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Many mathematical models in operations research

require computation of products of vectors whose elements

are random variables. Unfortunately, analytic results for

functions of interest are only obtained through highly

restrictive, often unrealistic, choices of prior densities

for the vectors' elements. Often, an investigation is

performed by discretizing the random variables at point-

quantile levels, or by outright simulation. This paper

addresses the problem of characterizing the inner product

of two stochastic vectors with arbitrary multivariate

densities.

Expressions for means and variances of vector

products are obtained, and used to make Tchebycheff-type

probability statements which can accommodate and exploit

stochastic dependence. Included are applicaticns to stochastic

programming models.



1. INTRODUCTION

Mathematical models in operations research often
require the calculation of quantities which are sums of
products of random variables. (For example, see the realistic
view of stochastic linear programming taken by Tintner [15]).
Sums of products of random variables are the generic structural
elements fundamental to 1inear models exhibiting complex
randomness.

In the interest of tractable mathematics, it is
commonly assumed either that the random variables may be treated
as constants, or replaced by their expectations. Even where
these simplifying assumptions are not made, severe parametric
assumptions, e.g., normality, pairwise independence, etc., are
usually required to achieve analytic probability statements
concerning the function of interest. Other approaches use
weighted sums of uniform, exponential or other varfjates in
approximation schemes, or use characteristic functions of com-
ponent densities to carry out the indicated transformation and
attempt inversion of the result. Finally, Monte Carlo solu-
tions to this problem may be achieved, but are of 1imited value
due to the parametric specificity and high cost of results.

For excellent examples of these methods see Jagannathan [7];
King, Sampson, and Simms [8]; Miller and Wagner [9];

Searle [12]; and Sengupta [13, 14].



This paper addresses the problem of determining the
mean and variance of sums of products of random variables in
the most general linear case, i.e., arbitrary correlated multi-
variate densities for all components in the model. The results
obtained are useful for making non-parametric Tchebycheff-type
probability statements. Particular examples are given which
use these probability statements as chance constraints in
stochastic linear programming.

Simplifications of this model for moments of weighted
sums of random variables have been presented by several authors.
For instance, the highly successful heuristic given by Graves
and Whinston [5] for the quadratic assignment problem is based

on such a derivation.
2. NOTATION AND DEVELOPMENT

Let b and ¢ be two random n-element column vectors. We

denote the expectation of these vectors as

) (2
E =y =

HEERE S
The symbols b and ¢ will indicate the deviation of each random
vector from its expectation. The variance-covariance matrix

will be signified by

B\ /B B |3
(@) ()2 (a2 )

while the symbol r* will signify this matrix with b and ¢

interchanged.



Let q be a random scalar variable, defined as the inner

product of these random vectors:
qQ = b'c. (1)

Expressions for the mean, E{(q), and variance, V(q), in
terms of the moments of b and ¢ are derived in the appendix.

They are:

E(q) = g + Tr I (2)

1]

where Tr Zbc indicates the trace, or sum of the diagonal

elements of Zbc;
V(g) = u'I*y + 2up E(cc'b) + 2uéE(BB'E)

+ E(b'¢e'B)- (T~ 5 )2 . (3)

bc

Equations (2) and (3) represent the most general
outcome, where any element of b may be correlated with any
other element of b or c. Two special cases occur frequently.
First, suppose that the elements of b are correlated with one
another, the elements of ¢ are correlated with one another,

but that b and ¢ are stochastically independent. Then

- (be 0 )
0 Z:CC

E(q)

and

n
h =
o
=
(g}
-
—
P -
~—

V() = mp oo g *oug Tpp bt Tr(ZpgT o) . (5)



Secondly, we note that, if all elements of both matrices
are stochastically independent, I is a diagonal matrix, and
computation of (5) is greatly simplified.

An assumption frequently made is that elements of
vectors b and ¢ have a multivariate normal distribution. If we
adopt this parametric condition, then, even in the general case
where b and ¢ are correlated, (3) is greatly simplified. For
multivariate normal distributions, E(bb'c) = E{cc'b) = 0, and
all higher moments are expressible in terms of the first two

moments [1, p. 38]. Equation (3) becomes

V(Q) = w'meu o+ Tr(zy,r ) ¢ Tr(zd)) (6)

3. AN ESTIMATION EXAMPLE

A job shop is bidding on the manufacture of units which
will consume two raw materials and skilled labor. Let b be the
vector of material and labor requirements per unit of product,
and ¢ the vector of respective costs per unit of b. Then the
total manufacturing cost per unit, q, may be computed with
equation (1). Due to unknown factors in the manufacturing
process (e.g., proportion of scrap units produced) the elements
of b are random variables. Further, although the skilled labor
cost 1s fixed by contract, other elements of ¢ are random
variables dependent upon zommodity prices and other factors.

Historical cost accounting data are available for
similar products in the form of job orders and associated

material requisitions and labor charges, and are used as prior



information to determine the means and variance-covariance

matrices of b and ¢ as follows:

4.2 units of 1
6.8 units of 11

4.8 hours of labor

$1.50 per unit of I1

My = (:
$2.15 per unit of 1
Mo =

$6.20 per hour

0.7 0.8 0.2
Lop = 0.8 1.2 0.3
0.2 0.3 0.5

zbc

Prices of the two raw materials are positively corre-
lated, as are the amounts consumed and the labor expended. In
this example, there is no correlation between commodity prices
and quantities consumed during manufacture, so (4) and (5) are

the appropriate equations.



$48.99

V(a) = weZpphe * upZocup + TrlIppz o)

41.23 + 25.54 + 0.82

67.59

Hence, the expected cost for one completed unit is $48.99 with
a standard deviation of $8.22.

The (unknown) probability distribution of q depends upon
the mathematical form of the multivariate density functions of
b and c, and the transformation, equation (1). However, the
moments calculated above are exact, and we may use them to make
non-parametric statements about the distribution of q. Two

{1lustrations follow.

Tchebycheff's Inequality

Regardless of the underlying distributions, at least
1 - 1/k2 of the observations of q will be within k standard
deviations of E(q); e.g., there is a 75 percent probability
that the price will lie in the interval $32.55-65.43.

Camp-Meidell Inequality

Some mild assumptions about the distribution of q lead
to much tighter bounds [2]. If we assume that the distribution

is unimodal, with the mode occurring at E(q), then at least

2

1 - 1/2.25k" of the observations will lie within k standard



deviations of the mean; e.g., there is an 89 percent probability
that the price will lie in the interval $32.55-65.43.
For more general treatments of Tchebycheff-type bounds,

see [4] and [9].
4. LINEAR PROGRAMMING APPLICATIONS

The chance constrained programming model of Charnes
and Cooper [3] presents interesting applications of these

techniques. A deterministic linear program may be stated

Max c
s.t. Ax < b (7)

with A an mxn constant matrix of technological coefficients,

c a vector of constant prices and b a vector of constant
resource levels. If we change the sense of b to that of a
vector of resource levels realized from a multivariate density

function, f(b), then a reformulation of (7) yields
Max c'x
s.t. Pr[Ax < b] > a > (8)

where a is a set of probabilities of individually satisfying
each of the m constraints. This problem may be solved by using
the density function asserted for b to find a set of bounds,

B(ax,f(b)), such that

Prib > 8] > o



and, if f(b) is free of terms involving x, reformulating (8)

to the "deterministic equivalent" form
Max ¢
s.t. Ax < B . (9)

Alternatively, let a be the scalar joint probability that
solutions of (9) will ultimately prove simultaneously feasible
for all constraints. If the variates b are independent,

. m

o = jE1aj’ but if the terms in b are correlated,

extraction of o from f(b) may, or may not, be possible or
practical depending on the mathematical form of f(b), the
dimensionality of b, and so forth.

If f(b) 1s unknown or mathematically uncooperative we
may use the moments of the vector b to specify B nonparametric-
ally with Tchebycheff's inequalities. For instance

Pr[bj<uj-kj/—§=ej]='l-ajilsz-. J=1,2,...,m

K

Also, a frequent and reasonable simplification 1is
k] = .. " km = K.
Further, we can specify a bound for a by using a

multivariate Tchebycheff inequality.
- — Y m
pr[bj <UJ - kj/cjj ] BJ; J=]'ao-’m] = ] - Qi Z

or, for k1 = ... =k =k



Prib < u - k((dfag £))"/2 =81 =3 - 4 < %? : (1)

1/2

Here, (diag I) denotes a column vector with components /oj. .

J

Another fchebycheff inequality presented by Olkin and
Pratt [11] can be used to specify a bound for a. If we use []

to represent the correlation matrix of b so that

g
]'[Jk:_&._.
"33%k
and simplify the presentation by choosing the constants
k] = ., = km = k, then

Prib < u - k((diag 2))'/% = 8] =1 - &
2
< G [/5 + /in? < o)l - ] e
k™m

with

p = eJTe, where e is a vector of 1's.

5. A LINEAR PROGRAMMING EXAMPLE
To 11lustrate, using b from the example in section 3,

1.0 0.87 0.34 1

o = (1 1 1) 0.87 1.0 0.39 1 = 6.20 ;
0.34 0.39 1.0 1
1 - a < ngg by use of (12)

k
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‘e note that this is a better bound than the 3/k2 produced by
1).
or k = 3 we find

a > 0.71
/4.2 - 3( .84) 1.68
B =u - k(diag £)'/2 = 6.8 - 3(1.10) ) = [ 3.50
4.8 - 3( .71) 2.67

If (7) is further generalized to allow both b and ¢ to be random
vectors, possibly correlated, we can easily incorporate the expec-
tation of the objection function in a deterministic equivalent.
Alternately, following the development of [3]

x = Db ,

with D an nxm matrix, we reformulate (7) to
Max Efc'x]
s.t. Pr{Ax < b] > @
x = Db , (13)
which by substitution becomes
Max E[c'Db]
s.t. Pr[ADb < b] > a .

Using the notation and results of section 2, we derive for the

objective function:

E(c'Db] = ué Dub + Tr{DZbc}
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The constraint set may be restated
Pr[ADb < b] = Pr[ADb - b < 0]
= Pr[(AD - I)b < 0] > a .

Thus, using the moments of b it follows [1, p. 24] that the

vectors of expectations and variances are

E[(AD = 1)b] = (AD - I)uy = 8(0) ;

VI(AD - I)b]

difag {(AD - I)Zbb (AD - I)'}

v(D)

The procedure, then, is as follows:

(1) Specify an acceptable g the probability of feasibility
for each constraint.

(2) use (10), (11), or (12) to generate the set of k's and a.

A set of slack varifables, v, ts introduced. Adopting the symbol

‘'*' to represent congruent multiplication of two commensurate

matrices [6, p. 549 ff], the deterministic equivalent program-

ming model for (13) becomes
Max WeDuy + Tr{D Zbc}
s.t. v -¢6(D) <0

v¥y + k*k*{&(D)*s(D) - v(D)*y(D)} < O

v > 0, (14)



Finally, a solution, D*, to this problem can be used to make
nonparametric interval estimates for the value of the optimal
objective function using equation (3) or simplifications (5) or
(6), much as in the numerical example in the preceding section.
This variance can be used as the objective function in

another model proposed by [3]
Min Vic'x]
s.t. Pr[Ax < b] > «
x = Db °

and its deterministic equivalent which follows the development
of (14).
A "partitioned" stochastic programming model considers

the problem
Max c'x + d'y
s.t. Ax + By < b;

where y is a set of external, uncontrollable prior random
variables, d a vector of random prices, and B a random
technological coefficient matrix. By using the moments of

y, d, B, and b, the problem may be restated

Max c'x + o
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with the moments of b0 and ¢, specified exactly, and solved

as previously shown.
6. CONCLUSION

Estimation of stochastic vector, or matrix, products
may be virtually impossible by use of multivariate density
functions and statistical transformations without severe and
unrealistic simplifying assumptions about the random variates
involved. Simulation can lead to approximations for a given
problem, but at high computation cost and specificity for
results.

However, an approach using multivariate moments, which
are available from efther empirical data or analytic densities,
leads to exact statements about the mean and variance of the
vector products and useful Tchebycheff-type probability
estimates. These estimates are very helpful in generalizing

the mathematical models of operations research.
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APPENDIX

Derivation of Expressions for the Mean and Variance

of the Inner Product of Two Vectors

q = b'c
q = Sb~+ “b3 (c + “c)f
qQ = b'c + 2b'uC + 2u6c + “Buc

Noting that E(b) = E(c) = 0 ;

E(q)

m
—
L0
~—

(1]

In terms
E(b'c)?

E(b'c)?

E(b'c) + uBuC H

] - .
phe ¥ TP Zpe s

E(q?) - (E()1° ;

2
E(b'c)? - (uguc)z -2 Trg - (Trzp )

of moments about the mean,

E[(B o) (e + uc)]2 j

E[b'cc'd + ufcc'uy + nibb'u_ + (uguc)z + 2ucc'b

~ o~~~

+ Zuébb'c + 2u$ucb'c + 2“6Cb'“c+ Zuébusuc

+ Zuscuéuc].

We note that

E(cc')

f1
S
-

‘ cC
E(bb') = Iy,
E(b'c) = Tr I
E(b) = E(c) = 0
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Hence,

~ o~ ~

[] 2.. ~| ] [ RN ] oy ) 2 ] ~"|A
E(b'c)® = E(b'cc'b) + tpEcehpt Melpptc t 2uf puct (ubuc) + 2ubE(cc b)

+ ZUCE(bb c) + 2“b“c Tr Lhe

We have

[IRSR 1y + (RS + (RS 5
P’ ubzcc“b uc)‘bb“c 2”bp‘cb“c ’

~~ “ o~ o~ ~ ~

E(b'cc'd) + uw'y*u + 2ulE(bb'c) + 2u} E(cc'b)

V(q)

¢ )2
- (Tr v )
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