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INTRODUCTION 

Background 

In estimating guidance error dispersion of laser guided projectiles, 

one quickly comes to recognize the importance of laser spot motion as 

a primary external error source. Over a period of several years the 

author and his colleagues have been involved in making such estimates 

for the Copperhead (CLGP) projectile and its predecessors.  In this 

connection I have frequently emphasized the importance of this error 

source and its significance for the guidance accuracy of several flight 

vehicles. References [1]* and [2] Illustrate this emphasis. As a con- 

sequence of the Importance attached to laser spot motion and related 

aspects of the laser signature such as pulse dropout and laser spillover, 

considerable efforts have been spent studying tracking error for various 

designators and trackers.  Some analytic models of the tracking error 

are given in References [3] and [4],  In particular. Reference [4] describes 

the statistical techniques used to produce an analytic model descriptive 

of the tracking error of the Ground Laser Locator Designator (GLLD) 

observed during the CLGP OT-1 Tracking Tests. Each of the above models 

are descriptive of the performance of a particular combination of tracking 

device and tracker operator faced with a particular tracking problem. 

* Square-bracketed numbers refer to cited literature. 

[1] Memorandum for Record, AMSAR-SAM, 23 July 1975, subject: Army-Navy 
Guided Projectile Effectiveness Study. 

[2] Schlenker, G. J. and Heider, R. D., Distribution of Angle of Obliquity 
of Laser-Guided Projectiles With Respect to the Target at Impart.  
DRSAR/SA/N-51, (AD A032683), US Army Armament Command, Rock Island, IL, 
August 1976. 

[3] M^^1
^' ^ L'  and Hollman' H- C-. Analysis and Digital Simulation 

?   ^:9r Ql'G?:    Martln Marietta Aaiaasa&S  ntalga. Report No. RG-75-29, 
(Appendix G, Pulse Dropout and Pulse Dither Subroutines), US Army 
Missile Command, Huntsville, AL, Dec 1974. 

141 miSLi M5**-^'  10 Dec 74, subject: Reduction and Analysis of 
CLGP-OT-1 Tracking Data. 
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Particular models of this type are statistical summaries suitable for 

a digital computer simulation of the process of spot motion as seen by 

the designator, which can be used as input to terminal guidance simulations 

and laser target reflectance models.* 

An accurate characterization of laser spot motion, whatever its source, 

is also important because (stochastic) process dynamics are also pertinent 

to the problem of laser spillover and its consequence for guidance accuracy. 

In Reference [5], which addresses this problem, spot motion was treated 

as a second-order stochastic process. 

In an effort to standardize laser designator testing procedures, 

increased attention (Reference [6]) has been given to various phenomena 

which give rise to laser spot motion:  device jitter, atmospheric propagation 

effects (scintillation and beam steering), and designator tracking error. 

In a field-test environment, these phenomena all contribute and cannot 

be isolated by direct measurement.  Consequently, some of the past analyses, 

which have considered "spot motion" and "tracking error" as interchangeable 

terms, have been somewhat indiscriminate. Pragmatically this lack of 

attention to the components of spot motion may not have been of great 

significance in that the joint process is what is of concern in guided 

projectile accuracy analysis. However, a closer attention to the 

components of spot motion does produce clarity in understanding the 

disparate phenomena. 

* In studies done at ARMCOM the laser signatures seen by the projectile 
seeker are generated by a laser target reflectance model using a T55 
tank as the target.  Validation of this model is contained in the 
following report: Beard, J., Rice, D., and Ladd, D., Target Reflection 
Illumination Model With Second Order (TRIMS'), (CONF) , ERIM Report No. 
192200-2-F, Environmental Research Institute of Michigan, Aug 1975. 
Updated documentation of this type of model will be included in a report 
in preparation: Ladd, D., A Multifaceted Target Signature Model With 
Digital Imaging.  

[5] Schlenker, G. J., "Proportion of Energy Spilled Over a Target During 
Tracking With a Laser Designator and Implications for Terminal 
Guidance," Systems Analysis Directorate Activities Summary November 
19Z&, Report No. DRSAR/SA/N-60, US Army Armament Command, Rock Island, 
IL, December 1976. 

[6] Minutes of a Meeting at White Sands Missile Range, NM, STEWS-TE-AG, 
18 June 1976, subject: Uniform Standards for Laser Designator Develop- 
ments. 

12 



Overview of the Report 

This report reexamlnes some of the spot motion data from the CLGP 

OT-1 Tracking Tests with the Intention of Identifying and statistically 

Isolating the stochastic component attributable to human tracking error 

from those produced by other mechanisms.  For notatlonal convenience 

thruout the balance of this report, device jitter and beam-steering 

effects due to the atmosphere will be subsummed by the term "scintillation 

component." This simplification Is considered justifiable because of 

the dominance of atmospheric effects In the example treated here.  In 

decomposing laser spot motion Into tracking (t) and scintillation (s) 

components, one exploits the fact that these components have different 

dynamics which are nearly separable In the frequency domain. 

Much of this report Is devoted to deriving mathematical expressions 

useful In characterizing the stochastic spot motion process and In pro- 

ducing digital Implementations for simulation purposes. Mathematical 

results are generally presented In maximum generality with other applications 

In mind. Numerical examples are provided thruout the report to give 

the reader a (hopefully) better sense of magnitude. For convenience of 

exposition, the report Is divided Into the following six chapters: 

Chapter 1. Decomposition of Laser Spot Motion Into Tracking and 

Scintillation components. 

Chapter 2.  The Analytical Autocovarlance Function for Laser Spot Motion 

Developed From the Spectral Density. 

Chapter 3. Digital Computer Implementation for the First-Order Component 

of the Spot Motion Error. 

Chapter 4.  Digital Computer Implementation for the Second-Order Component 

of the Spot Motion Error. 

Chapter 5. Autospectra of the Digital Error Processes. 

Chapter 6.  Spectral Moments and Parameter Estimation. 

Computer source program listings for pertinent methods are presented 

in the Appendlcies. 

Summary 

In Chapter 1 it is argued that the autospectrum of spot motion consists 

mainly of separable, additive components: one due to the human tracking 

13 



process, possessing approximately second-order dynamics, and the other 

due to processes having approximately first-order dynamics with a significantly 

higher crossover frequency than the human tracker component. Expressions 

for the gain constant in each component of the autospectrum are developed 

in terms of the variance of each component. A numerical example of the 

analytic autospectrum is compared with an experimental estimate derived 

from the azimuthal error of Run 75A of the CLGP OT-1 Tracking Tests. 

Parameter values of the analytic model were selected by trial and error, 

under constraints, to produce an acceptable Chebychev fit to the experimental 

autospectrum in the sense of minimizing the maximum residual. 

It is sometimes useful to make comparisons between analytic models 

and experimental estimates in the time domain as well as in the frequency 

domain.  Altho time- and frequency-domain descriptions are equivalent, 

autocorrelations are often more intuitively appealing. For example, 

the time interval which must separate two time series segments before 

they are effectively uncorrelated can be observed immediately. Chapter 2 

develops an expression for the autocovariance (and autocorrelation) 

function for the spot motion process and extends the example of Chapter 1 

by comparing the autocorrelation function of the analytic model with an 

experimental estimate. 

Chapter 3 treats the digital implementation of the first-order component 

of spot motion.  Implementation is achieved by low-pass filtering of 

gaussian white noise.  Expressions are developed for the coefficients 

of the digital filter and for the variance of the input noise required 

to produce a given output process variance. 

Chapter 4 parallels the developments in Chapter 3 while treating 

the second-order component of the spot motion process.  This development 

is the basis of the principal algorithm* which the ARMCOM Systems Analysis 

Directorate and others have used to describe laser spot motion during 

the past four years. An updated version of the computer program which 

we use to describe spot motion is found in Appendix A. 

* A special case of this algorithm is presented in subroutine DITH of 
Reference [3]. 

14 



Chapter 5 develops the autospectra of the scintillation (first-order) 

and tracking (second-order) dynamic components as implemented digitally. 

The autospectrum of each component is separately compared with its con- 

tinuous-time (analog) counterpart.  Some sources of distortion in the 

digital implementation and in the process of making statistical estimates 

of autospectra are identified and are quantified using the first-order 

process as an example. These results suggest the means to minimize spectral 

distortions. 

Chapter 6 derives expressions for the spectral moments of each of 

the stochastic components of the spot motion process. Additionally, 

statistical estimators are derived for the parameters of pure first-order 

and Butterworth second-order processes which exploit the spectral moments. 

15 Next page is blank. 



CHAPTER 1 

DECOMPOSITION OF LASER SPOT MOTION 
INTO TRACKING AND SCINTILLATION COMPONENTS 

Let the variance of the spot motion at the target due to only tracker 

2     2 
error be a In (m ).  Experience with the TOW and GLLD trackers as well 

as airborne man-operated trackers shows that tracking error exhibits 

approximately second-order dynamics. 

Let the tracking process be second-order Butterworth so that the 

spectral density Is given by 

H: (v) = 
1 + (v/vt)' 

0 < V <00 

with gain constant A and natural corner frequency V . 

The variance or total power of the process Is 

(1.1) 

2 
at = 

H  (V) dV (1.2) 

= A V 
t J 

df 

0 1 + f 

(1.3) 

Whence 

a^ = A v IT /T / 4 

A = 4 a. 

JTT IT V. 

A = 2 /T a' 

TT V. 

(m /hz) 

(1.4) 

(1.5) 
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Normally, the corner frequency V is determined by the dynamics of 

the human motor system and lies below one hertz. 

Scintillation data suggest that the majority of scintillation power 

lies above one hertz at frequencies to which the human cannot respond. 

Consequently, tracking error noise and scintillation noise are substantially 

uncorrelated.  Data on intensity of scintillation above 10 hertz suggest 

this process has nearly first-order dynamics. 

We suppose that a first-order process, uncorrelated with the tracking 

2 
process, with variance a is superposed thereon.  The spectrum for this 

s 

scintillation process is given by 

E2
s   (V) - 

1 + (v/v )■ 
s 

(1.6) 

with corner frequency V . 

Therefore, 

2 a    = s H (v) dv 
s (1.7) 

a = Bv df 

o   i + r 
(1,8) 

a2= Bv ^ 
s      s 2 (1.9) 

Whence, 

B = 2 Is 
TT  V 

S (m /hz). 
(1.10) 

*Some power spectra for percent modulation are given on pp 224 of [7], Wolfe, 
JLi'D^ H^dbook of Military Infrared Tgchnglbgfr Office of Naval Research. 

18 



If the processes are superposed, the spectrum of the joint process 

is just the sum of the component spectra. Letting the joint autospectrum 

be H (v), 

H2(V) = HJ (v) + H2 (v) (1.11) 

H
2
(V) r + --S 5- • d-12) 

1 + (v/vj^  1 + (v/v )z 

Example 

Based on daytime tracking tests at WSMR during the CLGP OT 1 Tests, 

the following parameter values were selected from Run 75A for the azimuthal 

error: 

V =0.7hz  , V =3hz 
t '  s 

a    - 0.230 m , a = 0.165 m   (at 3 km range) 
u S 

A = 6.8038 10"2 , B = 5.7773 lO-3  (m2/hz). 

Numerical results are shown in Table 1 and in Figure 1. 

TABLE 1.  ANALYTIC ESTIMATES OF THE TRACKING AND SCINTILLATION 
COMPONENTS OF AZIMUTHAL LASER SPOT MOTION IN THE AUTOSPECTRUM 

V H2(V) H2(V) H2(V) (m2/hz) 

0.3 6.582 io-2 5.720 io-3 7.154 io-2 

0.5 5.398 io-2 5.621 IO"3 5.961 io"2 

0.7 3.402 io-2 5.479 io"3 3.950 io-2 

1.0 1.317 io-2 5.200 io-3 1.837 io"2 

1.5 3.081 io"3 4.622 io-3 7.702 io-3 

2.0 1.006 io-3 
4.000 io"3 5.005 io'3 

4.0 6.375 io-5 2.080 io-3 2.144 io-3 

* 
An alternative notation for the spectral density (autospectrum) is T     (V), 
for azimuth, and T    (v), for elevation, 

19 



r   (v) 
XX 

(m /hz) 

10 

0.1 

„.;:;. 
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'       , 
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:     !■,:, 
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Parameters of the 
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Length of Run 
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Bartlett Band Width 

26.87 sec 
3 sec 

26 
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90% Confidence Interval/I^(v)  (0.*67,1.69) 
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3     4    -,..,'  ..  i,  i 

XX 

.11.1 

Frequency, V (hz) 
10 

S   S  ■'  »  v} 

100 

Figure 1.  Comparison of an Analytic Model of the Autospectrum 
of Azimuthal Laser Spot Motion With an Experimental Estimate 
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CHAPTER 2 

THE ANALYTICAL AUTOCOVARIANCE FUNCTION FOR 
LASER SPOT MOTION DEVELOPED 

FROM THE SPECTRAL DENSITY 

The spectral density (autospectrum) of laser spot motion in, say, 

the x-direction due to the joint effects of tracking jitter and atmospheric 

scintillation (beam steering) is given by 

where 

r   (v) = 
XX l+(v/vt) l+(v/vs)' 

0 < V < <», (2.1) 

iJT al 
TT V. 

2 a 
B = 

TT V 
S 

with variance contributed by tracking 0 f and variance contributed by 

2 
scintillation a .  By definition, 

s 

2    2 
a  + a 
t    s r  (v) dv, 

o XX 
(2.2) 

The natural corner frequency of the second-order tracking process is 

V and that of the first-order scintillation process is V . 

An alternative expression for (2.1) in terms of the angular frequency co 

is P  (w). xx 

^K <"' ■T** ^i dv 
dw 

or 
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rxx(W> • t rxx ^ (2.3) 

A to  (2TT)"1 B w2 (2Tr)"1 

r (w) -—j-i ;  + —§   • (2.4) 
xx 4 4 T       2 2 

wi 
+ to to + to L s 

Now, the spectral density is by definition the Fourier cosine trans- 

form of the autocovarlance function y     (t) 
xx 

00 

rix (a)) " ? L YXx
(t) cos wt dt • J0 

In general, the Fourier transform pairs f (t) and g(to) are related by: 

(2.5) 

oo 
r 

g(u) = 
JO 

f(t)   cos   (tot)  dt 

f(t)  = 2Tr        g(a3)  cos   (tot)  dto  . (2.6) 

From (2.5), 
oo 

Yxx(t)  = ^ J0 
rix   (w)   cos   ^t)   da)   • (2.7) 

The following general results will be used to develop an expression 

for Yxx(t) for the spot motion process: 

oo 

0 0       1 

^ + to )       cos tot  dto =   (2 TT a  )"1 e^l' (2.8) 

4 4-1 
(a      + to )       cos tot dto = 

0      2 

-1     -1    -a
0t//2 a0t 

(2ir)  1 a2
3e     2 sin  (f + ^j       . (2.9) 
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Using the expression for T*  (w) in (2.4), 

00 
f   i T  -0) t 

T  (w) cos wt dw = B v (2Tr)  e s 

|Q xx s 

.. -(a t/i/2 in t 
+ A vt (27r)  e      sin (f + ^  . (2.10) 

With A and B as defined in (2,1) and with (2.7), 

„     -u t/\/2 u) t -a) t 
Y^O-^a'    e sln(l + ^) + 0s2   e    .     _ ,2u) 

The autocorrelation function is defined as 

Pxx(t) - ^xx(t)/\x(0) • (2-12) 

In this case, 

Y (0) = a  + a2  . (2  13) XX t      S V*|AJ/ 

Example 

Using parameter estimates from tracking run number 75A of the CLGP 

OT 1 Tracking Tests, 
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vt = 0.7 hz w = 4.398 r/s 

V - 3 h8 u) - 18.850 r/s 
o S 

at = 0.23 m (at 3 km range) 

a - 0.165 m 
s 

at /(-0t    + as2 ) = 0-6586 

a2 /(a2 + a2 ) = 0.3414 s   t    s 

Pxx(t) = 0.9314 exp (-3.lit) sin (0.7854 + 3.lit) 

+ 0.3414 exp (-18.85t). (2.14) 

This result is compared with the experimental estimates in Figure 2. 
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CHAPTER 3 

DIGITAL COMPUTER IMPLEMENTATION FOR THE 
FIRST-ORDER COMPONENT OF THE SPOT MOTION ERROR 

Marginal statistics for the first-order process are assumed gausslan. 

However, for brevity the word "gausslan" Is often omitted In describing 

the process.  One Implements a first-order, continuous (or, analog) 

stochastic process with a first-order digital filter having a discrete, mean-zero 

gausslan white noise Input.  The design •£ the filter is based upon the 

assumption that the continuous-time process Is being time sampled. 

Continuous-time (Analog) Processes 

The following first-order transfer function H'ts): 

(B/2Tr)1/2 w 
H,(s) =—TTTT-^ O.i) 

s 

having a continuous, white noise Input generates the autospectrum 

,  (B/2Tr) u2 

[H'(u)]2 =-1 f-    , (3.2) 
CO  + 0) 

s 

as In equation (2.4) of Chapter 2, where the autospectrum of the output Is 

just the squared modulus: 

[H'(w)]2 = H'(ja)) H'(-jco) (3.3) 

for a white noise Input of unit variance. 

For convenience a normalized version of (3.1) Is employed such that 

gain Is unity for s equal to zero: 

H(s) = a)s/(s + WB)  . (3.4) 

Attention to the variance of the Input white noise is deferred until later. 
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Filter Design 

A time sampling of the continuous process characterized by (3.4) can 

be used as the basis of the digital implemantation.  The z-transform 

describing the digital implementation of (3.4) can be obtained by performing 

a bilinear transformation from the s-plane into the z-plane.  (See Walsh 

[8] or Stanley [9]).  The bilinear z-transform is taken by substituting 

s = (z - l)/(z + 1) (3.5) 

into (3.4). 

To minimize distortion of the spectrum of the digital process relative 

to the equivalent analog process, we use a warped analog cutoff frequency, 

a (instead of OJ ) , where s' 

a - tan(usT/2) - tan(iT v T),* (3.6) 

with sampling interval T and desired angular cutoff frequency U) or 

natural cutoff frequency V . 

Using the warped cutoff frequency, the digital transfer function** is 

V^-r^i— • 0.7) 
z + 1 

*This is a normalized version of the warping transformation of frequency 
required by the bilinear transformation.  Normalization is achieved by 
division by 2/T. 

**The digital transfer function is the ratio of the z-transforms of output 
to input of a digital filter. 
[8] Walsh, P. J., A Study of Digital Filters. AD710381, Naval Postgraduate 
School, Monterey, CA., Dec 1969. 
[9] Stanley, W. D. Digital Signal Processing. Reston Pub. Co., Inc., 
Reston, VA., c. 1975. 
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The useful (cannonlcal) form of (3.7) is, after manipulation, 

ao(l + z"
1) 

H'(8)T7^     • (3-8a) 

with 

ao = a/(a + 1) 

b = (a - l)/(a + 1). (3>8b) 

Remembering that z  is the backspace operator, implementation of the 

desired digital filter follows directly from (3.8).  Notationally, let 

the noise input to the filter at time index t be n and the output at 

t be x , with t integer. 

Then, 

x. + bx -, = a n + a n ., ("3 9") t    t-1   o t   o t-1 K->-yJ 

or 

Xt = Vt + Vt-l " bxt-l ' '(3.10) 

Since the desired output spectrum requires a white noise input, 

E[ntnt-k] = 0  ' k /0 (3.11) 

= an , k = 0. 

Ratio of Output to Input Variances 

In selecting the value of noise variance of the input to yield a 

particular output variance, it is necessary to know the ratio of output 

to input variance of the filter.  In the following development an expression 

for this ratio will be derived.  It will be useful to employ the following 
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notation for the covariance function: 

Yxx(k) = E[xtxt_k]. (3.12) 

In this notation, we desire 

Y  (0)/a2 or y  (0)/Y  (0). xx    n    xx    nn 

Taking the mathematical expectation of the product of n with both 

sides of (3.10) yields 

E[xtnt] = aoan  , (t integer), (3.13) 

since 

and 

E[n n  ,1=0 
t t-1 

E[ntXt-l] = 0 ' 

Similarly, taking the expectation of the product of n   with both sides 

of (3:10) yields 

E[x n J = a (1 - b) a2  . (3.14) t t-1    on 

After squaring both sides of (3.10) and taking the mathematical expectation, 

Yxx(0) = E[x
2] = E[a2 n2 + 2 a

2 n^^ - 2 a^x^ - 2 a^n^^ 

+ ao nt-l + ^t-ll  • (3-15) 

With (3.13) and (3.14), 

A.A. llli O 
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Alternatively, with (3.8b) , 

Y
Xx

(0)/Ynn(0) = a/(a + 1) ■ (3.17) 

This is the desired result. 

Suimnary 

In summary, to simulate a first-order, mean-zero process x having a desired 

cutoff frequency Vs and standard deviation a   , one can employ the digital 

filter given by (3.10) with a gaussian, white noise input n having standard 

deviation given by 

an= ^nnW/Yxx(0)l1/2os 

an = [(a + l)/a]
1/2as , (3.18) 

with a given by (3.6) and filter constants given by (3.8b). 
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CHAPTER 4 

DIGITAL COMPUTER IMPLEMENTATION FOR THE 
SECOND-ORDER COMPONENT OF THE SPOT MOTION ERROR 

Analysis of a variety of man-operated trackers, such as those reported 

In [3], Indicates that the marginal probability distribution function for 

the tracking component of laser spot motion is adequately described as 

gaussian. Additional experience with tracking records of this type 

indicates that a second-order dynamical system characterizes the tracking 

error.  For most human trackers a good digital simulation of the mean-zero 

portion of the tracking error is obtained by filtering gaussian white 

noise with a second-order, low-pass Butterworth filter. As in Chapter 3, 

the design of the digital filter is based upon the assumption that the 

continuous-time (analog) process is being time sampled. 

Continuous-time (Analog) Processes 

The following transfer function describes a second-order analog process 

with analog corner frequency w and damping constant C: 

2 

Ht(s)--2—T 2 (4-1) 
a    a 

Specifically for low-pass Butterworth filters 5 = 1//2 and 

2 
CO 

Ms) = 
s  + •T CO s + w 

a    a 

(4.2) 

The digital transfer function associated with (4.2) is created by 

mapping from the s-plane into the z-plane using the bilinear z-transform. 

* 
The digital transfer function is the ratio of the z-transforms of output 
to input sequences of a digital filter. 
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(See Walsh, P. J., OJD Cit [8]). The bilinear z-transfonn is taken by 

sukstitutinj 

s = (z - l)/(z + 1) (4.3) 

in (4.2).  Thus, 

Vz) = Ht (fTT) 

2       2 
U)  (z + 1) 

H (z) -  s2 2 2  *      (4*4) z     (z - 1)  + /fui  (z - l)(z + 1) + W  (z + 1) 
Si • 

Reduction of H (z) to the form 
z 

-1 ,   -2 
an + a1z  + a2Z (4.5) o 

-1     -2 
1 + t^z  + b2z 

implies' the digital filter, since z~ is equivalent to a unit backspace 

operator.  The coefficients in (A.5) are given by 

1 ' 2 
a = a„ = (JJ /D 
0 2   a 

a = 2 a 
1 o 

b, = 2((Ja
2 - 1)/D 

1     a 

b = (ooj - /^ a)a + 1)/D 

with 

D = a)2 + /2"u) + 1  . (4«6> 
a      a 

Notationally, let the noise input to tke filter at time index t be nt 

and the output at t be x , with t an imteger.  Then, from (4.5), 

xt + blXt-l + b2Xt-2 = Vt + alnt-l + a2nt-2  * (4-7) 
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Since the analog angular frequency to associated with the bilinear 
8 

transformation is "warped" or distorted relative to the desired digital 

cutoff angular frequency u^, we employ the relationship between these 

parametersi 

w = tan (co T/2) 
3. t 

or 

ua = tanOrvtT), (4#8) 

where T is the sampling period. 

Parenthetically, note that a change in the sampling period, for a 

fixed digital cutoff frequency, would change co and, by (4.6), would 

change the coefficients of the digital filter. 

In operation, the filter arithmetic is performed as follows: 

Xt = Vt + aint-l + a2nt-2 " Vt-l " b2Xt-2 ' (4-9) 

with t = 3, 4, ... 

The filter is Initialized by assigning x1 = x2 = 0, their mean values; and, 

then, cycling through a sufficient set of inputs to remove the effect of 

the initialization transient. 

The form of (4.9) is referred to in the statistical literature, 

e.g., [10] and [11]*, as a mixed autoregressive, moving average model since 

the output xt depends upon past values of the output — x   and x   — as 

[10] Box, G. E. P. and Jenkins, G. M., Time Series Analysis;  Forecasting 
and Control. Holden-Day, San Francisco, c. 1970. 

[11]  Jenkins, G. M. and Watts, D. G., Spectral Analysis And Its Applications, 
Holden-Day, San Francisco, c. 1969.  
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well as upon (moving average) terms in the input — n and n 

For the required autospectrum of x , n must ¥e white.  Thus, 

E[ntnt-k] = 0» k ^ 0 

= "V k = 0- (4.10) 

Furthermore, future values of the Input are uncorrelated with the present 

value of the output, I.e., 

E[nt+kXt] = ^ k>0, (4'11) 

Ratio of Output to Input Variances, 

In selecting the value of noise (input) variance to yield a particular 

output variance, it is necessary to know the ratio of output to input 

variances of the filter. An expression for this ratio will be derived. 

We employ a notation used by Jenkins, 0^. Cit., [11] for, respectively, 

the autocovariance and crosscovariance functions: 

Yxx(k) = E[KtVk] 

Yxn(k) = E[XtVk]. (4.12) 

In this notation, one desires 

Yxx(0)/anOr\x(0)/W0)- 

This result is obtained from (4.7) by successive multiplication of both 

sides by x^, nt, and n^; and, then, by taking the mathematical 

expectation on both sides in all equations.  This produces: 

Yxx(1) " -Vxx(0) - Vxx(1) + al\n(0) + Vxn(1) 

and 
i 

.2 Y  (0) = a a xn      on 
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Y (1) = (a - b.a )a2 . xn      l   Ion 

Thus, 

Vxx(0) + (1 + ^  ^x(1) = 

[aoal + a2ial-hlao)]  an * ^•13) 

After squaring both sides of (4.9) and taking expected values, one 

obtains 

(1 " bl - b2>  \x(0> - 2 blb2 YXX<1) " 

an[-2aoalbl " 2aoa2b2 " 2a2bl(al " blao) + % + 4 + ^' (4-14) 

One can solve (4.13) and (4.14) for the desired variance ratio. 

PR  — R P 

^xx(0)/>nn(0)=A^-B^  '   . (^"a) 

with 

Al = bl 

2   2 
A2 = 1 - b1 - b

2 

B1 - 1 + b2 

B2=-2blb2 

Cl = Vl + a2(al " blao) 

C2 = -2aoaibl " 2aoa2b2 " 2a2bl(ai " VV1 +ao + ai + a2-    (4-15b) 

For numerical stability the denominator of the r.h.s. of (4.15a) must, 

of course, be non-zero.  This implies that the parameters b1 and b_ must 
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lie within the region defined by: 

|b2l <1 

and 

b1 - b2 <1 

bj^ + b2 > -1. 

This requirement is equivalent to the statement that the poles of (4.5) 

lie outside the unit circle. See Box, Op Cit. [10].  In practice, stability 

requirements are satisfied for the problem of modeling human tracker error 

using sampling rates of 10 or 20 hertz. 

Summary. 

To simulate the second-order, mean-zero component of a stochastic 

process having the desired cutoff frequency V and standard deviation a 
t t 

one can employ the digital filter given by (4.9) with a mean-zero, gaussian 

white-noise input n having a standard deviation given by 

CTn = [\n(0)/\x(0^1/2 CTt ' C^") 

with variance ratio given by (4.15) and with filter coefficients given 

by (4.6). 
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CHAPTER 5 

AUTOSPECTRA OF THE DIGITAL ERROR PROCESSES 

First Order Component 

From the digital transfer function of the first-order process (equation 

(3.8a)), 

aQ+z"1) 
H (2) =-9- ZT    ' (5.1) 
Z     1 + bz ■L 

and with the following mapping into the frequency domain: 

z = eJ  = eJ    , (5.2) 

the squared modulus 

H2(v) . H (eJ27rVT) H (e-J2lTVT) 
1 z        z 

is 

2 2 a2 (1 + cos 2TTVT) 
Vv) 5_^   , (5.3) 

1 + b + 2b cos 27rvT 

with V defined over positive frequencies from zero to the Nyquist frequency 

Vf=l/(2T). 

The results in (5.1) and (5.3) were derived from a normalized analog 

transfer function having unity gain at frequency zero.  Consequently, 
2 
H^O) = 1. Then, the autospectrum of the first-order digital component, 

T  (v), is given by 

rxx(v) - H2(V) rnn(v)   , (5.4) 

where ^^(v) is the autospectrum of the digital white noise (input) process, 

given by 
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nn 

or,  from  (3.18), 

T
nJ

v)  = vf1 0l  » 0lvlvf' (5-5) nn r       n t 

T  (v) = 2T a2(a+l)/a (5.6a) nn        s 

or 

r (v) = 2T(l+bI aj , 0 < v < vf . (5.6b) 
nn     „ ^    s    —  — r z a o 

The noise spectrum T      is  comparable to the gain constant B in (1.10). nn 

As T approaches zero T      approaches B. 
nn 

Example 

It is interesting to compare the value of the first-order component 

autospectrum for the analog process (equation (1.6)) with that for the 

equivalent digital implementation. To this end, take the parameters 

of the example given previously in Chapter 1: v =3 hz, a =0.165 m.  Assuming s       s 

that the sampling rate (1/T) of the analog process is 20 hz, 

T = 0.05 sec, and, by (3.6), 

a = 0.509525. 

From (3.8b), 

a = 0.337540 o 

b = -0.324920  . 

Then, (5.3) becomes 

2, , m  0.227866 (1 + cos 0.314159V) . 
V ; " 1.1055728 - 0.649839 cos 0.314159V  ' {:>'/) 
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This result is compared with that of the corresponding analog process 

in Table 2.  Additionally, squared modulii for other sampling rates are 

displayed in Table 2. 

TABLE 2.  COMPARISON OF THE ANALOG AND DIGITAL SQUARED 
MODULII OF THE FIRST-ORDER ERROR PROCESS 

V 
(hz) 

HJ(V) 
analog, B=l 

2 
H^v), digital at sampling rate: 

20 hz 40 hz 80 hz 

0.0 1.0000 1.0000 1.0000 1.0000 

0.3 0.9901 0.9915 0.9904 0.9902 

0.5 0.9730 0.9767 0.9739 0.9732 

1.0 0.9000 0.9119 0.9030 0.9007 

1.5 0.8000 0.8183 0.8045 0.8011 

2.0 0.6923 0.7109 0.6968 0.6934 

3.0 0.5000 0.5000 0.5000 0.5000 

4.0 0.3600 0.3297 0.3531 0.3583 

6.0 0.2000 0.1205 0.1817 0.1955 

8.0 0.1233 0.0267 0.0984 0.1171 

10.0 0.0826 0.0000 0.0545 0.0755 

F  (v) (m2/hz) nn 5.777 lO-3 8.066 10"3 7.031 lO-3 6.431 10"3 
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As noted from Table 2, the squared moduli! of the analog and digital 

processes are in excellent agreement over the interval (0 < V < Vj/2). 

For frequencies within the interval (V /2 <_ V  <. Vf) and, particularly 

at the upper end of this interval, the autospectrum of the digital process 

departs significantly from that of the corresponding analog.  Since there 

is no spectral content for the digital realizations above Vf, i.e., all 

of the variance of the digital process must occur at frequencies below 

v_, the values of the digital autospectrum exceed those of the analog 

having the same variance for low frequencies.  Thus, the autospectrum 

of a digital process produced by a low sampling rate (and low Vf) will 

display substantial distortion relative to that of the corresponding 

analog process. This point is illustrated in Figure 3 in which different 

digital autospectra of the first-order stochastic process are compared 

to a corresponding analog autospectrum. 
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Autospectrum  (m /hz) 

100 

Frequency, y (hz) 

Figure 3. Comparison of the First-Order Autospectra for the Analog and Corresponding 
Digital Processes 
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Of course, if the contribution of the first-«rder process to the 

total spot motion variance is small, this distortion may be acceptable. 

However, if fidelity to the corresponding amalog process is desired, 

a general rule might be that the sampling rate used in generating the 

process digitally should be 20 to 30 times the corner frequency. 

Naturally, the dynamical response of the system accepting this first-order 

noise is also a consideration in selecting a sampling generation rate. 

Generally the dynamic components of a signal such as laser spot position 

are viewed only at discrete points in time, namely when the pulsed laser 

flashes.  Thus, any spot motion due to a fundamentally continuous (analog) 

process is inherently time sampled.  Further, this sampling interval 

T* may be different from that used in the digital implementation, T.  To 

quantitatively assess what effect the digital generation interval T has 

on the output series obtained by sampling at a time interval T*, one must 

exploit some sampling theory.  This theory is developed below for an 

ideal (delta-function) sampler and applied to the first-order component 

of the stochastic process. 
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The Transfer Function of a Time-Sampled Process 

Whenever a stochastic process Is sampled (or subsampled), the autospectrum 

of the sampled process may be substantially altered relative to the original 

process.  This distortion will occur whenever the original process has 

an appreciable variance (or power) invested in frequencies (v) above the 

Nyquist (or folding) frequency of the sampler.  If the sampler is operating 

at a sampling rate (T*)"1, the folding frequency will be Vf = (2T*)
-1 

and variance in the original signal associated with v > Vf will be con- 

founded with the variance associated with V for 0 <_ V < Vf.     In this 

section a theorem for ideal (point) samplers will be applied to several 

processes and examples will be offered to quantify the distortion accompanying 

sampling.  In doing this, the author follows the notation and results of 

Kuo and Kaiser [ 12 ], p. 222 ff. 

Notationally, let f(nT*) be the value of the original process evaluated 

at points in time:  t = nT*, with n an integer and T* the constant sampling 

interval.  Further, let F(s) be the Laplace transform of the original 

process and let F (s) be the Laplace transform of the sampled process, i.e., of 

the discrete series resulting from sampling.  Then, for zero initial 

conditions, 

F*(s) = ^.^(s + jn2Tr/T*) , (5.8) 

with s = jw defined for -«> < co < oo . 

[12 ] Kuo, F.F. and Kaiser, J.F.  Systems Analysis by Digital Computer, 
John Wiley and Sons, New York, c. 1966. 

45 



And, 

F*(JU) = F(JUJ) + E°°  F(j(a>Ho )) + £*_,   FQ(uy-u  )) , 
"■A. n     n—x      n 

with 

co = Zirnd*)"1 
n 

(5.9a) 

(5.9b) 

and 

u = 2TTV . 

Since the modulus of F(ja)) will generally decline with co for values 

of to greater than some value, say, co*, it will suffice to approximate F* 

with a finite (and reasonably small) number of terms in the infinite sums. 

Thus, 

(5.9c) 

F*(ju)) s F(JQJ) + t*     F(j(who )) + zn     F(j(a)-(U )) 
'Jn=l '    'wn/y   'Jn=l (5.10) 

In evaluating the autospectrum •f the sampled process it will be 

convenient to separately find the real and imaginary parts of each of the 

terms in F*(jaO. 

Then, 

Re {F*(ja))} s Re {F(Ju))} 

ft 
+ 2°  Re {F(:i (aH*) ))} n—x n 

+ Zn=l Re tFOKw-U^))} , (5.11) 

and likewise for the imaginary part of F*(JCL)), Im {F*(j(o)}. 

Finally, the autospectrum of the sampled process is proportional to 

|F*(ja))|2 = [Re {F*(ja))}]2 + [Im {F*(jco)}]2 . (5.12) 

As a particular application of the above results, take the first-order 

analog process, for which 

(5.13) F(8) =to  (s + 0) )  . 
S        S 
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In this case 

F*(jw)  = a) (jco + co )~1 + w    E00 n   [j(aj+w )+u3 J-1 

s s s    n=l n        s 

+ ^s ^=1 [j(w-u3n) + a)g]"
1. (5.14) 

Separating F    into real and imaginary parts: 

Re  {F*(jw)}  =  [((0/(0 )2 + I]"1 

s 

oo 2     2-1 
+ Z     ,   [((0+(0 )   /(O    +1] n=l n s 

+ E00 .   [(u-to )2/a)2 + I]"1 (5.15) n=l n s 

and 

- Im {F*(ja))} =  ((o/(o )   [(OJ/O) )2 + I]"1 

s s 

oo . 2     2-1 
+ E    . ((or+w )/o) ) [(w+o) )  /o)    +1] n=i n      s n        s 

oo . 2     2-1 
+ E    . ((o)-o) )/(0 ) [(OJ-O) )   /o)    + 1]       . (5.16) 

n=i n      s s        s 

This case has been evaluated for the following specific parameters: 

V = 1, 3 hz and T* = 0.1, 0.05, 0.025 sec. The results are dispayed in 

Figures 4 and 5. 

A second example of the effect of sampling is the case in which a 

digital implementation of a first-order process is subsampled, i.e., in which 

* -1 the sampling frequency (T )   is a submultiple of the digital generation 

frequency T  .  The digital process with transfer function H (z) in equation 
z 

(3.8a) will be the example taken here; 

a (1 + z"1) 
H (Z) = -° ,  . (5.17) 
Z     1 + bz"1 

With the mapping into the s-plane: 

sT 
z = e  , (5.18) 
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3     ■*    E   O  7  B  O 

10.0 

Frequency, v (hz> 

Figure 4.  Comparison of a First-Order Anal.j Squared Modulus With the Squared 
Modulus of the Ideal Time-Sampled Series (Parameters:  v - 1 hz, T* = 0.1 sec) 
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10 'O 

0.01 

Frequency, V (hz) 

Figure 5.  Comparison of a First-Order Analog Squared Modulus With the Squared Modulus 
of the Ideal Time-Sampled Series 
(Parameters:  v = 3 hz, T* = 0.05, 0.1 sec) 
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T   a (1 + e~sT) 
F(s) = H (esT) = -2— 

1 + b e 
-sT 

And, 

F(jco) = 
a (1 + exp(-jWT)) 

1 + b exp(-ja)T) 

with (from (3.8b)) 

ao = a/(a + 1) 

b = (a - l)/(a + 1) 

a = tan (TTV T) 
s 

In this case, 

a  (1 + b) (1 + cos wT) 
Re {F(jaj)} = -2 —  

and 

-Im {F(Jaj)} = 

1 + b + 2 b cos a)T 

a„ (1 - b) sin wT 

(5.19) 

(5.20a) 

(5.20b) 

(5.21a) 

(5.21b) 
1 + b + 2 b cos wT 

for - TT < OJT < TT ; and when coT is outside of this region, F(jw) is 

identically zero. 

Obviously, the sampling interval T* must be an Integral multiple of 

the generation interval T: 

T* = mT , m = 1, 2, 3 ... 

In this example F*(j(o) is evaluated for v =3 hz and T = 0.025 and 
s 

T = 0.05  sec with m = 2.  Results are plotted in Figures 6 and 7. 

The autospectra for the time-sampled process in Figure 7 may be compared 

with the unsampled autospectra shown in Figure 3.  The effect of sub- 

sampling order (m) on the squared modulus is shown in Table 3. 
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0.01 

Frequency, v (hz) 

Figure 6,  Comparison of Squared Modulll for Subsampled Digitally Generated 
First-Order Processes Having Different Sampling Rates 
(Parameters:  v = 3 hz T = T*/2) 
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Autospectrum   (m /hz) 
i Mllll!1! 

Frequency, V (hz) 

Figure 7.  Comparison of the Autospectra of Time-Sampled Processes: Analog and 
Digital Implementations  (Parameters:  v •= 3 hz, a = 0.165 m, T* = 0.05 sec) 
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TABLE 3.  EFFECT OF SUBSAMPLING ON THE SQUARED 
MODULUS OF A DIGITAL IMPLEMENTATION OF A 

FIRST-ORDER DYNAMIC PROCESS SAMPLED AT 20 HZ 

Parameters: v = 3 hz, T* = 0.05 sec s 

V 
digital F(» 

subsamplin 

2 with T = T*/ 
g order m 

Q 

(hz) 1 2 3 4 

0.1 0.9987 0.9987 1.0311 1.0537 

0.2 0.9949 0.9950 1.0272 1.0497 

0.3 0.9887 0.9887 1.0208 1.0432 

0.4 0.9800 0.9801 1.0120 1.0342 

0.5 0.9690 0.9692 1.0008 1.0229 

0.6 0.9560 0.9562 0.9875 1.0093 

0.7 0.9409 0.9412 0.9721 0.9937 

0.8 0.9240 0.9440 0.9549 0.9762 

1.0 0.8855 0.8861 0.9157 0.9363 

1.2 0.8420 0.8430 0.8714 0.8913 

1.5 0.7709 0.7724 0.7991 0.8177 

2.0 0.6475 0.6500 0.6737 0.6901 

2.5 0.5306 0.5342 0.5551 0.5694 

3.0 0.4276 0.4323 0.4507 0.4632 

3.5 0.3406 0.3463 0.3625 0.3735 

4.0 0.2687 0.2753 0.2898 0.2995 

4.5 0.2100 0.2174 0.2305 0.2392 

5.0 0.1624 0.1704 0.1824 0.1902 
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Aside from the distortions in the autospectrum (and process dynamics) 

due to digital sampling, there are distortions in the spectral estimates 

created by the statistical techniques employed in analyzing time series 

data. These distortions are discussed below. 

The Effect of Lag Window in the Estimated Autospectrum 

In estimating an autospectrum from time series data, it is essential 

to provide a means of averaging or smoothing spectral estimates to insure 

stochastic convergence as the length of the series (or record) grows 

indefinately large. For a single record, x(t), the smoothing is efficiently 

done by applying a weight function or "lag window", w(t), to the estimated 

autocovariance function, 9^(0, before taking the Fourier transform to 

form the smoothed autospectrum, ^(w).  See Jenkins and Watts, 1968, Op Cit. [U], 

Thus, for a continuous record of length t , 

f (a,) - 1 
XX       TT 

e- 

t 
e ^ 
Y—.U) w(t) cos cot dt. (5.22) 

0 

Without applying a weight function to the theoretical autocovariance, 

and for an essentially infinite record, one would obtain the theoretical 

(unsmoothed) autospectrum: 

00 

rxx(u)) = f J0 \x  M  cos wt dt- (5.23) 

Parenthetically, it is noted that the spectrum is often expressed in terms 

of the natural frequency V rather than the angular frequency u. Then, 

r    (v) - r    (u(v)) l—I 

rxx (V) ■ 21T rxx (2Trv) • (5-24) 
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Altho smoothlnj is required to reduce the variance of the estimated auto- 

A 
spectrum, it does create a distortion of the estimate T    (w) relative to 

F (w).  It is the purpose of the developments of this section to quantify 

this distortion. 

Two weight functions are frequently used in smoothing: one due to 

Bartlett— 

wR(t) = 1 - t/x  , 0 < t < T 
B m     —  — m 

=0        ,    t > T  , (5.25) 
'        m 

where T is a lag parameter, and one due to Tukey— 
m 

wT(t) = ^ a + cosOrt/t )), 0 < t < T L £ m    —  — m 

=0 t > T . (5.26) 
m 

In the following analysis the simpler, Bartlett window is used. However, 

the effect shown on the estimated autospectrum is representative of several 

lag windows. Also in this analysis we take the estimated autocovariance 

function to be the theoretical autocovariance of a first-order analog process: 

Y  (t) =  Y  (0) exP (-^t).  Specifically, from the second term of (2.11), 
XX XX 

the autocovariance of the scintillation process is 

2 -W-t 7    e s 

s 

Then, for the Bartlett weight function^the smoothed autospectrum is 

Y     (t)   = a1 e"^11 (5.27) 
XX S 

XX TT 

2      /■ m 

cosOot)   e Wst   (1 -  t/T  )  dt. (5.28) 
0 m 

r   (w) = iis_ 
XX Tf   0) 

S 
"cos^x)  e-x  (1 -2_)  dx   , (5.29) 

0 ws «isTin 

From (1,10), the constant multiplier on the r.h.s, of (5.29) is B/2Tr. 
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CO T 

2TT ft ,.v  I       ,u      .     -x 
Trxx(w) = I    cos(^x)e-xdx 

■'0       s 

0) T 
s m 

U) T C s m -x    ,0)   v xe  cos(— x) dx. (5.30) 
s 0 "- 

After some manipulation. 

2TT ** 

T rxx(w) " rxx(w) + a^ 
—(jj f 

+ e s m [a(a)) cos an. + B((o) sin WT ] , (5.31a) m m 

where 

2.-1 r (w) = (i + (w/o) )z) 

a(a)) = wgTm"
1 (co2 - w

2) (co2 + to2) 2 

1 - (co/co )2 

a(co) ?— 
WsTm (1 + (^s)

2)2 

3(w) = - 2 A'^Cw2 + co2)-2 
s m   s 

3(w) = -2 (w^X^y1 (rxx(a)))
2 . (5.31b) 

Note that the normalized smoothed autospectrum (2Tr/B) f  approaches 

the unsmoothed function F^ as Tm grows Infinite.  Some numerical examples 

of r were evaluated for several values of the parameters v (or co ) and 
s     s 

V Results are displayed in Figures 8 and 9. The effect of smoothing is 

to shift variance (or power) to lower frequencies and to Introduce a damped 

oscillatory term. These distortions are not very significant for values 

of V T greater than about 1.5. s rn 
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Figure 8.  The Smoothed Autospectrum, V     (v), Due to a Bartlett Lag Window Applied 
to a First-Order Autocovariance With Associated Theoretical (Unsmoothed) Spectrum 
r
xx(v), (Parameters; va = 1 hz, Tm =i I sec) 
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0.01 

Frequency, V (hz) 

Figure 9.  The Smoothed Autospectrum, T  (v), Due to a Bartlett Lag Window Applied to a 
First-Order Autocovariance With Associated Theoretical (Unsmoothed) Spectrum T     (v) 

XX 
(Parameters:  V = 3 hz, T =0.5 sec) 

s        in 
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Second-Order Component 

The digital transfer function used In describing the second—order, 

tracking component of the laser spot motion (equation (4.5)) is repeated 

here. 
-1 .    -2 a + a1 z  + a z 

Hz(Z) = -5 ±—j ^—^-  ' (5.32) 
1 + b, z  + b„ z 

The autospectrum of the process is proportional to the squared modulus 

|H (expQcoT)) I2.  Notatlonally, 
z 

H^o,)- |Hz(eJ
WT)i2= |Hz(e^

2^T)|2. (5.33) 

with sampling generation interval T. 

Using De Molvre's theorem, 

eJ
wT . cos COT + j sin OJT, (5.34) 

with (5.32) and (5.33), 

2 2 
H0(w) = t(a + a. cos wT + a. cos 2a)T) 
2        o   1 I 

+ (a sin wT + a sin 2toT) ]/ 

[(1 + \)y  cos uT + b2 cos 2wT)
2 + 0^ sin coT + b2 sin 2uT)

2] . (5.35) 

Using equation (4.6) and after some manipulation, (5.35) becomes 

4 
9     0) (3 + 4 cos wT + cos 2wT) 

H|(W)--^ ^ ^   '       (5.36) 
3(w + 1) + 4(to - 1) cos wT + (co + 1) cos 2wT 

a a a 

where 

a) = tan (TTV T). (5.37) 
a        t 

Either (5,35) or (5=36) can be used to evaluate the squared modulus of 

the second-order dynamic component.  Altho (5.36) has a simpler form 

than (5.35), computational experience using single-precision arithmetic 

on the IBM 360 series computers has demonstrated that (5.36) is somewhat 

more sensitive to truncation error than (5.35).  In fact, it is noted 
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that generally all second-order transfer functions and squared modulll 

are more sensitive to loss of precision due to arithmetic truncation 

than are their first-order counterparts. When using IBM 360 computers 

it is recommended that double-precision arithmetic be used. 

The above expressions for the second-order squared modulus are 

normalized so that H2(0) - 1. To calculate the autospectrum, T     (v), 

of the second-order (tracking) process, one employs: 

^(V) = H^TTV) rnn(v)   , (5.38) 

Where rnn^ ±S  the inPut  noise spectrum to the second-order digital 

filter.  The noise spectrum is a function of the sampling generation in- 

terval, T, and the variance of the tracking process, a2: 

rnn=2Tat ^nn^xx^ ' (5.39) 

with the ratio of variances Y  (0)/Y  (0) 
nn   'xx 

given by (4.15a). 

As with the first-order process, it is useful to make numerical 

comparisons between the squared modulus of the digital implementation 

of the second-order (tracking) component and that of the corresponding 

analog process.  The transfer function for a general second-order analog 

process, Ht(s), is given by equation (4.1).  The general squared modulus 

is, then, 

H2(jaj) - 1/[(1 - (a)/a)a)
2)2 + 4C2 (u/c^)2] (5.40) 

With the Butteirworth assumption of  ^ =  1//2 and with co    = 2Trv 
a     t' 

H2(V) -1/[1 + (v/vt)
4] , (5.4!) 

as in equation (1.1) with A = 1. 

The analog gain constant A (equation (1.5)) represents the analog 

input noise spectrum and is comparable with T      given by (5.39).  In fact, 

lim r=A. r^  /,o\ 
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Example 

Pursuing the example of Chapter 1, with 

V = 0,7 hz 

a = 0.23 m 

T =0.1 sec, 

CO = 0.219912, and from (5.36): 

H^CV) = 2.33879 10~3[3 + 4 cos(0.62832v) 

+ cos(1.25664v)]/[3.00716 

-3.99064 cos(0.62832V) + 1.002339 cos(1.25664v)]. (5.43) 

Numerical results from this expression and similar digital squared modulii 

calculated with T = 0,05 sec and 0.025 sec are compared with the analog 

squared modulus in Table 4.  Spectral amplitudes for the noise are also 

shown in Table 4.  Spectra are plotted in Figure 10. 

TABLE 4.  COMPARISON OF THE ANALOG AND DIGITAL SQUARED 
MODULI! OF THE SECOND-ORDER (TRACKING) ERROR PROCESS 

v 
analog 

H*(v) 

A-l 

digital, ] ̂(v) with T (sec) : 

(hz) 0.025 0.05 0.10 

0.1 1.000 1.000 1.000 1.000 

0.2 0.993 0.993 0.993 0.994 

0.3 0.967 0.967 0.968 0.969 

0.4 0.904 0.904 0.905 0.907 

0.5 0.793 0.794 0.794 0.799 

0.6 0.649 0.650 0.650 0.653 

0.7 0.500 0.500 0,500 0.500 

0.8 0.370 0.369 0,368 0,365 

1.0 0.194 0.193 0.191 0.183 

1.2 0.104 0.103 0.101 0.092 

1.5 0.0453 0.0447 0.0428 0.0357 

2.0 0.0148 0,0144 0.0132 0.0089 

3.0 0.00296 0.00275 0,00220 0.00070 

5.0 0.00038 0.00031 0.00015 0.00000 

rnn(v) (m2/hz) 0.0680 0.0682 0.0685 0.0695 
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Autospectrum (m /hz) 
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Frequency, V (hz) 

Figure 10.  Autospectra of the Second-Order (Tracking) Process(Parameters: 
V = 0.7 hz, a = 0.230 m, T = 0.1 sec) 
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CHAPTER 6 

SPECTRAL MOMENTS AND PARAMETER ESTIMATION 

The spot motion process has been shown to consist of a mixture of 

first-and second-order dynamic components characterized by four parameters— 

the two crossover frequencies v and v and the two variances a  and 
2 s     t s 

a or, alternatively, the spectral gain constants B and A. The existence 

of four parameters to estimate from the autospectrum suggests that ex- 

pressions for the first four spectral moments (zeroth thru third) in 

terms of the four unknowns could be developed and used with experimental 

values of the spectral moments to solve for the estimates. This concept 

was explored and found to be impractically complex for a mixture of dynamic 

components. However, for evaluating processes having only one dynamic 

component, the concept of matching spectral moments to produce parameter 

estimates appears to have promise. The estimating relations for a pure 

Butterworth second-order process and for a pure first-order process 

are derived below. 

Spectral Moments for the Second-Order Butterworth Process 

The autospectrum for the continuous-time (analog) second-order 

Butterworth stochastic process {x(t)} is given by 

rxx(v) = ~~ ,4 > 0 < v < co, (6.1a) 
1 + (v/vt) 

with ,  2 

A " ~   ' (6.1b) 
•TIT v 

By definition the k th spectral moment is given as 

\- 

00 
r    k 

v r (v) dv 
0 

or 

1    ■ A ,1
k+1 f  Xk dx 
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Using the general result: 

•o 

p-1 c 
1 + j 

1  <  p  <  q   , 

f       xP"1 dx 
J        ~-   (^/q)   [l/sin(pTT/q)], (6.3) 

X0 = A vt   (f)   ^ 

Xl = A \     fy 

X2 = A Vt3    ^   (^     • (6.4) 

For all k>3, the moments of the analog process are infinite. However, 

the parameters A and Vtf can be estimated using A and X as follows: 

A~vX^ (6.5) 

Vt X^    • (6.6) 

In practice A and vt would be developed by substituting the sample 

estimates XQ (or ap  and X1 for X and X , respectively. 

The moments for a digital implementation of this process are, of 

course, finite. Let vf be the Nyquist (folding) frequency. Then, the 

digital moments are approximated by 

I -   k ■i. k   In      V      ^(V) dV (6.7) XX 

or 

X, = A 
k 

r5, k ..k+l f xK dx 
vt  Jo 777' (6-8) 
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where 

For notational convenience, define the k th normalized moment A, as 
k 

X,   = X,/(A v^+1)     ,     k > 0. (6.10) k        k x      t 

Then, 

^^-/25 + l 1-5" 

A1 = - tan    (?  ) 

z   ^/2     r + ^ s + i i _ 52 

x3 = i-end + ?4)    . (6.ii) 

Spectral Moments for the First-Order Process 

The autospectrum for a first-order process {x(t)} with crossover 

frequency V and gain constant B is given by s 

r (v) j , o < v < «> . (e.^) 
x    i + (v/v )/ s 

From the definition of spectral moment (equation (6.2)) and the general 

result of (6.3), it is seen that only the zeroth moment of the first- 

order process is finite: 

u  ■'0 1+ (v/v ) 2 

X0 =  B(ir/2)   . (6.13) 
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As with the second-order process, defi«e the moments of the digital 

implementation of the first-order process (Ak) as definite integrals 

with the Nyquist frequency as the upper limit. Thus, 

v r (v) dv 
XX 

with 

A = B (vJk+1 x dx 

0 1 + x 
2 ' (6.14) 

n = vf/vs (6.15) 

The normalized moments for the first-order process are defined 

as 

\ = y(B v^1) . k > o. 

For the first-order process, 

X0 = tan" (n) 

(6.16) 

A-L = I Itiil + n2) 

A = n - tan (n) 

X3 = 5" - f £n(1 + n2) (6.17) 

By inspection of (6.16) and (6.17) one can write the following 

two equations which can be solved simultaneously for B and V : 
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with 

2. .      -£n(l + n )       MA , 
B -       N    ,1 '      2  (Xo/A1) (6-18) 

2ttan 1(n)]Z      0    1 

n - vf[(B vf-x0)/x2]L/\ (6.19) 

vg - vf/n    . 
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APPENDIX A 
SUBROUTINE TO GENERATE LASER 

SPOT MOTION 

Subroutines SPOTIN and SPOTMO—-an entry point in SPOTIN—generate 
spot motion in azimuth and elevation coordinates for use in laser signature 
models.  SPOTIN initializes the program SPOTMO by providing azimuth 
and elevation standard deviations for both the tracking and scintillation 
stochastic components as well as the crossover (corner) frequencies 
of each of the components.  The sampling generation interval is also 
specified.  For subsampling, subroutine SPOTMO is called several times 
for each repetition of the laser interpulse interval. Thus, the sampling 
generation interval must be chosen in a manner appropriate to the use 
of this routine.  SPOTIN computes the filter coefficients for the tracking 
component by means of equation (4.6) and the coefficients for the scintillation 
(first-order) component via (3.8b). 

The input requirements of both SPOTIN and SPOTMO are specified 
in the following source program listing.  Output from SPOTMO is also 
specified in that listing.  In operation SPOTIN is called only once for 
initialization and SPOTMO is called where the output position array 
is required, typically nested in a loop of the calling program. 
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C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  SPOT IN  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
C—  SPOT MOTION DRIVEN WITH SCINTILLATION >>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

SUBROUTINE. SPOTIN (SIGMA. CF. OT) 
INTEGER TR/l/i SC/2/. AZ/1/, EL/2/ 
DIMENSION SIGMA(2.2)» CF(2) 

C—  SPOTIN INITIALIZES THE ROUTINE SPOTMO FOR THE 2-DIMENSIONAL (AZI- 
C    MUTH &. ELEVATION) MOTION OF THE DESIGNATOR BEAM ABOUT THE DESIRED 
C    DIRECTION. 
C    INPUT REQUIREMENTS: 
C    *    SIGMA — ARRAY OF STANDARD DEVIATIONS OF ERROR COMPONENTS. 
C UNITS SAME AS "OUTPUT" OF SPOTMO. BEL^W, 
C SIGMAd.l) = SIGMA(AZ.TR) = S. D. IN AZIM OF TRACKING PROCESS. 
C SIGMA{2.1) = SIGMA(EL»TR) = S. D. IN ELEV OF TRACKING PROCESS. 
C SIGMA(1.2) = SIGMA(AZ.SC) = S. D. IN AZIM OF SClNT PROCESS. 
C SIGMA(2.2) = SIGMA(EL.SC) = S. D. IN ELEV OF SCiNT PROCESS. 
C    *    CF -- VECTOR OF CORNER FREQUENCIES OF PROCESSES (HZ). 
C CF(I) = CF(TR) = C. F. FOP TRACKING 
C CF(2) = CF(SC) = C. F. FOR SCINTILLATION 
C    *    DT -- SAMPLING INTERVAL (SEC* 
C 

DIMENSION XT(2,3), ZT(2.3). XS(2.2). ZS(2.2). OUTPU1(2,3) 
DATA PI / 3.I4Ib93 /. NET /3/ 

C 
C—  CHECK FOR PRESENCE OF TRACKING ERROR 
C 

ITRACK = 0 
IF ( ((SIGMA(AZ.TR) .LE.O.) .AND. (SIGMA(EL.TR) .LE.O.) ) .OR. 

1     (CF(TR).LE.O.) )   GO TO 150 
ITRACK = 1 

C--  TRACKING ERROR IS PRESENT 
C--  CLEAR TRACKING NOISE ARRAYS AND COMPUTE FILTER COEFFICIENTS 

DO 100 1= AZ. EL 
DO 100 J=1.3 
XT(I.J) = 0. 

100 ZT(1.J) = 0. 
ZETAAL = SORT(0.5) 
OMEGAA = TAN(PI«CF(TR)«DT) 
DUMMY = 1. /(I. ♦ 0MEGAAM2. *ZETAAL ♦ OMEGAA) ) 
AO = OMEGAA**? * DUMMY 
Al = AO ♦ AO 
Bl   =   2.   »   10MEGAA**2   -   1.   )   »   DUMMY 
B2   =    (1.   -   OMEGAAM?.   ^ZETAAL   -   OMEGAA)    )    •   DUMMY 
SDNT   =   SQRT(    (B2-1. ) * ((«Z»1, > ♦•2   -   B1*B1J   /    ( AO^Al* ( (B2-1.) <>*2   - 

1 (Bl-2.)*»2))    ) 
TMAX   =   5.»SDNT 
TMIN = -TMAX 

150 CONTINUE 
C 
C--  CHECK FOR PRESENCE OF SCINTILLATION 
C 

I SCI NT = 0 
IF ( ( (SIGMA(AZ.SC).LE.O.).AND.(SIGMA(EL.SO.LE.O.) ) .OR. 

1     (CF (SO .LE.O.) )   GO TO 250 
ISCINT = 1 

C—  SCINTILLATION IS PRESENT 
C—  CLEAR SCINTILLATION NOISE ARRAYS AND COMPUTE FILTER COEFFICIENTS 

DO 200 I = AZ. EL 
DO 200 J = 1.2 
XSd.J) = 0. 

200 ZS(I.J) = 0. 
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OMEGAA = TAN(PI«CF(SC)»DT) 
AAO = OMtbAA / (OMLGAA*!.) 
BB = (OMtGAA-l.) / (OMEGAA*!.) 
SONS = SQRKlo ♦ 1./OMEGAA) 
SMAX = Bo^SDNS 
5MIN = -SMAX 

250 CONTINUE 
RETURN 

C 
ENTRY SPOTMO (NFWD» 1SEEOT, ISEEDS, OUTPUT) 

1001 FORMAT(•0»**ERROR — '» 110. '-TIME-STEP ADVANCE CALLED FOR IN SPO 
1TMO — RUN ABORTED. • ) 

C—  SPOTMO COMPUTES SPOT MOTION COMPONENTS. 
C    INPUT REQUIREMENTS: 
C    *    NFWD — NUMBER OF TIME-STEPS FORWARD TO ADVANCE* 
C    tt    ISEEOT -- RANDOM NUMBER SEED FOR TRACKING 
C    •    ISEEDS — RANDOM NUMBER SEED FOR SCINTILLATION 
C    *    OUTPUT -- ARRAY OF OUTPUT SPOT MOTION COMPONENTS 
C OUTPUT(1,1) = OUTPUT(AZ,TR) = AZIM ERROR FROM iKACKING PROCESS 
C OUTPUT(2,1) = OUTPUT(EL,TR) 
C OUTPUT(1,2) = OUTPUT(AZ,SO 
C OU7PUT(2,2) = OUTPUT(EL,SO 
C OUTPUT (1,3) = OUTPUT (AZ,NET) « SUM OF TRACK S. SCINTILLATION 
C OUTPUT(293) = OUTPUT(EL,NET) 
C 
C--  CHECK ADVANCE 

IF (NFWD.GT.O)   GO TO 300 
WRITE (6,1001) NFWD 
STOP 

300 CONTINUE 
C 
C--  CHECK FOR TRACKING 
C 

IF (ITRACK.EQ.l)   GO TO 350 
OUTPUT(AZ,TR) = 0. 
OUTPUT(EL,TR) = 0. 
GO TO 400 

350 CONTINUE 
DO 380 K=1,NFWD 

C—  BACKSPACE NOISE ARRAYS AND GENERATE NEW NOISE 
DO 370 I = AZ, EL 
DO 360 J=l,2 
JJ = 4-J 
XT(I,JJ) = Xt(IfJJ-l) 

360 ZT(I,JJ) = ZT(I,jj-l) 
CALL NORMXX (TMIN   , TMAX   , 0,, SDNT, ZT(1,1), 15EEDT) 

370 XT(I,1) = A0tt(ZT(I,l)*ZT{I,3)) + Al*ZT (1,2)-B1«XT(I»2)- B2*XT(I,3) 
380 CONTINUE 

OUTPUT(AZ,TR) = XT(AZ,1)«SIGMA(AZ,TR) 
OUTPUT(EL,TR) = XT(EL,1)»SIGMA(EL,TR) 

400 CONTINUE 
C 
C—  CHECK FOR SCINTILLATION 
C 

IF (ISCINT.EQ.l)   GO TO 450 
OUTPUT(AZ,SO    =   0, 
OUTPUT(EL,SO    =   0. 
GO TO 500 

450 CONTINUE 
DO 480 K=1,NFWD 
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C—  BACKSPACE NOISE. AHRAYS AND GENERATE NEW NOISE 
DO 470 1= AZ» EL 
XS(I.2) = XS(I,1) 
ZS(I.2) = ZS(I,1) 
CALL NORMXX (SMIN   , SMAX   , 0.. SONS. ZS(I,1), ISEEDS) 

470 XSd.I) = AA0*(ZS(T»1)*ZS(I,2) ) - Bi*XS(If2) 
480 CONTINUE 

OUTPUT(AZ»SC) = XS(AZ,1)*SIGMA(AZ,SC) 
OUTPUT(EL.SC) = XS(ELil)»SIGMA(EL»SC) 

500 CONTINUE 
C 
C—  DEFINE NET SPOT MOTION 
C 

OUTPUT(AZ.NET) = OUTPUT(AZ.TR) + OUTPUT(AZfSO 
OUTPUT(EL»NET) = OUTPUT(EL.TR) * OUTPUT(EL.SO 
RETURN 
END 

C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  NORMXX  <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
C--  NORMXX  --  NORMXX  --  NORMXX  —  NORMXX  —  NORMXX  —  NORMXX 00249000 

SUBROUTINE NORMXX UMIN, AMAX, AMEAN. SIGMA. X. ISEED) 00249100 
C 00249200 
C     THIS SUBROUTINE GENERATES A NORMAL DEVIATE 00249300 
C 00249400 

CALL RANDMM(ISEED.X) 00249500 
Z = X 00249600 
CALL HANDMM(ISEED.X) 002497oo 
X = (((-2,0*ALOG(Z))"«0.5)<»(COS(6.283«X)))»SIGMA ♦ AMEAN 00249800 
IF (X.LT.AMIN) X = AMIN 00249900 
IF (X.GT.AMAX)  X = AMAX 00250000 
RETURN 00250100 
tND 00250200 

C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  RANOMM  <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
C--  RANUMM  --  RANDMM  --  RANDMM  --  RANDMM  --  RANDMM  --  RANDMM 00250300 

SUBROUTINE RANDMM(I SEED.X) 00250400 
C 00250500 
C     THIS SUBROUTINE GENERATES UNIFORM DEVIATES 00250600 
C 00250700 

ISEED = ISEED*65539 00250800 
IF(ISEED)2266,2266.2277 00250900 

2266 ISEED = ISEED ♦ 2147483647 ♦ 1 00251000 
2277 X = ISEED 00251100 

X = X».4656613E-9 00251200 
RETURN 00251300 
END 00251400 
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APPENDIX B 
PROGRAM TO EVALUATE 

THE AUTOSPECTRUM OF TIME-SAMPLED 
FIRST-ORDER PROCESSES 

Purpose 

This is a utility program which evaluates squared modulli associated 
with time-sampled first-order analog and digital stochastic processes. 
The phase of the time-sampled digital process Is also calculated.  Out- 
puts are calculated for a prescribed set of Input frequencies. 

Description 

The squared modulus of a time-sampled, digitally-generated, first-order 
stochastic process is calculated by means of equations (5.10), (5.12), 
(5.21a), and (5.21b).  The infinite series is truncated at n*, as in 
(5.10).  The value of n* is determined implicitly by requiring that 
the largest relative error of the real and imaginary components of the 
n term in the series be smaller than a specified (input) relative error. 

For comparison, the autospectrum of an unsampled analog process 
having the same specified corner frequency is also calculated and printed. 
Additionally, the squared modulus of the non-subsampled digital implementation 
is calculated and printed.  The latter derives from the F(j(jo) term in 
equation (5.10).  The phase angle, (j), of the time-sampled digital process 
is calculated from 

<t>  - tan~1[Im{F*(jw)}/Re{F*(jw)}]. 

Input 

The program requires:  (a) a descriptive alphameric title card; 
(b) the desired process standard deviation (used in calculating the analog 
autospectrum); (c) the sampling time interval; (d) corner frequency; 
(e) a maximum relative error in the subsampled digital squared modulus; 
(f) the number of frequencies for which results are to be calculated; 
(g) the order of subsampling or ratio of sampling interval to digital 
generation interval; and (h) the array of discrete frequencies for which 
results are to be calculated. 

Output 

Examples of program output are shown following the source program 
listing.  Output titles are generally self-descriptive.  The input data 
are immediately echoed.  For clarification note that SQ MODUL 0 refers 
to the squared modulus of the non-subsampled digital process.  Except 
for truncation error, the results of SQ MODUL 0 are identical to SQ MODULUS 
whenever the subsampling order is unity. 
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$JOB RnH.KP=29»WUN=FREE.LINES=5t 
C EVAL OF SAMPLE! TRANSFER FUNCTION  
c»#«« PROGRAM TO EVALUATE THE CHARACTERISTICS OF A 
C»»»« TIME-SAMPLFD FIRST-ORDER DIGITAL DYNAMIC PROCESS, 
C»«4n» INPUTS: 
C#«»« TITLE = AN ALPHAMERIC DESCRIPTION OF. THE FUNCTION 
C«»«» STUV = STANDARD DEVIATION OF THE DIGITAL PROCESS BEFORE SAMPLING 
C««#« T = SAMPLING PERIOD (INTERVAL) 
C#«»« FS = CORNFW FREQUENCY 
Ctt»»« EPS = MAX RELATIVE ERROR IN THE SQUARED MODULUS 
Q»«*»   MMX = THE NUMBER OF ENTRIES IN THE FREQUENCY ARRAY 
£»««* MULTIP = THE ORDER NUMRER OF SUBSAMPLING 
Ctt»*w        = 1« 2» J. ETC. 
C»»«« FREQ(M) = THE ARRAY OF DISCRETE FREQUENCIES AT WICH THE 
C#tt<,<» TRANSFER FUNCTION IS TO BE EVALUATED. 
C«»*# THE ORIGINAL  (ANALOG) SQUARED MODULUS IS ALSO CALCULATED. 
C*<HK>   TotN = SAMPLING GENERATION INTERVAL FOR THE DIGITAL PPOCESS; TGEN=T/MULTIP 

1 DIMENSION FREu(50)»TITLE(20) 
2 DATA TWOPI/6,283185/ 
3 11 CONTINUE 
4 READ (5»I00»END=l) TITLE 
5 100 FOHMAT(20A4) 
6 WRITE (6,200) TITLE 
7 200 FORMAT(lHl,20A^) 
8 READ (5*300) STDV,T,FS,EPS,MMX,MULTIP 
9 300 FORMAT(^F10.0»2I3) 

10 WWITE (6,^00) STUV,T,FS,EPS.MMX.MULTIP 
11 400 FURMAT(1H0,6X,4HSTDV,9X.1HT,BX,2HFS»7X,3HEPS,2X,8HMX FREQS, 

1 10H ORL) S SMP/1H , 3F1 0 .4, F 1 0 . 6. 7X , I 3 , 7X , 13) 
12 READ (5,500) (FREQ (I) ,1 = 1,MMX) 
13 500 FORMAT(8F10.0) 

C*««» WRITE HEADINGS 
14 WRITE (6,600) 
15 600 FORMAT(lH0,6X,9HFREO (HZ),3X,12HANAL AUTO^PK,5X,1OHSQ MODUL 0» 

1 5X,10HSQ MODULUS♦8X»7HM0DULUSt6X»9H»lHASE <D)) 
16 OMEGS=TWOPl*FS 

£»««« COMPUTE THF CONSTANTS FOR THE DIGITAL TRANSFER FUNCTION 
17 TGEN=T/FLOAT(MULTIP) 
18 PI=TW0PI/2. 
19 AF=ATAN(PI*»FS^T0EN) 
20 A0 = AF/(AFM .) 
21 B=(AF-1,)/(AF+1.) 
22 C0NREL = A0<M1.+B) 
23 C0NIM6s-A0*(l,-B) 
24 C0NC = 2.<»B 
25 C0ND«U*8*«2 
26 GAIN=SQRT(?.»TGEN/A0)ttSTDV 

Q«««tt START FREQUENCY LOOP 
27 DO 10 M=1,MMX 
28 F=FREQ(M) 
29 0ME6*TW0PI»F 
30 COSX=COS(OMEGttTGEN) 
31 SINX=SIN(0MEGttTOEN) 
32 IPASS=0 

C^o^tt COMPUTE THF. REAL PART OF THE TRANSFER-FUNCTION 
33 DENOM*C0ND*CONC»COSX 
34 5UMREL=CONRELtt(1.♦COSX)/DENOM 
35 SAVEI=SUMRF:L ■ 
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36 SUMIMG = CONIMG<»SINX/DENOM 
37 SAVE2=SUMIMG 

C*»#« ACCUMULATE OVER POSITIVE AND NEGATIVE HARMONICS 
38 DO 20 N=l»?4 
39 ISWPOS=0 
40 ISWNEG=0 
41 OMEGNaTWOPl*FLOAT(N)/T 
42 TEkMP=0. 
43 TEKMN=0. 
44 OMEGPT=(OMFG+UMEGN)«TGEN 
45 OMEGMT=(OMEG-OMEGN)*TGEN 
46 IF(OMEGPT,GT.PI) I5WP0S=1 
47 IF(OMEGMT.l.T,-PI,OR.OMEGMT.GT,PI) ISWNEG=1 
48 IFUSWPOS.EQ.l) GO TO 30 
49 COSP=COS(OHEGPT) 
50 DENOMPsCOND*CONC«COSP 
51 TtRMPsCONRFL*(1.♦COSP)/DENOMP 
52 30 CONTINUE 
53 IE(ISWNLG.EO.l) GO TO 35 
54 COSN=COS(OvEGMT) 
5=; DENOMN = CONf)*CONC*COSM 
56 TEPMN=CONREL«(1.♦COSN)/DENOMN 
57 35 CONTINUE 
58 R=TEkMP+TEPMM 
59 SUNiREL = SUMKEL*R 
60 IF(R/5UMREL,LT.EPS.AND.N.GT.4) IPASS=1 

c#»»« COMPUTE THE NEGATIVE OF THE IMAGINARY PART OF THE TRANSFER FUNCTION 
61 TERMP=0. 
62 TERMN=0. 
63 IE (IbWPOS.KJ.l) GO TO 40 
64 TERMP = (;OfJlMG»bIN(OMEGPT)/DENOMP 
65 4 0 CONTINUE. 
66 IF (ISWNEG.FQ.l) GO TO 45 
67 rEPMN=C0NlMG*SlN(0ME6MT)/DENOMN 
68 45 CONTINUE 
69 R«TtRMP*TERMN 
70 SUMIKG=SUMIMG*R 
71 IF(AH5(TEKMP).LT.EPS.AND.ABS(TERMN).LT.EPS.AND.IPASS.EQ.D GO TO 

1 25 
72 20 CONTINUE 
73 25 CONTINUE 

C«»tt« COMPUTE THE SQUARED MODULUS OF THE CORRESPONDING ANALOG 
74 AGANSSUPT(2,/PI/FS)»ST0V 
75 AM0DSQSAGAN»»2/{1,♦(OMEG/OMEGS)»»2) 

C«»«« COMPUTE THE SQUARED MODULUS AND PHASE 
76 SQMOOOs ( SAVE 1 «*2*SAVE2<»»2 ) ^GAIN^^Z 
77 SQMOD= {SUMPEL<*»2*SUMlMG»o2) *GA1N«»2 
78 PHASL=5 7.3^ATAN2{-SUM1MG»SUMREL) 
79 EMO() = S(JKT (SQMOU) 

C»««« WRITE FREOUENCY»SQUARED MODULUS,MODULUStAND PHASE 
rtO '-'KITE (6.120) F ,AM0DS>:J,SOMODO»SQM0D»FMOD,PHASE 
81 120 FORMATdH ,F 15,5,4E15.5,F 15,2) 
82 10 CONTINUE 
83 GO TO 11 
84 1 CONTINUE 
85 CALL EXIT 
86 STOP 
87 END 
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APPENDIX C 
PROGRAM TO EVALUATE 

THE AUTOSPECTRUM OF 
SECOND-ORDER STOCHASTIC PROCESSES 

Purpose 

This utility program calculates and prints spectral results for 
analog and digital implementations of a general, second-order stochastic 
process.  The x-process is specified in terms of its standard deviation, 
sampling generation interval (for the digital implementation), corner 
frequency, and damping ratio.  Analog and digital squared modulii are 
calculated for the specified process and a digital squared modulus is 
calculated for a Butterworth process having the specified corner frequency. 
A digital autospectrum is calculated for the specified process and an 
analog autospectrum is calculated for the corresponding Butterworth 
process. 

Description 

The analog squared modulus is developed from equation (5.40). The 
digital squared modulus uses (5.35) with the coefficients (a's and b's) 
developed from the following generalization of equation (4.6): 

D = w2 + ZSto +1 
a     a 

b_ = (CJ
2
 - 2Cu + 1)/D, z    a     a 

where C is the damping ratio. The digital noise autospectrum, rnn, used 
in calculating the x-process autospectrum, F^, via (5.38) is obtained 
from (5.39). Note that the ratio of variances Yxx(0)/Ynn(0) in (4.15a) 
is a general result and holds for any set of the (a, b) coefficients, 
providing, of course, that the denominator in (4.15a) is positive. The 
squared modulus of the second-order digital Butterworth process is evaluated 
using equations (5.36) and (5.37).  The analog Butterworth autospectrum 
uses equations (1.1) and (1.5). 

Input 

The program requires:  (a) a descriptive alphameric title card; 
(b) the process standard deviation desired (in arbitrary units); (c) the 
sampling generation time interval (arbitrary units); (d) the crossover 
frequency (compatible units); (e) the damping ratio; (f) the number 
of frequencies at which the spectra are to be evaluated; and (g) an array 
of frequencies at which the spectra are to be evaluated (compatible units). 
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Output 

An example of program output Is shown following the source program 
listing. Output names are defined below: 

A. GAIN 

D.GAIN 

FREQ 

the gain constant in the analog autospectrum 

the gain constant (noise autospectum) in the digital autospectrum 

frequency 

ANL.SQ.MOD  analog squared modulus 

DIG.SQ.MOD  Butterworth digital squared modulus 

H22        squared modulus of the specified digital process 

ANL.SPK     analog autospectrum 

DIG.SPK     digital autospectrum 
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$JOB «nH,KP=29»RUN=FREE»LINES=58 
C«#»« PROGRAM TO EVALUATE THE AUTOSPECTRUM OF SECOND-ORDER 
C»»#« STOCHASTIC PROCESSES. 

C«»«« INPUTS: 
C*««* TITLE = DESCRIPTIVE ALPHAMERIC TITLE 
C*tt«« STOVX = THE PROCESS STANDARD DEVIATION 
C*#*« T = SAMPLING GENERATION TIME INTERVAL 
C«»*# FA = ANALOG CORNER FREQUENCY 
C*««« DAMP = DAMPING RATIO 
C*»»# MMX = NUMBER OF ENTRIES IN THE FREQUENCY ARRAY 
C««*« FREQ(M) = THE ARRAY OF DISCRETE FREQUENCIES AT WHICH THE 
C*™* TRANSFER FUNCTIONS ARE TO BE EVALUATED. 

C#™» THE ANALOG SQUARED MODULUS IS ALSO CALCULATED. 
1 IMPLICIT RE^L*8(A-H,0-Z) 
2 DIMENSION FREU(50).TITLE(20) 
3 DATA T*»OPI/6,283185D0/ 
4 RT2=DSQRT(2.0D0) 
5 11 CONTINUE 
6 READ (5»100»END=1) TITLE 
7 100 FORMAT(20AA) 
8 WRITE (6,200) TITLE 
9 200 FORMAT<1H1»20A^) 

10 READ (5.300) STDVX,T,FA»DAMP,MMX 
11 300 FORMAT(4F10.0.I3) 
12 WRITE (6,400) STDVX»T»FA,DAMP,MMX 
13 400 FORMAT(1HO,4X,6H5TDV.X,9X,1HT,8X,2HFA,6X,4HDAMP,2X,8HMX FREQS/ 

1 1H ,4F10.5,7X,I3) 
C«»»# RtAU IN FREQUENCIES 

14 READ (5,S00) (FREQ(I),I=1,MMX) 
15 500 FORMAT(8F10.0) 
16 PI=TWOPI/2. 
17 WA=UTAN(PI«FAttT) 

C*»»*   GENERATE RHO—THE RATIO OF PROCESS TO NOISE VARIANCE 
18 D = WA<>*2-t-2.«DAMP<*WA*l. 
19 A0 = WAo<*2/D 
20 A1=2.»A0 
21 A2=A0 
22 B1=2.*(WA<>*2-1.)/D 
23 B2s:(WA*»2-2,»UAMP«WA*l.)/D 
24 AA1=81 
25 AA2=1,-B1*J>2-B2»»2 
26 BB1=1.*B2 
27 BB2=-2.«B1«B2 
28 CC1=A0»A1*A2«(A1-B1<»A0) 
29 CC2 = -2.«A0^A1<»B1-2.*A0»A2^B2-2.«A2»B1<MA1-B1»A0) ♦AO<n»2*Al»«2»A2»«2 
30 RHO=(CCl<*HB2-BBloCC2)/(AAl*BB2-BBl»AA2) 

C««tt» GENERATE THE NOISE DENSITY 
31 GAMN=2.*T<>5TDVX^2/RH0 

C*«»« GENERATE THE ANALOG GAIN 
32 AGAIN = 2.<»RT2«STDVX<»»2/PI/FA 

C*«<n> WRITE GAIN CONSTANTS 
33 WRITE (6,600) AGAIN,GAMN 
34 600 FORMAT(1H0,4X,6HA.GAIN,4X,6HD.GAIN/1H ,2Fl0.5) 

C«*«tt DEVELOP COEFFICIENTS FOR THE DIGITAL BUTTERWORTH MODULUS 
35 Cl=WAtt*4 
36 C2«3,«(C1*1,) 
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37 C3=4,«(C1-1.) 
38 " C4=C1*1. 
39 AR01=TW0PI»T 
40 AKb2 = 2.<>AK(.l 
41 WRITE. (6,800) 

C»*«# START FREQUENCY LOOP 
42 DO 10 M=1»MMX 
43 " F=M<LU(M) 
44 C051=DC0S(F«AWG1) 
45 SIM=0SIN(F*AHG1) 
^6 C052 = D©OS(F<>AKG2) 
47 S1N£=0SIN(F»ARG2) 
48 FRaF/FA 
49 ANLMDSsl,/ ( (l.-FR*w2)»«2*4.«DAMP**2<tFR«#2) 
50 SPKA = ArjL^()SttAGAIN 
51 H22=( (AO + A1<»CUS1*A2<*COS2)«*2* (Al ^SI Nl ♦ A2*Sl N2) *»2) / 

1    ( (1 .♦bl»C0Sl+U2<>C0S2)«<>2* (B1*S1N1*B2«SIN2)««2) 
52 l)IGMDS=H22 
53 SPKD=OI<iMDS»GAMN 
54 L'lbMDS = Cl<M 3.*4.^C0Sl*C0S2)/(C2*C3<»C0Sl*C4oC0S2) 

C««»« WHITE OUTPUT 
55 WWITL (6,700) P , ANLMDS,DIGMDS,H22,SPKA,SPKO 
56 700 FORMAT(IH ,4F12.5,2012.5) 
57 H00 FORMAT(lH0»8Xi4HFREQfl2H  ANL.SQ.MODi12H  DI6.SQ.M0Dt9Xf3HH22»5Xi 

1 ?HANL.SPK»5X»7HDIG.SPK) 
58 10 CONTINUE 
59 GO TO 11 
60 1 CALL MIT 
61 END 
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