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ANALYTICAL MODEL FOR PREDICTING THE DYNAMIC BEHAVIOR OF CAVITIES

The purpose of the present study is to develop an analytical model for predicting
the dynamic behavior of cavities. The development of this model is in conjunction
with an experimental program being conducted at the Applied Research Laboratory
(ARL), Pennsylvania State University.

The work is being performed under funding fram Dr. T. E. Peirce, Naval Sea Systems
Cammand (SEA-03512) (SR1230102, element 61152N).
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LIST OF SYMBOLS
Frontal area of cavitating body, A = nrz
Major axis of ellipsoid

Minor axis of ellipsoid

Drag coefficient of body, based on A

Drag coefficient of 'cavity-ellipsoid', based on nbz
Steady-state pressure coefficient, defined by equation (9)
Maximum diameter of cavity, D = 2b

Diameter of body, d = 2r

length of cavity

Pressure on surface of 'cavity-ellipsoid'

Cavity pressure

Pressure at infinity

Radial inertial coordinate, Figure 11

Radius of body

Time

Time at which the separation point (or base) arrives at a
point in space, Z = Zo

Velocity of body

Velocity component normal to the confocal ellipsoids in
semi-elliptic coordinates (u,.§&)

Velocity component tangent to the confocal ellipsoids in
semi-elliptic cocordinates (u, &)

Axial body coordinate, Figure 11

Radial body coordinate, Figure 11
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LIST OF SYMBOLS (Continued)

Z Axial inertial coordinate, Figure 11

z Centroid of 'cavity-ellipsoid) inertial coordinate

oy Ellipsoidal constant, defined by equation (4)

M, £ Semi-elliptic coordinates in moving frame

£ o Surface of 'cavity-ellipsoid'

p Mass density of fluid

o Cavitation number, defined by equation (8)

¢ Velocity potential function

% Potential function for moving ellipsoid

¢2 Potential function for expanding ellipsoid

Superscripts

. Derivative, %

' Derivative, &

Subscripts

o Refers to value at t = ts

Eo Normal velocity component on the surface of the 'cavity-ellipsoid'
Mo Tangential velocity camponent on the surface of the 'cavity-ellipsoid’
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INTRODUCTION

The objective of this study is to develop an analytical model for predicting
the dynamic behavior of cavities formed by high-speed urderwater vehicles (vapor
cavities) and cavities formed during water entry and underwater launchings (air/
vapor cavities). The develomment of this model is in conjunction with an
experimental program being conducted at the Applied Research Laboratory (ARL),
Pennsylvania State University. Recent experimental work investigating cavities
formed by cones in a water tunnel at ARL is reported in reference (1). The
use of a water tunnel is advantageous in that the mass attrition rates can be
determined for different size cavities by measuring the air flow rate feeding
the cavity.

BACKGROUND

The need to predict the trajectory of cavity-running underwater vehicles
has been givenemphasis by recent development effort. To successfully predict
the trajectory of a vehicle riding in a cavity requires a knowledge of the forces
acting on the vehicle which are influenced by the presence of a cavity. Water
entry and underwater launching are areas of weapon delivery where the presence of
a cavity has a significant effect on the trajectory of a vehicle.

High-speed underwater vehicles produce a trailing vapor cavity when the
minimum local pressure on the vehicle is less than the water vapor pressure. At
water entry, high-speed vehicles produce an open air filled cavity. Upon cavity
closure, the cavity often continues to expand and then collapse to form one or more
stationary cavities and a moving trailing cavity which behaves in the same manner
as a vapor cavity. 1In fact, this trailing cavity can become a vapor cavity after
the entrapped air has been removed by attrition.

The pressure within these cavities and their size and shape have a significant
effect on the performance and trajectory of the vehicle. The most pronounced
effect is on the drag. When a vehicle is trailed by a cavity, the drag on the
vehicle (other than friction drag which can be significant for long slender bodies)
is primarily due to the dynamic pressure on the forebody and the low cavity pressure
on the afterbody. There is no pressure recovery on the afterbody until the cavity
closes on the afterbody. An unstabilizing lift force is produced on the forebody
when an angle of attack exists. A lift force can also be produced on the afterbody
when it contacts the cavity wall. Predicting these factors can best be accamplished
by first predicting the behavior and configuration of the cavity.

lKJ'm, J. H. and Holl, J. W., "Water Tunnel Simulation Study of the Later Stages of
Water Entry of Conical Head Bodies", Applied Research laboratory, Pennsylvania
State University, Technical Memorandum 75-177, 18 Jun 1975

5
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ELLTPSOID MODEL

Minzer and Reichardt (Ref. (2)) and Waid (Ref. (3)) described the cavity
outline as a generalized ellipsoid. Munzer and Reichardt derived their ellipsoid
from a theoretical constant-pressure surface while Waid obtained his experimentally
from cavities due to a disk. A study was made by May (Ref. (4)) to determine how
widely these two representations and a true ellipsoid differed. May gave a sketch,
ocopied in Figure 1, showing a comparison of the generalized ellipsoid formulae
using an axis ratio of six. The outlines are indistinguishable over most of their
length and differ only in the vicinity of the nose.

Reichardt (Ref. (5)) derived by source-sink methods a theoretical formula
for the cavity diameter, D

1/2
D _ Ca
3= 5 (1)
g - ,1320E:

which shows the diameter to be a function of only the cavity-running drag coefficient
and the' cavitation number. To illustrate why the form of equation (1) is possible
he cave a sketch, copied fram reference (4) in Figure 2, which shows the outlines
of the cavities formed by an ellipsoidal nose and a disk with the same drag area,
CA. The cavities, having the same diameter, differ in contour only in the

cinity of the nose.

Since an ellipsoid, for which potential flow solutions are available, appears
to be a reasonable choice for a model describing the cavity shape, the following
approach was taken. It is assumed that the pressure drag force on an arbitrary
nose shape which forms a cavity is equal to the pressure drag force on the fore-
body of an ellipsoid which has a minimum local pressure equal to the cavity
pressure, PC.

2Miinzer, H. and Reichardt, H., "Rotational Symmetrical Source-Sink Bodies with

Predominantly Constant Pressure Distributions", Armament Research Establishment,
Ministry of Supply, Fort Halstead, Kent, England, Trans. 1/50, 1950

3Waid, R. L., "Cavity Shapec for Circular Disks at Angles of Attack", California
Institute of Technology Hydrodynamics Laboratory, Report E-73.4, 1957

4May, A., "Water Entry and the Cavity-Running Behavior of Missiles", Naval Surface

Weapons Center, White Oak Laboratory, SEAHAC TR 75-2, 1975

5

Reichardt, H., "The Laws of Cavitation Bubbles at Axially Symmetrical Bodies
in a Flow", Ministry of Aircraft Production Volkenrode, MAP-VG, Reports and
Translations 766, ONR, 1946
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The local pressure, P, on the surface of an ovary ellipsoid, a > b

-

2
12 2 w2 % -9
P-P, =500 \7-% 3
o) 14 (y") 4
where
£ +1
_ 2 1 ° -1
aO—Z(EO - 1) ;z-iolngo—l
€2= a2
(o} a2—b2
- dy
Y = &
The minimum pressure, P = Pc’ occurs when y' = 0

6Smit:h, C. W. and Guala, J. R., "Axisvrmetric Fllinsoids in Ideal FPluids",
Naval Surface Weapons Center, White Qak Laboratory, NOLTR 73-155, 1 Aug 1973
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and the local pressure coefficient is defined

P - P, (1+0)(y')2

S r 7 < I+l
7#

-0 (9)

Integrating over the surface of the forebody of an ellipsoid, o0 < x<a,
the drag force is obtained

b
Drag = 2m f (P - P )ydy
o -
b (10) 5
= 2n f [(P -P) + (P - Pc)] ydy
o .
21 2 .2
= 5 pU iifo) CD
where C denotes the pressure drag coefficient of an ellipsoid based on the 4
maximum frontal area, b2
2 2. g2
¢y =@+ (=16 1n_o (L)
£’ -1
o
Equating the drag on the nose shape forming the cavity to the drag on the 'cavity-
ellipsoid’
1 2 .2 _1 2 2
Drag = 5 ¢U” 7b"Cy = 5 oU” mr Cd (12)

The following expression is obtained for the cavity diameter
1/2

c
b _ d] J
3= (13) 4
d [CD .

where

D = 2b, cavity diamcter
d = 2r, body diameter
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Table 1

Camparison of Results

Ellipsoid Model and Reichardt's Theoretical Formula

2
D
(ET) /ta

Ellipsoid Model,

o Equation (15)
.001 1011.
.0021 500.
.0042 250.
.0069 153.7
.013< 78.6
.0244 44.2
.036 30.2
.049 22.1
.059 18.4
.082 13.5
.105 10.5
.170 6.55
.207 5.39
.259 4.32
.318 3.52
. 405 2.77
.500 2.24
.585 1.91
.700 1.60
.858 1.30

1.09 1.02
9

Reichardt, Equation (14)

1015.
502.
251.
154.4

79.0
44.4
30.3
22.2
18.5
13.5
10.5
6.56
5.41
4.34
3.54
2.79
2.27
1.94
1.63
1.34
1.06




NSWC/WOL/TR 76-114

Rearranging equations (1) and (13) as follows, for equation (1)

D 1
= (14)
Cdd2 g - .13208ﬁ
for equation (13)
2
e (15)
Cdd D

and comparing the results, it is seen that the results, as shown in Table 1, are
nearly identical, especially for low cavitation numbers. To facilitate the cal-
culations for equation (15) the axis ratio, a/b, was first selected, a_ was then
calculated from equations (4) and (5), the cavitation number, ¢, from tion (8)
and C_ from equation (11). Since the agreement between equations (14) anc (15)
is so close, a more direct method to obtain CD can be formulated by equating
equations (14) and (15). The concept of the Ycavity ellipsoid', however, is
retained since it permits a more direct treatment for the dynamic behavior of

the cavity.

Figures 3 through 6, copied from reference (4), show the scaled diameter of
cavities plotted from data obtained by Reichardt (Ref. (5)), Waid (Ref. (3)),
Rouse and McNown (Ref. (7)) and Eisenberg-Pond (Ref. (8)). Equation (15),
plotted in these figures, appears to be a good representation of the data.

Figures 7 through 9, obtained from reference (4), show data for the
lengths of cavities. The cavity half-lengths were measured from the base (or
separation point) to the point of maximum cavity diameter. The ratios of the
cavity length to cavity diameter, D, and body diameter, d, can thus be expressed:

L. L_x_xa
5% "b ab (16)

where x/a denotes the position of the separation point on the cavitating nose within
the assumed ‘cavity ellipsoid'. As shown in Figure 2, the separation point is not

located at the tip (x/a = 1) of the 'cavity ellipsoid'. In correlating the
data for the length cf cavities formed by a disk, the following expression was
obtained:

7Rouse, H. and McNown, J. S., "Cavitation and Pressure Distribution; Head Forms
at Zero Angle of Yaw", State University of Iowa, Studies in Eng. Bull. 32, 1948

8Eisenberq, P, and Pond, H. L., "Water Tunnel Investigations of Steady-State
Cavities"”, David Taylor Model Basin Report 668, 1948

TR TRt A AN )

o,
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) (a)-’- 1/2
3 %\b

(18)

1/2

2 2 2
L _ %o 3 rxo(&;o - 1) (19
== )
P g2, 26 +(£2-1

fo} 3% (o)
L (20)
d/ég DVC.

Equation (20) is plotted in Figures 7 and 8 which show the scaled length
of cavities as a function of cavitation number. In Figure 7 data for cavities
due to a disk are plotted. In a similar manner data for various nose shapes
are plotted in Figure 8. The agreement with equation (20) is shown to be
excellent. In Figure 9 experimental L/D data and equation (19) are plotted.
The agreement with the experimental data is shown to be excellent in the
region for o < 0,2. 1In the region ¢ > 0.2, equation (19) appears to be an
upper bound on the data which exhibits considerable scatter. The scatter of
the data in Figure 9 may be due to the dependence of L/D on the nose shape
(slope at the separation point or Cd of the cavitating nose).

Recent experimental L/D data obtained at ARL (Ref. (1)) for 18- and 45-deqree
cones with cylindrical afterbodies, shown in Fiqure 10, clearly show a strong
dependence on the nose shape. The need for further study is clearly evident.

The dependence of the cavity L/D on the nose shape suggests, from equation (20),
the dependence of the scaled cavity length, and/or, from equation (13), the
dependence of the scaled cavity diameter on the nose shape. The agreement with
various nose shapes, shown in Figure 8 for the scaled length of cavities, and in
Figures 3 and 5 for the scaled diameters of cavities, may be misleadina. The
experimental data in these figures were scaled using cavitating drag coefficients.
Except for the disk, drag data are sparse in the region for ¢ - .2 and drag
coefficients obtained from these data should not be considered reliable enough

to establish a firm trend.

DYNAMIC MODEL
The velocity potential for an axisymmetric ellipsoid is readily obtained,

as shown in reference (9), using dimensionless ovary semi-elliptic coordinates
(i, 7). The transformation equations are:

9[)]1’&!1(1, W. F., Aerodynamic Theory, Vol. I, Div. C, Chan V11, Dover Publications,
Inc., New York, 1963

11
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X =¢¥a =-Db" ug (21)

Y=‘/a2—b2'/1-u2‘/€2-1 (22)

where

-1 <pu<+1 and £21 (23)

The coordinate £, which can be written:

2
_ a +v
5—‘/—2‘a2_b , V20 (24)

defines the surfaces of confocal ellipses with the foci at

Xx=*¢a " -b" ,y=0 (25)

The surface of the 'cavity ellipsoid' is defined by the coordinate EO, for v=20

o= f(\) = 0) = —_— (26)

and the Cartesian coordinates on the surface, :o' become:

C = ap (27)

X
y‘—‘b‘/] —112 (28)

The velocity potential function for an axisvrmetric ellipsoid moving with an
axial velocity, U, in an infinite ideal fluid can be expressed, Ref. (9).

N T+ 1]
:l = ]\1‘1 [2 1n f-—:-l' ’.’] (29)

where

_ 2th v
]\1 - _Q_':“,;:) o Vn 1 (30)

For an expanding (or contracting) ellipsoid with the fluid velocity evervwhere normal
to the confocal ellinsoids, the wlocity potential function can be exressed:




NSWC/WOL/TR 76~114

1 £+ 1
9 =3B, In g3 (31)
where
Ay=bbE (32)
and
> L4 a ao
ab=ab+B=B-,Constant (33)
0]

The velocity potential function for a moving and expanding ellipsoid can now be
obtained by adding:

¢=¢l+¢2 (34)

The fluid velocity component normal to the confocal ellipsoids is:

vpm - i [ 2
‘/aT-'Tb 2 2 3L (35)

[aa
=

g -

and the tangential fluid velocity camponent is:

»
1-u° 9¢

1
VW3 72 B (36)
‘/a-b £ -

On the surface of the 'cavity ellipsoid' the fluid velocity components are:

+ —0 (37)

Vv =V _ 0LoUgo l--u2
o ¥ Tt Vi 2 (38)
=t > €g "M

To determine the configuration of a dynamic cavity, consecutive 'cavity disks'
of finite thickness can be tracted in inertial coordinates (2, R), Figure 1ll. The
initial properties of the 'cavity disk' (a_, b ) can be determined using the
instantaneous velocity (Uo) and the cavityopregsure (Pc ) at the moment (t = to)

the tavity disk' separates from the cavitating nose. he radius, R, and position,
Z, of the 'cavity disk' are:

13
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R=y=b'I1-u2 (39)
t t
z-E=x+fUdr=au+fUdT (40)
© t
tO o
where fg is the centroid of the ellipsoid which contains the 'cavity disk' formed
at t = .
o

Taking the time derivative of eqguation ‘(40):

Z=x+U=ap+au+U (41)
It is seen that:
Z2=0 (42)
and . .
X =ay = -U (43)

when the cavity is not expanding, a = 0. Thus,

c - U
W= g (44)
and for an expanding cavity:

Z = ay (45)

To obtain an expression for }3, the change in the kinetic energy of the fluid
flow field nust be considered. The kinetic energy of the fluid is:

s [ e
T = 3P d>andS (46)
€=£O

where, on the surface, £ = {’o

ds = 2n(a% - b?) ‘/(goz - u?) (502 - Da (47)
3 1 ao -1 L '
2 2T W (48)
a -b >0 - F,=E;O
14
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Therefore:
+1
T=-p‘nb‘/£02-l/[¢>%§] au
-1 €=€O
I R e
T-—‘Q‘DUZ 1+§'pb V'K2
where:

Vo= % ﬂabz, cavity volume

%
K:_—.—__
1 (2 - ao)
£ +1
, _ 1 0
‘2'5‘501“&0—1

The momentum of the fluid in the forward direction does not change.

d 4 VI —_g _3:1: =
EE[I‘l "VU] & [aU] 0

Thus,
d il -
aEr[UV] =0
2lw’l=0p + 3w =0
and
U:—EE__Ib___B_U_g

Since ab = éb, from equation (33).

(49)

(50)

(51)

(52)

(53)

Therefore,

(54)

(55)
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The change in the kinetic energy due to the expansion of the cavity can be
written:

dv _ daT

F -3 (58)

(P -P)

where P is the average pressure on the surface of the 'cavity ellipsoid'. Perform-
ing the differentiation and rearranging, equation (58) becomes:

P-pP .
© 3,0 2 1 2
= K, [bb+ 3D ]—-2-K1U (59)

&

Defining the cavity pressure when D and b= 0, from equation (7):

P
Co oo 2
2 -1 2—-) -1 (60)
¢ 2 2"lto

instead of using the average pressure on the surface when b and b = 0, from
equation (59)

P -p
o) ~_ 1 2
S = -3 UKy (61)
equation (59) becomes:
P-p .
— % - bb+3b2:’ (62)
O 2 2
Solving for b
.2 B-p
"=_3b C (63)
bTT R

an expression for b can be obtained:
t
l.3=fde (64)
%

CAVITY PRESSURE

A cavity pressure model for predicting the cavity pressure and mass attrition
rate needs to be developed., The model will need to incorporate an air flow model
for open cavities and an energy model for expanding cavities which are often
experienced during water entry after cavity closure. An attempt to correlate
the mass attrition data (air flow coefficients) contained in Reference (1) with
one correlation for 18- and 45-degree cones using the cavitating drag coefficient

16
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as a parameter was unsuccessful due to the lack of reliable drag coefficients at
high cavitation numbers. It is believed that the mass attrition occurs primarily
at the base (tail) of the cavity and is in some manner proportional to the drag
force which creates the cavity. Correlation of mass attrition data in this manner
may eliminate the need for a separate correlation for each drag shape.
RECOMMENDATIONS AND CONCLUSIONS

The predictions of the model for the diameter and length of steady-state
cavities agrees very well with experimental data except for the dependence
of the cavity L/D on nose shape. The cavity length, as shown in Figure 10
and also noted in reference (1), was found to be strongly influenced by the body
shape at high cavitation numbers. The drag coefficient is a likely parameter for
correlating the cavity length and mass attrition rate. Since drag data at high
cavitation numbers is sparse, it is recommended the future tests conducted at ARL
include the measurement of the drag force. The use of a water tunnel is particularly
appropriate since steady-state conditions can be maintained during the measurement
of the drag force. Future tests should also consider additional nose shapes with
and without an afterbody. This recommendation is made in order to obtain reliable
correlations which hopefully will apply to any drag shape (given the drag
coefficient) and include the effect of cavity closure on the afterbody.

Additional work on the analytical model is required. A model for predicting
the cavity pressure needs to be developed and the effect of the free surface should
be included. A digital program also needs to be written and the predicted behavior
of the cavities compared with future experimental results and the results contained
in reference (1). The experimental results contained in references (10) and (11)
for the cavity shape and pressure during water entry should also be compared with
the predictions of the analytical model. As the development of the model progresses,
the need for dynamic water-entry tests, and the test conditions, can be better
identified.

loAronson, P. M., "An Experimental Investigation of Cavity Pressure Scaling and

Drag Coefficients Encountercd in the Water Entrv of Vehic les", PhD Thesis,
University of Maryland, 1975

1

1
Abelson, H. I., "The Behavior of the Cavity Formed by a Projectile Entering the
Water Vertically"”, PhD Thesis, University of Maryland, 1969
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(23
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FiG.3 CAVITY DIAMETER DATA — REICHARDT REF (5)
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EQN (15) i

5 l 1 ] | ] | | | S
0.02 0.03 004 005 0.06 008 010 012 0.4 0.16 0.18 0.20 3
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