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1. INTRODUCTION

Wave drag reduction is one of the important goals of designing a high perfor-
mance aircraft capable of operating in the supersonic regime. Since therc are many
design requirements which conflict with one another as far as wave drag reduction is
concerned, an optimization procedure is needed to détermine the minimum wave
drag configuration subject to the constraints imposed by these requirements. Until
recently, the procedure relied heavily on experience gained through extensive wind
tunnel testing of various geomerries, Such a design procedure, which usually could
not be carried out systématically, was cxpensive and time consuming. However,
the advances ~f recent years in numerical methods and computer technology have
made feasible systematic optimization procedures using exact numerical methods,
Consequently, a wave drag reduction procedure u.sing the method of characteristics

has been developed which is preseated in this report.

The present wave drag reduction procedure makes use of two basic methods:
the Latin Square sampling technique and the Three~-Dimensional Method of Character-
istics. The former is used to select sample configurations so efficiently that a
small number of samples ~an well represent the entire family of configurations,

The latter is used to éalculate accurately the wave drags of the sampled configura-
tions., Briefly stated, the present approach consists of calculating the wave drag

of a baseline configuration and some variations specified by the Latin Square sampl-
ing technique, determining a functional dependence of the wave drag vn these varia-
tion parameters, and minimizing this wave drag function to obtain the configuration
with minimum wave drag. The procedure is general with respect to the number of
geometric parameters (or» variables); the higher the number, the larger the required
Latin-Square size. The computer programs developed under this study cover the |

most often used 3 x 3 and 5 x 5 Latin Squares.
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The complete wave drag reduction program has been carried out in two phases.
In the first phase, a procedure was developed for minimizing thc‘k wave drag of a
forward tuselage and canopy configuration as rcported in Reference 1. In the
sceond phase, the procedure has been expanded to account fof the influence of the
wing and wing-body blending on the vverall wave drag. In this final report, thg
research performed under the wave drag reduction contract is presented. The
phase I work, which was reported in Reference 1, is inc'lude'd_a;s .Appen'di.x A for
ready reference, whereas the main text of the report présents the phase II work
and touches upon some of the phase I work, A 3 x 3 Latin Square was used in phase
Il and 2 5 X 5 Latin Square in phase I. The surface fitting méthdd using Latin
Squares us presented in Reference 2 was improved during the phase I study: the
improvement which is presented in Appendix A, is essential for the success of the
optimization procedure (here applied to wave drag reduction). The procedure using
the improved Latin Square surface fitting method has been proven in both phases
through application to the F-4 cornfiguration, For further'ilalidation of the procedure,
it was applicd to the von Karman ogive. For given configufation length and base,
the present optimization procedure correctly predicted the von Karman ogive as

the minimum wave drag body.

In this report, the basic approach is given first, which consisis of the formu-
lation of the problem and a brief account cf the two basic methods, It is followed by
a discussion of the method of desbribing the body and the selection of geometric
variables and their ranges for defining a tamily of configurations.- Then the flow
field calculation and the wave drag equation are presented.v .Sam'pie results of the
calculated flow fields are given, and calculated wave drag coefficimts are ta.buldted.
These coefficients were used to derive the wave drag equation’\_.vhi_ch expressés the
wave drag as a function of the geometric varinbles. Once the wave drag equaticn is

obtained, the dependence of the wave drag on the geometric variables is established.
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A set of figures are given to illustrate some of the characteristics of the wave drag

: nquatioh. This is followed by a presentation of the optimizatior procedure and the

prediction of the minimum wave drag body. Finally, conclusions are drawn and some
recommendations given. The Latin Square technique including the method of con-
struction is presented in Appendix B. A discussion of the general hody description

method is given in Appendix C. The Numerical Search Procedure for the minimum

wave dmg configuration is presented in Appendix D. The validation of the optimiza-

" tion procedure using the von Karrman ogive is presented in Appendix E.
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FORMULATION AND METHODS

The wave drag of a configuration is a function ot 2 number of factors,  For
given flight conditions the wave drag depends on how the configuration is shaped.
Since the shape of an airerart, at fcast in the initial design phase, is mainly
determined by considerations other than the wave arag, it is practical to consider
the problem of reducing the wave drag of @ wiven haseline configuration by
obtaining a variation cunfi@mtinn thai satisfics all the design constraints vet has
the least wave drag.  Such a baseline configuration could be a new configuration
at a certain stage of development or it could be an existing air;_)l:m'e that is to be
maodified or improved, |

In this section, the formulation of the wave drag rédﬁctinn prqblem is outlinved,

and the two basic methods to be used in this study are introduced,

Formulation

The baseline configuration can be described by a s& ofvgcmhgtric variables,
A family of configurations including the baseline can be g'en'er'a'ted by assigning
different values to some or a.! of the geometrié vvari'abla‘;. If the wave drag cnn‘bc
expressed as a function of these vari:ibl.es,. a pa.rticu!nr set of values of these
variables that gives the least wave drag can be found by fninimizing the function.

This set of values then produces the minimum wave drag configuration.

The key to this problem is how to obt‘airj s;dch a function:ﬂ a\'pression. for the
wave drag. For the present study, four g.eometrié variables are considered in
defining the family of configurations. If each variable assumes turee values, the
evaluation of the partial derivatives with respect t<; t_heée four variables for a Taylor-
series type expression would require 81 wave dg‘;l;g'c:tléulations. It will be shown

that through Latin Square' sampling the présent pr_oceduré prdves useful using cnly
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10 wave drag calculations. In the present approach, the wave drag coefficient C DW

is first assumed to be of the form

4

. .
CDW “ag ; ; ( ;e :Liix;) i By XoX., (1)
where xi(i 1, 4) are the geometric variables and Y and aij are to be determined.
The Latin Square sampling tcchnique2 is used to sample 9 sets of values of 8§
out of the total population of 81 sets. The wave drag cocfficients for the F~4 type
baseline and the configurations defined by each of the 9 sets are then calculated
by the Three-Dimensional Method of Characteristics, 3, 4 When the 10 calculated
wave drag coefficients CDW and the corresponding ralues of the geometric
variables a; are substituted into Equation 1, 1) linear equations f()‘r the 10 un=-
knowns ay and aij are obtained. These equations are then solved for the a, and
a; i which are substituted back into Equation 1 to produce the functional expres«
sion for the wave drag in terms of the geometric variables. By minimizing

C in Equation 1 subject to a given set of cr .straints, e.g., a given volume

DW
of the aircraft, the minimum wave drag configuration corresponding to the given
set of constraints is 'etermined. In the present study, a numerical search pro=

ccdure is used to tind the minim»m wave drag configuration (Appendix Iy,

Latin Square Sampling Technique

The Latin Square method, which has mostly been used in agriculture and
biologicai research, is a very efficient sampiing technique and is much better than
random sampling” For this study a particular type of Latin Square (the orthogonal
squares) suitable for a variety of technical problcms2 is adupted. With this type
of Latin Square arrangement, a 3 x 3 square is the correet size for four geometric

viriables Xp each taking three values, It is convenicnt to introduce the reduced

“Sec Appendix B,

-?
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variables Z;s which are related to the geometric variable X, through

o i)
< max min max min : (2)

where subseripts max and min denct2 the maximum and minimum values,
respectively. Corresponding to the three values of the geometric variables X
the reduced variables 24 alwnrys ascume the three levels of 0, 21, The 3x3
Latin Square arrangement in terms of the levels of the reduced variables and

the cell number is shown in Table 1.* It is seen that in this way, the Latin

.Square arrangement remains the same whatever the values of the geometric

variabies.

Three-Dimensional Method of Characieristics

In this study the Three-Dimensional Method of Chzu':xcter'istics3'4 is used to
calc.ilate the wave drag coefficients for the fuselage~wing configurations sampled
by the Latin Square tochnique. This imethod has been previously appl'ied to cal-
culate the flow tields over a wide vari’ly of configurations including spherically-
capped three-dimensional bodies and wingss, aircraft fuselages and wings at
general angles of att:mck,6 and slab delta wings and space shuttle wing-body con~

7-9 Whenever experimental data were av:iilable for comparison, good

figurations.
agreement hetween theory and cxperiments was observed. The capability of

treating the cancpy, however, was developed during phase I of this study.

Tn a related research program, theThree~-Dimensional Method of Characteristics
was further extended and improved to treat realistic aircraft wing-body configura«
tions including wing-body blending. With some modification and adaptation, this
improved method was applied to calculate the flow {ields and wave drags of the

variation configurations,

*A discussion of the Latin Square construction is given in Appendix B.
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3. DESCRIPTION AND VARIATION OF FUSELAGE-WING CONFIGURATION

~ Three-dimensional body description requires s great deal of effort which at
times becomes extremely tedious. Basically, two types of descriyition can be
made, analytical and numerical. The latter can describe complicated geometry
accurately, but is cumbersome for preparing input data. The form.er is much sim-
pler to input and can define a family of configurations based on a few geometﬁé

variables. Hence, analytical description is chosen for the present study.

Body Nescription

Fvery configuration has 2 number of generating lines, such as the upper
profile, the lower profile, the maximum breadth line, or the wing la;dmg edge.
In the present body description procedure, each generating line is divided into a
number of segments to permit each segment to be described by a conic-section
curve. At each cross section of the configuratioa, simple analytic curves, e.g.,
the ellipse or cubic, connect any two adjacent generating lines to form the contour
of the cross section. The configuration is thus described analytically by simple
low-order curves. For a smooth body 2 unique normal to the surface exists every=-
where, and this condition usually requires slope continuity at the junctures between

two contour curves or two segements of a generating line.

The fuselage is located in a right-handed coordinate system where the Y-axis
is aligned with the fuselage axis; the X-axis is spanwise and the Z-axis is up, All
gencrating lines are represented by a general curve fit of conic sections in several

segments, The cornic-gection curve takes the form

Z

2 1/2 .
X =pY+Q;_(RY *SY+T) @

A straight line is a specinl case with R = § = T = 0, Each curvecan




»

b.

be divided into as many se ments as necessary to provide adequate hody description.
Each segment must be continuous with the previous segment and with very few
exceptions the slope must be continuous’ at the junctures to satisfy the requirement

of a unique normal to the surface.

A typcial cross section of the:\ying‘body configuration is shown schematically .
in Figure 1. The contour of the cross section begins with a straight line represent-
ing the canopy flat. The canopy 'contoﬁr f;'om points C to ¢ is circular but can be
elliptic in géneral. The upper fuselage-.ié represented by an élliptic curve from
points U to M. A straight side flat from points M to Ff joins the upper fuselage
to the lower fuselage, which is alsq represented by an elliptic curve from Ff' to L.
A straight line from point L to the'genterline describes the bottom flat, For the |
description of the wing, straight lmes E G and F H represent the upper and lower
surfaces of the wing, respectively; Partial eliipses G I and H I complete the wing
description near the leading edge I. TheAwing‘-body blending is effected by e¢ircular
arcs 34 and 56 with radii ry and Ty respectively. A further discussion of the
body description method illustrated by the description of the fuselage and canopy

of Phase 1 is presented in Appendix B,

Fuselage and Canopy

The eqguation of the canopy is given by

2-2,m |°? X-X,m0 |
AR R E RS i) 1 =0 @
. ¢(Y) c( . »c(Y) ¢(
If it is a circular are, then (Zy- Zc)2 = (xc X,.))Z. The equation for the upper
fuselage is ' |
z-2,m | x-x.m |2 |
. h U “1 =0 (5)
2y = 2y Xy = XM
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The intersection between the canopy and fuselage is faired by a cubic from
points 1 to 2 (Figure 1). The projections Zl(Y) and Zz(Y) of lines 1 and 2 on the
Y-Z plane are given by Equation 3 where the coefficients P, Q, R, S, T are input
quantities, The projections Xl (Y) and X2(Y) on the X~Y plane are obtained by

solving Equations 4 and 5, respectively.

211/2
_x < |1 Z1‘Z¢) (6)
X; M) =Xp + Kg-Xe) | 1 - Zo - Zo
211/2
Z. -2
- 2_ "M (M
X.(Y) =X,, + -X.) 1-( )
2 vt Ey U{ 7y - 2y ]

The fairing surve matches the slopes of the ellipses at both end points 1 and 2. The

slopes are obtained by differentiation of Equation 4 and 5

2
2,-2 -X (8)
x'lﬁ’)‘(‘%"i')“(xl-xo)(c 22)
1 1" %Xc/\Zc~ 2

e - (58], - () ()

The cubic equation that satisfies Equations 6 and 8 can be written

2-2, )"’ z-2, \*
X = X, +X (z-Z)+c(-—--——-—-, *d("““"—". 10)
17 % U WA Z, - 2,

The coefficients ¢ and d are obtained by applying Equations 7 and 9

c = 3X,- X)) - (x:,a + 2x'1) (22 - 21) (11)
d = -2(X, - X)) + (X} + X)) (Z,-2) (12)

Equatfon 10 with ¢ and d given by Equations 11 and 12 is then the cubic equation for
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the fairing curva from points 1 to 2, The quantities xl, Xo X'1 and X;z are given

by Equations 6 and 7 while XU, XM’ XC’ X°, ZU, ZM"ZC’ ZQ; Z-_l' a.nd.Z2

are obtained from Equation 2 where coefficients P, Q, R, S and T’zir_é input

quantities.

The lower fuselage is described by an equation similér to Equaﬁon 5

2 , 2
z-2_ M
Fy X=X, (V) : '
Z, (M =2, (Y . ~ :
L F, XEf(Y) X, M

All flats are given by simple straight-line equations.

c. Wing and Blending

The upper and lower surfaces »f the wing are given by straight-line equations
for EG and F H. Near the leading edge 1, the partial ellipses GIand H I are

derived as follows. The equation may be written in the form

®-% 0 @-2)°
- + . =1 (14)
2 .

"where a and b are the axes to be determined. Differentiation of Equation 14 gives

4z _(dz

at point G, X = X, Z = %, and 32 =(a-5(-)c, which is the slope of line EG. Sub-

G’
stituting these values into Equation 14 and 15 leads to-

‘XG"XI"“’z ‘Zc."zl)2 :
. ‘ - = 1 o (14a)

?&)G = 0 | ' (15a)

10




Elimination of b2 fro.n Equations 14a and 14b yields

2{dz\ _ oy _
XX ('5(‘)0 K= XpZg =2

q = (16)
o —x) (42
Zg— 22— %) (dX)G
Elimination of a2 from Equations 14a and 14b leads to
2y 702z -2 X = 4z
R R A L R g an

where 2 is given by Equation 16. Equation 14 with a and b given by Equations 16 and 17
describes the partial ellipse G 1. By changing the subsecript G to H, the equation for
the partia] ellipgse H I is obtained.

The projections of lines passing through E, F, G, H and I on the Z-Y plane
and X-Y plane are input quantities for defining the wing. In order for the partial ellipses
to exist, points G and H must be located within a certain range, which depends on the
relative positions of these five points. When the wing span is very small, it is difficult
to input both projections of lines through G and H such that these points are located within
acceptable ranges. In such cases, the X coordinates of G and H are calculated inside

the program to satisfy the range requirement.

The upper and lower blendings between the fuselage and the wing are described

by circular arcs with radii Ty and T respectively. When the blending radii ry and
ry are specified by geometric variables (see Section 3d.), points 3 and 5 of Figure 1

can be obtained numerically through an iteration procedure. However, in order to
outain analytical normals to the blending surface, an analytic expression must be derived.
Hence, the following procedure was used and is illustrated by the upper blending. The
numerically obtained line passing through point 3 is considered a generating line. The

projection Z3 (Y) on the Y - Z plane is expressed in the form of Equation 3, where

11




the coefficients are input (iua.ntities. At a given fus 2lage station, X3(Y‘) are obtained

by solving Equation 5.

- 211/2
z, -7
X0 = Xy =X |1 (52t ) “ X (18)
3 M~ Xy Zy Ly | U

The slope of the tangent at point 3 can also be obtained from Equation 5 as

2

7. -7 X, - X
M:,_(U M)‘_(3 U) 19)

Xm Xy 23" Iy

Thus, the equation of the tangent-ff’ (see Figure 1) at point 3 is given by

Z + My(X-X,) +2, (20)

The equation of line E G can be written as

Z = M4(X-XE) +Zg (21
Zn=7Z
where M, = XG _XE (22)
G~ “E

Intersection P of these two lines is {oMned from Equations 20 and 21

|

< = Zp=Zy * M X; =M Xp
Mo M
g P 3 4

(23)

( _— M3ZE_M423 *M3M4(X3~XL)
p M3 - M4
The equation of the line bisecting the angle £ 3PG is given by
Z =M - X z | | ‘ 24
7+ tan"! M, + tm{‘l M,
where M‘3 = tan > (24a)
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and M3 is ziven by Equation 19 and M 4 by Equation 22. The intersection between

the bisecting line and the normal at point 3

X—X3+M3(Z-Z3) =0 (25)

is the center 0 of the arc; hence from Equations 24 and 25

X, * M323 + M3(M5Xp -Z)

.53 D
X =
0 T W,V
(26)
z = Z, - MgX + Mo (X, - MjZo)
0 T MM

5

where Xp and Zp are given by Equation 23, M, by Equation 19 and M5 by Equation

3
24a. The equation of the circular arc for the upper blending is thus

2

2 2 = 24» - = 2
X=X +(2=-2)% = (X;=-X9% + (25~ Zp" =Ry 27

where XO and Z0 are given by Equation 26. Notice that the radius R, is slightly
different from Ty because of slight errors introduced by the iteration procedure

in obtaining point 3 and by the fitting of the generating line passing through that point.

Geometric Variables and Variations

Four geometric variables were selected to generate a family of fuselage-wing
config‘uratiops including the F-4 baseline. As illustrated in Figure 2, these
variables are the horizontal displacement a of the maximum horizontal breadth
line, the lower deck height h (which increases as the lower profile is raised),
and the blending radii r and ro at F.S. 280 and F.S. 360, respectively. All
configurations generated by these variables have the same canopy as the F-4 and

must satisfy the over-the-side view line limitation. The correspondence between

13




the geometric variables and the reduced variabies defined in Equation 2, the
ranges of variation of these geomeivic variables, and the baseline values of these

variables are tabulated in Table 2.

The geometric variables specify the blending radii at two fuselage stations
oniy. In order to fully describe the blending between the fuselage and wing, a pro-
cedure is needed to provide the blending radiﬁs systematically at any given fuselage
station in the blending region. The blending radius distribution as a function of the

fuselage station must satisfy the following conditions:

1. At fuselage stations 220 or 430, the radius is equal to the minimum radius of
the baseline,

2. At F..S. 280 and F.S. 260, they are equal to ry and Lo respectively.

3. Between F.S. 280 and F.S. 360, the radius must not overshoot; i. e., it must
not exceed the greater of r and Ty

4. When r, and r, are equal to the minimum radius, the baseline must be

1
recovered; i.e., the radius must be constant throughout.
5. When either ryorr, is equal to the minimum radius, the blending radius must

not undershoot anywhere.

Figure 3 illustrates some of the possible radius distributions and serves as a
reference for the foliowing discuséion of the procedure. The radius distribution is
given by three cubic interpolation formulas for the three intervals. The slope of the
distribution curve ig zero at F.S. 220, 280 and 360 for r = 1.5 and at F.S. 280 and
360 for r = 61.5. At F.S. 280 the slope at r = 46.5 is assumed to be equal to that
of the straight line Sl' At any other r the slope is obtained from a spline fit of the
slope versus r in such a way that the spline curve passing through these three points
with assumed zero curvature at both end points, The slopes at F.S5. 360 are obtained
in an anologous way. Thus, for a given pair of ry and Ty the radius distribution curve

is determined by three cubic interpolation formulas: the first cubic passes through

14




r=1.5at F.S. 220 with a zero slope and r = r, at F.S. 280 with a slope given

1
by the spline fit: the second cubic passes through r - ryat F.S. 280 with the same
slope as the first cubic and through r = ry ‘at F.S8. 360 with a slope given by the
second spline fit; the third cubic passes through r = Ty at F.S. 360 with the same

slope as the second cubic and through r = 1,5 at F.S. 430 with an assumed zero
curvature. The radius distribution curve as composed of these cubics are then

described by conic-section curves for input into the computer programs.

While the lower blending radius could be varied, its range would be very
much limited in the case of the F-4. Therefore, a fixed lower blending is
used to assure a smooth body for the 3DMoC calculations. Tiis blending' is

specified by assigning a fixed distance between points 5 and F (see Figure 1),

15

-




4, FLOW FIELD CALCULATION AND WAVE DRAG REDUCTION

Once the geomerric variables and their ranges of variation have been selected,

the fuselage-wing configurations corresponding to the nine cells of the 3 x 3 Latin

N Square can be described. The Three-Dimensional Method of Characteristics to~
- gether with a blunt body program for providing the initial data surface can then
be used to calculate the flow fields around and hence wave drag coefficients of

these variation configurations. The wave drag coefficients, in turn, can be used

to determine the coefficients of the wave drag equations (1), {rom which the
dependence of the wave drag on various geometric variables and the minimum wave

drag body can be obtained.

a, Calculation of Flow Fields

The Three-Dimensional Method of Characteristics program together with

a blunt hody and axisymmetric characteristic program was used to calculate the

flow fields around the baseline F-4 type fuselage-canony-wing configuration and the
variation configurations corresponding to the cells of the Latin Square., The wave
drag.coefficients were comonuted as part of the results to be printed out. Since the
fuselage nose is slightly blunted. the blunt body and axisymmetric characteristic
program was used to provide a completely supersonic initial data surface for the
Three-Dimensional Method of Characteristics program to proceed. The flow-{ield
calculations were made at Mach 2,5 and zero angle of at ick. Since the wing leading
edge section is described by an eliipse with a large major-to~minor axes ratio |
(Equation 14) the leading edge is theoretically blunt.. In order to provide completely
supersonic {low for the characteristics method to calculate, the leading edge must

be subsonic. At Mach 2.5, a subsonic leading edge bas a é\veep angle greater than

 66.42°. lencea configuration with a leading edge sweep of 68° was chosen, which
is greater than F-4's leading edge sweep of about 51°, Fdrtunately, the main geo-

" metric change that is expected to yield apprecigble drag reduction is the wing~body

16
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blending which does not extend to the region near the leading edge. Therefore,
modified wings with considerable increases in the wing sweep can be used for the

present wave drag reduction study without appreciably affectihg the results.

As an example of the flow fields calculated by using the Three-Dimensional
Method of Characteristics, the flow over the F-¢ tyve baseliné at Mach 2.5 and zern
angle of attack is presented here. Figure 4 shows the top view of the configura-
tion, the upper and lower centerline prwsﬁre distributions and the pressure along
the wing leading edge. Along the upper centerline of thevcnnfiguration, the pressure
rises sharply as the flow hits the canopy-fuselage juncture. This signifies the
existence of an embedded shock wave created by the canopy. | As the flow spreads
over the canopy flat section, the prwsuré drops althougﬁ the canopy profile is
almost strajght. A further drop of pressure. is experienced as the canopy profile
curves back after the flat section. It recovers to néar free-stream pressure as the
w ing leading edge pressure rises. Along the lpwefcen_terline the C p first drops
to a negative value due to further expansion, | It recovers somewhat and eventually
comes close to zero, consistent with 'thé conditim ;of zero angle of attack. The
wing begins with a high sweep, which..dec-rwsm to a constant value of 68° near F.S.
150. Correspondingly, the slightly highex_‘ than free-stream pressure isiobserved at
the beginning of the wing. Because of the wing-body interaction, almost immediately
the wing leading edge pressure drops and does not recover until after F.S. 200 when
the wing sweep drops to 68° and the larger wing span lessens the interaction. A
cross section of the baseline cqnﬁéufatio’n at ¥, S, 430 is shown in Figure 5; the
wing has become very thin and it is thici'cér near the leading edge than near the root.

The front view of the baseline configuration is shown in Figure 6.

Of all the variation configurationg;,'..configumtion 6 has the maximum wing~body
blending. The front view of thisg co'nfiguration'is shown in Figure 7. A cross~

sectional view at F. S, 350 is shbwn m Figure 8 togethér with surface pressure

7




distributicn, At this fuselage station, the blending is nearty maximum, as compared
with the baseline cross section shown by a dashed line, At F. 3. 350 the blending
radius is still ingcreasing; however, the rate of inerease has dropped to a very

small value. That means expansion has set in upstream of F. 8. 350, reSulting

in 21 negative Cp in the blending region as shown,

b, Wave Drag Equation

As shown in Equation (1), for a given Mach number and angle of attack, the wave
drag coefficient CDW is assumed to be a quadric function of the four chosen geometric

variables Xpp ev 0 v 0 X with the coefficients a, and aij to be determined. The

4
reduced variables Z; which take the levels of 0, and %1 according to the Latin Squre
arrangement shown in Table 1, assign corresponding values to the geometric

variables X, For instance, according to the first cell, z, and z are assigned leve! -1,
which corresponds to the minimum values of the geometric variables Xy and x 4 while

z, is assigned level 1, which corresponds to the maximum value of x,, and Zg is
assigned level 0 corresponding to the mean value of the geometric variable x 30 Thus
the first cell specifies a set of values for the geometric variables vhich in turn

defines a configuration whose wave drag coefficient can then be calculated by the

method of characteristics program. In this wuy, each cell leads to one equation for

the determination of the coefficients of the wave drag equation,

The wave drag coefficients of the baseline and the 9 variation configurations
are tabwated in Table 3. These will be used to determine the wave drag equation
in terms of the reduced variables in the form
4

CDW:bo‘Z

2\, |
Ly (b, + bij?% ) PanZeZs (28

i8




It should be noted that in the original Latin Square surface fitting method
prescnted in Reference 2, two of the geometric variables have only linear terms
resulting in only 8 coefficients bi and bij for 10 equations and these equations are
solved by a least square procedure, However, while the requirement of 2 linear
variables can be relaxed (see Appendix A) in the caseof 5 x 5 Latin Squ u-és. this
requirement does not seem to apply to the case of 3 x 3 Latin Squares. In fact, in
the present case, these 10 equations were used to colve for the set of 10 unknowns
bi and bi

2
j that included zI and zi in addition to the original 8 coefficients, The

resulting coefficients of the wave drag equation are tabulated in Table 4.

c¢. Variation of Wave Drar with Geometric Variables

It is instructive as well as useful to represent the wave drag equation
graphically. However, since the wave drag depends on four geometric variables,
it is only possible to show the variation of thé wave drag coefficient with respect
to two of the variables while keeping the other two variables constant, for instance,
at the baseline values, Such graphs give some "feel” of the wave drag equation and
may offer some insight about the wave drag reduction problem. Figures 9 to 20
depict the nature of the wave drag equation of ten terms with coefiicients givcri in
Table 4, These graphs were plotted on a Tekfronix equipment. Each graph has'
five curves that correspond to five values of the geometric variable shown at the

top of the graph: these values equally divide the range which is shown in Tuble 2,

Figures 9 to 11 show the variation of the wave drag coefficient with respect
to the width a, which is normalized with respect to the baseline width, As might
be expected, the wave drag coefficient increases with the width df the configuration,
The curves are fairly straight, indicating that the wave drag i8 nearly proportional
to the width of the configuration, othor conditions heing cqual. In general,

1% increase of the width incrcases the wave drag by 0,35, The dependence of the
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wave drag coefficient on the other variables can be seen to be far frbm linear
since the distances between the curves are quite different from one another. The
dependence of the wave drag coefficient on the lower deck hieght h is shown in
Figures 12 to 14, Since the lower nrofile rises with increasing values of h, the
wave drag coefficient decreases with h. It is interesting to note that the wave drag
attains a minimum at about h = 1,2, which represents a slight rise of the lower
profile from h =0, All the curves are nearly flat near h = 0, sugg.feé’ting that a
slight change of the position of the lower profile has little effect on the wave drag.
Note that the curves in any of the figures from Figures 9 to 14 are parallel to

one another, because the 10-term wave drag equation contains no cross terms

of these variables except ryTs which represents the interaction between the two
blending radii ry and rye When more configurations are included during the
progress of the optimization procedure, other ¢ross terms coqld be included,

as explained in Appendix A. lowever, the interaction between these other vari-
ables are expected to he small. This observation was arrived heuristically but

has heen verified by the ability oi Equation 28 to accurately predict the minimum
wave drag body as will be shown. The next three figures 15 to 17 show the varia~
tion of the wave drag coefficient with £ys the blending radius at F. S, 280, for
different values of one of the other three variables while the remaining two tuke the
haseline values. Similarly, the variation of the wave drag coefficient with Y the
other hlending radius at F, S, 360, are shown in Figures 18 to 20, Although all
these figures show a general increase of the wave drag coefficient with the biend-
ing radius, there is a definite trend for the curves to attain a minimum within the
ranges. Most minima occur at the lower side of the radius scale: sometimes it may
cven reach 15 inches as shown in Figure 20. The occurence of these minima is
sipnificant hecause this shows that the volume of a wing~body coatiguration can be
increased hy using wing-body blending without increasing the wave drag and that

when the blending s done property, the volume can be increased with an accompany-
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ing reduction in the wave drag. Some interaction between rl and r,, is evident in

Figures 17 and 20, as indicated by the cross over of two or more curves.

d. Optimization and Minimum Wave Drag Body

The wave drag equ:ition can huw be investigated to reduce the wave drag,
In the process of determining the minimum wave drag configuration, certain
geometric constraints, such as minimum fuselage width or 2 given lower deck
height, must be satisfied'. _For_ each set of geometric constraints, there exists a

minimum wave drag éonﬁgur:i’tion. In this section, the optimization procedure and

- some minimum wave drag configurations are presented and discussed. During:

phase I study, a technique was developed (see Appendix A) that greatly improves
the original Latin Square surface fitting method of Reference 2, especially for
5 x 5 or larger Latin Squares. The improved optimization procedure using the

improved Latin Square surface fitting method is verified in Appendix E.

The simplest and surest way to find the minimum wave drag configuration
subject to a given set of geometric constraints is to use Equation 13 to calculate
the wave drag coefficie. .. ior all allowable sets of leveis of the variabies ﬁnd pick
the set that gives the. least wave drag. The optimization procedure consists of

the following steps.*

1. Make a numerical search ti:rough the ranges of all gcometric variables,
using the wave drag equation to calculate the wave drag coefficients for

those sets of levels that satis{y the constraints.
2. Identify the set of levels oi the variables that yields the least wave drag.

3. Prepare body desc ripiion i~put data for the minimum wave drag configura=

tion.

4. Use the Three-Dimensionai Method of Characteristics program to verify

*The Mumerical Search Procedure for 5x5 Latin Squa.rcs is presented in Appendix C:
it holds true for 3x3 Latin Squarcs when the space dimensfon {8 lowered from 6 to 4,
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the prediction of the wave drag equation,

5. If the difference between the predicted and calculated wave drag coef-
ficients exceeds a certain criterion, the calculated wave drag coefficient
provides an additional equation for the least square {it, and the optimi-

zation procedure is repeated.

For the wave drag reduction problem of the fuselage-wing configuration,
as we are concerned with in phase I, two types of constraints are considered. The
fi_rst corresponds to setting one or more of the variables to a desired value. The
second corresponds to assigning a fixed volume to the configuration, for instance,
a certain percentage of the baseline volume. When two of the variables are set
to the baseline values, any of the figures from Figures 12 to 20 provides one or
more minimum wave drag bodies. In this respect these figures can be quite useful,
When no constraints other than the range limitations are imposed, the wave drag
equation predicts a minimum wave drag body that corresponds to 307 of the base=
line width, a raise of the lower profile by 1. 2 inches and a blending radius of 3,52
inches at F.S, 280 and 7.65 inches at F.S. 360 (Figure 21). With this configuration,
a reduction of wave drag by 4.547 is predicted. The body description input data
for this minimum wave drag configuration was then prepared for the verification
run by the Three-Dimensional method of Characteristics program. The results
showed a 4. 357 reduction of wave drag, The difference between the predicted and
calculated wave drag reductions is within the accuracy of the procedure: thercfore,
the validity of the 10-term wave drag equation is established. Figure 22 shows the
minimum wave drag configurations for various volume constraints. The percent
of wave drag increase was plotted against increasing volumes expressed as percent
of the baseline volume, The values of the geometric variables that define the
minimum wave drag configurations are also plotted. It is seen that a certain amount

of wing=body blending is present for all minimum wave drag configurations, For
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a given volume, the forward fuselage becomes more slender to yield lower wave

drag, and the lest volume is compensated for by the volume gained through wing~body

blending.

e. Summary of Wave Drag Reduction Procedure

The present procedure can be used to improve an écistmg aircrait or to aid
in the design of a new one. In the case of improvement, t'hei existing aircraft
naturally serves as the baselir‘e. In the case of new deéign, the preliminary con-
figuration, which is usually obtained through considerations other than the wave

drag, can serve as the baseline for wave drag reduction.

The next step is to select either the 5 x 5 Latin Square for the forward fuselage
or the 3 x 3 Latin Square for the blended wing configuration and to describe the base-
line and variation configurations using the body description method presented in
Appendix C. The sectiors on the description and variation of configuration in Appendix
A or the main text should be consulted in producing tie body description, This step
is time-consuming but must be done carefully to qssm'é success in wave drag cal-

culations by the method of characteristics.

Input cards are then prepared according to the instruction# given in part 1 and
2 of the user's manual (volume II of this report) and fed to the Initial Value Surface
Program and the Three-Dimensional Method of Characteristics Program for wave
drag calculations. Care needs to be taken in the prcp:;rafion of these cards, for if
the calculation fails to proceed further the first item to check is the correctness of

the input cards.

After the wave drag cocfficients have been calculated by the Three=Dimensional
Method of Characteristics Program, the Surface Fit and Minimum Search Program
can be used to define the lcast wave drag configuration for n‘givén sct of constraints

as explained in part 3 of the user's manual, The progriun can be used as one of
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the steps of a design procedure by providing the minimum wave drag body corre-
sponding to const .ints imposed by other considerations. Or the program can be
applied to generaie a set of charts for predicting minimum wave drag bodies
subject to specifizd constraints., It should be noted that these charts are valid in
some ranges of geometric variables near the baseline. The entire procedure needs

to be redone for a different baseline configuration,
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6. CONCLUSIONS

With regard to the wave drag reduction program, the following remarks

and couclusions can be made.

2.

C.

e.

The present optimization procedure developed in the phase I study is useful

. and versatile. It can be used for other optimization purposes,

Together with the Three-Dimensional Method of Characteristics, the procedure
can be used to obtain the minimum wave drag configuration for designing new
airplanes or modifying existing ones.

The optimization ppocedure has been verified through applications to the F-4
forward fuselage using 2 5 x 5 Latin Square and to an F-4 type fuselage-wing
configuration using a 3 x 3 Latin Square. The procedure has also proven itself
by correctly predicting the von Karman ogive as the minimum wave drag body
for a given configuration length and base.

Within the ranges of variation of the choseﬁ geometric variables, the following
rule-of-thumb precentage reﬁ%imﬁons of the wave drag are obtained. In the

case of the F-4 fuselagé, for‘% every inch the nose is lengthened, the wave drag
is reduced by slightly over ox;e percent, and for every percent the fuselage
volume is decreased, the wavie drag is reduced by about three quarters of a per~
cent. In the case of ihe F-4 iy'pe fuselsage~wing configuration, the wave drag is
reduced by about half a percent for each percent the blended-wing configuration
is narrowed. |

The present application to Qaye drag reduction is limited only in the capability
of the wave drag computati'on'ail techniques. First, a completely supersonic flow
field is required for the charal:térisﬁcs method to be applicable. For a given
configuration, this requiremex‘it. sets a lower limit on the free-stream Mach
number. Secondly, the compu}er program at the present stage of development

B
requires that all corners and edges be faired with smooth curves to yield a
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unique surface normal everywhere on the configuration.

At free-stream Mach numbers below the lower limit stated in e., subsonic
regions would occur at the fuselage-canopy juncture of the configuration under
consideration. Further studies on calculations of local subsonic regions are
needed to provide methods for supplementing to-day's wave drag computational

techniques at lower [ree-stream Mach numbers.

26




REFERENCES

Chu, C. W., Der, J. Jr., and Ziegler, H,, "Wave Drag Reduction for Aircraft
Fuselages," Intenm Report NOR 75-70, August 1975, Northrop Corporanon
Hawthorne, California.

Redlich, O., and Watson, F., R., "On Programs for Tests Involving Several
Variables," Aeronautical Engineering Review, Vol. 12, No. 6, June 1953,
pp. 51-59,

Chu, C. W., "Compatibility Relations and a Generalized Finite-Difference
Approximation for Three-Dimensional Sieady Supersonic Flow," AIAA Journal
Vol. 5, No. 3, March 1967, pp. 4923-501,

Chu, C. W, and Powers, S. A., "The Calculation of Three-Dimensional
Supersonic Flows Arourc Spherically~-Capped Sinooth Bodies and Wings, "
AFFDL-TR-72-91, Vol. I, Theory and Applicaticns, September 1972.

. Chu, C. W,, "Calculation of Three~Dimensional Supersonic Flow Fields
- about Aircra.ft Fuselages and Wings at General Angles of Attack," NOR 72-
182, March 1973, Ncrthrop Corporation, Hawthorne, Califorma.

Chu, C. W,, and Powers, S, A., "Determination of Space Shuttle Flow Field
by the Three-Dimensional Method of Characteristics," TMX 2506, Feb, 1972,
pp. 47-63, NASA.

Chu, C. W., "A New Algorithm for Three-Dimensional Method of Character-
istics," AIAA Journal, Vol. 10, No. 11, November 1972, pp. 1548-1550,

. Chu, C. W,, "Calculation of Supersonic Flow Fields about Slab Delta Wings
- and Space Shuttle Wing~Body Configuraiions, " NOR 73-007, April 1973,
Northrop Corporation, Hawthorne, Califcrnia,

Chu, C. W,, "Supersonic Flow About Slab Delta Wings and Wing-Body Configura--

tions," Journal of Spacecraft and Rockets, Vol. 10, Na 11, November 1973,
pp. 741-742,

27




Best Available Copy.k“ |

TABLE 1, intin Square Arrangement

. 4 2%y
CELL Code:

2.2 z3
®-1 -‘_1' '@o -1 ®1 -1
1. 0 -1 1 0 -1
@ -1 0 @ 0 0 @ 1 0
-1 -1 0 0 1 1
@ -1 1 0 1 1 1
0 1 1 -1 -1 0

TABLE 2. Variables, Ranges, and Baseline Values

Reduced Geometric . .
Variables Variables Ranges of X; § Baseline Values
A X X X; z; X;

min max
zq a 0.9 1.5 ~0.2 1.0
z, T 1.5 36.50 | -1.0 | 1.5
Zo Ty 1,5 61,30 ~1.0 1.5 -
24 h 3.0 -6.0- -0, 333 0.0
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TABLE 3. Wave Drag Coefficients CDW '

(Base on Wing Area of 530 Sq. Ft.)

[ 0.0104602

0.0116525

0.0107868

0.0094555

0.0104013

0.0128320

0.0116629

0.0114297

0.0114309

Bascline Value CDW =0,00979359

TABLE 4. Coefficients of Wave Drag Equation

bo =0.0104013

Values of b, x 104

2

bix 10

5,7851670

3.638333

7. 455000

2,706667

4

Values of bij x 10

1

0.6171822

2. 598000

-1.181682

5.391000

2.227318
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APPENDIX A

WAVE DRAG REDUCTION FOR FORWAPR™ FUUSELAGES

1. INTRODUCTION

The complete wave drag reduction program has been carried out in two phases.
i1 the first phase, a procedure was developed for minimizing the wave drag of a
forward fuselage and canopy configuration. In the second phase, the procedure was
expanded to account for the inflnence of the wing and wing~body blending on the over~
all wave drag. In this appendix, the reseérch performed in the first phase of the
program is presented. The basic approach is given first, which consists of the for-
mulation of the problem and a brief account of the two basic methods. It is followed

by a discussion of the method of describing the body and the selection of geometric
variables and their ranges for defining a family of configurations. Then the flow field

calculation and the wave drag equation are presented, Samople results of the calculated
flow fields are given, and calculated wave drag coefficients are tabtilated. These
coefficients were used to derive the wave drag equation which expresses the wave

drag as a function of the geometric variables. A new concept which enab!.s the wave

drag equation to ""learn' from experience to improve its performance is also pre-

sented. This concept proved very useful in achieving successful results during the
Phase I work and can be applied to improve other optimizéﬁon procedures using Latin .
Square sampling. Then the wave drag reduction procedure and the types of geometric
constraints imposed by design requirements considered in the procedure are pre-

» sented, followed by the discussion of the wave drag equation and the new concept for

improvement. Various aspects of the wave drag reduction procedure are demon~

strated using the F~4 fuselage as the baseline; the results are presented and dis-
cussed. Some characteristics of the wave drag equation are plotted, and concluding

remarks are made for the Phase 1 wqu.
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2. APPROACH
In this section the formulation of the wave drag reduction problem is outlined,

and the two basic methods to be used in this study are introduced.

a. Iormulation

The baseline configuration can be described by 4 set of geometric variables. A
familv of configurations including the baseline cun be generated by assigning different
values to some or all of the geometric variables. If the wave drag can be expressed
as a function of these variables, a particular set of values of these variables that gives
the least wave drog can be found by minimizing the function. This set of values then
produces the minimum wave drag cbnfiguration.

The key to this problem is how to obtain such a functional expression for the
wave drag. In this study, six geometric'variables are considered in defining the family
of configurations. If each variable assumes five values, the evaluation of the partial
derivatives with respect to these six variables for a Taylor-series type expression
would require 55 or 15,623 wave drag calculations. This is obviously not feasible. In

the present approach the wave drag coefficient CDW is first assumed to be of the form

6 5 5
CDW =a + ;:1 aixi 4 Zi .22 aijxixj 1)
= =1 i=

where X (i = 1, 6) are the geometric variables and 3 and'aij are to be determined.
The Latin Square sampling tcc}'mique1 is used to sample 25 sets of values of X out of
the total population of 15, 625 sets. The wave drag coecfficients for the configurations

defined by cach of the 25 sets are then calculated by the Three-Dimensional Method of

2,3 When the 25 calculated wave drag coefficients Cu\v and the

corres - ading values of the geometric variables x; arc substituted into Eq. (1), 23

Characteristics.

linear cquations for the 17 unknowns a and uij are obtained. A least-squares procedure

is used to solve these cquations for the ai and a

ij? which are then substituted back into

A2




Eq. (1) to produce the functional expression for the wave drag in terms of the
geometric variables. By minimizing Cpy\ in Eq. (1) subject-to a given set of coﬁ_-l B
straints, e.g., a given length and width of the fuselage, the minimum wave ,dragA cb_h_-w
figuration correspohding to the given set of constraints is determined. In the preseri;
study, a numerical search procedure is used to find the minimum wave draé (;onfigura-

tion (Appendix D).

b. latin Square Samplmg Technique

The Latin Square method, which has mostly been used in- agriculture and '
IMological research, is a very efficient sampling technique and is much better than
random samplmg. For this study a particular type of Latin Square (the orthogonal
squares) suitable for a variety of technical problems is adopted. With this type of
Latin Square arrangement, a 5X5 square is the correct size for six geometric
variahles i each taking five values. It is convenient to introduce the reducgd

variables Z;5 which are related to the geometric variable X through

imax 1min max 'min )

X + X, zi(xi - X. 2
X, = 5 + 1

where subscripts max and min denote the maximum and minimum value's'. respectively.
Corresponding to the ﬁve values of the geometric variables X the reduced variables

z always assume the five levels of 0, 1, :2, The 5X5 Latin Square arrangement in
terms of the levels of the reduced variables is shown in Table 1.* It is seen thaf in this
way the Latin Square arrangement remains the same whatever the values of the
geometric variables. At first glance, it appears that the roles of zy and zé are

unique since their-lev’els'ére arranged regularly in Table 1 and their nonlinear tex&h»s
are cxcluded fi'om, Eq (1). Thisis tfue for the conventional approach. However, ‘it is

shown in Appendix B that by rearranging Table 1 any pair of the reduced variables can

nave their levels arranged rcgulafl_v as z, and zvl;, and it will be_shown later in this

* A discussion of the Latin Sduaru construction is given in Appendix B,
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TABLE 1. A 5x5 LATIN SQUARE ARRANGEMENT

2 %
CELL CODE 2, 2
23 Z“
-2 - -1 -2 0 -2 1 -2 -2
10 1] -2 2] -1 -2 0 -1
-1 0 -2 1 -1 2 ol -2 1
2 -1 | -1 - 0 -1 -1 2 -1
2 -1 | -2 o} -1 1 0o 2 -2
10 2 22 2] -1 -2 0 -1
-2 ol -1 o 1 o 20
2 -2 | -1 -1 1 2
2 -2 ] -1 -1 11 X 2
-2 1] - 1 0o 1 1 2 1
1 2 0 -2 1 -1 2 o) -2 1
0o 1 2 2 -2 -2 -1} -1 0
- 2 | -1 2 o 2 12 2
0o 1 1 2 -2} -2 <l -1 0
-2 ol -1 1 ) 1 -2
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appendix that some or all nonlinear terms of z; and zg can be included in the wave drag

equation,

¢. Three~-Dimensional Method of Characteristics

In this study the Three~Dimensional Method of Chatacteristicsz’ 3 is used to
calculate the wave drag coefficients for the fuselage-canopy configurations sampled

by the Latin Square technique,

AS




3. DESCRIPTION AND VARIATION OF FORWARD FUSELAGE

Three~-dimensional body description requires a great deal of effort which at
times becomes extremely tedious. Basically, two types of description can be made,
analytical and numerical. The latter can describe complicated geometry accurately,
but is cumbersome for preparing input data. The former is much simpler to input and
can define a family of configurations based on a few geometric variables. Hence,

analytical description is chosen for the present study.

a. Body Description

Every configuration has a number of generating lines, such as the vpper profile,
the lower profile, the maximum breadth line, or the wing leading edge. In the present
body description procedure, each generating.line.is divided into a number of segﬁments
to permit each segment to be described by a conic-section curve. At each cross sec-
tion of the configuration, simple analytic curves, e.g., the ellipse or cubic, connect
any two adjacent generating lines to form the contour of the cross section. The con~
figuration is thus described analytically by simple low-order curves. For a smooth
body a unique normal to the surface exists everywhere, and this condition usually
requires slope continuity at the junctures between two contour curves or two segments
of a generating line,

The fuselage is located in a right-handed coordinate system where the Y-axis is
aligned with the fuselage axis; the X-axis is spanwise and the Z-axis is up. A schematic
of the fuselage-ca.n‘opy configuration is shown in Figurc 1 ana : typical cross section,
in Figure 2. All generating lines are represented by a 5 .ral curve fit of conic sec-
tions in several segments. The conic-section curvesiak - f.om

ZJ. 2

= PY+Q +[RY +" 1 ! 3
Y (J ; ©

3
where j = 1,5. A straight line is a special case with R= 3= T = 0. Each curve can

be divided into as many segments as necessary to provide adequate body descriptizn.
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FIGURE 1. FUSELAGE-CANOPY SCHEMATIC

FIGURE 2. A TYPICAL CROSS SECTION
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Each se.gmcnt must be continuous with the previous segment and with very few excep-
tions the slope must be continuous at the junctures to satisfy the requirement of a
unique normal to the surface. Unlike others, line 6 is not a true generating line. It
is actually a shape factor which expresses the distance to a t. ~vent line as a function of
Y and is discussed in Section 3b.  For lines 7 and 8, only Z7 and Zb, are fitted by conic
section curves while X.‘. and XS are given by kq. ‘(l()a) in Scction 3e.

As shown in FFigure 2, the contour of the cross section begins with a straight
line representing the canopy fla_t. The canopy contour from points 4 to 5 is circular
but can be elliptic in general. The upper fuselage is represented by an elliptic curve
from points 1 to 2. The lower fuselage is represented by a general conic-section
cusve from points 2 to 3; the bottom flat, by a straight line from point 3 to the center-
line. The intersection between the canopy and the fuselage is faired by a cubic from

points 7 to 8. The derivation of the cubic equation is presented in Section 3c. The

equation for the canopy is given by
| 2 2
[ Z -2 (V) } +[x-x4m ]

)

-1=0 )
Z4 (Y) - Zs Y lxs Y) - x4 (Y)]

If it is a circular arc, then (24 - 25)2 = (x5 - X4)2. The equation for the upper

fuselage is
2 2
2 - Z. (Y) X=X, (Y)
7 Y'z-‘-7 D] TIX Y1~x %)) “i=0 ©)

b. Shape Factor

Referring to Figure 2, the contour curve from points 2 to 3 ‘has a zero slope at
point 3 and the slope approaches infinity at point 2. As in aireraft lofting practice,
the shape of‘ this contour curve is determined by specifving the distance from the origin
to one of its tangent lines that makes a 45° angle with the x-axis. Hence, this distance,
which is designated by b in the following derivation of the equation for the contour

curve, may be regarded as s shape factor for this curve.
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This equation for the 45° tangent linc is

X= Z2-V2b
- thch.: y\;he-n the origin is translated to point 3, becomes

, X'= 2'+ H {G)
where Z' = Z-Zs, X' = X—X3, and H = 543-—)(3 ~'\/E b. In the new coordinate system,

the general quadric equation, satisfying the conditions Z' (X’2) = 2'2, X' (0)=0,

(glz(':')z =0, and((—‘:-}—z(-:-)s = 0, reduces to

K(zy X' - x'zz')2 e 72 (X - Xp)= 0 )

which represents a family of curves with K as a parameter. To determine K,

Eq (6) is substituted into Eq. (7) to yield a quadratic equation in the form

az?

+ BZ' + C =0 8)
and the condition for Eq. (6) to be a tangent line is that Eq. (8) should have a double

root; i.e. .‘ B2 - 4AC = 0, which leads to

9)

Equation (7) with K given by Eq. (9) is the equation for the contour curve from _
points 2 to 3. The range of variation of this curve ébtainable by applying this equation
is illustrated in Figure 3, where a family of conic~section curves is given for dif-
ferent values of b. By increasing the distance b, the curve is seen to vary from
-almost a straight line to a sharply bending curve approaching the two sides of a right

triangle.

¢. Fairing Curve

' _The intersection between the canopy and fuselage is faired by a cubic from points |
7 to 8 (Figure 2). The projections Z,(Y) and Zg(Y) of lines 7 and 8 on the Y-Z plane

are given by Eq. (3) where {ihe coefficients P, Q, R, S, T are input quantities. The '
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projections X, (¥) and XS (Y) on the X-Y plane are obtained by solving Egs (4) and (5),

respectively.

Ky ()= X - X)) |1
4 9 - (108.)

' v i 2]1/2
R Z, -2,
X8 (\.‘-) ='X1‘+ (X2 - Xl) L1. -\ 7

The fairing curve matchés_ the slopes of the ellipses at both end points 7 and 8. The

slopes are obtained by differentiation of Fgs. (4)‘ and (5)

0
X (Y) =(va _(7‘7‘ Zs) % x,.))
=z, T\ TN 7

X"-] A‘L.}

1

it

(10b)

#

-t Y _(-::-5-
:‘8( )= L-Z%

The cubic equation that satisfies the first conditions of Egs. (10a) and (10b) can be

written

2 -2, \? (2~z7>
X =Xqt X' (Z-2, +c 77, +d -;.;:7; 11

The coefficients ¢ and d are obtained by applying the last conditions of Eqs. (10a) qnd
(10b) '
¢ =3 (Xg = Xo) = (X ¢ 2X3) (7, + Zq) (12)
d =2 (xg - X.,)v Xy X3) ('/38 » 7)
Equatfon (11) with ¢ and d given by Eq. (12) is then the cubic equation for the fairing

curve from points 7 to 8. The quantities X..I.'. XB, X'7 and X’B are given by Fqs. (10a)

and (10b) while X,, X,, X, x_,',vzl', Tigr L L

1' ’ ""
(3) where coefficients Pj', Q Rj' Sj‘ and Tj are input quantities.

j’

'/.7 and /8 are obtained from Eq.

All
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d. Geometric Variables and Ranges of Variation

Six geometric variables were selected to generate a family of forward fuselages
including the F-+ baseline. As illustrated in Figure 4, these variables are the length
¢ of the fuselage nose, the horizontal displacement a and vertical displacement a' of
the maximum horizontal breadth line. the shape factor b, the lower deck height, h,
and the bottom (lat width f, As discussed previously the shape factor b is the distance
from the origin to the 15° tangent line which is tangent to a contour curve of the lower
fuselage cross section. All con figurationé generated by these variables have the same
canopy as the P-4 and must satisfy the over-the-nose and over-the-side view line
limitations,

The correspondence between the geometric variables and the reddced variables
defined in Eq. (2), the ranges of variation of these geometric vziriables, and the base-
line values of these variables are tabulated in Table 2. The vari'éty of configurations
that can be obtained using thesc geometric variables within their ranges of variation
is illustrated in Figures 5 and 6. Figure 5 shows the top and side vicwé of thé con-
figurations. The solid lines show the baseline configuration of the F-4. The dash=dot
lines describe two extreme variations of the fuselage shape. The variation of the fuse-
lage shape ahead of the canopy has to satisfy the over-the-nose view constfaint, and
the width of the fuselage is subject to the over-the«side viéw consiruint.' The radar
installation imposes a minimum requirement for the width and iimits_the afnount by
which the lower profile can be moved upward. Notice that the figure shows only two
extreme cxamples of the variations. The long nose version can be combined with a
wide fusclagc or the short nose version can be combined with a slender fuselage to
yield other intermediate confirurations. Figure 6 derﬁonétiatcs the t}‘fpe of-,cont'igura-"
tion variation that can be achieved through the chosen variab{es. ‘Cross~sectional
views at the three fuselage stations indicated in Figure 5 are shown in Figure 6. The
golid lines describe the hasceline configuration whild the dashed I,i;ws des’crill)c two

extreme variations of the cross sections,  The eirele at l‘s .50, which represents
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FIGURE 4. GEOMETRIC VARIABLES FOR WAVE DRAG REDUCTION
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TABLE 2. VARIABLES, RANGES, AND BASELINE VALUES
Viig:;igs Szi?zgiiz Ranges of x, Baseline Values
“1 i ximin ximax 2 *i
2, £ 84 104 -1.38 | 87.1
2 b -2/3 2/3 0 -:e
2, f 0. 1.5 2/3 1.
z, h 5. -10. - -2/3 0.
zg a' 0.6 1.2 ‘2/3 1.
z, a 0.9 L.15 .oO.A L,
is taken

“*Baseline values for x; vary from station to station.

to be the local baseline value minus 2/3 of the difference between the

baseline value and the local minimum value and x,

max

is taken to be ‘the

local baseline value plus 2/3 of the differcnce between the baseline value

and the local maximum value.

BT
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the minimum area for the radar, limits the amount by which the maximum breadth line
can move in or the lower profile can move up. The over--the-side view line governs
how far the maximum breadth line can move out and up'. Again only two extreme
examples are given. Other configurations can be easily constructed. The important
variable for the cross-sectional variation is the shape factor b which drastically alters
the shape of the lower fuselage between the maximum breadth line and the lower sur-
face flat.

It should be fairly obvious that the choice of geometric variables and their ranges
of variation are somewhat arbitrary. The present selection allows a fairly wide range
of variation of configurations which are similar to the baseline configuration. Other
selections can be made such that the range of variation is more limited or the family
of configurations is less similar to the baseline.

Some guidelines for the selection of geometric variables and their ranges can
be given.

(1) The two linear variables should be selected if their effects on the wave drag
are small or if they affect the wave drag nearly linearly and their interac-
tions with other variables are very small. The interaction between two
variables i3 the influence of either variable on the wave drag contribution
of the other. Nonlinear effects, however, c¢an be included through a new
concept which will be discussed in Section 4c.

(2) The four remaining nonlinear variables should be selected in such a way
that their interactions with each other are small or nearly linear.

- (3) The range of each variable should be as small as necessary, just wide

enough to serve the particular purpose.

(4) In general ihe nonlinear variables and their ranges should be selected in
such a way that their influences on the wave drag are of the same order of

magnitude.
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4. FLOW FIELD CALCULATION AND WAVE DRAG FEQUATION -~

The wave drag coetficients of the baseline configuration and the 25 éonﬁgurations '
picked by the Latin Square technique are calculated by applying the Three-Dimensiori -
Method of Characteristics. The resulting wave drag coetticients are then us i« L0 ob~ -

tain the wave drag equation,

a. l'low Over F--1 Baseline

As an example of the flow fields calculated by using the Three-Dimensional
Method of Characteristics, the flu.w over the F-14 baseline at Mach 2.5 and zero angle
of attack is prc:;entodv here. PFigure 7 shows the top and front views of the configura-~
tion, four c¢ross-sectional views, and the upper and lower centerline pressure distri-

butions. Along the upper ccnterline of the configuration, the pressure rises sharply

as the flow hits the canopy-fuselage juncture. This signifies the cxistence of an

embedded shock wave created by the canopy. At the pressure peak the local Mach
number-drops to 1.17. As the flow spreads over the canopy flat section, the pressure
drops although thé canopy profile is almost straight. A sudden drop of pressure is

experienced as the canopy profile curves back after the flat section. Along the lower

- ‘centerline the Cé first drops to a negative value due to further expansion. It recovers

éoméwhzit and eventually comes close to zero, consistent with the condition of zero

. angle of attack.

Figure 8 shows polar plots of the pressure distributions at four fuselage stations

-with cross sections shown in Figure 7. Since the forward fuselage ahead of the canopy

droops somewhat, the pressure is higher on the upper fusclage than that on the lower

fuselage at zero angle of attack. At F.S. 35.4 the Cp incrrases monotonically from a

slightly negative value at the hottom to a positive value at the top. A noticeable

"pr_c's.s.urc rise can be secn at I, S. 85,3 near the fuselage-canopy juncture. A similar

) xéressure.peak is visible at F.$, 145, at which Cp has become negative except near

Al8
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the bottom flat. In general the flow continues to expand downstream. By F.S. 203 the
pressure everywhet_'e has become slightly less than the free-stream pressure, and the

variation of Cp is small and nearly monotonic.

b. (alculation of Wave Drag Coefficients

As shown in Eq. (1), for a given Mach number and angle of attack, the wave
drag coefficient CDW’is assumed té be a quadric function of the six chosen geometric
6 ij to be determined. The reduced
variables 2. which take the levels of 0, :1, :2 according to the Latin Square arrange-

variables Xyp oo v o X with the coefficients a, and a
ment shown in Table 1, assign corresponding values to the geometric variables X;.

For instance, according to the first cell, z, and z, are assigned level -2, which cor-~

1
responds to the minimum values of the geometric variables Xy and Xe while z 4 is
assigned level 2, which corresponds to the maximum value of x 4 The other three
reduced variables are assigned levels corresponding to intermediate values of the
‘geometric variables. Thus the first cell specifies a set of values for the geometric
variables which in turn defines a configuration whose wave drag coefficient can then

be calculated by the method of characteristics program. In this way, each cell leads
to one equation for the determination of the a, and aij in the wave drag equation.

Since the method of characteristics is based on hyperbolic equations, the com-
plete flow field must be supersonic in order to apply the method. As mentioned above,
the local Mach number dropped te .17 near the fuselage canopy juncture of the F-4
at free-stream Mach 2.5 and zero angle of attack. Local subsonic regions would likely
occu: for some of the 25 variation configurations if the free-stream Mach number
should be lowered. Hence the wave drag coefficients for the F-4 fuselage and the

25 variations, each corresponding to a cell of the Latin Square, were calculated using

the Three-Dimensional Method of Characteristics program at Mach 2.5 and zero angle
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of attack, The calculatea wave drag cocefficients hased on a wing area of 330 sq. ft.)
are tabulated in Table 3. The mean value of the 25 coctficients is siightly higher than

the baseline coefficient.

¢, Wave Drag kquation

In the wave drag cqunlioh, Fg. (1), two of the geometrie variables, i.e., Xy and
X have only lincar terms while other variables have nonlinesr» terms.  In this way
there are only 17 cocetficients A and aij while there are 25 cquations available for their
evaluation. It therefore scems logical to incelude nonlincar terms of Xy and X in the
equation as well. However, a preliminary numerical study seggested that the matrix
of cocfficients of the system of 25 equations has a rank ol 17 and consequently only 17
unknowns a and aij can be determined.

It is more convenient to express the wave drag equation in terms of the reduced
variables 2, Since the reduced variables always take the levels 0, :1, :2, the least
square fitting procedure once developed can be upplic_ad to any other values of the

geometric variables without modification. Also. since all reduced variables are of

the same order of magnitude. the coefficient of each term in the wave drag equation
is a measure of the contribution of that term to the total wave drag. In terms of the

reduced variables the original wave drag eguation takes the form

(13)

5
b..z.2,
)77
i=1 j=1 i=2

When the coefficients bi and bij were cvaluated using the calculated wave drag co-

efficients of the 25 cells and the baseline in a least-square procedure, Eq. (13) was
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TAD

LE 3. WAVE DRAG COEFFICIENTS C

(FOR FORWARD I'USE

DW X 10
LAGE UP T0O ¥s 230)

8.72259 5.97017 5.72492 5.08469 5.95256
7.62580 7.25404 7.10510 5.4393s 5.76062
6.52684 6.67305 6.59154 6.56143 7.61059
8.21773 8.68830 6.43817 6.61510 5.93966l
7.63046 8.22275 8.62522 7.24846 5.87617

Baseline value ¢ = 6.69437 x 1073
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used for some preliminaey invesGestior of minimun wave deng ¢ nfigurations. One of
lh(‘lll‘!'(‘dit‘l(‘lf contizuriations was obtaned when the tuselage tensth was set to that of the
b':is,clin(‘ and no other constrawts were mmpesed. The predicted eross section at FoS,
S0 s v.-;hu\\'n in’ Figure 9 by a dash-dot Hine. Also shown wre the radar dish by a dashed
line and .thv_h:lsiclim- cross section by thie solid Hine While it wias interesting to note
that the r:uln}m.v regquirement Wis fortinton:e v sati=fcl at wis saspected dhat the wrong |
trend was predicted since o reductem in the shape facter b oould reduce the cross-
s.(.'("t'inn‘.i-l areas all the way from the nose to b, 5, 230, Subsequert veritfication runs by
the m,"'!h“d of characteristicos program showed that the wive drag equaaon was under-
pr(-(licﬁng the wave drag and the predicted trend in b was incorrvect. This peor pre-
(Iivtin;y was ottributed te the rather wide ranges of the varialldes.  In order to increase
he prediction acceuracy. the three caleulated wave drag coeflicients by the veritica-
tion runs and their corresponding {evels ot the reduced varionsles cells 27, 2s, ond 29
of T hle 4y were used to provide three more cquations for the determination of the
coetficients bi and bii' which ave tabulated i 'i',ll)l(‘ 5. From Table 5 it is seen that in
gencral b“ is one nrd('-r Gf magnitute greater than bi which is one order of magmitude
greater than l')“. Fa. (15 with the improved boand b owas agin ased to predict the
minimum wave drag confizaration when the fusceliee lensth was set to that of the base-
line :n-ul the radome constramt was imposed.  The resulting eross section of the mini-
mum wave drag conficuration at F, %, 50 % s shown an icure 9 by a heavy solid line,
Both the predicted trend and wave deag coctficient were veribaed by the method of

characteristics program, as presented in the reat secetion,

A new coneept has theretore heen introdieeed to the optimization procedure using
Latin Square sampling, This concept enables the prediction equation to "leam” (rom
experience in order toamprove its predicaaon, Afler each or several verifieation

clCuiations or the predicted contiportions. the resulting equations corresponding to

At
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FIGURE 9. FUSELAGE CROSS SECTIONS AT F.8, 50
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TABLE 4. ADDITIONAL WAVE DRAG COEFFICIENTS AXND
CORRESPONDING SETS OF REDUCED VARLIABLES

- |
(\;H Z 2 Zy z, %5 %y “ow X 107
26 «1.3% U 2/3 | -2/3 2/3 {-0.+ 6,037
27 -1, e 2 «2/3 2 -2 6, 57200 T
2= “1.3s 2 2 -2 2 -2 6,09569
4
24 -1.3- 0 2 -2 2 -2 5.95529
30 -1,3- -1,71 ] =2 -2 Qezwi=2 Je263a3
J1 «1.3> 2 2 -) 1,911 0.5325 | b, 21449
32 «0,3n 2 2 -2 1.5 O.%1n» b, lln3a

“Cell 26 corresponds to the hascline,
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TABLE 5. COEFFICIENTS OF WAVE DRAG EQUATION
b, = 6.677233 X 1073
&
VALUE OF b, X 10
i 1 2 3 4 5 6
b, X 10“ | -3.960518 | 2.010588 | 0.035260 | 4.557457 | -0.191512 | 2.672165
VALUE OF bij X 10°
2 3 b 5
2.450636 -6.113357 7.665063 -0.727027
J.134838 «1.613047 «2,350471
5.565432 1.405971
@,225010
A27
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|
the verification runs aré included in the least-square ‘proccdure to obtain improved .
coeflicients bi and bij of the prediction equation. In general one or two applications
of this process should viceld satistactory results. The improved prediction for one set
of constraints may or may not lead to improvement {or other sets of const.raints. How-
ever, the same proecess can be applied wherever needed.
An additional advantage of this new concept is that nonlinear terms involving z
and Z, can also be taken into account. With L.‘DL‘.h addition of an equation due to a verifi- -
cation, the rank of the matrix of coefficients usually increases by one. That means one

. can be included. This process can be

more bij ol a nonlinear term involving 2y or z,

repeated, if necessary, until all quadric terms are accounted for.
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5. GEOMETRIC CONSTRAISTS AND WAVE DRAG ItEI)UC'I‘IbN

" The wave drag equation can now be investigated to rédu_ceﬂ the wave drag. In the
p@t»ss of determining the minimum wave drag configuratio&,’ :cex,'tain geometric
constrziints. such as minimum cross-sectional area oi maxizmim fuselage length,
must be satisfied. TFor each set of geometric constraihts tinere exists a minimum wave
drag configuration. In this section the optimization procedure and some minimum

wave drag configurations are presented and discussed.

a. Optimization Procedure and Geometric Constraints

The simplest and surest way to find the minimum wave drag configuration
subject to a given set of geometric constraints is to use _Eq. {13) to calculate the wave
drag coefficients for all allowable sets of levels of ta‘\'e{varinbies and pick the set that
gives the least wave drag. The optimization pmceduté consists of the following
steps.* |

(1) Make a numerical search through the rangeé of all six variables, using the

wave drag equation to calculate the wave drag cocfficients for those sets of
levels that satisfy the constraints. |

(2) Identify the set of levels of the vnriahleé Vthat vields the least wave drag.

(3) VPrepare body description input data for the minimum .. ave drag configuration.

(4) Use the Three-Dimensional Method of Cﬁaraclerislics program to verify the

wave drag coefficient predicted by Eq. (13).

The coefficients bi and bij of Eq. (13) were obtained by applying a least square
procedure to fit the hypersurface represented by Eq. (13) over the 25 wave drag co-
efficients given in Table 3 and the first four coefficients of “f‘able 4. The standard

" deviation of the fit was about 1.02 x 10"4 which corresponds to an error of about 1. 57

“‘The Numerical Search Procedure is presented in Appendix D,
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based on the mean wave drag coefficient. The maximum error of the fit over the 29 data
points was about 2. 4%, Hence step 3 of the optimization procedure is necessary for
wave drag reduction of 4=5'7 or less as predicted by Eqg. (13).

FFour types of geometric constraints are considered in order to satisfy most

design needs. These are:

(1) One or mbre of the six geometric variables take assigned values within the
ranges of variation. For instance, the length can be kept the same as that of
the baseline or the width can take 907 of the baseline wildth,

(2) At one or more fuselage stations the configuration cross sections contain
geometric curves prescribed by tabulated data of widths versus elevations.
This type of constraint is useful for the placement of particular equip-
ment, for instance, the radome.

(3) At one or more fuselage stations the configuration cross sections satisfy
minimum area requirements. The minimum area can be either a given area
or a certain percentage of the baseline cross-sectional area.

(4) ’fhe configuration satisfies a minimum volume requirement between two
given stations. A given volume or a certain percentage of the baseline

volume can be imposed.

b, Minimum Wave Drag Configurations

Several minimum wave drag configuraticns subject to various geometric con-
straints are presented to illustrate the application of this program. These configura~-
tions were obtained by using the optimization procedure, and the predicted wave drag
coefficients were verificd by the Three-Dimensional Method of Characteristics (3DMoC)

program in some cases.
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Within the ranges of variation of the six variables (when the only constraint was
implicitly imposed by the ranges under consideration), a 34.87 reduction of thé wave
drag coefficient was predicted by kq. (13). The configuration corresponds to the
longest nose, as might be expected. When the length was set to be equal to th:i; of
the baselire, a.15% reduction was predicted by the equation. The percentage reduc-
tion of the wave drag in relation to the increase of fuselagé length is plotted in
Figure 10. It is seen that for every inch the fuselage is lengthened the wave drag
equation predicts a wave drag reduction slightly over 17. Since no constraint o'the‘r.“
than the nose length was imposed, these minimum wavé drag configurations have‘th‘ev

least cross-sectional areas attainable within the ranges of variation of the remain_ing

~ five geometric variables. Consequently these configurations cannot contain the radar

dish which is represented by a dashed circle at F.S. 50 in Figures 6 and 9. When

. the fuselage length was set to that of the baseline and the radome constraint was
- imposed, the wave drag equation predicted a 14'/ reduction of the wave drag coefficient.

. The vcros’s section of this minimum wave drag configuration at F.3. 50 is shown bv the

heavy solid line in Figure 9. It is seen that the lower fuselage cross section barely"

contains the radar dish. This predicted trend that the wave drag decreases with the

‘shape factor b in the neighborhood of this minimum wave drag configuration was .

verified by chlculations using the Three-Dimensional Method of Characteristics

program. Calculation of the wave drag of this configuration also resulted in a wave :
drag reduction of 12.67, which agrees fairly well with the 14% reduction predicted

by the wave drag equation, considering that the standard deviation of the least équam
fit is 1.5%. ‘The front view of this minimum wave drag configuration is preéented in
Figure 11, whiéh shows the contours of the crosa sections from I, 8. 20 to I, S, 230‘

at intervals of 10. The {ront view ot the baseline is presented in Figure 12 for com-

-parison. It is seen that this substantial reduction of the wave drag was accomplished - R

at the expense of reduced fuselage volume.
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FIGURE 10. REDUCTION OF WAVE DRAG VS INCREASE OF FUSELAGE LENGTH
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Two important general constraints that strongly affect the wéve drag are the
fuselage nose length and the fuselage volume. Therefore, the optimization procedure
was used to determine a number of minimum wave drag configurations for various‘
nose lengths and fuselage volumes. Since the horizontal displacement of the maximum
breadth line has an important effect on the fuselage volume, nonlinear terms of the
displacement a and the nose length / should be included in the wéve drag equation for
accurate preaiction of the influence of these two geometric variableé on the wave drag,
Equaﬁon (13) was first used to obtain two preliminary minimum wave drag configura-
tions which are tabulated in Tabie 4 as cells 31 and 32. The 30th cell in Table 4 cor-
responds to the minimum wave drag configuration subject to the radome constraint,
which was discussed in the‘ preceding paragraph. These 32 cells provided 32 equa~
tions which allowed 23 terms (or 23 coefficients bi’ bij) to be included in an improved
wave drag equation. All important nonlinear terms involving a and 7 were included.

The final improved wave drag equation, with six additional terms, is expanded

~ into the form:

+’1Z

CDW = bo + biZ1 + b222 + bSZ3 424 * bSZS + b6Z6

2 2

2, 2 2
+b, 2.7 +b,,2," +b,,2 .134424 +b

Zz+b Z

55%5 * °66% (14)

1171 2272 3373

+b Z, +b, .2 +b, . 22 +L .22 +b,,.2.2

Z =
217271 327372 0 7417471 7427472 0 7437473

+b5pZ5Zy +Dgg252g + b5 2eZ, +bgo2e2, +bg 27,

The coefficients of Eq. (14) are tabulated in Table 6. The optimization procedure using
thé improved wave drag equation was then applied to determine the dependence of the
wave drag on the nose length and fuselage volume. The predicted percentage reduc~
tion of the wave drag coefficient is plotted against the increase of the fuselage nose
length in Figﬁre 13 for various fuselage volumes (cxpressed as & of the baseline

volume). The two circles mark the calculated percentage reductions of the wave drag
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using the Three-Dimensional Method of Characteris:ics for the two selected configura-
tioné.- Excclle.ht' agreém‘cnt between the predicted end calculated wave drag reduction
is. éce_n. When‘ the nose length and fus:lage volume were set to the baseline values,
vex;y little wa‘v‘e:drag reduction was-obtained within the variations of the six geometric
vanab_les 1§ selected. This set of geometric variables and their ranges were chosen
to illustrate fhe wave drag reduction prccedure in such generality that a wide range of
configurationé éi‘milar to the baseline was covered and various illustrations could be

made: No Specit‘ic effort was made to tailor the variables to the wave drag reduction
of the baéeline configuration. The baseline wave drag could conceivably be further
reducéd by some appropriately selected variables. Referring to Figure 13 again, some
rule—of;thumb percentage reductions of the wave drag can be observed. On the average
one inch increase in the fuselage length reduces the wave drag by slightly over one per-
cent wﬁtle one percent decrease in the fuselage volume reduces the wave drag by about
3/4 percent.

;fhe characteristics of the improved wave drag equation are shown in Figures 14
through 18. Each of the figures shows the variations of the wave drag coefﬁcieni with
respect to two of the six geometric variables, where the remaining four are set equal
to the values of the baseline. Although it is difficult to plot the presert wave drag
function in a six-dimensional space, these figures at least enable one to isolate and
study the interacting characteristics hetween 2ny two of the six variables. The effects
of volume aré also shown by plotfing symbols on the curves to indicate various fuselage
yolume limits. Since the geometric variable b is different for different fuseiage sta-
tions, the parameter b uscd in these figures is actually the reduced variabte which is
constant for each given con_figuration. |

Figures 14a through 14e show the variations of the drag coefficient with respect

to the height of the lower deck h for families of ¢, b, ', a and f, respectively. Within

the ranges of va_riab'les stuc'ied, CDW decrcases monotonically with h. Figure 14a
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indic ates that tor a given volume, decreases with the length of the tusclage nose

Cpw
(. Along values of constant volume, Figares L4b, [d4e and 14d show that when each of
the 1.'csp‘ective variables (b, a' and a) interacts with h, there is a definite combina-

tion of variables which vields a configuration of minimum wave drag. For a volume
equal to the basehne value (Vol/'Vulm‘ 1), for example. Figurce 14b shows that a
minimum occurs near b - h 0 which are equal to the baseline values, The nccurrence
of the minimum near the baseline configuration verifies the results obtained from the
numerical search where little reduction of wave drag from the baseline was obtained
within the variations of the selected geometric variables. Lines of constant a' and a

in Figures 14c and 14d respectively are nearly parallel, indicating that the interaction
between a' and h and the interaction between a and h are weak, This fact is also ‘
revealed by examining the magnitude of the coefficients of the wave drag equation tah-

ulated in Table 6. The magnitude of these interaction terms, although included in the

formulation of the wave drag equation, is one order of magnitude smaller than the

average of the remaining interaction terms. Figures 152 and 13h show ihe varia-
tions with respect to the length of the nose { for families of a' and {. respectively.
Again, the trend shows that CDW decreases with £, but minima for given constant
volumes are not definitely shown. Figure 15b shows that the width of the fuselage
bottom flat section has little effect on the drag cocfficient when the remaining four
variables are set equal to the values of the baseline. Figures 16a through 16d show
the variations with respect to the horizontal displacement of the inaximum breadth line
a for families of £, h, a' and f, respectively. Here, the figures show that the drag
coefficient increases menotonically with a. Similar to the results shown in Figures
11a through lde, for constant volume the drag coefficient decreascs with £, and when
the volume is equal to that of the baseline, minima occur at or near the baseline., In
Figure 16b, for example, the minimum occurs at a = 1,01 and b = 1/6 approximately

for Vol/Vol 1. The curves in Figures 16a, t6c, and 16d are parallel since inter~ -

BL

action terms between each of the variables with a are not included in the present wave
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drag cquation.  Similar to the results shown in Figure 15h, varies little with f,

hw |
Figures 17a and 17h show the variations with respect to the vertical displacement of
the maximum breadth line for families of b and {, respectivelr. Here, a minimum
configuration for a given volume constraint cannot be determined graphically but a
minimum can be located for cach constant b or . Figure 17a shows that the drag
cocfficient increases with b, except when a' is below the value of the baseline (a' = 1)
and when b is less than about <1/3. Figure 17h shows that the drag coefficient in-~
creases with f when a' is below the baseline value (a' = 1) and the trend reverses when
a' is above the baseline value, Figures 15a and 18b show the variation with respect to |
the shape factor b for families of £ and {, respectively. Again, Figure 18a shows that
the drag coefficient decreases with {. Similar to the characteristics of CDW vs, a'
shown in Figure 17b, the trend of the wave drag coefficient reverses from increasing
with { when b is below the baseline value (b = 0) to decreasing with f above the bhaseline
valuce. Along the constant baseline volume line, Figure 18b shows a slight reduction

of the drag coefficient from the baseline when f = 1,5 and b = -, 25,

v Best pyailable copy
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6, CONCLUDING REMARKS

The following remarks and conclusions can be made for Phase I of the wave

drag reduction program, ‘

—— e s e e e e

A

Ce

The optimizaii‘on proccdufé using the Latin Square sampling technique and
the Three-Dimensional Mu.hod of Characteristics is useful and practical.
The procedurc. can be 'used for other optimization purposes besides wave
drag reduction, |

The geometric variables- md their ranges of variation should be selected
carefully sinm;‘the'.i:;uality of the procedure and results are affected by the
selection. Some gpi:delincs on selecting the variables and ranges are given
in this appendix, but experience is valuable.

A new concept has been introduced to enable the optimization procedure to
improve during the course of determining the optimum conﬁguratibn. 'i‘h’is
concept is particularly usefnl when the variables and their ranges were not
well chosen eitherrbecause of inexperience or for the sake of compromise.
Within the range's of variation of the six chosen geometric variables, the
following rule~of~thumb percentage reductions of the wave drag are ob-
tained for the F-4 fuselage. For every inch the nose ié lengthened, the

wave drag is reduced by sligh}ly over one percent. Ior each percent the

fuselage volume is decreased, the wave drag is reduced by about 3/4 percent.
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APPENDIX B

THE LATIN SQUARE METHOD

The Latin Square is a sampling method for designing an experiment. 1-3
An.N@ order Latin Square is an arrangement of the N values of N + 1, or fewer,
variables (where N is a prime number) in such a way that the resulting surface
fitting process is efficiently performed. The method may be used for determining
an bapproximate equation for a function of o number of variables and hence for solv-
ing extremum problems when the dependent variable is not known as an explicit
function of the independent variables.
The dependent variable, in this case wave drag coe.fficient CDW' is assumed to
" be a quadric function of the independent variables x; (which are related to thc geometry
of the forward fuselagé in this application),

6 5 5

%Dw = a, ¢+ Z agx; + Z Z 345 Xi%; M

4 i=1 j=1 i=2
Equatij«m {1) is written for a 5 x 5 Latin Square with six independent variables, i.e.
Nns. | |

'EFor a gi'ven set of independent variables, Xp a new set of reduced variables,

- say zi', may be determined such that the variables z take the values 0, +1, 2,

¢« o0 % %i , according to the transformation equation

| .
- X + X, zZ /X - X,

L - imax - min . i( imax lmm)
{

3 V-1 ' @)

|
{l‘he 5 x 5 Latin Square arrangement in terms of the levels of the reduced

_ variables is shown in Table 1. The arrangement may appear to be at once regular
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and random, It appears to be regular since all variables take orderly permutated
values, It appears to be random sinc.c there seems to be no bias in representing
all segments of the population. Regularity and randomness - therein lies the ef-
ficiency of the Latin Square sampling technique. It has been shown by Yates3

that randomized blocks are more efficient than complete randomization and Latin
Squares are more efficient than randomized blocks. He also found that on one set
of experiments about 2 1/2 times as many plots were needed with the randomized
blocks of 5 blocks as with the 5 x 5 Latin Squares to obtain the same accuracy (see
Reference 1, pp. 202-203). Careful examination of Table 1 revealed that in all
the cells having a given level of any reduced variable any one of the remaining
variables takes on all possible levels once and only once. For example, if we
select z; = -2 to be the given level of the one reduced variable, then colum_n
one contains all cells having z2, = -2, It is seen that in column one each of the five
levels of any one of the remaining variables,msay 22’ appears once and only once,
Consequently, the number of all cells having a given level of any reduced variable
is five since there are five levels for each of the other variables to take thrbugh a
permutation process, Sever:il consequences can be observed, Firstly, if we com=-
pare any two cells we find that only one of the variables has the same level in both
cells, whereas all other variables have different levels. Secondly, for each re-

duced variable there are five groups of five cells which satisfy the condition that in

each group this reduced variable takes one of the five levels, Thirdly, by a suitable

reacrangement of the cells any pair of the reduced variables cuan take the column and

row indices as their levels just as z, und 2 do as shown in Table 1, To do this,

1
arrange euch group with the same level of one variable as 1 column and arrange the
columns in an ascending order with respect to the levels of this variable., Within

each column (or group) arrange the cells in an ascending order with respect to the

B2
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TABLE 1. A 5 x5 LATIN SQUARE ARRANGEMENT
| 3 %
| CELL CODE 22 zs
2y %,
2 - a1 -2 0 -2 1 -2 2 -2
. 1 0 2 1) -2 2] -1 - 0 -1
-1 0 2 1 -1 2 ol -2 1
-2 -1} -1 et ] 0 -1 1 -1 | 2 -t
2 -1 ] -2 of -1 1 0o 2 1 -2
1t 0 2 1| -2 2| -1 -2 0 o1
-2 o) <1 o 0 0 10 20
-2 -2 ] -1 a1 0 o 11 2 2
2 -2 ] -1 -1 0 0 11 2 2
-2 1) -1 1 0o 1 11 2 1
. -1 2 0 -2 1 -1 2 o -2 1
o 0 1 12 2 <2 -2 -t -1 0
-2 2] -1 2 0 2 12 1 2
. 0o 1 1 2 -2 <2 1| 1 0
s b2 o] a1 0o 2 1 -2
B
§
4
%
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tevels of the other variuble of the puir. These properties show heuristicully the. -

efficiency of the Latin Square saumpling technique which has been used for develop-

PR S T

ing various opgimal designs. -3

It may seem intfié:;te to consteuct a Latin Square of this type, cspe.cinlly Whep
the size exceeds 5 x 5. The following steps, however, ruan he followed io_ c_éust_r‘ﬁé; .
this type of L.atin Square of Lmy size as long us the number of rows (or col,u‘mns) is a
prime number, The stcps are best explained using Tuble 1 as an exumpk.z-. |

(2) The variables z, and 2, arc ussigned levels equal to the column and row
>

1
indliccsilsshown in Table 1.

)] I-‘or-cac}; of the diagonal cells where 2y 7 Teo the level of z; is inc_riea_.sed
succés_sivel_v fromi 1toi 6 by alevel equalto thut of 2 in a cyclic
order, in which the lowest level (i.c., =2) is considered one level higher
than the highest level (i>.e., . “

(¢) The remaiiing levels of z, to zs i each row are obtained by permatation

in an increuasiag cvelic order using the diagonal cell,
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APPENDIX C

BODY DESCRIPTION METHOD

In this Appendix, the general body description method is described in some
detail and is illustrated by the body description of phase I. The technique of fitting

a conic~section curve is also given,

The fuselage is described by a number of generating lines, such as the upper
profile, the lower profile, the maximum half-breadth line and generating lines for
the canopy. In the present body description procedure, each generating line is
divided into as many segments as necessary to allow each segment to be described
by a conic-section curve. At each cross section of the fuselage simple analytic
curves, e.g., the ellipse or cubic, connect any two adjacent generating lines to
form the contour of the cross section. The fuselage is thus described analytically
by simple low order curves,

The body description procedure detailed here was developed for use in con-
junction with the three-dimensional method of characteristics for calculating flow
fields over smooth bodies. For a smooth body a unique normal to the surface must
exist every where, and this condition of a unique normal usually requires that the
curves and their slopes be continuous at the juncture between two contour curves
or two segments of a generating line.

1. DEFINITION OF GENERATING LINES

The fuselage is located in a right-handed coordinate system where the Y-axis
is aligned with the fuselage axis, the X-axis is spanwise and the Z-a:_ds isup, A
schematie of a fuselage-canopy configuration is shown in Figure 1 and a typical cross
section in Figure 2.

In general, five generating lines, each being described by two functions of Y
(representing their vertical and horizontal projections Zj and xj, respectively, by a
general curve fit of confc sections) plus an additional three lines, each being
described by a single function of Y, serve to define the fuselage~canopy configuration
in phase I, '
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FIGURE 1, JCHEMATIC OF FUSELAGE-CANOPY CONFIGURATION
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FIGURE 2. TYPICAL FUSELAGE CROSS SECTION
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| : ’ These are identified in Figures 1 and 2 as eSt Ava”able CO{?’,J

Upper protile line
Maximum half-breadth liae
Lower profile line

Canopy crown line

Canopy definition line
Shape factor b, locating the 145° tangent line

Upper fairing line

SISIGICNORSIONG)

Lower fairing line

where lines ©, @, ®. @ arc required only, of course, in the region of the canopy.
The conic-section curves describing the lines take the form

(

L Details of the determination of the coefficients PP, Q, R, S, T of the general conic

)= PY+Qt(RY +sY+T]I" . (1)

aoxXm

curves will be discussed in Section 4. Each conic-section segment must be con-
) tinuous with the previous segment and, with very few exceptions, the slope must be |

-

L continuous at the junctures to satisfy the requirement of a unique normal to the sur-
i face discussed above. Unlike others, line @ is not a true generating line. It is

| ' actually a shape factor for the lower part of the fuselage, which éxj)n-esses the dis-
tance to a tangent line as a function of Y. A {ull discussion of the details|is pre-
sented in Section 2(c). o

: |
F ‘ Lincs ® and @ which fix, at cach cross scction, the extent of the fairing cubic
. ) i
. between ¢anopy nud upper fuselage are defined by their projections in the YZ-plane,
i.e. Zg, () and Zg(YV), only. Their projections X¢ (V) and Xg (V) ave cojnstrained

D e

{ to lie on the cllipses defining the canopy and upper half of the fusclage, 1?es‘>ccti\iciy.
i \ as detaiict in Section 2(d). |
4 2. CONTOUR CURVES FORMING CROSS SECTIONS

As shown in Figure 2, for the most general case of a fuselage-canopy cqtiifigumtion

B A
r

with a windshield flat, the contour of the cross section begins with a straight line
representing the flat from the centerline to (). The canopy contmn‘_fro_r%\ ©to
is circular, but ¢can be elliptie in general. The upper fusetage is rcprcéie_ntcd by an

v
-~

clliptic curve between @) and (). The lower fusclage is represented byta' general

gt 2 §

-’."'
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conic-section curve from @ to @ the bottom flat by a straight line from Q) to the
centerline. The intersection between the canopy and the fuselage is faired by a cubic

from @ to ®.

a. Canopv
The eross-sectional shape of the canbpy is assumed to be circular. If there is no
windshield flat, @ will lie on the centerline (Figure 3a) and the cquation for the

canopy curve is given by

(BrBe) o (£)'-1 a0 (2)

If 2 windshield flat does exist, @ moves off the centerline as shown in Figure 3b and

_Equation (2), describing the canopy between and @ leads to a slope discontinuity

at ©, the juncture between the circular arc and the windshield flat. Thus, a quarter-
ellipse is used to approximate the circular arc between and @ to give a slope of
dZ/dX = 0 at @, providing slope continuity with the flat portion of the contour. The
equation for this approximating ellipse is

(Bl o G- 1 -0 @

The details of determining the point @, given the locations of the canopy crown and
sill lines, 2re presented in Section 3.

b. Upper Fuselage
The equation for the upper fuselayge is

ety -t -0 ®

indicating that, for the body description in its present form, X is constrained to be
zero for all Y,

Again it may be noted that @, in the region of the canopy, is fictitious and cannot be
obtained directly from three-view drawings. Details of determining (©), given the
location of the maximum half-breadth line @ and the location of the canopy sill line,
may be found in Section 3, |
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¢. Lower Fuselage

Referring to Figure 2, the contour curve from @) to () has a zero slope at @ and -
the slope approaches infinity at @ As in aircraft lofting practice, the shape of _this“_' ‘
contour curve is determined by specifying the distance from the origin to one of its
tangent lines that makes a 45° angle with the X-axis. Hence, this distance, which ié
designated by b in the following derivation of the equation for the contour curve, may
be regarded as a shape factor for this curve.

The equation for the 45° tangent line is

Z = X-12b
which, when the origin is translated to @), becomes
2= X'+ H (5)
where Z' = Z-Zpy, X'= X~Xmand H = Xm-2Zm=-J2b. In the new coordinate system, the
the general quadric equation, satisfying the conditions X'( Zi )= Xz, Z'(0) =0
(3X7/9Z )y =0 and (aZ'/DX’)l =0, reduces to
K(xp2' = Z)x)' + x(2-Z)) = 0 - (6)

which represents a family of curves with K as a parameter. To determine K, Eq, (3)
is substituted into Eq. (6) to yield a quadratic equation of the form

AX" +Bx’ +C = 0 | M

The condition for Equation (6) to be a tangent line i{s that Equation (7) have a double
root; i.e. B'-4AC =0, which leads to

(H -~ Z[)
dHx)2;(H+%)- z,)

K ~(8)

Equation (6) with K given by Eq. (8), then represents the contour curve from @ to @ ’
The range of variation of this curve obtainable by applying this equation is illustrated.
in Figure 4, where a family of conic section curves is given for different Valués of b;
By increasing the distance b, the curve is seen to vary from almost a st‘might-‘lit-me s
to a sharply bending curve approaching the two sides of a right triangle. '
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d. Fairing Curve

The intersection between the canopy and upper fuselage is faired by a cubic from @

to @ The projections Z¢,(Y) and Z¢, (Y) of lines @ and @ on the YZ-plane are given
by conic-section curves (such as Equation (1), where P,Q, R, §, T are input quantities).
The projections X¢(Y) and Xg,(Y) on the XY-plane are obtained by solving Eys. @) and
(4), respectively. '

Xq(Y) = X o (Xg=X)[1- (1« z‘,] | )
| o (9)
X CY) = X [ 1 = (%‘E—%—E)'Jv' ' b

The fairing curve matches the slopes of the ellipses at both end ‘points frand f2. The
slopes are defined by differentiation of Egs. 3) and (4)

P_’i‘n(ﬂ - -(_Z-.u:_é.r.)(_s_._gx =Xs)? ,
-] xu - Xc z; - Z¢ )
’ (10)
oX - - (EZp-Z Xew \? o '
- ()T
The cubic equation that satisfies the conditions of Egs. (9) and (10) at point fi. can be

written

Zq)' +d (Z224)" '.m‘?'

X-x,,o (Zlﬂ)-bC( ey
= e

LI 18

The coefficients ¢ and d are obtained by applying the conditiops of Eqs. (9) and (10)
at point f2 ’ -

€ = 3(Xp-Xn) - (20 + 2 Za)(@ - 2a) )
(12)

d = «2(Xp=Xy)+ (%xiﬂ* gfz-'-‘)(Zn"zﬂ)_
Equation (11) with ¢ and d given by Eq. (12) is then the cubic equation for the fairing
curve from @ to @ The quantities Xy, Xy, 9X(,/27, aXf,/ dZ are given by Eqs. (9)

and (10), while Xy, X¢, Xg. Zys Zme Zg, Z¢ and Zg are obtained from the genera-
ting lines input in the form of Equation (1).
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3. DETERMINING GENERATING LINES AS FUNCTIONS OF Y

The generating lines defined in Section 1 are determined primarily by utilizing top
and side view drawings as well as available cross~-sectional views. The top and
side views arc used to obtain the variation of generating lines @ and (@ in the
+Z-plane and of line @) in the XY-plane. The variation of line @ in the YZ-plane
and of line @ in the XY~planc are obtained primarily by utilizing cross-sectional

views, as is the description of the shape parameter (B) as a function of Y.

From Figure 2 it can bhe seen that line @. in the region of the canopy, and line
are, in effect fictitious lines whose description three-view drawings will not yield di-
rectly, The two iines are determined by assuming that the cross section of the canopy
is a circular arc and by constx'aining the interscction of this circular arc and the ellipse
defining the upper portion of the fuseclage to lie on the canopy sill line, which in turn is

~ well defined from available three-view drawings.

In Figure 3, let Xy, Z; be the location of the canopy sill line for the cross section
shown, Utilizing the general equation for an ellipse with center at Xo, Zo and semi-
major and minor diameters a and b, respectively,

one may determine Z, by finding b in the above equation for the ellipse through the
point Xy, Zj with known center Xo =0, Zg = Zmand a = Xpm, yielding

Zu® Zm® X (Z-Em (13)

™ X

To determine Z¢ and Xg, defining one énd point of the quarter circle passing through
Ze, Xe and Z4, Xjwhose center lies on Xq = 0, it is necessary to obtain Ze and r
for the circle satisfying the following conditions

» (2i~2,) = r? (14a)
é X e (L2 = (140)

[ Soiving for Z, yields

Zo - 20 - XQOZ:-Zf ‘x: (15)
2{Z-2) .
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and using Equation (14b) to solve for r, gives

A ]

Xg = T = [ X2 #(2Z -2.)* (16)

]'ll
When a windshield or canopy flat exists (i.e. X¢ #0, as shown in Figure 3b) a slope
discontinuity results at X¢, Z¢. Thus, for X #0, the circular arc is replaced by

a quarter-ellipse, passing through X;, Zj and one end point being X¢, Z¢ with dX/dZ =0
to yrovide slope continuity.

This ellipse is intended to be an approximation to the eircular arc determined previous-
ously. It is obtained by decreasing the canopy flat (i.e. X¢) by an arbitrary percen-
tage and solving for a new Zg and Xy by an iterative procedure, utilizing Zy and Xo

of Egs. (15) and (16) as a first approximation, while constraining the product of the

two semi-axes of the ellipse to be equal to r? of the initial circular arc.

Given a tabulation of Xc, Zc’ Xm. Zm’ and Xi’ Zi’ values of Zu, 2, and Xy canbe
determined for a number of fuselage stations; their fit by a sequence'of conic-section
‘ curves as a function of Y can then be accomplished in a straightforward manner by
the techniques described in the following section,

- v,

4, EVALUATION OF THE COEFFICIENTS FOR A CONIC SECTION

The general equation of the second degree, which represents a conic section, is

ag’+bxyscxlsdysex+f = 0 (17)

utilizing the coordinate system of Figure 5. The general equation appears to have gix
constants, but in reality has only five arbitrary constants, since Equatioh (17) can bhe
divided by any of the constants, leaving an equation with five undetermired coefficients.
Therefore five independent conditions are sufficient to determine a conic,
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In the following sections, two ways in which these five independent conditions arc
supplied will be treated. Section 4(a) deals with the cbnic determined by five points,
no three of which are collincar. Secction 4(h) treats the conic determined by one point
and two point slopes. By a point slope it is meant that a point is given and the slope‘
of the curve at the point is also given. |
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a, Conic Determined by Five Points

¢ K' L

Consider the problem of finding the eguation of a conic tﬁrough five given points, no
" three of which are collinear, Let the points he 1, 2, 3, 4, 5 as shown in Figure 5a.
Then,
y-mx ~h; = 0
y-myx -hy= 0 I
Yy-myx ~hy= 0 s
y-myx ~hy= 0

(18)

represent the equations of the lines connecting points 1-4, 1-2, 2-3, 3-4, respectively.
Then the equation .

K(y-mx=h )Yy -mx-h)+({y-mx-h,y-mx-h) = 0 -(19)

represents the family of conics through the points 1, 2, 3, 4. In this equation, Kisa
parameter whose value can be determined from the fifth condition, which is that the
conic pass through point 5. (If point 1 is substituted into Equation (19), the result is
identically equal to zero since point 1 was used to evaluate the coefficients m,, h, and
m,, h,. The same argument holds for points 2, 3, 4.)

-,

K o o (4s=mMaXs ~h;Nys -mMyXxs = hy) (20)
(Yys ~-MmyXs ~h Xys -mzxs - hy) |

After expanding Equation (19) and collecting like powers, comparison with Equation (17)
shows that ‘

- K1

~[Kim emy) +my, +m, ]
Kmymy + mym,

~[K(hit hs) « hy +he )

w K(myhs+ mshy) + myhy + myhy
w Khyhs + hihy

-
[ ]

(21).

- QO DODOgH
(]

Rewriti ng Equation (17) in the form

A .. *‘5: R —-\? 0".1'_' ‘

ay?+ (bx+dly +ex? +ex +f = 0

and solving, using the quadratic formula, yields

Yy = z(oxrd) s [(bxed)-dacex +exsi)]"™
2a

B i« e,
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(a) Five Points

(b) Point and Two Point Slopes

FIGURE 5. DETERMINING CONDITIONS FOR CONIC

C13

e = . ~ e
o e, - RN Lo e oeae e Nl . se anww¥’ e




| g

- =
. e

*

T RN, KT

A

7]

- -bx_d [baxz*zbdx*dz - (4acx® + 4aex + 4af)
2a 2a ~ 432 43%
- EX_.d_+[ Zbd +dz - cx‘+¢x+f}"2
23 23 a
Y = -ﬁx - [ 42, -_)x a)x . (___)]uz (22)

which can be recognized as Equation (1), with

P =« -b/2a

Q = ~-d/2a

R = P*-cia (23)
S = -Pd/a - c/a

T = Q*- f/a

and the sign of the radical to be determined hy evaluation.

b, Conic Determined by a Point and Two Point Slopes

Now consider the problem of finding the coefﬁcientsf of a conic determined by one point
and two point slopes. This establishes a curve that is tangent to a given line at a given
point, is tangent to another line at a given point and passes through a third given point.
This particular manner of detcrmining 2 conic is especially suitable since it allows

for specification of slope continuityat the two end points of the conic-section segment,
wnile the great latitude afforded by the third point (control point) in fixing the shape

of the curve is utilized to good advantage in obtaining a good approximation to the data
to he fitted.

Compare Figures 3a and 5b. The points 1 and 2 of Figure 5a coincide in Figure 5b,
and the points 3 and 4 of Figure 5a coincide in Figure 5b. The line which joihs points
2, 2 and the line which joins points 4, 1 in Figure 5a thercfore coincide in Figure 5b.
The lines 1-2, and 3-4 of Figure 5a become tangents to the conic in Figure 5b. Thus,
it can he seen that the special conditions applying to Equation (21) are m, = my and

h, h,, and the constants for the conic may be written as

a a« K+ f

b = -[2Kmy+m, +m, ]

c = Kmie+s mm, (24)
d = ~[2Khy+hy +hy ] '

a = 2Kmh, + mh, + msh,

f = Kh: #h;ht
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whe e the value of K is now given by

K w - (Ys=myxs —h.)ys- muxs - h,) (25) .

(Ys-mxs-h,)*

The coefficients P, Q, R, S, T for the conic in form of Equation (1) may now be
conmputed by using Eq. (25) and Eq. (24) in Eq. (23).

c. Special Forms

Two special forms of Equation (1) are worth noting due to their frequent utilization

in this body description procedure.

~ A straight line has the coefficients

P = slope
Q = constant
R =8 =T « 9

A circle of radius r,, with its center at x,, y,, has as its coefficients

P = 0
Q = Yo
R = -f

S = 2%
T

2
- Yo "x‘o

2 e




APPENDIX D

NUMERICAL SEARCH FOR MINIMUM PROCEDURE

The numerical search procedure to determine the minimum wave drag configura-
tion involves the computation of wave drag coefficients of a large number of discrete
points blanketing the entire region in the six-dimensional spiace hounded by the given
ranges of variables., The point which has the lease wave drag is taken to be the mini-
mum wave drag configuration. The accuracy of leciating the minimum is th. ~efore
dependent on the resoltuion of the numerical network. Accurate location of the minj«~
mum can be obtained efficiently by a search-by-steps technique where the sevrch is
first conducted using coarser grids to determine an approximate location, and ther
repeated in a smaller region centered around the location of the previously obtained
minimum, This process ca.a be repeated as many times as needed to obtain the
desired accuracy. The major advantage of such a numerical search procedure is that
the given constraints can be satisfied easily by merely rejecting points which violate
the constraints during the search,

The searching procedure is summarized as follows:

1, Select the ranges of search by specifying the lower and upper limits of

cach of the six reduced variables:

(ZL)J-' (zu)j io1,6

2.  Select the resolution for each of the variables by specifving the numbers

of node points NJ. {j = 1,6) of that variable, The resobttion is given by

(%), * (1),
resolution oo

"
]
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Best Availéble Copy

The toti] number ol points for cach search evele is equal to the product of

N, Q.0

1
6 .
total points = H Nj
j=1

For example, if 10 points are specified for all variables, the total number of points
is IU",
3. Compute the six tubles of variables:

i I, N.
J

(Ui, ()

(zi)j (7‘1),

4. At every possible combination of the six variubles,

(zi)l, (zi);" « e o s s s 8 sy (Zi)“

evaluate the given constraints (e.g., the volume), If the combination satisfies the

constraint, compute the wave drag coefficient using the wave drag equation,

5. Determine the set of variables z'j which yields the least|wuve drag co-
efficient, The configuration defined by '/.'1. z".,. o« v vy Z’G is the mini-
mum wave dreag configuration unless one wishes to improve the accuracy by

repeating the search,

6. If the search is to be repeated, select the new ranges of.fthc six variables

by redefining the Jower and upper limits as,

. |
where Ai are arbitrary increments of z selected to define a smaller
region of search, In situations where (ZL) " or (Zu) deii‘in‘ed by the above
L




relations are bevond the ranges of consideration, they are then set equal

NP L

to the minimum - r maximum accordingly.

7. cheut the procedure from step (2) until the desired accuracy is obtained.
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DEMONSTRATION OF LATIN SQUARE PROCEDURE

. - An IR&D »rogram has been carried out to demonstrate the Latin Square
: = ‘ ' optimization procedure using the von Karman ogive as the baseline configuration.

The area distribution of the slender bodies, which yield the ogive, can be expressed
as

5(6) =-’;{-§ (w o+§-‘¥2‘-2-9-)+

2
a ' 8in(+1)0 _ sin(n-1)9 I
2 n n+l . n-1

where { is the length, B the base area and 6 =r represents the nose, 8 =0 the

base; the a n‘s are the Fourier coefficients of the lineal source distribution strength,
The wave drag is given by

D | 2 2
W 2 ) 16B 2 2
———— -. f miere 4 IA" 4+ 3a + 4a + 5a
%p” pl 4 x2g4 2y 3 4 ’

The Latin Square procedure is- demonstrated in the following way: Select a set
of geometric variabies and their ranges of variation. This selection defines a

family of configurations, over which the optimization procedure is then applied
to yield the configuration with the Aleast wave drag. I the procedure works, the

minimum wave drag configuration will be a good appraximation to the von Karman

ogive obtained analytically,
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For the 5x5 Latin Square, the six variables and their range'sva.;“e:

xy .962 st £ 1,038
x2 .055 ¥ B = .079
x3 - 02 = a2 s .02
x4 - 01 < a5 s .01
X -

5 02 s a4 s .02
X - s

6 02 = a, .02

The family of 25 configurations defined by these variables is Ashown in Figures 1
and 2, where the dotted lines represent the base lineat £=1.0 and B =0.067,

which were selected to reflect the variables used for the F-4 during phase I study.

The demonstration of the Latin Square procedure and our finds are sum-
marized below. A straightforward application of the original Latin Square pro-
cedure did not yield the correct minimum wave drag body. Under the constraint
of given length (£=1,0) and base (B = 0.067), the original proéédure predicted

the minimum wave drag body to correspond to a, = - 02, a, = .02, a, == 002

3

and a = -.02 while for the von Karman ogive all the a's vamsh.;.'\.2 =ag=a, =2, =0.
Of these four variables only a 4 1s barely acceptable, considering the numerical
accuracy. However, when the iterative type improvement, which éonsists of

adding more nonlinear terms in the Qave drag funcfion (8ee Reference 1 of the
main text), was applied, the optimization procedure turned out successfully,

Indeed, when only one case of a, = 0, a, =0.2, a, = 0 and ag = 0 was added to

yleld a square term for a, in the wave drag function, the‘imprd&ed pfdcedure
predicted the minimum wave drag body to correspond to azz «. 00026, Ay 7 - 00021;

a4 = 00006, a, =.00031, which is the von Karman ogive recovered numerieally.
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Similar results were obtained for different constraints of 2 and B.

Al

In sum,* the improved Latin Square optimization procedure has numerically

ey

predicted the minimum wave drag body that was obtained analytically.
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