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INTRODUCTION

One of the important developments in high precision frequency control is
the temperature-compensated crystal osscillator (TCX0).l1-25 This device in-
corporates a temperature sensor and associated circuitry to derive a correc-
tion signal that is used to stabilize the oscillator. The most frequently
used method for producing the correction consists of adjustment of a varactor
in series with the crystal resonator controlling the oscillator. In the
design of the compensation network, it is necessary to know the frequency-
temperature (f-T) characteristic of the crystal to be compensated, but this
alone is not sufficient. It is found experimentally that the effective (-T
curve 1is altered upon insertion in the uncompensated oscillator.

This report explains the reason for this behavior, gives simple formulas
for calculating the size of the effect, and provides design aids in the form
of curves, with an example drawn from current practice.

FREQUENCY EQUATIONS
Virtually all current TCXO applications employ thickness mode quartz
vibrators. For this class of vibrator, excited by an electric field in the

thickness direction, the input admittance, assuming no loss and a single
driven mode, is26

= jwCq/ (1 - k2 tan X/X). (1)

<
[

In (1),

Co = €A/2h, (2)

where C, i1s the vibrator static capacitance, ¢ is the effective permittivitv,
A is the electrode area, and 2h is the thickness. The quantity k is the
piezoelectric coupling factor, while X is defined as

X = (m/2) (/€51 (3)

with f the frequency variable ( = w/2wW), and £(1) the antiresonance frequency
at the fundamental harmonic (M = 1), in the abégnce of mass-loading.

Antiresonance

The antiresonance frequencies are sometimes referred to as the muchanical
resonances, these being the frequencies for which an open-circuited resonator
is one-half times an integer wavelength in thickness. If the crvstal vibra-
tor plate is of density p, and the mode under comsideration has elastic
constant ¢ (piezoelectrically stiffened), then the acoustic velucity is

v = (E/p)b. (4)

and the antiresonance frequencies are

eI =M (a/0)/4n (%)




The harmonics of (5) are integrally-related in the absence of mass-loading
(negligible electrode coatings); each harmonic corresponds to a pole of the
tangent function in (1).

Resonance

Setting the denominator of (1) equal to zero yields the normalized
resonance frequencies as roots of the equation

tan X = X/k2. (6)

The roots of (6), denoted Xﬁg), are not harmonically related; the resonance
frequencies are obtained from the X&g) by means of (3):

XD = (m/2) (£ /£{L)). (7

Figure 1 displays graphical solutions to (6), from which is seen how the
resonance-antiresonance frequency difference |f§g) - fgg)l decreases with
increasing M, and also how the difference, at any M, is atfected by changes
in the piezoelectric coupling factor k.

A plot of Xég) versus k for M = 1, 3, and 5 is given in Figure 2.27 An
alternative representation, and one that is better suited from the standpoint
of graphical accuracy, is that of frequency displacement28v29’30

sV =M - x{V/m = u - o). (8)

Frequency displacement appears in a natural manner when the topic of approxi-
mations is taken up in a later section. It is clear that the antiresonance
displacement in the absence of mass-~loading, 6{M), vanishes identically by
virtue of (3), (5), and (8), written with the appropriate subscripts.

Figure 3 shows the variation of Gﬁg) with k ana M, obtained from (6) and (8).

Load

Insertion of a load capacitor Cy, in series with the vibrator modifies
(1), but the entire effect may be subsumed into changes in the values of
Co and k2. Denoting the effective values of C, and k? in the presence of CL
as Cop and kE, respectively, and defining the quantity a as

a = CO/(CO + CL), (9)

the effective values become

CoL = Co (1 - @), (10)

#

k2 =k2 (1 -w. (11)
Using k% in (6) yields the load frequencies Xﬁg), fﬁg), and 6{2) in place of
the corresponding resonance quantities. In the limit a - 1 (CL + 0), the
load frequencies approach the antiresonance frequencies, while the limit

a + o (Ci, » =) reduces the frequencies to the resonances.
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The inclusion of loss is easily dealt with; if the loss is considered to

arise from a material viscosity N, then substitution of32
X = X(1 - jwn/2%) (12)

for X in the foregoing describes the loss accurately. Table 1 gives a list
of pertinent material constants for two selected cuts of quartz. The AT-cut
is at present the most popular quartz cut for thickness mode plates. The
newly-introduced SC-cut is a doubly rotated cut32-35 that is expected to play
an increasing role in TCXO applications, particularly for fast-warmup opera-
tion, because of its superior cancellation of certain nonlinear elastic
effects.

TABLE 1. PHYSICAL AND ELECTRICAL PARAMETERS ASSOCIATED WITH AT- AND SC-CUT
QUARTZ RESONATORS: NUMERICAL VALUES.
AT-cut SC~cut
Orientation (YXwf)®/6
8 = o = 8 =
Quantity Unit = 0° | +35.25°| 21.93° +33.93°
o 1013 kg/m3 2.649 2.649
e pF/m 39.82 39.78
e 10-2 ¢/m 9.49 5.82
c 10+9 Pa 29.24 34.23
n 1074 Pa - s 3.46 4.02
N MHz - mm 1.661 1.797
dN/38 kHz - mm/°6 2.09 1.03
IN/39 kHz - mm/°® 0 12.0
k| % 8.80 4.99
3|k|/38 10-3/°6 -2.97 1.75
3lk|/39 10-3/°9 0 -2.78
T, fs 11.8 11.7
r — 159.4 495.8
3r/39 10%2/°¢ 0.11 -0.35
ar/30 10¥2/°¢ 0 0.55
r £F/m 249.8 80.3
p 1073 Q/m 47.2 146.
y! -— 0.60 -- 0.90 0.60 -- 0.90




MASS--LOADING FREQUENCY EFFECTS

In normal practice the electrode coatings depress the frequency spectrum
non-negligibly. For coatings of mass m per unit area lumped on each surface,
thie reduced mass-loading variable is

o= m/ph. (13

With the inclusion of u (1) is replaced by

k2 . tan X ]

) X (14

Y

jwc, /L1 - (T_—ux tan X

Antiresonance
ihe zeros of (14) lead to the equation determining the antiresonances:
UX tan X = 13 (15

the roots, xiM), of (15) are no longer harmonically-related. From the ng)
: 8

tire frequencies f;M) are determined using
u

M
xgu)

1

1 )
(/) (£ /ey, (16

and the displacements dgg) follow from the analog of (8):

00 = - x{V/m = m - o, (e

Figure 1 gives the graphical construction for the fgg), and Figure 4 shows
the frequency spectrum for Qgg) as function of U. The displacements 6£ﬁ)

are similariy shown as functions of W in Figure 5 for the curves marked k =
Resonance

The poles of (14) lead to the equation determining the resonance
Lrequencies:

tan X = X/ (k% + ux4). (18

the roots of (18), XM determine the f£(M) and 8(M as follows:
Ru Ru Ru

M _ M) (1)
X = (n/2) (f f R 19
Ri1 (/)(Ru/Ao) (
M) -y - M) =M - .
GRu M (2XRu /my = M QRu . (2m
[he graphical construction for £M s also given _in Figure 1. Figure 4
shows QfM) as function of u. ' The quantity § appearing on this figurc
is H defined by
Q = (2/m) (k/vD), SN

and gives a measure of the relative importance of p and k in (18), as mav be
seen from Figure 1. 1In Figure 5 are found the solutions to (18), expressed
7




oL k=50%
t—-—-—————-——‘—’————————————-—\
\Q(n
Ry
0& 1 l_
0® 0

FIGURE 4, FREQUENCY SPECTRUM VERSUS MASS-LOADING.
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as displacements, plotted against u for various k and M values. Figure 6 is
a plot of 6(;) versus k for various p values; Figure 7 is the companion graph
of 6§3). A comparison of Figure 6 and Figure 7 indicates that as M
increases, less y is required to reach a given § value.

Load

With CL added in series to the mass-loaded vibrator, the quantities
Xéﬂ), f{ﬂ), and Gﬂﬂ) are defined in an obvious way. Equation (15) is
unaffected, while kZ in (18) is replaced by kf from (11) to yield the load
frequencies and displacements. Figures 6 and 7 give the 6£u) when kL is
substituted for k.

CRITICAL FREQUENCY APPROXIMATIONS
Simple, approximate relations, usually adequate in practice, can be

obtained from the transcendental relations (6), (15), and (18). The first
anproximation to Xég), valid for large M, and for smaller M when k << 1, is

16 T ¢ I .
Xpo = Xpo (m/2) M; (22)
the second approximation for Xég) is
) . _2k\2
XRO = (m/2)M [ 1 (ﬂM) ]. (23)

The term (2k/ﬂM)2 was introduced by Bechmann,36’37 and referred to by Cady38

as "Bechmann's yv." With the inclusion of u, (23) becomes

o _ _ 2k 2
wo - (m/2)y M [ (1 - ) Gw ) (24)
while Xig) is obtained from (24) by setting k = O.

The approximations involving 6 are found by using (17) in (15) and (20)
in (18), simplifying, then expanding the tangent functions and truncating
the result. One first arrives at39

tan (agﬂ’ m2) = u (M - ciﬁ)) n/2, (25)

and
tan (6&3) T/2) = u (M - séz)) w/2 + 23w (M - 5&3’), (26)

with the equation for § g) formed from (26) by setting p = 0. After suitable
approximations are made, as indicated above, one gets

™ _ ., . 2k.2 2k, 2,-1 _ . . 2k, 2
s =M G a+ DTy &2, 27
For G(M) the result is
Ru
M M
céu’ = 6 v myra + m; (28)
10
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tor $OD Hpe sinply uses (28) with G(M) set to zero.
Al ' Ro

For some applications it is helpful to know the relationship between the
resonance {requencies at two harmonics, normalized bv the harmonic numbers.
The approximate relatior is found from (8) and (27) to be

(Qég)/ M) - ( }i\)/ N) - (2{‘@)2 < (YN - TMT ). (2u

Introducticn of a load capacitor leads to a_frequency displacement of s (M)
. . . , J K . Lo

which 1s approximated by using 337). with k“ replaced by k{ as viven

bv (11). One similarly finds 6111) from (28) and (11). :

Y

In view of the dependencies of § upon a and M, one mav seek a relatior-

shiip between harmonic and a such that the relation ]
s = 5(N) L)
Ro Lo
notds.  The result is
a = (M~ N)/ M, [

medanine taat, as far as the frequencv displacements are concerned, operat i -
a4t harmonic N with a given by (31) is c¢quivalent to operation at harmenic
withont (Il

FREQUENCY-TEMPERATURE BEHAVIOF

Resonators for TCXO application are required to have preciscly wnown
I requencv-temperature characteristics so that the compensatory networ! v

he properly designed. Bechmann*O found that AT-cut resonators could .
desceribed adequatcely, cven over a rather wide temperature range, by 2
term power series. I the frequency of interest is fU at temperature ]\“
then with AT =T - T,

1
0 B

. , : 2
(f -+ )/0 - AJT = a AT +h ATE + (AT,
Q O O

vives the frequency at temperature T.  Table 2 gives values for the quait

ties 4 . b , and ¢  and their anple gradients for the AT- and SC-cuts.

N Y o . . . -
cocfficients a . b, nd ¢ varv with orientation angle, mass-loxdir..
. Q O O - N . . o

value of series load capacitor with the zero subscripts denotiny the 7.

ot

4t zere gand a, and at reference angles ¢, 00. The coefficient "a

ronvoous with Tfp appearing in the sequel.
\

Ihe variation with angle is also treated by means of powor]>vxi(w
cxpansions, normally using only the constant and linear terms:”

q=q,+ (3q/38) - A8 + (3q/3d) * A9, Vo

LI}

8 -0, A®D=20~90 .

where o is a, b, or ¢, and A8 o o

13




TABLE 2. THERMAL PARAMETERS ASSOCIATED WITH AT- AND SC-~-CUT
QUARTZ RESONATORS: NUMERICAL VALUES.

AT-cut SC-cut
Orientation (YXw2)%/6
o = ¢ = 9 =
Quantity Unit ¢ = 0° |+35.25° [21.93° | +33.93°
a 1078 /x 0 0
b, 1079 /2 ~0.45 -12.3
c, 107423 108.6 58.2
9a/36 1076k, % -5.08 -3.78
3b/36 107%/x2,% -4.7 1.6
3c/30 10712 /x3 % -20. -18.
322702 1079/k, (% )2 0.96 -—-
da/ 39 107%/x,% 0 -0.18
b/ 39 107%/k2,% 0 1.6
dc/ 0 107207 % 0 -3.8
32202 1079/, (%)? -18.0 -—
da/ du 10787k, (%) -0.264 -0.23
T, °c 26.4 95.4
3T, /30 K/% 14.9 12.6
3T, /30 K/% 0 13.8
3T /ou _i;l (%) -5.45 —
T, 10-6/x 29.7 29.7
T 10_6/1< 31.8 31.8
T 10_6/1( 23.3 23.3
T, 10”%/k -0.245 -0.213
a(x," 107%/x 13.7 13.7
a(x," 1076/x 11.6 11.6
a (X4") 107k 9.56 9.56
T, 1078 /x 88.2 224,
3T, /36 1076/k,% 16.0 -9.60
IT, /30 10::/1(,% 0 17.5
T, 10”8k -176. 448,
14




ror the aT-cut, 3q/s¢ = 0 due to crystal symmetry consideratioms, so the
expansion in this case has to be carried out to second order:
: ¢ 3 2 2 2

4 = 4q; + (3g/38) « MO + }(3%g/397) -« &7, (34)
Figure & shows the frequency-tomperature-angle characteristics for the AT-
cut. The normalized frequency excursions, 6f, between the maxima and minima
in Figure 3 are shown in Figure 9 as function of angular difference, A8, from
tne reterence angle © . This curve is very important because Sf enters
Jdirectly into most © rexo design procedures. In Table 3 are presented the
firet- , second- , and third-order temperature coefficients for the AT-cut of

quartz as function of departure from the reference angle.

TABIF %, 1IMPEKATURE COEFFICIENTS AND FREQUENCY EXCURSIONS FOR AT-CUT QUARTZ

A ! a 4{ b c &f
Minutes T 1076/ Tj 1079/k? 10712/k3 1 107®
0 T 0.390 109.5 | «©

L ~0.043 0.351 109.3  0.65

L -0.086 0.312 109.2 ! 1.85

1, ~0.129 0.273 109.0 ¢« 3.40
: ~0.172 0.233 108.8 | 5.2

2 0.215 0.19 108.7 % 7.31

3 -0.258 0.155 108.5 | 9.6l

3, -0.300 0.116 108. 3 E 12.1

4 L -0.343 0.077 108.2 | 14.8

v, . -0.386 | 0.038 108.0 | 17.7

3 -0.429 | 0,002 107.8 | 20.7

de o —ulbT ~0.041 107.7 23.9

" © _0.515 ~0.080 107.5 27.2

oly -0.558 ~0.119 107.3 30,7

7 L -0.601 ~0.158 107.2 34.3

B —0.644 ~0.198 107.0 38.0

" . -0.687 ~0.237 106.8 41.9

8, 0.730 ~0.276 106.7 45.8

Yy 0,773 ~0.315 106.5 50.0

IR ? -0.819 ~0.354 106.3 54.2

1o % (. 858 -0.393 106.2 58.5

15
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The slight differences in the second- and third-order coefficients, at the
reference angle, between Table 2 and Table 3 are indicative of the changes
encountered due to electrical operating conditions.

From the data in Table 3, obtained from the relation

12/97¢2, (35)

§€ = 4(b% - 3ac)>
the curve of Figure 9 may be obtained. 1If 8T is defined as the temperature
interval corresponding to §f, then 6T and 8f are found to be related by the
simple relation

Sf = (c/2) + (8T)3, (36)

where ¢ is a function of orientation. In Figure 10, (36) has been plotted
fcr the average value of (c¢/2) from Table 3.

The frequency-temperature-angle characteristics for ST-cut quartz are A
shown in Figure 11. The angle indicated is 0; since, from Table 2, the
first-order temperature coefficient is less sensitive to changes in ¢ than
in 6 by a factor of 21, the curves of Figure 11 also indicate approximately
the behavior with respect to A9 changes of 217 From the curves, one sees
that the SC-cut is flatter than the corresponding AT-cut, and that an AT-cut
operating about its upper turning point would be replaced by an SC-cut
operating about its lower turning point. For TCXO operation, the SC-cut is
more difficult to pull than the AT-cut because the SC-cut's capacitance ratio
is about a factor of three higher than the AT-cut's, as may be seen from
Table 1.

Harmonic Effect

Changing the harmonic of operation is similar, as far as the resonance
frequency-temperature behavior is concerned, to a change in apparent
orientation angle, 43-46 except that the harmonic effect is quantized.
Figure 12 shows the behavior of the resonance frequency for an AT-cut
resonator at M = 1, 3, and 5; the curve marked "«'" corresponds to the
resonance frequency at an indefinitely high harmonic, or at any of the
harmonics of the antiresonance frequency.

The relation for the difference between the first-order temperature
coefficients of the resonance and antiresonances was derived by Onoe;47
the equations for the higher-order differences were obtained recently.43,44
For the first-order we have

- M) _ (1) _
Ty = Tero = Teao = ~Co ° Ty 37
where

2

G + 122 - 1), (38)

o

+zk2/((xé§))

and where T, is the first-order temperature coefficient of piezoelectric
coupling. The harmonic effect arises from the root X{M) appearing in (38).
Figure 13 presents G_ as function of k and M. It is seen, from (37) and (38),
that for M>>1, GO»O, and TfRO—»TfAO as shown in Figure 12,

18
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Load Capacitor Effect

Series lcad capacitor insertion is described in regard to its effect on
k by (11); w1th respect to its influence on temperature behavior, (37) may be

used with k. 2 from (38), along with the relation between Tk and Tk This is
found to be’” L

27 = 2 t ' -
kL T T ol - T (39)
meaning that the temperature behavior of C. now comes into play, along with
that of CO. Values for T o’ T,, and T, are given in Table 2 for the AT- and
St-cuts. With a and k Cknown, Figure 13 can be used to find G (k ).

The load capacitor cffect on frequency-temperature behavior is given in
Pigure 14 for the SC-cut and a representative value of @; the curve for the
Al-cut is shown in Figure 22, in connection with a numerical example.

}E@s~Lou@ipgﬁE£fact45’46

Addition of mass-lovading results in an expanded form of (37):

(M) (1 (1)

2
o = . - - - . + . N
Ty 1FRU rfAU (2x Ty u(\ )< TU)/D, (40;
where
- (M) (M) 2 2.2
D (XRu XR (2uk”™ + u +1) + k" (k 1), (41)

and Ty is the temperature coefficient of the normalized mass-loading.

T =-T -T,, (42)
u o h
Where Tf —(u(X "y + u(X "y + a(X ")) is the temperature coefficient of
density and Tl =+ a(X,)") is the temperature coefficient of expansion in the

thickness (X,") direction. The thermoelastic constants a(Xi") for quartz are

ywiven in Table 2.

The quantity multiplying T, in (40) is called the Onoe function:4

S0
u

k
= +2k2/D.

o is plotted versus | for various k values and for M = 1, 3, and 5 in
Figares 15, i6, and 17, respectively. For AT-cut quartz, G is plotted as
tunctien of  for various harmonics in Figure 18. H

By means of (40 and the numerical value for 3a/36 provided in Table 2,
one may convert changes in "a" due to changes in y and/or M into apparent
angle changes. In Figure 19 the angle shift with mass~loading, from the
i+ = (0 value, is plotted as function of p with M the parameter. In Figure 20
the apparent angular shift for transitions between harmonics is shown as

tunction of 13 both figures are for AT-cut quartz.

23
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Inclusion of the € effec: for the mass-loading case is made by writing

0) twice—-once for k = kT' o= ul, and harmonic = N, and then for k2’ uz,
aud M, and subtracting. The result is
M) (N L a2 M) N
- = -7k +
e T TR Tk /D )_lek /D ]
(M) 2 N)
- . . 44
v i, x /D ) + (“1XRU1/D1) ] T (44)

eoow wses (D) and (39) to relate k. and k,, Tk, and Tk,. Equation (44)
then incoarporates tue full effects of changes”of a, y, and harmonic on the
tirar-order resonance-tfrequency/ temperature coefficient.

FQUIVALENT Cict 1T CONSTDERATIONS

Jreowspaivalent circuit of Figure 21 is usually used to represent a
Srvotal cesenator in the vicinity of a harmonic.%8 C0 is given by (2), while
(e 2,272
ul = 3 C k /T™M, (45)
M 2.2 2_
K /<(“) = TMTN/8 C KT, (46)
il L) ST /3’ C k" (E(Mz (47)
. . : . . 49
e cuaantity H - the moticnal time constant,
T, n/c (48)

is the acoustic viscosity, and €© is the piezoelectrically-stiffened elastic
cnstant. 1t is convenient to define two quantities that contain no geo-
metrical ractors, but which are functions of material only. These are the
aotiondl capacitance and motional resistance constants:

r{“’ - ci”) . 2h/A = €/rM%, (49)

pf“) - Rf”) A/2h = T /r(”’ (50)
in (49), r is the capacitance ratio

r™ - e = e a0’ (51)

fabie 1 lists values for g, ¢, n, Tys T r., Pl' and N = v/2 = (E/Q)%/Z;
srantities appearing without a superscript (M) are for M = 1. The 'dimension-
Yoss number ¥oappearing in Table 1 is a form factor that takes into account
toe nonuniform distribution of motion with lateral distance along the
slate.20,328 The effective value of C{M) is just ¥ times the value obtained
trom (45); whereas RfM) is divided by ¥ to get the effective motional
resistance.  ‘The static capacitance, C , is not affected by the motional
distribution. °

Introduction of a series load capacitor alters L according to (10); it
also changes the other circuit parameters: 31

31




FIGURE 21, BUTTERWORTH-VAN DYKE EQUIVALENT CIRCUIT,
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c, = 01 - w7 (52)

Ry = R /(1 - u)z, (53)

Ly =L/ -7, (564

s r/(l - a). (55)

From the Jdetinitions (45) - (51), the temperature coefficients of the circuit

parameters may be obtained in terms of those of the material oefficients.
At present the quantity Tn is very imperfectly known.

FREQUENCY - TEMPERATURE-LOAD CAPACITANCE APPROXIMATIONS

To sur fement the {requency approximations given in an earlier section,
we o give here those appropriate to the description of temperature behavior.

From Figures 15, 16, and 17, it is seen that the dependence of G, on u
is verv weak until o oxceeds several percent; accordingly, it is usua&ly
aveeptanic to let & = G . The zeroth approximation to G0 is

W O

G =4 %P/ () - U (56)

(8]

n

tiww {irst approximation is

2 2 2
G,o=+ KT/{(M/ YT - k7). (57)
tihe presence ot 4 oonly enters the second approximation:
. o 2 2 2k 2 2,2
G @D - - 3D e - D). (58)

Bv making approximations of the sort found in (56) - (58), equation (44)
1w bhe reduced to various simpler forms. When a = 0 and u = 0, one has

L0 ~(N) 2 2
o =T = (Tr/2r) + (1/M" - 1/N7), (59)
TRo fRo
where
Toe 0 )
lr _Tk. (60
Mo, # o, " # N, then with the addition of c. the exact result is
(M) Lo a2 M) N)
-1 = -2k . - -
boo T 0 T, 0 - /D, 17D, 7]
i ‘ (M)
k“a(l - ) (T, - T, )/D,
2, (M) 2,5, (M)
[GXL/D), (uxR/D)1 ) T (61)
[t most important practical case is that where u_, = 4, =, N = M., Then,
tor the shift in first-order temperature coefficicent between resonance and

ivad trequencies we have, approximately,

~ _ ) - . -
= + ZYMZ{(I + au)[Tr + (1 1) (T, TCO)]

+ 2y - Tul. (62)
33
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For small u this further reduces to

T ):%a——z-[Tr+(l-a)'(T T.)]. (63)

(Tero = TeLo ™ CL ~ “Co

From (27) and (11) the corresponding frequency shift is
M _ oMy 2. 4 _ a

Lo Ro ~ = . (64)
M ToM? 2rM<

(Q

USE OF AT- AND SC-CUT QUARTZ RESONATORS FOR TCXO APPLICATIONS

For the fundamental harmonic, M equals 1, and (64) becomes

(f. - fR)/fR = Af/f =~ of2r. (65)

L
This quantity is to be compared with &f from (35), which is shown in Figure 9
versus Af. Equation (35) may be approximated, in its explicit dependcnce
upon A8, for the AT-cut, by

6

SE(A9) = 1.85 x 10 /2,

. (e)3 (66)

where A8 is in minutes of arc; for the SC-cut the multiplier is 1.60 x 10—6.
Since %f’greatly exceeds 6f, it is apparent that only a small variation in

C, about its operating point is sufficient to bring about the necessary fre-
quency compensation.

Two further questions arise, however: one concerns the shift in
frequency-temperature behavior of the resonator in going from the condition
of f_ to f ; the other concerns the smaller shifts in the frequency-
temperaturé characteristic attendant on the variations of C_ about its
initial setting point. Lesser considerations, e.g., the further effects
of y, also arise. These points will now be taken up and considered from the
standpoint of a practical example.

Consider a crystal resonator with the following characteristics:

fR = 20 MHz, M = 1, AT-cut
CO = 3.0 pF

Cl = 12.5 fF

Rl = 4Q

u = 2%

A8 = 4) minutes of arc.
Table 3 and Figure 10 show that this A9 value corresponds approximately to

SER = 18 x 1070, 6T = 69.4°C,
stemming from the temperature coefficients

a = -0.386 x 10 /K,
34




+0.038 x 10'9/K2

+108.0 x 10 14/,

o
14

i

I
4

Figure 12 presents the behavior of the resonance frequency fR with tempera-
ture. Operation with series load capacitor

‘.=20
LL pF

at the frequency at which the combination exhibits zero reactance produces,
as tfunction of temperature, the curve marked f in Figure 22, assuming
(TCI - TC)) vanishes. The fL curve is characteérized as follows:

. {

= + = . .
a CO/(CO €)= 0.130;
the capacitance ratio is
r = CO/C1 = 240,
corresponding to an effective coupling factor

1
= 2 o~ .
keff m/(8r) 7.2%,

and a4 load coupling factor

1.
kL =k(l -a)? = 6.7%.

The ratios o and r are inserted into (63) to yield the new first-order
coefiicient

a = -0.332 x 10°°/K.

Coefficients b and ¢ remain unchanged to good approximation, but with the

e re

a' coefficient change the curve is made to appear with shifted angle
difrerence

A0 = 4 minutes of arc,

and now

5f, = 15 x 107, sT = 65.4%.

According to (53) the resistance of the combination is

R, = R1/(1 - a)2 = 5.3 Q.
If (35) is used, with "a" taken to depend upon a according to (62), then
“f  may he plotted against a for assumed values of (TC, - TC ) and u.
Starting values of "a," with corresponding b and ¢ values, may be taken from
Table 3 for any choice of 40. The resulting graphs are shown in Figure 23
for values pertinent to the example described above. In addition to the C

virlue quoted (20 pF), two further values are indicated on the figure: L
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C

L = 22 pF, a =0.120

and CL
Graphs are plotted for the following values of (TC TC ): =50, -10, +60,
and +100, (all x 10~©/Kk), with and without the pre%ence ® of 2% mass-
loading. Inasmuch as the nominal value of TCO for AT-cut quartz is

it

18 pF, a + 0.143.

TC_ = +30 x 10‘6/K,

(see Table 2), the assumed values of TCL are:

+20, 490, and +130 (all x 107%/1).

These figures correspond, respectively, to the nominal temperature
coefficient values for ceramic capacitors, for porcelain micro-circuit
capacitors, and for certain oscillator-varactor composites. TC is a
function of reverse bias applied to a Varactor,zo one method fo% compensating
this effect is to place a series diode in the bias circuit. Table 4 provides
the §f wvalues for the intersections of the three a values with the four
(TC, -"TC ) graphs, with and without the presence of p. From Figure 23 and
Table 4, the relative sizes of the influences on 6f may be discerned, and
accommodated in the TCXO design.

Extensions of these plots to encompass the full range of x are given in
Figures 24 to 39, for AT-cut crystals operating on the fundamental harmonic
with capacitance ratios

"

Y 160 (20) 300,
angle shifts

46

#

1 (10) 10 minutes of arc,
and temperature coefficient of capacitance differences
(T¢, - TC) = -100 (50) + 100 x 107°/k.

Because the graphs for each value of 40 conflue at o = 0 and a =1 irrespec—
tive of (TC, - TC ) the resulting design charts may be referred to as 'petal
plots.'" By their® use, the shift of 6f with a may be taken into account in
TCX0 applications.

CONCLUSIONS

The effective frequency-temperature curve of a crystal resonator
operated with series load capacitance differs from that of the crystal alone.
Since the principal method of compensating for the crystal frequency-~
temperature behavior in a TCX0O employs series varactors and a temperature-
sensitive compensation network, it is of major importance to be able to
understand and deal with this effect in the design of TCXO's. The necessary
formulas and discussion are given in this report.
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TABLE 4.
-6
FABLL OF Ml in 10 FOR VARIOUS VALUES OF a, u,s AND (TCL - TCO) I
i a = Co/(Co + CL)
0%
0.120 0.130 0.143
/ 27)
e ————
13.74 13.43 13.03
-50
13.60 13.28 12.87
4
~
Nej
[ 14.30 14.03 13.67
— -10
£ 14.18 13.90 13.53
e
Pt 15.30 15.09 14.82
\ +60
o 15.22 15.00 14.72
g
15.88 15.71 15.49
+100
15.83 15.65 15.41
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