
o 

NPS55-77-6 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

/ 

o 
CD 

MEANS AND VARIANCES OF STOCHASTIC VECTOR PRODUCTS 

WITH APPLICATIONS TO RANDOM LINEAR MODELS 

by 

Gerald G. Brown 

and 

Herbert C.  Rutemiller 

February 1977 

Approved for public release; distribution unlimited 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral Isham Linder 
Superintendent 

Jack R. Borstlng 
Provost 

Reproduction of all or part of this report Is authorized. 

This report was prepared by: 

Id G. Brov 
[sociate Processor 

)epartments of Computer Science 
and Operations Research 

Reviewed by: 

A 

lie. /U± /'    l^X^-^ks^g 
Michael G. Sovereign, Chairmar/       * 
Department of Operations Research 

Released by: 

/Zz^-A A 
Robert R. Fossum 
Dean of Research 



S 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bnlmrtd) 

REPORT DOCUMENTATION PAGE 
1 _WEPOWT NUMBER 

NPS55-77-6 
2. GOVT ACCESSION NO 

«    TITLE (»rd Subllttm) 

MEANS AND VARIANCES OF STOCHASTIC VECTOR PRO- 
DUCTS WITH APPLI CATIONS'TO RANDOM LINEAR MODELS 

7.    AUTMORC»; 

Gerald G./Brown ori Herbert C./Rutemiller /t 

I.   PERFORMING ORGANIZATION NAME AND ADDRESS 

Naval Postgraduate School 
Monterey, California 93940 

II,    CONTROLLING OFFICE NAME  AND  ADDRESS 

Naval Postgraduate School 
Monterey, California 93940 

Jl 
I«    MONITORING AGENCY NAME I ADDRESSCM d'ffaranf froai Conlrellta« rflleaj 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.    RECIPIENT'S CATALOG NUMBER 

»     TYPE OF REPORT A PERIOD COVERED 
/ 

Techniral 
I    liERroRMINC ORG.tlEPONf DUMBER 

1.   CONTRACT OR GRANT NUMBERCtJ 

10     PROGRAM  ELEMENT. PROJECT    TASX 
AREA A WORK UNIT NUMBERS 

-/:- 
'*• - Btgggl JJAH 
FebnaMW>977 

1 NUMBER OF PAGES 
8 

iL 
II.   SECURITY CLASS, (ol ihlm fpon) 

UNCLASSIFIED 
ISa.   DECLASSIFICATION/DOWN GRADING 

SCHEDULE 

IS.    DISTRIBUTION STATEMENT (ol Ifili Rmporl) 

Approved for public release; distribution unlimited 

IT.   DISTRIBUTION STATEMENT (ol Ihm •burmcl anfarad (n Black 20, II dlllarml ham Kmporl) 

It     SUPPLEMENTARY NOTES 

-k 

It.   KEY WORDS (Conilnum on ravaraa «Ida II nacaaaary and (dant/fy by Mack numhn) 

Random Linear Models, Stochastic Programming, Chance Constrained Linear 
Programming, Tchebycheff Inequalities, Joint Tchebycheff Bounds, Dependent 
Stochastic Vector Products, Moments of Dependent Stochastic Vector Products 

ABSTRACT (Conllnu* on ravaraa «Ida II nacaaaary and Idonllly Ay Mack maafear; 

Many mathematical models in operations research require computation of pro- 
ducts of vectors whose elements are random variables. Unfortunately, analytic 
results for functions of interest are only obtained through highly restrictive, 
often unrealistic, choices of prior densities for the vectors' elements. 
Often, an investigation is performed by discretizing the random variables at 
point-quantile levels, or by outright simulation. This paper addresses the 
problem of characterizing the inner product of two stochastic vectors with — .-» Vs.«' 

■ 

DD,^:1;, 1473 EDITION OF I NOV tt It OBSOLETE 
S/N 0102-014- nisni 

UNCLASSIFIED   j        [  
ttCURITV CLAUIflCATION Of TMft »AOt (Whmt Data BalaradJ 



UNCLASSIFIED 
1,1*1 Ty  CLASSIFICATION Of   THIS PAOErWhan Data Bnlmnd) 

arbitrary multivariate densities. Expressions for means and variances of 
vector products are obtained, and used to make Tchebycheff-type probability 
statements. Included are applications to stochastic programming models. 

A 

UNCLASSIFIED 

SECUNITV CL AtSiriCATION OW TMIl FAOtfWfca« f>aia Bnlmfd) 



D D C 

EISEL 
D 

UCBSIOI Nt 

Itll «Mtl StCltM    If' 

IOC lift lactiM     f) 

Himtr^fä D 
iu:miCAi:M 

IT      
ClfTKilUTIOI miHi'iun cons 

( .. ail'-      '' 
t "* 

A 
  '»i 

MEANS   AND  VARIANCES   OF   STOCHASTIC   VECTOR   PRODUCTS 

WITH   APPLICATIONS   TO  RANDOM   LINEAR  MODELS 

by 

Gerald G. Brown 
Naval Postgraduate School 
Monterey, California 

and 

Herbert C. Rutemiller 
California State University 

Fullerton, California 

Many mathematical models In operations research 

require computation of products of vectors whose elements 

are random variables.  Unfortunately, analytic results for 

functions of interest are only obtained through highly 

restrictive, often unrealistic, choices of prior densities 

for the vectors' elements.  Often, an Investigation is 

performed by discretizlng the random variables at point- 

quantile levels, or by outright simulation.  This paper 

addresses the problem of characterizing the inner product 

of two stochastic vectors with arbitrary multivariate 

densities.  Expressions for means and variances of vector 

products are obtained, and used to make Tchebycheff-type 

probability statements which can accommodate and exploit 

stochastic dependence.  Included are applications to stochastic 

programmi nc) models. 



1.  INTRODUCTION 

Mathematical models In operations research often 

require the calculation of quantities which are sums of 

products of random variables.  (For example, see the realistic 

view of stochastic linear programming taken by Tintner [15]). 

Sums of products of random variables are the generic structural 

elements fundamental to linear models exhibiting complex 

randomness. 

In the Interest of tractable mathematics, it is 

commonly assumed either that the random variables may be treated 

as constants, or replaced by their expectations. Even where 

these simplifying assumptions are not made, severe parametric 

assumptions, e.g., normality, pairwise Independence, etc., are 

usually required to achieve analytic probability statements 

concerning the function of interest. Other approaches use 

weighted sums of uniform, exponential or other variates in 

approximation schemes, or use characteristic functions of com- 

ponent densities to carry out the indicated transformation and 

attempt inversion of the result.  Finally, Monte Carlo solu- 

tions to this problem may be achieved, but are of limited value 

due to the parametric specificity and high cost of results. 

For excellent examples of these methods see Jagannathan [7]; 

King, Sampson, and Simms [8]; Miller and Wagner [9]; 

Searle [12]; and Sengupta [13, 14]. 
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This paper addresses the problem of determining the 

mean and variance of sums of products of random variables in 

the most general linear case, I.e., arbitrary correlated multl- 

varlate densities for all components In the model. The results 

obtained are useful for making non-parametric Tchebycheff-type 

probability statements.  Particular examples are given which 

use these probability statements as chance constraints in 

stochastic linear programming. 

Simplifications of this model for moments of weighted 

sums of random variables have been presented by several authors 

For Instance, the highly successful heuristic given by Graves 

and Whinston [5] for the quadratic assignment problem is based 

on such a derivation. 

2.  NOTATION AND DEVELOPMENT 

Let b and c be two random n-element column vectors.  We 

denote the expectation of these vectors as 

■it) ■»■ c:) 
The symbols b and c will indicate the deviation of each random 

vector from its expectation. The variance-covariance matrix 

will be signified by 

it)it)'-t'(i::t). 
while the symbol r* will signify this matrix with b and c 

interchanged. 



Let q be a random scalar variable, defined as the inner 

product of these random vectors: 

q = b'c. (1) 

Expressions for the mean, E(q), and variance, V(q), in 

terms of the moments of b and c are derived in the appendix. 

They are: 

E{q) • U^c   *  Tr ^  > (2) 

where Tr Z.     indicates the trace, or sum of the diagonal 

elements of Ibc; 

V(q) « u,l*u + 2u^ ECec'b) + 2u^E(bb'c) 

+ E{b'ca,b)- (T- L ) 
DC 

(3) 

Equations (2) and (3) represent the most general 

outcome, where any element of b may be correlated with any 

other element of b or c.  Two special cases occur frequently. 

First, suppose that the elements of b are correlated with one 

another, the elements of c are correlated with one another, 

but that b and c are stochastically independent. Then 

and 

\0      he)    ' 

E(q) • P^c 

V(q) - Mi Ecc ub ♦ u'c   T.bb   uc + Tr(vbbzcc) 

(4) 

(5) 



Secondly, we note that, If all elements of both matrices 

are stochastically Independent, r Is a diagonal matrix, and 

computation of (5) Is greatly simplified. 

An assumption frequently made Is that elements of 

vectors b and c have a multlvarlate normal distribution.  If we 

adopt this parametric condition, then, even In the general case 

where b and c are correlated, (3) Is greatly simplified.  For 

multlvarlate normal distributions, E{bb'c) * EUc'b) • 0, and 

all higher moments are expressible In terms of the first two 

moments [1, p. 38].  Equation (3) becomes 

V(q) = M'Z*U + Tr(2:bbEcc) ♦ Tr(^c) . (6) 

3.  AN ESTIMATION EXAMPLE 

A job shop Is bidding on the manufacture of units which 

will consume two raw materials and skilled labor.  Let b be the 

vector of material and labor requirements per unit of product, 

and c the vector of respective costs per unit of b.  Then the 

total manufacturing cost per unit, q, may be computed with 

equation (1).  Due to unknown factors In the manufacturing 

process (e.g., proportion of scrap units produced) the elements 

of b are random variables.  Further, although the skilled labor 

cost Is fixed by contract, other elements of c are random 

variables dependent upon commodity prices and other factors. 

Historical cost accounting data are available for 

similar products In the form of job orders and associated 

material requisitions and labor charges, and are used as prior 



Information  to determine  the means  and  varlance-covariance 

matrices  of b and  c  as  follows: 

4.2  units  of  I 

6.8  units  of   II 

4.8 hours of labori 

$2.15  per unit of   I 

$1.50  per uni t of   11 

$6.20 per hour 

bb 

0.7 0.8 0.2 

0.8 1.2 0.3 

0.2 0.3 0.5 

cc 

0.6 0.1 0.0 

0.1 0.2 0.0 

0.0       0.0      0.0 

be 

Prices of the two raw materials are positively corre- 

lated, as are the amounts consumed and the labor expended.  In 

this example, there Is no correlation between commodity prices 

and quantities consumed during manufacture, so (4) and (5) are 

the appropriate equations. 



E(q)   - u;u. 

'  $48.99 

V(q)   -  uilbbuc  +  u^ccub  *  Tr(lbbEcc) 

=  41.23   +  25.54   +  0.82 

67.59 

Hence,   the expected  cost  for  one completed  unit  1s  $48.99 with 

a  standard deviation  of $8.22. 

The  (unknown)   probability distribution  of q depends  upon 

the mathematical   form of  the  multivariate density  functions of 

b and  c,  and  the  transformation,  equation  (1).     However,   the 

moments  calculated  above are  exact,  and we may use  them  to make 

non-parametric  statements  about  the distribution  of q.     Two 

111ustratlons follow. 

Tchebycheff's   Inequality 

Regardless  of the underlying distributions,  at least 
2 

1 - 1/k of the observations of q will be within k standard 

deviations of E(q); e.g., there is a 75 percent probability 

that the price will He in the interval $32.55-65.43. 

Camp-Meidell Inequality 

Some mild assumptions about the distribution of q lead 

to much tighter bounds [2].  If we assume that the distribution 

is unimodal, with the mode occurring at E(q), then at least 

1 - 1/2.25k of the observations will lie within k standard 



deviations of the mean; e.g., there 1s an 89 percent probability 

that the price will lie In the Interval $32.55-65.43. 

For more general treatments of Tchebycheff-type bounds, 

see [4] and [9]. 

4.  LINEAR PROGRAMMING APPLICATIONS 

The chance constrained programming model of Charnes 

and Cooper [3] presents Interesting applications of these 

techniques.  A deterministic linear program may be stated 

Max    c'x 

s.t.   Ax ^ b • (7) 

with A an mxn constant matrix of technological coefficients, 

c a vector of constant prices and b a vector of constant 

resource levels.  If we change the sense of b to that of a 

vector of resource levels realized from a multlvarlate density 

function, f(b), then a reformulation of (7) yields 

Max    c'x 

S.t.    Pr[Ax _< b] > a . (8) 

where a is a set of probabilities of individually satisfying 

each of the m constraints.  This problem may be solved by using 

the density function asserted for b to find a set of bounds, 

ß(o,f(b)) , such that 

Pr[b > 6] > a , 



and. If f(b) Is free of terms Involving x, reformulating (8) 

to the "deterministic equivalent" form 

Max c'x 

s . t.   Ax < ß . (9) 

Alternatively, let a be the scalar joint probability that 

solutions of (9) will ultimately prove simultaneously feasible 

for all constraints.  If the variates b are independent, 

m 
a = n at., but if the terms in b are correlated, 

extraction of a from f(b) may, or may not, be possible or 

practical depending on the mathematical form of f(b), the 

dimensionality of b, and so forth. 

If f(b) is unknown or mathematically uncooperative we 

may use the moments of the vector b to specify ß nonparametric- 

ally with Tchebycheff's inequalities.  For instance 

PrCbj < uj kj/0jj 
ßJ] a 1 " aj ^7 • 

j 

j = 1,2 ,. . . ,m 

Also, a frequent and reasonable simplification is 

1 . . . ■ k„ * k. m 

Further, we can specify a bound for a by using a 

multivariate Tchebycheff inequality. 

  m 
<  u .   -   k . /n . .   «   ft . :    i = 1 ml   ■   1    -   «   < Pr[b,    : pj   -   kj/ojj   -  Pj 

1 
ß.;   j = l.•• . tm]   «   1   -   a  <     I    -K 

-j.l   k^ 
(10) 

or,   for  k =  k    =  k m 



1/2 Pr[b <  y -  k((d1ag  l)}1" . B] •  1  - a < ^ (11) 

1/2 /-— Here,   (dlag  Z)  '     denotes  a  column vector with components  /aTT . 
j J 

Another Fchebycheff Inequality presented by Olkin and 

Pratt [11] can be used to specify a bound for a.  If we use II 

to represent the correlation matrix of b so that 

njk "—^ 
/ojj0kk  ' 

and  simplify the presentation by choosing  the constants 

k,  ■  ...  • k.« k,  then l m 

Pr[b  < y  -   k({d1ag  5:))1/2  =  S]  =  1   -  a 

with 

 -.2 

< -i-rf/p + /(mZ  -  p)(m  -   1) , 
" k^m^ L J 

(12) 

p ■ e'lle, where e Is a vector of I's. 

5.  A LINEAR PROGRAMMING EXAMPLE 

To Illustrate, using b from the example In section 3, 

S .0  0.87  0 .34\ /l \ 

p = (1   1   1 ) | 0.87  1.0   O.Sgj j 1 j = 6.20 ; 

,0.34 0.39  1.0 / \ 1 / 

1 - a < ^-P- by use of (12) . 
" k^ 



10 

e note that this is a better bound than the 3/k produced by 

11). 

or k s 3 we find 

a > 0.71 ; 

ß - u - k(diag I)172 

/ 

( 

4.2 - 3( .84) 

6.8 - 3(1.10) 

4.8 - 3( .71) 

If (7) is further generalized to allow both b and c to be random 

vectors, possibly correlated, we can easily incorporate the expec 

tation of the objection function in a deterministic equivalent. 

Alternately, following the development of [31 

x = Db , 

with D an nxm matrix, we reformulate (7) to 

Max ECc'x] 

s. t.   Pr[Ax < b] > a 

x = Db , (13) 

which by substitution becomes 

Max    E[c'Db] 

s.t.   Pr[ADb ^ b] ^ a . 

Using the notation and results of section 2. we derive for the 

objective function: 

ECc'Db] . ^ Dub ♦ Tr{DZbc} . 



n 

The constraint set may be restated 

Pr[ADb < b] ■ Pr[ADb - b < 0] 

- Pr[(AD - I)b < 0] > a . 

Thus,   using the moments  of  b   It follows  [1,  p.   24]   that  the 

vectors of expectations and variances are 

E[(AD  -   I)b]   =   (AD   -   I)ub  s   5(D)   ; 

V[(AD - I)b] = dlag {(AD - I)Ibb (AD - 1)'} 

8 Y(D) . 

The procedure, then, Is as follows: 

(1) Specify an acceptable o^ , the probability of feasibility 

for each constraint. 

(2) Use (10), (11), or (12) to generate the set of k's and a. 

A set of slack variables, v. Is Introduced. Adopting the symbol 

'*' to represent congruent multiplication of two commensurate 

matrices [6, p. 549 ff], the deterministic equivalent program- 

ming model for (13) becomes 

Max    u^Dpjj + Tr{D Zbc} 

s.t.   v - 6(D) < 0 

v*v + k*k*{6(D)*6(D) - Y(D)*Y(D)} < 0 

v > 0 (14) 
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Finally, a solution, D*, to this problem can be used to make 

nonparametric interval estimates for the value of the optimal 

objective function using equation (3) or simplifications (5) or 

(6), much as in the numerical example in the preceding section. 

This variance can be used as the objective function in 

another model proposed by [3] 

Min VCc'x] 

S.t.   Pr[Ax £ b] ^ a 

x = Db ' 

and its deterministic equivalent which follows the development 

of (14). 

A "partitioned" stochastic programming model considers 

the problem 

Max c'x + d'y 

s.t, Ax  + By < b; 

where y  is  a   set of external,  uncontrollable  prior random 

variables,  d  a  vector of random prices,  and  B a  random 

technological   coefficient matrix.     By  using  the moments of 

y,  d,   B,  and  b,   the  problem may be  restated 

Max c'x  + c. 

s.t. Ax    1 b0  , 



with the moments of b0 and c« specified exactly, and solved 

as previously shown. 

6.  CONCLUSION 

13 

Estimation of stochastic vector, or matrix, p»oducts 

may be virtually Impossible by use of multivariate density 

functions and statistical transformations without severe and 

unrealistic simplifying assumptions about the random variates 

Involved.  Simulation can lead to approximations for a given 

problem, but at high computation cost and specificity for 

results. 

However, an approach using multivariate moments, which 

are available from either empirical data or analytic densities, 

leads to exact statements about the mean and variance of the 

vector products and useful Tchebycheff-type probability 

estimates.  These estimates are very helpful in qeneralizinq 

the mathematlc«! models of operations research. 
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APPENDIX 

Derivation   of  Expressions   for  the   Mean   and  Variance 

of   the   Inner  Product  of  Two   Vectors 

0     =     6^       i 

q   =   (b  +  vjb),(c +  uc); 

q   =   b'c   +  2b,ur  +  2y'c   +   \x'\i bMc 

Noting that E(b) = E(c) = 0 ; 

E(q) = E(b'c)  +    u^c    ; 

E(q)  = ^c ^ Tr Ebc   ; 

V(q)  = E(q2)   -   [E(q)]2  ; 

V(q) = E{b'c)2 -  (y^c)2 - 2y^c Tr Zbc -  (Tr Z^Y 

In  terms  of  moments   about  the  mean, 

Elb'c)2  =   E[(b  +   Mb)'(c  +  MC)]
2   ; 

Etb'c)2  =   Elb'cc'b  +  iibCC,vib  +  M^^'C   +   ^bMc)2  +  2ubcc,b 

+  2^bb'c  + 2u^cb'c  + 2u|;cb,lic+ 2^bu^c 

+  2^CMbMc1 

We  note  that 

EUc') 

E(bb') 

E(b,c) 

E(b) 

I 

I 

cc   ' 

bb   ' 

Tr E.      ; be 

E(c)   =   0 



17 

Hence, 

E{b'c)2 
E(b'«'b)M^ccwb^y^bbuc+ 2ubXcblJc+ (lJb^)   + 2^E(cc,b) 

+    Zii^Elbb'c)   +   2u^c   Tr   );bc   . 

We  have 

M'E*,   =   M^ccMb   +   M^bbMc+   2^EcbMc       ; 

V(q)   =   E(b,cc,b)   +   u'T.*^  +   Zu^Elbb'c) +  2^  Eicc'b) 
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