

a signal flow graph of the "information" stemming frcm the mass dis-

tribution and terminating in the navigation estimates. With some

poetic license, Figure 4 presents such a view. This figure graphically

displays the chronological processing of gravitational information with

emphasis on the new tasks associated with the augmentation of the refer-

ence field model. We shall discuss the nature of these tasks which

compensate the reference field. We shall, also, describe how the

design error budget provides criteria for model performance and, in

general terms, how the model selection process should logically be

conducted. These concepts are important because the proposed

research will be conducted along lines compatible with model selection

even though it will not include a complete trade-off study for every con-

ceivable model compensation method. Finally, as mentioned previously,

we shall discuss the logical assignment of these new tasks to the fields

of Physical Geodesy and Inertial Navigation.

Before we cover these interface concerns, we need to reestablish

what the term "model" means. As shown in Figure 4, the complete

gravitational model consists of two parts: (1) The reference gravita-

tional field based on a surface-approximating ellipsoid and (2) the com-

pensation ,nodel which calculates local variations. The standard names

and notation become troublesome at this time since the disturbance

vector, 6f,, which has been treated as a perturbation quantity, is now

55



Vo]~n~ rI.'~r~h n~C q. (!~)& (27)

'"t'o r inematice

e n~)± I nd/or

Processile: Rtecove effect of reference field.

Gridded estimatos of I nd/or {()4

Anomalous quantities a= 1  
-

Disturbance
Comsp3ationt
Selection

Trantsformed Direct Functional ?Oint-Mnass

In~to rals Integrals A *ron-/
gilbrt rnnfor ofcoefficient V~ass element
HibetTrniom fIdentification identification

Gri'3dcd data.

Interpolative Tnte.-ral Element tOelcQtioi & SUM~at ion of

Inverse Transform Approxim'ationt Function evaluation IPoint M--33 fields

6R

222 
2

Grav~.itton G~f 'esrdBeii oc

Calculation r 'f paurdseii oc

st t atcd -g?( ),Z t ) stinated initial
Oravt.%ioncondlti~n

Figure 4. Gravitational Information Flow Graph

56

hIW



being approximated. We need an unambiguous name and symbol for the

new residual gravitational modeling error. We shall continue to call

the variation from the reference field 81. The ellipsoidal field in

earlier discussions was synonymous with the model. Since our new

model will include this ellipsoidal one as an element, we shall refer to

it as the reference field, symbolized by Gref(.). We shall refer to the

compensation model as such and use the symbol 8ai(.). The remain-

ing residual disturbance will be symbolically A(-). With these new

definitions (5) on page 9 should be rewritten as

5  G(re) =.ref(r) G(re). (5a)

Our complete model is now

2 m(e) = Siref(re) - 8&m(re) (48)

The traditional modeling methods can be viewed as a degenerate form

of (48) with 6Rm defined as a constant zero vector function. The

residual disturbance vector is then defined by

G(re ) G (re) - G(re) -[&m(a e )  6,(re]i. (49)

In Figure 4, C refers to 8&n(r) and _ refers to Cm(). With themsm

notation issue resolved, we can discuss how this new modeling process

will be accomplished.

Again returning to Figure 4, we will require an extensive local
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gravity survey to provide the short spatial wavelength information

necessary for model improvement. This survey data, taken over a

grid convenient for measurement, must be reduced to the reference

surface and interpolated to form a data sot on the grid which we shall

establish for model parameter identification. This interpolation will

undoubtedly be necessary since the parameter identification algorithm

must work for arbitrary survey grid structure. The parameter identi-

fication and functional evaluation blocks are shown for four example

compensation methods. We can see the variety of forms these tasks

might take. The parameter identification varies considerably from

possibly using the interpolated gridded data directly as a parameter set

to the search procedures already developed for point mass modeling

(Ref 30). After the modeling method has been selected and the param-

eters have been identified, the model is completely defined. The next

step, functional evaluation must occur in the navigation computer for

real time compensation since the position estimate is required. Once

this gravitational disturbance estimate is combined with the estimated

reference field, the INS algorithm is unchanged. Figure 4 provides

examples of how such compensation might be accomplished. Clever

computational schemes might eliminate some of the blocks but the

equivalent of the'four tasks must be accomplished: survey, process to

computational grid, identify parameters and functionally evaluate.

The new tasks fall into categories based on the discipline primarily

responsible for the theoretical development and implementation of the
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task. The gravity survey and subsequent data processing are in the

province of Physical Geodesy. The real-time functional evaluation is

obviously in the field of Inertial Navigation. The remaining tasks of

model selection and parameter identification are at the intersection of

these fields of interest. The functional evaluation accuracy is so

dependent on parameter identification criteria that these tasks right-

fully belong together. The model selection has a pervasive effect on

the nature of tasks performed in either area. The choice of compensa-

tion method will rest on a trade-off which is difficult to describe in

generality. A specific design setting provides the constraints and goals

to structure such a trade-off without lapsing into abstruse generalities.

Let us construct such a design scenario to understand how the com-

pensation selection process might logically be conducted. The navigation

subsystem will typically be given an accuracy criteria based on some

overall system performance requirement. This crit 'ia is based on an

expected environment and is usually statistical in nature (e. g. rms posi-

tion, velocity, and attitude levels throughout the mission). Suppose we

have been handed such an error budget. Furthermore, suppose we have

performed some analyses along the lines suggested by Levine and Gelb

(Ref 21) which indicates that the ellipsoidal reference field is unaccept-

able as a total model. Such a scenario might be a strategic bomber

mission which precludes electro-magnetic emissions for detectability

and which assumes other navigation aids will not be available. We con-

clude then that we must provide some compensation to the reference
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field to decrease the effects of gravity disturbances. The INS error

budget must be decomposed to budgets for the elements of the INS (e. g.

accelerometers, gyroscopes, gravitation model, and algorithm numer-

ical quantization). With this parceling out of the error budget, the

gravitational model will have a specific accuracy goal to meet. The

next step is to select a compensation scheme which meets this derived

criteria and which is least burdensome in some overall sense.

"Least burdensome" is subjective since many diverse costs must

be considered. The spectral content of the gravity disturbance, if

known or approximated, will allow us to specify a minimum spatial

frequency to accomplish the accuracy goal. By the Shannon sampling

theorem this implies a minimum density for the gravity survey. The

extent of the survey will depend on the convergence properties of the

compensation method. As we have seen, the coating method tends to

converge faster (in a spherical cap size sense) than the direct Stoke's

integral method. The coating method requires two types of input data,

however, so survey extent is not a full account of survey cost.

The data processing task, also, depends heavily on the compen-

sation model choice. The integral techniques and the point mass model

need data over a two-dimensional surface. The functional approxima-

tion methods, however, need a three dimensional array of information

for the three-dimensional function parameters (e.g. Ref 43). This

processing of raw survey data and model parameter identification will

likely occur pre-mission with relatively large computational facilities
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used. So, the costs may be less onerous in this area if the method is

particularly efficient in the functional evaluation phase.

On the implementation of a real-time computation, the constraints

and costs are primarily associated with the airborne computer memory

storage and computational cycle time. The fine gravity model for

Reference 24, for example, requires over 10, 000 point masses. Each

point mass requires four parameters; so, over 40, COO memory loca-

tions might be required for parameter storage alone. Furthermore,

the functional evaluation requires the summation of the Newtonian gravi-

tational acceleration from each point mass. The impact of such mas-

sive computational and storage requirements can be put in perspective

when you consider that operational flight computer memories, today,

have less than 40, 000 words for data and program storage. Prototype

computing systems with mega-word capability are available. So, future

systems may have the flexibility to consider these more complete com-

pensation models.

The crux of all these costs is the compensation method. It is

clear from the costs associated with the survey and the real-time eval-

uation that some comprehensive, coordinated model selection study

must be performed for each different mission and system. While the

proposed research does not cover the total model selection issue, it is

important to realize these issues to keep the proposed work in context.

The structure of the study and the motivation for many assumptions and

procedures will be founded on these considerations. That is, we shall
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assume that the least costly method to reach a prescribed mission

navigation accuracy is the driving force behind what we do.

The proposed research will concentrate on the Inertial Navigation

aspects of the problem. We shall assume that the Physical Geodesy

connection exists and will provide the required gravitational data on a

computationally convenient grid. Thus, we shall concentrate on mini-

mizing the real-time INS costs. Again, the proposed research should

be viewed in the context of providing information to answer the larger

issue of model compensation selection.
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III. Research Topic

The background of INS gravitational modeling shows the grow-

ing need to develop and demonstrate techniques to compensate the

traditional (usually ellipsoidal) INS gravitational model. The research

proposed in the following sections addresses the system design prob-

lem of selecting a compensation modeling concept and of selecting the

level of model complexity (i. e. number of parameters) consistent with

design constraints. The problem is placed in this context by address-

ing the design trade-off between the system performance cost and the

system resource cost associated with the gravitational model. The

specific objective is to provide the analytical means to evaluate model

performance at the system level so that one can choose both the model

concept and the degree of model complexity. We shall discuss below

the general setting for the overall analysis required to select a gravi-

tation model. The problem is partitioned in such a manner that the

fundamental analysis required is to determine INS performance for a

finite set of design missions. All higher level problems can be

approached given this basic analysis capability. An example is sug-

gested to demonstrate the analysis method since many of the analysis

steps depend on the modeling concept.
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A. Study Context

An abstract study of gravitational modeling errors seems a

barren exercise to one aware of the strictures of an operational, real-

time environment. The choice of a gravitational model is made in a

system design context. The gravitational model is one component of

the INS which, in turn, is an element of some larger system designed

to perform some mission. The gravitational model is not intrinsically

interesting from this total system perspective. We are interested in

the effect modeling errors have on system performance and the

impact of the model on such system resources as computer memory.

A conflict exists between our desire for increased performance and

for efficient use of resources. An increase in model complexity can

yield improved system performance, but it implies additional com-

puter usage. This conflict generates a system design trade-off which

requires evaluation of both model performance costs and model

resource costs to answer questions such as:

1. Given X amount of computer memory (or computation time)

which model concept at what degree of complexity yields the best

system performance? and

2. Given Y system performance criteria (say rms position

accuracy) which model requires the least computer resources?

The context of this study will be to provide the analytical methods to

answer such design trade-off questions. This approach should make

the resulting methods immediately applicable and the motivation
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more comprehensible.

We shall concentrate attention on the performance cost evalu-

ation, but we will need a measure of system resource cost as a foil

in the trade-off exercise. The modeling concepts we shall consider

have the quality that, barring other errors, they can represent true

gravitation to any desired level of residual by increasing the number

of model parameters (e.g. more point masses). Model complexity

shall be used synonymously with number of parameters. The compu-

tational overhead for each model concept is the algorithm storage

requirement. For a given model concept this requirement should not

be strongly influenced by the number of parameters to be processed.

We shall neglect this algorithm storage cost in our analysis since we

shall concentrate on one modeling concept as an example. Of course,

this cost must be considered in any comparison between different

modeling concepts (e.g. point mass versus Stoke's Integral).

The other side of this system design trade-off is the system

performance cost. We consider those applications where a system

"miss" is directly associated with navigation accuracy. The system

miss is assumed to be in the form of a miss vector which has com-

ponents we wish to drive to 2,ero (e.g. downrange and crossrange

miss for a ballistic weapon delivery). We assume a system cost

function is associated with this miss vector. This cost function maps

the miss vector space into the real numbers and provides a means of

ordering miss vectors as either more or less costly in comparison
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with other system misses. Our system design must account for a

wide range of operational environments for a given mission. So, we

want to decrease the expected value of thie system performance cost

over the range of missions and environments. The nature of this cost

function and the nature of the statistical expectation are important in

formulating our analysis method.

From a system perspective, we desire a measure of the system

performance cost which reflects the evaluation of system cost function

for .every conceivable mission and environment--a weighted sum or

integral. The weighting should include not only the probability of a

given mission but the relative importance of that mission with respect

to other missions, as well. Such abstract analysis is not performed

in system design studies because the resources to conduct such studies

are lin.ted. The integral over all missions is approximated by a

discrete summation. The mission space is subdivided into mission

regions each of which is represented by one design mission.

The ICBM provides an easily understood example of this mis-

zion partition concept. For a given target range and azimuth theIICBM usually has two solutions to the two point boundary value prob-

lem: burn-out state vector to hit a specific target. This generates a

discrete (binary in this case) partition of the mission space into low

and high trajectories. The range and azimuAh offer a two-fold con-

tinuum for mission partitions. A design mission might, for example,

be specified as the high trajectory for range X and azimuth Y. This
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design mission would represent in our system studies all high

trajectory missions over a set of ranges within X + AX and over a

set of azimuths within Y + AY. A collection of such design missions

can be analyzed and the results combined with appropriate weighting

to approximate the integral over the mission space.

The mission space for a strategic bomber, for example, is

much more complex due to the system's flexibility. This diversity

would be reflected in a higher number of design missions--not a

change in the analysis method. So, we can focus our attention on pro-

viding the analysis methods to characterize the gravitational model

system performance on a restrictive mission type. A mission taxon-

omy can be based on geometry and the geography. The geometrical

qualities one might use are, for example, range, altitude and azimuth

relative to downrange. If mission velocity is not prescribed by these

geometrical considerations, the mission partition must include these

variations. The mission type is, also, characterized by such geo-

graphic considerations as the area of mission origins and the azimuth

of the downrange grouidtrack. Both geometric and geographic terms

affect the system level performance of the gravitational model.

The design mission can be used to characterize the effects of

anomalous gravitation for a region of mission space. The variations

of gravitation within the geographic bounds of the mission region is

che underlying random process. The INS error dynatnics are also

influenced by the geographic region (e.g. Foucault mode, see
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Ref 1:128). These error dynamics are also influenced by the mission

geometry- -primarily the radius magnitude. The mission velocity

translates the gravitational disturbance quantities from the spatial to

temporal domain. In this manner the design mission can be used as

an analysis tool.

To realize this goal we must account for the variation of gravi-

tation within the geographic region of interest. The gravitational

disturbance information for this region can be statistically summar-

ized in terms of reference surface covariance functions of anomalous

gravitation quantities. We want to include the effect of gravitation

over this entire region since the gravitational disturbance along a

design mission trajectory may not be truly representative of the entire

region. So, we shall seek the performance cost estimate for a given

region as a statistical estimate over all possible gravitational disturb-

ances in the region and structure the analysis for those reference

surface covariance functions we expect to be available from survey

data (see Appendix C).

The variations of the INS error propagation model with geography

is predictable; therefore, we can partition the mission space in such a

manner that the design mission INS error propagation model repre-

sents well the entire mission region. A similar partition a.'gument

can be made for the geometrical variations of the mission space.

Therefore, we shall assume the mission space is partitioned such that

the INS error propagation along the design mission is acceptable over
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the entire range of missions within the mission region. This assump-

tion is essential to define a manageable analysis problem. The vari-

ations of INS error dynamics with geography are smooth enough that

the mission space partitions on this account might be widely spaced.

The system cost function must, also, be understood before

practical analyses can be planned. The gravitational modeling errors

excite the INS error state vectors through well-known (Ref 1) differ-

ential equation models. The specific disturbance time function

depends on the particular trajectory (position-time history). The INS

errors which result from the disturbance input will cause the overall

system to miss some system target. A miss vector space. is defined

in terms of these component deviations from the coordinated system

objectives. While spatial objectives are familiar (e. g. downrange

and crossrange), we can have non-spatial objectives as wll. An

error in time-on-target or attitude errors during antenna pointing

operation are example non-spatial system miss quantities. For our

analysis, we shall consider the mapping from INS error state vector

space to system miss vector space to be linear by use of well known

linear perturbation methods. That is,

Y(t) = H(t)X(t) (50)

where I is the system miss vector corresponding to an INS error

state vector X. The techniques developed can be generalized to a

broader class of mappings (i. e. convex) but the linear model should
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apply to most problems of interest.

We assume the miss vector components are each important to

system effectiveness such that an increase in the magnitude of any

component implies, by itself, an increase in the system cost function.

The system cost function is assumed to be a positive definite, convex

functional over the system miss vector space. This assumption

should certainly characterize the performance for a region near the

origin of the miss vector space. The motivation for such assumptions

is to describe those problems for which the analysis can concentrate

on the INS error state statistics. To reach this goal, we must have

the capability of reflecting a system cost criteria back onto the miss

vector space and then onto the INS error state space. The effect of

large scale miss on system effectiveness is not necessarily well-

modeled by such convex functionals. The probability of kill envelopes

for nuclear weapons, for example, define markedly non-convex sets

due to the various effects of the weapon. In such cases a convex cost

functional can be derived by forming a performance index from the

maximum or minimum level within a radial distance from the aim

point. The alternative is to generate the statistical performance index

by Monte Carlo analysis techniques.

With the convex functional assumptions, we can formalize the

relationship between system cost criteria and the gravitational model-

ing errors. This relationship is normally established through a

system error budget.
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The system error budget is a design tool used to distribute the

performance cost criteria, through analysis and assumption, to vari-

ous system error sources. Once established the error budget forms

the subsystem design goals for a design iteration. The cost is

assumed to be stated as a level on the expected cost (e.g. circular-

error-probable less than 1 n.mi). This level criteria yields an inter-

val on the positive half of the real number line which corresponds to

acceptable expected system performance cost. The inverse image of

this acceptable interval onto the miss vector space defines a convex,

compact set with symmetry in each of the miss vector component

directions. The miss vector set so established can be related to the

statistical expectation of the various system error sources. The INS

allocation of this acceptable expected error set can be reflected onto

the INS error state vector coordinates. Since all INS error state

coordinates may not contribute directly to system miss, the INS

error state set so defined may not be bounded. With our previous

linear assumption it will be convex and symmetric with respect to all

component directions. Thus, we have a set which we can view as a

restriction on the INS error state covariance matrix.f, We shall not treat system cost functions or miss vector coordi-

nates in further analyses since, under our assumptions, these concerns

can be stated as constraints on the INS error state covariance matrix.

The INS error state covariance restrictions s'o derived are, in turn,

distributed across the INS component error sources--the gravitational
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model being one such element. In this manner, we view the design

criteria for the gravitational model to be stated in terms of bounds on

the INS error state covariance matrix resulting from gravitational

modeling errors acting alone. An inherent assumption in this process

is the independence of gravitational modeling errors from other INS

error sources (e. g. accelerometer noise) and from other system

error sources (e.g. errors in the estimate of ballistic coefficient).

With this manner of specifying the system level performance

of the gravitational model, we need to develop analytical means of

estimating the INS error covariance matrix which results from gravi-

tational modeling errors acting alone. The necessary elements of

this analysis have been discussed previously. We need the mission

type description to fix the INS error propagation model. The geo-

graphic region defined by the mission type can be used along with

gravity survey data to estimate the covariance of anomalous gravita-

tion. We must devise a means of altering this anomaly covariance or

anomalous potential covariance to include the effects of our additional

modeling of the gravitational disturbance. That is, we need to derive

the covariance of the residual field qu itity.

Then, an analytical means must be derived to propagate this

expected gravitational modeling residual noise through the INS taking

into account the design mission effects on both the residual gravitation

field statistics and on the INS error propagation. The means for

accomplishing this task must be statistical. If we knew the gravitational
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field exactly along all mission trajectories, we could form the

ensemble statistics through well-known statistical techniques. Lack-

ing such extensive information, we can form the outer product of the

INS error vector and apply our expectation operation over the mission

region. As discussed in Appendix C, the INS error covariance from

gravitational modeling errors has been studied by simulation methods

for some rather benign INS missions. Since we want a method which

is generally applicable, we need analytical methods which are not

restricted to simple mission geometries.

This generalized design mission analysis technique will pro-

vide the answer to whether a proposed model concept and complexity

level provide acceptable system level performance. The system

resource costs can then be compared for various model concepts or

the system level performance can be compared for fixed system

resource investment. The design mission context allows us to address

the overall system mission performance by analyzing a finite, but

representative, subset of missions. The information on system per-

formance and system resource costs can thus be made available to

answer the design trade-off questions which will arise in selecting an

extended gravitational model.

B. Specific Objective

The goal of this research is to provide analytical methods for

selecting a computationally efficient, INS gravitational model which is
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accurate in terms of expected INS accuracy. The research will focus

on providing a means of estimating INS errors due to gravitational

model errors acting alone. The system resource cost will be approx-

imated as a linear function of the number of gravitational model

parameters.

C. Implementation Study

The method discussed above will vary with the model concept.

The reason is that the residual field depends entirely on the manner

in which the anomalous field is modeled. The Poisson Integral (36)

will be analyzed as an example to demonstrate the application of the

method. The hypothetical design study will be to determine the

Poisson Integral approximation grid which meets an INS accuracy

criteria with the minimum number of grid elements (i. e. number of

parameters). The Poisson Integral was selected as an example

because (1) it has not received much attention in previous works; (Z)

current satellite alticnetry will provide the necessary data base over

large regions of the Earth; (3) this integral may prove amenable to

solution by transform techniques; and (4) the relationship between

gravitation and potential is more straightforward than the relationship

to gravitational anomaly which is the data basis for Stokes Integral.

D. Assumptions

The following assumptions will be made in this research. The

assumptions fall into one of two categories:
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1. Those assumptions which provide details outside the direct

path of the proposed research (e.g. on survey errors), and,

Z. Those assumptions which clarify the objective and ensure

mathematically tractable results.

The proposed research will not deal directly with either survey

errors or total gravitational model algorithm computational require-

ments. These quantities are needed to complete the analysis and we

shall assume

1. That system resource cost will be reflected in the number of

model parameters (i.e. number of grid elements for Poisson

Integral example),

Z. That gravity survey and subsequent data processing will

isupply anomalous potential estimates on an arbitrary, con-pu-

sationally convenient grid, and

3. That survey errors are independent of the data and are a

white, Gaussian, two-dimensional sequence.

The assumptions which will be made to yield tractable mathe-

rnatics have, for the most part, been discussed previously. The

additional assumptions on the anomalous and residual fields seem

reasonable and yield significant simplifications in the covariance

functions (see Appendix C). These assumptions are

1. That system performance cost will be stated as a restric-

tion on the INS error state covariance matrix'due to gravitational

model errors acting alone,
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2. That the design mission represents the entire mission

region for INS error propagation modeling,

3. That the statistics of the anomalous gravitational field are

known or can be approximated over the reference surface in the geo-

graphic area of the mission region, and

4. That the statistics of the anomalous or residual field are

well-approximated by assuming either field is a homogeneous and

isotropic process over the reference surface.

E. Proposed Approach

A major portion of the approach to this problem is contained in

the Problem Context section. For a general class of INS applications,

the overall model selection process is based on the performance

results from a finite set of design missions. The basic problem

remaining is to develop an analytical procedure for determining the

expected system performance, on any specific design mission. To us

system performance is synonymous with the INS error state covari-

ance matrix, given (1) the model concept, (Z) the model complexity

level, (3) the regional anomalous field statistics, (4) the design mis-

sion, and (5) the survey error statistics.

This problem will be broken into two distinct parts (see Figure

5). In the first phase, we shall characterize the residual gravitational

field statistically. For our Poisson Integral problem this summary

will be in the form of the residual potential covariance function over

the reference surface. This residual field statistic will contain all
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necessary information on the gravitational model, the mission region

and the survey errors. The second phase of this analysis is generally

applicable for all model concepts. Given the residual field statistic

from the first phase, we shall form a statistical estimate of the system

cost function based on the design mission and our INS error propaga-

tion model (Refs 1 or Z).

Along with this system performance cost our implementation

study will use the model complexity as the system resource cost. We

shall investigate the solution to the design trade-off question: Find

the least complex Poisson Integral approximation which meets an INS

accuracy level specification.

The start of this overall analysis is to form the residual field

statistics. For our Poisson Integral problem, we assume that the

anomalous potential covariance function K(R,R') is known (see

Appendix C for a general discussion of such covariance functions).

The radius vectors R and R' are on the reference surface of radius R.

The covariance argument will usually be simply the central angle, *,

separating R and R'; the form K(R,R') will be used, however, to allow

a more general class of arguments. We shall use K(R, R') for the

worldwide covariance function. The symbol E will signify the mission

region being considered and K(R, R'; E) will be the anomalous potential

covariance formed from data in the geographic region associated

with E.
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The modeling of anomalous gravitation results in a residual

field with statistics dependent on the anomalous field statistics and the

model approximation performance. The residual potential covariance

function will be called K *(R, R') and this quantity will be formed for

our Poisson Integral example.

We are using this example to provide concrete terms for what

would otherwise be an abstract analysis. The nature of how we

approximate the Poisson Integral will influence the results. Recall

(36)

A - ~ 2 -R)C'(T () J do (51)
SiRl-ri3

where T is shown in Figure 4 on page 56. We shall approximate (36)

directly rather than use the Equation (44). This choice was made for

example simplicity since otherwise we would need to analyze the three

integrals of (44) in addition to (36). The spatial derivative will be

approximated by a discrete number of evaluations of (51) in the vicinity

A 'of the navigation position estimate, r. We shall approximate (51) with

a finite sum replacing the integral. The sum will be formed from a

uniform grid of square surface elements. We shall neglect any prob-

lems these square elements encounter in covering the spherical refer-

ence surface because the grid extent will be limited. From our

previous Stokes Integral discussion, we expect the integral approxi-

mation to converge slowly as the grid extent increase past ten degrees
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of central angle from the evaluation point. Depending on the stringency

of our INS accuracy requirement, we can anticipate a relatively small

grid will suffice for many applications. The approximation to (51)

will be

R(r -R AjT(R) (52)
4 j=l 1R-j- r13

where A. is the area of the jth surface element and m is the number

of grid elements. With our uniform grid we get

R(rZ-RZ) AM ^T (53)T ( - 4 'I3 (53)
j=l-3R-I

The Poisson Integral approximation model concept has com-

plexity level indicated by m in (53)--the number of grid elements.

Since the radius of the reference surface is fixed at R, we need two

parameters to specify the grid point R- which applies to the survey

data 'i (Rj). Thus, three computer memory storage locations might

be required to identify the required information. We can use the uni-

form grid structure to reduce this storage to just the anomalous

potential data with a grid center point, for example.

The kernel of (51) is well behaved for all r such that r > R. So

our data {(Rj)"- is without survey error, we expect (5Z) or (53)

to converge to the true value in the limit as ri ->co and each A. 0.

This quality is the prime motivation for choosing such integrals as
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the basis for a model concept. Another way of specifying the grid is

by the spherical cap size and the gril element dimension.

The spherical cap is the reference surface area within a central

angle *o (discussed previously) of the evaluation point r. The element,

being square, is specified by the length of the side, h. We expect

convergence as *0 "0 f and as h -> 0. The choice of this pair is moti-

vated by the symmetry of the (51) kernel radially from r and by the

connection of h with the Shannon Sampling Theorem- -here applied to

representation rather than sampling.

Clearly for a fixed m, there exists a family of (*o, h) pairs

which satisfy the equation

- total cap area _ 2 RZ(l-cos %'o) (54)
grid element area h2

We envision the INS specification as a partition on the * 0-h plane

dividing the possible grid designs into acceptable and not acceptable

grid specifications. Our task in the implementation study will be to

select from the "acceptable" set the grid specifications which mini-

mize m.

We shall discuss this problem later, our task now is to form the

K* function and this grid design data is needed. Recall that in forming

K* we assume the grid design (i.e. *'0 and h) is given as part of the

model definition. Clearly the statistic K * is a key to our predicting

INS error performance with our compensated gravitational model.
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The method of determining K*(R, R';-) from K(R.,R';9) nnd the grid

specifications is a major problem to be undertaken. We know, by

Shannon's Sampling Theorem, that the grid spacing affects the fre-

quency content of the residual field. So, expanding K(R, R';E) in

spherical harmonics may provide the insight for accounting for grid

size effects. The cap size study should follow the previously dis-

cussed methods of Hirvonen and Moritz (Ref 64 and Ref 14:242-243).

Since the survey errors are independent from the data (potential

in our Poisson Integral example), we can treat their contribution at

the covariance matrix level and write K* as

K*(R,R;e) = Km(R,R';9) + Ks(R,R') (55)

where K is the covariance of the residual field assuming perfectM

data and Ks(R,R') is the extended survey error covariance function

which results from the Poisson Integral acting on Ks(Ri, R-).

We want K. and Km to be symmetric with respect to the central

angle argument for later computational ease. We can study K. by

considering the Poisson Integral as merely performing an interpolation

between grid points. The details for this development have not been

completed. A simple one dimensional example will illustrate the

intended approach. Suppose our grid points are R 1 and R2 and we want

an evaluation at Re [Rl, R2 ]. Then we may express R as

R =R l + (I - a) RZ (56)
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for 0 < 5 < 1. Using the parameter a and the grid data we form our

interpolation as

ji(R) =aT(RI) + (1 - a)T(R 2 ) (57)

Let
T(Ri) = T(Ri) + qi (58)

for i = 1 and Z where qi is the uncorrelated error associated with the

i t h survey data point. We have then

2 ~ for i = j (9
9[qiqj] = T (59)

10 else

Using our definition for error again, let

T(R) = T(R) + qT(R) (60)

where qT represents the total error at R. Combining (57), (58) and

(60) we get qT(R) = qm(R) + qs(R) (61)

where qm(R) is the error due to our interpolative model given by

qm(R) = a T(RI) + (I - a) T(R 2 ) - T(R) (62)

and where qs(R) is the error at R due to survey errors at R and R2

given by

qs(R) = aql + (1 -a) q2 . (63)
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By our assumed independence of the survey errors with the true field

we get

[q'(R)] =-C(q(R)] +e[q2 (R)]. (64)

Now the survey error contribution to this covariance can be calcu-

lated using the property expressed in (59):

6[Z() =(I - 2ar+ 2a ) us 2 (65)

With 0-2 a constant statistic across the grid, we would find this form

repeated between each successive pair of grid points. The Poisson

Integral approximation can be viewed as a two dimensional interpola-

tion using all grid data points. While the analysis for Ks(R, R" of (55)

will be more complicated, the example above demonstrates the intended

approach.

The statistics for qi(R) abovt would be uC[qZ(R)]. This quantity

corresponds to Km(RR';O) of (5). We shall approach this quantity

in an entirely different mali .- r. The grid direction will be such that

the downrange groundtrack lies along a partition boundary. The

distance between data points will be h so we can apply sampling and

approximation theory to form Kr(R,_R';E) from K(R, R';e). This

analysis is incomplete at this time, but the approach will be to assume

Km(RjR ;O) = 0 since the infinite kernel of (52) or (53) implies the

weighting of the true field at that point will be such that the remainder

of the data points can be ignored (recall Km deals with perfect data
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since K. incorporates the survey errors). A means of formulating

the error at points on the reference surface between the gridded data

points is required. Given this error function, the covariance will be

given by taking an expectation over all gravitational fields we expect

to encounter. This expectation can be construed to be over e and

K(R, R';e ) should provide all the required information.

Assumng K. and Km can be calculated or approximated, we

have K* by (55) which summarizes the statistics of the residual poten-

tial field throughout E. Let 0 signify a mission trajectory; then our

analysis must consider all Oe. Let 0o signify the design mission

which represents the mission region S. We can now form an estimate

of the INS error state covariance matrix.

Using Reference 1 methods, we can model the INS error propaga-

tion for our gravitational residual as

X(t;) = F(t;G)X(t; 0) + G(t; 0) u(t; 0) (66)

where X is the INS error state vec.or including position, velocity, and

attitude errors; F is the error propagation matrix dependent on the

time in to trajectory 6 by the associated geography and geometry; G is

the driving noise distribution matrix; and u is the particular residual

field errors along 0. The driving noise u will conta.n the residual

acceleration 8 and possibly the residual potential 5T for a barometric

altimeter aided INS. For completeness we assume
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u - T "(67)

Since our analysis is for gravitational modeling errors only, we

assume initial conditions for (66) of .(0;8) = 0. (68)

We can iorm a solution to (66) using a state transition matrix

which satisfies

i . (t, tl;O) = Flt;a)(D(t, tl;0) , 69)

and

4(t, t;" ) =I (70)

where I is the identity matrix. Such a matrix also satisfies a semi-

group property

d,(t3 ,tl;O) = )(t3,t2 ;8)4)(t2,tl;O) (71)

Using b(t, tl; 0) with (66) and (68) we get,

t

X(t;9) f. 0(tp; O)G(p;0)u(p;O)dp (72)

0

Forming the outer product of this error vector yields

( T t OX_(t; 0 ) = (t, p; o)G(p; 0 )_ p;O)__(q; o)GT(q;O0)(D (t, q;o0)dpdq

0 0

(73)

Now, we define the INS error state covariance function, PXX(t), as the

expectation ', over all missions 0 within the mission region E.
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That is,

Pxx(t) = (t;O)LT(t;O)1 .  (74)

Gee

Equations (74) and (73) give a truly general definition of PXX due to

gravitational model errors. For cases with a small set of trajectories

and with a well known gravitational field, these equations provide the

total analysis. For most cases of interest the mission region e con-

tains a continuum of trajectories and we know very little about the

field for any particular 0. We seek then a less general form of (74)

which is better aligned with the information we expect to have avail-

able.

One mission pace partition requirement was that each mission

region, such as e being discussed here, is well represented by a

single design mission 80 as far as INS error dynamics are concerned.

With this stipulation applied to (73) we get

T ft t T TX l;O)Xl t;O) =f D(tp)G(p)u(p; )u (q; o)GTlq)4)T(t, q)dpdq (75)

0 0

where (D and G are defined for 00. Now applying (74) to (75) we can

take the expectation operation inside the integral to yield

t t
Pxx(t) -o' (t,p)Glp)Q.r K*(R,.R )] GT(q) t, q) dpdq

0 0

(76)

where
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* TQ(r(p),r(q),K (R,R0;e)] = R u(p;0)u (p;0)j (77)

and r(p) and r(q) are on 0 since 00 also represents the geometry

associated with the GEe. The Q-matrix is discussed in Appendix E.

The covariance function K*(R, R';8) characterizes the residual field

statistics as a function of the geometry inherent in the R and R1 argu-

ments. This function can be continued upward (see Appendix C) to

form K(r, r_';). Now given 1(p; 0) and r(q, 0) as geometric arguments

associated with the trajectory 0, we can form K*r(p, o),r(q, ); E)].

From this function we can form a Q-matrix for each 0. Since the K*

func Ion is a function of the geometry of r(p, 0) and-r(q, 0) we can use

the evaluation along the design mission 00 to approximate the expecta-

tion over all Gee.

In (76) we have the analysis method we have been seeking. The

covariance Pxx provides the data for either computing system-level

performance cost (see Appendix D) or for comparisor to an INS-level

accuracy criteria for the gravitational model. The gravitational

modeling errors over e are summarized in the Q-matrix and their

expected effect on INS estimates are propagated through the G and (D

functions. Equation (76) appears to be a useful form for other

analyses, as well. For example, suppose our original question were

"Do we need to consider more than the reference field model to meet

our INS gravitational model error budget?" To answer this question

we apply (76) to each design mission using K(R, R'; e) rather than K*
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since our hypothesis is only the reference field. We can estimate the

ultimate accuracy attainable by forming an equivalent continuum

version of K. and applying (76) with this covariance under an assumed

perfect Poisson Integral approximation. These analyses forrr a worst

case, with K(,R'; e), and a best case, with Ks(R,R'), set of numbers

which will be useful in judging the relative effectiveness of our model.

Also, if one were designing a Kalman filter for an INS applica-

tion, (76) allows for explicit consideration of this system noise source.

Another possible use, along this line, is to let (76) provide the sta-

tistics for a truth model gravitational noise model at the INS estimate

level.

Equations of the form of (76) appear in Kalman filter devel'np-

ment and are typically put in differential equation form for computer

solution. The appearance of rjp) and r(q) in the Q-matrix argument

list will complicate this approach. The first step is to differentiate

(76) with respect to the mission time t:

tP'xx(t) =G(t) Q[rt),rE(q); K* ]GT (q) (DT (t, q) dq

+ F(t)Pxx(t) + Pxx(t)FT(t) (78)

subject to

Pxx(0) : 0] (79)
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Q is a covariance matrix hence symmetric so

Q(!(t), r(q);K*] = QL(q), r.(t);K*] (80)

We can rewrite (78) as

P=(t) = G(t)D(t) + DT(t)6Yt) + Px(t)FT(t) + F(t)Pxx(t) (81)

where

D(t) = j QL.(t), r(q);K*]GT(q)Tt, q)dq (82)
0

The r(t) in the Q argument of (8Z) makes it undesirable to continue

with a D(t) equation for computational purposes. The set (81), (82)

and (69) subject to initial condit.lons of (70) and (79) form a complete

set for computational analysis. The approach will be to write com-

puter programs to solve the differential-integral equation set so

defined as a means of estimating the INS-level performance of the

gravitational model.

While the differential form of (82) is computationally unwieldy,

this equation is importa-At for the insights it affords.

b(t) = QLr(t), r(t);K*]GT(t) + D(t)F T (t)

+ -Q[~, r(q):K*]~ X(t)GT(q))T( t, q)dq. (83)
ft Iar ~ r r(t)

The first term on the right hand side of (83) represents the new
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gravitational disturbance entering at point r(t). The second term is

just the propagation of previous errors. The third term represents

a "missing link" between the analysis leading to (76) and our previous

intuitive examples. The partial of Q-with respect to a spatial variable

can be shown to be related to the g:avitational tensor F of the residual

field. The v(t) term is the mission velocity which in conjunction with

Fforms the time varying gravitational. disturbance derivative.

In summary, the system-level performance cost estimation

occurs in three distinct steps. This process is shown in flow chart

form in Figure 5. The model concept, mission region, and survey

characteristics are used to form a residual field covariance functicn.

This function along with the INS error dynamics and the design mission

are used to form the INS error state covariance matrix as a function

of time into the mission. This covariance function, Pxx(t), contains

all the information needed to calculate the expected system cost (see

Appendix D); recall that we do not plan to use J(t) in our example but

shall assume the requirements placed on e[J(t)J be interpreted as

restrictions on Pxx(t).

With this presentation of the approach for performance cost

evaluation, let us turn to the implementation study. We have (76) and

(54) to represent the opposing performance and resource costs. Our

example application is to find the minimal grid (least m) which meets

an INS accuracy requirement. This performance requirement might

be to arrive at terminal time tf with an rms position uncertainty due
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Figure 5. Gravitational Modeling Accuracy Cost
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to the gravitational model of no more than Z feet.

The control parameters for grid specification are 4' and h.

Our task is to select 4o and h to minimize m from (54) such that the

performance cost from (76) meets specification. This problem falls

into the category of constrained optimization. We know performance

will improve as 40 is increased since more information is available.

We expect performance to improve as h decreases, however the inter-

play between h, the mission velocity profile, and the Schuler loop may

cause a surprise. With either decreasing h or increasing *0 we get an

increase in rn-system resource cost. Therefore, we can expect the

minimal grid solution to lie on the boundary of the hypothetical per-

formance cost partition on the 1,0 -h plane.

The example search logic is shown in Figure 6. This figure

is debigned to form an overall flow chart with Figure 5. The actual

search logic will be defined after some characterization studies; e.g.

constant performance cost and constant resource cost studies. These

studies should provide information on the smoothness of constant per-

formance curves on the 4o-h plane. We can also gain some insight

by studying the varia., !ons in performance cost along a constant m

line.

This concludes the description of the Proposed Approach. Any

analysis must face a test to prove its worth. With this in mind, we

direct the discussion to the methods which will demonstrate the

effectiveness of these analyses.
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F. Confirmation Method

The manner of evaluating the developed theory will be by simu-

lating true gravitational fields, by applying the theory to these fields

for a predefined mission, and by studying the errors in a simulated

INS using the derived compensation model. Two types of simulated

gravitational fields come to mind. One type is pure simulation. An

analytical field is constructed to reflect or approximate the statistics

of the observed field--say by producing the same K(R,R';e) as an

empirically derived function. Another simulation approach is to

attempt to reproduce the field in a general area by closed form approx-

imations (e.g. point masses as in Ref Z4). Both methods have advant-

ages. The pure simulation allows us to control the field to the (nearly)

identical statistics upon which our analysis will be based. The real

field approximation will allow a more convincing test of our hypothesis.

To use the analytical fields the survey specifications will be

solved for a predetermined mission type. Grid sampling will be accom-

plished by direct computation of the analytical field equations. Survey

errors can be added to these data for Monte Carlo simulations. Since

the gravitational modeling errors are the issue, the simulated INS will

be initialized with perfect knowledge of the initial state vector and with

perfect alignment. Simulated mission position and velocity along with

the simulated true gravitational field will be used to derive INS sensor

inputs. The INS algorithm, not just the error propagation model, will

be programmed with the INS reference gravitation field compensated
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with the Poisson Integral approximation of gravitational disturbance.

The resulting INS errors can be subducted from the simulated

true and the INS estimated states. These error time histories can be

compared with our specification. A Monte Carlo study with variations

on the true field and the trajectory fixed or variations on the trajectory

with the field fixed is necessary to demonstrate the required ensemble

performance.

G. Ancillary Questions

The confirmation methods will measure our ability to construct

grids which deliver the advertised INS accuracy. The Poisson Integral

will require a major investment of our computer resources, and it is

reasonable to ask what we are getting in return. For example, can

less sophisticated, but perhaps less flexible, compensations be com-

pared. To put the Poisson Integral in perspective this question and

others will be addressed:

1. How effective is a pre-mission initial condition offset based

on the nominal trajectory and a possible more complex

model for ground-based evaluation?

2. What is the sensitivity of our performance to the choice of

nominal trajectory?

3. How sensitive are our results to errors in covariance func-

tion K(R, R')?

4. Can the integral be implemented by transform techniques?
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5. Can the grid spacing be varied in the crossrange direction

to lower the number of elements required?

9
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IV. Outline of the Final Report

The dissertation will be based on this prospectus. The back-

ground provided herein will, with some modification, be repeated in

the introductory discussion. The completion of the theoretical analysis

with the necessary basis from the proposed approach herein will be

recorded. The numerical confirmation tests and ancillary questions

will be provided in the results section. The major subdivisions and

their general content should be as follows.

1. Introduction: The background discussion necessary to put

the theoretical work in context. The reference gravity model

will be more thoroughly discussed- -perhaps as an appendix.

2. Theory of System-Level Performance Cost Estimation for

Gravitational Models: Completion of the development leading

to (76).

3. Theory of Poisson Integral Approximation (for INS applica-

tion): The fundamental theory will be cited and summarized

for the Poisson Integral and for the approximation of such

integrals by finite element summation. The developments of

the Proposed Approach will be repeated and completed.

4. Implementation: Those considerations necessary to bridge

from theoretical development to computer code.

5. Example Application Problem: Discussion of the minimal
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grid problem.

6. Numerical Results: The confirmation studies and replies

to the ancillary questions.

7. Summary and Conclusions: Self-explanatory.

8. Suggestions for Future Research: Self-explanatory.

9. Appendices: As required to package lengthy developments

not directly in line with the theoretical development.

F9
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V. Air Force Applicability

The applicability of the proposed research to the Air Force has

been touched on in several sections (e.g. pages 24-25). The precise

and unaided INS is an obvious flexible asset in employing strategic

weapons. The techniques proposed herein, once developed, could also

be applied to the test flight problem. The regression analyses for

identifying INS component error model parameters would employ the

gravitational compensation model to remove the corruption of the

results due to the spectral spillover of gravitah nal disturbances.

The potential for this theory being directly applied cannot truly

be estimated. If the upward continuation integrals can be cast in a

form compatible with Fast Fourier Transform (FFT), the potential

application increases. The onboard memory space in most operational

systems will make the expensive fine model unacceptable. With FFT

formulation we can consider an off-line, separate gravitation com-

puter (see Figure 7) which is an input-output device on the data bus.

Hardware is presently available to perform the FFT "butterfly" opera-

tions. This concept would be an asset for strategic bomber and

missile application. Even in tactical situations we might find a highly

accurate, all-inertial capability useful in many ways.
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VI. Originality

The proposed approach is original in the concept of focusing on

the INS results rather than anomalous gravitation per se. The idea

of using an INS error budget as a criteria or design constraint is

common practice, but the, application to this problem of gravitational

modeling is new. Equation (76) and the rationale leading up to it are

also original. The general applicability of (81), (82) and (69) mean

they can be employed in many ways whenever the rationale fits and

the covariance function is known or approximated. Applying these con-

cepts to the grid specification problem is an uncompleted task. The

end result will be a definite extension of grid specification which might

have application in survey design tasks as well. The remaining task of

deriving the residual potential covariance, K*(R, R; ) from the anoma-

lous potential covariance, K(R,R';e),and the grid specifications should

also provide an original contribution.
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Appendix A

The Gravity Tensor

The gravity tensor plays an important role in the INS error

propagation model, and it has received much attention recently with the

development of inertial instruments, gradiometers, which measure

elements of the matrix. The following discussion covers certain

interesting mathematical properties and addresses the problem of

expressing the tensor in arbitrary coordinate frame

The representative gravitation function, G(re), is only defined

for an Earth-relative argument which we indicate by the generic e-frame

notation. Now, define

(r e ) = d G(re)/d re (A-1)

This quantity will be referred to as the "e-frame gravity tensor."

To explore some of tie mathematical properties of this

e-frame gravity tensor consider its original form. The tensor is the

spatial derivative of the gravitation function which is in turn the spatial

derivative, or gradient, of the gravitational potential function, V(re).

So,

n(r) dV(e)/d re (A-2)

and
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re(j!) = dZV(re)/(d re)z. (A-3)

Consider now a Cartesian e-frame with orthorgonal axes and

.re y (A-4)

Then, 
V

G(r) Vy (A-S)
Vz

where the subscript on V indicates the appropriate partial derivative.

We shall now assume that the mass of the air above the Earth's surface

can be neglected. In practice, gravity data is reduced taking this

assumption into account. Then, in the region of interest V(re) is

harmonic (Ref 14:126-145). This property allows us to state that V(re)

and G(re) are continuous. Then, the second partial derivatives com-

mute. For example,

Vxy = 2 V/ x~y 3V/ y~x = Vyx (A-6)

Since,
Vxy V

re Vyy Vy (A-7)

zx Vzy Vzz-

From (A-6) we see that (A-7) is symmetric. Again, since the potential

function is harmonic, it satisfies LaPlace's equation:

V2V = Vxx + Vyy + Vzz = 0. (A-8)
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So,

Trace Ire(re) 0' (A-9)

With symmetry and (A-8) we conclude that of the nine elements of the

gravity tensor only five are independent.

These mathematical properties of rre) are tied to the

e-frame. Since we encounter other frames of reference in measure-

ments and calculations, we need a means of expressing the gravity

tensor in these frames. This problem is similar to transforming an

inertia tensor from one frame to another, and, not unsurprisingly, the

answer is a transformation of the same form. Consider some arbitrary

orthogonal k-frame. We can express

Gk(re) = Ck Ge(re) =CkGe(Crk) (A-10)

So,
d Gk(r.e)/d rk = Ck [dGe(.re)/d r e ] [dre/drk]  (A-11)

e

And we get,

rk(re) = Ck re (e) Ce (A-lZ)

With these derivations and explanations the use of the gravity

tensor should be clearer.
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Appendix B

Fundamental INS Properties

The propagation of INS errors is modeled by first-order

perturbation techniques. References 1 and Z present a detailed develop-

ment along this line. Some of the more basic modes of inertial naviga-

tion can be discerned from even simpler models. The vertical channel

of an inertial system is unstable, and the horizontal channels display an

oscillation known as the Schuler mode. These fundamental character-

istics appear, in some form, in all INSs. The following development

shows these underlying relationships between the position estimates and

the gravity model in extremely simple terms.

We have from previous developments:

6 = 6.(., e ) + r(re) 56r (9)

where
r(re) =G(re)/~r

For convenience, suppose at t -. 0 the Cartesian z-axis goes through the

true position. The gravitation function can be viewed as an expansion

about the centroidal point mass function,

rE r. (B-l)
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The remainder of the gravity field will be included in 6(re) and will be

ignored for this development in order to concentrate on the 6r effects.

We can now write much simplified error equations for the vertical and

horizontal channels.

For the vertical channel, we get from (9):

i = 6gz + [LGz/c ']p6x + [Gz/3yJp 6y + [DGz/z]p 6z (B-2)

where point P for this case will be (0, 0, ro) for (x, y, z). In this verti-

cal :hannel case, we will assume 6g.' 6x, and 6y are zero. From

(B-I) we get

G z = - 4hz2  (B-3)

So, 
3

[Gz/Zz = ro 2 p./r0  (B-4)

Identifying f/r z as g, equation (B-2) becomes

H = (2g/ro) 6z (B-5)

This homogeneous errov differential equation indicates solutions of the

form

8z=Ae t+B e " t (B-6)

where
S ° and A and B are constants.

The positive exponential term demonstrates the underlying instability

of the vertical channel. We should note here that altimeter aiding of
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the vertical loop is the standard remedy for this INS problem.

Now, turning our attention to the horizontal channel, we may

write an equation in x analagous to (B-2). This time we will assume

6x is the only active term and get

6 R = [3Gx]/Xx = 0 6x (B-7)

The term Gx/ X can be obtained from the following vector diagram if

we assume 5x is approximately equal to the chord in both magnitude

and direction.

r Aare true, estimated " )sition.

G, 6 are true, estimated gravitation. 6

e is central angle in the plane
of estimation error.

'~Earth Center of Mass

By using a first order approximation we get,

A
G = G + [ G/ x]p 6x (B-8)

A
From the diagram we get, G =0+ G . (B-9)
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So,
=[fG/x]ptx. (B-10)

Using small angle approximation we get,

IG= I "1601 (B-11)

and
r6e = 6x. (B-12)

Combining (B-10), (B-II), and (B-12) yields

IGI I 16xI

r = I(aG/8x)p x which reduces to

(1/r) IGI-- g/r = I(aG/ax)pI (B-13)

Since Pis parallel and opposite in direct'on to the Bx line segment, we

conclude that (a Gx/8x)p -g/r. (B- 14)

Then, (B-7) becomes

SR = (-g/r) 8x (B-15)

From this homogeneous error differential equation, we expect solutions

of the form

x A sin W t + B cos w t (B-16)

where cvs is the Schuler rate which is characterized by

an 84 min. period and where A and B are constants.
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.This mode was first postulated in a gyrocompass design application

(Ref 3:15-16), however it appears in all terrestrial INS applications

A
(Ref 1). These characteristic oscillations of the estimate, r, about

the true position, r, result because horizontal position errors create

an opposite error in gravitational acceleration.
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Appendix C

Anomalous Gravity Statistical Methods

We know the gravity function through a relatively sparse sampling

using measurements subject to errors. Our sketchy and imperfect

knowledge of this field is insufficient for many analyses in Physical

Geodesy (e. g. Ref 65) and Inertial Navigation (e. g. Ref 21). A statisti-

cal approach to these problems can provide predictions or error assess-

ments. We need a statistical description of the deterministic gravity,

or anomalous gravity, field to perform these tasks. The anomalous

field is completely specified by boundary conditions of either anomalous

potential or gravity magnitude over a reference closed surface. The

statistics are also completely specified by the statistics of either of

these quantities on the reference surface. We require at least second-

order statistics for such an analysis. The mean of either of these basis

quantities should be zero since the zeroth term of our model totally

accounted for Earth's mass. The following discussion summarizes

some methods used to approximate or simulate the required second-

order statistic: the covariance function.

The basic "signal" of the anomalous field is represented by either

the gravity anomaly or anomalous potential. The quantity required in

an analysis may be a related term such as deflection of the vertical or

geoidal height (Ref 66:67). Figure C-1 graphically portrays these
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o r

at P

geoid

Figure C-1. Anomalous Gravity Quantities*
(Ref 14:83)

quantities; References 14 anil 67 give detailed definitions for these and

other anomalous gravity manifestations. Some of the interrelationships

are

Gravity anomaly vector: A& =.&p - (C-I)

Gravity anomaly: Ag = gp - YQ (C-2)

*Y is used here for the reference or normal field. This field may

or may not coincide with the model field
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Geoid height or undulation: N, as shown.

Anomalous potential: T = YON (C-3)

Also relating Ag and T: Ag= . - 2T (C-4)
ar r

Radial gravity disturbance is sometimes used with deflection angles as

a complete definition for the anomaly vector. The radial disturbance

is simply 6g - aT (C-5)ir

Through these interrelationships, the statistics of all these

anomalous gravity manifestations are coupled. it has been shown (Ref

66:94-98) that the individual covariance functions for all these quantities

can be derived from either the anomalous potential or the gravity anomaly

covariance function. The anomalous potential covariance function is

mathematically easier to manipulate, however the gravity anomaly covar-

iance function empirical approximations are more directly accessible

since gravity measures are the prime data. Once we select the basis

quantity, say gravity anomaly, we need to clearly define the covariance

relationships of these quantities.

A covariance function must, in general, be defined for a two-

position-vector argument. This generality should be kept in mind, but

we do not have data to empirically calculate such a function. We do have

data on the Earth's surface and we can estimate this function over this

closed surface. The problem is simplified by reducing these Earth

surface measurements to a surface which is more mathematically
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convenient: the Bjerhammar sphere (Ref 68:25-26) which approximates

the reference ellipsoid. This function can be continued upward, if

necessary, to yield the function at another level or to show the correla-

tion between anomalies at two different levels. The upward continua-

tion follows from the harmonic nature of the anomalous potential. With

this general background, we shall discuss more fully the reference

surface covariance function for gravity anomaly before introducing the

approximation techniques.

The definition of gravity anomaly covariance function is couched

in deterministic (mean) rather than stochastic (expectation) terms.

Since the mean of the gravity anomaly over the Bjerhammar sphere is

zero (Ref 14:252), the covariance function is the autocorrelation func-

tion (ACF). By restricting to the reference sphere, we can specify any

two points with four arguments. That is C(rl,r 2 ) can become (XV, ;

XZ, Z), where k is the longitude and 0 is the latitude. This function can

be approximated for those points with gravity measurements, but a more

representative form is needed to approximate the relationship between

unmeasured points. Two forms of these average or representative func-

tions appear in the literature most often.

The first furm, C(,a), is defined in terms of a shift (arc)

distance s = R and an arc azimuth argument a. Here, P represents

the central angle between the two points on the sphere. Figure C-2

portrays this relationship. The defining equation is

C('4, a) = MK [AgpAgp,] (0-6)
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Figure C-2. Covariance Function Geometry

(Ref 14:257)

where "Kis the mean over the set K which is defined by
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(1) P and P' are on the sphere;

(2) Central angle is 4;
K (P,P') and

(3) Arc PP has azimuth a.

C( ,a) is then the average, or mean, pair product over all point pairs

on the sphere which subtend a central angle of 4i and which have a join-

ing arc of azimuth a. This average covariance function is consistent

with the assumption of homogeneity (Refs 66:85 and 69:1).

The other common form of the covariance function is generated

in a manner that is consistent with symmetry in the argument 4'. This

radial (in the horizontal distance sense) symmetry is a characteristic

of an isotropic field over the sphere (Refs 66:85 and 69:1). The function

C(P) is easily defined in terms of C(P, a ) by

C M [tp o.(C-7)
*E(0, 2 7)

The assumption of an isotropic field may not be valid for a particular

section (see Ref 49:37-39 and Ref 70:26 for example real data), but this

assumption is attractive for its mathematical simplifications (Ref 71:39).

Equation (C-7) can be approximated with available gravity measure-

merit data which results in a tabular form of'C(9). Examples of such

tabulations abound--each generated under different rules or data base

(e. g.s Ref 14:254 and Ref 69:80-83). Such a table is our only true

measure of the covariance function, however this form is cumbersome
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for mathematical manipulations. A closed form mathematical approxi-

mation is useful in many applications, and many such approximations

have been suggested (Ref 72:10-13 and Ref 73:10-14). The Hirvonen

covariance function model (Ref 14:255) is one example

C
0

C( -- =1 + (R4/d)2  (C-8)

where R is spherical radius and C and d are parameters. In the cited

example, a value of 337 mgal was provided for Co, and d was speci-

fied as 40 km. These parameters were selected for a specific geo-

graphic area (southern Ohio).

The selection of such model parameters is critical for the uses

of these closed form approximation. These expressions are primarily

used for statistical weightings in the region of small shift distance

(within the half-variance range, see Figure C-3), so the behavior of

these closed form approximations in this region receives special

Co

/k

Figure C-3. Covariance Shaping Factors
(Ref 72:22)
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attention. The three shaping factors which are used to judge the good-

ness of fit of these approximations are (1) the variance, Co, (2) the

radius of curvature, p, at zero shift, and (3) a representative distance,

d, quantity defined by the shift distance to the half-variance level.

Figure C-3 portrays these parameters; Reference 72 has a thorough

discussion of these issues in Section 3.

Another modeling approach is to develop a closed form approxi-

mation for the spherical harmonic coefficients of the covariance func-

tion spherical harmonic decomposition. These coefficients are referred

to as degree variances since they represent the variance of the particu-

lar wavelength components. This technique is developed in Reference

69. This modeling technique is sometimes combined with the previous

technique: the closed form model is used for the near zero shift region

and the degree variance model for the remainder of required covariance

evaluations.

Our discussion, thus far, has been confined to the reference

surface form of the covariance function. The more genecal form which

allows points P and P' to be at different levels i, needed for some

analyses. An example of this need to span altitude differences is in the

least-squares combination of satellite data with surface data (Ref 74).

If we construct the covariance function with arguments rl and E2, we

can theoretically continue the function upward in one argument, say r 2 ,

while fixing the other, rl, to the reference surface (e.g. Ref 68:32).

Heller and Thomas (Ref 50:Appendix B) have recently demonstrated
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some concise analytical techniques to handle such upward continuations

in a more general, spherical rather than planar, manner.

These, then, are some of the statistical modeling approaches in

Physical Geodesy. Inertial Navigation analyses are interesting in com-

parison. The Physical Geodesy task is based on sample measurements

of anomalous gravity and a statistical model used in conjunction to

adjust data, predict gravity, or estimate the associated errors. The

inertial analyses attempt to characterize INS errors based on a statisti-

cal model of gravity modeling errors and a dynamic error propagation

model. The tasks while quite different share the covariance statistics.

A covariance function or autocorrelation function (ACF) for

gravity anomaly ic. useful in these INS statistical error analyses. An

INS is expected to operate globally--or at least anywhere within some

large region. We wish to characterize INS performance throughout this

region. If the anomalous gravity field were known exactly throughout

this area, we would need data from .'he ensemble of possible trajectories

to calculate average INS error statistics. Fortunately, given an ACF,

we can estimate these INS performance indices by simulating the

anomalous field with stochastic processes. These processes can be

cast in a form compatible with the linear time-invariant INS error

propagation models (Refs 1 and Z). The subject ACF is the key to this

modeling process.

The deterministic anomalous gravity field for some area is

characterized by second order statistics--means and covariances--of
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the gravity anomaly. The INS error performance is, then, simulated

by the performance of an INS driven by the outputs of a shaping filter

driven in turn by white Gaussian noises (Ref 75:217-218). The ensemble

of trajectories is simulated by the ensemble of noise functions in that

sample space. The shaping filter design and the strength of the associ-

ated noises are selected such that the filter output covariance approxi-

mates well the empirically determined (estimated) anomaly ACF. The

mission velocity, as we have previously seen, translates these spatial

ACFs to temporal ACFs.

This concept of approximation has several years of development

histo)ry. The conflicting requirements of mathematical tractability and

physical reasonableness have channeled this effort. We shall identify

some major areas of interest in this evolutionary process before pro-

ceeding with a chronological account of the milestones in the develop-

ment of this modeling concept.

Most gravity data is reduced to either the reference ellipsoid or

the geoid, so we can only readily calculate an ACF for trajectories

bound to these surfaces. These data are in the form of gravity anomaly

or geoid undulation (anomalous potential is linearly related to geoidal

undulation by Brun's formula;. The practical problem is to statistically

produce the INS error inputs at mission altitude and velocity based on

these available statistics. The physical interrelationships between

these simulated inputs- -vertical deflections, gravity disturbance, and

geoid undulation--must be consistently reflected in the joint statistics
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of these inputs. A concise method for upward continuing these data to

mission altitude is desired, and as mentioned, the model must blend

with INS models for maximum usefulness.

The fundamental modeling choices are (1) which anomalous grav-

ity variable to use as a basis for deriving other ACFs and (2) which var-

iables to use for INS error inputs. Early studies were quasi-static

parametric analyses of the horizontal channels of a local-level INS

mechanization. The vertical deflection angles were natural choices

for this task. Later studies generalized the deflection angles to "along-

track" and "cross-track" coordinates to fully exploit the isotronDic

assumption. Barometric altimeter aiding of the vertical channel intro-

duces an additional disturbance error driving source due to geoidal

undulation. Since all these sources can be related through surface

integrals to either anomaly or undulation, it is physically unreasonable

to assume them all to be statistically uncorrelate-. Answers to these

modeling questions have evolved over the years, A chronological

account of this development is a suitable context for further discussion.

Levine and Gelb (Ref 21) developed models to approximate ACFs

of the prime and meridional vertical deflections. The physical

processes were simulated as independent outputs of first-order spatial

stochastic differential equations of the form

d =(x) - t (x) +q (x) (16)
dx
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where x is shift distance, dg is correlation distance, and q is a white

Gaussian noise process with power spectral density of 2o- /d. o: is

then the process output, hence vertical deflection, variance. Tihe

parameters o- and d (Ref 76:86-88) can be varied to produce the best

overall fit between the empirically derived ACF and the exponential ACF

resulting from (16):

0 W(x) = a e -[x (14)

This simple model was criticized on two counts. First, the ACF is

non-negative and empirically derived ACFs have evinced negative

regions. We shall see later that a positive-only covariance function is

physically unreasonable; in fact it must be zero mean over the sphere.

Also, the ACF is expected to be rounded (zero slope) at zero shift. The

surface integral relationships of anomaly to Earth mass distribution

implies at least first-derivative continuity at zero shift. This notion is

also observed in empirically generated anomaly ACFs, but is lacking in

the first-order, exponential model.

These physical reasonableness objections can be overcome at the

cost of additional model mathematical complexity. Shaw et al (Ref 77)

led the way by forming more complete models. They developed the

relationships between deflection ACFs which we want and anomaly ACF

which we have--at least empirically. Since veitical deflections can be

calculated from anomaly data by the Vening Meinesz formula (Ref 14:

114), this relationship provides the link between anomaly ACF and
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deflection ACFs and deflection cross-correlation function (CCF). Flat

Earth approximations are used along with the assumptions that the

gravity anomaly is homogeneous and isotropic on the geoid. The anom-

aly ACF can then be expressed in terms of a horizontal radial shift

distance. The Bessel function which follows quite naturally is not com-

patible with our linear filter goal. The exponential ACF of Reference

21 (Levine and Gelb) is further developed in Reference 77 by the intro-

duction of deflection CCF. An improvement was identified in the CCF.

It was shown bhat a change of coordinates from the traditional east-west

and north-south for deflection definition could result in a zero CCF. If

generic "along-track" and "cross-track" coordinates are used for

expressing deflection components, the isotropic assumption then implies

zero deflection CCF. Since the partial derivatives used in defining the

deflection angles are not tied to a particular azimuth, the statistical

representation is an average over all azimuths which yields this desir-

able modeling result.

Kasper (Ref 78) added another step with second-order Gauss-

Markov process models. He achieved the zero-slope-at-zero-shift

goal, but continued with a positive-only ACF. Simulation results com-

paring this second-order model to the previous first-order one show

almost identical rms position error per unit of input standard deviation.

The rms velocity errors were apart by a factor of two, however, The

lower errors associated with the second-order Markov covariance

model compare favorably with results obtained with measured gravity
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disturbances as INS input. This result demonstrates the importance of

the rounded correlation feature. This should come as no surprise since

the importance of the near-zero-shift region received so much attention

in the discussion of Physical Geodesy applications.

Bellaire (Ref 79) developed methods for continuing these geoid or

elliusoid based ACFs up to mission altitude. By employing harmonic

functie analysis, the upward continuation is cast in the form of surface

integrals. The anomaly ACF is shown to be non-stationary in altitude

due to attenuation. The anomaly field is stationary in the horizontal

arguments at all levels if it is so on the geoid. The ACF between

anomalies at two different altitudes is shown to be equal to the ACF at

the average altitude. This new analytical tool allows a much more

general trajectory study than the constant-altitude, constant-velocity

previous approach.

The models and methods of Kasper (Ref 78) and Bellaire (Ref 79)

support a statistically coordinated simulation of anomalous gravity

driving all three INS axes over a range of variable altitude and velocity

trajectories. The only important unmodeled effect at this point is the

geoidal undulation disturbance of the barpmetric altimeter used to aid

the vertical channel. Jordan (Ref 80) provided the theoretical develop-

ment to include this term. ivicir- importantly, however, Rafe:ence 80

introduces a set of mathematical consistency "necessary conditions"

with which we can judge these proposed models.
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These consistency criteria are based on our understanding of

anomalous potential and its relationships to gravity anomaly and to

vertical deflections. The method consists of starting with the ACF

which our statistical simulation produces, say the anomaly ACF. The

undulation, or anomalous potential, ACF is derived from this anomaly

ACF using the relationship

(a 2  (x, y)- 1 99(x,y) (C-9)+ _ + y)gg

where 4)NN is undulation ACF, 9g is anomaly ACF, x and y are hori-

zontal plane shift distances, and Yo is reference gravity. We can relate

the second partials above to the negatives of the vertical deflection ACFs.

Since these deflection ACFs at zero shift represent variances they must

be positive there. Hence, a derived undulation ACF which is not con-

cave at zero shift indicates the original anomaly ACF is physically

unreasonablk. Since the kernel associated with (C-9) is singular,

another specific condition must be met by the anomaly ACF for the

associated undulation ACF to be bounded everywhere on the plane. The

constraint is that the anomaly ACF must be zero mean over the plane.

In summary, if our statistical model generates an anomaly ACF which

yields an associated undulation ACF which is either unbounded or is not

concave down at the origin, that statistical model is physically incon-

sistent.

The previous models were each found lacking in some way. New
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second- and third-order* Gauss-Markov process models were proposed.

Even this second-order model fails to meet all criteria. Both new

models accommodate a negative ACF at some shift distance, but only

the third-order model has the rounded zero-shift profile. This third-

order model represents the apex of this evolution.

What more could we ask for? The models discussed above all

assume a flat Earth using the justification that correlation distance is

much smaller than the Earth's radius. Statistical studies of long-range

missions, such as ICBM trajectories, require a more global setting.

Heller and Thomas (Ref 50) have begun work on such modeling tech-

niques. They propose modeling the global free-air anomaly field as

the result of buried spherical white noise processes which are continued

up to and summed on the reference surface. This technique has success-

fully modeled some empirical anomaly ACFs. The present approach,

however, yields an all-positive ACF. So, research on the global model-

ing problem is likely to continue.

In summary, we have seen the development and use of the gravity

anomaly ACF or covariance function from two different points of view.

The Physical Geodesy problems require 'the covariance function as an

interpolation or prediction tool. The Inertial Navigation studies require

*The term "Third-order Markov" means that either the anomaly

or undula'tion can be modeled as a Third order linear system driven by
White Gaussian noise. To form a complete system to statistically pro-
duce , i, N, andAg requires eight integration levels (Ref 81:3-29 to
3-31)1
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,e anomaly ACF to supply the input parameters to stochastic models

which allow simulation of INS errors we expect the anomalous field to

produce.
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Appendix D

INS Gravitational Model Performance
Cost Function

Gravitational modeling errors should be studied in terms of

their effect on mission performance. For example, we might require

the overall system to meet some circular-error-probable (CEP) cri-

teria. The performance cost of each system component would then be

stated in terms of the effect on CEP. In such statistics, it is custom-

ary--and justifiable in most cases--to consider the overall system

performance estimate to be the root-sum-square (rss) of the individual

(supposedly independent) contributions. The effects of gravitational

modeling errors can be statistically characterized in terms of the INS

error state covariance matrix, Pxx(t). This error covariance matrix

can be processed to yield the CEP cost due to the gravitational model-

ing errors alone. With this example as justification, the following

presentation describes how Pxx(t) can be processed to form such a

system cost.

We begin by discussing a terminal cost strategem. In many

instances of payload or weapon release, the t ;tal delivery accuracy

can be related to the terminal state estimation accuracy by a linear

propagation of errors using linear perturbation techniques. Let Y be

the system "miss" coordinates; let X(t) be the INS error state vector
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(e.g. downrange and crossrange); and assume terminal error is given

by

y H_ ( ) (D- 1)

where tf is terminal time.

We can form a terminal cost by

J = .TTr T (D-2)

To be more general we can weigh the "miss" vector with a matrix W

which can be considered symmetric without loss of generality. Such

a W matrix should be either positive semi-definite or positive definite.

For terminal cost we get

J = yTtf)Wy-tf) = xT(tf)HTwijix(tf)

= Trace IX(tf)XT(tf)HTWH} (D-3)

Since our error state X(.) is being treated statistically, we are inter-

ested in the expectation, e, of J over the ensemble in our sample

space:

e[J] = {C Trace [Xjtf)2jTtf)HTWH]

= Trace Ie[X(tf)xT(ti)]HTWH}

= Trace IPxx(tf)HT WH (D-4)
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assuming H and W are invariant over our sample space. An analagous

running cost function can be defined for those missions which require

INS accuracy over all mission time. Again, we can conceive of a

transformation to those coordinates onwhich system performance is

judged.

y(t) = H(t)X(t) (D-5)

Then

(t) = Y-T (t)W(t)y-(t)

= Trace I x(t)xT(t) HT(t)W(t)H(t)I (D-6)

Then,

t

J(t) =f Trace X(p)XT(p)HT(p)W(p)H(p) dp (D-7)
0

And

t

9[J(t)] f Trace IPxx(p)HT(p)W(p)H(p) I dp (D-8)

0

assuming H(t) and W(t) are invariant over our sample space. The cost

functions given by (D-4) and (D-8) are reminiscent of stochastic termi-

nal controller and stochastic regulator cost functions (Ref 82:415).

Indeed the model parameters involved in the optimization process may

be viewed as control variables we use to minimize these costs. As

with stochastic control problems, there may be missions where a

129



combination of terminal and running costs are appropriate. The

fundamental quantity needed for these cost evaluations is the INS

error state covariance matrix, Px(t).
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Appendix E

The Q-.Matrix

The Q-matrix statistically summarizes the anomalous gravita-

tional information. As mentioned in Appendix C, the covariance func-

tions of various anomalous gravitation quantities can be derived from

either the anomaly covariance, C, or the anomalous potential covari-

ance, K. This result holds, as well, for the residual field after

inclusion of the disturbance model 8gm since this model is based on a

harmonic potential field. So, while the following discussion uses the

gravitation disturbance, g, and the anomalous potential, T, the same

relationships hold for residual disturbance, 8, and residual potential,

6T. By our previous definition we have

T

O [8T(rl)ST(.g) Tj(rl)T(r) 1 (E-l)

where r1 and r2 are in the design mission trajectory 0o, e. Let x,

y and z be our generic Cartesian coordinates; then,

8gx(r1)
8K~rl) = 8gy(rEl)(E2

8g z(rEl)

_ T

and gx(l) F (E -3)
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With the understanding from (E-3) notation (E-1) can be rewritten as

a2 _ a2 _aI

ax1ax2  ax l 42 X 1 8Z2  ax1
Q[/.1, r 2;K(R, R';e0)] -e ____ ____ _

-_--_-__ o2 o2 o
3yl8x2  oYlOY2  oY1 0Z2  0y 1

02 02 O2

0az18x az1 aY? azl az 2  dz 1

ax2  OY2 az2

T(rl)T(r 2 ) (E-4)

For practical reasons, we expect the partial derivatives to be uni-

formly bounded. Hence, these operations are bounded and linear.

So, we may interchange the partial derivatives with the linear expecta-

tion operator. Then, (E-4) becomes

_ 2 a2 0z  0
0 xl0xz  0x 1 0y z 0x 1

8 z 1 Ox1

QLr,.EZ; K(R,R';e)] = 02 02 02 K(r ,r 2;e)

Yl xZ Y1 YZ  Yl z2  YI

(E-5)
____2 a2 a

19z 1 & 2  Z)r. 1OY2 19z 1 zZ az 1

8 0 0

Ox? 0 Y2  
0 zZ

Since K(r,r 2 ;E) can be derived from K(R, R';e), this equation demon-

strates that all necessary statistics are embodied in the single reference
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surface covariance function. With this point made, -we shall not

implement (E-5) directly. Rather, the elements of the Q-matrix can

be derived (Ref 50) from the (E-5) relationship with proper coordi-

nate choice.

The usual form of the covariance functions (Appendix C) is in

terms of a central angle, 0, argumen That is,

K(R, R') = K(O) (!-6)

where

= cos- [R- Z R'R'] . (E-7)

We have dropped the sample space argument, here, since the develop-

ment is generally applicable. It has been shown (Ref 50) that potential

ccovariances of the form (E-6) can be continued upward with arguments

rl, r? and 0. That is,

K(r 1 ,r 2 ) = K(rl,rZO) (E-8)

A particularly useful coordinate choice in this case is Tnplane-

Transverse-Radial (ITR) ccordinates shown in Figure E-1.

If we use the autocorrelation notation of Appendix C we can

summarize (E-5) as
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Q [r , r2,Vj; K(P; efl-

L x~r'rz ) Ty( ) Tz (  O TT (  (E9

The tasks remaining are to provide the various auto-and cross-corre-

lation functions based on the reference surface version of the lower

right-hand element of (E-9): OTT(R, R,'o).

Note: View is in the 2

I r2 plane

z-axis radial

x-axis inplane (downrange)

y-axis transverse
(crossrange)

Figure E-1. Inplane-Transverse-Radial Coordinates

134



References

1. Britting, K. R. Inertial Navigation Systems Analysis. Wiley-
Interscience, division of John Wiley & Sons, Inc., 1971.

2. Widnall, W. S. and P. A. Grundy. Inertial Navigation System
Error Models. Intermetrics Report TR-03-73, 11 May 1973.
Also, AFSWC-TR-73-26 (AD 912 489L).

3. Wrigley, W., et al. Gyroscopic Theory, Design and Iiustrune'nta-
tion. Cambridge, MA. The M.I.T. Press, 1969.

4. Sciegienny, 3., et al. Inertial Navigation System Standardized
Softare Final Technical Report, Volume I, INS Survey and
Analytical Development. The Charles Stark Draper Laboratory
Inc. Report R-977, June 1976.

5. Kayton, M. Coordinate Frames in Inertial Navigation (PhD
dissertation). M. I. T. Instrumentation Laboratory Report T-Z60,
Vol. I & II, August 1960.

6. Britting, K. R. Unified Error Analysis of Terrestrial Inertial
Navigation Systems (PhD dissertation). M. I. T. Measurement
System Laboratory Report TE-4Z, 1970.

7. Kayton, M. "Fundamenal Limitations on Inertial Measurements,"
presented at the ARS Guidance, Control, and Navigation Confer-
ence, Stanford, Ca., August 1961. Also, under "Guidance and
Control," pp 367-389, Progress in Astronautics and Rocketry,
Vol. 8, Academic Press, 1962.

8. King, TT le, D. "The Shape of the Earth." Science, Vol. 192,
No. 4246, 25 June 1976.

9. Burkard, R. K. Geodesy for the Layman. Aeronautical Chart
and Information Center, St. Louis, February 1968 (AD 670 156).

10. Pitman, G. R, , et al. Inertial Guidance. John Wiley & Sons,
Inc., 1962.

11. Fernandez, M. and G. R. Macomber. Inertial Guidance Engineer-
ing. Prentice-Hall, Inc., 1962.

135



12. Broxmeye-. C. Inertial Navigation Systems. McGraw-Hill
Book Company, 1964.

13. Heiskanen, W. A. and F. A. Vening Meinesz. The Earth and
Its Gravity Field. The McGraw-Hill Book Company, Inc.,
1958.

14. Heiskanen, W. A. and H. Moritz. Physical Geodesy, W. H.
Freeman and Company, 1967.

15. Kellog, 0. D. Foundations of Potential Theory. The Murry
Printing Company, Frederic Ungar Publishing Company, 1929.

16. Bate, R. R., et al. Fundamentals of Astrodynamics. Dover
Publicatiors, Inc., 1971.

17. Seppelin, T. 0. The Department of Defense World Geodetic
System 1972. Defense Mapping Agency, Washington, D.C.,
May 1974.

18. Nettleton, L. L. Gravity and Magnetics in Oil Prospecting.
McGraw-Hill Book Company, 1976.

19. Heller, W. G. F'ree-Inertial and Damped-Inertial Navigation
Mechanization and Error Equations. The Analytic Sciences
Corporation Report TR-312-l-1, 18 April 1975 (AD A014 356).

20. Rice, D. A. "A Geoidal Section in the United States." The XII
General Assembly of the International Union in Geodesy and
Geophysics, Helsinki, July-August 1960.

21. Levine, S. A. and A. Geib. "Geodetic and Geophysical Uncer-
tainties - Fundamental Limitations on Terrestrial Inertial Navi-
gation." AIAA Paper No. 68-847 presented at the AIAA Guid-
ance, Control, and Flight Dynamics Conference, Pasadena, Ca.,
12-14 August 1968. Also, "Effects of Deflections of the Vertical
on the Performance of a Terrestrial Navigation System. " AIAA
Journal of Spacecraft, Vol. 6, No. 9, pp 678-684, September
1969.

22. Bernstein, U. and R. I. Hcss. "The Effects of Vertical Deflec-
tions on Aircraft Inertial Navigation Systems." AIAA Journal,
Vol. 14, No. 10, October 1976.

136



23. Nash, R. A. et al. "Error Analysis of Hybrid Aircraft Inertial
Navigation." AIAA Paper No. 72-848 presented at the AIAA
Guidance and Control Conference, Stanford, California, 14-16
August 1972.

24. Chatfield, A. B. et al. "Effects of Gravity Model Inaccuracy
on Navigation Performance." AIAA Journal, Vol. 13, No. 11,
pp 1494-1501, November 1975.

25. Chatfield, A. B. and M. M. Bennett. "Geodynamics Navigation
Error Analysis Software." Geodynamics Corporation briefing
charts presented at the Air Force Avionics Laboratory, 24
February 1977.

26. Tsipis, K. "The Calculus of Nuclear Counterforce." Technology
Review, October/November 1974.

27. Hepfer, J. W. "M-X and che Land.-Based ICBM." Astronautics
and Aeronautics, Vol. 13, No. 2, February 1975.

28. Hall, A. C. "The Case for an Improved ICBM." Astronautics
and Aeronautics, Vol. 15, No. 2, February 1977.

29. McKinley, H. L. "Geokinetics and Geophysical Influences on
1980's ICBM Guidance." AIAA Paper No. 75-1064 presented
at the AIAA Guidance and Control Conference, Boston, August
1975.

30. BennetL, M. M. and P. W. Davis. "MINUTEMAN Gravity
Modeling." AIAA Paper No. 76-1960 presented at AIAA Guid-
ance and Control Conference, San Diego, August 1I)76.

31. Tsipis, K. "Cruise Missile." Scientific American, Vol. 236,
No. 2, February 1977.

32. Trageser, M. B. A Gradiometer System for Gravity Anomaly
Surveying. Charles Stack Draper Laboratory Report R-588,
June 1970.

33. Rose, R. C. and R. A. Nash. "Direct Recovery of Deflections
of the Vertical Using an Inertial Navigator." IEEE Trans. on
Geoscience Electronics, Vol. GE-10, No. 2, pp 85-92, April
1972.

34. Rapp, R. H. "The Geoid: Definition and Determination."
Proceedings of the Geodesy/Solid Earth and Ocean Physics
(GEOP) Research Conferences. Ohio State Univ. Dept. of

137



Geodetic Science Report No. 231, September 1975. Also,
NASA-CR-146540. Reprinted from EeS, Vol. 55, No. 3,
March 1974.

35. Koch, D. W. GRAVSAT/GEOPAUSE Covariance Analysis
Including Geopotential Aliasing. NASA-TM-X-71057, Goddard
Space Flight Center, October 1975.

36. Morrison, F. "Algorithms for Computing the Geopotential
Using a Simple Density Layer. " Journal of Geophysical
Research, Vol. 81, No. Z6, pp 4933-4936, 10 September 1976.

37. Grant, F. S. and C. F. West. Interpretation Theory in Applied
Geophysics. McGraw-Hill Book Company, 1965.

38. McLaughlin, W. I. Representation of a Gravitational Potential
with Fixed Mass Pcints. Bellcom, Inc., 23 December 1968.
Also, NASA-CR- 116806.

39. Hopkins, J. "Point Mass Models from Various Data Sources
Singly and in Combination." Presented at the Fall Annual Meet-
ing of the Americal Geophysical Union, San Francisco, CA, 12-
17 December 1974.

40. Lavrentiev, M. M. Some Improperly Posed Problems of Mathe-
matical Physics. Springer-Verlag New York, Inc., 1967.

41. Junkins, J. L. "Investigations of Finite-Element Representation
of the Geopotential. " AIAA Journal, Vol. 14, No. 6, pp 803-
808, June 1976.

42. . Development of Finite Element Models for the

Earth's Gravity Field. Phase I. Macro Gravity Field for
Satellite Orbit Integration. University of 'Virginia Research
Laboratories for the Engineering Sciences Report No. UVA/
525023/ESS77/103, March 1977. Also, U.S. Army Topographic
Laboratories Report ETL-0096 (AD A-unknown).

43. . Development of Finite Element Models for the
Earth's Gravity Field. Phase II. Fine Structure Disturbance
Gravity Representations. Univ. of Virginia Research Labora-
tories for the Engineering Sciences Report No. UVA/525023/

ESS77/104, March 1977. Also, U.S. Army Topographic Labora-
tories Report ETL-0097 (AD A-unknown).

138



44. Bhattacharyya, B. K. "Bicubic Spline Interpolation as a
Method for Treatment of Potential Field Data." Geophysics,
Vol. 34, No. 3, pp 402-423, June 1969.

45. Hardy, R. L. Geodetic Application on Multiquadric Equations.
Iowa State Univ. Engineering Research Institute Final Report
ISU-ERI-Ames-76245, May 1976 (PB-255-296 from NTIS).

46. Brown, R. D. Geopotential Modeling b Binary Sampling Func-
tions. PhD Dissertation, Catholic Univ. Computer Sciences
Corporation Report No. CSC/TR-75/6006, April 1975.

47. Davis, T. M. et al. Analysis of Deflection-of-the-Vertical
Inner-Zone Methods. Naval Ocearographic Office Special
Publication 260 (NOO SP 260), February 1974 (AD 776225).

48. . Theory and Practice of Geophysical Survey Design
(PhD dissertation at Pennsylvania State Univ.). Naval Oceano-
graphic Office Reference Publication 13 (NOO RP 13), October
1974 (AD A003 078).

49. Long, L. T. Det,_rmination and Statistical Studies of Gravi-
metric Deflections. Georgia Institute of Technology School of
Geophysical Sciences, 31 August 1975. Also, Army Engineer
Topographic Laboratories Report ETL-0017 (AD AOZZ 293).

50. Thomas, S. and W. G. Heller. Efficient Estimation Techniques
for Integrated Gravity Data Processing. The Analytic Sciences

Corp. Report TR-680-1, 30 September 1976. Also, AFGL-TR-
76-0232 (AD A 034 055).

51. Prado, G. "The Role of the Hilbert Transform on Potential
Theory Problems." AGS Memo No. 4300-77-01, The Charles
Stark Draper Laboratory, Inc., 10 January 1977.

52. . "Calculating the External Gravity Field, A Signal
Processing Approach." Preprint of paper presented at the
National Aerospace & Electronics Conference (NAECON 77), 19
May 1977.

53. Oppenheim, A. V. and R. W. Schafer. Digital Signal Processing.
Prentice-Hall, Inc., 1975.

54. Comfort, G. C. A Study of Airborne Gravimetry Using Repeated
Flight Paths. Frank J. Seiler Laboratory Report SRL-TR-74-
0014, August 1974 (AD A003 498).

139



55. Meissl, P. Probabilistic Error Analysis of Airborne Gravi-
metry. Ohio State Univ. Dept. of Geodetic Science Report No.
138, June 1970. Also, AFCRL-70-0396 (AD 715 268).

56. Moritz, H. Kinematical Geodesy. Ohio State Univ. Dept. of
Geodetic Science Report No. 92, November 1967. Also, AFCRL-
67-0626 (AD 666 05Z).

57. Heller, W. G. Gradiometer-Aided Inertial Navigation. Th.
Analytical Sciences Corp. Report No. TR-312-5, 7 April l)75
(AD A013 274).

58. Heller, W. G. and S. K. Jordan. "Mechanization and Error
Equations for Two New Gradiometer-Aided Inertial Navigation
System Configurations." AIAA Paper No. 75-1091 presented at
AIAA Guidance and Control Conference, Boston, August 1975.

59. Hildebrandt, R. R. et al. "The Effects of Gravitational Uncer-
tainties on the Errors of Inertial Navigation Systems."
Navigation, Journal of Institute of Navigation, Vol. 21, No. 4,
Winter 1974-75.

60. Gerber, M. A. "Propagation of Gravity Gradiometer Errors in
an Airborne INS." AIAA Paper No. 75-1089 presented at AIAA
Guidance and Control Conference, Boston, August 1975.

61. Grubin, C. "Accuracy Improvement in a Gravity Gradiometer-
Aided Cruise Inertial Navigator Subjected to Deflections of the
Vertical." AIAA Paper No. 75-1090 presented at AIAA Guidance
and Control Conference, Boston, August 1975.

62. Pogorzelski, W.A. Integral Equations and Their Applications,
Vol. I. Pergamon Press, 1966.

63. Lee, D. A. "Objective-Oriented Identification." Proceedings
of the Pittsburg Conference on Modeling and Simulation, Vol.
VI, pp 163-167, 1975.

64. Hirvonen, R. A. and H. Moritz. Practical Computation of
Gravity at High Altitudes. Ohio State Univ. Institute of
Geodesy, Photogrammetry and Cartography Report No. 27,
May 1963. Also, AFCRL-63-702 (AD 420541).

65. Moritz, H. A. A General Theory of Gra-ity Processing. Ohio
State University Dept. of Geodetic Science Report No. 122, May
1969. Also, AFCRL-69-0258 (AD 694 112).

140

b m m mmom



66. Moritz, H. Advanced Least Squares Method. Ohio State Uni-
versity Dept. of Geodetic Science Report No. 175, June 1972.
Also, AFCRL-72-0363 (AD 749 873).

67. Hotine, M. Mathematical Geodesy. ESSA Monograph 2. U.S.
Government Printing Office, 1969.

68. Moritz, H. Least-Squares Estimation in Physical Geodesy.
Ohio State Univ. Dept. of Geodetic Science Report No. 130,

March 1970. Also, AFCRL-70-0Z02 (AD 707 508).

69. Tscherning, C. C. and R. H. Rapp. Closed Covariance Expres-
sions for Gravity Anomalies, Geoid Undulation, and Deflections
of the Vertical by Anomaly Degree Variance Models. Ohio State
Univ. Dept. of Geodetic Science Report No. 208, May 1974.
Also, AFCRL-TR-74-0Z31 (AD 786 417).

70. Long, L. T. Determination and Statistical Studies of Gravi-
metric Deflections. Georgia Institute of Technology School of
Geophysical Sciences, 30 November 1973. Also, Army Engineer
Topographic Laboratories Report ETL-CR-74-8 (AD A003 271).

71. Hirschorn, R. M. Rotational Invariant Probability Distributions
in Geodesy. (PhD Dissertation). M.I.T. Measurement Systems
Laboratory Report TE-41, June 1970.

72. Moritz, H. Covariance Functions in Least-Squares Collocation.
Ohio State Univ. Dept. of Geodetic Science Report No. 240, June
1976. Also, AFGL-TR-76-0165 (AD A 030 302).

73. Schwarz, K. P. Geodetic Accuracies Obtainable from Measure-
ments of First and Second Order Gravity Gradients. Ohio State
Univ. Dept. of Geodetic Science Report No. 242, August 1976.
Also, AFGL-TR-76-0189 (AD A 031 331).

74. Rapp, R. H. Gravity Anomaly Recovery from Satellite Altimetry
Data Using Least Squares Collocation Techniques. Ohio State
Univ. Dept. of Geodetic Science Report No. 220, December 1974.
Also, AFCRL-TR-74-0642 (AD A009 629)..

75. Laning, J. H. and R. H. Battin. Random Processes in Auto-
matic Control. McGraw-Hill Book Company, Inc., 1956.

76. Gelb, A. editor. Applied Optimal Estimation. The M. I. T.
Press, 1974.

141


