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ABSTRACT

Generalizations of the classical Thermodynamic Laws are adopted

as the fundamental principles of the proposed theory, hereafter called

the Dynamic Theory. An important role is played by an integrating factor

which makes the energy exchange with the environment a total differential

and leads to the definition of a mechanical entropy. The integrating

factor is shown to be a function of velocity only and an arguement follow-

ing Caratheodory's proves the existence of a unique limiting velocity

which makes its appearance in the integrating factor.

Equilibrium and stability conditions for dynamic systems are derived

and together with the principle of increasing entropy provide a geometrical

structure from which the theories of relativity, Maxwell's electromagnetism,

and quantum effects may be derived. Thus the Dynamic Theory is shown to

unify the various branches of physics into one theoretical structure.

Extensions of current physical theories required by the Dynamic

Theory are displayed. In these extensions new field quantities appear

that become important for systems with varying mass density.
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I. INTRODUCTION

The objective of this report is to present the principles of a theory

which was developed partly during thesis research and partly during a research

project sponsored by the Naval Academy Research Council. That portion of

the theory developed during thesis research at the Naval Postgraduate

School is contained in the thesis titled "On a Possible Formulation of

Particle Dynamics in Terms of Thermodynamic Conceptualizations and the Role

of Entropy in It." In order that this report may present a complete picture

of the theory some of the material presented in the thesis is developed in

sections II.A and II.B.

During any theorization the philosophy of the theorist plays such an

important role that an attempt to understand the theory is aided by a

knowledge of this philosophy. Therefore this report includes not only the

matheiratical development but also the philosophical basis upon which the

theory is based.

Einstein, in the Special Theory of Relativity, adopted the position that

the constancy of the speed of light forces a modification of Newton's Dynamic

Law. This modification implies that all forces have the same limiting

velocity, namely, the speed of light. There exists an abundance of theoretical

and experimental evidence that the speed of light becomes the limiting

velocity whenever electromagnetic forces are involved. But what of the other

forces, such as gravitional? Should they also have the same limiting velocity?

Though we have had reports of the detection of gravitational waves we have

no experimental determination of the speed of a gravitational wave. Therefore,

it appears that this modification should have some additional justification.

6
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To further illustrate this conclusion suppose we consider an analogy,

which may not hold in the strictest sense, that will show the adopted

point of view. A river flowing toward the sea carries energy with it.

The speed with which this energy can move from one point to another is the

velocity of the river's current. The river produces a force on a boat

tied up to a pier on the river. When the boat is set adrift this force

accelerates the boat. However, the maximum velocity to which the river

can accelerate the boat is the current velocity. This is the velocity

with which the energy of the river can propagate.

From this point of view the speed of light, being th@ propagation

velocity of electromagnetic energy must be the limiting velocity associated

with electromagnetic forces. Certainly nature would be much simplier if

all forces have the same limiting velocity. Yet without some experimental

evidence of the propagation velocity of gravitational energy there seems

to be nb a priori reason that gravitational forces should be subjected

to the same limiting velocity other than arguments of simplicity.

Is nature symmetrical in time? Does everything run backwards in

time as well as forward? Obviously not every process in nature will run

backwards, yet the equations of motion in Newtonian and relativistic

mechanics are time symmetrical. Certainly there are special cases in

nature where time symmetry appears and time symmetrical equations of

motion should be used. However, these equations are limited to those

special cases for the universal application of time symmetrical equations

could not describe a time asymmetrical nature.

There are several different branches of physics currently being

used, such as thermodynamics, Newtonian and relativistic mechanics and

7
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guantum mechanics. Each of these branches has its own basic assumptions

or postulates. There has been a great deal of effort by physicists over

the last seventy years to somehow merge these branches into a unified

theory. This unification can now be done.,

Think of a group of tall, ancient redwood trees. Each tree is strong,

tall, and above the ground is very distinct from the others. However, we

know that if we dig down below the ground we will find that these trees

grow from the same root system. This is similar to the philosophy adopted

here concerning the different branches of physics. If we obtain a more

fundamental lelel we should find that the different branches are merely

special cases of the more general laws of nature. The prior attempts

of unification seem to be trying to tie the trees together at the top

rather than down at the root level.

Suppose we adopt the viewpoint that there should be a single set of

laws, or postulates, which will yield the different branches of physics.

How might we begin to determine what they are? In order to illustrate

the procedure adopted within this theory consider the directions that a

native Ozarkian gave to a stranger who was trying to find a certain fishing

hole. The directions went something like this; "See yonder road going

down that holler? Well, go down thar 'bout 5 mile and you'll come to

a fork in the road. Take the right hand ford. Now that's the wrong one

but you take it anyways. After you've gone a piece you'll come to a log

across the road. Now you know you're on the wrong road. So go back and

take the left-hand fork. You can't miss it."

How does this bit of Ozark hill wit help determine a more fundamental

set of physical laws? Recall that Newtonian mechanics fails to describe

8



events involving high velocities, relativistic mechanics fails to describe

the atom, and gravitational effects have resisted quantization. If we

view these as logs and follow the Ozarkian's directions we must retrace

our steps and seek another approach rather than attempting to chop the

log up and continue to push forward up one of these roads.

We find then that thermodynamics is the one branch which does not

appear to have a log somewhere along the way. Here we find the classical

thermodynamic laws very general, particularly Coratheodory's statement of

the second law. If we follow the directions the thermodynamic laws seem

to be the place to look for the fork in the road where we might hope to

take a different route.

In mechanics we talk of equations of motion, field equations, and

geometry while in thermodynamics we speak of equations of state and

equilibrium. If we adopt a generalization of the classical thermodynamic

laws how could we obtain the equations we are familiar with in mechanics?

The crucial point is how to obtain geometry from these general laws for

if we have a geometrical description we can use established procedures

to obtain equations of motion and field equations.

Geometry may be obtained from a quadratic form and we know from

thermodynamics that the stability conditions appear as a quadratic form

and therefore the stability conditions should yield a natural geometry

based upon laws generalized from the classical thermodynamic laws.

Now obviously such a generalization will yield classical thermodynamics

if only thermodynamic variables are considered. What we need to find out

is whether or not these laws can also yield familiar mechanical laws.

9



Chapter I1 of this report covers this question beginning with the adopted

laws as they would be applied to a mechanical system. Next the stability

condition quadratic form is derived and the nature of the resulting

geometry is determined. Once the geometry has been determined the field

equations and quantization follow from the geometry and the laws using

the previous work of Weyl and London.'

Once having established the unifying effect of the theory an immediate

question appears. What about new predictions, or results? If when we

hold the mechanical variables fixed we get classical thermodynamics and

when we hold the thermodynamic variables fixed we obtain the mechanical

theories, what do we get if we have a system which must be described in

terms of both thermodynamic and mechanical variables? Chapter III presents

some of the immediate results which may be obtained for such a system.

10
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II. UNIFYING EFFECT OF THE DYNAMIC THEORY

A. General Laws

In the following development physical concepts are necessary, as are

symbols for these concepts. Because this development will merge certain

thermodynamic conceptualizations into mechanics, a notational dilemma must

be faced. On the one hand it is desired to preserve the thermodynamic con-

ceptualization by using familiar symbols from that theory. On the other hand

it is really mechanical systems for which a description is sought. The for-

mulism then looks either like thermodynamics with familiar thermodynamic

quantities replaced by mechanical quantities, or it looks like mechanics

into which thermodynamic quantities intruded. In either case there is danger

of confusion. One could evade the dilemma by choosing entirely different

symbols for the variables of the theory. But then the whole takes an arti-

ficially abstract character. Since the purpose of this formulation is to

bring out the power of the thermodynamic conceptualization it was decided

to use the suggestiveness of the thermodynamic or mechanical symbols whenever

convenient and the reader is asked to keep an open mind and not make premature

associations with the symbols used.

1. First Law

The concept of conservation of energy is fundamental to all branches

of physics and therefore represents a logical beginning for a generalized

theory. Therefore, in terms of generalized coordinates the notion of work,

or mechanical energy, is considered linear forms of the type

& - Fi(q,. .. , qn, , . . ., n)dqi; (i = 1, 2, ..., n)

Where the forces Fi may be functions of the velocities (dqi/dt q 4i) as well

as the coordinates qi and the summation convention is used.

11



The line integral fc Fi dq1 then represents the work done along the

path C by the generalized forces.

A system may acquire energy other than mechanical, such energy acquisi-

tion is denoted IQ.

The system energy, which represents the energy possessed by the system,

is considered to be

U(q1,..., q n, 4 .... q n).

dU will be assumed to be a perfect differential.

With these concepts then the generalized law of conservation of energy

has the form

U dU -

-dU- Fi dqi; (i =,...,n) (1)

Positive UQ is taken as energy added to the system by means other than

mechanical and Fi is taken as the component of the generalized force acting

on the system.

In an infinitesimal transformation, the first law is equivalent to the

statement that the differential

dU = UQ + Fidq i

is exact. That is, there exists a function U whose differential is dU; or

the integral fdU is independent of the path of the integration and depends

only on the limits of integration. This condition is not shared by Q or

U.
Since this statement of the generalized first law is consistent with

the first law of thermodynamics and it is desired to derive the equations

of motion for a mechanical system from the generalized laws, all thermodynamic

coordinates will be held fixed. To simplify the initial development only

* one positional coordinate will be used and the extension to larger dimensional

12
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systems made at an appropriate later time.

To explore some of the consequences of the exactness of dU consider a

system whose variables are F, 4 and q. The existence of the state function

U, or an equation of state, means that any pair of these three parameters

may be chosen to be the independent variables that completely specify the

system. For example consider U = U(F, q), then

dU - dF + (2U)F dq,

The requirement that dU be exact immediately leads to the result

3 [(-T)q] F

The "energy capacity" of a system at the position q with dq = o may

be defined as
Cq q BU'

$ q

while the "energy capacity" of a system under a constant force is defined as

CF (q)F - q 'a_)

2. Second Law

There are processes which satisfy the first law but which are not

-. observed in nature. The purpose of the dynamical second law is to incorporate

such experimental facts into the model of dynamics.

The statement of the second law is made using the axiomatic statement

provided by the Greek mathematician Caratheodory, who presented an axiomatic

development of the second law of thermodynamics which may be applied to a

system of any number of variables. The second law may then be stated as:

In the neighborhood (however close)

of any equilibrium state of a system

of any number of dynamic coordinates,

13



there exists states that cannot

be reached by reversible Q -

conservative (UQ = o) processes.

When the variables are thermodynamic variables the Q-conservative

processes are known as adiabatic processes.

A reversible process is one that is performed in such a way that,

at the conclusion of the process, both the system and the local surroundings

may be restored to their initial states, without producing any change in

the rest of the universe.

Consider a system whose independent coordinates are a generalized

displacement denoted q, a generalized velocity q (with q dq/dt), and a

generalized force F. It can be shown that the Q-conservative curve compris-

ing all equilibrium states accessible from the initial state, i, may be expressed

by

a o(4, q) = constant

where a represents some as yet undetermined function. Curves corresponding

to other initial states would be represented by different values of the

constant.

Reversible Q-conservative curves cannot intersect, for if they did it

would be possible, as shown in Figure 1, to proceed from an initial quilibrium

state i, at the point of intersection, to two different final states fl and

1 2' having the same q, along reversible Q-conservative paths, which is not

allowed by the second law.

14
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02

Figure 1. If two reversible
Q-conservative curves could
intersect, it would be possible

*to violate the second law by
performing the cycle I, fl, f 2, 1.

When the system can be described with only two independent variables,

such as on the Q-conservatlve curve, then if these variables are and q,

and F is a generalized force,

- = dIJ - Fdq.

Regarding U =U(j,q) then

3Q -(N~) d4 + [2).- F1 dq,
34qq aq q

where (-) F, and (). are functions of i and q.
aq q aq q

*A Q - conservative process for this system is

d4) d+( -F] dq o (2)
*aq 3

Solving for d4/dq yields

dq

aqq

15



The right hand member is a function of 4 and q, and therefore the derivative

d4/dq, representing the slope of a Q-conservative curve on a (4, q) diagram,

is known at all points. Equation (2) has therefore a solution consisting

of a family of curves, see Figure 2, and the curve through any one point

may be written

a = a (j, q) constant

cA oB
/tI/1 / / /i /I/I / /

I I I / I I I i I I

:/ , I I I II I I

/q

Figure 2. The first law, through equation (2)
fills the (q, q) space with slopes specified
at each point. The a curves represent the solu-
tion curves whose tangents are the required
slopes. The second law requires that these
curves do not intersect.

A set of curves is obtained when different values are assigned to the con-

:stant. The existence of the family of curves a(j, q) = constant, generated

by equation (2), representing reversible Q-conservative processes, follows

from the fact that there are only two independent variables and not from

any law of physics. Thus it can be seen that the first law may be satisfied

by any of these a - constant curves. The axiom requires that these curves

do not intersect. Therefore the axiom, together with the first law, leads

to the conclusion that: through any arbitrary initial-state point, all

reversible Q-conservative processes lie on a curve, and Q-conservative curves

through other initial states determine a family of non-intersecting curves.

16
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To see the results of this conclusion consider a system whose coordin-

ates are the generalized velocity j, the generalized displacement q and the

generalized force F. The first law is

* dU - Fdq

where U and F are functions of 4 and q. Since the (4, q) surface is sub-

divided into a family of non-intersecting Q-conservative curves

a(4, q) a constant

where the constant can take on various values Ov a2, ... any point in the

surface may be determined by specifying the value of a along with q so that

U, as well as F, may be regarded as functions of a and q. Then

d U (!-a
()q do + (-)o dq

and @U aU
Q= ) do + [(r)a - F] dq

q

Since a and q are independent variables this equation must be true for

all values of do and dq.

Suppose do = 0 and dq # 0. The provision that do = 0 is the provision

for a Q-conservative process in which UQ = 0. Therefore, the coefficient of

dq must vanish. Then, in order for a and q to be independent and for ?Q

to be zero when do is zero, the equation for TQ must reduce to

1U= (2U)q do,3aq

with

=F.

Defining a function X by

(3U)

then
Z Q X do

17



where
- X.(o,q).

Now, in general, an infinitesimal of the type

Pdx + Qdy + Rdz +

known as a linear differential form, or a Pfaffian expression, when it involves

three or more independent variables, does not admit of an integrating factor.

It is only because of the existence of the axiom that the differential form

for dQ referring to a physical system of any number of independent coordinates

possess an integrating factor.

Two infinitesimally neighboring reversible Q-conservative curves are

shown in Figure 3. One curve is characterized by a constant value of the

function GA, and the other by a slightly different value oA + do - OB. In

any process represented by a displacement along either of the two Q-conservative

curves UQ = 0. When a reversible process connects the two Q-conservative

curves energy 30 = Ado is transferred.

qs

FiguQ-e2 da r i c v

"i °A+da°'°B

. ' IQ,-Xlda

UQ=O

Figure 3. Two reversible Q-conservative

curves, infinitesimally close, when the
process is represented by a curve connecting
the Q-conservative curves, energy 'Q - Xdo
is transferred.

18



The various infinitesimal processes that may be chosen to connect the

two neighboring reversible Q-conservative curves, shown in Figure 3, involve

the same change of a but take place at different X. In general X is a

function of 4 and q. However it is obvious that X may be expressed as a

function of a and 4. To find the velocity dependence of X consider two systems,

one and two, such that in the first system there are two independent coordinates

and q and the Q-conservative curves are specified by different values of

the function a of 4 and q. When energy 3Q is transferred, a changes by do

and UQ = Ado where A is a function of a and g.

The second system has two independent coordinates i, and q and the

Q-conservative curves are specified by different values of the function a
A _A A - A%

of 4 and q. When dQ is transferred, a changes by da and dQ = Ada where A

is a function of a and q.

The two systems are related through the coordinate 4 in that both systems

make up a composite system in which there are three independent coordinates

q, q; and q and the Q-conservative curves are specified by different values of

the function ac of these independent variables.
A A A

Since a = a(4,q) and a - a(t,q), using the equations for a and a, ac

may be regarded as a function of q, a and a.

For an infinitesimal process between two neighboring Q-conservative sur-

faces specified by ac and ac + doc , the energy transferred is Qc = Xcdc where

Ac is also a function of 4, a, and a. Then

aa aoc  ac A'

dac = -'0 d4 + ! do+ ' d- (3)

Now suppose that in a process there is a transfer of energy Qc

between the composite system and an external reservoir with energies aQ and

19
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aQ being transferred, respectively, to the first and second systems, then

IQc . &Q + IQ
and

Xc doc - Xdo + Ada
or A

doc c d+ -L da (4)

Comparing equations (3) and (4) for dac then

oc
-=0.

A

Therefore ac does not depend on 4, but only on a and a. That is
A

c= a(a,a)

Again comparing the two expressions for dac

A doc  doc
,r'c = and =

therefore the two ratios X/Ac and %/Xc are also independent of j, q and q.

These two ratios depend only on the a's, but each separate X must depend on the

velocity as well (for example, if A depended only on a and on nothing else,

the UQ = Ada would equal f(a) do which is an exact differential). In order

for each A to depend on the velocity and at the same for the ratios of the A's

to depend only on the a's, the A's must have the following structure:

1(5)
A = (~)f(a).

and

Xc = ,14) g(aa).
A A

(The quantity X cannot contain q, nor can A contain q, since X/Ac and I/Xc

must be functions of the a's only.)

20
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Referring now only to the first system as representative of any system

of any number of independent coordinates, the transferred energy is, from

equations (5),

= f(a) do

Since f(a)do is an exact differential, the quantity l/¢(q) is an integrating

factor for 4Q. It is in extraordinary circumstance that not only does an

integrating factor exist for the IQ of any system, but this integrating factor

is a function of velocity only and is the same function for all systems.

The fact that a system of two independent variables has a 3Q which always

admits an integrating factor regardless of the axiom is interesting, but its

importance in physics is not established until it is shown that the integrating

factor is a function of velocity only and that it is the same function for all

systems.

3. The Absolute Velocity

The universal character of *(6) makes it possible to define an absolute

velocity. Consider a system of two independent variables q and 4, for which

two constant velocity curves and Q-conservative curves are shown in Figure 4.

Suppose there is a constant velocity transfer of energy Q between the system

and an external reservoir at the velocity 4, from a state b, on a Q-conservative

curve characterized by the value a1, to another state c, on another Q-cohservative

curve specified by 02. Then since
'5!

21
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It is seen that

A= *() I f(a)do at constant i.

01 02

\ b ", ' .. ... l c o n s t a n t\b \

a 4, "e...l constant

Figure 4. Two constant velocity energy.
transfers, Q at q from b to c and Qj at q3
from a to to d, between the same tw8 con-
servative curves 01 and 02.

For any constant velocity process between two other points a to d,

at a velocity 3 between the same two Q-conservative curves the energy

transferred /2 f(a) do at constanttrasfrrd s AQ(63 ) 
= AQ3 - (413) 43

01
Taking the ratio of

a function of the velocity at which A2 is transferredA3 same function of velocity at which is transferred

Then the ratio of these two functions is defined by

XL = AQ(between o and 02 at )

€4(13) AQ3 (between 01 and 02 at 13)

22
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or [Q 3  ]

by choosing some appropriate velocity q3 then it follows that the energy

transferred at constant velocity between two given Q-conservative curves

decreases as 0(4) decreases, or the smaller the value of Q the lower the

corresponding value of 0(4). When AQ is zero 0(4) is also zero. The

corresponding velocity 40 such that 0(40 ) is zero is the "absolute velocity".

Therefore, if a system undergoes a constant velocity process between two

Q-conservative curves without an exchange of energy, the velocity at which

this takes place is called the absolute velocity.

4. The Concept of Entropy

In a system of two independent variables, all states accessible from a

given initial state by reversible Q-conservative processes lie on a a(4,q)

curve. The entire (4,q) space may be conceived as being filled by many

non-intersecting curves of this kind, each corresponding to a different value

of a. In a reversible non Q-conservative process involving a transfer of

energy -Q, a system in a state represented by a point lying on a surface a

will change until its state point lies on another surface a + da. Then

UQ = Xda,

where I/X, the integrating factor of 9Q, is given by

A = ) ),

and therefore

or

--= f(a)da

Since a is an actual function of 4 and q the right-hand member Is an exact

differential, which may be denoted by dS; and

23(



dS= -AL

where S is the mechanical entropy of the system and the process is a rever-

sible one.

The dynamical second law may be used to prove equivalent of Clausius'

theorem, which is stated here without proof.

Theorem: In any cyclic transformation throughout which the velocity is

defined, the following inequality holds:

where the integral extends over one cycle of the transformation. The equality

holds if the cyclic transformation is reversible. Then for an arbitrary

transformation
B

i < S(B) - S(A),, A (0) -

with the equality holding if the transformation Is reversible. The proof

of this statement may be seen by letting R and I denote respectively any

reversible and any irreversible path joining A to B, as shown in Figure 5.

R B

Figure 5

For path R the assertion holds by definition of S. Now consider the cyclic

transformation made up of I plus the reverse of R. From Clausius' theorem

$ f R$-q< 0

I R

24



or

f !Q< f dQ S(B) -S(A).

IR

Another result of the dynamical second law is that the mechanical entropy

of an isolated (dQ = 0) system never decreases. This can be seen since an

isolated system cannot exchange energy with the external world since aQ = 0

for any transformation. Then by the previous property of the entropy,

S(B) - S(A) > 0

where the equality holds if the transformation is reversible.

One consequence of the second law is that of all the possible trans-

formations from one state A to another state B the one defined as the change

in the entropy is the one for which the integral

is a maximum. Thus
B

S(B) - S(A) F maximum I = max fS(B)- SA) - maimumI =max ( T)dT,

A

where T is a parameter which indicates position along the path from A to B,

or S(B) - s(A) max A ( U- T) dT;

If

U = U(T,q,, §)

where qi dqi/dt, then the change in the entropy is given by the integral
(B

AS fA
A ;F UT T T

The q and q which maximize AS will be denoted as x and x then, with

U =U(x3)

F i =F i (x'x)

=5
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the x and c are given by the solution of the system of equations

d tG G
T--(- r) r-

d -G - = 0
axe x

where

1 3(1 dx x dx , di
G = () -" F, T and x =-and =T"

Thus the dynamical second law provides an answer to the question that is

not contained within the scope of the first law: In what direction does a

process take place? The answer is that a process always takes place in such

a direction as to cause an increase of the mechanical entropy in the universe.

In the case of an isolated system, it is the entropy of the system that tends

to increase. To find out, therefore, the equilibrium state of an isolated one

dimensional system, it is necessary merely to express the entropy as a

function of q and i'and to apply the usual rules of calculus to render the

function a maximum. When the system is not isolated there are other entropy

changes to be taken into account.

5. Third Law

The dynamical second law enables the mechanical entropy of a system to be

* idefined up to an arbitrary additive constant. The definition depends on the

t. existence of a reversible transformation connecting an arbitrarily chosen refer-
ence state 0 to the state under consideration. Such a reversible transformation

always exists if both 0 and A lie on one sheet of the equation of the state

surface. If two different systems are considered the equation of the state surface

may consist of several disjoint sheets. In such cases the kind of reversible path

previously mentioned may not exist. Therefore the second law does not uniquely

determine the difference in entropy of two states A and B, if A defines a state

of one system and B the state of another. For this determination a dynamical third
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law is needed. The dynamical third law may be stated, "The mechanical entropy

of a system at the absolute velocity is a universal constant, which may be taken

to be zero." In the case of a purely thermodynamic system the absolute quantity

is the absolute zero temperature, while for a mechanical system the absolute

quantity is the absolute velocity.

The dynamical third law implies that any energy capacity of a system must

vanish at the absolute velocity. To see this, let R be any reversible path

connecting a state of the system at the absolute velocity 40 to the state A,

whose entropy is to be found. Let CR(4) be the energy capacity of the system

along the path R. Then, by the second law,
qA dL

S(A) = f CR(q) _
q0  *(q)

But according to the third law,

S(A) 0.

4A o

Hence it follows that

CR(4) 0

) o.

In particular, CR may be Cq or CF.

B. Equilibrium and Stability Conditions

The three generalized laws have been formulated and a few results of these

laws have been seen. The next step is to derive the stability conditions to

obtain the quadratic forms necessary for a metric. In the process of deriving

the equilibrium conditions and in turn the stability conditions other state

functions are used. These functions may be defined briefly here as:
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Mechanical enthalpy (H): H SU - Fq

Mechanical Helmholtz function (K): K U - ¢( )S, and

Mechanical Gibbs function (G): G = H- *(q)S

These functions may be used to derive Maxwell type relations for a mechanical

system and these relations are presented in reference (1D) but are not included

here.

The derivation of the equilibrium and stability conditions is identical to

the derivation of the thermodynamic equilibrium and stability conditions with

the variables changed to represent the mechanical variables q, q, S, and F instead

of the thermodynamic variable T, V, S, and P.

1. Equilibrium Conditions

To establish the criteria for equilibrium consider Clausius' theorem

B B

A 1 '- AR
or

B B
R S(B) -S(A).

A I A R
For a Q-conservative system dQ = 0, then

AS> O
or

S(B) > S(A).

Therefore the mechanical entropy tends toward a maximum so that spontaneous

changes in a Q-conservative system will always be in the direction of increasing

"* mechanical entropy.

Now by the first law

AQ = AU - FAq.

Therefore

*AS > AU - FAq

which is analogous to the Clausius inequality In thermodynamics.
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Now consider a virtual displacement (U,q)-(U+6q, q+6q), which implies

a variation S-S+6S away from equilibrium. The restoration of equilibrium from

the varied state (U+6U, q+6q)-(U,q) will then certainly be a spontaneous process,

and by the Clausius inequality

€(-6S) > - (6U - F6q).

Hence, for variations away from equipoise, the general inequality

6U - F6q - 06S > o (6)

must hold. The inequality sign is reversed from the sign in Clausius' inequality

because hypothetical variations 6 away from equilibrium are considered rather

than real changes toward equilibrium.

In a spontaneous process,

*AS ? AQrev = AU + work done by the system.

The "work" consists of two parts. One part is the work done by the negative
of the force F. It may be positive or negative but it is inevitable. Only

the rest is free energy, which is available for some useful work. This latter

part may be written as

A = AQrev - AU + FAq.

The maximum of A is

Amax = OAS - AU + FAq. (7)

which is obtained when the process is conducted reversibly.

The least work, 6Amin , required for a displacement from equilibrium must

be exactly equal to the maximum work in the converse process whereby the system

proceeds spontaneously from the "displaced" state to equilibrium (otherwise a

perpetual motion machine may be constructed). Corresponding to equation (7) then,

is 6Amin =6U -F6q -6S.
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The equilibrium criteria may then be expressed as

6Amin > o.

In words: At equilibrium the mechanical free energy is a minimum. Any

displacement from this state requires work.

2. Stability Conditions

To decide whether or not an equilibrium is stable, the inequality sign

In equation (6) must be ensured. The conditions for stability may take

different forms depending upon which variables are taken as the independent

variables.

To derive the stability conditions when q and S are taken as the independent

variables consider the terms of second order in small displacements beginning

with the general condition

6U - F6q - *6S > o

Choose U U(q,S), which, because of the identity

M dU Fdq

or
OdS = dU - Fdq,

is a natural choice of the independent variables, and expand U in powers of

6q and 6S

6U = *6 + F6q + h( 2q 2 +2, 2- 6q6S + ifAS2) + terms of third order...
(8)

The inequality (6) then shows that In (8)

"1 Second order terms + third order terms + ... > 0.

Retaining only the second order terms, the criterion of stability is that a

quadratic differential form be positive definite;

6q 2 + 2 3U 6q&S + a3U 652 >0 . (9)

3qf la3qa
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If this is to hold true for arbitrary variations in 6q and 6S, the coefficients

must satisfy the following:

___>0;32 a2U a2U (a2 U)2 > 0.

When and 4 are considered to be the independent variables a quadratic

form in 64j and 6q may be found by using

K = U -

so that

6K 6U - *6S - d S6q4 6s6 .
dq d4

The terms SS4 cannot be neglected because in Clausius' inequality, which is

the actual stability condition, the variations are finite, therefore, from

equation (6) the following is obtained:

6K + 06S + ALS+ 6S)641 - F6q - 06S > 0,

6K + k S64 + ! 6S64i - F6q >0.

Expanding in powers of 64 and 6q

MK F6q - tSq + T -' 3Kq2 + .3t 5q6q + q, +

d4aq2 q

6S64 -z(-__ - F) 6qoij

But

adq

Therefore

aqaq 3q a q

and K_ 2 4 ati

a2 di a

31



(4+ 2!K8) 12K 646qthnd43 2  342  3aqq

and the quadratic form in 6 and 8q is

, ,6q)2+ a2 + 8') 2_ A%( 6 4)2_- 2K- q6 4 > 0_ oq,+ 2K 8q64 + "',.,.__ ,
aq3q aq2  q2  d42  aq3q

or
3 q)2 (d+ 2 ) ( ) z > 0.

aq 2 42
Since , ,= F then

aq q
92 K (I) >0
aq2  (,q q 0.

Other quadratic forms may be derived by using different independent

variables however these two quadratic forms will suffice for this development.

'C. GEOMETRY AND FIELD EQUATIONS

If we adopt one of the quadratic forms of the stability conditions as our

metric giving the geometry and obtain equations of motion then it becomes obvious

that if we choose a form with velocity as one of the coordinates then the equa-

tions of motion will become third-order differential equations. The fact that

these equations of motion would be third order in time displays the time asymetri-

cal nature that was mentioned in the introduction and taken as a desireable feature

of equations with universal application. However the third order nature poses a

* '~problem in determining a solution for third order equations can be difficult or

impossible to solve.

, •1. Geometry

For this reason then we shall adopt the quadratic form of equation (9)

as the metric for our system. Thus we are adopting a manifold with coordinates

of space-mechanical entropy. Caratheodory's proof of the extension of the integrat-

ing factor to systems with additional variables may be used to extend the quadratic

32



form to one in four dimensions; three in space plus the entropy. The quadratic

form then becomes

d2U  1q)u a2U

-- (dS )2 + a a-.a(d)(dq) + 3qQtqt5 (dqa) > 0; a,0 = 1., 2, 3.

Adopting this quadratic form as the metric of a general system whose thermodynamic

variables are held fixed we may then write this metric as

(d)2 = hij dqi dqi; (ij = 0, , 2, 3) (10)

where the summation convention is used and

hihi - a--i1,ii q aq 3with qO = S/Fo, the scaled mechanical entropy for dimensional correctness.

Thus the stability conditions provide a metric in the four-dimensional mani-

fold of space-mechanical entropy. However the existing relativistic theories

are theories in a space-time manifold. Therefore if these theories are to be

contained within the dynamic theory then the space-time manifold must be found

within the dynamic theory.

The arc length s in the space-mechanical entropy manifold may be parameterized

by chosing

da F zo dt = cdt

where o c is the unique velocity appearing in the integrating factor of the

second postulate. The metric may now be written as

c2 (dt)2 = ij dqidqJ; (I, j = 0, 1, 2, 3) (11)

Now suppose the systems considered are restricted to only Q-conservative

systems. Then the principle of increasing mechanical entropy may be imposed

in the form of the variational principle

$ 1(dq°) 2 o.

In order to use this variational principle equation (11) may be expanded,

solved for (dq° ) and squared to arrive at the quadratic form
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(dqo)2 - (El) c2 (dt) 2 + 2hoo A dt dqa - hcLdqadq01 (12)
00

where
.-Y 2

A---hoo q  +  F2 q qB + ho q

00 00 00

with ' dqy/dt.

By defining x° E ct, xa = ql; a=l, 2, 3 then equation (12) may be

written as

(dqO)2 = (,) g.j dx1 dxi; (i, . = 0, 1, 2, 3) (13)

where f =_ hoo. This metric obviously reduces, in the Euclidean limit of constant

coefficients, to the metric of Minkowski's space-time manifold of special relativity.

In his General Theory of Relativity, Einstein assumed the space-time mani-

fold to be Riemannian. However this assumption involves the a priori assumption

that the scalar product be invariant. This assumption was later questioned by

Weyl in his generalization of geometry. From the viewpoint that the adopted postu-

lates should contain the other theories it then becomes desireable to determine

whether or not these postulates specify the geometry of the (dq°)2 space-time

manifold.

Recalling equation (13) we can define

(dqO)= g( )gtjdxidxi-(}) (do) gxdx (14)

Now the second postulate guarantees the existence of the function mechanical

entropy and that dq0 be a perfect differential, therefore

dq0 = q0tdxi (15)

where q0 -- 3qO/axi. Then the exactness of dq° is stated by

qolj - qoi o. 0(16)

By defining the parallel displacement of a vector to be

d = r is dxS v (17)
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ano using equations (15) and (16) it may be seen that the connections must be

symmnetrical, or

r v (18)

In Weyl's generalization of geometry he found it necessary to assume the

symmnetry of the connections. He proved a theorem showing that the symmnetry of

the connections guaranteed the existence of a local Euclidean limiting manifold

and used this theorem in support of the symmnetry assumption. Here the symmnetry

is necessitated by the adopted laws.

Suppose now we consider whether order of differentiating the change in

entropy makes any difference. Therefore consider the difference

t,(dqo )2 = 22(deO)2 _- do

ax kax i at t

Since (dqo)2 = q01 qo . dxidxj from equation (15)-, using equation (14) we find
JA
q0 q0~ j

Then

= i ilk+ 11  q ) dx'dxJ + (qo)
axk

Thus

32 (dci0)2 [qj q +q=
k ~ ~ ~ ~ ~ ~ k ilk~+~~k ~ + ~ ~+~ 1  qo1j]dx dxJ

axx+ 2q 0~ qo + 2qo 1 qo

I... Likewise

2dqo )2 0 o+q O d=x

=x~x [q qo + ql o + qo12, k qi + i ~k d~

+ 2q~~q + 2q~1  q~

Therefore the difference must be

A(dqo )2 = {(o -olkq + (q -ol )o dxidxj

Using the definition equation (17) we see that

dq0  r 1' 6 dxa q r
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0 0 ^ r

and qilk q rk

0 0r
also q k11 = q~ r r.k

Now o ^r rx
o q°  Akr o or

0 a [q r Ol ^rki

" -- r ") q r k + qr xo

qj Ikli r r

r0 f r ar k

= qo r r}r, a

r {  T, k ax z

Similarly

qlIIk = q r rk r + -' F

Therefore oAr Aqo(qilkl+qil£Ik ) = qo qr taj  axyl j + p.^r k" r r ,' }

j ilk -i r ax ik 6k~1~

Then defining the vector curvature as

rAk + ^r A r (19)

ilk ax - 6t ik "+r r (9

the difference may be written as

A(dqO)2 = qqr Rlkk + qi qr R Ij k) dxi dx

However, recall that q0 q1 = g0 j then

A(dqO)2 = r A I dxkdxr.
t gr i~k 9ir Jtk

.+ +A A A

But gr = and RiJkl = gir Rjkt

so that A(dqo)2 = {Rjjilk + Rjxk) dxldxj

or the difference will vanish if
Rjilk R " RjJk.
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Now since

(dqO) q? q dxidxj  ^ dxidxj

differentiation will result in

d(dqo)2 =d(qq? dxidxj ) = d(gij dxidxj )

or dq0q 0 dxdxj + q? dq9 dxidxj  + oq? d(dxidxj )

1 3 1^ + q j )

dgij dxidxJ + gij d(dx dxJ)

which can be written as
o 0o0.idx ^r 0 o 1xd j0d dx qrq dx 3j + q? r dx q dxidxj + qq d(dx'dx)

11 A r * A

dg.. dx'dxj + g.. d(dxldxj).

But A

gij = qiqj

Therefore dr A A

dx6 grj r rdx = dgii

or Ar _gi__

~rr r. r (I
grj 1 + gr i  j- axA (20)

^ _
r ji + r ij ax4

Now interchange jiz to zij to get

A A agj
rij + rjj i  ax6  (21)

then interchange jia to isj so that

A A ag41
r + r = - (22)

ax

Add equations (21) and (22) and subtract equation (20)

r + r + r + r - r - r - A +
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o 1 (23)

= . =*

Now by using the synimetrics of gi it can be shown that

A Ai i g Aij a - X a a,

Rjitk . Rij U

and therefore A(dqo)2 = 0

This is the necessary and sufficient condition that the differential entropy

change may be transferred from an initial point to all points of the space in a

manner that is independent of the path.

The distinguishing features of Riemannian geometry is the invariance of the

scalar product under a vector transplantation. Therefore to determine whether
A A

the (dqO)2 space is a Riemannian space consider the vectors i and ni

Now since Ai = g ij&

and A A A A6 A k ag1 A
d&i= risdx6 Er = rIU dx6  rk Ek_ ax6  dx6 +gtjd~ j

then .r 6 Ak 9
gij d  6 r d x 6 Ck J dxaxa

or since

^ij; agi1 ~a A A
" I = 1 andx rji + ru6

gi gij =X ji U= j

then

, = gli {rki 6 &k (r U + r i j6  X

= g11 (.- rikh) (k dx6
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Thus the change in the covariant and the contravariant vectors is given by
^r

di= ri dx4 Ar

and
dc = - r dx~ r

A 

Now consider the change in the scalar product Ei n Then

d(din') = dn + d

r r dx r n  + Ai 
(- dx Tr

j r A4 Fir

S^. = dx r-6 dxS^in

Renaming the indices in the second term yields

d( ,i 1 ) = (r16 A - r

= 0.

Thus the geometry of the (dqO)2 manifold is Riemannian.

The next question is what is the geometry of the (do)2 space? Using

equation (14) (do)2 may be written as (do)2 = f(dq0)2. The appearance of the

gauge function f means that by forming the difference A(do) 2 tften it may be shown

that the vanishing of f k " f /k is the necessary and sufficient condition that

every differential distance do may be transferred from an initial position to all

points in the (do)2 manifold in a manner independent of the path.

Defining the potential k E the change of (do) may be written as
axk

d(do) = k dxk (do). (24)

If k/j - Oj/k vanishes then the (do)2 manifold becomes a Weyl space. Using the

connections r k in the (do)2 manifold we then have

Ok/j - j/k k - dv
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However by considering d(ds)2 u d(gijdx dxJ) the expressions for the connections

Air jk may be shown to be Weyl's connections given by

rjk- r k + 9 - { gsj h +
.

g s k j -gjk#s) (25)

Now since rjk = rkj and the symmetry of the second term on the right hand side

is obvious then

" Ik = rkIr A r k j"

Thus k/- - h/k - o and the (do)' manifold must be a Weyl geometry with the

quadratic form (da) 2 and the linear differential form dO = *kdx

2. Field Equations

We have now shown that the entropy space is a Riemannian space while the

sigma space is a Weyl space. There remains the question of equations of motion

and field equations. The answer to these questions is provided by Weyl's unified

field theory for the geometrical principles we have derived plus the variational

principle provided by the principle of increasing mechanical entropy provide the

set of postualtes Weyl made in his theory. We therefore arrive at the variational

problem
A ~ ~ ~ -i 4X,[+ AF F -+ 1( A- 6 )] v d -x 6 o (26)

where fi S -=  i and Ftj v FIj and the | and Fij are the components of

the vector potential and the electromagnetic field measured in the usual units.

By varying only the potentials in equation (26) we obtain Maxwell's electro-
A

magnetic theory. Variation of the gij produces Einstein's General Relativisitc

theory.

Thus the Dynamic Theory yields field equations of Maxwell's electromagnetic

theory and Einstein's general relativistic theory. There is, however, an additional
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benefit achieved here. Recall that in both the entropy and sigma manifolds we

showed that the order of differentiation of the element of a'c length was im-

material. This is important for the following reason. Einstein objected to

Weyl's unified theory based upon an argument that using Weyl's theory one should

expect the spectral lines produced from an atom changing states would depend

upon the histories of the atom and we should not see the sharp lines we observe.

From this theories point of view the order of differentiation becomes important

for the change of the entropy of the atom produces the spectral lines and we

have shown that not only the entropy but the change in the entropy is independent

of the path. Therefore the spectral lines would be expected to be independent

of the atom's history and hence the sharp lines we observe.

D. QUANTUM EFFECTS

In 1927 F. London derived quantum principles from Weyl's theory. However

London's result made it difficult to define length as a real number. Because

of this Weyl interpreted the mathematical formulism of his unified theory as

connected with transplanting a state vector of a quantum-theoretical system.

The Dynamic Theory removes the difficulty of defining real lengths from

London's results. This may be demonstrated by considering a Q-conservative, or

isolated, system. For this system, since 3Q = o, the second postulate requires

dq0 > 0

which is the principle of increasing mechanical entropy. Then certainly

(dqO)2 > 0, and also, since

(dqo)2 = f(da)
2

f(da) 2 > o,

However if f < o then (do)2 < o since it is the product which must remain greater
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than or equal to zero. In this case

dq° = /7':7 /-W2.

But by integrating equation (16) we find that the element of arc (do) is given by

(do) - (do)o e fkdx
k

where (do) is some initial value of the element of arc. If (do) = (da)o00

then the integral in the exponent must be equal to 2win which is the quantization

London introduced.

To illustrate how this condition arises naturally from the dynamic approach

suppose a description of a hydrogen atom is desired. A hydrogen atom is in a

stable condition and if isolated satisfies the conditions &Q - o and dq° = 0

since the principle of increasing entropy requires that the entropy be a maximum

at equilibrium for an isolated system. These conditions along with f ' o

establish the quantization of the integral f kdxk . If the field of the proton

is taken as *o = c'/r ; a 0; a 0 o then simple circular motion produces Bohr

S27rie2
radii for a - where h is Planck's constant. The imaginary a' presented

the difficulty of defining length as a real number. In the dynamic approach real

distance, or length, may, and properly should, be defined in the (dqo)2 manifold.

Recalling the definition of the potentials it may easily be seen that if f < o

then the arc length given by

ao=f V(ffa

will be imaginary. However the arc length in the (dq°)2 manifold is real since

dq > o.

E. SUMMARY

The First Law adopted here is a statement of the notion of conservation of

energy and as such contains nothing essentially new. It is important however to
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note that the Q-conservative system, where 3Q = o, does not necessarily correspond

to the usual notion of a "conservative" system in classical mechanics. In classi-

cal mechanics a "conservative" system is one for which the system's energy does

not change. Therefore a system within the Dynamic Theory which corresponds to

the classical notion of a "conservative" system is one for which dU 0 0. From

our experience with thermodynamic systems we can see that this is somewhat differ-

ent from a Q-conservative system.

The Second Law enables us to find an integrating factor for the First Law

and in so doing answers the question posed in the introduction concerning the

speed of light as a limiting velocity for forces other than electromagnetic. It

was shown that the integrating factor was independent of the force and therefore

does not depend upon what type of force is considered. The absolute velocity is

defined as that constant velocity process for which the integrating factor is

zero. Hence the absolute velocity is independent of the force and therefore

must be a unique velocity applicable to all forces.

Since by definition the absolute velocity is a constant in one reference

frame it must also be a constant in any other reference frame moving with a constant

velocity relative to the first. Thus the absolute velocity must be unique and a

constant in all references frames moving with constant relative velocities. The

experimental and theoretical evidence of electromagnetism requires that the speed

of light obey these same properties. Thus the absolute velocity must be the speed

of light and act as a limiting velocity for all forces.

The process, or procedure, of using the quadratic form as the metric is not

known (by this author) to have been used before. However it3 use, through the

geometry and principle of increasing entropy, leads us rather naturally to the

relativistic theories, electromagnetism, and quantum effects.
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Three points here seem particularly significant. First, not only does

the adopted laws yield Weyl's unified theory but they completely specify the

geometrical assumptions of Weyl's. This removes the necessity of making any

assumptions concerning the geometry. Thus Einstein's assumption of a Riemannian

space applies only to the entropy manifold for a Q-conservative system, but is

necessary for that manifold. The second point is that while there may be several

sets of constraints which require that (do) - (do)o which produces quantum effects

these effects apply only to forces which may be described in terms of Weyl's

"distance curvature" and not to forces describable by a "vector curvature". Or,

in terms of the interpretations of Weyl's unified theory, quantum effects may be

seen for electromagnetic forces but not for gravitational thus providing an

explanation for the resistance gravitational effects have put up against quanti-

zation. Another aspect of this point is its support for Einstein's celebrated

quote, "God doesn't play dice." According to the Dynamic Theory quantum effects

is required but only for systems subjected to certain restrictions. The more

general system however is not subjected to quantization. Thus while the Dynamic

Theory supports, and indeed requires, quantum effects it also supports Einstein's

contention that everything should not be quantized.

The third point is that the adopted laws can produce the different branches

of physics currently used. In unifying the different branches of physics in

this manner the Dynamic Theory may prove beneficial not only in better under-

standing the inter-relationships of the various branches but allows the possibility

* of using well developed techniques of one branch, such as equations of motion

in mechanics, in another branch, such as non-equilibrium thermodynamics.
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III. FIVE-DIMENSIONAL SYSTEMS

A. SYSTEMS NEAR AN EQUILIBRIUM STATE

Having established the unifying aspect of the Dynamic Theory it seems

reasonable to make the next step that of considering a system with both

thermodynamic and mechanical variables in order to display the effects of

applying the Dynamic Theory to a more general system. This extension will

be done as a series of three steps because different restrictions on the

system has the apparent effect of extending existing theories. This manner

of presentation should allow readers specializing in different fields of

physics to quickly see the effect of the Dynamic Theory in their area of

specialization.

I. Equations of Motion

In Chapter II, it was shown how the set of three laws generalized

from the classical laws may be used to specify the geometry of the system

and how these laws require the existing theories of classical thermo-

dynamics, Special and General relativity, Maxwell's electromagnetism and

quantum effects. During this development strict adherence to a separation

of thermodynamic and mechanical variables was maintained. In reality this

separation can hardly be considered as total or complete, for instance in

a plasma subjected to electromagnetic fields the density and temperature.

may vary considerably.

Therefore suppose we consider some sort of plasma, which may contain

a charge density, in order to see what the established procedure of the

Dynamic Theory may yield. Some of the benefits which may be expected to

result from such an investigation might be a better description of reality

by logically connecting the thermodynamic and mechanical variables, standard
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procedures and equations for non-equilibrium thermodynamic systems, and

a new insight into the electromagnetic containment of a plasma.

For a system with thermodynamic as well as mechanical variables

the first law becomes

d& = d5 + Pdv = dqG; - , 2, 3.

Where the Q, U, v and Fa are considered as specific quantities. That is

these quantities are related to a unit of mass such as is customary in

thermodynamics.

The specific volume is the reciprocal of the mass density, y, then

using the mass density instead of the specific volume the first law becomes,

dQ = dU -(P/y 2)dy - Fa dqa; a = 1, 2, 3.

This law now requires that the system's energy U be a function of five

independent variables so that

S= U (S, q1, q2., q3, y).

Thus the first law requires a five-dimensional manifold of entropy, space,

and mass for a general system. Since the system under consideration needs

both thermodynamic and mechanical variables we can no longer refer to the

entropy as mechanical or thermodynamic however, the limiting case where the

mass is held fixed must produce the mechanical entropy.

The procedure established by the Dynamic Theory is to take the

stability condition quadratic form as the metric for a stable system. Thus

the coefficients of the metric become the second partial derivatives of

the energy function. In order to simplify the metric suppose for the

present that we restrict our system to be very near an equilibrium state

so that we may consider the second partial derivatives to be constants.

This is in essence considering a local Euclidean manifold which the symmetry

* of the geometric connections guarantees that we may do..
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Since the metric coefficients are constants a transformation may

be found such that the cross terms are zero. Then in this coordinate

system the metric becomes

c2(dt)2 = (dq°)2 + dqcdq' + (dq4)2 ; = 1, 2, 3. (27)

when

q 0 S and q4 = Y
0Fo ao

If we again consider the restriction dQ = 0 so that we are talking

of a Q-conservative system for which the principle of increasing entropy

holds, then we have the variational principle given by

6 f/(d)2 = 0. (28)

Solving equations (27) for dq° and squaring we get

(dqO)2 = c2(dt)2 - dqadqQ - (dq4)2  (29)

or

dt c -gas ( - dgB a. 0 1. 2, 3, 4

gaB = 6Q0.

* The entropy manifold given by equation (29) is a five-dimensional

Minkowski-type manifold with coordinates of space-time-mass. We may there-

fore follow the procedure Minkowski and Einstein used in the Special Theory

of Relativity.

First, to avoid confusion, let us rename the coordinates as

x0  ct; x, = q1 , x2  Xq2  )3 q3 and x4  4.

Then define the five-dimensional velocity vector as

i dx
i

u d- ; 1 0, 1, 2, 3, 4
dq

t.
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and define the five-dimensional acceleration vector as

i 6u' d2Xi + (I dx dxk

Sqj d + Lk1 dq0 dq0

Now the specific entropy is the arc length and the variational

principle is based upon the entropy. Therefore if we multiply the specific

entropy by the mass density we have the entropy density. The variational

problem becomes

6 f rIYZ(dqO)Z = f Y (dqO = 0. (30)

The Euler equations for this problem are

agik uJuk

d Y g uj  a ax 1- 0
dq JgijuiuJ x 'ggju~

or

g u dq0  gguk i uk

g u4u - a + y d _ _j - U__ _ uU = O
a0  u4 TT O .. ..

Using the fact that g juiui = 1 the Euler equations become

f " a0 u4 gtju- Ft (31)

where the F1 are force densities.

Obviously if we hold the mass density fixed, u4  0, then the volume

integral of this equation becomes the force-mass-acceleration relationship

of special relativity.

Now since fl 6 i and (do) = c 2 - uau; a l 2, 3. 4,
Sq0
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then

Fi= y au' _ y Su' dt

aqO 6t dqG

= - (d-) where v2 = a = 1, 2, 3, 4.
vC-- v t "dqO

Then

Fa L ' 1 dxd- -7 Vz T (/cz - v7 2k)

c2A dx)

C2 St

where B v/c with v the four-dimensional speed.

The force density equation may now be written as

A1-= Fa=~ dxo'

Consider

L. dxa = dxa j' dxa

but = ao v
4 so that the force density equations may now be written asSt 0

/( - Fa  dx 0 1/ dtaou / _t

We may define _ y1 as the effective mass density or

"Relativistic" mass density then

A == 6 dxt a0 v
4va

Cr~~1d~ C 2 A- -0-7

By defining FO" c2 A 770 (P) so that
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dxaI aO  V4V 
a

Fa a - " (32)

We see that this force density becomes Einstein's special relativistic force

density when v = 0, or for constant "rest mass." Thus the equations of

motion, equation (32) reduce to Einstein's special relativistic equations

of motions when ' 0.

2. Energy Equation

Now for our system the restriction that

dQ 0 = d6 - dy - idxa2: G 1.2, 3

requires that

d& = dy + dxa; a 1, 2, 3

or if 4 is considered as another generalized force density then

dU = Fadxa; a = 1, 2, 3, 4.

Thus by integrating the expression for the system's energy change

we should arrive at the Einstein energy equation if we hold 4 = 0.

Therefore we shall perform the Integration using the force densities given

by equation (32) to get the system's energy, or

P1 dxa  1 dxa  ao u udu

,.x°

U O dxO fdXUxc
Po P

to
t d 0 dua

= {Y [ -Or 'auu + u dt.
tO I.' E~ J dt.

to

(



But C 202 = UA* and C2 04 u at therefore

t d I c C262 + 0i

U - UO =  {Y [t 2 ) dt
to

= C2 fy (

to

Now a depends upon uO and not upon x4, or y, therefore

YC2
Uo= (1 - B~i

or
Ul 

= j yC2
=OZ)-_ + constant.

If the internal energy is considered as the system's energy when

the spacial velocities ua; a = 1, 2, 3 are taken as zero then the internal

energy density given by
2

U + constant.

c

At the equilibrium condition where u4 is also zero the internal energy

density is then

= yC2 + constant.

By taking the constant of integration to be zero this internal energy density

then corresponds to Einstein's "rest energy" where here the 'rest energy' is

in terms of a four-dimensional "at rest" state.

If we make the usual type approximation of allowing 02 << 1 then

the system's energy density is approximately given by

U=yc2 + .1 yV 2 +(If)2-

where here u4 =  is used. This displays the classical limit system energy
ao

density for a Q-conservative system very near equilibrium.
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The question may be asked whether or not it is necessary to have

five dimensions. In considering this question suppose we make the usual

definition of temperature as

aU:TdU dt
as dS

Now

dU C 0

and

dS. 1 I q =C_

dt t O dt "

Therefore

dt= F0
dS c -:-

and the temperature becomes

2 F
0 01)

T = [- 1 3 F
" - 3z~s z ]c(1 ... BZ)I/2

F= 0
- [ ;c2 (1 - 02) - y].

For l << I then

.,T - [y.c2  j.y = t c2 -•
F F

Then as the time rate of change in the mass density approaches zero at

the equilibrium state we find that the temperature approaches zero. Phys-

ically we do not see this happening therefore a total separation of thermo-

dynamic and mechanical variables is not strictly possible. This requires

that we must make an extension of our world from the four dimensions of

relativity to the five dimensions of the Dynamic Theory.
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B. SYSTEMS WITH NON-EUCLIDEAN MANIFOLD

1. General Variational Principle

Suppose now we relax the assumption that the system is very near

an equilibrium point so that the second partial derivatives are no longer

constants but are functions. This is essentially the same transition as

Einstein made going from his special to general theory, however, the logic

of the transition is much simplier here. The only change in the logic

appears in the relaxation of the assumption of nearness. There is, of

course, a drastic increase in mathematical difficulty since the metric

components are no longer constants.

We shall consider a system, which again may be a charged plasma,

which must be described by both thermodynamic and mechanical variables.

When written in terms of the mass density the first law for this system may

be written as

-PdQ = dU - y- dy - Fdq; a = 2,3

where the tilda denotes specific quantities.

Following the prescribed procedures of the Dynamic Theory we shall

take the stability condition quadratic form as the metric for our system.

Thus the metric coefficients will be given by the second partial derivatives

hi 32U2 i, j =0, 1, 2, 3, 4

where q4 _: - The metric may then be written asa0

c2 (dt)2 = h00 (dq)2 + 2 h o dqodqa + ha8 dqadqB

where a, a = 1, 2, 3, 4.
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Imposing the restriction that the system be Q-conservative, 3Q 0,

results in the principle of increasing entropy so that

6(d fIV= 0.

Thus in terms of the specific entropy the variational principle may be

written as

6 f (ydqO) 2  = 6fy 4 = 0

Solving the metric given by equation (30) and squaring yields the

expression

(dq°)2={ } {C2 (dt)2 + 2 ho [*] dt dqx - hao dqadq0 }; a, 0 = 1, 2, 3, 4
00

with h/ho h (hoo,
X qY + /2 +(hqY)Z[*] 00o ho- ho

00 00 0

This metric in a five-dimensional manifold of space-time-mass may be

rewritten as
(dqO)2 = 1 (d) 2

00

where

(dqo)2 B qij dxidxJ; i, J = 0, 1, 2, 3, 4

(da)2  qij dxidxJ; i, j = 0, 1, 2, 3, 4

with x0  ct; x1  q1; X2 - q2  X3  q3 ; x y/ao. Thus we may write

(dqo)2 qij dxidx ( ) (da)2  (3) )

Having established the metrics in equation (33) in the manner pre-

scribed by the Dynamic Theory the geometry must be Weyl geometry and

defining the potential five-vector as

± alnf
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and the field tensor as

F ij 0 -i "ji (35)

then we may follow Weyl's procedure in his unified field theory 2 to arrive

at the variational principle

6 [ + -A FiF i  - x( -12 *i.i)] /-dx5 = 0 (36)

1

where Fij IX, Fij and 0i 1 rX €i

Varying the metric coefficients gij in the variational principle

(36) will yield field equations of the Dynamic Theory which are extensions

of Einstein's General Theory of Relativity.

2. Gauge Function Field Equations

In order to isolate the field equations resulting from a gauge

function from the field equations produced by a vector curvature let us

consider a Local Euclidean manifold for (do) 2.

Now the field tensor given by equation (35) has 25 components. We

would like to determine the field equations for these components. The

quickest, though not the only, way is to consider the five dimensions to be

x° = i c t; xa = xa; a = 1, 2, 3, 4.

The field tensor is then defined to be

0 i E i E2  i E3  i V

F -i E -B 0 B V2

-i E3  B2 -B 1  0 3

-i V 0  -V1  -V2  -V3  0
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Using Bianchi's Identities

aFi, a Fk Fki-Xk  + =f
3xk ax V, xi

and the various combinations of the indices 0, 1, 2, 3, 4 we obtain the

field equations

T - W 0oT x ar +0
c at (37)

Vx7+a o 2 = 0 *Vo +'1A+a O.
0 ay0 c at 0oay

The definition of the 5-vector current density

- F - 4i 
(38)

axI  c

yields the equations

aVo 1 a[ aV 47J
V-4p Vx - -+ a-=

V 0  ay catc (39)
- 1 aVo 4 ,

cat c 4

Equations (37) and (39) form a set of seven Maxwell-type equations

which obviously reduce to Maxwell's four equations if the mass density is

held fixed.

The wave equations for the new field quantities may be derived

using standard assumptions.

a2V
I(V ,) 'o 4w 4 av 1 0At V)+ c -a =t c K + c - -

while

T aV - aT V +2 - T
o c a t a ay c 0

therefore
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Ia 2V0 o - aJ4V2V 0 C2 CT F -a0 v

For the vector field we have:

(T ( V) + av V0  (L-c at

and

~X ( X V) + V2 V+ V L j

therefore
V2 1a 2V- 41_V +a a 2 r- +aW(

z31 C 4 c atay 0 ay
av0

But . 4wp - a0 a.- so that

V2 V -1 3 2V -41r a 4 a -a 0

andvx c.at =4j a 2V so that

V2 - Z2= 4w - a 4w ar -j+ !~ aV
Cy'a c V J4 Y 0 a oay

Now since the wave equations for the usual vector and scalar potentials

are

V2Ajar - 4
f7f=a

- 4 tp

We may differentiate these with respect to the mass density and substitute

them into our wave equations and get

S 4 aJ4  a2V

(40)

V
2  

I - a2V= 4- -oj 2 a a
C-- - 2 V J4 +aaY( at oa-y-
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where Vo -Vo + a and V V - a a.
0 O0ay aBy*

3. Interpretation of the Current Densities

For our system the conservation of charge becomes

aJ i
= O; i = 0, 1, 2, 3, 4

ax

so that
aJ 4  0.(1

at 0ay

Thus we see that defining the current densities by equations (38) leads us

to consider the new component of current density J4 which alters the

conservation of charge equation, (41).

Since equation (38) defining the current densities involves an

interpretation linking these equations to reality there seems to be no a

priori reason for this defining relationship. Defining the current density

in this manner introduces also the necessity of interpreting the new term

J4, which in turn requires changing our concept of conservation of charge

to that of equation (41). While the extension to five dimensions may well

require changing our concept of conservation of charge, just as the step

from three to four dimensions required a change in the conservation of mass,

it should be possible to appeal to experimentation to determine this

requirement.

Suppose we look at the defining relations

a aFij =0 
(42)

axi

then equation (37) becomes

Say c at 0 ay
(43)

*~ Vo =0
C .TE O
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So that we may define the charge density as

T r 0 a- (44)

and the current density as

- o V (45)

Substituting equations (44) and (45) into the remaining equation (43) we

obtain

v. j+ = 0 (46)
at

which is the classical conservation of charge equation.

Thus if we use the defining equation (36) we are faced with inter-

preting the new term J4 which has its origin in the thermodynamic variables

our system. While if we choose the defining relationL(42), (44), and (45)

we may keep our concept of conservation of charge but this requires us, by

equations (44) and (45), to consider current densities to have their origin

in the thermodynamics of our system.

C. QUANTIZATION IN FIVE-DIMENSIONS

1. Quantizations

The system under consideration now is a five-dimensional system

with arc element

(dq°)2 = f (da)2

Now since our system is a Q-conservative, UQ = 0, system the principle of

increasing entropy requires that (dq°)2 > 0 so that f (do)2 > 0. Introducing

the quantitization conditions results in

f* 0 dxJ = 2in; j = O, , 2, 3, 4
+aznflf2y

where ±j _ / and x0 = ct; x1  q1 ; x2  q2 ; x3  q3 ; x' a4
aa o
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If we restrict ourselves to a (do)2 space which is the local

Euclidean space then (do)2 is the five-dimensional Minkowski-type manifold

and using London's work we would produce a five-dimensional quantum dynamical

system.

2. Five-Dimensional Hamiltonian

We previously showed that the principle of increasing entropy

resulted in

6 fr y /dv = 0

as the variational principle for a local Euclidean manifold. Since

multiplication by a constant does not change the problem we may take our

variational problem to be

6f y C2 /(aqUV = 0.

Defining the velocity vector as u
j = dx and the momentum as pj =- -

dqo

Y gjku k, where we have used the fact that qjku = 1, then we may form

the contravarlant momentum as

j gjkpk =gk Y gktu

so that
pjpj (y gj~uJ) (gjk Y gkp u  = u2 U I gjk

( k (47)

= °I y (y gk ujuk)

- y2 C2 ,

since yc2 = y gjkuiuk. Equation (47) is the five-dimensional "momentum

energy" equation.

60

I(



We may now follow London's procedure to obtain our wave function

for the five-dimensional system. However a quicker way to investigate

the effect of the Dynamic Theory upon quantum mechanics would seem to be

that of adopting Dirac's equation in a five-dimensional form and following

a development analogous to standard four-dimensional relativistic quantum

mechanics. With this in mind then we shall adopt the form

hi (a, 3-T + a2 =5 + a3 = + (a1 4  " (48)

to be the five-dimensional specific Hamiltonian operator. In equation (48)

the a's and a do not involve derivatives and must be Hermitian in order

that h be Hermitian.

By taking the four partial derivatives in equation (48) as the

4-vector momentum operator we may write

h = - (- P'+ 0). (49)

3. Five-Dimensional Dirac Equation

If we take pO I> = h I > and require that the a's and 8 are chosen

such that solutions of this equation are also solutions of equation (47)

we find the restrictions imposed upon the choice of the a's and 8 to be:

( . )2 = p2

2 =1 (50)

io 8+8= 0

where natural units, c = 1, are used.

A set of 4 x 4 matrices satisfying the requirements of equation (50)

is

I 0 = (O j) l "1I2, 3; ci,, 2aO; 0 (51)
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where I is the 2 x 2 identity matrix and the a's are the 2 x 2 Pauli spin

matrices.

Then the five-dimensional Dirac equation may be taken to be

i v (x) = (I , v - 0) T(x) (52)

where the v Is a four-dimensional operator. By defining

y B ; - (u = 1, 2, 3, 4) (53)

then equation (52) may be written as

(i ajyJ + 1) V (x) = 0. (54)

By virtue of the properties of the a's and 0 plus the fact that

I 1 for j= k =0

gjk: -1 for j = k = k, 2, 3, 4

0 for j t k

the anticommutator of the y-matrices must satify

{YJ, yi} _ 2gjl.

In standard representation the y-matrices are given by

o 1 0 0 0
Y= (0 ); v = 1, 2, 3; y4  (-2 02

4. "Lorentz" Covariance
Under a five-dimensional Lorentz transformation

.~1 xj3  LJ x
k

we shall suppose each component of the wave function Y (x) transforms into

a linear combination of all four components;

T (x) LT V' (x') = S V (x) (55)
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where S is a Dirac spinor satisfying

S k (56)

By using an infinitesimal Lorentz transformation given by

Lk = gj k + dedJk

where E k are a set of 16 numbers, then S(O) may be shown to be given by

8

S(o) = exp (T f de) (57)
0

where the matrix T is given by

T = I- j k
jk

Equations (55), (56) and (57) suffice to guarantee the Lorentz

covariance of the five-dimensional Dirac equation.

5. "Free Particle" Solutions

If we look for solutions of equation (55) which are also eigen-

functions of the operator pi = iai then we may write the wave function as

T (x) =w (p) e- ipjx .  (58)

By substituting equation (58) into equation (55) we find that w (p) must

satisfy

(pjy3 + 1) w (p) =0. (59)

Using the standard representation of the y-matrices equation (59) may be

written
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PO + I tp 4  -P3  -Pi + ip2 w I

-ip4 PO + 1 -P1 " iP2  P3  W2 (60)

P3  Pi -1p 2  PO + I -ip4  w3 0

P, + 1P 2  -P3  +iP4  -Po + l w4

where it is important to remember that pis P2' P3 and p4 represent minus

the respective components of 5. This set of four, linear, homogeneous,

algebraic equations has a nontrivial solution only if the determinant of

the square matrix on the left hand side vanishes. This determinant is

(p 2 - p2 - 1)2. Thus equation (58) is a solution of the Dirac equation

only if

pO = ± (p2 + 1)1/2. (61)

By defining c (p) = (p2 + 1)1/2 then equation (61) becomes

Po = ± C (p). (62)

Substituting equation (62) into equation (60) the solutions are found to be:

for PO = +

P3  P1 - iP2

P1 + 1P2  -P3

ui (p) =N + 1 u2 (p) =N 7FF (63)

i:] I 1P4

ip1
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for p. "
E

£+
-i1p4

v (P) =N -P3  v2 (p) =N P + iP2  (64)

"- P- 2  P3

where N is a constant.

Following standard quantum mechanical procedure we shall adopt the

probability current density to be

k (x) = -(x) yk f (x)

with the requirements:

(1) a k i k = 0

(2) jk transforms as a contravariant vector, and

(3) .k must be real.

We can determine the normalizing constant N by using the fact that

3
m = f y dxI.. V

then calculating the expectation value of the mass. Thus
't

< M > = ' m T d3x

where t represents the transposed complex conjugate. Then using any of
the solutions given by equations (63) or (64) the expectation value becomes

m , 2N2mcV
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so that

S+ 11/2 (65)

Thus the "free particle" solutions of the five-dimensional Dirac

equation are given by equations (63) and (64) with the constant having the

value given by equation (65).

6. Spin

In the three-dimensional space the angular momentum is given the

vector, L, as the cross product of the coordinates and momenta. We shall

then define the angular 4-momentum to be the four-dimensional cross product

= FijkxJpk

where x4 is the mass density and

( 0 if any two indices are alike

' I 1 for even permutation to align indices in
cijk 1 ascending order

-1 for odd permutation to align indices in
ascending order.

Then the comutator of the components of the angular T-momentum

with the specific Hamiltonian are not zero, for instance

[L3 h] = iy~y1 p2 - iy~y 2pl + iyOy4p1 - iyOy p + iy~y'p 2 - iy~y2p

Now suppose there exists a 4-spin vector f such that the sum of

the angular 4-momentum and the 4-spin vector coninutes with the specific

Hamiltonian, then if we define a new 3-spin vector to be u, given by the

components u tyy', U2ii . yky*, and u3  1 iy4y3, and take the usual

spin vector, T, given by si T iy2yi, S2 = ' iy3y1, and s3 iyy2, the

components of the 4-spin vector may be shown to be
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S =s u2 -u 3

S2 = 2 +1 - U3

S3 = S3 + U 1 - U2

S4 = SI- 1 2 + S3

In analogy with standard relativistic quantum mechanics the eigen

values of the 4-spin components can be shown to be + It may also be4.

shown that the set of observables P, h, and S -P-, where P is the 4-momentum

and S is the 4-spin, form a complete set of commuting observables.

7. Dirac Equation with Fields

In analogy with relativistic quantum mechanics we take the 5-dimen-

sional Dirac equation to be

[(i - i + 1] Y = 0 (66)

where j is 5-vector potential.

By operating on the left with [(iaj - )yJ - 1] and separating yjyk into

symmetric and anti symmetric parts as

ik- + k-- j, j + (67)
Y Y {Y 'Y I + l LY Ig Fik k(7

then equation (66) becomes

[(iD -j)(ia
3 

-J) -I + (-ajak + 'j k - ijak - iajk) aJk y = 0. (68)

Separating ajk into symmetric and anti symmetric parts as
:i k

a = k ('j 1k + a k j + Tl ~k )

and defining the field tensor as

Fjk = 'jk - kj
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then equation (68) becomes

(iaj -j)(iak -k _ 1 1 jk T o. (69)
2~ijka v0.(9

Now since

0 ki 2 3 4

.P 0 -2is 3  21S2 n '

ajk =_2 2is 3  0 -2is' n2

_k3 -21s2 2is1  0 n

_j4 -ni -n2  -n3  0

where aj - n3 for j = 1, 2, 3, and

0 El E2  E3 V0

-E1  0 -B3  B2  V 1

Fjk  -E2  B3  0 -B1  V2

-E 3  -B2  B1  0 V3

_V0  -V1  -V 2  -V 3  0

plus recalling the seven Maxwell-type equations

c at

B +0
~.r=4irp-a0  -- lB1 =---o (0

x = -=0 vV + - a 0
0Oay 0 c at 0 Ty

1 av w j
c~ 4'

Then equation (69) may be written as

Via- €)(Ik - *k) - 1 + 2B -- i* IVo - I * I)' = 0 (71)

and thus becomes the Dirac equation with fields E, B, V0 , and V.
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Suppose we consider a system without an electric charge so that

p = = 0, then by equation (70) we still have

a.E a 0 and x - -an (72)
0 ay c t 0oay

and therefore there will still be a magnetic moment.

D. SUMMARY

If indeed the Dynamic Theory corresponds to reality then any system

which requires thermodynamic as well as mechanical variables for its

description must be described in a five-dimensional manifold of entropy-

space-mass. A Q-conservative system which is very near an equilibrium state

must be described in a five-dimensional manifold of space-time-mass. Thus,

for such a system, mass enjoys a status equivalent to that of space and

time in the Special Theory of Relativity.

When the system is taken to be far enough from an equilibrium state

for the second partial derivatives to be taken as functions, the Dynamic

Theory readily yields a variational principle from the field equations and

equations of motion may be determined.

The seven Maxwell-type equations, equations (37) and (38) introduce

four new field quantities that form an interrelationship with the electro-

magnetic field. In Section III.B.4 these quantities pose a question of

interpretation. However, these field quantities may be seen from a different

perspective in the following sections.

The formulism of standard relativistic quantum mechanics was carried

out in the five-dimensional manifold of the Dynamic Theory. It seems

significant, or at least interesting, to note that the effect of the fifth

dimension is to fill the zeros normally found in the square matrix of

(pyJY + 1) of equation (60).
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With the development of the spin and the five-dimensional Dirac

equation with fields cones the possibility of finding an interpretation

of the new field quantities. This possibility may be seen in the follow-

ing argument.

Suppose that an electron, because of its small amount of mass when

compared to a proton or neutron, does not involve sufficient mass density

change to warrant using the 5th dimension. Then the magnetic moment of

the electron should be given accurately by the four-dimensional Dirac

equation. The accuracy of these predictions is already known.

But suppose that nucleons (i.e., protons and neutrons) have sufficient

mass density change to warrant using the 5th dimension provided by the

Dynamic Theory. Then the nucleons should be described by equation (69).

Using equation (70) we should expect a different value for the magnetic

moment of a proton than the prediction of the four-dimensional Dirac equation

since the field equations involve additional source terms. For the neutron,

which has no electric charge, we would also find a magnetic moment predicted

by equation (69) because of these additional source terms.

Now if we assume that the differences between the observed values of

the magnetic moments of the proton and neutron and the predicted values

of relativistic quantum mechanics are due to the strong interaction or

nuclear forces, then we must connect the new terms in equation (70) with

the nuclear charge and nuclear current densities. Then the new field

quantities may play the dominant role in the realm of nuclear physics.

Then the field equation (70), plus equation (71) and the three spin vectors,

, s and U may provide answers to lquestions in nuclear and elementary

particle physics.
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