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EVALUATION

This report describes the software development technology and management
practices employed on a large and complex system development by the Martin
Marietta Corporation.

The intent of the RADC program to which this document relates, TPO V/3.4,
is to describe and assess software production and management tools and methods
which significantly impact the timely delivery of reliable software,

The study contract is one of a series of six, with different firms,
having the similar purpose of describing a broad range of techniques which
have been found beneficial.

RADC is engaged in promoting utilization of Modern Programming Technclogy,

also called Software Engineering, especially in large complex Command and
Control software development efforts.
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PREFACE

This document is organized to permit the recader to extract any of the
three overview: or 30 techniques describing Viking sofiware development as
stand-alone papers, In addition, the first page for each technique prcvides
the reader with a summary, applications consideration and reconmendation for
that technique, Thereafter, the history, description, qualitative results

and quantitative impact oi using the technique are described.

The preparation of this report could not have been accomplished without
considerable assistance from fellow Martin Marietta employees who were or
are members of the Viking Flight Team. Grateful acknowledgement is expressed

to the following individuals for their support.

Je. R. Anderson J. D. Goodlette C. A, Ourada
W. B. Anthony K, W. Graham C. W. Ratliff
J. A. Beacon J. R. Herrington D. G. Roos
R. Carney G. E. Heyliger J. &, Rowe
B. A, Claussen J. R. Hill A_ R, Schallenmuller
D. L. Davidson J. K. Kerekes E. A. Scown
P, A, DeMartine W. S, Lakins P. S. Stafford
N. G, Freeman W. J. Luckow K. F. Thompson
1
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Mission Operations Software Development Overview

1.0 Introduction

The Viking Mission Operations Software System (MOSS) was developed
over a three year time period., Phased deliveries of integrated software
systems were needed to support test, training, launch, cruise and planetary
operations, Capability was added and improved with each new system, This
overview presents a brief history of the development of these systems, stres-
sing the problems encountered and their resolutions., Each system was de-
livered on schedule, The overall approach taken by Viking management was an
excellent one that led to the availability of a very efficient software sys-
tem during planetary operations. Because of the soundness of this approach,

the problems encountered during development were all minor in nature,

1.1 The Operational Software System

The Viking Mission Operations Software System (MOSS) consists of six
interrelated software subsystems. They were designed to support Mission
Planning, Tracking and Flight Path Analysis, Orbiter Uplink, Orbiter Down-
link, Lander Uplink, and Lander Downlink activities. The system was in-
stalled in the Viking Mission Control and Computing Center (VMC3) at the Jet
Propulsion Laboratory (JPL), Pasadena, California, The VMC3 consists of
three facilities; a Mission Test Computer Facility (MICF); a Mission Control
Computer Facility (MCCF); and a General Purpose Computer Facility (GPCF).

Viking Orbiter (V0) real time telemetry software and near real time
first order image processing software resided in a dedicated 1230/1219/1616

computer system in the MICF,

Viking Lander (VL) rveal time telemetry software, VO and VL real time
command software, and VL near real time first order image processing soft-
ware were processed by a multi-mission (MVM, HELI0OS, PIONEER, VIKING) real
time 360/75 computer system in the MCCF. A sccond 360/75 computer set was
sapplied by the MCCF to support batch operations., The software processing
functions assigned to this computer weve VL command generation, power and
thermal performance, system data record decommutation and decalibration,

experiment data record generation, VO command generation, and Viking ground




support scheduling. The batch operation was under control of a real time

operating system and lacked many features common to general purpose computers,

The GPCF provided two 1108 general purpose computers to the project,

One was used for Mission Planning, science analysis and data record genera- .
tion; the second was used for flight path analysis and sequence generation

processing.

Second order image enhancement software was developed by the Image
Processing Laboratory (IPL), a separate division of JPL. This software was

not considered a part of the MOSS and was not subject to Viking MOSS Con-

figuration Control.

The Deep Space Network (DSN) supported the command and telemetry link
between the spacecraft and JPL. High speec and wide band data lines connec-
ted the lab with Deep Space Stations (DSS), where command stack and telemetry
receipt software interfaced the MOSS with the ground radar portion of the
communication link., This DSN software was considered an integral part of

the MOSS and was subject to Viking Configuration Control,

1,2 Multi-Agency Responsibilities

The Langley Research Center (LRC) was directed by NASA to manage the '
Viking Project. Contracts were awarded to the Denver Division of the Martin ‘
Marietta Corporation (MMC) and Divisions 220, 430 and 910 of the Jet Propul-

sion Laboratory to develop the operational software system,

MMC was responsible for VL batch and Mission Planning Software, speci-
fying requirements for VL real time soitware, and the integration of the

six software subsystems.

Division 220 of JPL was responsible for VO batch and Tracking and
Flight Path Analysis software, specifving requirements for VO real time soft-~
ware, and support the integration of the VO Flight Path Analvsis software

subsystems,

Division 910 of JPL was responsible for VMC3 institutional software,
implementing the real time VL and VO software requirements, and maintaining

the integrity of the operational software system thru a process called the
Mission Build,
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Division 430 of JPL was responsible for the development and mainten-

ance of the software installed at the Deep Space Statioms.

1.3  Quantitative Software Description

A total of 278575 source cards were delivered to MCCC batch operations
for the 22 Viking Lander software functions developed by MMC in Denver. Ap-
proximately 24000 pages of documentation was written to support these de-~

liveries, The cost to accomplish this task was 1783 man months.

These figures account for all activities conducted by the Cognizant
Engineers and Cognizant Programmers to develop the twenty-two programs from
mid 1972, when the effort to write the Software Requirements Documents began,
until early 1976 when the final versions of the programs used to support

planetary operations were delivered,

The documentation figure includes all Functional Requirements, Soft-
ware Requirements, General Design, Program Design, Users Acceptance Test Plam,

and Users Guide documents developed by the CEs and CPs for the 22 prograns.

The estimated effort expended by development phase is as follows:

Requirements 20%
Design 107
Code and Debug 157
Test and Integration 25%
Change Traffic 30%

The requirements, design and code phases cover initial program develop-
ment., The test and integration phase covers certification tests at MMC, pro-
gram conversion at JPL, acceptance testing, and redeliveries caused by errors
detected during initial integration plus any new requirements incorporated
prior to Januavry, 1975, At that time all planetary programs had been de-
livered to the integration build and all launch and cruise programs were in-
corporated on the initial launch and cruise operational software system
(MOSS 2.1)., The change traffic phase represents the level of effort required
to redeliver programs following MOSS 2.1 for reassns of new requivements,

program crrors, and performance imgrovements,
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2,0 The Requirements and Design Phase

2,1 Organizing for the Task

A Flight Operations Working Group (FOWG) was formed and made responsi-
bie for the development of the Mission Operations Software System. Its
membership was made up of the managers responsible for the development of
VL, Vo, VMC3 and DSN softwar«, and it was chaired by the LRC Project Soft-

ware Manager,

The FOWG created a Software Subworking Group to manage the details of
the MOSS development., Its first assignment was to document a Flight Opera-
tions Software Development Plan., The subworking group consisted of a Pro-
ject Software Systems Engineer from LRC, an Integration Contractor Software
Systems Engineer (ICSSE) from MMC, a Viking Orbiter Software Systems Engi-
neer (VOSSE) from Division 220, and a Data Systems Project Engineer (DSPE)
from the VMC3. As chairman of the subworking group, the ICSSE was responsi-
ble for the coordination of inter-agency agreements and the software develop-

ment plan.

The Flight Operations Software Development Plan became the controlling
document for the development of the operational software system. It defined
tue change control procedures to be followed within and among the software
developing agencies, specified program documentation requirements on a para-
graph by paragraph basis, defined development, test, integration and delivery
milestones that would permit the FOWG to monitor development progress, iden~
tified roles and responsibilities, and specified configuration management
control procedures, It was concurred upon by each member of the FOWG and

approved by the Viking Proj-<t Manager,

2,2 Defining the Software System

Software Functional Descriptions (SFD's) were written to document the
purpose, description, input/output requirements, and estimates of frequency
of use and computer CPU, core and mass storage resources required for each
operational software system candidate program., They were used to develop
an Integrated Software Functional Design (ISFD) which showed the top down
design of the data flow for the six software subsystems, This task required
a considerable amount of iterative effort in obtaining inter-agency coordina-

tion and agreement. Functions were combined, separated, created and discarded.
8
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The SFD/ISFD concept proved to be an extremely useful software manage-
. ment tool., It provided a basis for developing schedules, planning resources,
and making personnel assignments on a program by program basis. The ISFD was

- the baseline for program definition and interface requirements. It provided

the means by which both Preliminary and Critical Design Reviews on system

functions and data flow were held., The SFD's became the basis for elimina-

R e TR P o T,

tion of duplicate functions and for computer loading studies, which were

used to make program/computer assignments,

2,3 Three Mission Operations Software Systems

During the development of the Integrated Software Functional Design
the Flight Operations Working Group formulated plans for its implementation,
Resources available to support software integration, spacecraft compatibility
testing, and personnel training dictated that three Mission Operational Soft-

ware Systems (MOSS) would be required,

MOSS 1 would contain only those software functions required to support
Data System Compatibility tests. MOSS 2 would iacorporate the additional
software functions required to support Data System Pathfinder Compatibility
testing, Ground Data System Launch and Cruise Configuration testing, Flight
Operations Launch and Cruise Configuration Personnel Test and Training,
Flight Article Compatibility testing, and Flight Operations for Launch and
Cruise, MOSS 3 would contain all software functions identified in the ISFD
and would be used to support Ground Data System Planetary Operations Con-
figuration Testing, Flight Operations Planetary Operations Configuration

Personnel Test and Training, and Flight Operations for Planetary Operations.

2,4 Different Development Philosophies

The Jet Propulsion Lab had more than a decade of exp rv.ence in develop-
ing software to support space exploration missions, Most of the software
functions needed to support the Viking Orbiters were therefore obtained by
modifying existing programs already operational in the GPCF. This led to a
bottom up program development approach which required that the Viking Orbiter
software subsystems adapt to the established conventions and procedures for

using the individual programs. Subsequent computer loading studies, geared

. - o= EREL e P S




from a cost effectiveness point of view, took into account where software
already existed., As such, only one VO program, the Command simulator, was

moved to the MCCF to balance the computational load of the MOSS,

The challenge to MMC to develop the Viking Lander software subsystems
was significautly different., Some descent analysis, power and thermal pro-
grems had been developed on MMC computers that could be modified to support
lander Flight Path Analysis and spacecraft performance functions. But the
mission planning, ground resource, sequence generation, command generation,
flight computer simulation, data decommutation and decalibration, and sci-
ence analysis functions had to be built from scratch. The process was fur-
ther complicated when the computer loading studies indicated that these
software subsystems would have to be split between the MCCF and GPCF, This
added the requirement that a file management program be designed to control
inter-computer data transfers to prevent the overloading of available tape

drive resources,

A top down approach to VL software system development was adopted., It
included parameter passing and common data base file management control
functions, common time utilities used by all VL programs, and required the
use of unique file header records that were compatfble with both the MCCF
and GPCF,

Commitments by JPL to other projects limited computer resources avail-
able to the Viking Project. For this reason the MMC software was developed
in Denver on non-target computers, and the VMC3 issued a Guidelines and Con-
straint document that specified module size, number of tape drives and mass

storage requirements for the off-site developed software.

Programs destined for the GPCF were developed on CDC 6500 series computers,
and those for the MCCF on IBM 370 computers. Minimal HOL ¢ .ling standards
were adopted to simplify the process of converting to the target computers.,
Pathfinder studies were made that indicated the conversion process would

not pose any serious problems,

Considerable effort was expended in an attempt to standardize inter-
face naming conventions and header record requirements for the VO and VL

software subsystems. However, because of the differences in development

10
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philosophies, a common approach agreeable to both parties could not be
found, Eventually, the VOSSE was made responsible to integrate the VO sub-
systems under supervision of the ICSSE, who remained responsible for the
integration process. Interfaces between the two subsystems were kept at a
minimum, They were individually negotiated, often with considerable compro-
mise, However, because the VO/VL interfaces were non-standard relative to

each system, they received greater attention then they might have otherwise,

2,5 Milestones and Schedules

A hierarchy of schedules were developed to provide an orderly delivery
of software to the VMC3 that would not compromise available computer re-
sources, High level schedules provided significant milestones for upper
management visibility., Lower level schedules were very important for mon-

itoring programmers progress on coding and testing. They were very detailed.

2.6 The Development Cycle

A cognizant engineer and a cognizant programmer were assigned to each
program. The cognizant engineer formalized the program requirements in a
Software Requirements Document (SRD). Approval of the SRD authorized the
cognizant programmer to design the basic flow for the program and write a
General Design Document (GDD), After the GDD was approved, the cognizant
programmer began coding and the cognizant engineer wrote a Users Acceptance
Test Plan (UAT). The rationale was that the programmer would test his code
during the debug stage and implement the design, whereas the engineer would
assure that the program formally met the requirements specified for it in
the SRD, Some software developers do not like this approach, claiming the
programmer, rather than the engineer, knows best how to test the program,
Nevertheless, the process adopted by Viking proved very effective. Its weak-
nesses were that many vague SRD's were approved because users did not under-
stand all that was needed, which led to confusion, replanning, reprogramming,
retesting and redelivery, and that some engineers failed to write UATs that
fully tested the requirements. Its strengths were that it uncovered numerous
misunderstandings of requirements by programmers and disclosed cases of poor
program design. Observe that the weaknesses can be controlled by management,
whereas the strengths are difficult to realize if the programmer testing

approach is adopted,
11
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Concurrent with the requirements/design/code phase were the develop-
ment of two extremely important and useful documents., They were the Soft-

ware Data Base Document (SDBD) and the Lander Oribiter Software Test Plan
(L/OST Plan),

The SDBD described in exacting detail each file and parameter that
would reside in mass storage accessible by Viking program software. The
cognizant engineers and programmers were required to sign an agreement for
all files produced or processed by their programs. This agreement indicated
that they understood the file structure and data contents, and that the file
was compatible with their program, The interface agreements were then ap-
proved by the ICSSE, concurred upon by the VOSSE, VLSSE and/or DSPE as ap-
propriate, and included as part of the file descriptions. The SDBD was in-
valuable in locating errors and resolving interface problems; when an inter-
face test failed the document invariably could be used to point directly at

the cause, The SDBD also contained descriptions of utility programs and
the Common Data Base,

The L/OST Plan specified the requirements for individually testing
each interface shown in the ISFD, It included test descriptions, resources
required, success criteria, and procedures. This permitted management to
foresee, early in the development cycle, the facilitics, personnel and data
that would be required, The plan also described single thread tests for
the major software subsystems that would demonstrate the cata flow and in-

dicate what procedures would be required to use the software as a system,

During the software coding time period plans as to how the software
system would be integrated and implemented were finalized. MMC software
would be required to pass a formal certification test in Denver prior to
being taken to JrL., The test would be similar to the UAT. A Viking Lander
Software Systems Engineer (VLSSE) was appointed as a member of the Software
Subworking Group to monitor the certification process. The UAT's would be
run from private software sources at JPL., The ICSSE was responsible for VL
programs, the VOSSE for VO programs, and the DSPE for VMC3 programs, The
ICSSE would chair all Viking software post UAT reviews. Following this the
programs would be subject to change control, placed on an Integration Build

and unit verified by Data Systems Integration (DPS1). L/OST integration

12
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would then be performed by the ICSSE and VOSSE, DSI next would test the

software to assure it's compatible with the multimission environment. At
specified points in time, copies of the Integration Build would be made that
became the current version of the Mission Build., Spacecraft compatibility
and Ground Data System test and training could then be conducted using the
Mission Build, Finally, after test and training were completed, the Mission

Build would become the Mission Operations Software System,

Post UAT changes to programs caused by new requirements or software
failures would be controlled by an Integration Change Control Board (ICCB).
Requirements changes prior to the UAT complete milestone already were under

control of the ICCB, This occurred when the SRD was approved.

2.7 Additional Comments

During the Requirements and Design phase, prégress towards generating
the three Mission Operations Software Systems (MOSS) proceeded relatively
smoothly. Milestones were added and changed under Flight Operations work-
ing configuration control as the process unfolded. Schedules were modified
to accommodate new requirements, and plans for future testing evolved as
management gained insight into the system description and integration approach,

A clear cut workable approach to the development cycle was formalized.

Management had some concern about the constant reworking of schedules
caused by changing requirements, The softwaré was being developed in par-
allel with Flight hardware and software, Changes in those areas created the
need for changes to the operational software under developmint, The result
was that the time period allotted for integration functions had to be re-

duced, since the delivery date for the on-line MOSS's could not be changed.

The schedule for MOSS 1 proved to be overly optimistic i1 that it
moved scheduled software delivery dates forward by several months, This was
to impact the development of MOSS 2 significantly, because it prevented pro-
grammers from developing MOSS 2 software during the MOSS 1 UAT and integra-

tion time period. The impact should have been foreszen, but it was not,

File management software should be developed before any program that

will be Jdependent upon it is developed. This was not accemplished on Viking

13
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because of a combinat:on of events, When MOSS 1 was defined, the file man-
agement software delivery schedule was moved forward two months so that it
would be delivered first, The Software Integration group, responsible for
its development, was understaffed at the time, so that only one programmer
was available to write the software. This was further complicated by the
fact that the JPL computer systems were not well documented at that time,

The result was that the MOSS 1 file management software was poorly designed
relative to MOSS 2 software requirements, especially in the area of VO/VL
interfaces, It became mandatory that a redesign effort be taken in parallel
with MOSS 2 software deliveries, resulting in frequent failures during MOSS 2
interface testing., Had it not been for the fact that it was under develop-
ment by an exceptionally competent and dedicated individual, serious schedule

slippages would have occurred,.

An item that was not worked properly during this time period was the
negotiation of the structure, contents, and naming conventions of VL/VO in-
terface files, The VOSSE and ICSSE agreed to negotiate file naming conven-
tions and header record structures, and continued exchanging information as
the individual systems developed. As matters turned out, the ICSSE did not
have sufficient Project support to force compliance with agreements made
with the VOSSE, and because of the divisional organization at JPL the VOSSE
did not have full control of the VO software, This proved to be a mistake,

since final negotiations impacted developed software in both systems,

Software requirements should have been given tfar more attenticn by
middle management than they received. Items that should have been stressed
more include program run time, printed output formats and quantities, and
plot requirements. In addition, had this attention been extended to include
critical rveviews of the initial program designs, some of the design problems

uncovered after program delivery may have been avoided.

A rather interesting technique was used by NASA to validate the man-
agement approach and svstem design, NASA gathered a committee of software
experts from around the country to review and critique Viking software during
this phase, The committee apreed with the overall approach, and contributed

many constructive suggestions,

14
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3.0 The Test and Integration Phase

3.1 User Acceptance Testing

Conversion of MMC developed software and VO and VL User Acceptance
Testing'proceeded nominally on the 1108 computers in the GPCF, but were

difficult to accomplish on the 360 computers in the MCCF. The 1108 was a

et i ]

general purpose computer with considerable mass storage capability, which
made it easy to use., In addition, turn-around time on the 1108 was

reasonable,

The 360 was controlled by a real time operating system designed to be
efficient for command and telemetry functions.
stricted to 400 - 500 Kbytes core.

able, Programs were scatter loaded,
ted,

Batch operations were re-
No roll out/roll in features were avail-
Direct access storage space was limi-

The user was required to request a specific disk pack computer con-

figuration be mounted to permit Viking software to operate,

whtly

e

e

The first programmers to bring their software to the MCCF for conver-

sion and User Acceptance Testing began slipping their schedules almost im-

mediately because of poor turnaround time. Two to three day delays were not

It became apparent to the ICSSE and the DSPE that Viking software,

which was the [irst major batch software system supported by the MCCF, would
require special treatment,

uncommon.

The resolution of the 360 computer turnaround problem was to block

computers for Viking usecrs, The ICSSE submitted 360 computer usage fore-

casts to the DSPE on a weekly basis,

N A sy L R

Schedules were then issued which

allowed Viking users to know when computers would be available during the
following week.

i

A b

Typically, four to six hour blocks of time were scheduled
on second and third weekday shifts, and during daytime hours on weekends.
When a computer was blocked for Viking, programmers could acc:ss it from

peripheral equipment located in an adjacent user area. They could monitor

the computer run and load status, and receive their output promptly,

it AT

The 360 blocked computer environment caused programmers to develop bsd

habits., They would come prepared to make as many job submittals 2s possible

during block time, often making conflicting ones that would hang the computer,
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They would overlnad the computer, causing the system to crash oxr their pro-

grams to abend., They only glanced at their output during block time, and

submitted many sloppy and unnecessary runs, They overworked themsuives and

became inefficient., However, generous amounts of block time were made avail-

uble to them, and ample time had been scheduled for conversions an:d UAT. As -

such, they were able to meet their delivery date commitments,

Reviews were held at the completion of User Acceptance Testing. The
cognizant engineers were required to demonstrate that their programs had

. met all succes. criteria specified In the User Acceptance Test Plans. The

UAT Review was a profit incentive wmilcstone. Management kept a close eye
on conversion and UAT progress to assure that the milestone wou!: be met on

or ahead of schedule.

Occasionally waivers had to be issued for specific subfunctions that
were not included, or because the UAT demonstrated that a progran violated
a computer set constraint of size, run time or peripheral equipment usage.
Programs delivered with waivers often were required to be scheduled for cor-

rective redelivery at a later date,

Waivers were also required for functions that had to be tested artifi-
cially because the true environment was not available. This occurred for
some early deliveries because the file management functions that accessed
the common data base, the common data base itself, the time utilities, or

interfacing programs were not ready.

3.2 Unit Verification Testing

As soon as the UAT review was completed, the program was delivered to
DSI to be incorporated on the Viking Integration Build, where it was no
longer accessible .o the programmer fo. modification, Duri o peak delivery
periods, the Integration Build was updated weekly., The DSI was required to
unit verify the program to assure that it had been correctly incorporated
on the build, The unit verification test (UVT) was a subset of the UAT;

the data and procedures to run it were included with program delivery,

The UVT sometimes failed because the program had not been incorporated

on the integration build propsrly. This happened mostly with 360 operations
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because of the complexity of the build decks, or that a required module was
not on the build, or that a programmer had not turned all of the required
build slip forms into operations. When this occurred the program, or rompo-
nents thereof, had to be redelivered via the same responsive but rigid change
control procedure used for the initial delivery. The fix would then be in-
corporated with the next integration build update, and DSI would verun the
UVT. Since a month was allotted between the UAT complete milestone and the

UVT complete milestone, these failuves rarely jeopardized schedules,

3.3 Lander/Orbiter Software Test Integration

The initial L/OST integration was conducted following unit verification
testing of the MOSS 1 programs on the integration build. It demonstrated
that what had been delivered was a collection of programs that individually
worked fine to perform their required functicns, hut could not communicate
with one another to form a workable software system. This finding was to

prove true for MOSS 2 programs as well,

It should be emphasized that the purpose of L/OST integration was to
assure that every interface would work, Since they ware being tested for
the first time, it was anticipated that a large number of errors would be

uncovered,

The high rate of failure detected by L/OST integration estabjiished the
extreme value of the SDBD, The reasons for failures could be detected very
quickly. Invariably, only minor changes to code were required to correct
the situation., Had the SDBD exercise not been done as deta.led and cumpiete
as it was, it is reasornable to conclude that the L/OST integration failure
impact would have been major, and the Mission Build would have been compro-
mised, In addition, the SDBD permitted management the visibility to know
that when a change to a program did not affcct the SDBD ir 5.y way, the
change would not affect any other program in the system, Thus, the software

system itself was structured by the SDBD as well as the ISVD.

The reasons for failures detected by L/OST integration wzre numerous:
there had been misunderstandings in the file header structure, precision
requirements, file access methods, fixed vs floating point data, file struc-

tures, number and types of records generated, data units, and operating

17
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system differences between originating and receiving computer sets. Overall,
eighty percent of the interface tests failed the first time they were at-

tempted, and fifty percent of retesting uncovered new errors.

The fact that the UAT was made 4n incentive milestone wes a contribu-
ting factor to this finding, Rarely was a schedule missed, But emphasis
had been p‘ on unit testing. Interfaces rarely had been tested because
it was not_reQuired. Scaffolds had been used to demonstrate that inter-
faces would work, but they had been built based on individual programmers
interpre‘ions.

The significant failure rate uncovered by L/OST integration, combined
with a much greater change traffic caused by new requirements than had been
anticipated, was not compatible with meeting Mission Build schedules using
the UAT/Integration Build/UV{/L/OST integration development cycle., There~
fore, after failure reports ~eve issued and program corrections made, L/OST
integration was performed prior to redelivering the software to DSI., This
permitted corrections to be made for newly discovered interface failures
prior to placing the redelivered Roftware under rigid change control., This
modification of the development cycle proved to be workable, permitting pro-
grams to be placed on the integration build that formed a usable software

system,

3.4 The Mission Builds

The concept of the JPL Mission Build is probably of major importancec
whenever one conceives of real software control., Despite all the problems
and headaches encountered during the development of Viking operational soft-
ware, which extended well into the compatibility test phase, the build pro-
cess permitted man~cement to control at all times what vas o~ :rational, what
was Lu oecome operational, and how and when it would become . serational,
It allowed management to know what the operational capabilities would be be-
fore a system was delivered, This was because Mission Builds were copies
of the current known status of an integration build. It guaranteed the
structured integrity of the system, Finally, it provided a means for the
software system to evolve and mature over the eighteen month period prior

to planetary operations,
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As previously mentioned, Mission Builds were copies of the Integra-
tion Build taken at scheduled points in time., Each was given a unique MOSS
designation, and changes to them were not permitted. Controlled overrides
to portions of programs on the build were possible, but highly visible.
Such patches were permitted to be incorporated to correct local problems

only when authorized by the Mission Director.

MOSS 1 consisted of a small subset of Viking software. 1t was not
adaptive, and virtually worked with “canned" runs., MOSS 1.1 had to be sched-
uled to incorporate changes to the real time portion of the system. It was
adequate to support the spacecraft hardware communication compatibility test

for which it was designed,

MOSS 2 incorporated all of the basic Viking launch and cruise opera-
tional software functions., Management realized that the heavy change traf-
fic caused by new requirements, plus the fact that single thread sequence
and compatibility testing could uncover errors, required that several more
mission builds be scheduled. Furthermore, MOSS 2 demonstrated to them that
some of the programs were long running resource hogs that would require

performance improvement to support the mission,

Yor these reasons, five mission builds were scheduled as updates to
MOSS 2, Each would be designed to incorporate changes required to support
specific spacecraft compatibility tests conducted fn preparation for launch.

The final update, MOSS 2.5, would support launch and cruise operations,

Following the first mid-course mancuver, MOSS 3 wouiu be placed on-
iine to incorporate planetary software functions, to support lander space-
craft compatibility testing, Flight Team test and training, and cruise opera-
tions, Four updates to MOSS 3 were scheduled to incorporate potential, but

unknown, software changes authorized by the Mission Direccor,

UAT, UVT and L/OST integration milestones and schedules were revised
for the MOSS 2,1 - 2,5 and MOSS 3.0 builds, The development cycle now over-

lapped compatibility testing for launch and cruise operations,
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3,5 Single Thread Tests

Originally, sequence tests had been incorporated into the L/OST Plan
as the final step of the integration phase, They were intended to demon-
strate that the software system could meet the mission requirements, They
were extremely involved, requiring resources, personnel and data that could
not be supported by the project during the period scheduled for L/OST inte-
gration., For this reason single thread subsystem tests that were designed
to escablish:that data could be passed between and among programs in a co-
herent fashion were scheduled, The single thread tests generally worked the
first time they were tried, and demonstrated the operability of the system
using the integration build. They were conducted for uplink and FPA soft-
ware scheduled for the MOSS 2 build series. Single thread tests for descent
and downlink science software systems were not performed because the analy-

tical nature of the programs required realistic data, which was not available,

3.6 Sequence Tests

The fact that the final planetary software system did not have to be
placed on line until after launch permitted sequence integration tests to
be conducted from th: integration build, rather than from a MOSS. This
proved to be a very fortunate turn of events because the tests ran into
problems caused by the lack of good test data during User Acceptance Testing.
Sequence tests were conducted independently for the descent and ianded sci-
ence software systems. Single thread uplink capabilities had been estab-
lished, and all program interfaces functioned properly prior to the start
of these tests,

The integration build software system was used to generate uplink
commands, which were written to tape and sent to Denver to be rrocessed by
the Viking Proof Test Capsule and associated test simulators. There, realis-
tic data was generated to simulate descent and landed science. This data
was written to tape and sent to JPL to drive the downlink portions of these

software systems,

The science data went thru the downlink system relatively smoothly,
A new user group was conducting the test, and they experienced some delays

in learning how to use the system, All programs ran as advertised, the
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data flowed to the science analysis programs, which processed the interface
files without error and produced page after page of wrong answers. This
finding was directly attributable to vagueness in specifying software re-
quirements and in the lack of adequate test data during User Acceptance Test-
ing. Once again the SDBD proved its value. The science cognizant engineers
turned to it to learn what their data should look like at each stage as it
passed thru the software system. They were able to state preciselv what
errors had occurred within each program in the loop, including their own.
All the errors were easy to uncover, and were minor in nature. TFailure re-
ports were written, programs were corrected and the downlink portion of the
landed science sequence test was rerun prior to program redelivery. This

time the answers were all correct.

The downlink portion of the descent sequence test uncovered a different
problem. The lander decommutation and decalibration function could not pro-
cess the data wsing the available computer set resources. The function had
passed UAT using scaffold test data that had been good enough to demonstrate
all program functions worked correctly, but not good enough to demonstrate
the program would be unable to handle the quantity of data that would be
required to support descent operations. It took almost a month to finally
piecemeal process this descent data. The descent analysis programs were
then run, and a few minor errors were uncovered., A Tiger Team was formed
to resolve the dccommutation and decalibration problem. The ultimate solu-
tion was to design a software procedure for allocating computer set resources
that would not overload the system. Part of the redesign regcired a con-
straint waiver that permitted use of additional tape drives when data for
the twe Viking descents were to be processed. The fix was tested and in-

corporated six months before it was needed to support planetary operations.

The sequence tests were the final step in the Mission Operations Soft-

ware Development process,

3.7 Operational Considerations
Users tended to get their own job done by any means avatlable te them,
and without regard to other users, They hogged resources, which often

caused other programs to fail, Because of the limited rescurces in both the
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MCCF and GPCF, and the large amounts of data expected to flow thru the sys-
tem during operations, the software integration group came up with the means
by which management could solve the problem., An on-line data file manage-
ment system automated file control in the MCCF that controlled the use of

the limited direct access storage space available in that system. Conflict-
ing programs were not allowed to be placed in a computer at the same time,
Users were required to release tape drives and direct access space as soon

as possible, Files were removed from the system with regularity by the Data
Processing Team, Users were disciplined to get their jobs done at prescribed

times,

During cruise emphasis was placed on permitting limited software changes
as approved by the Project Manager, Generally, modifications were permitted
that improved program efficiency. The user engineers responded favorably

and creatively in this atmosphere,

Shortly before planetary operations began, a crackdown on users was
made by Management, Visibility into the controlled MOSS made it easy to
detect that some unauthorized software was being run on the system, Manage~-
ment rationalized that engineers would very naturally view the computer as
a tool by which they could make their own job easier. It w:s apparent that
several small programs had been developed for this purpose. Each of these
programs was required to be identified, and the individual users were re-
quired to explain their purpose and functions to the Mission Directors, All
of the functions were worthwhile and innovated., None of them affected the
integrity of the software system., Some functions were deemed necessary to
support Viking operations., They were required to be deliverad to DSI, unit
tested, and placed on the MOSS. The remaining functions were declared to
be non-essential software, Since they were useful, their us rs were per-

mitted to run them during low activity, non-critical periovas. or on off-

line computers.
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4,0 Lessons Learned

Management's requirement that the software system be placed on line
ten months before launch so that it would be available for test and training
was paramount in the success of planetary operations, It allowed time to
uncover software errors, time to determine additional needs, time to rede-

sign for performance improvement, time to let the system mature, and time

to develop user discipline and procedures.

Programs should be developed on target computers whenever possible,
When this is not possible, sound management planning for the conversion

process is mandatory if costs and schedules are to be met.

The Integrated Software Functional Design is an extremely effective

means to allow management to monitor and approve the overall design of a
software system,

The Software Data Base Document is an invaluable aid in solving inter-
face and integration problems.,

Development of program dependent system software should precede de-
velopment of program software.

Person to person communications, requirements specifications, and test
data generation are the hardest things to do well. Strong emphasis should

be placed in these areas early in the development cycle,

Software development can meet reasonable schedules if it is monitored
and managed down to its root level,

The Software test and integration effort will be at least as costly

as the software requiremeants, design and coding effort,

Software should be brought under configuration control at an early

date and tested as a system before it is to be delivered as a system,

Management should have the ability to adapt to new situations as they

arise, and be prepared to replan schedules and resources.

Rushing software development will not produce useful software,
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Software programs should be tested to meet their requirements, not
their code. Software systems should be tested to meet their mission objec-

tives, not their design.

The development of any major software system requires that competent
software systems engineers, who understand both the needs of the system and
the individual programs that make up the system, be given firm control over

the development process,

Meaningful software milestones should be defined to provide the means

by which progress can be monitored.
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NAME: HIGH ORDER LANGUAGE UTILIZATION

SUMMARY: During the initial phase of the development of Viking Mission
Operational software the requirement that FORTRAN be used for code
was made mandatory. Waivers were granted that permitted the use of
assembly language for specific functions that could not be implemented
by a FORTRAN compiler. Waivers were eventually granted for some func-

tions that permitted replacement of FORTRAN code with assembly language.

APPLICATION CONSIDERATIONS: The decision to use FORTRAN was based on
several reasons. Orbiter software could be generated by modifying
existing software already coded in FORTRAN., Lander software was re-
quired to be developed on non-target computers. Each computer system
had assembly languages which had different instruction sets, but all
computers had FORTRAN compilers. Many of the software functions were
analytical in nature, making FORTRAN appear to be an ideal HOL, The
level of programmer expertise required to program in FORTRAN is not
too great, reducing the potential impact caused by personnel turnover,
Finally, high order languages ease the task of locating errors in

logic when anomolous conditions are detected,

RECOMMENDATION: The concept of using HOL for all functions that can be
accomplished by it and using an appropriate assembly language for the
remaining functions will produce a software system with a good basic
design., 1In the event that the system must operate within limited com-
puter resources, timelines, and budget, as was the case «ith Viking,
some functions will be inefficient. These should be replaced with
assembly language to get improvements as required for specific

applications,
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HISTORY: The basic functions required to be developed for the Viking
operational software system were examined during the very early
stage of Viking. None of them seemed to be complicated, and it
appeared at the time that they could all be implemented reasonably
well using FORTRAN, The use of that high order language was looked
upon favorably by management because the program to computer assign-
ments were unknown at the time. In addition they felt it would
simplify the conversion process as well as make the software logic
readable to a far wider range of individuals, thereby making manage-
ment less dependent on the individual talents and personalities of

programmers.

This desire to make the software more visible and less computer de-

pendent led management to mandate that all Viking software functions
would be developed in FORTRAN, The problem of permitting the use of
a low order language would not be resolved until an actual situation

occurred that required resolution,

The first indication that some assembly language software would be
required came during the requirements definition phase for the Lander
Command Simulation (LCOMSM) program. An Interpretive Computer Simula-
tion (ICS) program was available in FORTRAN and could be modified for
Viking., However, its size and run time violated Viking computer re-
source constraints and mission timeline requirements., Considerable
effort was made to resolve this problem, but no solution could be
found., As & result, an innovative scheme which required low order
language development became the only viable alternative to the Viking
managers, A project wide waiver system was adopted to permit functions
to be developed in assembly language in the event that FORYRAN could

not be used to meet Viking needs,

Eventually, the waiver was used to permit assembly language subfunc-

tions to be developed to improve program efficiencies.
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DESCRIPTION: With the exception of the Lander Command Simulation program,
. all software functions planned for the Viking operational system were
developed in FORTRAN. After the original implementation of the soft-~

ware, assembly language subfunctions were required to be developed for
the reasons outlined below,

The file management program that transferred interfacing data files
between the UNIVAC 1108 computer and the IBM 360/75 computer required
an interactive capability with the two operating systems in order

to become sufficiently adaptive to changing requirements so that its
code would not be impacted.

The IBM FORTRAN compiler did not provide some functions that were
available on the UNIVAC compiler. This resulted in poor core utiliza-
tion and unacceptably large CPli requirements, Assembly language sub-
functions, similar to those available in the UNIVAC compiler, were de-

veloped for the IBM programs to resolve this problem.,

A number of programs increased in size, because of new requirements,
to where they violated the 65 K word maximum core restraint imposed
on the UNIVAC 1108. A number of subfunctions used in common by these

programs were rewritten in assembly language to conserve core, which
solved the problem,

FORTRAN DATA statements, used by the Lander Sequence of Evenis program,
were replaced with assembly language functions that took advantage
of 1108 operating systems capabilities to provide output capabilities

more readable to the users,

Conversion of floating point numbers transferred between the 1108 and
360/75 computer systems was accomplished using assembly language to

satisfy the guidelines and constraints of core utilization,
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The requirement for on-line data management functions materialized for
IBM 360/75 operations, This required interactions with the operating

system that could only be accomplished using assembly language code.

Finally, assembly language functions were developed for both the 1108
and 360 computer systems to improve computer run times and reduce com-
puter resource loads, These were ir the areas of dynamic core alloca-
tions, compressing the use of disk space, freeing unused core during

program execution, and supporting bit manipulation,

The final software system consisted of approximately 90 percent FORTRAN

and 10 percent assembly language.

QUALITATIVE RESULTS: A significant use of low order language was required
to be developed and included in the Viking Mission Operations Software
System, The overriding reason for this was that available computer re-
sources could not support mission load and timeline requirements because
of inefficiencies in CPU, core and mass storage caused by FORTRAN com-
pilers, There were only a few instances in which assembly languages
were used to perform functions that could not be done in FORTRAN. Given
sufficient computer resources, even these functions could have been

circumvented.

The quality of the software itself was more a function of programmer
experience rather than whether FORTRAN or assembly language was used;

some programmers were limited to using FORTRAN,

QUANTITATIVE IMPACT: The estimate of the cost impact to the Viking Project
caused by replacing unacceptable FORTRAN code with assembly language is
subjective and difficult to assess, The personnel who accomplished the
task did so in parallel with extensive program modifications caused "v
program failures and new software requircments. Many of the assembly
language functions needed to be -eveloped were available in the JPL

library or had becen developed by the Lander Command Simulation program.
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A large amount of this task was accomplished by the 360 and 1108 com-
puter consultants, who, as members of the Software Integration Group,
were {unded to support just such activities. They would have been

available whether or not assembly language modifications had been re-
quired, For these reasons, the cost to replace FORTRAN with assembly

language probably did not exceed two man years, and may have been much

less.

The cost that the project would have borne had it not permitted any
assembly language to be developed is also subjective, but easy to
assess, Assuming that mission timelines could “ave been met with the
exclusive use of FORTRAN, one additicnal 360 and one additional 1108
would have been required to support Fiight Team training and planetary
operations., This is a net cost increase of fourteen computer months,

which represents a 50 percent increase in computer resources over a
seven month period.
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DIFFERENT DEVELOPMENT/INTEGRATION SITES

SUMMARY: The Viking Lander software subsystem of the Mission Operations

Software System was developed at MMC on non~target computers, Pro-
grams were unit tested prior to being delivered to JPL to be inte-

grated into the MOSS,

APPLICATION CONSIDERATIONS: The forecasts for the loads on the computer

sets at JPL indicated that the MMC portions of the Viking operatfonal
software system could not be developed on them, The MMC facility
contained CDC 6400, CDC 6500 and IBM 360/75 computer sets, whereas
the JPL facility contained UNIVAC 1108 and IBM 360/75 computer sets.
The operating systems of the IBM computers at the two facilities were
different, No equipment similar to the JPL UNIVAC 1108 system was
available in the Denver area, Pathfinder studies indicated software
could be developed on non-target computers without creating any seri-

ous conversion problems,

RECOMMENDATION: Manpower, computer time, and schedule slippages can be

reduced by planning, organizing and controlling software devejopment

activities in a manner which will allow for an easier conversion pro-

cess, Functions developed in a minimal HOL can be converted with rela-

tive ease, Functions required to interplay with the operating system

should be developed cn target computers., Programmer education should

be stressed, The same compilers should be used on both the development

and integration computers,
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HISTORY: One of the problems which faced the management of the Viking

mission operations lander software development was that the develop-
ment computers differed from the operational computers. The Martin
Marietta facility consisted of CDC 6400 and CDC 6500 and IBM 360/75
whereas the JPL computer facility consisted of IBM 360/75s and UNIVAC
1108s. Thus the software conversion task became a management concern

very early in the software development activities,

Great amounts of manpower and machine-time can be spent converting
software., This coupled with the extra costs of not meeting scheduled
delivery dates can cause software conversion to be an expensive task.
Many times much of this manpower, machine-time, and schedule slippages
could be reduced by planning, organizing and controlling the software
development activities reiative to the conversion process. The prin-
ciple methods used in the management of the conversion process by
Martin Marietta on the Viking project were: 1) predominate use of a
minimal high order language; 2) education of programmers and enginecrs
on system differences and similarities; 3) emphasis on the fact that
the software would eventually reside in another computer system; &)
pathfinder operations to seek out problems which might occur prior to
the actual conversion process; 5) establishment of MMC computer con-
sultants at JPL to gain familiarity with both the various computer
systems and the operational procedures; 6) the requirement that the
software be demonstrated to unit function properly prior to the con-

version process,

DESCRIPTION: Prior to initiating software development the MMC management

examined the need for standards required to develop so'tt are on non-
target computers, One output of this analysis was to require the use
of FORTRAN except when individual software requirements represented
an actual need for assembly programming. This decision was based on
several reasons. FORTRAN compilers were available on the various
computer systems at both JPL and MMC. Some of the prototype software
for mission operations were already written in FORTRAN, The pro-
gramming skills of the MMC engineers and programmers was limited in

many cases to FORTRAN. 31




Once the decision to use FORTRAN was made, a study was undertaken to

determine what differences existed between the various FORTRAN com-

pilers on the UNIVAC 1108, IBM 360, and CDC 6000 series computers.

This study showed that there were variations in permissible number )
sizes, that some features of FORTRAN were not available on all the
FORTRAN compilers, and that some implementations went beyond the
standard FORTRAN, A document entitled '"Characteristics of FORTRAN,
CDC 6000 Series, IBM System/360, UNIVAC 1108" was written which showed

the minimal language that would be used to reduce conversion costs be-

tween the development computer and the integration computer. A second
reason set forth for the usage of the minimal language was that for

some programs the development machine at MMC had been determined but

the final machine at JPL had not been decided upon. The target computer
would be determined at a later date when computer loading studies could

se made and analyzed.

The education of the engineers and programmers in the conversion pro-
cess was next undertaken., Lectures were given which involved discus-
sions regarding the minimal language document and its contents. The
minimal language document was incorporated along with JPL documentation
on the IBM 360s and the UNIVAC 1108s into a document entitled "Viking
Flight Operations Programmer Guide'. This was distributed to all pro-
grammers and engineers, The primary point stressed during this educa-
tion process was thst by following the minimum language requirements
_during software development the conversion efforts of the programmer
would be lessened, Other points stressed during this education were
that by using the guidelines set forth, along with thorough documenta-
tion, change over between programmers and engineers caused by changes

in manpower would be less costly,

A pathfinder study was made that converted representative software
which had been developed on the CDC 6500 using the minimal language
to both the IBM 360 and UNIVAC 1108 at JPL., The time required for
conversion of code was recovrded and the software was then run oe “he

UNIVAC 1108 and IBM 360 unril the test cases matched the CBC 6500 runs,
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The computer runs were logged and all problems were noted.

The re-
sults of the pathfinder study showed that by using the minimal lang-

uage documents the conversion process would be simplified. The path-

finder study also demonstrated that it was easier to convert from CDC

6500 to UNIVAC 1108 then from CDC 6500 to IBM 360, Thus all software

that would eventually reside on the UNIVAC 1108s at JPL would be de-
veloped on the CDC 6500 at MMC,

The next step taken to ease the conversion process was to establish

MMC computer consultant personnel on site at JPL to learn about the

specific operational differences between the MMC computer systems and

the JPL computer systems. This initially consisted of one person who

was the focal point for all questions by MMC personnel on the JPL com-

puter systems. The procedure for gathering and disseminating informa-~

tion was to funnel all questions through cne individual at MMC, who

then contacted the MMC computer consultant at JPL, The consultant

would then be responsible for contacting various JPL individuals to

gain the answers to the questions. These answers were the: distributed

via inter-office memos to all the MMC development programmeryz of mis-
sion operations software.

The computer consultant proved to be of such value that a second con-

sultant was appointed. One now had responsibility for inquiries into

the differences between the MMC IBM facility and JPL IBM facility, and

the other had responsibility for inquiries between the UNIVAC facility

at JPI. and the CDC facility =z MHMC, Thre consulcants were organization-

ally members of the lander -oftware inctegration group.
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After a mission operations software program completed certification

testing at the MMC facility it was brought to JPL for conversion and

user acceptance testing., The MM consultants at JPL cstablished the

methods by which the programs were brought t,» JPL, This was done by

generating special purpose software or by defining the actual utility

A

programs which were to be used in generation of the tapes required

for program conversion and data tapes fur program testing.
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The MMC consultants took an active role in the software testing at
JPL, and were responsible for insuring proper delivery of the soft-

ware to Data System Integration,

QUALITATIVE RESULTS: The software conversion task was done on schedule,

although not without some problems. Many of the problems that did
occur had to do with the altering of the engineers and programmers
normal work habits, This occurred in the IBM 360 conversion effort,

Due to the eperational procedures at JPL, in order to receive the
necessary turnaround time to do program ccnversion and testing, blocks
of computer time had to be scheduled. These blocks of time were usu-
ally 4 to 6 hours in duration during the week starting at 9:00 PM to
4:00 AM, and up to 48 hours duration on the weekends, The pressures

of trying to make as many runs as possible and meet delivery schedules
forced many extra errors into the software. Instead of doing a detailed
analysis of the code and the dump of the program the programmer or engi-
neer would shot-gun many runs to try to fix errors. During longer block-
time stretches many engineers and programmers would work until they
introduced new errors due to physical anc a.:ntal exhaustion. This
altering of normal work habits did not occur on the 1108 conversion
effort. The turnaround was excellent and the machine was available

for use during normal working hours. Blocks of time were only required
in very special cases and were planned by the engineer and programmer

so that the use of the time was optimized. In short, the conversion
process requires good computer turnaround during normal working hours

to be efficient,

The MMC IBM 370 to JPL IBM 360 conversion effort had some problems
than were not foreseen. The JPL version of 0S5 was a real-time system
with standard 0S featurcs but was a difterent release than the MMCs
IBM 05, This caused problems in the conversion effort. In one in-
stance the difference in FORTRAN compilers between MMC IBM and JPL
IBM caused schedule slippages due to errors in the target compiler

that were not discovered until the conversion proecss began., This

problem happened early in the conversion process and two steps were
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taken to help solve the problems: 1) the release of the - npiler JPL
had was installed at MMC for use by the software still ". development
and 2) the release of the MMC compiler was installed at JPL for use

when needed.

There were technical problems as well, An example on the 1108 was that
the lander trajectory simulatioq program (LATS) had a subroutine which
contained a namelist for input which was very large. This large name-
list coupled with a large amount of equivalent statements caused an
overflow in the internal tables the compiler used. Thus the routine
was not compiled correctly, In order to solve this problem, a special
version of the compiler with larger tables was generated strictly for
use by this subroutine, Eventually the namelist was split into many
namelists which then allowed the standard JPL compiler to process the

subroutine,

There was one other problem which occurred that should be reported.
This was an internal conversion effort done at MMC on the CDC. The
operating system was changed from MACE to SCOPE during the period in
which the software was being developed, This change caused many sched-
ule impacts in the Viking software development. Much time was spent

by the development programmers changing their job controf cards, their
file naming conventions, their file structures, and in learning how

the system worked, This coupled with extra down time and ruaning of
two operating systems caused much confusion. The conclusion is tnat
any operating system change should not be allowed concurrent with a

major software development activity.

The software should have been maintained at JPL after ..s initial
delivery to JPL, Deliveries of the software were scheduled to include
various programs and sub-sets of the programs requivred ijor test and
training operations which were carried on throughout the spacecraft
compatibility test phase, When a program was deliverad to support

such a test the programmers and engineers would take the final converted
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program back to MMC, convert back to the MMC computer, and then do the
development required ror the next delivery, This was an extra task

that should never be required.

P P TS

It should be stressed that by following the concepts discussed herein,

the conversion of the MMC developed Viking mission operations soft-
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ware was done on schedule within budget, and successfully supported

two Viking missions.

QUANTITATIVE IMPACT: Total manpower for cognizant engineers and programmer
activities involved in developing, testing and documenting Viking

lander operational software produced an average of 7 lines of code
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per day. Individual programs varied from a low of 3.3 lines of code
per day to a high of 12.4 lines of code per day. These figures are

reasonably within the industry for software developed on target com-
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puters, indicating the impact of conversion was relatively low. One

program was delivered two months late because of differences in com~

pilers, which was a conversion problem. All other programs were con-

verted on schedule. The conversion process represented approximately
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five percent of the development effort for 1108 programs, and approxi-

mately ten percent of the development effort for 360 programs,
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TECHNIQUE

NAME: COMPUTER LOADING PREDICTION ANALYSES

SUMMARY: Two types of computer loading prediction analyses were conducted

o A g Rrgbct "B b AEL AT,

for the Viking Mission., They included hand analyses of predicted CPU

requirements and use of the General Purpose Simulation System (GPSS)

TR

program, Both indicated that the planned Mission timelines could not
be met, The Viking Flight Team (VFT) conducted a full scale test that
verified the findings of the loading analyses. The key decisions re-
sulting from these efforts included changing the Mission Design from
two parallel to two serial landed missions, acquiring an additional

1108 computer set to support operations, and decreasing the planned

SR o Rt R . -

frequency for commanding the vehicles.

APTLICATION CONSIDERATIONS: Operations analyses of timelines and computer
loading analyses are applicable to software systems supporting missions
subject to environmental surprises, such as Viking. On the other hand
if the software system is being developed for use in a steady-state
environment a computer loading analyses made for any point in time
should be sufficient, Two techniques for accomplishing the loading
analyses are available., One approach is to use a complex computer

program such as GPSS (available from either UNIVAC or IBM) to model the

throughput of each computer used by the system, The second approach
is to perform hand analyses of requirements versus capabilities for

basic parameters such as CPU time.

A T T T

RECOMMENDATION: Computer loading analyses arc a proven useful tool to soft-

Rkt

ware managers, 1Iwo areas should be concentrated upon .udependent of
the technique selected; 1) the quality of the inputs will determine
the accuracy of the output, and 2) careful interpretation of the out-

put is required if correct conclusions are to be drawn,
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HISTORY: All computer loading analyses performed for Viking were accomplished

in conjunction with operations analyses of missior tinelines’, Three
basic stages to the process evolved that were not apriori planned.
These were operations analysis, critical period analysis, and VFT Test
and Training.

During 1973 management was developing the Viking Mission design.
The key factors of concern were the Mars encounter dates, the landing
dates, and the frequency and duration of the biological investigations.
At that time the planned nominal sequence was as follows:

1. Viking I encounters Mars

2, VL-1 lands 12 days later

3. VL-1 initiates biological investigations 4 days later

4, Viking II encounters Mars 8 days later

5. VL-2 lands 12 days later

6. VL-2 initiates biological investigations 4 days later

7. VL-1 terminates biological investigations 60 days later

8. VL-2 terminates biological investigations 24 days later

The prime Viking landed missions were each planned to have 90 day
durations, with about 65 days of overlap. Shortly after the mission
was established the Integrating Contractor Software System Engineer made
a hand computer loading analysis based on Mariner 9 experience and pro-
posed seven day look-ahead for lander planning. The analysis indicated
the computer complex at JPL would not be adequate for Viking.

Management therefore directed that an analysis of a two day mission
period should be conducted. The fifth and sixth days after the Viking
II landing were selected, Representatives from each Viking Flight Team
defined the products they would produce, the inputs they would require
and the computer runs they would need., After this data was gathered
a cursory time line/computer loading analysis was made that indicated
that neither the VFT nor the computers could support the events planned
for these days; people were both waiting to use computers and not ready
to use them when they were available, As a result of this analysis

the Mission Design was changed to the following sequence:
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1. Viking 1 encounters Mars

2., VL-1 lands 19 days later

3., VL-1 initiates biological investigation 7 days later

4, Viking II encounters Mars 21 days later

5. VL-1 terminates biological investigation 27 days later

6., VL-2 lands 3 days later

7. VL-2 initiates biological investigation 7 days later

It is emphasized that the decision to slow down the pace and go
to a serial mission could have been made from either an operations
analysis of people overload or a computer loading analysis that demon-
strated computer overload., Furthermore, the decision to go to a serial
mission was made when the software system was less than half finished,
so that only rough estimates of the characteristics of the programs
were known,

At this time the Viking Project issued a separate contract to de-
velop a General Purpose Simulation System Model (GPSSM) for the Mission
Control and Computing Center (MCCC) system., This was a joint effort
by MMC and JPL personnel, using the IBM GPSS as the basis for the model.
A Critical Period Analysis covering a 12 day period of the serial
mission was conducted in parallel with the GPSSM development. The pur-
pose of the analysis was to study timelines and computer loading in
more detail and to prepare for VFT test and training activities. By
this time more software was developed allowing better inputs for the
computer loading analysis,

Because the GPSSM had not yet been verified, a hand analysis was
again made, The results of the analysis indicated that more UNIVAC
1108 capability would be needed to avoid another mission simplifica-
tion. Since lead time for purchasing an 1108 prior tec nlanetary opera-
tions was becoming tight, the time saved by hand analysis was quite
beneficial.,

At this time the Viking Project and JPL faced the choice of pur-
chasing or leasing a third 1108 or of adding a second Central Proces-
sing Unit to each of the two existing 1108s., In order to make this

decision, a full scale test involving the VFT was scheduled to be
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conducted during the three day 'Memorial weekend in May of 1975, Prior
to the test both the GPSSM and hand analyses were used to predict the
outcome of the test, The test confirmed both analyses, and was the
tool that verified the accuracy of the GPSS model, The results of the
test led to the decision to purchase a third 1108.

It was not that Viking needed three 1108s but rsther that Viking
plus the non-Viking JPL users would require that capacity. The deci-
sion to add a third 1108 rather than increase the CPU capability was

based on the fact that it would result in less sharing between Viking

and non~Viking users,

Early in 1976 VFT test and training exercises were conducted in a
series of tests using the simplified Mission design, the extra 1108,
and rodified operational strategies based on the results of computer
loading analyses. The tests demonstrated that the system could operate

to support the mission timelines.

DESCRIPTION: The processes used to conduct the computer loading analyses
were as follows.

Programmers estimated program run characteristics, such as CPU
time, I/0 time, core usage, disk space, and tape drives. Each program
could be used for different tasks having different characteristics.
Data was gathered for every case.

Engineers then estimated when, how and why they would use the pro-
grams in each mode. Each team would indicate what time or times during
the day that each program mode would need to be run in order to satisfy
mission objectives., Estimates of how long it would take to analyze
the results of a computer run before the next run could bc made were
also included.

The hand computer analyses were then based on adding up the CPU
time required for each computer during each team's shift and matching
it with the inputs supplied by the programmers and engineers. A sub-
jective judgement factor then had to be applied. If during any eight
hour period, CPU requirements in excess of 4 hours for the 360/75 or
5 hours for the 1108 indicated insufficient computer capacity was
available. The early analyses indicated 8 hours CPU time on the 1108

would be required, stressing the need for an additional computer.
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The GPSS modeled all of the inputs obtained from the engineers
and programmers., The program modeled both 1108 and 360/75 operations.
The characteristics included core capacity, CPU rate, I/0 rate, tape
drives, and delays caused by humans examining computer runs., The model
would not allow runs to begin when core or tape drives were unavail-
able, nor would it allow a program to begin if it required input from
another program that had not completed. As such, the model did not
overload the computers. Rather, it would indicate that one day's work
required two days to complete if insufficient computer power was
available,

The GPSS modeled the scatter load feature of the IBM 360/75, but
did not model the core swapping feature of the UNIVAC 1108, It accoun-
ted for print and plot times, but not for system outages. The model
is now a standard tool used by JPL as a scheduling tool and for the

purpose of estimating potential system performance improvement.

QUALITATIVE RESULTS: Sufficient evidence for the potential usefulness of
computer loading analyses to managers of software development has been
presented. A few important aspects are worth noting.

The primary error source of the analysis is the quality of the
input, Since the quality of the output is limited by the quality of
the input, the cheaper and faster hand analysis offers advantages over
a complex simulation model, which would have to be validated before it
could be relied upon. In cases where most runs can be executed over-
night, one day granularity is sufficient to achieve an understanding
of the problem, In a mission operations environment where a sequence
of runs needs to be accomplished during a working day shift, a granu-
larity of 4 or 8 hours should be used.

Most members of the VFT felt that the hand analyvses were adequate
and the GPSS was an expensive luxury, although a significant number
of team members did not hold this ponint of view, The use of the GPSS
did have two generally agreed upon side benefits, People generating
inputs for analysis tended to be more careful and thorough when they

knew their data would be used in GPSS rather than for a hand analysis.
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Also, management was more impressed with GPSS results anc paid more
attention to the implications, regardless of whether or not they under-
stood how the GPSS worked,

The Memorial Day test by the VFT to verify the GPSS provided addi-
tional guidance concerning operational procedures and file management
problems, These areas were ignored by the hand analyses and treated
inadequately by GPSS,

One final point should be made relative to the computer loading
analyses, They only reflected how the VFT thought the mission would
be run, They did not take into account the affect that the resolution
of the 360/75 file management problem had on changing the way operatjons
there were conducted (refer to the on-line data file management system
techunique), They did not account for the 16 day délay in finding a
satisfactory landing site for Viking I, ner for the additional Mission
Planning activities for both Vikings I and II (neither Viking was set
down at its originally planned landing site)., They did not account
for maintaining a reduced Viking I mission during the primary Viking
II mission, Finally, they did not account for the data rate changes
resulting from the sciehtists analyzing data and then trying experi-
ments that were not originally planned. Their primary value was to
determine the level of activity that could be supported, which allowed

management to realistically assess how much could be accomplished.

QUANTITATIVE IMPACT: Since the computer loading analyses were conducted in
conjunction with operations timeline study analyses, it is difficult
ot determine their specific costs, Probably one man year was spent
by the VFT to generate inputs, Less than one man year was spent on
hand analyses., About three man vears were required to develop the
GPSS model., An additional one to two man years were rcquired to main-
tain the model.
Approximately 200 members of the VFT supported the three day Memori-

al weekend tests used to validate the GPSS., Had it not been for the

computer loading studies, that test probably would not have been

scheduled,
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TECHNIQUE

NAME: LANDER COMMAND SIMULATION (LCOMSM) FOR ON-BOARD DEVICE CONTROL

SUMMARY: Simulation of Lander on-board commanding and computation was

required at the bit-for-bit level. An innovative technique permitted
such fidelity without the ponderously slow Interpretive Computer Simu-
lation (ICS) technique ordinarily employed in such situations.

APPLICATION CONSIDERATIONS: Several proven approaches exist for on-board

flight computer simulations. Emulation, at real time speeds, usually
requires specialized hardware and may be embedded in a "hot-bench"
testing facility. The ICS approach is proven and popular, but signifi-
cant resources are expended in their use. Reasons for poor performance
are several, with typical expansion ratios of 20 to 100 times real time,
LCOMSM achieved significant improvement through two mechanisms: 1) tak-~
ing advantage of pseudo real time, i.e. segments where there is no
activity are skipped over during the simulation, and 2) the high over-
head due to execution time interpretation is avoided by performing a
translation time interpretation of static source code, and substituting
an equivalent sequence of simulation computer instructions for each
target computer operation. The latter sequence is carefully tailored

to represent the bit for bit result of on-board computer operations.

The improvement in simulation run times are significant.

RECOMMENDATION: An ICS has become a tool traditionally supplied by the com-

puter vendor., Typically written in FORTRAN to meet portability require-
ments, an inherently slow process becomes more cumbersome, The LCOMSM
approach is attractive where many hours of simulated time is anticipated.
This class of application warrants the special tailoring required to
substitute simulation computer code sequences for each object computer
Op-Code, The same level of execution visibility can be attained with
any approach; trace, conditional snapshots, conditional halts, and the
like. A single host monitor could provide the necessary common ser-

vices for a variety of distinct target computers,
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HISTORY: Initially, a FORTRAN Interpretive Computer Simulation (ICS) was
considered to operationally simulate the Viking Lander Flight Program.
An ICS was available to the Viking Project that could be used for this
purpose. Analysis indicated that thirty hours of computer time would

be required to simulate one landed day's activities. Modifications to
the ICS scheme could be made to reduce the computer rui; time to an esti-
mated three to five hours, Mission,operation timelines required that
the simulation not exceed thirty minutes, with a goal of less than
twenty minutes., Therefore, the Viking Project's digital simulation pro-
gram for the Mars lander computer became an attempt to solve two re-
source problems inherent with interpretive computer simulations, These
problems were the resources required to develop a new simulation and

the computer resources used by the simulation operationally.

The problem of computer resource consumption was addressed by
first designing the LCOMSM program to minimize the work required to
simulate a Viking lander computer, The approach taken was to place
the object code of the Flight Program into the 1BM 360/75 computer.

Two methods to accomplish this were considered, a source code instruc-
tion translation process and an interpretive process,

The source code instruction translation process could be automated
by subprograms called Instruction Translation Macros, one for each of
the Flight Computer instruction set. The Flight program would be trans-
lated into source code which, when assembled into object code and exe-
cuted on the IBM machine, exactly would simulate the Guidance, Control
and Sequencing Computer (GCSC) processing of the original Flight program.

As a consequence of the source code expansion effect of the trans-
lation process, the simulation object code core requirements are large.
However, having done the translation and assembly, the actual execu-
tion of the object code would be very fast. Since the code resident
in core is a translated version of the Flight Program, a simulated GCSC
memory map would not be immediately available, Rather, the contents
of IBM core would have to be mapped, by address, to the contents of
the simulated GCSC core, This approach imposed a requirement on the
original source code, Namely, the source code had to define a monotonic

mapping, by address, of object code into core, Unfortunately, the

44




it N ‘l‘u‘. i

LA

-

existence of unusable GCSC memory locations as well as programming

techniques utilized in the Flight Program made it impossil:le to meet
this requirement. Consequently, the translative simulation approach
had to be discarded even though it offered the fastest operational

simulation,

DESCRIPTION: An interpretive simulation of the GCSC was used by LCOMSM.

The design approach was to assemble the Flight Program source code
directly into object code, load it into core on the IBM machine just

as on the GCSC (allowing for differences in word lengths), and simulate
the GCSC processing of the identical object code in the course of exe-
cution on the 1BM, The GCSC was simulated by interpreting each object
code instruction in terms of the GCSC's response to it, as would have
been done had the translative approach been taken. The major difference
was that, rather than solving the problem once and for ali at the source
code level before execution begins, the interpretive process must be
performed for each instruction as it is encountered in the course of
execution. Therefore, the interpretive approach required more CPU time
for a given simulation., However, since the source code was not trans-
lated prior to assembly, the core requirements were smallexr in the in-
terpretive approach. Most significantly, since the object code was an
exact representation of the actual GCSC load, a memory map of the GCSC
being simulated was immediately available at any desired simulation
time with a simple readout of. .the IBM core.

The development of the interpretive simulation for a real time
process was a difficult task, since it was hard to realize if a real
time process was being simulated correctly and even harder to know why
it was not. For this reason a aajor emphasis was placcd on providing
as much visibility as possible of what the simulation was doing. 7The
program was designed to produce simulated program execution traces for
both high and low level processing. As soon as the program was ready
for testing it incorporated a full instruction and processor state
trace. Becruse of the volume of data this trace produced, a post
processor was develcped to allow scans of the data in several different

modes. In addition, the capability was introduced to trace the functions
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of the s..uulated lander executive for both Input/Output and scheduling.
This allowed a higher level of program execution visibility, which
meant that much less output was produced during a given run, The pro-
gram was designed to allow for tracing of both selected data cell usage
or instruction execution te facilitate finding incorrect simulation or
invalid simulated program loads. To verify simulator accuracy, the
program was designed to compare the simulated processor commands issued
with the set defined by a functional simulation of the same period.
In order to minimize the work required, the LCOMSM program design

included the mapping of several of the hardware capabilities of the
GCSC into the hardware capabilities of the IBM 360. This consisred,

in part, of the mapping of several GCSC registers to IBM 360 general
purpose registers. In addition, a unique timekeeping system was de-

vised which eliminated most of the usual processor time associated with

the task,

The program design was enhanced to intlude the ¢oncept of Dynamic
Algovithm Replacement (DART). As incorporated in LCOMSM, the simula-
tor could identify, during a run, that the simulated program was Joing
some algorithm for which a replacement existed. The replacement would
do precisely the same thing as the simulated algorithm with the excep- -
tion that the instructions did not have to be individually interpreted. .
Instead, a host computer code body was executed with the subsequent

savings of processor time,

QUALITATIVE RESULTS: The LCOMSM program was able to model elapsed times for
90 day simulation runs without error. The program was developed in less
than 30% of the original development estimate. The simulation provided
a time compression slightly greater than 200 to 1, which should be com-
pared with the 8 to 1 time compression estimated to be the best that
could be obtained by modifying an available FCRTRAN 1CS program.

QUANTITATIVE IMPACT: The operational impact of the LCOMSM design can best
be judged by comparing its computer resource requirewrcnts with the
Orbiter Computer Simulation Program (OCOMSM), which used a FORTRAN

Intcrprctivé Coméuter Simulation, The Lander Flight Pregram was four
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times larger than the Orbiter Flight Program. LCOMSM required 120 Kbytes
of Main Core and 138 Kbytes of Large Capacity Storage (LCS), whereas
OCOMSM required 183 Kbytes of Main Core and 287 Kbytes of LCS. Any
Viking 360 batch program, except OCOMSM, could be run in the computer
while LCOMSM was executing. No other Viking batch program could be

run in thg computer while OCOMSM was executing. This was important due
to the throughput characteristics of the two programs. LCOMSM would
require approximately 5-1/2 minutes of CPU time to simulate one landed
days operations and throughput the job in 6-1/2 minutes. OCOMSM would
require 8-1/2 mirutes of CPU to simulate one synchronous orbits opera-
tion, but the throughput time for the job took approximately 70 minutes,
The systems impact of this was that about half of the Viking batch IBM
360/75 computer time had to be dedicated to OCOMSM exclusively. This
proved to be a continuing cause for delays in obtaining output for any
other batch job. 1In addition, because LCOMSM throughput time was rela-
tively good, the program allowed for job resubmittals without causing

' a major impact to normal operations.

The final version of LCOMSM used for planetary operations contained
11535 source cards. The cost to develop the program from requirements
through delivery of the final version used for planetary operations was

87 man months, or approximately 70 minutes per source card.
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TECHNIQUE

PROGRAM & DATA BASE INTERFACE MANAGEMENT

SUMMARY: A common data base was used by all Viking Lander operational pro-

grams to access critical tables and constants, such as flight computer
turn on times, lander coordinates, and length of a Martian day. Inter
computer file transfer software permitted user files tc be readily

available on any computer system, transparent to the users.

APPLICATION CONSIDERATIONS: Viking Lander operational software was required

to be developed from scratch rather than by modifying an existing sys-
tem, Mission planning, sequence generation, flight path analysis,
spacecraft health and science analysis programs used significant amounts
of common tables and constants, These programs operated on two differ-
ent computer sets and required large amounts of interface dsta to func-
tion correctly, Using tape drives to transfer data between programs
during operations would have compromised mission timelines, Coordina-
tion of large amounts of data separately used by programs is subject

to considerable human error. For these reasons inter-computer transfer
and common data bzse file management software was developed and used

by these programs,

RECOMMENDATION: A single source for accessing critical data subject to a

low rate of change can be a useful tool in redvzing chances of human
error. Care should be taken to coordinate dats values among all users.
A single source for transferring data between computers is attractive
when large amounts of data are to be transferred and comjuter tape

drive resources are limited.




HISTORY: At least as early as March 1972, it was realized that the Viking

Project would have some unique data base problems. One of the data
bases identified as being desirable was the Flight Operations Data Base
(the. data used and generated by the Flight Operations software). One
segment of the FOS data base was named the Common Dpta Base, This data .
base would contain data items used by more than one program (but in
some cases, data used by only one program), The types of data eligible
for admission to this data base were tables and constants whose values
were not expected to change more than a few times during the mission.
This data base was meant to-replace data normally compiled within the
program as DATA statements or as data input into the program without
change each time the program was executed, Having a system of programs
operating from a common data base offered many attractive features, It
forced consistency of data among the varsious application programs.

That is, all programs used identical values for tables and constants,
such as epochs and clock drift tables. A common data base allowed up-
dating of constants to take place simultaneously among all using pro-
grams., Data base management procedures allowed control and documenta-
tion of values used, and change history information. Operational re-
sponsibility for data availability resided with a central data base
manager rather than being divided among the operational groups.

Another segment of the Viking data base was the management of
inter-program data files. Viking file management was defined to be an
automated system which would checkpoint files and transier files between
machines., The checkpointing activity would provide file security and
load/off-load on<line mass storage space. File trnsferral was comy}i-
cated by the usage of IBM 360 and UNIVAC 1108 computers for the Viking .
Flight Operation Software System. Programs on one systen required files
created on the other.

Early attempts at defining methods and operation of a general file
checkpoint system were frustrated by lack of agreement among the affec-
ted user groups and lack of definition of system usage, As a result,
several different methods of checkpointing were eventually used for
Viking. The file transfer scheme used 7-track magnetic tape as a uni-
versal transfer medium., An c¢lectrical interface was established be-
tween one computer pair at a time (IBM-UNIVAC),
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The file transfer software concept fluctuated wildly during the

early systems integration time period. The detailed techniques for

translation and the extensive Input/Qutput requirements necessitate

R

thorough familiarization with the machines and operating systems. This
was initially a problew since the early software development was done

in Denver without easy access to the machines that were to use the sys-

?,
]

tem, Since file manipulation is dependent on file structure, either
great flexibility is required or total definition of file structure
must be available., Total definition is impossible until the file gen-
erating software is totally defined. For Viking the file transfer
algorithms were designed to maximize flexibility and generalize. The

design goal was to have greater capacity than required at the time, but

excess capacity was continually used up as the systems integration ac-
tivities progressed, The decision to perform data translation by the
file transfer software was contested early in the preliminary design.

The alternatives are to design the data files in such a way that trans-
lation requirements are reduced (i,e. transfer files in external BCD,;

to have the programs which use transferred files embed translation
within their own structure; or to have specific file translators attached

as pre~-processors to the using programs.

DESCRIPTluw., The Common Data Base on the IBM 360 system used for Viking was
based on ISAM (Indexed Sequential Access Method)., Subroutines were
written which allowed read only access of data base records by name.

The data base could be read directly or sequentially: the subroutines
were linked into the application programs., The using programs and the
data base were totally insulated from each other, Several programs
were written to permit the basic necessary management !..ctions for
data base operations., These functions were: load, modifv, list, and
reorganization, The actual data for the data base was collected, punched
into cards and loaded. An access method, similar to ISAM, was developed
for the UNIVAC 1108,

Inter-machine file transfer was enacted by pairs of programs. A
program on the source machine copies a file to tape for the tape trans-

fer, or enques files to a real time communication program for electrical
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interface file transfer. A program on the destination computer read
the tape and/or electrical interface communication line and placed the
files on regular on-line mass storage. Files were translated to the
word and record format of the receiving computer when necessary, Tables
describing the structure of files were placed onto the common data base
to supply specific translation details. Two types of tabies were used,
transfer control blocks and translation control blocks, Transfer con-
trol blocks, TRCBs, contain basic input file information such as file
format, output file information such as record size, file space allo-
cation parameters and flags indicating cataloging/allocation techniques,
and for non-character data, a string of symbolic addresses of transla-
tion control blocks, TRBs, TRBs are a linked set of tables describing
specific translation details and translation criteria. Translation
details are ordered pairs of numbers of words and translation technique
to be used, Translation techniques are integer to integer, character
to character, single precision floating point to single or double pre-
cision, straight binary transfer, et al., Translation criterion is a
data condition and one or two addresses of TRBs ﬁh@ﬁ are branched to

if the condition is met, Unformatted files, when gransferred between
unlike computers, must be accompanied with detailed information about
record structure, These details are contained in TRBs and reside in
the Common Data Base, The symbolic addresses of the TRBs are contained
in the TRCB for the file being received., Each TRB contains triggering
information and translation information, Triggering is the branching
process that allows different TRBs to be enacted, At the beginning of
file reception, TRB number 1 is given control, Upon the detection of

a specified condition, another TRB will be given control, The condition
can be either the length of the record being translatea or the contents
of any single data word contained within the record, TRB branching can
be on the basis of the condition being true or untrue. That is, trig-
gering to a new TRB can be based on a record length being equal to some
quantity or not equal to that quantity. On the IBM receiving program,
only the first 32 bits c¢: a data item participate in the compare.

Should the trigger condition be met, the reference number of the TRB
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to be branched to is located in the old TRB, A new TRB number outside
the range of one to fifteen will terminate the translation and set the
error flag within the veceiving program. This can be used to detect
anomalous conditions, The time of enactment of new TRBs is variable,
If the enactment time field contains the character string 'ELSE' or
'"PRES', triggering will take place after the current record is trans-
lated by the present TRB pattern., For 'PRES' and 'P@ST', triggering
takes place only when the trigger condition is met, For 'ELSE' trig-
gering always takes place. When the trigger condition is met, one TRB
is activated; when the trigger condition is not met, a different TRB
is activated. The purpose of the 'ELSE' trigger is to provide a double
branch capability. The purpose of the 'PRES' and 'POST' triggers is
to use a single TRB translation pattern to process a string of identi-
cally structured records and then branch to a new TRB when the string
is broken by a differently structured record, or a record containing
different data,

Transfer control blocks are keyed to the receiving program by in-
formation contained in the first data record. As each file was gen-
erated, a two record header was created. The first record contained
(at least) a five character generic file name. This generic file name
is the symbolic key for access to the commen data base, In this way,
file transfer is dependent only upon data content, Two other methods
of synchronizing received files with transfer control blocks are: pro-
viding manual inputs to the receive program or using a stringent file
naming convention. Manual inputs are prone to error; fi:e naming con-
ventions are difficult to adhere to rigidly, although file name method
of keying TRCBs eludes the manual input problems and places no restric-
tion on data file format. It also allows transfer of f‘les which were
not originally expected to be transferred, However, the independence
of file content and file name was judged to be the overriding concern,
and seems to be more in keeping with the concept of utility routines,
Since file name syntax differs between systems, the file names were
changed by the receiving program to the syntax of the rveceiving

operating system.
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QUALITATIVE RESULTS: There exist lessons to be learned from development

and usage of these data base and file transfer schemes., Since the data
base is essential to proper development of application programs, data
base software and data base techniques should be thoroughly debugged
and tested before the application program development is started. This
was done in parallel with application program development for Viking
and resulted in an initial lack of confidence by the application pro-
grammers. The confidence gap manifested itself in somewhat poor usage
of data base concepts and in invariably assuming it to be responsible
for application software anomalies. Gathering the data for insertion
into the data base is a monstrous task and reqQuires great cooperation
from the suppliers. Data quality and responsibility should be assigned
to cognizant groups of people for ongoing maintenance and control.
However, all responsibility fcr manipulation of the physical data base
should reside within a single authority,

Changes to data during operations on a common data base must be
performed with great care so that all using groups know ahead of ti:e
the details of the change. In general, agreement of all using groups
should be obtained before changes are done,

During the Viking mission, the data base software and technique
worked well in practice and conceptually, and no modifications of

scheme or concept seem to be errant.

QUANTITATIVE IMPACT: The Viking data base access method software and data

base utility software required about four manmonths of programming and
checkout effort for both the IBM and UNIVAC systems., The file transfer
softvare development cost was about one man year. The total effort for

the software function of which these were the major components produced

7923 operational source cards for a cost of 57 man months. These figures

include the development of an experiment data record generation capa-
bility and reflect all costs from requirements development through

final delivery of the program version used for planetary operations,
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The use of a Common Data Base had a negative impact during develop-
ment, test and training., Approximately one man month was lost by users
believing software errors were the cause of test repeatability failures,
whereas the actual causes were ultimately traced to changes to the com-
mon data base, No impact of this type was observed during operations,

Use of the file transfer software reduced the tape drive alloca-
tion requirements during operations by approximately 30 percent for the

entire Viking software system.
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TECHNIQUE

NAME: ON-LINE DATA FILE MANAGEMENT SYSTEM

SUMMARY: The on-line data file management system (OLDFMS) was designed to
assist in the management of data sets suited for residence on direct
access devices in the IBM 360/75 system configuration for Viking batch
operations, The system was developed after determining that the pro-
posed manual procedure for handling files on the 360/75 batch computer
could not adequately accommodate the anticipated 200-400 daily data

management activities.,

APPLICATION CONSIDERATIONS: The volume of data forecast to be processesd
daily on the 360/75 computer necessitated the development of a process
to perform data management functions with minimum human intervention,
Direct access space (DAS) was limited to approximately 12000 tracks for
non-temporary storage of lander files, which were expected to require
a minimum of 9000 new tracks daily. Thus data set creation could not
exceed file removal, which in turn could not be performed until adequate
checkpoint was completed., This translated into 200-400 actions required
daily to create, checkpoint, remove, and restore mission files. Main-
tenance of good records indicating which data sets were ready for re-
moval and checkpointing was mandatory to allow DAS space to be made

available, Tracking a data set's location also required accurate records.,

RECOMMENDATION: The on-line data file management system is perhaps unique
to the Viking Lander 360/75 batch operations. It was developed to re-
solve a very difficult data management problem that did ' »t exist for
Viking 1108 operations, since adequate data management tools were avail-
able there. It proved to be superior to the 1108 file management sys-
tem. It greatly simplified user requirements, significantly reduced
- the existing job failure rate and did not lose data sets. The lesson
learned is that designing a data management tool based on user needs,
computer set idiosyncracies and software system design produces a more

efficient system than using existing albeit adequate management tools,
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HISTORY: The data management procedures used on the IBM 360/75 were found

to be unacceptable to meet Viking Mission time lines. Those on the
1108 were deemed adequate,

The Univac 1108 operating environment was such that it promoted
standard file management practices to be performed by each user of the
system, Maintaining permanent data sets on mass storage is generally
impractical because:

1. special coordination is required with operations personnel

to identify a data set having permanent status, primarily
intended for program libraries, data basés, etc.;

2. accounts are charged for data sets remaining on direct access
storage at the end of each day (non-permanent data sets are
then purged after accounting);

3. if execution is desired on another available machine, unless
a data set is permanent on the object configuration, the user
must move data sets,

Item 1 above virtually eliminated Viking utilization of permanent

data sets because the naming conventions required that each data set

be given a unique name to help identify the file's content., Thus, if

a data set was required on subsequent days, it was the user's responsi-
bility to ensure that his files were properly placed on tape prior to
terminating a session., In addition, the charge on abandoned data sets
was incentive enough to remove files when no longer required.

These procedures with which 1108 users are burdened were necessarily
followed throughout software deliveries to JPL and user acceptance test-
ing. Thus learning to use the system effectively was virtually manda-
tory. It is interesting to note that most 1108 programs were originally
developed on the CDC system, in Denver, where the same concept of no
permanent direct access storage prevailed,

By contrast, the 360/75 system accommodated permanent direct access
storage via user packs during software deliveries and user acceptance
testing., This was different from the 370 development environment in

Denver in that available space was reduced by roughly a factor of six.
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Though this posed few problems initially, because data sets were resi-

dent until manual action was taken to remove the entry, a build-up of
leftovers became a growing problem. Since Disk pack contents were con-
sidered permanent, when personnel departed after completing user accept-
ance testing there was no incentive to remove data sets no longer re-
quired, and there was no obvious need to move data sets to tapes which
might be necessary for the next delivery phase. What happened was that
other teams would arrive to deliver end test software only tc discover
that there was insufficient direct access space for them to operate.

So they would resort to deleting data sets left by other users, many

of which were important,

In short, there was little visibility or control of direct access
storage usage, No incentives existed to use the resource in a rational
manner. Because no self-training could develop as occurred on the 1108,
it became obvious that self-policing would not accomplish the goals of
maintaining direct access storage (DAS),

Attempts were made to guarantee that data sets would be check-
pointed to tape and subsequently could be retrieved on direct access
storage space. This task was cumbersome and somewhat ineffective bhe~
cause there was no way to assure that the data set contents was the
latest. Regardless of the shortcomings of the checkpointing procedures,
no method could be devised to remove unneeded data sets, except for pol-
ling and policing users, Frequently, even the user could not recaull
the criticality of a file's contents.

While it was possible to clear direct access storage daily on the
360/75, it was impractical for several reasons:

1. No reliable software existed that could readily checkpoint a
collection of data sets to tape that could be rvetrieved in-
dividually (an entire pack could be moved to tape, but nothing
short of the entire pack could be restored).

2, There was no firm central control over pack contents bucause:
it would have been a full-time job for which no funds were

authorized; usins the available software tools would require

an immense amount of computer time to be consumed; to ensure
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data set contents, the pack control time would have to be
separate from pack user time; and finally, coordination (i.e.
file names to be checkpointed) would be difficult, if not
impossible, due to varied block time/shift assignments.

Users might have been reqQuired to checkpoint files, but the avail-

able software utilities were extremely burdensome, error-prone, and

* would have consumed an estimated 20-307% of available CPU time. In addi-

tion, most 360 users were accustomed to having their data sets perma-
nently resident on direct access storage (DAS) in the Denver installa-
tion. Even though direct access storage was more abundant, moving files
to tape was not an alien concept, However, hecause of the general pain
associated with the effort, and the tremendous amount of storage avail-
able, the action was seldom taken.

The computer environment at JPL was significantly different from
that in Denver during development. In Denver, the computer was generally
accessible twenty-four hours a day, whereas computer availability at
JPL was by assigning the computer for exclusive use by Viking lander
program developers for a specified period known as block-time. This
approach resulted in prolific activity within a typical 4-6 hour block,
gencrating an atmosphere of frenzy that sometimes bordered on panic,
end left little room for thought about data management. Block-time
participants worked almost always in a sloppy, barely-look-at-results
mode, trying to use as much of the precious available computer time as
possible before the blocktime ended., It was very difficult to perform
data management activities during non-block time periods because a modi-
fication to the non-block time computer configuration was invariably
required,

The Viking lander file naming convention allowed for one to iden-
tify: a data set as being mission or test; the type of data it con-
tained; whether the contents were applicable to mission A or B, or both;
and a final unique qualifier identifying the source link of data, 1In
narticular, the first level qualifier "VS" denoted a test data set and
"VM", a mission data set. A second level qualifier identified the type
of data set using an agreced to five character generic which was docu-

mented in the Software Data Base Document., The third and final qualifier
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indicated lander association by the characters: XA, XB, or XX, for
Lander A, Lander B, or both, respectively. This was foliowed by five
digits, the meaning of which was well defined for the file. For exam-
ple, Lander downlink data .files used the day of year the data was re-
corded on earth and the version for that day. 1In pa}ticular, the Lander
power program, LPWR, creates three data sets to generate the electrical
load profile. They are: the PROFL file, which contains a complete
load profile; the COMPR file, which contains a detailed power profile
for each individual component; and the PWRIC data file, which will be
used to provide initial power profile conditions to process data on the
next downlink. A forecast run of Day 250 for mission B landed, nominal
temperature, would have a qualifier of XB250L3. Should another run be
required for the same time frame, and the original files were to be
retained, the qualifier would appear as XB250L4.

The full mission data set names of these files are VM,PROFL.XB2S0L3,
VM.PWRIC.XB250L3, and VM,COMPR,XB250L3.

An obvious advantage to using a well defined naming convention is
to reduce, and make more meaningful user input. As for the above exam-
ple, the PROC parameters might be the following:

/ /MISSION=B,DAY=250, TYPE=3

File headers were conceived in anticipation of the naming conven-
tions to allow receiving programs the opportunity to verify that the data
set they were using was in fact the one requested. In addition, a cre-
ation date was included to pinpoint the time the data set was written,
thereby guaranteeing the uniqueness of each data set.

Whereas naming conventions could have been implemented earlier,
they could not have preempted file headers, since the header was an en-
coded part of data set creation and could not be inadvertently modified.
The file headers provide an additional check on the uata set contents.
However, it should be noted that no requirements were imposed to guaran-
tee that the file version field would be properly maintained.

The data management problems encountered during user acceptance
testing were amplified when the data systems integration (DSI) group

begau verifying software deliveries. Test checks were submitted to
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DSI for program delivery verification, but test data to be processed

by these runs often pointed to a direct access pack that was not part
of the DSI computer configuration. Thus, more often than not, a re-

quired data set was not accessible.

It should be noted that it was required to have data sets avail-
able, but frequently they were on the wrong packs (in practice often
data flight packs and development packs had identical identifications
which enhanced the confusion), or sometimes they ended up on temporary
copies of packs. Temporary copies of packs were required to be mounted
when, as often occurred, two computers whose configuration requirements
overlapped were scheduled concurrently. Rather than being concerned
with individual data sets, emphasis, by default, was placed on maintain-
ing direct access volumes with virtually no regard for content integrity.
This approach was not because of auy lack of concern, but was rather
due to the lack of proper, usable tools to cater to individual data sets
which, no doubt, fostered undefined procedures--other than identifying
the location of data sets--for delivering test data.

The GDS testing conducted during the spring of 1975 brought the
worsening data management problem into the limelight when one test was
a total failure because required data sets were missing. As a result
of this, procedures were defined to assure that reguired data sets
would be placed on the appropriate packs. A tape copy was required to
be available in case the direct access copy was, for any reason, not on-
line at the initiation of the test. Finally, the proper personnel were
required to be present for the test to work out any anomaiies which
might arise, such as fetching a mission data set from tape.

Despite these procedures, requirements and precautions, some test
sequences had to be cancelled because the required data sets were not
available. This was not the result of negligence; numerous data sets
had been copied to the appropriate packs, but subsequently some were
removed because of a breakdown in comnmunications about the validity of
the presence of the data sets on the direct access storage. Further-
more, the required backup tape copy did not exist because of a lack of
computer availability combined with an additional breakdown in communi-

cations that led to the presumption that the action had been performed.
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The inception of Viking flight-batch operations established a DAS
configuration which was permanently on-line (for all practical purposes),
thus automatically eliminating problems directly attributable to block-
rime processing. The initial DAS configuration provided two 2314 packs
(4000 tracks each) with plans to incorporate a third for lander activi-
ties when mission/testing activities increased.

Throughout most of 1974 and the first half of 1975,-manual proce-
dures were defined to handle the management of Viking data files. This
included the establishment of logs to be maintained by each user group
to track their files and a central point of control to actually manage
the DAS and better utilize tape facilities. This responsibility was
assumed by a data processing team (DPT) figure known as fileman, whose
original charter was to expedite file transfers between the 1108 and
360 computer systems. It became fileman's function to respond to flight
team needs for file checkpointing, deleting, and restoring. In addition,
fileman, being a focal point for DAS management, was respcnsible for
coordinating with users to remove no longer required data sets when I\S
space was close to extinction. This finvolved personally polling each
uger with a8 volume table of contents (VIOC) of each of the packs to
determine which data sets could be removed.

As might-be expected, users were most reluctant to remove data
sets from DAS unless there was virtually no space available, at which
point filemert prompted a campaign to personally contact each user and
confront them with the hard facts, Although there was some improvement,
removal was never adequately performed voluntarily, employed only during
a crisis.

User reluctance to remove no longer required data sets from the
DAS was based on a fear of not being able to retrieve th~ file if it
was needed later and a somewhat innate lack of confidence in the many
manual interactions necessary to perform the desired function--particu-
larly in a timely manner. Looking more closely at the steps required,
it is apparent that a number of weak links undermined the confidence

level of the user.
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The user was more than famfliar with the problems of locating DAS
space for a data set, even when file sizes were unknown. This reauired
checking the VTIOC listing of each pack to determine which might be
likely to have adequate available space at the time allocation would be
attempted (when the job was run), If the job was vrerun, old copies re-
quired purging. Unless the user acquired a VIOC to note the size of a
data set prior to checkpointing and removal from DAS, there was no
record maintained of space used. Space allocation was the principle
problem fileman had to face to restore a data set, after checking that
the data set name was not already in existence. The possibility of the
job running half-way and then resubmitted (or inadvertently rerun)
grossly complicated the allocation task., It should be noted that the
utility could allocate space, but its default values were generally
much larger than required and that amount of space was frequently not
available.

Then of course, there was the conveying of the tape and file to
fileman, which had to be transformed into input to the IEHMOVE utili.y.
Two more pitfalls quickly arose: possibility of transposing information;
and generating a syntax error on the utility control card. Once the
restore was performed, the user had to be informed of the success of
the generation so they could submit their run,

Although central point was now coordinating the checkpointing, re-
moving and restoring functions, there was no central source for data
set tracking., Thus the thermal personnel had to query the power person-
nel for the lozation of a needed file. This required that either the
on-duty power people were cognizant of the information, or that someone
had remembered to make note of it before going home for the week-end.
The stumbling blocks are simple to perceive, but their irpacts were
overvhelming. Though numerous prozedures were written, and elegant
logging forms were designed, the implementation of the original file
management scheme was unsatisfactory, relying too heavily on people to
record log entries immediately upon receipt of the information, without
error, and to interact with other individuals to convey mundanc - albeit
important - information concerniny data set location, Even the most
conscientious personnel failed because cf a timinz problem, or a mis-

placed message. The coordination effort, already intensified to cope
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with activities associated with mission activities, could not realisti-

cally be broadened to encompass file management problems. 1In a critical
gsituation, more time was devoted to maintaining the basic vital func-
tions than to coping with the actual crisis.

DESCRIPTION: Just prior to the launch of Viking I, OLDFMS development was
initiated. The initial concern was to provide immediate relief to file-
man by greatly simplifying the interface with standard OS utilities.

This would simultaneously reduce the potential for error and increase
file management capacity by decreasing the amount of information re-
quired to perform each function. For example, to checkpoint to tape

and remove three data sets from DAS, the fileman was required to keypunch

the following information onto cards:

// EXEC CHKPOINT,TAPE=1783
if not catuloged

COPY DSNAME=VS,OPDFE,XA00000,T0=2400=(1783,1) 1, {FROM-231&=VIK001]
COPY DSNAME=VS,TEMPF,XA00201,T0=2400=(1783,2) |, [FROM=2314=VIK0023
COPY DSNAME=VS,LPWRF,XA00604,T0=2400=(1783,3) , [FROM=2314=VIK002]

//  EXEC REMOVE

SCRATCH DSNAME=VS,OPDFE.XA00000,VOL=2314=VIKO01

SCRATCH DSNAME=VS,TEMPF.XA00201,VOL=2314=VIK002

SCRATCH DSNAME=VS,LFWRF,XA0060%,VOL=2314=V1K002

UNCATLG DSNAME=VS,OPDFE,XA0J000

UNCATLG DSNAME=VS,TEMPF ,XA00201

UNCATLG DSNAME=VS ,LPWRF ,XA00604

If the data set being copied to the first file could not be done

if
cataloged

for some reason (data set already scratched, keypunch error, etc.), then
subsequent requests could not be honored and the prograr would abnormally
terminate. Before the data sets could be removed, the output of the
checkpoint run had to be scanned visually to ensure everything was

copied successfully., Upon delivery of the Phase I File Management pro-

gram, the same process could be done by merely keypunching:
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//  EXEC CHKPOINT, TAPE=1783,FILE=1,NAME=FILEMAN,SCRATCH=YES

D=VS ,OPDFE ,XA00000

D=VS, TEMPF ,XA00201

D=VS ,LPWRF ,¥A00604

If the data set was not cataloged, the program would search the DAS
packs to locate the file, The scratch would not be performed unless
the data set was successfully copied.

In addition, software was provided to punch system catalog eatries
allowing fileman to extract pre-punched cards tohrgspond to user requests
(via a file request form), thus eliminating keypunch errors.

The Phase I File Management also provided for a simplification of
restoring and allocating data sets. For example, pre-Phase 1 restora-
tion of a pre-allocated data set requiring 150 tracks would appear as:

//  EXEC PGM=IEFBR14

//A DD DSN=VM,TEMPF ,XA00010,DISP=(,CATLG) ,UNIT=SYSDA,

//  VOL=SER=VIK002,SPACE=(TRK, (150,10))

//  EXEC LRESTORE,TAPE=9768

COPY DSNAME=VM,TEMPF.XA00010,FROM=2400=(9768,13),
T0=2314=VIK0002

Notice the requirement to explicitly define the object DAS volume,
necessitating an educated guess as to which volume would contain the
data set. Phase I could accomplish the task as follows:

//  EXEC LRESTORE,NAME=FILEMAN, TAPE=9768,FILE=13

=VM, TEMPF .XA00010, TRKS=150

Available DAS volumes woild be searched until the required space
could be allocated, if it was available.

Data sets could also be pre-allocated for programs to alleviate
the necessity to choose a volume prior to job submittal.

//  EXEC RESERVE, NAME=USER

D=VM,LPWRF ,XA07633,TRKS=700,SEC=100
D=VM,CMPAR,XA07633,TRKS=100

However, this method of input was in addition to specifying the
data set names in the program process, thus complicating run submittals
for the user. Phase IT would allow for data set names and space
requirements to be extracted from standard rroc entries, making the al-

location phase totally transparent to the user.
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Phase II incorporated the logging of data set transactions into a

permanently available data set which recorded such things as when a

E data set was allocated, checkpointed, removed, or restored. In addi-
tion, the number of tracks required for the data set and its DCB (data
control block) attributes were recorded,

Thus a central point of information was established, readily acces-
sible to any user at any time. Fileman generally acquired a log listing
several times a day for reference purposes, removing the burden from
flight team users of acquiring a log report.

The log report was presented by generic and mission/test qualifica-

tion, That is, data sets, under VM,IANCO would appear together, sepa-
rate from VS,LANCO data sets. For each euntry space was provided to
display the date of creation, a date for terminating on-line residence,
two checkpoint tapes/files, tracks consumed, data set organization, re-
cord format, block-size, record length, the current status of the data
set (original, inactive, restored), and last time of log entry modifica-
tion. If a comment were entered for a given entry, it would optionally
be displayed on the following line,.

Loz entries could be made oniy for generic-mission/test qualffiers
that followed naming conventions and were identified to the log by file-
man via log configuration software. Additions were made to the alloca-
tion, checkpointing, removing, and restoring modules to update by en-
tries (if a log were present--complete downwards compatibility was
maintained throughout), and new software was provided for manual updating.

Log initialization (/reconfiguration) allowed for euch type entry
(e.g., VM,OPDFE, VM,TEMPF, VM.GCSCI) to be assigned an owaer. The re-
port would contain the owner specification to further identify the data
sets. However, the owner identification was more intended for use in
Phase III software to assist in performing automatic chcckpointing/
removing of data sets. 1In addition, the log contained (for each type
entry) a nominal space requirement and retention period (i.e., number
of hours data sets of the given type would be required on DAS), intended
strictly for Phase III operations, but part of Phase II to let the con-
cept gradually develop. Thus, when automatic capabilities became

available, most data set types had been identified,
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Phase III software incorporated automatic checkpointing/removing,
and a new function known as PROVIDE, All three packages used informa-
tion from the OLDFMS log to perform their tasks. A Viking mobile tape
rack that could hold over 100 tapes was provided to support the delivery,
since the requirement for humans to know what tapes were needed was
taken over by the software.

Automatic checkpointing would scan the log by owner, type eatry,
or in entirety, selecting data sets which were original, had been writ-
ten (as opposed to being just allocated), and had not yet been check-
pointed adequately (some data sets required double checkpointing). The
data sets eantries which met criteria were then passed to the standard
checkpointing software.

Auto-checkpointing was always performed selectively rather than
gierying the entire log. The reasons for rhis are as follows:

| Data sets ware categorized by retentioa requiremeats; those
required for oaly 30 days; those required for 60 days; those
required to be retained until end of mission. Thus it was
desirable to not intermix groups on the same tape.

2, The 0S utility IEHMOVE (utilized for checkpointing) could not
support multi-volume checkpoints; therefore, it would gen~
erally be impossible for all data sets requiring checkpointing
to bYe processed in a given run., However, multi-volume check-
points could have caused more harm than benefit whea consider-
ing the possibility of restoring a data set gpanning tape
volumes.

3, Checkpoints could be performed in parallel (several jobs),
rediucing the elapsed time to process,

Automatic removing would scan the loz similar to anto-checkpointing,
with ideatical selective options. The auto-remove software would basi-
cally remove data sets whose active periods had elapsed. It was possi-
ble to incremeat or decrement the current time to allow for additional
flexibility in defining data sets eleigible for removal. Original,

restored, or all expired data sets could be optioned as candidates for
processing.
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Original data sets could not be removed unless adequate checkpoints
had been created. Thus if an original data set was scheduled for re-
moval, but was not adequately checkpointed, a message would be displayed
to reflect the situation,

Phase III also enhanced the checkpointing function by using the log
to ensure tape files could not inadvertently be over-written, Thus, for
multiple checkpoint runs using the same tape, fileman did not have to
maintain and enter the 'next" available file number and, indeed, could
not eater one which could destroy checkpointed data sets without sub-
stantial effort to override several safeguards and suffer verbal abuse

issued by the software before succumbing to the hazard.

QUALITATIVE RESULTS: The PROVIDE function was probably the most effective

piece of software in the entire OLDFMS package, the culminatioa of
efforts to virtually eliminate manual user intervention in the file man-
agement scheme, Though extremely simple in concept, the impact of the
user being able to say to the system "I need data set X", and it is
made available, is unsurpassed., PROVIDE instilled user confidence in
the on-line data file management system.

The ability to obtain an input data set for processing regardless
of its status (active or inactive) prompted users to define extremely
short active periods for many data sets (some as short as a few hours).
As a result, most data sets ware retained on DAS oaly while required for
processing, PROVIDE promoted extensive flexibility in managing the DAS
resources by allowing fileman to remove data sets which were perhaps
still required, in an effort to free-up space for other users,

The incidence of job failures due to "data set not found" went to
zaro waen PROVIDE was incorporated. 1f the data set was in the system,
it was available, whether active on D\S, or residing on a checkpoint
tape to be restored. A user's job requirements were virtually self-
contained.

OLDFMS was able to greatly enhance mission software operations
because:

1, it reduced substantially job reruns due to lack of DAS space

or missing data sets;

67

-
=
=

.




i

s

A s S ]

it

b MG
RN

(R

QUANTITATIVE IMPACT:

it eiliminated the necessity for manual interfaces conceraning
file management details;

3. it allowed fileman to respond to critical file action requests
in a timely manner;

4, it established a central point of information for data set
tracking;

5.

no data sets were lost or misplaced.

Had OLDFMS been available for developmeat, UAT's and system test~
ing, substantial time savings could have been realized with reruns be-
cause of missing files or inadequate DAS space reduced and additional
processing eliminated to reproduce data files inadvertently destroyed.

Software to maintain and use OLDFMS lozging was somewhat under-
scoped, partially because its user acceptance exceeded all expectations.
More effort could have been gpent on software to remove no longer main-
tained data sets and associated tape recycling though existing tools

could perform the task, requiring substantial manual processing.

Prior to development of OLDFMS, operational timelines

The job failure rate due to inadequate direct access
space and files being removed from the system ranged from 5 percent to
30 percent, depending on the level of activity.

coild not he met.

After implementing

OLDFMS, no job failed for these reasons, and mission timelines could be

met., Delays inherent in preparing to submit a typical run were reduced

by an average of thirty minutes per run, Manpower costs for the design

and implementation of OLDFMS were approximately 5 man mouths, distributed
over a nine-month time period,

Tnis relativety low cost of development was possible because many

file transfer software functions, which ware used by OLDFMS, had already

been developed, As such, the cost to develop OLDFMS from scratch would

have been more like one man year.
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TECHNIQUE

NAME: INTEGRATED SOFIWARE FUNCTIONAL DESIGN

- SUMMARY: Software Functional Descriptions (SFD) were written for each candi-
date Mission Operations software function, Concurrence by Flight Team
members established the requirement for a program. The SFD's ware com-
bined to form an Integrated Software Functional Design (ISFD) of the
entire software system. The ISFD was subjected to preliminary and cri-
tical design reviews by the Flight Team Directors and the Mission Direc-

tor. Upon acceptance by the Mission Director, the ISFD was placed under
change control to establish the baseline design for the Mission Opera-
tions Software System.

APPLICATION CONSIDERATIONS: Each Flight Team group was in a position to de-
fine the functions they would need to support and coatrol the Viking
spacecraft during Mission Operations. A requirement that these func-
tioas be documented offered management a tool by which they could con-
bine functions used by more than oae group, determine which should be
performed through procedures and which through software, and establish
program need date as a function of mission phase. By integrating and
combining the individual functions, the data flow for the eatire soft-

ware system could be established.

RECOMMENDATION: A software integrated functional design provides an excellent
means for management to understand and structure a software system. It
can be used to determine the amount and type of software necessary to
be developed, thereby laying the foundation for manpower and computer
resource requirements., By establishing the data flow of the systenm,

it makes visible the integration requiremeats for the system,
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HISTORY: The Flight Operations Software Plan specified the need for soft-

ware functional descriptions and an integrated software functional de-

sign of the Mission Operations Software System, The lander, orbiter {

and institutional software systems engineers were required to gather
software functional descriptions for each candidate element of their
software systems,

They delivered them to the Integrating Conatractor
Software System Engineer (ICSSE), who was responsible for publishing
them and generating an ISFD from them,

This proved to be a lengthy iterative process, wherein numerous
meetings were held among the software systems engineers and the various

Flight team groups to understand the need for and interplay between the

various functions, An initial ISFD was generated and subjected to con-

siderable review by each of the Flight team groups, primarily to deter-

mine interface rquirements and uncover system deficiencies.

Eventually, six software systems ware defined to support mission
planning, lander and orbiter uplinks and dowalinks, and tracking and
flight path analysis. Diagrams for each of these systems were used Ly
the ICSSE to conduct a preliminary design review of the system, which
was held before the mission directors and representatives of the vari-
oius Flight team groups,

Following the PDR the iteration.process coatinued and brief text
descriptions were developed for each of the software systems.

The critical design review was held in a high school auditorium

before an audience of several hundred people; included ware Flight team

b A reowe

memhers, directors, and outside software experts brought in by NASA to

critique the Viking software developmeat approach. To accommodate

such a large audience, the ICSSE used very large diagrams for each sub-

T v Lt

system, the largest of which was ten feet high aid forty feet wide.

Bt Al

Following the CDR, the Mission Director approved the ISFD, The
SFD's and ISFD were then incorporated as an appendix to the Flight

Operatfons Systen Design document and placed uader Viking Integration
Change Coatrol,

The software system was now structured such that any

change to the ISFD would affect systen data flow and impact more than
o1e proaram.

Bt Ey.j‘;,:|‘:.:.\u,|m|,
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DESCRIPTION:

The software design and development process began with the

identification of software which was the basis of the ISFD. Identifi-
cation of software was accomplished by the appropriate Flight Opera-

tion subgroup by preparation of a SFD for each required function. The

SFD was written in accordance with the following format and requirements.

1,
2,

5.

6.

Proeram Title

Functio.al Description - Give a brief description of the gen-
eral functions to be performed by the program. While the
tunctions ~re of main interest, some information on capabili-
ties ~nd mathematical method is also desirable.

Utilization - Describe the intended use for Viking operations
in general terms with reference to mission phase, frequency
of use, use in program run streams, etc. For new prograus,

a step-by-step functional description of the prozram opera-
tion is recommended to facilitate the integration process.
Input/Output - Describe all data and program interfaces. both
internal and external to the particular operaiioas softwarc
element. This section shall be broken up into subsections
entitled "Input" and "Output",

General - State whether the prozram is essentially a new pro-
gran, a current existing program, or oae that will be derived
from an existing program., If the latter, name the baseline
prozram, computer developed on and the magnitude of modifica-
tion, If possible, give sone indication of expected program
size and running time, Specify any anticipated or known pro-
gram coastraints,

Bibliozraphy -~ Give referencez to pertinent documents which
would provide more information about the planned program or

which describes the existing prozranm,

Tne ISFD was developad in a series of increasingly complex stages.

A target prozran, such as the Lander Sequence Generation Prozran (LSEQ),

was shown as a box. The inpuc section of the SFD for this target pro-

gran was then used to determine what information was rejquired to be

made available to the program. A lozical subset of the remaining SFDs

were exanined to see if they could or did gewerate output for the
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target program, When a source for input to the target prozram was found,
the source prozram was added to the diagram and an arrow was drawn to
indicate the data flow., This sometimes required modifying the output
section of the SFD of the source prozram. If no input source for the
target program could be found, the input was shown to be manual., The
output section in the SFD of the target program was treated irn a similar
fashioa, showing each output item either going to another prozram, to a
printer, a plotter, or to archives. In this fashion, a simplistic over~
view of the entire software system was generated which accounted for
each SFD,

The basic system flow diagran was next iterated upon by the various
Flight team groups to determine if manual inputs would require new soft-
ware functioas to be defined, to ascertain which prints and plots would
generate information required to produce manual input to other programs,
and to assess whether some functions should be moved from one prozram
to another,

Following this iteration, more detailed diagrams were drawn that
indicated the means by which interfaces would be accomplished, Symbols
were used to s"ow mass storage files, tape files, card files, and manual
interfaces. Tne latter illustrated that printed output from one prozram
would becomne punched card input to another program., File management
functions were now determined and added to the diagrans,

Computer loading studies were conducted to balance the computational
loads oa the available computer systems, Tne ISFDs then were expanded
to shows the computer systems involved. A rough estimate of throughput
time for data to Ye passed through the system could nos b2 made.

The final step in the generation of the ISFD was to write a short
narrative describing the softwacve prozrams used by each subsystem,
how they would be operationally used, aid how informatioa would flow
throagh the system,

QUALITATIVE RESULTS: Tne ISFD was extremely waluable to the success of de-

veloping a softwarc system that was both reliable and minimized the

anount of softwave nacessary to be developed to support all mission

12




objectives, It permitted the project to assess system capabilities

during the design stage. It provided a structure for the overall sys-
B tem that was visible and easily controllable by management. It lay the

foundation for the system integration requirements and the development

of the Software Data Base Document.,

The document was maintained through integration of the software
system, after which the Software Data Base Document was used to control
changes to the system structure and integrity.

QUANTITATIVE IMPACT: The cost to develop the SFDs and ISFD was approximately

five man years. Changes to and maintenance of the descriptions cost

an estimated two additional maa years., A total of 130 SFDs were written
to describe 61 lander, 56 orbiter and 13 institutional software func-
tions. From these, six ISFDs were developed showing 8 Mission Planning,
2% VO Uplink, 18 VL Uplink, 40 VO Dowalink, 53 VL Downlink and 13 FPA
functions, The total number of functions shown in the ISFDs adds up to
156, which illustrates that 26 adaptations were made to allow functions
to support more than one subsystem. Thus, had the ISFD approach not
been taken, it is reasonable to coaclude that some redundant software
functions would have been develcped at additional cost in manpower and

computer resources.
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TECHNIQUE

NAME: MISSION BUILD PROCESS

SUMMARY: Viking operational software code, including object, source and pro-

gram listing, was placed under strict control at the beginning of the
system integration phase through a process known as the Mission Build,
Software could only be added to the Mission Build by Viking Mission

Control and Computing Center {VMCCC) personnel, who were responsible

for maintaining the Build. During integration and operations, only

object code on the Build was available to users I5; 2 rcad only mode.

The Mission Build process is a software control process that assures

deliverables will function as built within a computer system,

APPLICATION CONSIDERATIONS: The Mission Build process was developed at the

Jet Propulsion Laboratory to control the development, integration and
use of operational software systems in a multi-mission environment.
The process permitted only authorized software to be made available to

users, and prevented the software of one project from conflicting with

the software of any other prcject. Use of this process was mandatory

for real time operational software. The Viking Project elected to in-

voke the process for all batch operations as well, since it afforded

them a practical and established means to control their software system,

RECOMMENDATION: The Mission Build process is conceptually an excellent means

by which management can control a software system, The process should

include a capability to provide temporary overrides that are transparent

to users. The process of generating, updating and maint-ining a build

will be costly in manpower and computer resources, The resultant con-

figuration control is well worth the additional cost, The override fea-

ture of the build offers the advantage of being able to correct errors
or add new functions without inadvertently introducing errors to deliv-
ered software. This feature should not be used for real time systems
except in exrreme emergencies, but should be incorporated as the stan-

dard procedure for medifying batch systems,
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HISTORY: Both Integrating Contractor Lander/Orbiter softwave integration

and VMCCC integration testing were conducted using software programs
resident on the same mass storage media, called the Integration Mission
Build. The method of adding programs to or updating prozrams on the
Integratson Mission Build varied by facility, as described below. Tne
Integrating Contractor integration was limited to running Viking Lander
and Orbiter software under control of the VMCCC operating system, where-
as the VMCCC integration also included running Institutional MCCC soft-
ware and non-Viking Project software.

Software System One (MOSS 1) was obtained by copying and saving
the Integration Mission Build when all the integration for that system
had been completed. The integration process continued, adding and modi-
fying programs on the Integration Mission Build and performing the inte-
gration tasks for each of the remaining software systems. Copies of
the Integration Mission Build were made as the integration for each
software system was completed,

The Mission Control Computing Facility (MCCF) supported the Viking
Project with two IBM 360/75 computer systems. Oae was used to support
multi-mission, multi-project, real time prozram operations, The second
computer system was used to support both Viking and MCCF batch preogran
operations. The initial coacept was to coavert Laader prozrams :leveloped
on Martin Mavietta computers by submitting prozran decks as over the
counter batch jobs to MCCF operations personnel. Duaring preparation
for Users Acceptance Testingz, Project software was then to be incorpora-
ted on a Davelopmeat Mission Build, which was available o1 a daily basis
but did not usually have the same operatinz system as the Integration
Mission Build, Tnis sounded fine in principal but did not work in
practice. Tnc soitware developers not only wanted tc use the Integra-
tioa Missioa Build operating system, but they alsc wanted to link edit -
their prograns to controlled delivered software library elements rather
than linking to uacoatrolled software library elements whose status
could chanze at any time without visibility to the user. For this rea-
son they placed their prozrams on a private disk pack, known as DSN0D5,
which was assigned to and coatrolled by the Integration Contractor
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Software System Engineer (ICSSE). During conversion and Users Accept-
ance Testing, the software developers requested the Integration Mission
Build packs, or copies thereof, plus DSN0OO6, to be mounted on the sys-
tem, This precluded being able to run during daytime operations when
the Development Mission Build packs were mounted. Blocks of time were
therefore made available to these users during secand and third shifts
and on weekends to allow them to use controlled software. Following
Users Acceptance Testing, Project software was placed on the Integra-
tion Mission Build and unit verified by the Data Systems Integration
Group (DSI) of the VMCCC. The ICSSE then performed the required Lander/
Orbiter integration tests.

Frequently program malfunctions were detected during ICSSE inte-
gration. When this occurred, modifications to the program were made
and written to disk pack DSNOO6& and the incegration test was completed
using that pack to override the appropriate porcions of the Integration
Mission Build, Upon completion of this testing, failure reports were
written against those portions of the program that malfunctioned on the
Integration Mission Build, but worked with the DSN0O6 override. This
failure report procedure permitted the ICSSE to authorize redclivery
of the corrected and tested portions of the prozram to the VMCCC to
be incorporated as permanent updates to the Integration Mission Build,
Each redelivery required the DSI to unit verify those portions of the
program that had malfunctioned, after which the ICSSE repeated the inte-
gration test without DSN0OS being mounted,

Tne General Purpose Computing Facility (GPCF) supported the project
by making either of two general purpose UNIVAC 1108 computer systems
available on a daily basis., The initial coaversion of Lander prozrams
from MMC computers to the GPCF computers was by submittin: programs
decks as over the counter batch johs to GPCF operations porsonnel.

The same EXEC-8 operating system was available for both general use
axd the Integration Mission Build and programmers could map their soft-
ware to controlled delivered software library elements during standard
daytime operations, using the qualifier VIKING, During preparation

for User Acceptance Testing, individual prozram Bench Mark tapes were
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written and submitted to be run ac batch jobs. The Users Acceptance

Tests were conducted in the same environment, Following this, GPCF

’ program integration tapes coataining source, objact and listinz of the
prozram, waere submitted to DSI. These were combined onto a series of
GPCF integration tapes under control of the DSI., The software was made
available to users by the DSI who had the contents of the tapes read

M.

into the computer under the qualifier VIKING,

Unfortunately, qualifier VIKING was frequently not on the system
during second and third shifts and on weekends during development and
ICSSE intezration., This caused problems in submitting overnight or
weekend runs, which were desirable since computer rates were consider-
ably cheaper during these periods, For this reason the ICSSE, who con-
trolled the delivery of the software, created a1 identical Integration

Mission Build under his control that contained the originals of the
controlled software elements. This ICSSE Build was made available at
all times to users under the qualifier VIKINT., Integration testing
was coaducted under this qualifier, and program malfunctions were trea-

ted in a fashion similar to that described above for the MCCF, Effec~

Vel

tively what had happened was that the Integration Missien Build was for
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all practical purposes merely a copy of the ICSSE Build; actual coatrol
of the software system during this pariod had by default passed from

the DSI to the ICSSE,

g
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DESCRIPTION: Tne JPL Mission Build process is a mechaaism by which the
elemeats of various operational software systems are intezrated within
the facilities of the Miseicn Coatrol and Computing Center (MCCC) to

e

= support controlled multi-Project, milti-mission oparations. Tna inte-

i

gration portion of the process is relative to the Operucing Systems,

institutional software and comp:ter complexes; the integration of the

E:

=
=3

oparational software systems {s the respoasibility of the Projects that
ugse the Missioa Build process, and is indepoaudent of the buiid process.

As such it is a software coatrol process.
Tnere are normally three distinct Mission Build phases:
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a)

b)

c)

Tnhe development Mission Build is used for software develop-

ment and User Acceptance Testinz (UAT)., Change coatrol is
maintained at the programmer/eagineer level, Tnhis phase was
not used by the Viking Project.

The integratioa Mission Build is created by MCCC Data System
Integration (DSI)., Oaly software accepted by DSI is placed
on this Mission Build, Chaize coatrol is maintained at the
SSE/DSPE/DSI level,

The flight support Mission Operations Software System (MOSS)
is the final product of DSI which is delivered to Opzrations
and the Operations Progran Data Base (OPDB). Cnange coatrol

is maintained by the multi-project MCCC Change Coatrol Board,

The process used by Vikingbegan with the -'.iivery of post-UAT

software elemeats to DSI. MCCC integration testing then consisted of

delivery verification (Uait Verification Tests - UVT), subsystem/prozran

verification, system pe: formance tests, system loading tests, and

facility level demoastration tests. How each of these were acconplished

will be discussed in the following paragraphs.

After each software elemeat satisfied the UAT requirement, it was

delivered to DSI. The items that aczcompanied each delivery were:

1)

2)

3

4)

The prozran deliverables as applicable to the facility in
which thes software end product will be operated;

Tne dozumn2ntation required to define aad use the software
elemeant;

An Inventory Chaige Authorization (ICA) form completed and
sigaad by the software element supplier which certifies that
tha daliverable successfully completed a UAT;

A completed Inveatory List ideatifying all ite.s required to
be dalivered to DSI. Each item includad in the delivery pack-
aze was ideatified, axd a schedule delivery datn was provided
for each item not included in the packaze;

A1 Estimated Parameter List that provided alequate informa-
tion for compiter loading analyses and to verify coaformance

with the MCCC guidelines and zons'.caiunts;
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6) A copy of the authorized change package if the delivery was
the result of change action. For changes to the integration
x Mission Build to correct progran errors, the signatures of
the appropriate SSEs were required, Changes based on new
. rzquiremeats or to the MOSS also required the signatures of

appropriate Mission directors.

a1 il Rl B T Wik S b Wl A

The program deliverables to the Mission Control and Computing
Facility (MCCF) included a TRIO tape created under Real-Time Prozram
Management (RTPM), Load Module descriptor cards, Mission Build Input
cards, and test decks for unit verification and regression tests, The

TRIO tape was a scratch tape generated by each final UAT run. It con-

Tend
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tained program source, object and listing, The contents of the tape
were dumped to Bank Disk packs following UAT, Delivery to DSI authorized

MCCC parsonnel to run the Mission Build input cards, which transferred

Ll oo

the program elements from the bank disks to the Mission Build packs.

N N
bl

The progran deliverables to the General Purpose Computing Facility

(GPCF) included a GPCF integration tape and a print of the table of

i

contents of each file oa thé tape. File 1 contained the runstreams and
EXEC~8 run control statements for the UVT test case; file 2 contained
the test case data; file 3 contained the absolute prozram elements;
file 4 contained the relocatable elements for each absolute element;
file 5 contained the symbolic or source elements of the absolute ele-
ments; and file 6 contained any necessary run coatrol cards, data ele-

meats, and all symbolic relocatable and absolute elements for each
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utility program included with the delivery. Delivery to DSI authorized

them to concatenate the delivered object code onto Missioa Build GPCF

G
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tapes, which were the source of the operational software system in this
é% facility.

o A UVT was conducted for each prozram delivery, reuclivery or modi-
fication to verify that the program was successfully incorporated into
the Mission Build, Tnese were user supplied regression tests. Failure
reports were prepared when software was not successfully incorporated
into the Mission Build which permitted the SSEs to take corrective

redelivery actioas.




The objective of the subsystem/program test phase was to verify
the successful performance of each system or program, and the proper
interfacing of each system or program. Tnese tests were essentially
combined prozvam acceptance tests which verified each prozram's proper
performance with the integration version of the facility operating sys-
tem. They were functional performance tests used to examine computer
memory and execution time requirements,

The system performance tests were run independently at each facility
of the MCCC. The purpose of these tests were to evaluate the overall
performance of the elemeats of the software system when operated con-
currently, They were used to exanine program to progran interference
and operating system interference that could cause psrformance degrada-
tion during operations.

The system loading tests were run independently for each facility
to identify loading problem areas, recommend alternative solutions, and
determine system constraints.

The system demoastration test was conducted with project support
to demonstrate to all applicable projects that the software systems
could meet all flight support and testing requirements.

Upon the completion of successful dz2monstrations, the system was

made available to Computer Operations.

QUALITATIVE RESULTS: The Mission Build process worked very well for 360/75
MCCF operations, but was only marginally successful for 1108 GPCF opera-
tions. The reason for this lies in the differeances in the procedures
for creating the builds on the two systems,

The TRIO tape concept used by the MCCF had the effect of forcing
tha programners to follow a procedure that did not leave them with a
working copy of the link-edited object code of their prozram on a pri-
vate tape. Also, aa easy to coatrol override feature that was traas-
parent to users was available., The override patches could oaly be
generated when the link-edit Mission Build pack, MSC3A9, was mounted
oa the system, This pack was not a standard mount during operations

and could only be placed on the system when authorized by the Mission
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Director for a short period of time during which the override patch
would be catalogued as a data set on one of the Viking Direct Access
storage packs, Finally, if a software element failed, only that ele-
ment had to be redelivered to the Build, at which time all user programs
of that element were re-linked to it,

The GPCF integration tape concept used by the GPCF provided far
less software control. The final Bench Mark tapes the programmers
were required to generate contained all of the software elemnts needed
to run their programs. This made it possible to maintain private sources
from which programs could be run, or modified, during operations. 1In
addition, overrides of software elements were not possible. When a
software element failed and was corrected, every progzram that was mapped
to that element had to be remapped, using a private source, and then
be redelivered,

In both facilities the Mission Build process provided excellent
control over all deliverables made to both the integration and opera-
tional software systems,

The amount of testing conducted by the DSI during the Missioa Build
process was greater than needed for the benefits derived. They were
essentially stand alone regression tests of proven program runs that
allowed DSI to demonstrate to the various projects that the software
systems were operable. They did not establish that the so.cware sys-
tems could handle mission data flows or timelines, nor did they estab=
lish that the individual programs could be used to form an operational
software system. The operational software system was established by
Project integration, compatibility, and team training testing.

Divorcing the build process from the integration process caused
problems and increased expenses, Early in the develora-it phase, the
Viking ICSSE failed in an attempt to negotiate combining these efforts.
The result was, predictably, that the number of redeliveries caused
by detection of malfunctions during integration was more than should
have beea required. Tne MCCC objected to this, stating 1t was taxing
their resources to the limit, Tnis prompted the ICSSE to maintain
private builds in both factilities, using SECURE in the GPCF and disk
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pack DSNOOS5 in the MCCF, In that way, the ICSSE reduced the number of
deliveries required. In addition, the ICSSE build in the MCCF was typi- )
cally more advanced thaun either the Integration Mission Build or cur- .
reat MOSS, At one point the Mission Director was forced, albeit reluc-
tantly, to use the ICSSE build (renamed the Viking Test Build aad given
project coatrol through the ICSSE) to support critical compatibility
testing in a timely fashion.
The action taken by the ICSSE should have been totally unnecessary
had meaningful controls been applied to the Integration Mission Build.

The refusal of the MCCC to parmit overrides made sense for realtime

operations, but was nonsease for batch operatioas., The build had bheen
coaceived to protect real time systems, wherein an error introduced
through an override could be fatal to the eatire system. Viking was
the first batch user of the process. Errors in batch prozrams oaly
cause the prozram itself to fail, and not the system. Therefore, it
would have increased software coatrol to have permitted override cor-
rections to be made against the batch Integratioa Build, since the de-
livered software was unaffected by the overrides (i.e. to use an over-
ride one must deliberately point to it, otherwise the override is ig-
nored). Tne use of DSN0O6 was a pcsople control process rather thaa a
software control process, Changes, rather thaa overrides, had to be
made. Therefore, unlike the build process, it was possible to introduce

errors into previously delivered working software,

QUANTITATIVE IMPACT: The Mission Build Process parmitted nanagzement to know
and coatrol the status of the integration aand operational software sys-
tems at all times, Without using the build, all batch software fuac-
tioas would have bzan available uader individual rather tihan management
coatrol. Tharefore, the cost of the process was an additional price
the project was willing to pay to insure system integrity,

Approximately 40 Intezratioa Builds were made by the VMC3 for
Viking 360/75 Batch oparations. Eazh required the e<clusive use of a
compuater for six hours. Unit verification of the prograns delivered
to this build required an eight man year level of effort and approxi-

mately 300 computer hours., In addition, fourteon oparating systems were
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made by copying the integration build, each of which required eight
hours of computer time. Based on this, it is estimated that the addi-
tional cost to 360 operations to use the build process was eight man
years, 650 hours of computer time and 72 direct access storage disk
packs.

The Mission Build process on the 1108 system was considerably dif-
ferent, and its impact will be judged accordingly. The integration
build process was accomplished by concatenating new deliveries to the
current operational system, rather than maintaining a separate build.
Also, unit verification of programs was easier to accomplish on this
system because all test data and files were delivered with the prozram
on the GPCF tapes. These were accomplished at a cost of eight man years
and approximately 400 computer hours. To store this software an aver-
age of six tapes for each of 41 programs (due to redeliveries) and six
tapes forseach of 12 operational systems, or a total of 318 tapes were
required. The cost to the ICSSE to make permanent versions of current
software available to users at all times was a 200 dollar per moath
storage fee for two years. This was actually not an impact, since it
was more than off-set by savings realized by using the system when night-

time and weekend rates were effective.
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TECHNIQUE

COGNIZANT ENGINEER/COGNIZANT PROGRAMMER

SUMMARY: Each Mission Operational software prozram was assigned a Cognizant

Engineer (CE) and a Cognizant Programmer (CP). Tne CEs were responsi-
ble for generating program requirements and testing the program to meet
those requiremeats. The CPs were respoasible for designing, implement-

ing aid defining the procedures for operating the programs.

APPLICATION COJSIDERATIONS: The rationale for adopting this coacept was

based on the belief that an engineer who uanderstood requirements would
not neceésarily understaid how computer systems could be used to imple-
meat them., Oace a programmer implemented working software, the engi-
neer would then be in a position to test the software to mneet the require-
meats, The primary reason for assigning a particular programmer to be
respoasible for the design, development and implementation process,

rather than usinz a software pool, was to have a secoad individual be-
come thoroughly faniliar with all the requirements for the software
function, A secondary purpose was to provide an incentive for pride in

workmaaship.

RECOMMENDATION: Managemant can increase pzrsonnzsl work incentive by adopt-

ing the CE/CP approach to prozran development, Progranmners will gen-
erate working software based oa their interpretatioa of requirements,
which are not necessarily correct. Requiring the CEs to wcite the pro-
gran acceptaice test plan provides the balaice required to assure the

programs will fuaction to weet the engineering requiremeuts,
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HISTORY: The Cognizaat Programmer/Coznizant Engineer philosophy was first

documented in Standards for Viking Software Development, issued by MMC
in October 1971, The concept was not adopted for Flight or System Test
Equipment software development., In those areas, engineers were assigned
to write the Software Requirements Documents, after which they were
given new assignments. This in part is responsible for the fact that
no formal acceptance test plaa or equivalent was ever written for the
STE software system, even though it was developed for a general purpose
compater, The CE/CP approach did or could not realistically be applied
to Flight software, which had to be validated by emulation techniques,
by an independent validator, and by tests involving the entire lander
hardware/software digital system.

Mission Operations adopted the CE/CP concept and specified it as
a requirement in the Flight Operations Software Plan, It was used to
develop all Lander and Orbiter operational prograns, Two lander pro-
grans did not follow this procedure,

The lander power prozram was originally daveloped by a single engi-
neer who could code in FORTRAN. The engineer did not understand the
scope of the task aad thought he could do it by himself. During the
coding phase he began slippinz his schedule., Mazazement formed a Tiger
tean to assess the situation, the result of which was to assign a new

_cognizaat engineer plus a coznizant programmer to assure the prozram
would be delivered on schedule,

The file managzement prozran developad to zupport the commoa ilata
base aad inter-computer file management functioas was originally assigned
a CE aad 2 CP, However, when the program was taken to JPL in Dacember
1973, the CE declined to move to California aid droppad off the Viking
project. At that time the CP was made both the CE and CI' for the funz-
tion. He was directly suparvised by the Integrating Contractor Software
Systems Enzineer. He was able to “Wandle the task, but was typically
delinqaeat in providing the required support docuneatation, The result
was that members of thoe Software Integration Group were freqaently
required to come in at odd hours to show users how to run the program,

Eventually, satisfactory documeatation was produaced,
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DESCRIPITON: Tne roles specified for the coznizant cagineers and cognizant
programmaer in the Fligi t Operations Software Plan were as follows:
Role of the Cognizant Engineer (MMC/JPL). A Coznizant Enzineer
(CE) shall be assigned by the appropriate department at the request of
the Software System Engineer (SSE), The MMC CE shall serve as the co-
ordinator of, atd is responsible for providing the Functional Require-
meats Document, the Software Requirements Document, and the test docu-
meats for the spacific program over which he is assigned coznizance.

Tne JPL CE shall have overall responsibility for the development of the

software prozram and is respoasible for the FRD, the SRD and test plan
for the specific prograns over which he is assigned coznizance. Tne CE,
as a wember of the software design effort at MMC or JPL, will support
the related SSE aad the users of the prozran in the performaace of this
role. The CE is respons:ible for the followinz specific tasks:

a. MMC CE - Develop, with the coacurreance of the related SSE, a
schedule for the preparation of the SRD and test plans;

b. JPL CE - Develop, with coacurrence of the related SSE, a sched-
ule for the development and testing of each prozram;

c. Establish the detail vrequirements and prepare the FRD and SRD
for which he is cogaizant;

d. Review and coacur with the General Design Docunent (GDD) and
Schedule aad Work Plai generated in respoase to the SRD;

e. Review all requests for chaangzes to the GD);

f. Coordinate tha inputs, provide the Certification Test/Users
Acceptaice Test Plaa (CT/UATP), the associated test data ve-
quivements, and test procedures to Ye used daring the tests;

g. Work directly with the CP and provide resolution of datails
which have aot been clearly dafined in the SkD;

h., Perform Certification und/or Users Aczceptaice Test in accor-
daxce with the applicable test plai azd weite the test report.
The necessary assistaize in poarforming this task will be pro-
vided by tha SSE awl CP,

ie Support softwarce chifiguration maragemcat in ascordance with

tha coutrol prozedares in Appendix B of this plan;
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e,

jo Support the zeneration of the User's Guide and coacur in its
readiness for delivery;

k. Support the maintenance of the deliverable items.

Role of the Cognizant Programmer. Wnen requested by the SSE, the
Cognizant Programmer (CP) shall be assigned by the appropriate‘depart-
ment with the concurrence of the CE, Any reassignment shall be coa-
curred in by the CE aad SSE, The CP shall be responsible for the
following:

a. Tne coordination and generation of the General Dasign Document
(GDD), Prozram Description Document (PDD), User's Guide and
inputs to the Software Data Base Document (SDBD);

b. Develop, with the concurrence of the related SSE and CE, a
schedule for the program development aad documentation;

c. Review all chaiges requests to the SRD and prepare change re-
quest impact summary on software design and development;

d. Support data generation for software certification and user
acceptance testing;

e. Generate, with coordinatioa of the CE, test cases for use in
compatibility testing aid intezration;

f. Coordinate with the CE diring the final development of the SRD;

g. Support all software testing; \

h. Design, code, and test the prograns to meet the requirements
of the SRD and specificatioas of the GDD and system coastraints
identified by the SSE;

i. Support the SSE and CE in the generation of the deliverable
items of the prozram aid documentation for TDS/VMCCC integra-
tioa and oparational system release;

jo Support the FOS in training, testing, missiou: operatioas, and
prozrawm maintenaace;

ke Implement all changes to the GDD, PDD and SDBD after their
release aad approval;

1. Support software coafiguration management fn azcordance with

the coatrol procedures in Appand‘x B of this plan,
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QUALITATIVE RESULTS: The quality of the software produced was a function

1 A ol AR e Ml e ety "

of the relative abilities of both the cognizant engineer and the cozni-
zait programner, The talent available to the Viking Project ranged
from mediocre to excelleat in both categories., When either the pro-
gramner or the engineer was excellent, the resultant software end pro-
duct was very good,

Tne ability for the engineer to clearly and accurately specify re-
quiremnents was extremely important, In some cases the prozrammers
learned and understood the requirements as well as the eazineers,

Some friction developed o2 a few of the programming teans, This
was only partially die to personalities, Manazement tended to over-
emphasize the importance of the eagineer to the detriment of the pro-
grammer, That is, when everything went well the engzineer go: the credit,
but when problems camne up they were too often blamed oa the programmer,
The roles of the CE aad CP should be kept in propzr parspactive by any
project adopting this technique., /-

The prime disadvantage to selecting the CE/CP technique over using
a engineering pool/software programming pool is that each prozrammer
must develop every function required by the prozranm, This makes it more
difficult for systems en: 1eerinz and integration to zenerate a commoa-
ality of utility sabroutin. used by a multiple of prozrams. However,

the improvement in commuzications availatle with the CE/CP more than
offsets this jisadvaataze.

QUANTITATIVE IMPACT: This technique did not entatl aay kind of a co3t im-

pact, since the sane nimber of prozranmmers aad eazineers would aave been
neaded if aa engineering pool/software pool had beea used. The develop-
meat effort for the Vikins Lander oparatimal software 1 -u3rams broke
dowa a3 45 parcent for cnzineer participation and 55 parcent for prozram-
mer participation, Half of the engzinecring hoirs were spant o1 require-
ments generation aid documentation; the other half was spant oa test
platr generatioa and test support, Two-thivds of the programmer hours

were spant o2 da2sign and code; the remaining third was sp2at oa testing

ad maintenaace,
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TECHUNIQUE

NAME: SOFIWARE DATA BASE DOCUMENT

SUMMARY: The Software Data Base Document (SDBD) provided central viability
to the Software Systems Engineers, Cognizaat Engineers and Coznizant
Programwners of the use of tables, buffers, files and coastants. It pro-
vided the means of identifying common data and implementing a common
data base internal to the operational software system. After develop-
ment the SDBD provided centralized documentation aad coatrol of all

common data and interface files used by the Viking Flight Tean.

APPLICATION CONSTIDERATIONS: A coansiderable amount of data was common to
more than one Viking operational prozram. These data consisted of such
items as computer turn-on times, one-way light time tables, Martian
natraneters, descent paramweters, lander coordinates and antenna pointing

parameters. Coordination of data that would be subject to little or no

change was necessary to assure the integrity of the software system,
In addition, files interfacing stand-alone software modules required
iy centralized visibility to coatrol their structure aid provide a means i
of nssegsing system level impacts caused by chages to individual soft-

ware modules.

RECOMMERDATIONS: The necd for a centralized document is essential to provide ;
management with the visibility to coatrol and coordinate data and file
structures internal to a software system. This holds tcue regacdless i

of the method used to implement the data processing of the software

: system.
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HISTORY: The Flight Operations Software Plan, issued in the spring of 1972,

specified that all tables, buffers, files and constants used by the
Flight Operations Software System would be compiled into a single docu-
ment, entitled the Software Data Base Document (SDBD). The responsi-
bility for coordinating and maintaining the document was assigned to
the Integrating Contractor Software System Engineer (ICSSE). The SDBD
was to contain data and files common to multiple prozrams, common to
only one prozram, and an index of constants established as standards
for all prozrams,

The SD3D was to be placed under the Viking Integration Change/
Viking Change Summary (VIC/VCS) change control system beginning with the
milestone for issuing the General Design Documents (GDD) of each pro-
gram, In actual practice, each time an interface file description was
added to the SDBD it became a baseline and was automatically placed
under VIC/VCS control. Delivery of these descriptions did not neces-
sarily correspond to the specified milestone,

Two documents were to be issued, These included an MMC SDBD under
control of the ICSSE and a Viking Mission Control and Computing Center
(VMCCC) document under coatrol of the Data System Project Engineer
(DSPE), The MMC SDBD contained the VL-VL, VL-VO, and VO-VO interface
file descriptions. The VMCCC document coatained the VL-VMCCC, V0O-VMCCC,
VMCCC~-VMCCC and VMCCC-IPL (Image Processing Laboratory) interface file
descriptions., The VL and VO programns were the batch portion of the
Mission Operations software system, the VMCCC programs were the real
time, near real time and institutional portion of the software system,
and the IPL programs processed Lander and Orbiter imazingz telemetry,

The Viking Laader and Viking Orbiter Software Systems Enzineers
(VLSSE and VOSSE) were required to concur on deliveries a1d chaazes to
data and files affecting their software systems. Follovinz milestone
12 (program delivery to VMCCC) the DSPE also was required to concur
with chaages to VL or VO interface file descriptions., The ICSSE was
required to concur with all interface descriptions affecting VMCCC

software.

90

ES@- o



The software plan therefore emphasized requirements for controlling

interface file descriptions, but failed to make references to control-

ling what it referred to as tables, buffers and coastants. ?iobably

this was the reason why only tables and coastants used by Lander prozrams

were incorporated in the SD3D, The Orbiter software system did not in-
clude a common data base and the tables and constants used by each pro-

gran were documented with that prozran. The Lander software system

0 0 B

required the development of a commonr data base and associated read only
file management softwarc., Therefore, lander program documentation re-
ferenced all keys used to access the common data base. The commoa data

base itself was documented in the SDBD,

i DESCRIPTION: This description will be limited to the MMAC SDBD. The develop-
2 ment of the document was conducted by the Software Integratioa Group
under the directios of both the ICSSE and VLSSE, The VOSSE supplied
the VO-V0 interfaze file descriptions. The VO-VL interface descrip-
tions were ncgotiated by the affected prozrammers and eagzineers throuzh
the VOSSE and ICSSE.
Files interfacing multiple programs were identified in the Inte-
- grated S.’tware Functional Design (ISFD). The Coznizant Programmers of
each lander prozran identified all files that interfaced two or more
load modules of their prozram. Each of the above files were assigned

generic identifiers and listed for inclusion in the SD3D. Tne process

of obtaining file descriptions then consisted of obtaining a detailed
descriptioa of the purpose, format, data coatent, size (which could be

variable), frequency of use and storaze media from the CE ov CP re-

spousible fov tha program that generated the file. The WRITE statement

il

. for formatted files was also included. The file description was then

taken to the CP/CE team of each prozram zhat siccessed the file. If all

bl

parties szceed to the descriptioa, they signed their names to a concur-

SO A

rence form that was inzluded with the file description in the 5D3D, 1f

there were disagreoments, the Software Integration Groop would call for

bl

a noeting amoaz every CE and CP associated with the file. At that

: meeting an agreement as to the files deascripiioa would 5e¢ reached and
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all parties would sign the concurrence sheet, If the resolution was

that the file would have a slightly different format on the 360 than

on the 1108, the differences in format were clearly identified and in-
corporated into the file description, After *° CEs and CPs signed the
concurrence form, the appropriate sign the form, thereby
aathorizing the inclusion of the desc. n into the SDBD., The de-
scription now was under Viking Integration Change Control.

The tables and constants to be incorporated in the common data base
were collected in a different fashion, Each CE/CP team identified the
need for a table or constants to the Software Integration Group., This
included only data that would be constant or relatively stable during
development and operaiions, such as one-way light time tables, lander
coordinates, the diameter of Mars, the time of separation or the value
of pi. Each table, constant, or group of related constants would then
be assigned a unique identification generic, called a key, by which it
could be accessed through the file management software., A specific
individual was made responsible for the values associated with each
key. In the event that two programs requested different values for the
same constant (time of separation, whether to represent the Mars diame-
ter in meters or feet, etc), the affected CE/CPs would be contacted and
an azreement would be reached, The values were then incozporated in
the comnoa data base., They remained under control of the ICSSE until
the software system was placed on-line., At that time a computer print-
out of the commoa data base was reduced and incorporated into the SD3D,
Any chaages thereafter had to be approsed by the directors responsible
for affected prozrams., The users cof the keys would be notified of the
change in writing, axd a new printout of the common data base would be
taken aad kept in a central location available for inspe.tion by any
Flight team member, The SDBD was not updated to reflect the change;
rather it was the user's responsibility to attach the change notice to
their copies of the SD3D.

The SDBD was also used as a central point to document the time
utilities, methods for accessing the Parameter Passing File, and mis-
cellaneous material on commaa utilities, It coatained a cross index
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section that showed every file a program used aid every prozram azcessed
by a file, It also identified the five character generic that appeared
in the header record of each file for data manazement and inter-computer

transfer uses,

QUALITATIVE RESULTS: The interface file descriptions greatly simplified and
facilitated the software system integration process. Despite the fact
that every affected enzineer and programmer coacurred with the struc-
ture aand content of a file, most interfaces did no:t work the first time
they were tested., The SD3D made it easy to determine the reasoas for
the failures,

Because of limited manpower resources available to develop the
SD3D, the document was somewhat latking in respect to tables and con-
stants contained in the common data base. Multiple entries of coastants
occurred and not all constants that should nave been included were actu-
ally included, Some programns accessed tables and constants as input
data rather than from the common data base. The potential for error
was therefore greater than it should have been duringz planetary opera-
tions, Procedires had to be established to coordinate the use of multi-
ple sources for one-way light time tables, the lander coordinates and
the Flight computer clock counter.

The fact that the tables and coastants were not puablished until
the software system was delivered also caused some problems, During
the carly stazes of progran deliveries the commoa data base software
was not fully tested, As a result some programmers hai to build in the
option to a:zcess common data through either inpat cards o: the common
data base in order to meet their acceptance test schedules, Because
the data base had not been published, the CE/CP team soa:times had to
guess at values for coastants not yet azreed apo, such a3 time of sepa-
ration. Tnen six moaths later when the test case was repzated to as-
sure the prozran was still the same as had originally been delivered,
the user would discover that the prozran output was different thar
expzcted, Tnis then led to a faflure report, a1l time and effort would

be spent trying to locate the source of the error,
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The two shortcomings noted for the SD3D were both in areas where
people failed to recognize the importance of the document, The concept
is extremely valuable, and should be emphasized, implemented and en-
forced in the development of any major software system,

QUANTITATIVE IMPACT: A four to five man year level of effort was made to

develop and maintain the SDBD for the life of the project. 1In order to
have assured compliance with the tables and constants portion of the
document, an additional one to two man year effort would have been
required,

The SDBD was issued in two volumes, which combined were about two
feet thick. Volume I contained interface descriptions for 11 VO-VL
files and for 104 VL-VL viles. Volume II contained interface descrip-
tions for 48 VO-VO files, plus four common data base descriptions. They
were the Viking Lander 1 and Viking Laader II common data bases as they
existed on the 360/75 and 1108 computer systems.
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TECHNIQUE

NAME: FLIGHT OPERATIONS SOFIWARE SUBGROUP

SUMMARY: The Viking Projeoct placed the responsibility for planning, co-
ordinating and monitoring the development of the Flight Operatioas
software system in the hands of a multi-agency Software Subgroap. This
group was composed of four Softwave Systems Enzineers who were indivi-
dially respoasible for Lander software, Orbiter software, Institutioaal

software, and Project softwavre system integration.

APPLICATION CONSIDERATIONS: Tne multi-agency manazers respoasible for the
operational software system were each members of a Flight Operatioas
Working Group (FOWG). None cf them were expzrienced in resolvinz tech-
nical problems relative to computer science or large data manazement
systems, Wnen it became evident that it would take a significant co-
ordinatioa effort to reach azreements, the FOWG elected to establish
the Software Subgroup for that purpose. Only those problems that could
not be resolved by the subgroup would then be presented to the FOWG

with recommendations.

RECOMMENDATION: Tne resolutioa of tradeoffs between hardware and software
rejuirements and the manazement of software resources aad schedules is
freqiaently haidled by noa-software ociented parsoancl, This will be
successful only if management understands the software development pro-
cess avl realizes that software must be troated on an equal basis with
hardware., Tne management of the software development itself requires
a1 ability to resolve technical progran level problems ia a nanner that
will not impact system level performance. It also reguires the ahility
to foresee potential performance deficiecucies early in the developmnent
proccess, Fo: these rcasoas exparienced software systems engineers
should be made respoisible for software devclopnent at the system

level.
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HISTORY: It is obvious to make a Software Systems Engineer (SSE) responsi-
ble for the development process of a relatively small software system.
Such was the case for the Flight and Test Viking software systems.

The problem of developing a large multi-agency, multi-faceted soft-
ware system is quite different. The Mission Operational Software System
contained engineering, telemetry, sequence generation, command genera-
tion, flight path analysis, science analysis and imaging programs for
both Lander and Orbiter. In addition it contained mission planning,
tracking data, ground resource and institutional software. Separate
teams were established to develop thc software for each of these func-

tions. Cognizant engineers were made responsible for requirements and

end product testing, and cognizant programmers were made responsible
for design, code and implementatioa.

But this left unanswered such questions as what programs were
needed, are redundant functions being developed, what standards and pro-
cedures should be followed, how will the system function, can the sys-
tem be made to operate within available computer resources, how will the
programs be integrated to form a system, and what assurance is there
that the programs will be adequately developed and tested. To resolve
these and associated questions, four SSEs were identified. They were
not made responsible for the software itself; rather, they were made
respoasible tc assure that a viable and efficient system would be gen-

erated on schedule.

DESCRIPTION: The Flight Operations Software Plan identified the Software
Sub Group as follows:

Planning, coordinating and monitoring of development of the Flight
Operations Software System is the respoasibility of the Software Sub
Group (SWSG) under the direction of the Flight Operatioas Working Group
(FOWG), Tne SWSG shall provide guidance for the functional design of
the system, and shall coordinate, integrate, review and advise on the
design, development aid implementation of the system. The SWSG shall

cmphasize Lander and Orbiter software integration and shall resolve

3 any software interface problems that may arise, Problems that cannot
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be resolved by the SWSG shall be presented to the Flight Operations
Worxing Group with recommendations, 8pecific SWSG respoasibilities
shall include:

a. Review and coordinate FOS software schedules;

b. Participate in the evaluation and coordinatioa of the Flight
Operations functional requirements so that Viking software
requirements can be developed;

¢c. Review the software design generated in response to the Soft~
ware Functional Descriptions and the LFOS Functional Specifi-
cation;

d. Review the Functioaal Requirements Document aid the Software
Requirements Documnent to assure that the requirements have
been defined as necessary for software design;

e. Identify problem areas where analyses are reauired to desipgn
a1 integrated TDS/VMCCC/Project software system that will
meet FOS functioaal requirements;

f. Provide zuidance for software planning, design, and implemun-
tation;

g. Evoluate tho -eadiness of the software system for flight
operaiions;

h. Resolve or recomnend solutions to software interface sroblems
involving MMC, JPL-VOS, TDS aad VMCCC;

i, Monitor the implementatioa of the overall FOS software design,
developnent and testing to assure that all interfaces, design
reqiirements, and schedules are correctly and completely
satigfied;

j.  Evaluare the realiness of the FOS software system for integra-
tion inte the DS computer complex:

k. Evaluate the readiness of the TDS/VMCCC Missioa Independent
Software System to support Froject software testing and
implementation;

1. Coordinate FOS gcound software interfaces with the on-boavd

software and aavdware,
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The members of the SWSG were then identified to be :un Integration
Contractor Software System Engineer (ICSSE), a QHC Software System
Engineer (VLSSE), an Orbiter Software System Engineer (VOSSE), and a
MCCC Data System Project Engineer (DSPE).

The ICS3E was given overall integration responsib:lity for the
Viking Project Software System, Principal duties specified included
coordinating Orbiter, Lander and TDS/VMCCC software interfaces and in-
terfaces of ground software with on-board software, integrating and
publishing software development schedules and status reports, coatrol-
ling adherence of the software design to the planned design, implement-
ing MMC software at JPL, and assuring software configuration management.

The principle duties of the VLSSE were to provide status and sched-
ules to the ICSSE, coordinate Lander schedules, exercise Lander soft-
ware configuration manazement, review the progress of Lander software
implementation, assure Lander documentation and test data generation,
a1d assure the readiness of the final program products for certifica-
tio. and user acceptance testing.

The VOSSE duties paralleled those of the VLSSE for orbiter de-
veloped software.

The DSPE was made respoasible to assure MCCC constraints were not
violated, compile computer usage estimates for development and generate
them for intezration, coordinate MCCC data system constraints upon
Viking, participate in MCCC data system coafiguration control, prepare
MCCC data system integratioa schedules, and assure generation of proper
data system documentatioa.

QUALITATIVE RESULTS: Tne accomplishments of the Software Subgroap members

playsd a major rosle in delivering an efficient operational software
system to the Viking Project oa schedule,

Tne SSEs resolved numeross inter-agency disputes and probiems, a.
developed a1d implemented the Integrated Functional System Design, the
Software Data Base Document, the Vikinz Soiltware Guide, the Lander
Orbiter Software Test Plan and the VMCCC Data System and Integratioa

Plax, Tney developed data management requiremeants, collected,
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controlled and enforved interface azreements, assured software deliver-
ies cowplied with procedures, supervised certificatioa, conversion, and
acceptance testing, negotiated computer time, held audits and reviews,
maintained schedules, wrote procedures, resolved comput . system pro-
blems, and conducted the P-eliminary and Critical Design Reviews.
Finally, they gained the confidence of the engineers and programmers,
ran the software, coordinated failure reports and redeliveries and inte-
grated the system.

Vhereas the SSEs were given a fair degree of latitude in carrying
out their duties, the most significant difficvities they encountered
were caused by decision making policies of the non-software orientod
management directly above them. Four examnles will te given to impress
upor: the reader the importance of management understanding the software
process before events unfold rather than after the fack)&

Maiagement did not initially understand the limitations of computer
systems. As sooa as the system design was formulated, the SSEs coaduc-
ted loading analyses studies which showed that three or four large main-
frane computers would be needed, Management hold firm to the decisioa
that the system would operate in oze real time 360/75 and oae general
uarpose 1108, Tne SSEs were therefore forced to assign prograns to
computers under these zroundrules, The final system included two 360/75
computers, each operating a little more than half the time, for real
time and batch operations, plus two 1105 general purpose comnuters
operatinz full time with a third 1108 available for emergenzies and peak
loads, Had manazement faced this decision early, more efficient pro-
gran loading could have been realized,

Management did not always treat software o an equal basis with
hardware, Tne %SEs r2guested that telemetry formats contain some addi-
tional time tay words reqsired frr data analysis. The request was re-
jected, aid complex aid inefficient software functions hai to be de-
velopad to resolve the situation, This increased the running time for
the decalibration and decommutation software fuactioas and caused pro-
blems bezinning with the third week of planatary operations, Some
science data was incorrectly time tagged, not because of software errors,

but becaise of the conplexity of the requirements for distinguishing

99




old data from new data., The problem was quickly resolved by modifying
the requirements and then implementing minor software changes.

Management rushed software development. The SSEs provided sched-
ules that took into account both the software development scope and
permitted a top down approach to system integration. Management direc-
ted that several real time and batch programs would be delivered up to
five moaths earlier than shown on the schedules to support Software
System Cne testing, The SSEs argued that the batch prozrams were not
needed (because Flight computer software would at most be only capable
of producing a memory dump) and that early program conversion, accept-
ance testing and integration efforts would jeopardize final prozram de-
livecy schedules. Tnis advice was rejected, and the prozrams were de-
livered early and on schedule. They were not adaptive, were unreliable,
aad could only be run in a "caned” fashion, being very limited as to
what data could be processed, No Flight software was available for
Software System <ne testing, so not even a memory dump could be taken.
For that reason, no one even botheved to run the batch prozrams, Mun-
agement learned from this experience not to rush future software
deliveries.

Management did not fully understand the software integration pro-
cess, The SSEs originally specified in the software plan that Lander/
Orbiter interface integratioa testinz would be craducted prior to pro-
gras delivery. The reason for this was that the SSEs knew that a large
number of errors would be uncosered. Manazement changed the plan to
require program deliveries be made before intagratioa tests could be
conducted, There is nothing wrong with this as loag as one is willing
to accept the fact that most progzrams wiil have to be redelivered., But
when that happoned, managemeat jumped oa the SSEs for moaking too many
deliveries; cach was costly in resources becaise of the invoived pro-
cedures and retesting that had to be followed., The end result was that
the SSEs ignored the plan and reverted to their original approach, there-
by controlling the number of redeliveries required, It is important to

realize that first deliveries were inceative deliveries, and redeliver-

ie3 wece not,
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QUANTITATIVE IMPACT: The amount of support given to the Software Subgroup
SSEs is showm in table 1. The numbers reflect the averaze manpower

levels for the years shown., The figures include the SSEs and their

staffs,
1970 1972 1973 1974 1975 1976 Manyears
ICSSE 1 3 4 7 6 4 25
VLSSE 0 0 1 4 1 0 6
VOSSE 1 1 3 6 6 4 21
DSPE 1 1 2 2 2 2 10
Totals 3 5 10 19 15 19 62

Table 1. Software System Engineer Maipower

Tne figures reflect all activities stated aerein for the SSEs, In ad-
dition the ICSSE maanpower includes developing all VL data manazemen:
software, maintaininz two MMC computer consultants, daveloping the cou-
mon data base, developing utility prozrams, and mainzainingy three lander
programs, The VLSSE efforst also includes developing the VL time

utilities,
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Flight Software Development Overview

) int roduction

The Viking Lander Flight Software Systerm was developed over a tive
car time period, significant difficulties were experienced during che
ijor portion 1 its development caused by Lander science and engineering

nardware subsvstem design changes, This overview emphasizes the major pro-
o ems, their sotutions, and the significant accomplishments that ultimately
ted to an effective and efficient Flight Software System which worked well

during the mission,

1.1 The Viking Lander Flight Software System

The Viking Lander Flight Software System consists of a set of software
modules, called the Flight Program, which reside in a Guidance, Control and
Sequencing Computer (GCSC). The GCSC interfaces with Viking Lander hardware
subsystems thru input/output channels and interrupt registers. The Flight
Program was the semi-autonomous controller of the Lander. It was required
to perform  prelaunch Lander checkout functions, control Lander science and
engineering hardware subsystem activitices during interplanetary cruise, and
perform Lander checkout and calibration functions while in Mars orbit. Dur-
ing the descent to the Martian surface the Fiight Program performed naviga-
tion, guidance, and steering functions, and controllied telemetry format
wodes, power management, pyrotechnic firings and uppcr atmospheric sciencific
investigation subsystems, Once upon the surface of Mars the ¥light Prograr
»1¢ reguired to control the various scientific investigation instruments,

vriorm telemetry data management, and controi all uplink and dowalink co:-

>

munications activities.

1,2 Software Development Responsibilitices

The Langley Research Center was responsible to NASA Hoadquarters for
the minagement of the Viking Project. Contracts woere awarded ta the Demer
Pivision of the Martin Marietta Corporation to develop the flight software
system for the Viking Landers and t- the Jet Propulsion Laboratory to

develop the fiight software svstem for the Viking Orbiters,
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This narrative is limited to a discussion of the development of the
Viking Lander Flight Software System.

1.3 Quantitative Software Description

Several versions of the flight program were developed for the 18432
word Guidance, Control and Sequencing Computer (GCSC). The version that was
launched contained a pre-separation checkout code overlay strategy. There-
fore it is estimated that the delivered flight program used to support mis-
sion operations contained 20000 instructions, developed at a cost of 1609
man months, It should be pointed out that this development effort permitted
the Viking Flight Team to uplink 60000 code controlling data words to each
Viking Lander during operations. In addition to the flight program develop-
ment costs, 494 man months were required to produce approximately 200000
instructions of emulation, simulation and diagnostic support software,

The documentation that supported the flight software development con-
sisted of a Software Requirements Document (1000 pages), a General Design
Document (500 pages), a five volume Program Description Document (1500 pages),
two timing and sizing reports (500 pages each), a PI'R report (500 pages) and
a CDR report (500 pages), or a total of approximately 5000 pages.

The estimated effort expended by development phase for the flight pro-

gram is as follows

Definition 8%
Design 22%
Programming 25%
Test 23%
G&C Analysis 227%
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2,0 The Requirements and Design Phase
2.1 Organizing for the Task

The original concept for Viking software development was that a single
unified management approach would be applied to all of the software systems.
A Viking Software Integration Group was formed to develop and document
"Standards for Viking Software Development' which listed the documentation,
flow chart and basic configuration management requirements for all MMC

developed software. Subsequently, the multi-agency management coordination

effort required to develop the operational software system led to the decision
that that system would be placed under a Mission Operations and Design (MO&D)
Directorate and the Test and Flight software systems would be developed under
the Systems Engineering Directorate. Coordination between these directorates
was established by means of a Viking Change Summary (VCS) procedure that was

designed to assure system wide visibility into all hardware and software com-

St T Gy 1 SRR

ponent change traffic,
The Systems Engineering Directorate was responsible for the Flight soft-

ware group, the Lander hardware component groups, the Systems Test Equipment

ol ML o A

group, the Systems Engineering group, and the Cuidance and Control group for
descent. A Lander Software Integration group was chartered to monitor the
3 development processes of the Flight and STE software systems and to write a
3 Lander Software Development Plan., The software plan established a Software
Change Board whose primary purpose was to assess the impacts that hardware
component changes had on the growth of Flight software and to recommend solu-
tions or courses of actions to be taken,

The Lander Software Integration Group within Systems Engincering was in
existence for a relatively short time; as such it was essentially ineffective
in monitoring the flight software development. This task was accomplished by

the Systems Design and Integration Group until September 1974 and the MO&D

Lander Performance Analysis (LPA) group thereafter,

2.2 Defining the Software System

The Flight Software System was initially only partially defined. It
then evolved through an extensive trial-by-error iterative process, The rea-

son for this can partially be traced to a lack of trained software lceads and
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software management personnel who inappropriately viewed Flight software as

being one of several independent components that collectively formed the
Viking Lander system. It was fn part caused by the January 1970 discussion
of President Nixon to postpone the Viking Mission from 1973 to 1975. But it
was primarily caused by the difficulties encountered by the hardware designers
to develop lightweight, compact and sophisticated science instrument sub-
systems,

The concept of the Flight Program for Viking 73 included two computers
and two programs, A Guidance computer would be used to perform the descent
phase of the mission and a sequencing computer would perform the landed sci-
ence sequences, Each computer would have its own resident software,

The Guidance and Control (G&C) subsystem was designed based on the two
computer configuration and requirements for the descent phase were levied.
With the G&C subsystem being designed independent from the Lander science
and engineering subsystems, a consistent and well defined subsystem, which
included descent software requirements, evolved.

Problems arose from the fact that each of the other Lander subsystems
were developing independently, and were experiencing serious hardware design
problems in areas of power, thermal, weight and packaging., Systems engineer-
ing was greatly concerned about these problems, and concentrated their efforts
in resolving them on an independent subsystem basis. The functional through-
put for the entire digital system was therefore constantly changing.

With one subsystem evolving around one computer and all other subsystems
evolving around an unidentified sequencer, when the decision was finally
made to incorporate a single but block redundant computer fo. Viking 75, the
Flight software system definition faced two serious problems. One problem
was how to interface a computer to an existing and disjoint set of subsystems
and produce a consistent set of softwarc requirements; the other problem was
how to choose a computer for the task.,

The first problem was eventually resolved in an engineering sense, but
maintained a consistent position of creating problems that nceded resolution
throughout design, development, test and operations, For example, the design
of the Flight program to use a single register for both telemetry and science
I1/0 caused conflicts that went undetected until late in the integrated system
tesr phase which required costly changes to the Flight software to fix.
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Attempts were made to standardize the system interfaces but the resulting
mixture was far from standard, thus forcing a complex software interface and
a complex computer I/0 structure.

The problem of how to choose a computer was solved using a novel tech-
nique - buy a computer that fits the software. The concept of "software
first" was important in the fact that an adequate computer could be specified
with a high degree of assurance as to its capacity for the job. In addition
"software first" provided early subsystem evaluation allowing design criteria
changes prior to hardware build. The objective of "software first'" was to
perform a detailed computer timing and sizing task for the Flight Program
and to define computer architecture adequate for the required accuracy and

program control,

2.3 The Program Design Phase

E The program design phase began with the "software first" criteria for
selecting a Guidance, Control and Sequencing Computer (GCSC). An executable
performance analysis was conducted with a "procurement language' Flight pro-
gram to provide verification that the computer, the G&C subsystem, and the
flight algorithms were a compatible set, The approach taken was a two-pronged
assault geared to produce a solution. The first was to perform a design
level sizing and timing analysis on Lander engineering and science software
tasks. The second was to emulate the hypothetical Flight computer in real
time by microprogramming the descent portion of the Flight program on a
Standard Computer Corporation I1C-7000 computer set,

These analyses led to firm minimal requirements for the GCSC hardware
cesign, However, at this point in the development of the Viking Lander,
weight was the most critical problem faced by management; almost every Lander
hardware subsystem was too heavy. For this reason, the third osest computer
was procured from a software point of view. The selected lightest in weight

computer was adequate, but was poor in its instruction set and architecture,

which made coding inefficient,
Although "software first'" proved system viability, software costs and
design problems were not adequately considered in the system design and inter-

face areas. The system interface requirements coerdination was accomplished

T T T Py

by the Systems Design and Integration Group within the Systems Engineering

A
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Directorate. Although the flight software development group assisted and was
involved in resolving interface problems, the System group provided adequate
coordination and requirements definition., If fault is to be discussed in
providing necessary coordination, it was that the original coordination/
requirement definition was given to the G&C group. This was a correct
approach for descent requirements; however, for engineering and science
requirements the G&C group was not structured to handle interface require-
ments. The Flight Software Integration group then assumed the requirement
definition of the Systems Design group; however, the Systems Integration
group continued requirement definition for most science and sequencing
requirements, Not until the Systems Design and Integration group was dis-
solved was the total flight software coordination accomplished within one
group, i.e., Lander Performance Analysis within MO&D., Even with the constant
shift of responsibilities, flight software definition was accomplished effec-
tively.

The software requirements were functional rather than specific. They
consisted of Descent G&C requirements, a Sequence of Events (SOE) generat d
by the Lander Sequencing Group, and software specifications based on a spe-
cific sequence of events, The G&C requirements were specified by using
blocks of FORTRAN statements that only partially defined the descent software
requirements., The S,0.E, was a project controlled list of events, commands,
and times that the software should meet. This was intentional, since a
specific sequence was required -and the Systems Design and Integration Group
did not want a general capability designed into the Flight computer.

Although the software requirements document did define & set of require-
ments for the software design, none were included for a software executive,
In this area it was up to the programmers to use their best judgement in
assessing the neceds of the science community of users. It stould also be
noted that many of the requirements evolved as the systems ...egration group
and flight software development group became knowledgeable of the hardware
design, including the GCSC.

The difficulties for the flight software group to obtain firm and com-
plete requirements relative to the evolving Viking Lander system were conpli-
cated by physical considerations. The Flight software development activity

was located in a laboratory one mile away from the rest of the project.
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Although ar uxtensive Mission Planning/landed science strategy activity was
going on, the flight software personnel were almost never involved to obtain
an understanding of how the flight software should interface with the Flight
Operations software and users., If it were not for the etiforts of one particu-
larly dedicated and competent individual who worked this interface, the
development of the Flight operations and GCSC software would have produced
mutually incompatible desipns. After both software systems were well into
integrated testing, the Missions Operations management realized the severe
limitations of the Flight software to the mission strategy and created a
full-time group responsible for the integrate’ software design and test

activity.

2.4 The Development Cycle

The development cycle took into account the inadequacies that existed
during the software design phase, System integration held meetings between
users and programmers, using the flow charts as the point of departure. In
this manner, softwiare capabilities could be discussed in a cokerent fashion
to iron out single level problems and inconsistencies, As the flow charts
were accepted on a one by one basis, coding could begin.

The documentation requirements were standard in accordance with Viking
softwvare development, as specified in the Lander Software Development Plan.
No software standards were imposed on the Flight Software Group, but guide-
lines were available., The Flight Software Group therefore organized their
own standards relative to such things as labeling conventions, subroutine
conventions and c¢oding standards; however these standards were not consis-
tently enforced,

To combat the changing and diverse requirements inherent with Lander
hardware subsystem development, a modular system design had been generated
that cmployed an Operating System as the module control manager. The Operat-
fng System allowed both absolute and relative time scheduling of modules.
Modules were assigned one of five levels of execution priority. All 1/0 and
interrupt service was handled by the Operating System routfines. Module inter-
face to these routines was controliled by Macro calling sequences. The levels
of standardization allowed modules to be changed and modificd with a minimum

impact to the systewm design,  Since changing requirements continuea on into
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operations, the decision to modularize subsystem and function software and
provide standard Operating System sources proved to be highly successful in
accommodating change with confidence.

The modular design also simplified the development cycle. The module
design would be coordinated with the user, as described :bove. It then would
be coded and debugged in the IC-7000 emulator. Unit testing then would take
place on a module by module basis. Collectiong of modules would then be
tested by interfacing hardware subsystem simulators with thé IC-7000, Final-
ly, the software modules would be placed in the GCSC when it becawe available,
and integrated systcem level tests with Lander hardware components would be
conducted,

The flight software development process was hindered by the lack of the
assembler that was adequate for the task, The first assembler provided fixed
address code. About halfway through the development phase, the Flight Soft-
ware group made the decision to develop a relocatable assembler, which was
needed to cope with the change activity and the multiple revisions of the
flight code. Later on a decision was made to use the IBM 370 assembler, which
was also being used for the Flight Operations Command software. After one or
two assemblies were made with this assembler, the project manager made the
decision that all future updates would be accomplished by manual "patches"
using the basic GCSC octal code. This was done even through a great many
changes had to be "patched" because of problems discovered in integrated test-
ing (see section 3,3). The result was that a "listing" of the flight code had
to be created post fa:to using the IBM 370 assembler, which was a laborious
and costly process. Because of the patching, f.c. using "jumps" to unused
memory and jumping back, the resulting listing of a contiguous function was
not contiguous in core, This proved to be & burden for Flight Operations
during the mission in reviewing Memory readouts and making s ftware changes
via uplink.

The assembler should have been developed for both the Flight and Command
software systems and used through all development cycles. Major revisions
after testing could then have been accomplished by proper reassembly of the

flight program,
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3.0 The Test and Integration Phase

3.1 Module Testing

The IC-7007 computer was subdivided into two sections. Each section was
controlled by a separate programmable CPU, One CPU was microprogrammed to
provide an emulation of the instruction set of the GCSC, The sccond CPU was
microprogrammed to provide a separate and distinct control instruction set
that was used to provide analysis, monitor and trace functions, and to simu-
late the discrete, interrupt and I/0 register hardware of the GCSC,

By this technique the module testing could be accomplished by means of
the control CPU which could activate the GCSC emulator CPU, monitor the emu-
lation, and provide printed output status reports to a SC-4000, These status
reports described the data flow and external responses of the emulation,

Thus each module could be tested individually under cuntrol of the
Op=vating Svstem to assure they met their design prior to testing them in con-

junction with the hardware system they were to control,

3.2 Subsystra Testing

The IC-7000 computer resources were inadequate to permit the module test-
int portion of the development phase to overlap the subsystem test phase.
These phases were required tc overlap because of constant changing software
requirements. A second IC-7000 computer system was purchased to solve the

problem, This eventually provided a system for component integration test-

ing and a system for module development testing,

The most significant problems encountered during subk:ystoam component
hardware/software testing were the lack of good development tools, testing
aids and a stabie laboratory enviromment, It was a circular problem that
could be traced back to the !sck of detailed software requirements,

Flight program subsystem testing would identify an inad-quacy in the
laboratory control software system that accessed and controlied hardware

subsystem simulators, The labovatory software would be modified, and then

the Flight program would identify another need.
Subsystem testing slowed to almost a standstill, No Flight progrum
development was being performed because the development bed was in a con-

stant state of flux, and the development bed could not be completed due to
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continual changing requirements., By placing the laboratory software under
strict change control and performing extensive laboratory qualification tests
the process of conducting subnystem testing finally was able to proceed at an

acceptable rate to support the development cycle.

3.3 Integrated System Testing

The Viking Lander Proof Test Capsule (PTC) was built as a third Viking
Lander to support integrated system testing. It was similar in every respect
to the two Viking Landers that were sent to Mars. An analog-digital Hybrid
computer system was developid to simulate the Viking Lander descent through
the Martian atmosphere to tcuchdown on the planet, During integrated system
descent testing, the Hybrid computer both modeled and bench tested the descent
science and engineering hardware subsystems to test the responses those sub-
systems would sense during actual operations. Contrcl of the PTC could be
accomplished only through the System Test Equipment at MMC. GCSC memory maps
wvere generated by the Flight Operztions Software System at JPL, sent over high
speed data lines to Denver, and input to the PTC Flight computer via the STE,

Integrated system testing established that the computer was adequate for
descent, The digital interface logic to the descent science and engineering
hardware subsystems proved to be ideal for precise sampled data digital con-
trol. The Flight Program Operating System was also well designed in this
area.

The computer was designed for power cycling control of I/0 and memory
when not in use. This proved to be an excellent concept and worked well
during the mission.

Integrated system testing uncovered deficiencies in the computer hard-
ware design which required costly Flight software changes and workarounds to
be implemented as well as imposing mission constraints on the Fiight Team,
These deficiencies included subsystem conflicts caused by using a single I/0
register for both telemetry and science control, and noise induced spurious
false interrupts being sent to the computer during I/0 switching,

Due to the lack of a fully integrated lander hardware/software design
plan, the landed science and landed telemetry modules had not made adequate
use of the priority and scheduling features provided by the executive. As
a result of this expensive fixes to both the Flight and operational software
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were required based on the results observed during integrated hardware/

software testing of mission sequences.

3.4 Postscript

For descent, a strong analytical systems group was available and devel-
oped the basic descent equations and logic in FORTRAN simulations prior to
development of Flight code. As such, the descent design and testing went
through a fairly orderly process (design - code - module - closed loop emula-
tion testing using real time hybrid modeling of the vehicle - integrated
hardware/software testing) with a minimun of problems. Plus it worked in
perfect harmony with the Mission Operations Software System during the actual
flight.

For landed operations, cruise and preseparation checkout, the systems
engineering group was not software oriented enough. Because of this, not
enough manpower of the right type was placed on insuring a total integrated
hardware/software design between the flight vehicle, the Flight software, and
the Mission Operations Software System, This led to problems in integrated
testing with the Mission Operations software and, due to the lead time of
launching the Flight software, placed a heavy burden on revising the Mission
Operations software. Due to the integrated nature of the Flight and Missicn
Operations software a different management structure than was used should
have been used.

As was done in descent, the system analysis group working with each sub-
system or experiment should have developed a software requirements document
which would have specified the functional flow chart level requirements of
each function (for instance the Gas Cromatograph Mass Spectrometer or the
Uplink process). At the next stage, the relationship of each program te
implement these functions could be defined. In this manner two programs
implementing the same function, such as the Lander Sequence of Ever : program
and the Flight program, would derive their requirements and -~adels frwm a com-

mon source.
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4,0 Lessons Learned

The Viking Flight program development was much more costly than it
should have been because of the initial lack of trained software managers,
visibility into software problems, and an insufficient concern about these
matters by management. Despite the many and significant problems faced by
the Lander hardware component subsystem developers, software development and
integration problems should have been brought to Director level attention for
resolution at an earlifer date than they were.

The Lander development organization was structured similar to the Viking
Project organization, which lacked the technical ability to monitor and man-
age development to the root level. The problems generated by this organiza-
tional structure eventually led to a series of independent audits during the
period in which subsystem testing slowed to almost a standstill, It was not
until then that the difficulties encountered by the software developers came
to the proper attention of the System Engineering Director. Only then were
software problems treated on an equal basis with hardware problems, the
result of which was that the ever changing requirements and lack of visibility
received immediate response,

Although the flight software development had difficulties, it should be
remembered that Viking was unique in its hardware complexity. Many hardware
changes were required to meet weight limitations, additional redundancy and
budget cuts. Even with knowledgeable managers in the area of flight software
design, the hardware changes would have taken place and the flight software
revised accordingly. Perhaps the lesson learned in this respect, is recog-
nition that a flight software program must change as the hardware is revised.
A schedule that incorporates flight software deliveries, reassemblies, etc.
at the outset of the project was badly needed. A flight software development
group must be structured to accommodate requirement revisions.

The flight software development group in Viking did accommodate numer-
able changes although there was a prevailing attitude that a change in
requiremcnts was indicative of someone not doing their job rather than an
ongoing softwarc development process that should be expected,

Another area that should be addressed is defining within the test program
the integration of flight software utilization in a systems test configura-
tion. Although the flight software executive was used in the test program,
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the landed operations software was not used until the Plugs Out Test (POT),
This created a situation where many people became familiar with only the test
software, and after launch, were not aware of the limitations and constraints
of the flight software.

In conclusion, even with alleged faults of poor requirement definition
and lack of knowledgeable software managers, the flight software design was
excellent, and, it resulted as a combined effort of the Flight Software
Development Group, Systems Design, Systems Integration, Flight Software Inte-
gration Group and Ho&ﬁ Lander Performance Analysis Group. Those using the
software became aware of the capabilities and constraints, and utilfzed the

flight software in its fullest to perform an excellently executed mission,
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TECHNIQUE

NAME: EMULATED ON-BOARD COMPUTER (GCSC)

SUMMARY: A ground-based, microprogrammable computer was used to emulate the
Flight Computer throughout all phases of GCSC software development.
This software~-first approach to the Lander computer system development

facilitated computer timing and sizing specification, permitted early
development of critical computer programs, and provided considerable

visibility into test and evaluation activities.

APPLICATION CONSIDERATIONS: During the early phases of software and hardware
definition it became evident that several problem areas could be satis-
fied by an emulation approach. Accurate sizing and timing estimates
could be obtained by coding a hypothetical computer representing the
class of available spaceborne digital computers. Computer memory capa-
city and speed have significant impact on power, weight, and volume;
all were critical performance characteristics. In addition, we were
committed to an Analog-Hybrid six-degree of freedom simulation of sepa-
ration from the orbiter through soft landing on the surface of Mars,
Integrated testing with real sensors and actuators was deemed important
in this process, Emulated representation of the on-board computer would
provide bit-for-bit fidelity. Unlike an "interpretive Computer Simula-
tion" (ICS) approach, emulation offered the prospect of real time test
and evaluation, Finally, most of the claasic problems inherent with
punched tape and limited visibility associated with on-board computer

usage would be avoided.

RECOMMENDATION: Emulation is now a proven concept in computer system develop-
ment, The approach offers the same type of advantages with any embedded
computer system where the target computer is undeveloped or unavailsble.
The power of the technique is illustrated by the fact that the first
flight computer was substituted for the Emulator and was running the

descent program in a full simulated environment within just one week

of computer delivery.
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HISTORY:

Conventional approaches to software development have utilized the
“Interpretive Computer Simulation' (ICS) wherein the flight computer is
simulated by interpreting its fustruction set and action through programs
written on a host computer. A typical response time, while quite vari-
able, might be as much as 500 times slower than the actual machine, It
is also difficult to anticipate, and thereby program, situations which
can occur in a real time enviromment. Consequently, in order to develop
software in a real time eavironment which could include actual devices,
we decided against the ICS approach and pursued the ecmulation course,

Although the characteristics of the flight computer were not speci-
fied, sufficient gencral information was available ;arly on the Viking
project to convince ug that micreprogrammable computers then in existence
could provide a real time emulation of the future flight computer.

It was recognized at the onset that an emulation would not, and
could not, provide a one to one time relationship with the actual machine
on an instruction by instruction basis. Indeed, for this to theoreti-
cally occur, the basic cycle time of the microprogrammable computer would
have to be a submuttiple of that of the actual machine. The stress, in
a real time sampled data system, is upon accomplishing identical proces-
sing over a sample period,

The microprogrammable computer chosen was a Standard Computer Corpo-
ratfon IC-7000, 1It consists of two processors both of which are micro-
programmable. One is the Central Processing Unit (CPU) and cthe second
is labeled the Input/Output Processor (IOP)., Each incorporates a con-
trol memory whose contents define the machine, f.e., the instruction
set. interrupt structure, etc, for that processor.

The inftial use of the complex consisted of an emulation for a
hypothetical flight computer. Inasmuch as the actual macbine had not
been specified, it was felt that software development could proceed with
a tvpical computer representing the class ot candidates avaflabie. This
em:lation afded sizing and timing specifications for the GCSC, helped in
carly development of the man/machine and various system interfaces,

The characteristics of the microprogrammable complex dictated that
flight computer evmulation be done on the CPU and that the I0P shouid be

used to implement 1/0 related aspects and to communicate with all
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external devices including the man/machine interface and control. Con-
sequently, a basic IOP language was defined and implemented in conjunc-
tion with development of the hypotehtical flight computer emulator.

The IOP language implementation proved to be an on-going, continual
endeavor throughout the life of the project. A new instruction would
be implemented as a need was generated. IOP microprogramming included
implementation of an interrupt system. The IOP, in addition to provid-
ing the interface linkage for the CPU to implement flight computer I/0,
also functioned as overall system problem control. Its language was
used to perform tasks such as data recording, starting and stopping of
runs, establishing an initialization state, etc.

Flight computer emulation began when selection of the flight com-
puter was made. The emulation was mechanized in respect to the logic
design of the GCSC and not in respect to the information found in what
is commonly termed "programming manual''., Design changes to the GCSC
were tracked and implemented in the emulation,

As the overall system needs and requirements developed, additional
requirements were forced onto the CPU microprogram over and above the
basic microprogram related to real time flight computer emulation. The
end result real time emulation bore little resemblance to the initial
design because of these factors and changes in GCSC design,

Three emulations have been mentioned in the above - (a) the hypo-
thetical computer; (b) real time GCSC; (c) TOP. Another version of the
GCSC emulation was also developed and warrants discussion, This was
called the "GCSC Trace" emulation. 1Its purpose was to provide a listing
to the user to aid in program development, User control was provided
to allow printout to occur only as desired. The printout provided
machine state information following execution of each in. :ruction and
included the instruction, its location, various register contents, and
time. TRACE, in actuality, consisted of a CPU microprogram and an IOP
program, Whereas much of the GCSC instruction emulation was identical
to that of real time, the interface to the IOP was drastically different,
TRACE could be considered an analogous to the ICS type operation.

Two versions of TRACE were eventually developed. The preliminary

version used IOP programming to keep track of time-related aspects,
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e.g., instruction execution time, sample time, delay times, etc. As
a result, the operation time was quite slow (about 300:1), A later
version incorporated these features in the microprogram and resulted
in a speedup (around 30:1 and in some unique instances could even run
faster than real time). The latter microprogram was, of course, con-
siderably more complex than the former.

As the characteristics of the GCSC became defined, some rather
drastic incompatible features became apparent in respect to the micro-
programmable machines capability. This was particularly true in respect
to GCSC I/0. The GCSC design was driven by power requirements and inter-
faces were required with several unique external devices., The result
was several 1/0 registers of varying length and unique time out periods.
Also, the GCSC had partial power down or ''go to sleep' capability. It
was readily apparent once these characteristics became known that the
basic microprogrammable computer could not handle the implementation
requirements, Consequently, a hardware design modification was made

to the computer to aid in the microprogram implementation,

DESCRIPTION: Four distinct microprograms were developed and are described

separately.

A. HYPOTHETICAL COMPUTER EMULATION - The initial computer cmulated
was that of a "computer" typical of the class of computers avail-
able, The general characteristics were:

24 bit word
2's complement arithmetic
24 instructions

A simplified 1/0 and interrupt structure were included.

B. IOP LANGUAGE EMULATION - The instruction set incorporated into
the I0P evolved over the life of the project and supported over
200K words of support software. The general features are:

36 bit word

2's complement arithmetic
163 instructions
interrupt system

Virtually the entire control core (2048 18 bit words) was utilized
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C.

in the process. The IOP micro language bears little resemblance
to that of the CPU,

The IOP larguage supports all standard I/0 peripheral device
interfaces in addition to the unique devices assocfated with the

Viking system,

GCSC REAL TIME EMULATION - The general characteristics of the GCSC
are:

24 bit word

47 instructions some of which have several subsets

2's complement arithmetic

8 level priority interrupt system

10 I/C registers

18 K memory

2 K protected memory area

3 soft index registers

multi level indirect addressing

some error detection logic

Sleep mode capability

Programmable Timer

The real time emulation is bit-for-bit functionally equiva-
lent with the GCSC, Emulation design was performed from the stand-
point of the logical design of the GCSC. The priority interrupt
system was emulated, for example, on a one-for-one equivalent of
the flip-flop structure involved,

Several areas of incompatibility were evident between the
GCSC and the microprogrammable computer as the GCSC design pro-
gressed. In many instances, use of the microprogrammable machine
capability was compromised or bypassed in order to neet functional
equivalence, Some examples are as follows:

(a) 1Index Registers - 3 soft index registers were utilized

in the GCSC whereas the micro computer has several hardware

ludex registers allowing indexing to be done as part of the

instruction fetch with no additional time penalty. Use of

this feature as is would result in a non exactness of memory

contents between the two machines (the 3 memory cells assigned
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to indexing). An exact equivalence could be achieved, of
cvirse, via appropriate microprogramming. However, by so
doing, all instructions which are indexable must be tested,
when executed, to determine if the feature is called for.
The result is a critical time loss in addition to consump-
tion of control core,

A compromise solution proved satisfactory in this case.
Hardware indexing was utilized but the 3 memory cells were
maintained via microprogram. That is, any instruction which

modified these cells also modified the hard index registers.

(b) Multi-Level Indirect - This feature of the GCSC was not
designed into the basic hardware capability of the micro
machine. Although 1t could be accomplished via microprogram-
ming, the same penalties exist as for index registers -
excessive execution time and core consumption. This feature

was discarded as a programmer option thereby eliminating the

problem,

(c) Divide -~ The GCSC divide instruction contained some
rather peculiar features (for example, the l.s.b. of the
quotient was always "1") which disallowed use of the divide
hardware in the micro machine and forced microprogramming of
the GCSC divide algorithm. Consequently, emulation divide
time was significantly greater than that of the GCSC. This
condition was, however, of little consequence since flight
programmers avoided the use of this instruction because of
its pecularities. In fact, its main claim to fame was as

a low power time killer - an instruction which consumes
little power (only one operand memory reference) and takes

a relatively long time to execute!

(d) 1/0 - Major difficulties in emulation of the flight
computer via the micro program technique were associatced
with 1/0, Problems therein are amplified when real time
is involved. Consider the differences between thc two

machines. I/0 in the micro computer is handled through
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the Input/Output Processor which is linked to the CPU via
common memory and through interrupts. That is, either
processor may interrupt the other at the micro level.
Interrupt interpretation and data transfers are mechanized
through memory interrogation., Both processors have access
to CPU control core. Thus, data transfer is parallel and
a degree of handshaking is implied in mechanization. Once
the information is obtained and interpreted by the IOP, it
can then establish the necessary linkage with the external
devices.

The flight computer 1/0 design, by contrast, reflects
extreme sensitivity to power consumption., All data transfers
are seriazl, register lengths are variable and transfer times
are device dependent. A total of 10 registers, from 3 to 35
bits in length, are incorporated. Four of these relate to
data transfers with external devices and are independent of
one another. An "I/0 complete" or "time out'" interrupt is
generated when a register is loaded or emptied. One register
may connect to several external devices and, consequently,
would have several time out periods. The other six registers
relate to discrete registers, error detection, power control,
and one to indicate which register has "timed out." Thus,
more than one operation can be in process simultancously and
many distinct timing intervals are possible, The problem of
using a single, parallel data linkage to simulate the four
distinct serial linkages is complex and the timing require-
ments further complicate the problem. Once the flight com-
puter 1/0 design began to crystallize, it beca . quite obvi-
ous that an I1/0 bottle-neck would exist if modeling were
limited to the basic micro machine capability, This became
painfully true in respect to the timing involved. An over-
whelming amount of microprocessing time would be consumed in
attempting to maintain the four channc! simulation,

Additional hardware was designed and added to the micro

machine to solve the problem. The various timing periods
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involved were produced via hardware, thereby permitting the

data transfers to occur in parallel (at the micro level) upon
time out and, consequently, simulate the serial transfer.

The I/0 instruction structure also created problems since
several fields required decoding in determining instruction
intent. This implies a considerable amount of time and core
overhead in decoding. Additional hardware modifications were

made to reduce the effect, especially in time sensitive areas.

(e) '"Sleep'" Operation - Because of power constraints, the
flight computer allows a partially powered down mode to be
established. It may then "wake up' as a result of external

interrupt or termination of a specified time interval. This

feature was emulated by suspending instruction execution
during the sleep interval while remaining receptive, at the

micro level, to those elements corresponding to the "awake"

T TR e T

portion of the flight machine.

(f) Timers - In addition to a sampling clock and the disc s-
sed I/0 time periods, a 1 ms. and a 12 ms. timing period werc
designed into the flight computer. These items were associ-
ated with the power conscrvation and "sleep" mode. Emula-
tion of these features via the micro code consumed too much
core and execution time. The problem was solved by augmenting

the hardware to provide the capability.

Although the above items are significant and dia have consider-
siderable impact on the emulation process, the achievements of the
technique are a credit to its flexibility, Modifications were nec-
essary only because of the real time aspects of the ;roblem,

Table 1 {s a timing comparison between the GCS. and the emu-
lator. A variety of conditions are evident - from near exactness

to a wide varfation in both directions.
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INSTRUCTION OR FLIGHT

INSTRUCTION TYPE COMPUTER EMULATOR

ADD 8.68 7.70

SHIFT 4,34 - 23,44 8.41 - 17,34

DOUBLE ADD 13,02 14,52

MULTIPLY 83.33 31.35

DIVIDE 123,26 168,68

STORE 8.68 8.45

INDEXING 4,34 0 (H/W index registers)
INDIRECT ADDRESSING 4.34 1.4 (H/W index registers)
INTERRUPT 8.68 23,62

OUTPUT 8.¢8 17.15 - 113,2

INPUT 8,68 10,15 - 24.5

Table I, Emulation Timing Comparison (IN ps)

Input/output and interrupt aspects produced the greatest vari-
ation in timing and the poorest results., This was primarily due to
two factors: (each flight computer 1/0 instruction was in reality
a group of instructions, f.e., several subsets existed for each
thereby requicing an extensive amount of decoding at the micropro-
gram level; (b) communication linkages between CPU and I0P required
servicing time,

Other items such as multiply, indexing, and indirect addres-
sivg tend to counteract the 1/0 timing. A reasonable degree of
comparison exists for other instructions.

Again, individual instruction time is not the critical factor.
The ability to perform the required flight program processing within
a sample period is the critical ftem, For the instruction mix
involved, emulatfon execution time was slightly faster than GCSC
execution time,

Many features were also implemented fn the micro program as an
aid to overall system operation. For example, a read and write of

flight program resct points was implemented. This feature allowed

the user to run for any period of time, stop and store th¢ machine

state, Similarly, any stored reset point could be read and the
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opceration reinitiated. The machine state is determinable and may also
be established via micro program whereas this may be impossible or dif-

ficult at a higher level,

TRACE EMULATION - This microprogram, in associatioun with an IOP program,
functioned to provide the user with a printout, or listing, of the GCSC
state (instruction, location, register content, effective address and
contents and execution time) after each fnstruction. Much of the micro-
code is identical to that of the real time emulation but many differ-
ences exist. TRACE must store all state conditions and make them avail-
able upon request. Also, the time related aspects have a different con-
notation than in real time and micro code in these areas differs con-
siderably. TRACE was used for initial program development and in
attempts to gain insight into problem areas.

QUALITATIVE RESULTS: The emulation approach enabled us to obtain reasonable

timing and sizing estimates for the spaceborne computer prior to issuing
its specifications. This was accomplished through emulation of a hypo-
thetical machine. This approach also accelerated the laboratory system
design and mechanization whereby interfaces between the various comi-
ponents, the man/machine interface, etc, were mechanized and operational
early in the program. Also, operational runs were made to verify descent
algorithms using this language before the GCSC specifics were known.

After the GCSC characteristics became known, the hypothetical emu-
lation was phased out as the real time and trace ¢emulation were devel-
oped. These items were operational at least a year in advance of GCSC
availability. Conseguently, program development was well underway when
the actual machine became available,

Insight and visibility into program cperation were possible through
the approach which would not have been possible with the actual machine.
Aerospace computers typically have little visibility provided to the
user,

One aspect of the approach which proved quite uscful as an aid to
program debugging was the ability to examine conditions at a lower level

than normal machine instruction level - the microcode level. This
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technique was used many times to "look" at the internal machine state
and thereby determine the problem cause.
Emulation also provides the capability to determine and thereby

record machine state, Within the system framework, it often became nec-

essary to stop the run after a long perfod of elapsed time and record
all conditions as a reset point so that the exact state could be later
reestablished without processing from the initial starting point. This
is relatively easy to do at the microcode level but may be extremely
diificult at the program level. 1Indeed, once the GCSC became available,
a congsiderable amount of effort was expended in accomplishing the same
task,

Emulation offers the user a large degree of flexibility as is {1llus-
trated by the changing instruction set of the IOP. As needs develop,
changes can be made to accommodate that need. This capability is not
realized without some expense as the user must develop his software and
the personnel at the micro level must be intimately familiar with the
machine.

In respect to the microprogramming effort per se, many difficulties
were centered around a lack of control store. Both IOP and CPU control
store consisted of 2048 18 bit words. The real time emulation was a
constant process of fitting in system or CCSC design changes without
exceeding core or execution time limitations. 1IOP control core was com-
pletely consumed via emulation of the IOF language. The final version
of TRACE (Fast Trace) also consumed the entire CPU control core,

Some additional comments in respect to real time emulation are war-
ranted. It should be understood that real time emulation is not aute-
matically attainable, It was possible for Viking because the GCSC was
a relatively slow machine. The microprogrammable machin. must be a
basically faster device than the computer to be cmulated.

Carcful attention should be given to the compatibility of the two
computers if at all possible, Otherwise, considerable difficulties may
appear as the emulation proceceds. This situation was painfully evident
in respect to the GCSC real time emulation, Characteristics of the
microprogrammable computer were completely ignored in respect to GCSC

selection and {ts specifications. The result was a series of "find-a-
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solution" processes culminating in many instances with hardware modifi-
cation to the micro machine.

QUANTITATIVE IMPACT: Table II summarizes the manpower expended in the dif-

ferent Viking microprogramming tasks,

PROGRAM MANMONTHS
Hypothetical Computer Emulation 4
IOP Language Microprogram 16
Flight Computer Real Time Emulation 20
Flight Computer Trace Emulation 8
Hardware Modifications 10

Table 1I. Manpower

Manpower consumed in the microprogramming effort includes a learn-
ing period. In respect to the IOP effort, the figure represents the
manpower consumed over a five year project lifetime rather than an amount
required to begin utiiization of the resource. Basic operation consumed
approximately six man months but, as the system developed, additions and
changes were made to the instruction set and the operational philosophy.
The result was a more or less continual, low key effort.

Flight computer emulation manpower consumption reflects the effort
expended i{n learning associated with the flight computer - an understand-
ing of its operation at the logic design level and in tracking the design
and its changes from the conceptual to the developed stage over a thrce
year period. As design changes occurred, changes were forced upon the
emulation. Further, as previously stated,the micro program involved
implementation of system functions. Probably 707 of the manpower would
be attributable to emulation of the I/0 instructions.

Manpower used for trace emulation reflects basic design and check-
out and also tracking of changes made to flight computer design.

The figures presented also represent expenditures involved in gencr-
ation and checkout of programs used as checkout drivers or 'micro-program
diagnostics'., Approximately 157 of the manpower could be attributed to
this activity, support of Flight Software development over a three year
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period and documentation and support of Flight Software development over

a three year period.
Hardware modifications relate to those items previously discussed

which were incorporated to satisfy I/0 requirements.
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NAME:

TECHNIQUE

VIKING LANDER COMPUTER EXECUTIVE PROGRAM (EXEC)

SUMMARY DESCRIPTION: This program was conceilved and developed to act as a

mini-operating system for the on-board computer. It was designed to
accommodate and coordinate the variety of mission functfons requiring
computer services on board the Viking Lander. Common services performed
include input/output, communications control, time reference, scheduling,
and sequencing control. In essence the task programs could use the
facilities provided by the virtual computer (EXEC) without regard for
possible interference with concurrent tasks, or irrelevant detail of

device operation.

APPLICATION CONSIDERATIONS: Several distinct mission phases were identified

early: subsystem checkout prior to landing, control over the descent
to the Mars surface, and science instrument operations while landed.
Within each phase, several devices could be active concurrently and
some devices were active over more than a single phase of operation.
Sufficient commonality was observed pertaining to device services and
scheduling functions that a centralized executive control program
appeared attractive., Attendant overhead for a gereralized executive
had to be justified in an enviromment where low power and weight were

prime considerations.

RECOMMENDATION: The Central Executive Program concept is sound and more

widely accepted at this time (mid '76) than it was five years ago for
space applications, The application program isolation provided in
this approach facilitated necessary change of external functions. The
107 critical timing overhead and memory requirements (4.5K words) are
now congidered quite reasonable in view of the capabilities provided.
Initial resistance has been overcome only gradually as the role and
function of centralized management of computcer resources has become

revealed and appreciated.
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HISTORY: The Viking Lander Computer (GCSC) is a general purpose digital

computer with relatively small and conventional instruction set (27
Op codes with sub codes for 1/0). The 1/0 is a special design that
provides for serial data paths to lander subsystem, and accommodates
several levels of interrupt.

Control of many lander subsystems was assigned to the computer
(GCSC) at the outset: all of the guidance, navigation and attitude
control; sequencing of separation. parachute deployment, radar acti-
vation, and rocket engine firing; znd telemetry data acquisition con-
trol, Early in the project, control over the science instruments fol-
lowing soft landing was folded into the GCSC, thereby eliminating a
separate controller/computer. Serial I/0 through shared registers in
the GCSC implied built-in conflict possibilities and required 1/0
register management, The flight control problem was based upon cyclic
computations over 20 msec, 40 msec, and 1 sec periods, while the sci-
ence devices require task scheduling with one second granularity.

Once landed, control over the science and lander subsystems requires
commanding each device individually with special control sequences
spaced in time. The communication subsystem provides a means for
modifying or changing these command sequences on a daily basis from
the control center at JPL,

Initially, separate executive programs for each mission phase
were considered. Analysis showed that there was considerable overlap
at the phase transitions and that centralized control throughout the
transition period would be beneficial. Thus, a single cnrcutive, pro-
viding general services as well as phase peculiar services, was chosen
for development,

The EXEC program provided the necessary management of computer
facilities so that tasks could be active concurrently without concern
for one another. The resulting isolation provided considerable simpli-
fication of the application tasks, and assured centralized coordination
of computer resources.

The ENEC program remained remarkably stable thronghout the project

devolopment. In retrospect, some services provided were rarely employed.

On the other hand, additional facfilities to aid in specification of
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event and time dependent actions would have aided understanding and

facilitated change.

DESCRIPTION: The Viking = ght Program consists of a ‘virtuai machine' oper~

ating system known .s the Flight Executive and a sct of user application
programs to control the Prelaunch, Preseparation, Descent, 2nd Landed
Phases of the Viking Lander Mission. The Viking ¥Flight Program fs per-
manently resident in the memory of the Guidance Coatrol and Sequencing
Computer (GCSC), and provides the capability to control Viking Lander
functions from prelaunch GCSC memory load through the duration of zhe
Landed Mission,

The Viking Flight Program is redundant in the sense that it resides
in both memories of the block redundant GCSC. Both program loads are
identical and provide full mission capability. The system is not dyna-
mically redundant in that only one GCSC block hasg control at any given
time and no computer-to-computer communication exists. Both cowputer
blocks may be independently operated and checked out prior to separa-
tion from the orbiter, and efther computer may be switchked on or off
during the Landed Phase; but only one computer block will be powered
on at any time. The decision as to which GCSC block is to be employed
during the Descent Phase will be made by Flight Operations and commanded
via the Orbiter/Lander interface.

The Viking Flight Program provides command and control capability
to the Lander subsystems employed for cthe following: communications
with Flight Operations, experimentation, navigation, goidance, steering
and control, data processing, power distribution, and pyrotechnic opera-
tions, Operating within the constraints of the Lander and its subsys-
tems, the Flight Program can be activated at any time following load of
the GCSC memory.

A significant portion of the Executive and Lander subsystem soft-
ware may be viewed as an extension of the GCSC hardware. In effect, the
code associated with 1/0, flow of control, timing, and related basic
functional elements of the computer, aciually transform the GCSC into a
distinct, but related processor. This new or "viirtual" processor pre-

sents an altered interface to the user which at once facilitates requests
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for scheduling, timing, and I/0 service functions while coordinating like
services, managing available resources, and coping with conflicts.,

It is useful to examine and describe this transformed machine for
at leas®t two reasons:

First of all, the virtual machine is much simpler to employ from
the individual user's point of view, Details of low level timing, hard-
ware communication protocol, and accommodation of shared usage are of no
concern to any one user - each views the machine as exclusively his.,
Programs describing particular application tasks are easier to understand
and test since clarity of function is not buried in the extensive detail
required of cooperating process implementation,

Secondly, the virtual or transformed machine may be treated itself
as a device - a device possessing an augmented instruction set, Each
pseudo-instruction or directive is.characterized by a certain execution
time, an assumed initial state of the machine, communication registcr
utilization, the function performed, and the resulting state of the
machine. The entire virtual machine mav be designed, tested, and eval-
uated in a manner similar to that used for the hardware machine its:lf,
This observation has important implications with regard to a basis for
acceptance testfng and selecting departure points for formal verifica-
tion,

Continui.g with the secondpoint above, a suitable virtual machine
"integrity test' would be a program exercising the augmented instruc-set
in a manner designed to check the extremes of virtual machine operation.
Such diagnostics concentrate activity in both time and s,.2ce in a nanner
much more severe than encountered in a typical operational environment,
Successful completion, however, assures proper performance whenever these
functions are ~mployed within an actual application. Proper execution
of hardware instructions, once evaluated, provides a ba,is for procced-
ing with software testing, In like manner, proper behavior of the aug-
mented instruction set should be the basis for application programming
and evaluation with respect to the virtual machine.

While it 1s possible and even beneficial to construct lay:rs of
virtual machines, each built upon the primitive operations of a more

elementary machine, a single level will be described below for the
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GCSC. Briefly, the augmented instruction set includes such operations
as scheduling (ENQUE, DEQUE), input/cutput (IOR), power state control
(TURNON, TURNOFF), and interrupt control,

The virtual machine is perhaps best understood from the application
programmers’' point of view.

Control of the virtual machine was based upon the hardware interrupt
structure. At the top of this control is the highest priority and thus
most urgent interrupt, Any unmasked interrupt will cause control to pass
to that level and the associated processes initiated. Upon completion
of that level's processes, the interrupt is cleared allowing control to
pass to the next pending interrupt level, If no interrupts are pending,
control drops through to the software controlled Schedule Stack, POP,
which initiates the next appropriate task, Stacked tasks are established
from an initiation time and specified priority determined during the
scheduling processes of the Forty Millisecond and One Second Scanners.
There is always one task at the bottom of the Stack, the Power State
Switching Program (PSSP). This lowest priority task places the hardware
into a "HALT'" or "SLEEP" state dependirg upon the amount of time avail-
able until the next scheduled activity. Only external demands for atten-
tion will disturb the computer from the SLEEP state, while any unmasked
interrupt may cause control transitions in any state.

Once POPped from the stack a user program has access to both the
hardwvare Operation Codes and the commands provided by the virtual mach-
ine, As indicated, a task may be interrupted and suspended in favor of
a more urgent task, In this event the suspended task 1s PUSHed into the
stack until ultimately resumed via a POP.

The commands of the virtual machine provide services for the user
program. In general these commands are requests for an operation thai
must be coordinated or scheduled along with a host of similar request:
from other user programs for specified delays, task activation, serial
1/0, and power group control,

The virtual machine manages the serial 1/0 registers. Peculfiarities
of register devices and sharing of facilitices are accommodated. There
was a close interplay of the cycle complete and real time interrupts

(CCI and RTI) and associated processes. Timing and control requirements
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dictate the Memory Readout and Telemetry Modes execute at this level of
control, A Wait Bit Processor indicated how a user task may continue
execution following completion of a specific I/0 operation,

The user may be connected to specific external interrupts via the
external interrupt handler. Here, the virtual machine filters all but
the one of interest from the bits of the External Internal Register (RS),
temporarily passing control to a special entry user task which completes
appropriate housekeeping and initiates I/0 and scheduling requests, The
user is allowed a maximum of 500 microseconds to complete such opera-
tions at this level of control,

A third level of user control is provided by the RTI level proces-
ses., Up to five programs may be established at this level., This con-
trol level was provided to meet the requirements for tightly coupled
CCI/RTI processes and for high frequency, periodic tasks.

External access to the virtual machine is provided with UPLINK,
This process is itself scheduled or initiated in emergency conditions
since it requires direct access to both R3 and R2., Uplink occurs at
the EXI level and provides a means to update any specified memory loca-
tion, an orderly alteration of the Mission Scheduled Event Table, and
immediate ENQUE/DEQUE/IOR operations. The latter, thorough powerful,
must be used with care since they perform isolated actions uncoordinated
with on~-going processes,

In this description, certain detail has been supressed in order to
promote overall understanding, Within the context of this virtual mach-
ine any of the flight user programs can be considered independently with
the assurance that necessary coordination and timing operations are prop-
erly carried out. 1In order to effectively utilize the virtual machine
capacities, it is important to understand the function, 'imitations,
and constraints associated with the services provided. :hese services,
as seen by the user programmer, will be described ia the following para-
graphs,

The virtual machine processes exist to provide scheduling and 1/0
capability at the 'SINGLE INSTRUCTION' level as scen by the user pro-
grammer. From the programmer's point of view, the task is simplified

because there is no neced to gencrate redundant code or be encumbered
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by various subroutine calling sequences in order to schedule a mission

event or issue a command to an external device via the GCSC I/0 reg-
isters; the problem of I/0 timing is reduced to insignificance as seen
by the user programmer, In addition, the problem of testing the flight
program is greatly simplified; if the user programmer used the 1/0 or
scheduling instruction properly, then the task to be performed will
operate correctly. The virtual instruction set consists of twelve basic
instructions divided into five classes: two device-power control in-
structions (TURNON, TURNOF), five interrupt control instructions
(INTSET, EXIENB, EXIDIS, EXISAV, EXIRES), three event scheduling in-
structions (ENQ, DEQUE, EXIT), one I1/0 scheduling instruction (IOR),
and one instruction to read input discrete register R6 (READR6), The
device-power control instructions, the interrupt control instruction,
READR6 and the DEQUE instructions always return control to the calling
program, while the ENQ and IOR instructions return at the user's option.
The EXIT instruction (as the name implies) does not return control to
the user. All of the virtual instructions are assembler-level macro-
instructions which generate subroutine calls to the executive routines
which service them., The structures of these macros are explained in the
code module descriptions of the service routines: the power control
macros are serviced in the Power State Switching Processor; INTSET,
READR6, ENQ and DEQUE are serviced by the Executive Utilities module;
EXIENB, EXIDIS, EXISAV and EXIRES are serviced by the External Inter-
rupt Module; IOR is serviced by the 1/0 Request Handler; and EXIT is
serviced by the POP function in the Programmable Timer Interrupt Handler.
Power Control

TURNON or TURNOF DEVICE

These instructions cause the GCSC Power Groups which interface with
the specified device to be enabled or disabled, respectively. The de-
vice itself is not switched on or off; power is merely made available
to the interface circuits. Actual device switching is done by 1/0 com-
mands via the Power Conditioning and Distribution Assembly (PCDA),

1/0 Request Scheduling

I0R Address of 1/0 Data Block (IORB)

This instruction causes the specified IORB to be linked into the
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EXFC's 1/0 request list. There are three lists, one for 1/0 Register
Rl and two for R4, The lists are FIFO queues, so that the first IORB
in the list is the first one processed, The registers can all operate
simultancously, but scheduling priority is done in R2, Rl, R4 order.
The desired - ster is specified in the IORB, as are the number of 1/0
commands ana the command addresses, As soon as the IORB is linked (not
after the 1/0 has actually been performed) control is given to the EXEC
scheduler. 1If the programmer wishes to regain control himself, he
appends an 'R' to the instruction:

IORR Address of IORB

Event Scheduling

ENQ Address of event data block (ENQB)
DEQUEn Event specification
EXIT A

The ENQ instruction causes the event described in the specified
ENQB to be linked into the EXEC's Program Scheduled Events Table (PSET).
The ENQB contains f{nformation regarding the priority and number of t .c
event, when to initiate the event for the first time, how many times to
reinitiate the event and at what frequency, and the entry address of the
event, PSET is scanned for events every 40 msec.

After the link is made, control is normally transferred to the
scheduler. If the user desires instead to return to his own code, he
appends an 'R' to the instruction,

ENQR Address of ENQB

The DEQUEn instruction causes the specified event(s) Lo be removed
from PSET. 7The n can assume a value from 1 thru 4, and the event
description changes in each case. 1f n=1 (DEQUEL), all events with the
specified event number AND priority are removed from PSEY. For n=2, all
events with the specified event number ONLY (any and all priorities) are
removed from PSET. For n-3, PSET is completely cleared, And for n=4,
all events with the specified priority, event number AND entry address
are removed from PSET,

After the deletion is made, control is always returned to the
user.,

The EXIT instruction causes a transfer of control from the user's
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program to the scheduler. The general form of the instruction is:

EXIT A (A = blank, 0, +, or -)

Where A = Blank results in an unconditional transfer; A='0’
results in a transfer only if the A-Register contents are zero; A='+'
transfers if A-Register bit O is off; and A='-' transfers if bit 0 is
on,

The following table is provided to summarize the virtual instruc-

tion set:
Instruction Operands & Effect
TURNON Device Name

Enable GCSC Power Groups for
specified device, and return,

TURNOF Device Namz
Disable GCSC Power Groups for
specified device, and return.

IOR Address of I0RB.
Link this IORB to the 1/0 chain
for the appropriate 1/0 register
for processiug, and exit to sched-
uler,

IORR Address of IORB.
Same as IOR, except return to
caller after linkage complete,

ENQ Address of ENQB.
Link this ENQB to the appropriate
PSET priority chain, and o¢xit to
scheduler.

ENQR Address of ENQB.
Same as EMQ except return to user
instead of scheduler,

DEQUE1 Event Priority & Number
Remove all events with this event
number from this priority level -~
of PSET, and return,

DEQUE2 Event Priority & Sumber

(Priority ignored) Remove all
events wvith this cvent number from
ALL priority levels of PSET, and
return,

DEQUE3 No Operand Required
Clear PSET & PSET! (Remove ALL
scheduled events), and return,
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Instruction
DEQUE4

EXIT

INTSET

EXTENB

EXIDIS

EXISAV

EXIRES

READRG

Operands & Effect

Event Priority, Number & Address
Remove all events with this pri-
ority, number and entry address
from PSET, and return (more selec-
tive than DEQUEL),

A

Transfer to Scheduler

If condition 'A' is true.

A = Blank: unconditional,

A = 0: transfer if A-reg is zero.
A = +: transfer if A-reg
is positive.

A = -: transfer if A-reg is
negative,

Desired interrupt service status.
Enables or disables the specified
interrupt,

Mask to enable desired external
interrupts. The user's mask is
logically OR'ed with the executive
external interrupt mash to allow
processing of the user's EXI's,

Mask to disable Desired EXI's.,

The user's mask is logically AND'cd
with the executive FXI mask to
igrore the specified EXI's,

Mask indicating which EXI's to
save for later processing., The
user's mask is logically OR'ed
with the executive EXI save mask
to delay processing of the speci-
fied EXI's.

No operand required. Clears the
executive EXT save mask and immedi-
ately processes all saved EXI's.

No operand required.  tead {/0
register Ro and rott o contents
to user in the A-Qe,, ter.

QUANTITATIVE RESULTS: In spitc of early criticism from certain flight S/W

experts (who were G&C oriented) the Flight Software Exccutive structure

and design was excellent for Viking.

By using & centrai master schedul-

ing technique, priority and interrupt structure and standardized T/0 it

allowed orderly development through many iterations of the application's
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programs for descent, communication, landed science, etc. The overhead
was a bit heavier than required for descent only, but the common execu-
tive minimized memory required to do the total flight job., The concept
of using standard scheduling (ENQUE) and I/0 (I0R, IORB) functions has
allowed many mission functions not previously planned to be implemented

v ¢y simply by the Flight Team with no software change outside the normal
process of altering data base through commanding.

In face, the ground software is more restrictive than the flight
software for mission operations.

The advantages of centralized resource management achieved through
the EXEC pseudocode operations were several. They can be summarized
from two points of view. First, the EXEC service calls appear as virtual
machine instructions at the source code level. These "instructions" are
high~level in that they invoke whole sequences of code at the machine
language level, yet appear as single lines compatible with the rest of
the source text - even to the point of providing the standard assembly
level indirect and indexed addressing options. We are confident that
many potential errors were avoided through use of these MACRO calls
which accurately and mechanically generated the required detailed calling
sequences. The mnemonic macro names and operands additionally provide
clarity and understanding of the intended sequence of operations as dis-
tinct from the information hidden in the expanded sequence of assembly
level instructions. The power of the technique can be illustrated by
the fact that some science application programs consist of nothing but
a series of IOR's (input/output requests) and a concluding exit,

The second advantage, closely related to the first, is the isolation
afforded to application programs through the EXEC services., All ques-
tions of confifct resolution, device peculiarities, such as redundant
transmission of individual commands spaced precisely in time, and 1/0
completion interrupt clean-up arc handled by the EXEC routines and
hidden from the application programmer. His view is that of the sole
system user. Again, the clarity of intent and avoidance of cerror was
significant,

Finally, the virtual machine concept led to a third advantage not

originally antficipated. Verification of the EXEC services was viewed
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as an extension of the hardware self test program. The EXEC commands

were tested as though they were individual fnstructions of the virtual
machine on an absolute basis. That is, the full range of the implied
service was cvaluated on a stand-alone basis as distinct from the
instances of its use. Once verified independent of the application
class, the EXEC services could be used with confidence in modified or
new application secuences. Re-verification involved only the applica-
tion program instructions and EXEC interfaces - the virtual machine

instructions, per-se, required no further testing.

QUANTITATIVE RESULTS: The overhead required by the executive was directly

related to the amount of 1/0 activity required. Timing was only cri-
tical during descent when 1/0 had to be serviced, sequences scanned
and calculations made in less than real time., A sequencer would have
been approximately twice as fast to accomplish this, but would have
had to been recoded everytime a requirement changed. For single 1/0
cperations, the exccutive required two milliseccnds of ¢z ten millf-
second cycle. This represents the greatest overhead burden.

The development and maintenance of the executive required a con-
tinuous two man level of effort for five years. This effort covered
requirements, design, code. test, integration, maintenance and mission

operations.
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TECHNIQUE

NAME: HARDWARE/SOFTWARE INTEGRATION LABORATORY

SUMMARY: 1In order to assure compatibility and performance between the flight

program and the Guidance and Control (G&C) subsystem an Integration
Laboratory was buflt. 1t provided capability for stand-alone cali-
bration, diagnostics and test of G&C hardware as well as to operate that
hardware with Flight software in a simulated real-time enviromment.

This Integration Laboratory was extremely useful in early identification
of system interface problems as well as acting as an independent source
to compare hardware build signatures with realistic responsiveness. As

a result, the reliability of the system integration process on flight
vehicles was greatly increased.

APPLICATION CONSIDERATIONS: A hardware/software test facility which provides
a high degree of visibility and control! has usually only been implemcnted
on manned type missions where a very high reliability is required. In
the case of Viking the extremely difficult descent presented an equally
complex situation that could not accept the classical approach to hard-
ware/software mating. With the Viking approach to laboratory integration

the hardware was mated and analyzed with the software at each step in the
system build.

RECOMMENDATION: Although this approach has been used in the past only on
expensive and complex developments, its yield in relfability has been
shown to be cost effective., With new advances in computer and hardware
integration techniques this type of facility can be utilized at a signi-

ficant decrease in cost to provide real advances in test and reliability
for smaller programs.
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HISTORY: The Viking Hardware/Software Integration Lab was conceived at the
beginning of the Viking project as a Guidance and Control (G&C) subsys-
tem test facility! The Viking G&C system consisted of an Inertial Refer-
ence Unft (IRU) composed of gyros and accelerometers, a Radar Altimeter
(RA), a Terminal Descent and Landing Radar (TDLR), Reaction Comntrol
System Thrusters (RCS), Terminal Descent Engine Values (TDE), Terminal
Engine Shutdown Switches (TESS), and the Guidance Control and Sequencing
Computer (GCSC). The original intent of the laboratory was to test the
hardware and software interfaces of the G&C subsystem. Since a GCSC
delivery was not due until very late in the program and a specific com-
puter had not even been chosen, an 1C-7000 microprogrammable computer
built by Standard Computer Co. was installed in the facility to act as a
fiight computer for the preliminary G&C subsystem development and inte-
gration, The IC-7000 had a microprogramming capability that was used to
emulate the flight computer and to provide an interface with the G&C
hardware. As an interface tool the IC-7000 was found to be adequate,
but it was soon realized that it had the potential to also support the
entire flight software development and test activity. This activity of
hardware/software integration and software development was to continue
for the entire Viking Lander development,

The 1C-7000 is a dual microprogrammable processor machine in which
one processor (the CPU) was used to emulate the GCSC (refer to Emulated-
On-Board computer technique) and the second processor (the I0P) became
the interfacing I/0 to the "enviromment'”. The "Environment" was a
multitude of possibilities fncluding an Analog/Hybrid Simulation of the
Mart{an atmospheric condition and flight dynamics with Analog/Hybrid.
models of the G&C hardware, digital models of the G&C hardware, or the
actual G&C hardware, With these capabilities acrual har 'ware performance
could be compared to software models and be played against various "worst
case” flight conditions,

In addition to playing hardware contrulled by Analog/Hlybrid simula-
tions against the flignt soft ire, the hardwarc could be calibrated,
tested, and interfaced in a stand-alone condition., With such a config-
uration, software verification, system validation, and e¢ngincering per-

formance testing werce all performed within the bounds of the same lab
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with closed loop tests being able to be performed with or without hard-
ware in the loop. Eventually the lab was connected to a 4.8K bit high
speed data link with the Viking Mission Control Center at JPL. With such
an interface Mission Control could send test data to the lab, a test be
performed, and the results could be sent back to JPL for flight control
analysis. All in all the lab supported the project from inception

through operations,

DESCRIPTION: The lab is represented in block form in figure 1., Each of the

block components is described as follows.

DATA CONVERSION EQUIPMENT (DCE):

The DCE is the system interface controller., It is an addressable
serial and parallel channel controller as well as the data formatter for
each interface. The prime interfaces were between each external compo-
nent and the 1C-7000,

STANDARD COMPUTER CORP IC-7000:

The IC-7000 is a parallel processor machine. Each processor is a
micro-programmer with 2K words of cuntrol store. The processors share a
common memory of 64K 36-bit words and have peripherals including, 1200
LPM printer, 2311 disk, card reader/punch, 3 tape drives. One processor
(the CPU) is used to perform the emulation of the GCSC. When an emula-
tion level test is being performed the CPU operates on the Flight Soft-
ware. When a GCSC hardware level test is being performed the GCSC is
utilized as host for the flight software. The other processor (the IOP)
acts as host for the Run Time Operating System, the Open Loop Vehicle
Models, and as the Interface Control Monitor. The IOP was also host for
system interface diagnostics and G&C hardware diagnostics. In addition
to being used to directly support test and integration efforts, the IC-
7000 was host for all flight softwarc development tools, including data
recording, post run anaiysis programs, assemblers, and file management

utfilities.
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HICH SPEED DATA LINE (HSDL):

The HSDL is a 4.8K bps dual line full duplex interface between the
DCE and the Jet Propulsion Lab (JPL) Real-Time 360-75 Command Center.
The interface was defined at JPL to be an additional Deep Space Network
station so that transmissions to and from JPL could look like spacecraft
communication. In addition card image data could be transmitted. Thus
in support of operations JPL could transmit final vehicle condicions to
the Lab prior to beginning the descent to the surface of Mars and a real-

time simulation could be performed with analysis and results transmitted

back to JPL for final verification, For flight crew training simulated

vehicle telemetry data could be transmitted directly to JPL telemetry

displays where flight crews would be required to respond to anomalies.

GCSC/TEST CONDUCTORS STATION:

The Test Conductor’s Station acts as a computer display panel for
the GCSC as well as displaying vehicle simulation specific data such as

power status, operational modes, engine states, etc.

ANALOG_HYERID COMPUTING FACTLUITY (AHCF) INTERFACE:

The AHCF was used to simulate the Mars envirommental condition, the
Viking Flight Dynamics, and the G&C equipment. The G&C equipment simula-
tions, the actual G&C hardware, or combinations thereof could be used as
stimulf to the GCSC or theiccsc simq}ator. As an example, the RA, TDLR,
and RCS thrusters were modeled in the AHCF with the actual IRU being
torqued by the AHCF and beiﬁg read by the GCSC., TDE commands wers laser
linked to the test stand to fire actual flight type engines with the
engine responses fed back to the AHCF models. The result was a closed
loop test of actual G&C hardw.:r2, modeled G&C hardware, and actual flight
software. The AHCF interface is a serial channel controller that inter-
faces the DCE to the AHCF. ANHCF data could be acquired from the inter-
face and fed to the X, T, plotter.

INERTIAL REFERENCE UNIT (IRU):

The IRU consists of a four axis gyro system - three cardinal axes

and one skewed - and a four axis accelerometer system - three along the

cardinal axes and a redundant one along the X-axis. The IRU is cabled
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to the IRU controller and then either to the interface to the DCE or to
the Proof Test Capsule (PTC) which is a third Viking Lander built for
systems testing. The gyros can be torqued either by the AHCF or by

commands from the GCSC,

TERMINAL DESCENT LANDING RADAR (TDLR):

The TDLR is a four beam doppler radar used to provide lateral veloc-

ity data for vehicle landing. The Doppler Spectrum Simulators are used
to drive returns for each beam., The TDLR is connected to the control and

-

interface unit which connects to the DCE,

VALUE DRIVE AMPLIFIER (VDA) CONTROLLER & INTERFACE:

The VDA controller and interface serves as interface for the
Reaction Control System (RCS) thrusters (which are in effect only elec-
trical loads), as interface for the Terminal Descent Engine (TDE) values,
and as controller and interface to the 96K bps OPCOM lazer communications
link to the Engine Test Stand. The actual engines can be fired, the lab-

oratory values fired, or AHCF simulations used for closed loop testing.
RADAR A" TIMETER (RA):

The RA is a doppler Radar Altimeter which is used to update the
inertial navigator during atmospheric descent. The Radar Return Simula-
tor (RARS) is us~d to provide stimulus to the RA. The RA is connected

to the control console which is interfaced to the DCE.

GUIDANCE, CONTROL & SEQUENCING COMPUTER (GCSC):

The GCSC is a block redundant flight computer. Either GCSC(A) or
GCSC(B) may be powered on, No computer to computer interface exists.
The GCSC interfaces to the DCE for all I/0 data and can be interrogated
and controlled via the GCSC/Test Conductor Station, Either GCSC or the
GCSC emulation may be the host for the flight program.

QUANTITATIVE RESULTS: The hardware/software integration lab proved to be a

valuable tool for building and testing reliable softwarc., The successful
operation of two Viking Landers on the surface of Mars verifies this

fact, The lab provided a common tool for software development, software
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testing and verification, G&C systems analysis and integration, G&C
system performance testing, off-nominal and failure mode analysis, and
operational support and crew training. This amount of flexibility using
a system where run controls and data visibility are the same whether
using hardware or models yielded a very efficient test and development
facility. The problem areas associated with the Lab were:

1) Trying to use the facility too early in the facility development
cycle while extensive changes were in progress - this was resolved
when the development ended;

2) Limited computer resources for the amount of software and hardware
development and integration required - this was resolved by instal-
ling a second IC-7000 for software development purposes; and

3) Modeling difficulties due to lack of a High Order Language proces-
sor - this problem was not solved using the IC-7C00 complex for
Viking.

QUANTITATIVE IMPACT: The hardware cost of the lab excluding G&C Flight hard-

)

ware was approximately three million dollars. The analysis, flight soft
ware development, simulation software development, and test and diagnos-
tic software development cost was approximately seven million dollars.
For a ten million dollar cost a highly reliable software system was
produced for a one billion dollar project, which was not an unreasonable
percentage of the project cost. Today, the Lab and its development
costs would be considerably less due to the advancements in microproces-

sors, associated interfaces, and microprogramming skills,
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TECHNIQUE

NAME:  INDEPENDENT VERIFICATION OF ON-BOARD PROGRAMS

SUMMARY: The on-board computer operations were so critical to mission suc-
cess that several means were employed to assure error-free software., A
separate contract was established to evaluate in detail the algorithms,
implementation, and testing of the Lander on-board computer system. The

independent verifier performed analyses and tests, using their own tools

and interim development products. The overall experience was favorable
in helping to identify possible difficulties and in imposing additional

discipline on the software development process.

APPLICATION CONSIDERATIONS: Independent verification means redundant verifi-

W i P 3

cation, and therefore is usually considered only where software error
implies high risks and costs. Redundant activities may include the
entire spectrum of development - and, in fact, are considered more effec-
tive where this is done. Rederivation of equations; independent scien-
tific simulations; in-depth analysis of concept, design, and code; and
finally exercise of developed code and data may all be productive in

identifying discrepancies and producing error free code, The full spec-
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trum of independent verification was employed for the Viking Lander on-
board software - beginning with the Software Requirements Definition
(SRD),

RECOMMENDATION: Independent Verification and Validation (V&V) has long been
standard for certain Air Force contracts where software criticality is
a prime consideration. Multiple viewpoints throughout evaluation has
proven useful in identifying both specific discrepancics and classes of
software errors. Improving automated tools and introduction of formal-
ized development disciplines affect independent V&V in two ways: first,
the costs associated with the activity are declining, and second, the

probability of initially producing error-free software is increasing.
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HISTORY: The Viking Project Office (NASA, Langley) determined that due to
the criticality of the Viking Lander Flight Software an independent V
and V effort would be made. TRW Systems, Redondo Beach, Calif. was
given that contract. The contract included responsibility to verify
the Flight Software Requirements, the Command List, the Guidance and
Control Analysis, the Analog/Hybrid Vehicle and environmental models,
and the Flight Program. The effort lasted for over three years on-site
at NASA Langley under direct NASA supervision.

DESCRIPTION: The independent verification was accomplished in four major

areas: Documentation Review, Analysis and Modeling Review, Dynamic

Interpretive Simulation of the Descent portion of the Flight program,

and static interpretive simulation of the landed and on-orbit flight
program functions, The documentation and analysis reviews were performed
by senior TRW personnel on-site at NASA Langley. The simulations were
performed on the NASA computers at Langley free-of-charge to the con-
tractor. Although the simulations were accurate, they were extremely
time consuming and often took many days to set up and perform a single

execution.

QUALITATIVE RESULTS: Probably the most significant qualitative result of the
independent verifier was the confidence it gave to the Project Office
that every step that could be taken to assure a correct and error free
flight program would be launched was accompliished. No significant tech-
nical problems were uncovered by the independent verifier. Many docu-
mentation errors were identified and code problems in preliminary soft-
ware versions were noted, There were discussions and debates about
development and design techniques but all in all no system, software,

or operational procedural problems were encountered.
QUANTITATIVE IMPACT: MMC believes the cost for independent verification of

the flight program was in the neighborhood of 2 to 3 million dollars
for the three year effort accomplished by TRW,
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TECHNIQUE

NAME:  ON-BOARD COMPUTER TIMING AND MEMORY SIZE MONITORING

SUMMARY: Classically, memory size and worst path timing are critical in
aerospace applications. A 50% margin for each was allocated at prelim-
inary design time. Accepting the fact of inevitable change, a margin
allocation curve was also established at preliminary design time in order
to control margins throughout the project development phase. The plan
originally called for a few hundred words margin at launch time to accom-

modate last minute changes during operations.

APPLICATION CONSIDERATIONS: The high relative cost per change with low
margins has been well established. Changes made with limited spare

room or time often lead to redesign of existing code with attendant
ripple effects. Some published results indicate that relat{Qe costs
begin to rise where margins are less than 507. With many of the Viking
Lander devices and subsystems at the state-of-the-art, 50% margins at
preliminary design time was deemed essential. Perhaps more important,
was the realization that margin monitoring was also essentfal, Where
continuing system change can be anticipated, software changes rapidly
consume margins unless they themselves become a part of the change

controls,

RECOMMENDATION: Management is well advised to pay close attention to timing
and memory size when a relatively small computer is to be used to per-
form a significant real time task. This requires a considerable effort
to obtain accurate estimates of the impact of proposed changes. The
507 growth margin used by Viking was not great enough to avoid the neces-

sity of optimizing algorithms and designs already coded.
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HISTORY: During the development of the Viking Lander on-board program, con-
stant control was exercised over the growth of the program within the
time and space domains of the computer hardware. This was done because
there were several precedents of program development problems due to
unchecked growth, In order to achieve good control several tools were
developed and used throughout the life of the project.

The first problem with respect to obtaining good control was to
establish realistic values for the memory and time margins, The approach
used was to define a hypothetical computer and then to program the
descent guidance and control equations for it. The descent phase was
picked for two reasons. First, a significant amount of analysis had
yielded a set of descent control equatfons which could be coded. Sec-
ondly, the descent phase represented the major area of concern about
timing. Based on this exercise, the number of instructions to be exe-
cuted was obtained along with their frequency of execution,

The sources of good size values were: first, the code size defined
by the descent software; and second, the code size estimated by coding
the flowcharts established for the remainder of the on-board program.
Together, these produced the initial program memory size requirement.

To this memory size was added a 507 growth margin. That value was
defined to be the limit for program size growth. The two values defined
a linear growth curve, starting with the program size at the date the
analysis was made and terminating with 2 full computer at program deliv-
ery. This growth curve defined, at any given time when an audit was
made, whether the program growth was being contained.

The hypothetical computer characteristics were included within
the computer procurement drawing as a statement of desired instruction
set and timing. This also allowed for the gencration of memory and
timing impact summaries for each of the prospective computer vendors.
Then once the vendor's machine characteristics were known, the impact
to timing was well defined. In addition, there are instruction set
versus memory requirement relationships defined by information theory.
Using them, a memory impact was defined for cach of the possible com-
puters. This exercise informed the project management that the selected

computer would have little impact timewise but that the memory would

151




have to be 2000 words larger if the initial 50% margin was to be
maintained,
Following selection of the on-board computer, a software change

control mechanism was installed. This provided a definition of what

changes were outstanding and their associated time and size impact.
Management could then weigh changes against any possible growth viola-
tions, In order to make this accurate, all changes were forced thru
this control system,

During the course of the on-board program development there were
several major stresses on the control mechanism. Each of these involved
the definfition of a significant violation of the size or time margin
curves. The first was the incorporation of a generalized on-board
executive, The design change was necessitated by the total program
requirements, but presented an unknown risk to the time margins., In
order to gain an insight into the timing of the then current sequencing
algorithm and the proposed processing, a discrete simulation model was
constructed, The model was used to define the worst case time consump-
tion by the execuiive., With this known. it became apparent that there
was minimal risk to incorporate the generalized executive.

The second major riress occurred when the development of coded
modules for ncarl!y all of the on-board program was complcted. The
resultant code size violated substantially the size growth curve. As
a result a set of code reduction changes were proposed. Incorporation
of the changes brought the program size back within the established
growth curve, However, they necessitated substantial cunanges to the
already coded and partially tested program.

The third major stress was due to the violation of time margins
by the descent control code. This was isolated thru the use of an
emulator for the on-board computer. The descent code, :run in an emu-
lated mode, was shown to take too long during certain descent phases.,
As a result, the descent control equations were changed in order to
reduce the number of calculations required., 1In addition, some algorithms
used during descent were optimized with respect to time. This problem
had been brought to management’s attention quite carly, duc basically

to the enforcement of regular time and size audits. Because of this,
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there was ample time to amalyze and correct the problem,

DESCRIPTION: The components of a good timing and memory size monitor system

are: accurate software audit reports, timely report generation and
total software change control. One cannot emphasize enough the impor-
tance of any of these components. Without any one of them, the process
of monitoring is susceptible to failure. In describing each, one can
take the Viking on-board program development and show why each is
required.

The generation and reporting of the current program size and time
requirements was basically an audit. For the audit to be effective, the
process of generating realfistic data had to be accurate. In the case of
the on-board software, this was done directly by timing the known worst
case loops via an emulator. The availability of an emulator greatly
simplified and improved the accuracy obtained from this task. Because
the landed phase development was significantly behind the descent devel-
opment, the size values obtajned were prone to error. However, by coding
candidate modules from flowcharts relatively good size values were
obtained. In fact, some module size values as originally defined were
within ten percent of the fipal size of the coded flight module,

Since the on-board program was constantly changing, the size and
time requirements were audited by management monthly with approximate
values maintained between audits. This provided, given an accurate
audit process, an actual input, The input was then used to update the
graph for memory growth, Using this graph management .cadily established
trends of rapid growth. When they were recognized, the change traffic
was interrupted and a status meeting held to define which changes to
reject, together with requirement changes or design changes to incor-
porate.

The audit process depends upon an accurate sampling process, This
in turn depends upon accurate reporting of current size, impact of
changes in progress and impacts for proposed changes. Software changes
were forced to proceed through a control system for the on-board program,
This entailed initially the complete definition of the change require-

ments, The on-board software development group used these requirements
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statements to define the fmpact of the proposed change on memory usage
and, for descent control changes, the impact on timing. The proposed
change and associatad impact was then presented to a management team
for consideration, The team could then approve or reject the changes
as too large an impact, or as an unnecessary requirement. In this
manner the modifications to the memory and time requirement were made
by one group. This caused the suditing of the memory and time margins

to be quite accurate.

QUALITATIVE RESULTS: As a result of timing and sizing monitoring, the on-

board program was developed and delivered successfully. The concept of
regular and highly visible audits seemed to allow for ample time to
recover from major stresses. In addition, management was provided suf-
ficient information to control a highly volatile software development
task, A time when the system seemed to fail was when the entire soft-
ware group was devoted to the development process to the detriment of

the audit process. As a result, the audit would encompass a very long
time period and nominally would define a significant change to the size
and time margins., In addition, continual auditing seemed to force a more
disciplined development.

The growth constraint curve was a lincar line connecting a 13K
memory size in July 1971 to an 18K memory size in October 1974. Twice
large accummulations of new code caused the current memory size estimate
to violate the constraint curve., The first occurred between March and
May 1973, when as built code rapidly grew from 15.5K to 18.5K. The
second occurred between February and June 1974, when as built code grew
from 16.5K to 19K, On each occassion management was forwarned that an
unacceptable growth was taking place, thus permitting them time to assess
the need for and ramifications of candidate redesign ciforts. On both
occassions management required the implementation of agreed upon design
changes that brought the as built code below the memory si{ze constraint
curve, These two instances demonstrate the practicality of using .he

technique,
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QUANTITATIVE IMPACT: The process of monitoring the memory size and timing
margins of the flight computer was a planned event that did not require

additional staffing.

As such, there was no manpower cost impact.
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TECHNIQUE
NAME: REQUIREMENTS GENERATOR FOR FLIGHT HARDWARE AND SOFTWARE

SUHM@RY: The Viking Lander Guidance and Control system in the flight environ-
ment was extensively analyzed via simulation and other supporting tech-
niques before hardware and software specifications were written. This
led to the generation of detajled specifications for hardware and soft-
ware whici produced results that were conpatible in later {ntegrated
software/hardware closed loop tests and in actual flights with minimal
revisions. An auxiliary technique of this process was the FORTRAN spec-

ification of the Flight software routines to be consistent with the over-

all system analysis and simulation models.

APPLICATION CONSIDERATIONS: This approach has been used generally on aero-
; space guidance and control contracts, but more often than not the simu-
: lations evolve too late to influence the hardware design or significantly
change the software. By having a complete six-degree-of-freedom simula-
tion early in the program, models for all components (inertial sensors,
radars, actuators, aerodynamics, etc.) could be evaluated closed loop
with preliminary flight software control laws and algorithms for overall
% system accuracy, stability and response.

T T

RECOMMENDATION: An algorithm design and specification language is one of the

s N

missing gaps in software development technology. The use of FORTRAN for

this purpose can be helpful, but should only be used as an overall state-

I DA Wi

ment of a sufitable solution. It should not be used as an implementation

requirement on logic control or computational sequences.
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HISTORY: 1In the development phase of Viking, a simulation was used to ana-
lyze different radar designs, variations of parachute and aeroshell |
mechanics, propulsion dynamics, and flight software algorithms, The
models were all written {in FORTRAN., These formulations, after con-
siderable experience, were directly translated into models for an analog-
digital hybrid real-time simulation which was used for closed-loop test-
ing of the descent phase flight software and guidance and control hard-
ware. Having the FORTRAN flight software models in the hybrid simula-
tion allowed a three-way comparison of the FORTRAN program, the hybrid
real-time simulation, and the hybrid real-time simulation mixed with
Flight software/hardware combinations., Because of this testing, timing
and phasing problems were fdentified and corrected very early in Viking
development,

DESCRIPTION: The six-degree-of-freedom simulation (MOD6MV) was developed
from the MOD6DF program developed by Litton, Incorporated for the Air

Force, The program provided a modularized structure which handled

dynamic integration of differential equations, inter module communication
through a common array, random noise generation, standard data input,
standard print output, vehicle dynamic staging control, and plots. There-
fore within this structure it was a simple process to develop the Viking
peculiar models, using Guidance & Control engineers who only had rudi-
mentary FORTRAN experience. This program later evolved into the Flight
Operations Lander Trajectory Simulation (LATS) program used for pre-
separation analysis of candidate landing trajectories.

The Flight Software Requirements Document (descent phase) was writ-
ten directly from the FORTRAN algorithm models. This had to be trans-
posed by hand to a typed version using greek letter symbols, etc.,
because the customer objected to the style of FORTRAN type equations,

QUALITATIVE RESULTS: FORTRAN is one of several machine independent program-
ming languages. With {ts algebraic statement capabilities, the computa-

tion problem can be stated succinctly and with precision. FORTRAN has

several shortcomings as a specification tool for flight computations,

however. FORTRAN {s not a sufficiently high order language for
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specifying conditional computations, identifying accuracy constraints,
and performing vector and matrix operations. Thus, these operations
tend to force undesired detail on conditional statements and matrix
element calculitions, and allow accuracy specifications to be fgnored
or only implied.

Complete, precise, consistent, and concise requirements are highly
desirable but difficult to obtain, Typically, the programmer must care-
fully analyze a partial problem statement, ask questions, fill in missing
detail, and resolve inconsistencies. Some of these problems were solved
through use of the FORTRAN simulation and could have been expanded to
integrate all descent phase functions with minor additional effort.

The program documentation (SRD, Flight S/W flows, etc.) should use
a consistent nomenclature which can be related directly to the simula-
tion model, FORTRAN provides this (upon agreement between the system
analysts and flight programmers) with some limitations which can be
worked around, Furthermore, it is highly desirable to use nomenclature
common to standard keypunches and typewriters as opposed to special
greek letters and math symbols. As such it would have been preferable
to structure the SRD routines directly from the FORTRAN listings using
comment fields to specify accuracy and range of variables because many
typographical and reproduction errors resulted from the Greek letter
translation,

Other lander system requirements for sequencing during the descent
phase which did not affect guidance and coutrol were not included in
the simulations, Therefore, these requirements were confusing to the
flight programmers since they were not integrated into the G speci-
fications, For consistency, the simulations should have included a
FORTRAN sequencing module which would have been a direct analog of the
Flight program version,

It is very important to have a system analysis group which {is
capable of integrating, simulating, and specifying all requirements in
a consistent language. The language should have one to one correlation
with the simulations and the actual software/hardware. Although this
fs commonly done in Guidance and Control, it could and should be ex-

tended to any spacecraft flight software operations. On Viking, many
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hardware/software and software/software incompatibilities resulted from

the lack of end-to-end simulation modeling of portions of the system,

and the lack of an analytical systems group working those mission phases.

QUANTITATIVE IMPACT: The manpower costs invoived in developing the six-
degree-of-freedom MOD6MV simulation to analyze and generate descent
flight hardware and software requirements were approximately 40 man
months, The additional effort required to develop a 12169 source card
Lander Trajectory Simulation program for Flight Operations was 73 man
months, which, with overtime, amounted to more like 80 man months.

The total effort required to develop the G&C hardware and software
requirements was approximately 25 man years of which 12 to 15 involved
the development and use of MOD6MV.
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System Test Equipment Software Development Overview

1,0 Introduction

The Viking Systems Test Equipment Software System was developed to con-
trol and monitor Viking Lander flight article hardware checkout and verifi-
cation, It was the first of the three software systems built by Martin
Marietta for the Viking Project. This narrative discusses in chronological

order the process followed to develop the system,

1.1 The STE Software System

The Viking Systems Test Equipment (STE) Software System was developed
to provide the means to check out and analyze the performance of the Viking
Lander hardware component subsystems and the Automated Ground Equipment (AGE)
hardware, It was placed on-line at the start of lander system integration
testing and continued to support verification of the integrity of each lan-
der subsystem up until launch. During cruise and planetary operations it
was used by the Viking Flight Team to simulate anomolous conditions on the
Proof Test Capsule,

The system was comprised of a Honeywell H-632 computer set, computer
peripheral equipment, and MMC designed and built hardware test equipment.
Both manual and computer hardware test equipment were employed. The manually
controlled hardware was used primarily for RF alignment and circuit test pur~
poses, The computer controlled hardware consisted of analog to digital con-
verters, discrete output circuits, discrete scanning circuitry, and telemetry
monitors. In addition, both digital and RF links were available to control
information transfers between the STE computer and the Guidance, Control and
Sequencing Computer (GCSC) in the lander,

The STE Software System was comprised of three major software subsystems,
A pre-test software subsystem prepared interface data files and Viking Test
Language test sequences for on-line, real time execution. An on-line soft-
ware subsystem supported real time execution of the test sequences to con-
duct the actual checkout operations, provided interaction with an operator

for control and status of test cperations, processed discrete, digital and
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telemetry data received from the lander subsystems, and generated both
printed logs and a comprehensive tape history to record the proceedings.
Finally, a post-test software subsystem provided a means for extracting
data from the history tapes and producing selected plots, printouts, and
limited mathematical analysis of the data.

1.2 Software Development Responsibilities

The Langley Research Center was responsible to NASA Headquarters for
the management of the Viking Project. A contract was awarded to the Denver
Division of Martin Marietta Corporation to develop computer controlled sys-
tems test equipment to checkout and verify Viking Lander hardware components
and subsystems. No other agencies or manufacturers were directly involved

in this task.

1.3 Quantitative Software Description

The SIE software system contained 133,000 words of instructions written
in assembly language code. The system was developed at a cost of 600 man
months, Supporting documentation included a Software Requiremeats Document
(200 pages), a General Design Document (400 pages), a Program Description
Document (1000 pages) and Users Guide (400 pages).,

The estimated effort expended by development phase is as follows:

Definition 10%
Design 207%
Programming 35%
Test 35%
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2,0 The Requirements and Design Phase
2,1 Organizing for the Task

The Systems Test Equipment Group was organized in 1970 as an independent
entity within the Systems Engineering Directorate. The purpose of the sys-
tem was to provide a means to exercise various Viking Lander hardware compo-
nents then passively monitor and record the resultant Lander responses,
Therefore, the system design would be adaptive to, rather than impacted by,
changes to Lander hardware. The Viking Integration change procedure under
the control of the Project Change Board was the means by which the STE and
lander developments were coordinated.

A Software Chief was appointed by the STE manager to be responsible
for the design, development, control, implementation and maintenance of the

software portion of the SIE.

2,2 Defining the Software System

During the period in which the STE Software System had to be designed
neither requirements nor a Lander Software Development Plan had been gen-
erated by Systems Engineering. The STE Software Chief therefore formed a
software team with individuals who had experience in developing similar com-
puter controlled test systems.

Requirements for the overall design were obtained through consultation
with systems engineering groups, who had solely hardware backgrounds. Some
detailed information was available in areas of interface signal characteris-
tics and testing descriptions, All requirements concerning the software
control system, the selection of the computer set and peripheral equipment,
and the man-machine interface had to be developed by the software team,

The approach taken was to outline the design of a flexible software
system, wherein specific requirements relative to hardware components and
intccfaces could be treated as data, In this way if the requirements should

be found to be inadequate at a later date, only a minimal amount of rework

would be reauired in complex areas,




The software team identified the need for three software subsystems.

An off-line pre-test software system would translate Viking Test Language
test sequences, nomenclature data, signal address data, conversion and cali-
bration data, status and criteria data, decommutation data and configura-
tion data into object code to be stored in tables and files in mass storage.
An on-line software subsystem would provide STE software support during
testing. An on-line control language would be generated to permit a test
operator to input instructions via a CRT keyboard or a cardreader. The on-
line software subsystem would interpret the control language, locate and
input the appropriate test sequences and support data from mass storage, and
execute the test sequences, Discrete and digital stimulus and control data
would be output as directed by the test sequences. Telemetry and hardline
analog, discrete and digital monitor data would be input to the SIE computer
from the Viking Lander and STE hardware via a data bus controller. On-line
evaluation would consist of change detection and limit checks. Data would

be time tagged and placed in mass storage in an Operations Test Log for
post-test analysis, Finally, an off-line post test software subsystem
would be developed to provide additional processing of data recorded during
testing, This processing would include the preparation of reports, sorting
and recording of special data tapes, and limited processing of engineering
and science data from the Operations Test Log.

The STE Software Chief selected the PDP 11-45 computer; however, the
decision was reversed by management and the Honeywell H-632 computer set
was selected as the hardware that would support the software system, The
primary rationale was based on initial cost estimates; the H-632 was less
expensive. Other factors that supported the decision included its I/0 bus
c¢apability, a FORTRAN compiler was available, it had a byte/bit instruction
set, the CPU speed was reasonably good, and it appeared to have sufficient
tape and direct access disk mass storage capabilities,

As it turned out, the H-632 was removed from Honeywell's product line
within two years, the I/0 portion of the computer had design problems, the
FORTRAN compiler contained so many errors as to make it useless, the bit/
byte instructions worked so slowly that only limited usage was allowable,

the instruction speed turned out to be 50 percent slower than advertised,
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the magnetic tape controllers were prone to data dropout, and the disk data
was easily destroyed whenever power transients occurred. Honeywell coopera-
ted with MMC by supplying onsite field maintenance personnel (at considerable
cost to the Project) and assisted MMC with top engineering support for major
fault isolation, But as a discontinued product line, all activity terminated
in correcting the H-632 hardware and software design problems. This forced
the senior STE programmers to support computer troubleshooting, This sup-
port requirement was to continue through launch of both Vikings. The costs

involved easily offset the initial lower price «f the H-632,

2.3 The Software Design Phase

Initially the software team collectively outlined a top level software
system design. Then the Software Chief subdivided the team into four in-
dividual sections, each responsible for a major software component. Techni-
cal lead programmers were made responsible to develop more detailed require-
ments and an intermediate design for the specific tasks their section had
been assigned.

One section was responsible for the file management functions and
Viking Test Language processing required by the pre-test software subsystem.
The other three sections were responsible for the executive, display and
monitor processing functions required by the on-line software subsystem. The
display function included the definition of the on-line control language.
The executive function required the development of a real-time control sys-
tem and an input/output control handler. The monitor function included dis-
cretes, analog to digital data, digitals and telemetry.

The Software Chief considered the post-test software subsystem proces-
sing requirements to be too vague and incomplete for an intermediate design
to be developed in parallel with the other two software subsystems,

The STE Software Requirements Document (SRD) was written by Systems
Engineering during the period in which the intermediate design efforts of
the pre-test and on-line software systems were being conducted. As such it
was coordinated with the Software Chief in order to be consistent with the
fait accompli design., It served merely to document the details of the hard-

ware component interfaces, the on-line control languages, the input/output
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bus handler, and the Viking Test Language. It contained only a passing
reference to the post-test processing software subsyst. . Furthermore,
Systems Engineering did not provide personnel to maintain the SRD after it
was issued., By default the STE Software team was made responsible to gather
and define the post-test processing requirements. Nothing more was done in
this area until after both the pre-test and on-line software subsystems be-

came operatioral.

2.4 T'~ Development Cycle

The STIL Software System was scheduled to be designed, coded and checked
out in a span of approximately eighteen months. In most sreas of the on-line
software development, schedules were generous enough that the software/sys-
tem was not a pacing item of the project, and these schedules were met,

There were some unforeseen areas which required additional tasks not
originally planned. It was discovered that the vendor supplied disk file
management system was inadequate, so a new design was implemented to manage
all sreas of the disk, except for a small region to contain the vendor sup-
plied batch operating system,

The technical leads monitored the progress of their workers and provided
the Software Chief with status reports., The Software Chief held weekly de-
sign reviews to allow every member of the team the opportunity to assess the
developing system design. A technical lead would discuss the design status
of a single subsystem at each of these meetings. The technical leads were
rotated so that by the end of a month the team had reviewed the entire sys-
tem, As the intermediate designs were completed, the Software Chief schedu-
led design reviews to permit management, system engineering, STE hardware,
and system integration personnel the opportunity to understand and critique
the software system development process, Critical areas of some programs
were analyzed for speed and core usage predictions to assure safety margins.
However, no meaningful computer loading analyses could be performed since
there was no way to assess the resources that would be required by the post-
test system,

The Software Chief relied heavily upon the integrity of the individual
technical leads for the adequacy of the design and the completeness of the

coding and checkout.
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When the coding for each individual software function was completed,
a test demonstration was held to assure the Software Chief and management
that the software would perform its required tasks and was ready for test
and integration.

The development cycle was therefore a straightforward process managed
by the Software Chief, No serious impacts were caused by hardware changes,
primarily because of the flexibility built into the Software system design.
The technical leads had control over specific portions of the system, and
were free to modify or change their code as they saw fit to the extent that
no requirements were overlooked or violated. The Software Chief maintained
visibility over the entire process through the eyes of the technical leads

and was solely responsible for coordinating and resolving system level soft-
ware problems within the STE.
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3.0 The Test and Integration Phase

3.1 Module Testing

The module test phase was very informal. No test reqQuirements, test
plans, test procedures, test schedules or test results were formally docu-
mented. It was the duty of each technical lead to perform unit checkout for
each of the subsystems for which he was responsible.

Checkout driver programs were written by the individual programmers. In
addition a standardized driver was available for all on-line packages. The
actual test cases were designed solely at the discretion of the programmers
and the technical leads.

The module tests for on-line programs were conducted primarily'for the
purpose of demonstrating how the software worked to a system integration
lead, who had been made responsible for the integration of the individual
pieces of that system. The system integration lead had the authority to

modify or change any software part so as to improve overall system efficiency.

3.2 Subsystem Integration Testing

After each program was module tested it was turned over to the system
integrator, who attempted to integrate the program into the on-line system.
This was physically accomplished by turning program decks over to the inte-~
grator. The integrator would then sit down with the individual programmers
to learn the procedures for running the software.

The initial integration of the on-line software subsystem with the STE
hardware in the System Test Bed consisted of a fairly thorough checkout of
the analog and discrete systems, but the telemetry system and digital down-
link and up-link channels to the Lander Guidance, Control and Sequencing
computer were not verified,

The technical lead responsible for the on-line monitor functions had
assigned programmers the tasks of developing the discrete, analog to digital
and digitel functions, and had taken sole responsibility for the telemetry
system software, When the telemetry system software was not turned over to
the system integrator in a timely fashion, the Software Chief required that
the technical lead demonstrate that the software functions had actually been




developed and coded, In particular, the Software Chief wanted to be assured

that the as delivered software would be capable of monitoring every speci-
fied lander telemetry format,

This points out the degree to which management's visibility as to what
was happening was limited to relying on the integrity and competence of the
technical leads. In the instance of the telemetry system software it proved
to be a serious mistake,

From all outward appearances the monitor function technical lead was
experienced and competent for the task. The software design for the tele-
metry monitor had been reviewed and appeared to be sound and reasonable.
During subsystem testing, the technical lead had, when ordered by the Soft-
ware Chief, demonstrated that the software code could process each telemetry
format correctly. However, for that demonstration the technical lead had
generated special code to make the telemetry model appear to work, knowing
full well that it could only handle one of the formats and could not meet
the requirements of the STE., It wasn't until after the software was added
to the on-line system that the Software Chief bucame sware that a problem
existed. Coincidental with this, the technical lead tendered a resignation
and left the company.

3.3 System Integration Testing

During the first attempts to interface the STE with Viking Lander hard-
ware in the System Test Bed it was discovered that the telemetry monitor
software code could not process the varicus formats of telemetry frames. It
is academic as to whether or not the design could have been salvaged had the
programmer not quit the company. The problem was a real one and a serious
one.

The effort to develop a new telemetry monitor function was further im-
pacted by management. The Viking Lander Software Plan specified validation
and verification requirements for the STE hardware/software system. To ac-
complish this six months of integration testing prior to beginning vehicle
sequence validation in the System Test Bed had been scheduled., To save

costs, management elected to modify this approach by ignoring the Software
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Plan and deleting the six month STE integration effort. The net result was
that the software was never validated, formally or otherwise. The develop-
ment process merely continued until the system worked. In addition the STE
programmers had to support vehicle sequence validation during regular shift
time, and perform integration, maintensnce and the telemetry function de-
velopment on second shift. It proved to be an inefficient use of people,
and as they grew tired they became very error prone.

System integration of the non-telemetry portions of the on-line system
was conducted in parallel with the crash effort to redesign and recode the
telemetry monitor function. It amounted to a two to three man effort, work-
ing 16 hours per day, seven days a week for a month to produce a modified
system, By the time the situation was corrected, 24 man months had-been
wasted, The most frritating part of it all was knowing that the problem
could have been avoided, or at the least minimized, had management required
a visible means of establishing adequate criteria and procedures to monitor
the various stages of software development.

During the checkout of the modified telemetry software monitor function
a new problem was uncovered. It was found that the N35 interface console,
vwhich was the main STE hardware to Honeywell R-632 computer interface, did
not react to commands as planned. A sequence of operations had been adopted
which worked within the timing requirements of the on-line cystem and pro-
vided adequate I/0 in the telemetry area. However, when sll systems were
run concurrently, the 1/0 Bus transfers became confused and caused the on-
line system to abort.

This problem was never completely solved but eventually was managed.
After a schedule slippage of approximately a month, it was found that two
pieces of hardware logic sections in the N-35 that should have been slaved
to one another, actually were independent of one another, As information
passed through the N-35, a race was on in the hardware logic. When the bad
guy won the race, the system would sbort. Hardware corrections were made
to attempt to correct the situation, and some software modifications were
incorporated to attempt to avoid it, but no one was ever able to identify
all the causes, Even though no permanent solution was found, the impact was

minimized by adopting procedures designed to control the problem,
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By October of 1972 both the pre-test and on-line software subsystems
were operational and could support Lander systems testing, About this time
efforts to develop the post-test software subsystem were initiated, The
reasons for this late start were a continuing lack of meaningful requirements
plus the impact caused by schedule slippages in integrating the vehicle with
the on-line system,

The initial design of the post test system was based upon what the lead
programmer thought would be logical requirements, Before design could be
implemented, it was disclosed that the post test system would have to pro-
cess telemetry stream data recorded on analog tapes. The design under de-
velopment did not accommodate such an ability, and had to be scrapped. It
was then decided that the post test system would be a modification of the
on-line system so chat it could access the hardware interface drivers. This
decision greatly reduced the development time of the post test processor,
and retained the flexibility to use any previously developed code that could
function within the on-line system, By late 1973 the post test system was
finally operational.

3.4 Maintenance and Operational Test Support

The STE Software System functioned adequately to support Lander testing,
first in Denver and then at Kennedy Space Center, The procedures adopted to
handle the N-35 1/0 Bus problem reduced the number of test aborts to less
than one per week, which did not prove to be a serious handicap.

One problem occurred that can be blamed on the lack of an initial over-
all systems design, which would have defined every function that was to be
developed and permitted computer loading analyses to be performed. The pre-
test software system was slow and consumed most of the off-line processing
hours available each day. Because of this post test off-line processing
was frequently delayed or cancelled because of a lack of computer time.

The only other problem that merits mention was the amount of computer
set and peripheral equipment down times. Whereas the H-632 computer set had
been selected for cost effective reasons, it increased costs during the main-
tensnce and operational test period. The design errors inherent in the com-
puter forcaed entire crews to wait, sometimes for several days, while trouble

shooting efforts took place.
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Originally it had been planned to slowly take STE programmers off of
the Viking Project. By the time the STE was moved to KSC for operational
test support, there were to be no programmers left., As matters turned out,
the number of programmers assigned to STE peaked during this period. This
was only partially due to the problems with maintaining the H-632, New re-
quirements for software functions constantly arose, both in Denver and at
KSC. Two new programs were written at the Cape to assure that Flight loads

would be correct.
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4.0 Lessons Learned

Software design should be made flexible when requirements are weak and
incomplete. This was done for the SIE software system and was the main rea-
son for experiencing as few problems as occurred.

The lack of good system requirements at the start of software develop-
ment will lead to wasted manhours downstream in the development.

Computer loading studies should be conducted early to aid in develop-
ing efficient software designs from a user point of view.

A strong standardized executive system was designed that relieved the
module programmers of the necessity to address problems inherent in I/0
timing conflicts, This permitted reliable code to be developed with less
effort than otherwise would have been required.

Schedule programmers to remain on a project beyond software delivery
dates. Unforeseen maintenance problems can arise that require thorough
familiarization of the software to resolve. Also, new requirements should
be anticipated.

It is a risk that can have serious repercussions when a single pro-
grammer is permitted to develop an important piece of software even with some
kind of technical monitoring. An obvious way to avoid this is to require
that at least two programmers be assigned to each program. This is not al-
ways practical from a personality point of view, and sometimes is not pos-
sible due to manpower resource considerations. The STE Software Chief had
in fact assigned two programmers to develop the original telemetry function.
But the technical lead turned out to be a loner who did not cooperate with
his assistant.

The selection of the least expensive computer that was adequate to sup-
port STE software requirements proved to be a costly mistake when the pro-
duct line was dropped by the manufacturer. Future projects should keep this
fact in mind,
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TECHNIQUE

TEST DATA BASE STRUCTURE

SUMMARY: The Viking Project was characterized by extensive use of automation

during all phases of test and flight operations. A major task was the
collection, management, and configuration control of the information
required by the various computers serving the project. An equally impor-
tant task was the definition of the interfaces between the various infor-

mation subsystems, including man-machine interfaces.

APPLICATION CONSIDERATIONS: The generation of the basic data files-had to

be completed prir~ to committing the system to test, Each file played
an important part in linking the System Test Equipment (STE) software,
application programs and test equipment to the test task., The data had
to be put into a form that was immediate recognizable and usable by
design personnel, sequence writing and test operations personnel, It
had to be put in a form that was compatible with the software interface
and applications programs (test sequences)., Since the flight computer
would play an important role in Lander tests, the mechanisms for data

inputs and table inputs to that computer had to be implemented.

RECOMMENDATION: The Viking data base structure concepts and implementation

techniques are highly recommended for use on programs similar in com-
plexity to Viking. They proved to be viable, visible, efficient, and
easily manageable, MMA is adapting the Viking Data Base Structure to
their PACE program,
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HISTORY: Some concepts of technique and data base structure evolved from
previous MMA programs and studies such as the MMA Computerized Aerco-
space Ground Equipment (CAGE) design for the MOL program; the bulk of
Viking data base structure design techniques, concepts and implementa-
tion were developed during the on-going Viking program. The resultant
system was derived thru extensive give and take during the evolutionary
process, with special significance given to synergistic effects between
STE SOFIWARF, FLIGHT COMPUTER TEST SOFIWARE (STACOP), Test Sequence,
Test Equipment Vehicle designs and test requirements. The basic data
base structure (due to its impact on software and test sequence designs)
was developed relatively early in the Viking schedule., Modifications
to technique and additions to the data base files continued throughout
the program,

The Viking test data base was structured to provide a realistic
tie-in between all of the various components that made up the test
environment, These components were:

1. Test Vehicle

2. Test Equipment

3. Test Interface

4, Data

5. Software

6. Test Sequence

7. Management and Control

8. Test Environment

DESCRIPTION: The test data base structure can best be described in its rela-
tionship to the total command and information system.

The basic task of the information system was to provide the STE
computer with sufficient software and data to enable it to control and
monitor the VLC/STE system during all phases of Viking system level
testing., The methods of implementation were influenced by the considera-

tions below.

Volume of Data

The information required by the STE computer included detailed data
on cach stimulus and monitor point in the total hardware system, It
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includes all the standard messages and commands that were sent over all
the digital interfaces. In this context 'data' included automated pro-

cedure so it included functional information on all STE and VLC opera-
tions that were visible at the system level,

Continuous Monitoring of All Data

It was a requirement of the STE that all data be monitored continu-
ously, i.,e., each data sample arriving at any interface had to be com-
pared with predefined criteria and appropriate displays made or alter-
nate action taken in the event of a criteria violation., The success
criteria had to be dynamically modified as the system responded to test
stimuli.,

Testing Multiple Vehicles in Multiple Configurations

Each of the Viking test articles had to be tested in all mission
configurations; landed, entry capsule and spacecraft. Each vehicle, in
each configuration, reprcsented a unique data environment which had to
be exactly defined for the STE computer. Most of the data required was

common to all test configurations,

Incremental Availability of Data

The information required to support Viking System level testing
became available at different points in time. The first was available
when design criteria was released. The final parametric data was not

available until just prior to the time a test was to be run.

Commonality of Data

A single data item might be common to all test articles and to many
test procedures for each test article. A change to such a data item
could have a significant impact., This was compounded by the fact that
the test articles and associated information libraries were in varying

states of completion,

Data Supplier and User Interface

Most of the originators of the information required by the system
were not computer or programming oriented. To the maximum extent pos-
sible, all input and output data'was to be in English or in standard

engineering format,
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Operator Interface
The ON-LINE test operator had to be provided with 'selacted' data
on the test operation in progress. In the event of a problem, the

operator had to have the capability to request additional data and/or
implement workaround procedures.

Conceptual Design

The Viking STE information system was structured on design concepts
intended to solve all the explicit and implicit problems identified
above,

The characteristics of the information required for Viking System
Level testing was such that three separate but interrelated regimes

were required, the data regime, the test sequence regime and the soft-
ware regime,

Data Regime

The data files contained all the static and descriptive information
about the test articles and their interfaces with the system test equip-
ment, and as appropriate, interfaces with the facilities and associate
contractors, A special class of data was included in the same data base

to support general simulation activities, Design goals driving the

system were:

a. To accept data in engineering terms and formats;

b. Require that each data item be entered only once;

c¢. Accept data as soon as it became available;

d. Provide for retrieval of selected data subsets;

e. Accommodate data changes with a minimum of impact, but

provide knowledge of what that impact was to other

information clements or subsets,

Test Sequence Regime

The test sequences contained the "tests". Derived from test
requirements, and utilizing the data hase and Viking Test Language, the
automated test sequences defined, scheduled, and set criteria on the
functional happenings to occur aboard the Lander during the tests, the
STE-SET UPS for the test and the required interaction between the Lander

and the STE, Requirements for the test scquence subsystem were:
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a.
b.

Ce.
d.

€.

f.

g

h.

i.

Compatibility with data base files;

Compatibility with STE software off-line system (file
management, translator and load algorithms);
Compatibility with the on-line system;

Knowledge of test article functional design;
Knowledge of functional interaction between the test
article and STE;

Knowledge of STE SET-UP requirements;

Knowledge of configuration control methods;
Provision for modularity in sequence preparation and
execution;

USE OF VIL language.

Software Regime

The software was designed to accomplish all the processing necessary

to support on-line testing, off-line data management, and to provide

workable Man-Machine interfaces for all processing activities, Design

goals were that the software subsystem should: provide maximum diag-

nostic capability to detect as many errors in data and sequence input

as possible, be unaffected by changes in the VLC or VLC/STE interfaces,

provide the necessary visibility to the operator to allow proper decision-

making during all processing, and provide for the interaction capability

in that the decisions could be implemented.

The Viking on-line operating system has to be considered as a data

driven system. As such, it is necessary to understand some facets of

implementation of Viking data handling techniques, The Status and

Criteria Table (SACT) is tne single most important item in the under-

standing of the system. It is the common interface between most of the

elements in the total system., In a programming sense, the SACT is an

interrupt table. Each data or criteria change represents a potential

interrcupt.

The conditions under which the interrupts are to be honored,

and the action(s) to be taken in response to the interrupt, are control-

led by the test sequence writer, and to a limited extent by the test

operator.

-

The physical structure of the SACT may vary from system to system,

but the function of the SACT remains the same,
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The SACT is an array or table consisting of a line entry for each
interface point in the system for which dynamic status must be main-
tained. Fields are allocated in each line entry for many types of data.
The format and content of the SACT entry is dependent upon the type of
interface point which is being represented. Typical entries in the SACT
are:

A. Status -~ Latest significant data sample received;

B. Care Bit - Criteria open or closed;

C. Inactive - Should data be ignored;

D. Type Info - Continuous, momentary, telemetry, etc.

E. Display Info - CRT, line printer, console light, etc,;

F. Criteria - As appropriate to signal type;

G. Aperture - As appropriate;

H, Source of Criteria - Initial conditions, seq. TB, etc.;

1, Aiternate Action - Stop, Go To, Abort, etc.;

J. Special Bits - As required;

K. Spare;

L. Address in mass storage where other information

concerning the interface point is stored;

M. Simulator Peculiar Bits;

SACT Usage

The SACT is constructed by the data loading software when a spe-
cific sub-set of data is selected from the master file and placed in
mass storage for use by other software, thereby accomilishing an inter-
face function with the on-line software subsystem and with other off-
line software modules,

The on-line software subsystem uses the SACT as a storage facility
for dynamic data and as a source of 'instructions' a:. to how the data is
to be processed, It should be noted that these instructions may be
modified by the test sequence in progress, or by the on-line test
operator,

Other usages of the SACT can be inferred from the contents of the

SACT as presented above.
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Description of Basic Information System Elcments

The STE on-line and off-line software subsystems are an integral
part of the information system, The software provides the capability
to store, convert, correlate and display the large volume of data flow-
ing into and out of the information system, It i{s analogous to a com-
munications system in that information may be input in one form, stored
in another form, transmitted in another, and output in still another
form (or in several forms to suit the various users or receivers). The
function and scope of the software is determined by the information
structure and its interfaces, and by the hardware elements of the proj-

ect,

STE Software

It is important to realize that the effectiveness of the software
is determined by the extent to which the information needs and inter-
faces are properly defined early in the program. In many cases, the

same considerations apply to the proper selection of hardware.

Basic Data Files

There are three basic files in the information system. These are
the interface file, the group file, and the decommutaticn file. They
are classed as 'basic' because each entry is a direct representation
of a fixed characteristic in the hardware or software. The exceptions
to this are the criteria entries in the VAIF.

Each building block or sub~structure within a composite structure
must have a fixed point of reference or 'anchor' that 'locks' it into
place in higher level structures. The 'interface point' provides that

reference point for all data files.

The Viking AGE Interface File (VAIF)

As implied above, the interface points tie the entire system
together. The ID symbol positions the IPDS in the file and 'connects’
it to a hardware subystem or interface, as well as serving as a short-

_hand address for all man-machine interfaces,
The ‘'descriptor' provides functfonal information about the inter-
face point in standard engineering terms. The interface point data set

contains all of the information required by the sequence writer, the test
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operator, and the STE software.
In addition to the above, the TSS Logic in the IPDS defines the
functional relationship of the IP to other interface points in the VAIF.

VAIF Structure

The VAIF is structured on the 'page' principle in that each inter-
face point has a page or set of data associated defining it. This con-
sists of characteristic, parametric and functional information,

Each page is made of 'lines’, where each line is input on a punched
card. Effectivity is implemented at the line leYel. (Each card has
its' own effectivity codes). \ '

Information in the VAIF is organized by Intelface Point Data Sets
(IPDS's). Each IPDS is a uniquely identified block of data containing
enough information to describe one interface assignment in the system
to both the STE computer and the human user,

The VAIF is maintained as a Source File (card image) on magnetic
tape, Although information from the VAIF is essential to almost every
step of system operation, only two programs interface directly with the
VAIF tape. The pretest File Manager is used to update the VAIF, to
provide copies of the current VAIF tape, and to make listings of the
VAIF., The Data Base Manager uses card numbers and effectivity codes to
select only the information needed by the computer for a particular
application from the VAIF, then formats this selected data into the
BIDs and the SACT, The Binary Interface Data Set (BIDS) {s a disk-
resident file used primarily by the Sequence Translator to convert an
IPDS name into either a command word or an address recognizable by the
On-Line operating system.

Every clectrical interface between the Viking STE and the Lander,
either command or monitor (digital analog, and discrete), is represen-
ted in the VAIF as an IPDS.

The format of the VAIF allows single lines or entire blocks of
comments to be inserted among the IPDS's., The 'file loader' will
ignore an IPDS without a zero card and any card numbered 900 to 999,

Included in the comments at the front of the file are definitions

of symbols and abbreviations, descriptions of formats, sample IPDS's;
in general, notes on the structure of the VAIF and the relationship of
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the VAIF to the entire system, Following are examples of VAIF IPDS's:

EXAMPLE OF TM MONITOR IPDS

0001 B4002 INTL EQPT PLATE NEAR BAT ASSY 1 TEMP 000 BTE
0003  B4002 TYPE=AM TM AVL=VOP 001

0004 B4002 SACT=0868 002 BTE
0007 B4002 APER=2 LIM=50/100 084 COM C
0008 B4002 RANGE=0/300 UNIT-DF  ACC=3.61 100 BTE
0010  B4002 AMB-50/100 108 COM C
0012 B4002 OPLIM=50/105 109 COM C
0013  B4CO2 $C142,0,0,300,255 110 BTE
0016 B4002 120,03377,152.7,.040 112 COM C
0017 B4002 CHN-R4 EXC=  PART=SV74D12-1 600

0020  B4002 OR(C8001,C8002,C8003) 831 COM C
0022  B4002 C=OPL1 A=STOP D= 850 COM C
0023  B4002 AND (C4001M) 861 COM C
0024  B4002 * REV-329,343,378,403 990

EXAMPLE OF DISCRETE COMMAND

s

0001 S1418 STE DOU-3-018 ' 000 BTE

0002 S1418 FIRE B/S CAP SEP CUT VO CMD 75J 000 COM 567

0004 S1418 TYPE=CON DIS STM AVL=V 008 '
0005 S1418 DQU=3 CHANNEL=018 031 BTE

5007 S1418 STE RELAY TURNS AROUND VLC SIG PWR 2 951

0008 S1418 P20, REG=01 BIT=18 952

EXAMPLE OF DISCRETE MONITOR

0001 S2418 STE DMC-3-018 000 BTE
0002 $2418 FIRE B/S SEP CUT VO CMD 75J (J29-GG) 000 COM 567
0003 S$2418 MONITORS S1418 000 TE1
0004 S2418 TYPE~DM HL C AVL=VOP 0001

0005 52418 SACT=0361 002 BTE
0006 52418 TYPE=CON DIS AVL=V 008

0007 S2418 DSU=3 CHANNEL~018 032 BTE
0008 S2418 OFF 082 BTE
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0009 S2418 F304 AWS FUNCT CODES 700

0010 $2418 C=0FF A=STOP D=P CATEG= 850 BTE
0011 S2418 AND(S1418) 861 COM 567
0012 §2418 P20 951

EXAMPLE OF DISCRETE MONITOR (Continued)

The Viking AGE Group File (VAGF)

The VAGF contained groups of related IPS to provide a short-hand
mechanism for all user's of the VAIF. This might be the test sequence
writer, the on-line test system operator, or the requestor for post-

test data reduction.

The Viking AGE DECOM File
The Viking AGE Decom File contained the data required by the tele-

metry docommutation software for decommutation of the various Lander

telemetry formats. This data included information such as format identi-

fication, discrete or analog data, word length, most significant bit
first or lease significant bit first data, and format length,

QUALITATIVE RESULTS: The Viking Data Base as structured worked very will in

support of the Viking program. Since the total software and data system
was a new design, compatibility with the total information system was
"designed in", That {s, the STE software system was driven by the data
base. This design made it easy to change requirements without being
required to change code. Defining all interfaces (commands, monitors,
telemetry, etc.) with appropriate associated parametric information in
one central file was of specific value., The ability of this file to
provide for man/machine interfaces greatly enhanced understanding and

control of the system during test operations.

QUANTITATIVE IMPACT: The Viking software data file system required 168 engi-

neering man mo:ths to develop. This development process contained
throughout the life of the STE.
The Viking AGE Interface File (VAIF) contained 1289 line printer

pages. Each page rontained from 3 to 10 IPDS's. Four hundred forty
revisions were made to this file., The Viking AGE Group File (VAGF)
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contained approximately 40 pages. The Viking AGE Decom File (VADF)
contained 16 decoomutation files. The latter were incorporated in the
Mission Operational Software System and used to decommutate the tele-
metry received from the Viking Landers on Mars.
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NAME:

TECHNIQUE

VIKING TEST LANGUAGE (VTL)

SUMMARY: Viking Lander hardware, subsystem, and system integration and test

was performed by a computer based system, the System Test Equipment
(STE). The STE software design gave the Test Engineer access and control
over the testing process via a relatively simple test language. Test
sequences prepared by test engineers were carried out in two stages:
translation and checking of the near English sequence into an intermedi-~

ate form, and subsequent interpretive execution by the STE computer.

APPLICATION CONSIDERATIONS: System/Subsystem test and evaluation requires

considerable on-the-spot flexibility. Preconceived test sequences while
adequate for fully understood and working hardware, can rarely cope with
special tests and malfunction isolation. Moreover, the test support
software had to be conceived, designed, built, and verified long before
flight versions of the hardware devices would be available., The total
volume of test sequences employed grew considerably over the final inte-
gration and test phases. Individual test sequences, written in a pro-
gramming language, and modified in response to a fluid testing envirom-

ment would have presented an ummanageable software development problem.

RECOMMENDATION: User oriented languages, and test languages in particular,

are a proven concept, Martin Marietta has employed the concept on
several large projects over the past decade. The particular variations
employed on the Viking Project are deemed worthy of wider application.
These are: (1) a very simple language that is easy to learn and use
with confidence; and, (2) a tightly controlled database that contains
all the detailed configuration differences and details - all invoked

by device name in a specific test sequence,




(Pt e A o

L O

3

L
ATt

SRR

HISTORY: The Viking Test Language (VIL) instruction set was conceived and

finalized early in the program. This was necessary due to the clos:
tie-in between ground checkout hardware, system data base, and checkout
software. No new elements were required during the program. New
requirements in test were reflected in data base changes, ground computer
checkout software changes, and Flight Computer System Test and Checkout
Operation Program (STACOP) software changes. New capabilities were pro-
vided thru the use of the VIL such aa being able to reset test time by
test sequence and the capability of calling from disk a set of pre-
established command uplinks by VIL. These capabilities provided timing
synchronization between Viking Flight Computer operations and ground
computer operations,

The VTL was utilized from the beginning of test. Buildup o the
system test bed throughout all phases of integrated system testfing pro-
ceded as follows:

a. System Test Bed - hardware, software, sequence debug and test

b. Proof test capsule testing (thermal VAC, VIB Accustics, etc.)

C, EMC testing

d. Lander bufidup and integrated system test

e, Plugs out testing

f. Flight compatibility testing

g. Lander orbiter interface tests

h. Launch pad tests

i, System test bed tests with PTC in support of cruise descent

and landed science evaluation operations.

DESCRIPTION: Test Language Overview - The Viking Test Language (VIL) is a

high order computer language which gives the test engineer access and
control over the testing process. The Viking Lander and STE command
and monitoring operations were performed by test sequences constructed
from the VIL elements. These sequences resided in computer core during
on-line operations and were esscntial computer subroutines.

The test sequences written in the near-English symbology of the
VTL were keypunched into symbolic sourze card input to the computer's

off-line assembly/translation process. The output of the assembly/

186

=




translation process was an expanded object file which ir turn was loaded
to the on-line operating disk. The sequence resided on disks until
called by the test operator for execution,

The test sequence (TS) is analogous to a becok. It has a beginning,
an end, and in the middle there is a general theme, A test sequence is
written, reviewed, controlled and exec.uted as an end-to-end operation,
The scope and length of a given TS is determined during the initial plan-
ning and integration activities, but is primarily a function of the test
task., The test sequence is called, initiated, and executed .hole or in
part and stopped as required for manual test operations, The test opera-
tor controls the test via CRT/Keyboard and manual pushbutton controls.

A subset of the Viking test sequences was the 'abort’ sequences.
The abort sequence is analogous to an "alterrate ending" for the story
that the normal test sequence has started.

The Abort Sequence is written using the same symbology and form as
a normal TS, The abort sequence is different only in the way it is
called into execution. The call statement is a default condition occur-
ring within the normal TS,

1f, during test sequence execution, an abnormal status is encoun-
tered, and if the TS writer has chosen an Abort Sequence as a secondary
action, the normal sequence will immediately terminate and the on~iine
software will call and begin executing the named Abort Sequence.

The Abort Sequence is the only real branching capability of the
VIL.

The test sequence consists of a scquence identifier and descriptor
(title) and a main body. The fidentiffer is an alpha numeric number in
the order of 4 X01-A which provides the cailing and configuration con-
trol mechanism, The main body of the scquence contains the VIL compo-
nents required for performing the required test function.

COMPONENTS OF THE LANGUAGE
Test Block - A Test Block (TB) is analogous to a paragraph in a TS,

As a general case a TB contains a single stimulus statement, or a closcly
rclated set of stimuli, some time delay, and the necessary criterfa
statcements to provide the evaluation of the resultant responses,

The TB is assigned a number (TBNNRNN) and a 32 character descriptor
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by the TS writer. The TB number serves to identify any displayed data
or criteria violation during TS on-line execution. The data message
contains the TB number relative to when the criteria was established
and the TB number in which the criteria was violated or requested for
display. This feature provides for quicker analysis by reminding the
analyst of the headings or original purpose of the test.

The TB 32 character descriptor also serves as an outline to the
writer of the TS and as an aid to the reviewer of the TS, This descrip-
tor appears in English form in TS translated listings and is displayed
during the on-line execution of a TS, The on-line automatic display
feature enables the operator to track the real time execution of the TS,

Alternate Action "STOPS" - If during execution of a TB, a criteria

violation is sensed for which the secondary verb "STOP" has been speci-
fied, sequence execution will stop at the end of that TB.

The test block is a sequence entry and exit point.

Prior to initiating a sequence in the Automatic Mode, '"START ON"
and "STOP ON" points may be specified, These points are identified in
terms of TBs, i.e., SSB, TB01052, TB20510.,

TEST LANGUAGE STATEMENT

A test statement is a line of unexpanded (VIL) source code. It
will generate one or more VIL elements during translation. The VIL
statement exists before translation to machine instructions and the VTL
element exists after translation, To the TS writer, the two terms are
almost interchangeable,

A test element is analogous to a single action in a conventional
handwritten test procedure, such as pressing a button, reading a meter,
etc., Some VIL statements result in single actions. A repeat statement
(REPT) is expanded by the translator into more than one element,

Two forms of Test Language Statement exists: the executable and
the non-executable, The executable VTL statement refers to its require-
ment to be acted upon during the translatfon process by the software
and being placed in an "object" form in the object sequence created.

The test language statement may take several forms but in general
will always consist of a verb, a noun, and an adjective. In additionm,

the statement may contain time, either to initiate a timer or a time
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as to when the statement is to be executed. It may contain a command

to cause a display (CRT and/or line printer) or it may contain a sec-
ondary verb such as an "abort" sequence identifier or a 'STOP'. Certain
types of VIL statements will contain effectivity nomenclature which is
used during translation and loading to disk operations, The effectivity
function provided a capability to run a given sequence against one or
more vehicles where unique differences in instruments would call for
different commands to be executed. For example, camera gains and off-~
sets.

STATEMENT ARGUMENTS

The VIL arguments are analogous to the noun, verb, adjective, etc.
used in normal sentence structure and will be explained in those terms.

VIL Test Element Format - The general form of the EXECUTABLE test

element/statement is shown below, Each modifier field is also defined.
Executable test elements perform actual test operations., The numbers

listed below are the column numbers on an input card or on a coding form.

TIME VERB NOUN ADJ EV TH D VERB 2
1- 9- 17~ 25~ 49- 52- 57-

TIME - The Time entry allows an element to be executed at some increase
of time. The time entry is optional, The first character must start
in Col, 1 and the entry must not exceed Col, 8,

1) Tn + i This is the general form for referencing an event
timer where n = 1, 2, 3, and { is an increment of milli-
seconds or seconds, The "+" means at the specified time
increment, execute this element., See WHEN element for
additional information,

2) Event timers provide relative timing between the various
executable elements within a test block.

3) Event timers are reset and started by a Tl, T2, or T3 in
columns 49 and 50 of a VIL statement,

4) Event timer references must allow 5 milliscconds for each
executable element,

5) Event timers can be reset and started as often as required

in a given test block,

6) Timing increments can be in milliseconds or minutes and seconds.
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VERB - Each executable test element statement requires a VTL primary

verb in this field beginning at Col. 9. The verb specifies the element
action, such as command a relay closure or establishing monitoring cri-
teria. The other element statement fields shown above provide fo: ele-

ment modifiers, as dictated by each verb and its sequence function.

NOUN - The nouns (beginning at Col. 17) declare the object of the primary

verb action and consist of identifiers for interface points, commands,

and measurements,

ADJECTIVE - The adjectives define the primary verb action; such as con-
dition, limits, values, and references. The adjective field starts at
Col. 25.

1) ON, OFF - self explanatory discrete conditions:

OPEN - don't care condition.
CLOSE - reverts to the condition established before the
last OPEN statement,

2) OPLIM - operating limits as separately defined for analog
voltage measurements: 1i.e., 23/32 VDC,

3) AMB - ambient condition: opposite ot OPLIM where measure-
ment is OFF/false, and also ambient temperature, pressure
type measurements.

4) LIMITS - For analog monitors, actual limits and engineering
units can be written on the card in the form lower/upper,
units., Both limits and units must be entered.

EVENT TIMER - Tn is the general form for reinitializing an event timer,
where n =1, 2, 3, or 4. The event timer field starts in Col 49,

1) Timers specified in this element field are initialized to
begin timing after the primary action specified in the
element is complete.

2) Timers provide a maximum time of 99 minutes and 59 seconds.

3) Timers are reset by each test block and event time doves not
carry across TB boundaries. A timer can be reinitialized
by its entry in this field on succeeding elements,

4) Refer to TIME field for event timer functions.

DATA DISPLAY ~ The D field, Col 52, provides the capability to display
data to the line printer and CRT. When used, the value of the NOUN is
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displayed.

1) In the case of a criteria violation the value of the noun shall
be automatically displayed by the on-line system whether or not
the test writer used display for the failed element,

2) L - display to the CRT,

C - display to the line printer and CRT,
VERB 2 - Secondary verbs allow for aiternate actions in case of criteria
violation. These actions are only allowed for monitor functions i.e.,
DISPLAY, WHEN, FSTAB and CHECK elements.,
1) GO TO - The GO TO secondary verb allows the test writer to

abort the present test sequence when the primary action
fails, The GO TO secondary verb i{s an implied GO 10 inas-
much as the words GO TO are not written., The tect writer
simply writes the name of the sequence to which control is
to be transferred of the form PBNN-A (for Planned) GO TO
requires off-line translation and cannot be used as a
primary verb. Execution of the GO TO causes the on-line
interpreter to initiate lockout flags which prevent the
resumption of the test sequence. The GO TO sequence is
loaded for execution by the on-line system and provides all
hardware backout provisions., When the GO TO verb is exe-
cuted, its execution results in an immediate and complete
abort of the sequcnce and no return is possible, except
by recalling the sequence and specifying a '"start on'
point.

2)  ABORT - Same as "GO TO" sequence except as follows:
A. There is only one location in CPU memory for one ABORT
scquence, This means that special provisions must be made
by the on-line operator to load the correct ABORT sequence
for the normal test sequence which is to be running, On-
line control language will be used to load the ABORT,
B, The ABORT sequence when called by a test sequence
criteria violation, will not require access time delays
such as loading from the disk to the computer memory, By

having placed the ABORT scquence in memory it will be
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accessid and executed with the minimum time delay possibie,

3) STOP - The STOP secondary verb allows the test writer to cause
the sequence to pause after execution of a display element or
to pause after completion of the test block when the primary
action fails. The sequence can be resumed and thus is nct
aborted. STOP cannot be used as a primary verb and requires
translation by the off-line system, The STOP secondary verb
is written STOP., If the STOP verb is executed, the test will
be discontinued after completion of the Test Block being exe-
cuted, At this point the test operator may request that a
Recovery Sequence be executed, or another TB selected as a
starting point, or the test can be continued from the point
at which it stopped by depressing the "P", then escape on the
CRT keyboard.

The general form of the NON-EXECUTABLE test element statement is

shown below with field definitions. Non-executable test elements com~
mand or control the off-line transiator, Comments, sequence identifica-

tion, and REPT, the repeat code name, and ENDR verbs are no..-executable

elements,
IDENTITY ELEMENT TYPE MODIFIERS. DATA, LISTS
1- 9- 17~

IDENTITY - A name or label which identifies data, listings or a
routine to the translator, An asterisk in Col 1 of
this field identifies comments.

ELEMENT TYPE - This field defincs the element type (REPT, GROUP,
L1ST, etc.) starting in Col 9.

MODIFIER - Data and listings are located in this field as neces-
sary for each identifier and verb, starting in Col 17,

DEFINITION OF VTL ELEMENTS

The BEGIN element marks the deginning of the first executable
statements in a test sequence, It is an executable element and requires
translation by the off-line system, When executed, the on-line interpre-
ter is reinitialized for a new test sequence and all flags, counters and
sequence timers are initialized, In addition a display is made to CRT

and line printer according to the on-line requirements. The BEGIN vurb

192




i
1’(,’{

does not require any modifiers, The Test Block or Critical Block ele-
ment must follow immediately after the BREGIN element,

The CHECK test element interrogates the value or state of any cur-
rently monitored parameter. It is an executable element and requires
translation by the off-line system., Execution of the CHECK element will
not change the ;tatus and criteria tables. It evaluates the parameter
with respect to the limits or conditinns specified in the adjective
field,

The DISPLAY element causes up to 40 characters to be displayed to
the LINE PRINTER and/or the CRT. The display area recserved on the CRT
screen for this type of display is one line long. The element does not
utilize an adjective or initiate a timer and the second verb is optional.
This form of the DYSPLAY element specifies messages (not data) to be
displayed to the test operator on the CRT and line printer. It is an
executable element and requires translation by the off line system.

The ESTABLISH element is used to establish monitoring criteria on
discretes, discrete groups and analogs. The ESTABLISH test element
changes the status and criteria tables in the Monitor system for dis-
cretes, and analogs. It is an executable eiement and requires transla-
tion by the off line system. When executed by the on-line interpreter,
the criteria will remain as changed until another ESTABLISH element is
executed for the same monitor parameter, This is true even though the
sequence has reached the End element. In all cases, if the adjective
used is OPEN, the secondary verb must be blank. If thc adjective OPEN
is used, the adjective CLOSE may be used, CLOSE will restore the adjec-
tive state to that state which exists just previcus to the OPEN state.

The WHEN element provides the capability to synchronize or pace
the test sequence based on external discrete monitor occurrence. This
is accomplished by a thr:e step execution of the element, Step ucue
"opens® “he criteria on the wonitor heing adiressed. Step twc alerts
the system to an expected change and the expected state of the discrete
monitor(s)., Step three is completed when the discrete monitor(s)
change(s), Step three would also start event timers and displays if
these options were invoked. Step three would be accomplished immedi-

ately if the discrete monitor(s) was already in the expected state.
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Failure of the element occurs when the time period specifiedzelapses
and the discrete does not change to the expected state, The -WHEN ele-
ment is an executable test element and requires translation by the off-
line system, All WHEN elements require use of the time modifier.

The END test element marks the end of a test sequence. It is an
executable element and requires translation by the off-line system.
When executed, the on-line interpreter displays and records completion
messages to the test operator., It also puts the on-line software into
the monitor wode. The END verb does not require any modifiers.

The SET element enables control of stimulus discretes and commands
to be implemented via hardware, It is an executable element and re-
quires translation by the off-line system.

The REPEAT element is a nonexecutable test element and is not part
of the translated object code, It serves as a translation control com-
mand only. It is used to define repeat blocks in the REPEAT input sec-
tion (before the Begin element) of the test sequence source input decks.
It is also used to identify where in the sequence code the repeatable
code should be inserted (after the BEGIN element)., Repeatable coding
features allow the test writer to reduce the burden of rewriting the
same or similar string of coding. These features provide the capability
to write a string of coding once and to give it a name. Whenever this
string is repeated the name of the coding string becomes the primary
verh. The translator will substitute the repeatable code for the name
at translation time, Repeat tests can be referenced for use aé many
times as required in the body of the test sequence. I1If RCBs are not
needed, the Repeat input section is left out of the sequence,

The ENDR element terminates a repeat code block. It is not exe-
cutable and is not included as part of the translated object output.

It serves as a source input control card oaly and as such will appear
as part of the source listing output only, The ENDR verb does noc
require any modifiers.,

A Sequence ID (SID) card {s used to identify the sequence to be
translated, The SID card must always be the first card of each Test
Sequence. Translation will not be performed without the SID card,
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The sequence descripcor appears at the teop of each listing page and is

displayed on the CRT during on-line execution of the sequence. ]

Test Block Numbers {TBN) are provided to allow sequence writers
to identify blocks of test elements which perform modular test func-
tions. TBN is used during execution te inform the te;t operator of the
test block to be executed in the test segquence. Test Block Numbers

will be followed by a descriptive text identifying the test block which

O ] BRI NI O IR 06 W0 5 s s o e

is to be executed. During translation the Test Block Number and its

w e

corresponding text are formulated into a special display command element.

When executed by the on-line system, the TBN is displayed on the CRT

and line printer,

QUALITATIVE RESULTS: Utilization of a relative simple test language for
test control of the Viking Lander svstem proved invaluable all during
the program, expecially in the final stages. The relatively easy "tie-
in"® between test data results (line-printer printouts) and the test
sequence provided hardware and science oriented engineers /[not neces-
sarily with any computer software background) the cespabil:.ty of under-
standli.g test aspects and test results. The “QUICK-LOOK" of data re-
sults were enhanced to a g.eat degree.

The positive aspects of the VIL as verified during Viking test

are:

1. Design and control of tests by hardware oriented enginevrs;

2, Test sequence/procedure English Form lent itszelf to chucking
by ¢:gineers and checkers not software oriented;

3. Capapn,'ity for rapid turnaround of test sequences for mal-
functs .1 isolation, sequence updates and alternate mode
testing;

4, Capability for entry points feor ruaning a seyuence in parts
or in jumping from parts of one sequence to parts of another
sequence;

5. Capability for changing abort sequences easily;
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6. Capability for changing data acquisition modes quickly and
easily (significant due to the many TM formats and data rates
of Viking);

7. Easy change of software decommunication of TM data compatible
with 6 above;

8. Easy tie-in between test data results and test sequences;

9., Follow-on testing with reduced manpower;

10. Versatility of VTL with the other system components for run-
ning a great variety of tests;

11, Capability for sectionalized testing.

The difficulties encountered with the VIL were more related to the
implementation of the VIL concept rather than in the language itself.
These difficulties probably were no more >r less than would be encoun-
tered with any new system introduced to engineering and test personnel.

It was found through trial and error, that a test sequence writer
must have the same basic logic talents that a software or hardware de-
signer has and should be system oriented. To write a Viking test se-
quence, required knowledge of the test article (operation and inter-
faces), the system test equipment operational setups and man-machine
interfaces, the software operational interfaces, the system test and
checkout cperational programs, the data base and the test language plus
the other associated disciplines such as test system simulator, con-
figuration control etc.

Probably the most significant item in the use of a VIL language
for a system as complex as Viking is the selection of the test sequence

writers/designers,

QUANTITATIVE IMPACT: The responsibilities of the personnel who developed

the Viking Test Language sequences differed relative to the test stage,
The responsibilities, and approximate effort for each are as follows:
1. Test seduence design and gencration - 50%
2, {n-line test support for sequence debug - 10%
3, On-line test support - 207
4, Data review - 107
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. Working anomclies - 3%
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5
6. Identifying data file changes - 2%
7. Inputs for software changes - 2%
8. Procedure development - 3%
The time required for application program test sequence design de-
creased exponentially as the Viking test program progressed. This can

be attributed to the human learning process plus the establishment of

a data bank of sequences which could be drawn upon for major or minor

Ao

portions of new test sequences. Early in the program a 3000 line se-
quence took two to three weeks to develop. Later on a similar sequence
typically could be generated in 8 hours. Completely new sequences still
required approximately 100 manhours to develop.

During Viking system test bed operations in support of cruise and
Landed science few sequences took more than 8 hours to develop. More
time was spent in establishing requirements and writing test procedures.

A total of 1565 test sequences, containing 974144 lines, were gen-
ercted for Viking. Of these 332 exceeded 1000 lines and 88 sequences g
exceeded 3000 lines,

The development of the Viking Test Language translation software )
subsystem took an cffort of 52 manmonths to generate 11486 lines of

code,
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TECHNIQUE

NAME: TEST SYSTEM SIMULATOR (TSS)

SUMMARY: The Test System Simulator (TSS) was conceived and developed to pro-

vide the capabilivy to debug the Viking atomated test sequer.ces prior
to using them to actually test hardware. The TSS is a general purpose
data driven software simulator that operates in the Honeywell H-632
‘computer system, No hardware other than the computer set and its stan-
dard peripherals is required for simulation., The data required and
simulation statements became an integral part of the master data file

used to support translation of automated test sequences and computer
controlled testing.

APPLICATION CONSIDERATIONS: Rationale for developing the TSS was influenced

by the necessity to have test sequences designed and ready prior to
hardware availability. Factors considered were: adequate debug of se-
quences could preclude hardware damage; sequence timing problems could
be resolved; possible hardware problems could be detected eariy; se-
quence debug could save many manhours of time in translation; and the

simulation would increase sequence designers understanding of the Lander
system,

RECOMMENDATION: The test system simulator technique as uscd on the Viking

Project is a proven concept. It provided a valuable tool in debugging
automated test sequences for a relatively low cost, A simulator of this
design can be used to support a parent project in sequence and procedure
debug, sequence of events verification, failure modes and effects analy-
sis, power profile, hardware/software design verification, and crew
training and certification, The use of the simulator technique will

not eliminate the need for bread boards, prototypes or test beds.
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HISTORY: The Viking Test System Simulator was formulated in early 1972, It

was recognized that a simulator could be of decided value; however, due
to the pressures on the program, little time or monev was available for
accomplishing the task. The basic design philosoph; of the TSS, simply
stated, was to provide a mechanism whereby design and test engineers
could incrementally add bits and pieces ot data concerning any part of
the test or mission hardware, software or operational considerations,
to the computer memery bank. The computer would integrate all of the
data into a single unified model, and use this meodel to assist the
engineers as much as possible throughout the program. The first cut

at the approach was to provide a simple functional simulator which in-
cluded simulsted vehicle discrete command and discrete responses with
appropriate timing, Additional logic was added thru data base simula-
tor icputs as time permitted ard as Lander component and science instru-
ment final designs were completed. The power and pyro subsystem se-
quences were the first sequences run thru the simulator. With this
came the task of debugging the simulstor software and simulator logic
statements in the data base along with the sequences. Some debug of
software and simulation logic was required when new logic was added to
the data base. As the power, pvro, vibration ecoustic, pyroe shock and
initial mission sequence of events were designed, thev were debugged by
the simulator. The simulator proved etfective in this respect.

At this point in the program many parallel sequence design efforts
were in progress or beginning to develop, such as combined system tests
(vehicle health checks for the proof test capsule during thermal vacuum
tests), electromagnetic compatibility test, science-end-to-end evalus-
tion tests, etc. Manpower to continue lopic development and training
time was limited., Logic for meteorology and x-ray was developed as
time permitted with additional work being performed in other svstem
areas. The above sequence tvpes were run against the simulator with
respect to power up, pyvre, and basic discrete logic functions,

Bevond the discrete stimulus and response stages, it became in-

creasingly difficult to provide the simulator logic.
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The advanced design of the System Test and Checkout Program
(STACOP) which was the test software loaded in the flight computer made
the testing more autonomous and less dependent upon commands initiated
by STE, Comaands were initiated by table look up in the flight com-
puter or by macro programs.

The Gas Chromatograph Mass Spectrometer and biology instruments
were driven by internal programs, in themselves, as commanded by single
initiate commands.

Each of the science instruments had many modes of operation which
changed data response timing,

Testing evolved to the use of actual flight software for system
test where all sequencing of events were initiated by the loaded program

By the end of the Viking sequence generation, approximately 50% of
the vehicle logic and about 95% of the supporting hardware had been

simulated.

DESCRIPTION: The test system simulator (TSS) is a general purpose, data

driven simulator that runs in the Honeywell H-632 computer system, It
can simulate the operation of any system where the relationship between
the elements of the system can be described by a logical expression,

No hardware other than the computer and its standard peripherals are
required for simulation. The simulation is time and resource oriented
in that a response to a stimuli may occur immediately or at a specified
time after the pre-reaquisite conditions for the response are established.
When a condition exists thav supplies or depletes a resource, such as
electrical power, the composite rate is calculated and the total is in-
tegrated as a function of time, When the system being simulated in-
cludes a computer, the programming of the computer is simulated by ap-
propriate entries in the data base,

The TSS consists of the three basics: the input, the operating
system, and the output,

The input stimuli, environment definition, and criteria =re input
to the simulator as a series of time oriented control statements (pro-
cedures) from mass storage (or in the form of a card deck). These may
be input in parallel, the control statements from each being inter-

leaved as a function of time.
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The logic for the TSS resides as a subset of the Viking STE data
base, The logic is designed to provide the TSS with the 'transfer
function' of the component, sub-system, or system., The logic consists
of two general types. The first is a direct representation of hardware
circuits., The second is 'functional' logic. Each type has its own spe-
cial considerations. The logical unit in the TSS is the 'terminal'.
Terminals are classified in several ways. The most general distinction
is between status and message terminals, A status terminal is used to
‘remember' the state of a hardware point or a software flag or buffer.
All status terminals have an entry in the VIKING information system
status and criteria table (SACT).

Messages are not true terminals., They are stored in mass memory
and accessed when 'SET' by the test language or the on-line control
language. A message may be a pulse or a digital word. A special class
of message is the delay type. A delay terminal is used to cause an
event to occur at a pre-determined time after a specific set of condi-
tions exist, All delays are momentary. Most messages do not have an
entry in the SACT, A SACT entry is required if the message is generated
automatically,

All TSS logic is expressed as 'AND' functions or 'OR' functions.
'Nesting' of functions is not allowed; the equivalent of the nesting
function is implemented thru the use of sub-terminals. 'NOT' functions
are available and timing is accomplished thru the use of the 'delay'
terminals.

TSS peculiar terminals were created, as required, to prvovide a
complete model of VLC or STE functions, The I D symbols were structured
so as to position the IPDS in the appropriate part of the VAIF (adjacent
to related IPS in the real system).

The hardware logic (power buses, relays, circuit breakers, switches,
push buttons etc), are directly represented by TSS terminals. A mag-
netic latching relay is represented by a 'memory' terminal. A command
may be a monentary command, or a continuous discrete stimulus. A normal
relay may be a continuous terminal or a memory terminal (if it was

'latched' by another terminal). The capacity of the TSS, with existing
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computer memory is approximately 10000 terminals. This capacity could
be significantly increased with a nominal software effort without an
increase in computer hardware,

Much of the logic is functional in nature. A command may establish
a mode directly without any representation of the individual circuit
elements involved in the mode. The same is true of most software logic
in that individual bits and instructions are not represented.

A powerful mechanism is the inclusion of configuration items in
the logic. This means that the configuration could be changed on-line.
Special Interface data points are assigned for this application.

The operating system of TSS includes three major software subsys-
tems; the sequence expander (TSSE), the binary file management system
(TSSB), and the run-time programs (TSSR). In addition, various input/
output, scanning and conversion subroutines are used.

The sequence expander performs a function equivalent to the VIL
translator in the real system. The TSSB is the simulation language
'compiler'. It reads the source statements (VALF DATA CARDS) and per~
forms the conversions, table construction, and linkages required to
construct the model of the system to be simulated. The data for the
specific model desired is selected based on the load effectivity state-
ment. The first function of the TSSB is to read the load statement to
set up the selection process. After a card has been selected, control
is transferred to the appropriate card processor. The 'model' construc-
ted by the TSSB is a combination of the data stored in the SACT and in
the Viking Binary Interface file,

The load algorithm controlling the data selection process is writ-
ten specifically to satisfy the requirements of the Viking program,

The simulator run time software utilizes the real system status
and criteria table which is a key element. All of the run-time routines
use the SACT in the same way, The run time software includes the run
time executive, which provides an environment wherein the tasks that
comprise the TSS run-time simulator can be executed according to their
respective states and priorities, The six priority tasks are the Timing

System Transmitter, Dynamic Status Change, Dynamic Response Simulation,
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Test Language Processor, Control Language Processor and Timing System

completion. Since the simulator runs according to pseudo-time rather

than real time, there is no need to respond to interrupts. Hence, all
processing can proceed at one CP level,

The timing system tran~mitter (TCB) task resides at a priority
that is higher than all tasks which process jobs that are required to

be performed at a specific pseudo-time. Because of its high priority,

it is able to transmit jobs to the executive without interruption. It
then deactivates, allowing tasks of lower priority to execute the jobs
which have been held for them,

The Dynamic Status Changing (DSC) task processes all changes-of-

status that occur to any Status and Criteria Table entry. The Dynamic

Status Changing Task is activated by any task with a properly encoded
job word in the TCB.

When the task gets control a test is first made to determine if

this is a bits-per-second return., I1If so, then bits are added to the ;

specific bit buffer and the task deactivates, If it is not a BPS re-

turn, then a test is made to determine whether the new status is dif-
ferent than the current status. If no change is required, this task
deactivates.

If a change is required, a test is made to see if the Status and
Criteria Table (SCT) entry is failed in its current status,

message is formatted and output,

If so, a
If the SCT entry is not failed, a
check is made to see that it has not already changed a. the current

pseudo-time, Then its status is changed and corresponding power level

changes are made,
The Dynamic Response Simulation Task (DRS) task simulates the re-

sponses to all change-of-status that occur to any Status and Criteria

Table entry or command, The DRS task is activated only by the Timing

System Completion Task when it has determined that the pseudo-time must
be changed.
When this task is activated, one pass is made over the Status and

Criteria Table, searching for those entries which have been marked as

YAffected" by change of status or command, When suchk a SCT entry is
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found, its proper status is computed based upon the logic equations in
the Binary Interface Data Set (BIDS). This new status is compared with
the current status; if they are the same then no change-of-status is
required so the next SLT entries are checked. If the new status and
current status differ then the new status is sent to the Dynamic Status
Change Task, which resides at a higher priority, for final processing.
If the SCT entry is of the 'Delayed" type, the job to the DSC task will
be held in the Hold-Chain until the proper pseudo time.

When the DSC task makes the change of status, it may also mark
additional SCT entries as "Affected", and will again set the response-
simulation-required flag, After completing one pass over the SCT, the
flag {s tested to see if further responses are required. If so, another
pass is made over the SCT. This process is repeated until all responses
are complete for the current pseudo-time, then this task deactivates.

The Test Language Processor Task processes Test Language Sequences
from the disk as specified by the Control Language Processor. When
this task gets control the first thing it checks is to see if an exter-
nal wait is set so that control cards can be read and processed by the
CLP in parallel with the sequence. If it is time to honor the wait,
control is passed to the Control Language Processor task. Otherwise,
updating of flags and timers in the current sequence buffer is performed
and the time field on all executable elements is processed to check if
a delay is required. If no delay is required, the element is formatted
and displayed.

The proper processor for the current element gains control now and
processes that element, On return any errors found by the processor
are flagged and displayed. An update to the sequence pointer is done
so that the next element will be processed when this task again gets
control, If an error has occurred while processing the current eleﬁcnt,
control is given to the Control Language Processor so that the operator
can decide what corrective action needs to be taken, Otherwise a delay
of 5 milliseconds pseudo time is performed by suspending the task for
this amount of time.

The Control Language Processor Task processes all control state-

ments for coutrolling the simulation run. The control statenents are

204




divided into four basic categories: sequence control, statements that
are equivalent to test language statements and general control state-
ments including statements beyond the test language capabilities. The
control statements belonging to each category are:
Sequence Control - CALL, EXEC, MODE, PROCEED, RESTART, RESUME, RUN,
START ON, STOP ON, TEST.

Test Language Equivalent - ACQUIRE, ESTAB, SET

General Control - CLEAR, CARD, DUMP, FAIL KEY, INACTIVE, MOD, RE-
MOVE, RESTORE, SAVE, SETDEL, SETMAX, STOP, TIME, TSTVv .T,
WAIT

Display - CANCEL, C PRINT, DISPLAY, GROUP, STATUS, VIEW

When the Control Language Processor Task is activated it inputs a
control statement from the card reader or the CRT keyboard, outputs the
control statement to the CRT and line printer. If the statement is
“XEC, PROCEED, RESTART, RUN, or RESUME the necessary processing is per-
formed followed by a call to the Executive to deactivate the CLP task
and activate the TLP task. If the control statement is not one of the
above, the necessary processing for that control statement is performed
and a new control statement is input,

The Timing System Completion Task resides at a priority that is
lower than all tasks which process jobs that are required to be per-
formed at a specific pseudo-time. Hence, control falls to this task
only when all jobs for the current pseudo-time hzve been processed, The
main function of the Timing System Completion Task is ro make surc that
all jobs for the current pseudo-time have completed and then advance
the pseudo-time clock., When all jobs for the new pseudo-time are com-
plete, control again falls to this task, Heunce, this task never de-
activates,

The Man-Machine interface is an important part of the operating
system, It is essentially the same during simulation as it is during
on-line operation., Input is thru sequence tapes, CRT Keyboard, and
card reader, Output is CRT display aud line printer tabulation, Heard-

ware functions such as circuit breakers, pushbuttons, connection of
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test equipient, etc.,, are accomplished by control statements (since no
project hardware, other than computer hardware is involved in the
simulation),

% The TSS operator has a 'Hands on' capability for total control of

the system during any point in simulator operation. Since the TSS
operates in 'pseudo-time', and controls this time, the operator may
'freeze' the system while he evaluates the data te determine a course
of action. If alternate courses of action appear appropriate, he may
save the status of the total system, After each alternate is tried,
the system may be restored to the saved point in preparation for the
next alternate,

The basic time increment is the millisecond. The on-line system
stops the clock while it accomplishes all the operations necessary at
that time, The time is then advanced to the next time in the timing
system 'delay line'. The next time may be a VIL element, a delayed
response, an automatic stimulus, or the expiration of the time delay j
specified by a wait command,

On-line error and special messages provide the operator with infor-
mation on the functioning of the TSS, the operator/software interface,
and interaction of the -rarious logic terminals. They consist of eight
characters, and are displayed in the first field of the CRT data lines,
and the fifth field of the line printer display,

Simulator output is in the form of line printer tabulation and
real-time cathode ray tube display. The level of detail to be displayed
may be controlled by the operator. Several mechanisms exist to specify
critical functions to be ‘high-lighted' on both the line printer and
CRT, All output is in engineering terms and all changes are in the
form of a measurement or terminal number with a 40 character, English

language descriptor,

QUALITATIVE RESULTS: The data that drives the TSS is compiled using a simu-
lation language so simple in structure and use that it is hardly recog-
nizable as a new language, The simulation statements become an integral
part of the master file used to support translation of automated test

sequences and computer testing and data monitoring and display,
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Three major characteristics of the TSS distinguish it from other

forms of computer modeling techniques. These are its commonality with
the system being simulated, the universality of its capability to sup-
port the parent project and the ability toc operate on incomplete data.

An important bencfit is derived from using the TSS to debug Viking
test sequences in that some sequence errors are detected that do not
show up as errors when the sequence is run against actual hardware.
Some of these errors may result in overstressing mission hardware in a
manner that is not visible, even during post test data processing.

As the mission thardware and software is exercised in its various
configurations and mode$, the adequacy of the design is established.
The TSS does not elminate the requirement fovr integrated hardwarc/
software validation, but it can provide early visibility and can de-
tect some types of design inadequacy.

The commonality of man-maciiine interface between TSS operation,
and operation with the real systvm, makes the TSS an effective training
tool. Training may be accomplished concurrent with sequence debug, with
no use of, or risk to mission hardware. Selected failures can be simu-
lated to provide a realistic certification environment.

As the data file is loaded into mass memory, the TSS software con-
structs a 'model' using whatever data is available from the filec, Sev-
eral pre~run and 'on-line' techniques exist to bridge the gaps in the
logic until complete data is available. The significant point is that
the TSS may be used very early in any new project.

The Test System Simulator does not replace intelligence sequence
design. There s no way for it to determine what tests or commands
should have been runor put in the sequence without unnecessarily com-
plicating the logic.

Viking testing both at KSC and in Denver's system test bed per-
mitted jumping from test block to test block in different sequences.
The basic TSS did not catch the synergistic effects resulting from this
type of operation. However, sufficient experience had been accumulated

by then so that little risk existed.
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QUANTITATIVE IMPACT: The cost to develop the TSS was considerably reduced

by tsaking advantage of existing STE software. That portion unique to

the TSS was developed in 9 manmonths. To develop all of the software

from scratch would probably have required a one to two man year level
of effort,

Fourtven manmonths were consumed in generatin; inputs. cuuning

sequences and reviewing outputs. Computer resources required up to

30 minutes set up time per sequence, processing 30 to 100 sequence lines

per minute. Approximately 5 percent of the 974,144 Viking test sequence
lines were processed by the simulator.




TECHNIQUE

FLIGHT SYSTEMS TEST AND CHECKOUT PROGRAM (STACOP)

SUMMARY: The Viking Lander hardware was configured such that the only feasi-

ble communication and control paths to on-board subsystems and science
experiments were through the Flight Computer and Telemetry Systems them-
selves. A special computer program (STACOP) was written for the orboard
comprter to facilitate the extensive checkout operations required for

system integration, test, and prelaunch operations.

APPLICATION CONSIDERATIONS: Since the on-board equipment was largely con-

trolled by the on-board computer, there was no need to complicate in-
terfaces by having separate STE connections with all devices and sub-
systems. Several operational pathc existed to the flight computer
(GCSC) from which the desired sequancing and control could be accom-
plished., Capabilities provided via STACOP included: simple one-by-one
command thruput to =z specified device, and return of status words;
stored list of commands to be issued to specified devices at specified
time intervals; accommodation of individual computer/device interaction
for selected subsystems; management of several subsystem interactions
where thruput/response activities could not provide timely and coordina-
ted combined testing operations. The first three general capabilities
were originally implemented, The fourth was added later in the develop-

ment as more complex system testing requirements were identified.

RECOMMENDATION: STACOP provided the needed mechanism to perform required

testing via the on-board computer. It was based upon the existing GCSC
operating program services so that relatively little new code was needed.
Careful consideration must be given to possible timing and interaction
requirements as part of complete system checkout operations. Delays
associated with uplink commanding, STACOP interpretation, on-board com-
manding telemetry return, and STE checking are too cumbersome to accom-

modate realistic interaction of several on-board subsystems throughout

system level exercises.,

209

P

Y

Pk

L O ——




HISTORY: The STE was developed to test the Viking Lander hardware component

subsystems. Since the Guidance, Control and Sequencing Computer (GCSC)
could access and monitor these subsystems directly via I/0, interrupt
and discrete registcrs, it was natural to consider developing a general
purpose test program that could execute in the GCSC under control of

the STE, In that way the STE could exercise sequences that would test

the hardware interfaces between the GCSC and the Lander subsystems, The
Viking Systems Test and Checkout Program (STACOP) was defined to meet
this requirement.

It was envisioned that STACOP and Flight software could be com-
pletely checked out and verified using the Standard 1C-7000 GCSC emula-
tor and that no significant problems would be encountered when the soft-
ware was loaded into the actual Lander GCSC. This proved to be overly
optimistic, since the very first time that a GCSC load was attempted
via the STE, the attempt failed and the load was not realized. GCSC
test support equipment (TSE) was made available on a temporary basis to
resolve this problem. The permanent solution was to develop a Computer
Control and Display Unit (CCDU), of which three were produced.

The CCDU was connected directly to the Lander GCSC by means of
cables routed through the bottom of the Lander equipment bay. The CCDU
was used to monitor the STACOP program during tests thsat the lander
bottom plate was not required to be installed. During tests in which
the plate was installed, GCSC visibility was reduced to merely a power
on/power off prediction. A GCSC memory readout function was added to
STACOP to provide greater trouble shooting capability when the CCDU was
not available,

STACOP was used during Lander integration, subsystem verification,
and pre-launch checkout for two and on-half ycars prior to the Viking
launches, It was a general purpose test program in the sense that it
was not a canned sequence of pre-programmed events which drove the

Lander through a rigid series of operations.

DESCRIPTION: The System Test and Checkout Program (STACOP) was operated in
the Guidance, Control and Sequencing Computer (GCSC) in a Viking Lander
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Capsule configuration which included an interface with the System Test
Equipment (STE) Honeywell 632 computer. A modified version of the Mis-
sion Executive of the Viking Flight Program was employed to perform
input/output processing, scheduling and interrupt processing. The exe-
cutive acted as a resident Operating System for the GCSC with STACOP

being a collection of functions to be performed under direction of the

STE and using the services of the executive, §
The STACOP functions consisted of an initialization program, a con-
troller program, an external interiupt processor, a discrete input regi-
ster monitor, a telemetry pregram, a priority interrupt processor, a
command storage common routine, the Honeywell GCSC self-test program,
a command processor, an output subroutine, and a terminate STACOP com-
mon routine,
The STACOP functions were controlled by the STE via directives
transmitted to the GCSC through a STE/GCSC interface. The directives

contained information specific to individual functions and included

processing requests to schedule ur terminate stored sub-programs, input
é or output serial or guidance and control data, read or issue discretes, '
3 store data into memory, and downlink memory data, The STACOP program
could communicate with the STE by transmitting downlink messages via
the STE/GCSC interface.

bty

, ' The STACOP program was initialized following GCSC power-on., During

operations, STACOP would process priority interrupts, external inter-

VAR oA L)

rupts and status changes obtained by moritoring a discrete register.

These events would occur during the normal performance of the various

L R

Viking Lander hardware subsystems. In response to the STE Data Ready
external interrupt, STACOP would receive and process directives from
the STE. Thus the input parameters received by the STACOP program

were interrupts, discretes and uplink directives, The output parameters

of the STACOP program were commands and data issued to the VL hardware
subsystems and STE downlink messages.

The STACOP program and data consisted of 7724 GCSC memory words.
The program loader was 139 words. The executive, including the GCSC

self-test program, was 4522 words. No flight software other than that

mentioned herein operated in the GCSC when STACOP was run,
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QUALITATIVE RESULTS: STACOP provided a very flexible means of controlling
Lander operations, Test Sequences, written in the easy-to-use Viking
Test Language, were translated by STE into '"Directives® which were then
uplinked to STACOP for processing. Hundreds of test sequences were used
during Viking Lander development. Some tests were very simple and
focused upon only one lander component, while other tests were designed
to test many components simultaneously. An important advantage of this
philosophy of testing is the Engineer involved with the development of
a particular Lander component could also be intimately involved in the
testing of that component without having to be well versed in the area
of computers and software. Also, during Lander integration, testing
could proceed even though marny of the Lander components were not yet
installed,

STACOP served as a test-bed for Flight and Flight-like programs,
The STACOP program consisted of several actual Viking Flight Program
modules including the Executive Program with its Interrupt Processor,
Input/Output Processor and Task Scheduler, the GCSC Self-Test (Diagnos-
tic) Program, and the Telemetry Program., Other programs within STACOP
while not being actual Flight Program modules, were written following
the same programming philosophies, techniques, limitations, and con-
straints as those used to develop the Flight Program. In this way,
many thousands of hours of execution time had already been logged by
the time the Viking Flight Program was first loaded into a real GCSC,

It should be emphasized that visibility into a system central
computer, like the GCSC, provides much more than just a programmer tool
to monitor software performance. It carn also provide visibility into
the performance of other components apd even the entire systea under
actual operating conditions, If the CCDU would have been /vailable
during all Viking Lander testing, some software problems, hardware pro-
blems and other problems which, with limited visibility appeared to be
software or computer problems, could have been ideutified and corrected

sooner, resulting in less down time and less risk of equipment damage.
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QUANTITATIVE IMPACT: The original STACOP program was developed with a one
functions were available from

man year effort, largely because many‘
Thereafter, an additional man ycar development effort

Fiight code.
was required to handle new requirements and correct errors.
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TECHNIQUE

SCIENCE INSTRUMENT PERFORMANCE VERIFICATION

SUMMARY: The science instrument data recorded during the STE checkout and

verification testing of the Viking Lander subsystems were dumped to mag-
netic tape. This magnetic tape was then used as input to large scale
computer systems to provide realistic test data for the development of
the science instrument Mission Operational Software System analysis pro-
grams, which in turn provided verification of science Flight Article

subsystem instrument performance,

APPLICATION CONSIDERATIONS: During Post-test analysis the STE was required

to analyze and verify the performance of the Viking Lander science in-
strument subsystems, The Honeywell 632 Computer Set used by the STE
could not compile the FORTRAN science instrument analysis programs, In
addition, no realistic data were available to support the development
of the science instrument analysis programs., Therefore, the technique
of taking the raw data gathered by the STE to the science cognizant
engineers for analysis offered a cost effective means to resolve both

of these problems,

RECOMMENDATION: The technique greatly aided two areas of Viking software,

It helped the STE area by providing evaluation of the recorded science
instrument performance data, and it provided realistic, rather than
hand generated, test data to the Viking Flight Team science engineers,
The technique is applicable to any project developing both vehicle

checkout systems and operational support systems.
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HISTORY: No formal requirements were generated for the STE post-test soft-
ware subsystem during the early development phase., However, at that
time plans were formulated to compile the developmental versions of the
Mission Operational science analysis programs on the Honeywell H-632

computer system, Ir that way the programs could be used to analyze the

performance of the Viking Lander science instruments, }

No more consideration was given to this subject until late in the
STE software system development period when work finally began in earnest
to develop the post-test subsystem., At that time the X-ray fluorescence
science analysis program, ICAN, was converted to run on the Honeywell
computer. It was then discovered that the FORTRAN compiler available
on the Honeywell system, which was an unfinished, one-pass compiler
with 45 open hooks, was incapable of producing executable code. In
addition, no floating point hardware or software capabilities existed,

The options available to carry out the original plan were therefore

limited to developing a FORTRAN compiler that would work, or writing

a floating point software function and develop assembly language ver- '
sions of the science analysis programs.

The programmers that were developing the STE post-test software
subsystem suggested that a better approach would be to develop a capa-
bility to allow the science instrument performance data gathered in the
STE to be made available to the science analysis programs that were
operational on a CDC 6500 computer set., This met opposition from two
sources, The STE Software Chief opposed the concept, believing that
the STE would lose control over the process. The Viking Flight Team
Lander science team leader took the position that it was an additional
resource consuming task done purely to support the STE and of no value
to the scierce team, Resolution of the problem was further compounded
by the fact that two separate directorates were involved, and no sys-
tem integration team existed that could have forced a resolution.

The result was that the problem was resolved at the worker's level
behind management's back and without management approval. The science

cognizant engineers supplied the STE programmers with the necessary




requirements to develop the technique, and the STIE programmers did the
rest, Once it became a fait accompli, it was reluctantly accepted by
management. Eventually it became the approved method of validating

science instrument performance.

DESCRIPTION: The requirements to accomplish this technique were:

(1) to record on the STE system all science instrument data dur-

ing checkout tests;

(2) record this data on magnetic tape by instrument; and

(3) process the magnetic tape to produce data files in a format

acceptable to the various Viking Flight Team science programs.

The following discussion describes how each requirement was met.

The data recording requirement on the STE was specified in the STE
Software Requirements Document, and had been developed before the post-
test processing problem arose., However, telemetry data were recorded
in a serial manner as they occurred which resulted in all types of data
(e.g., science, engineering) being interspersed on the recording media.
The recording media was the Operational Log Tape (OLT) which was always
on-line during Lander System, The OLT could span over several reels
during a lengthy test,

Given that the data were recorded on the OLT, the problem was to
strip a desired data type from the tape and produce files containing
only one data type. The Viking STE Post-Test System had the capability
to strip data of a specific type from the OLT and place it in a disk
file, This satisfied the first requirement. After the data were in a
file on the disk a systems utility (DISKS) was used to write the data
on to magnetic tape. This satisfied the second requirement.

In order to process the magnetic tape written by DISKS some soft-
ware had to be developed for the large scale CDC 6500 computer. This
software had to be prugrammed to read the tape, recognize the data
type (e.g. seismometry, X-ray, etc.), and construct an input file that

the science analysis program could process.
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The file formatting software tnat wzs generated was a FORTRAN pro-

gram that incorporated available CDC system supplied library routines
to perform the bit manipulation. It worked out well and satisfied the

requirement,

QUALITATIVE RESULTS: The primary benefits derived from this technique were

as follows:

1. The verification of science instrument performance in the
STE environment was accomplished.

2. Realistic data were provided fo; the development of the science
analysis programs. Without using this technique, the Lander
science team would have had to hand generate test data,
greatly increasing the chances for error.

3. Programming time and effort were saved in trying to find a
method to process science data in the STE,

4, Coordination was established between the ground testing of the
flight articles and the Viking Flight Team science members,

The serendipitous fallouts realized by using the technique were
far more interasting and proved to be of valus to the science team,

The first of these fallouts was the discovery that some of the for-
mats for science program files were not as documented (e.g. time words,
ID bits, data start locations, block sizes, etc.).

Next it was discovered that the algorithms developed for the seis-
mometry analysis program were wrong., This was verified by the scientists
who had developed the algorithms, The impact of not discovering this
until integration would have been much more costly to correct,

Finally, when the uplink/downlink Viking Lander science sequence
tests were conducted, the science cognizant engineers were able to pro-
cess the downlink telemetry in Denver. Then when the same telemetry
data passed through the Mission Operational Software System and was pro-
cessed by the science analysis programs at JPL, they were able to make
direct comparisons of printouts to verify that the system was operating

correctly,
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QUANTITATIVE IMPACT: Because the technique was developed in a clandestine

manner, it cost very little to implement. No documentation or formal
testing were required, Implementation of the technique required four
man months and three hours of CDC computer time, These costs are very
economical, considering that the alternatives were to write a new
FORTRAN compiler or write all of the science analysis programs in assem-
bly language.

When the sequence tests were first run at JPL the science engineers
were able to immediately detect that the answers were wrong, which re-
duced the effort required to locate the error sources.

Finally, Viking experience was that programs that were tested with
hand-generated data typically failed when realistic data became avail-
able., This phenomena did not occur with the science analysis programs.
The net savings to the project by using this technique can therefore

be estimated at 5 to 10 man months.
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TECHNIQUE

NAME: VIKING TEST SEQUENCE GENERATION

SUMMARY: Viking Test Sequences written by te=st engineers were prepared using

Sl

two basic methods. They could be written on Viking Test Language (VTL)

coding forms, key punched on 80 column cards, and then input into the

o e

STE pre-test file management system by a card reader. The second method
was to generate them by use of the MARTIN-DIGITAT computer system and
TOPS programs, whici:i consisted of a CRI/Keyboard driven on-line batch
computer system that proviaed for file creation, editing and file dump

to tape,

APPLICATION CONSIDERATIONS: During later stages of the Viking program, the
second method of test sequence generation was used almost exclusively.
It was found that the keyboard/CRT editing capability provided for a 1
much greater flexibility for update, modification, and merge of sequence
elements, Sequence generation and modification time could be reduced
from the keypunched card method on the order of eight to one. 1In addi- ]
tion, the CRT/Keyboard driven computer system contained sub-programs
that were aids to sequence generation, Foremost of these were a diag-
nostic program that permitted a quick check of sequence element noun/

1 verb/adjective compatibility, sequence timing and test block numbering.
The program provided diagnostic messages to the sequeice designer for
correction iterations. Another sub-routine provided for test block
renumbering, The CRT/Keyboard driven capability was preferred by se-

quence designers from a human engineering point of view,
RECOMMENDATION: It is recommended that a computer file generation and edit-

ing system be provided for generating application programs (test se-

quences) for any system comparable in complexity to Viking.
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HISTORY: The use of the computer file editing system for sequence prepara-
tion evolved naturally from other usages, These usages were system
statusing and special purpose programs which could produce listings of

b Direct Communication System Uplink Commands and Surface Sampler Commands

and responses,

This technique was used in support of the Viking Test Language tech-

nique described elsewhere in this report. The detailed description ot

the test sequence language 18 presented there.

DESCRIPTION: The on-line SIGMA 5 file generation, editing and management
system is an established file management system available at MMC, Its
application to the Viking sequence or application program generation
task provided the following capabilities:

1. File Creation

2, Write Line Commands

3. Read Line Commands

4, Move and Delete Line Commands

5. Move and Keep Line Commands

6., Find Text Commands

7. Replace Text Commands

8. Merge Lines from one Sequence to Another
9. Copy a Sequence to a New File Number (Identification)
10, Test Block Renumbering

11. Quick Check Capability

12, Copy to Line Printer

13. Copy to Tape

QUALITATIVE RESULTS: The benefits derived from use of the computer file
generation and editing technique were signifirunt, Sequence design
could be accomplished eight times faster than by using the card genera-
tion technique. Updates and modifications could be made quickly.
Finally, it saved translation time by providing a diagnoustic capability

for detecting errors,
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QUANTITATIVE IMPACT: Approximately 95 pervent of the 974144 sequence lines,

plus 90 percent of the modifications, were generated using the MMC !

Sigma 5 computer system.




TECHNIQUE

NAME: SOFTWARE CHANGE REQUEST/IMPACT SUMMARY

SUMMARY: A Software Change Request (SCR) was prepared and processed to
secure authorization to the method of implementing changes to released
software. The SCR also provided for control, coordination, and sched-
uling of the proposed software changes into the Viking Change Summary/
Viking Integration Change (VCS/VIC) system. An SCR impact summary was
used to collect pertinent impact information to support evaluation of

proposed changes.

APPLICATION CONSIDERATION3: Software change request procedures were well
established at MMC and JPL prior to the Viking Project. Only minor
modifications were needed to adapt them to Viking's needs. The flight
computer was resource limited relative to the amount of potential soft-
ware involved, Impact summaries were defined to estimate memory sizing -

and computational timing impacts that would result from software changes.

RECOMMENDATION: It is well known that hardware wears out with time., It is
not too widely known that software wears out with change. Given suffi-
cient change traffic a software system will eventueily become ineffi-
cient and error prone. Viking Lander and Orbiter software adapted from
existing programs was in general less efficient than Viking software
developed from scratch. Any software change process should attempt to
protect software efficiency and flexibility when authorizing new re-
quirements to b2 implemented. A useful technique for accomplishing
this is to review and approve the method of implementation separate

from the requirements request.
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HISTORY: The go-ahead to implement requirements changes to MMC developed
hardware or software was authorized by the approval of a Viking Change
Summary (VCS). In the event that the change affected the Viking Pro-
ject Office, Viking Orbiter, Viking Mission Control and Computing
Center, Tracking Data System and/or the Deep Space Network, a Viking
Integration Change (VIC) also had to be approved by all affected

parties.

The VCS/VIC forms were color coded in green, blue, pink and white.

The green form was used to coordinate the change, the blue to obtain
Project approval for out-of-scope changes, the pink to allocate addi-
tional costs, and the white to show final approval. A Project Control
Board (PCB) was established to control and monitor all VCS/VIC traffic,
assuring that all potentially impacted parties were aware of the pro-

posed requirements changes.

[ mhria ™

Software Change Request (SCR) forms were used to respond to the
VCS/VIC system in the same sense that the design process responds to
the requirements process. Impact summaries accompanied the SCRs to

assess delta changes to core memory, drum, and disk space, computa-

%

tional timing, schedules and manpower.

DESCRIPTION: The method of responding to change requests originating through
the VCS/VIC system differed among the Systems Engineering Directorate,
the Mission Operations and Design Directorate, and Mission Operations
at JPL, However, each followed the same basic philosnphy that the
method of implementation should be reviewed and approved separately
from the requirements request.

The Systems Engineering Directorate documented the change procedure
for Flight and STE software in the Viking Lander Software Plan., It in-
cluded both a SCR form (Figure 1) and an Impact Summary form (Figure 2).

The primary reason for including the Impact Summary form was to maine-

tain visibility and control over the growth of Flight soft:are.

Any member of the Viking Flight Team could originate a Flight or
STE hardware/software requirements change by preparing a VCS and taking

it tc the Project Control Board. Typically, software changes were

nceded to support hardware changes. If the PCB felt that the change
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request merited consideration, the VCS was turned green and sent to

the appropriate hardware and software groups for further assessment.

The software group would then prepare a SCR to describe how the change
could be implemented and an Impact Summary showing estimated delta
impacts to computer resources. The change package was then taken to
the Software Change Board (SCB) for review and approval/disapproval.
The SCB had been created by the software plan expressly for this pur-
pose. It was particularly reluctant to approve changes that would
significantly reduce Flight computer memory or computational timing
margins, When such cases arose, the Systems Engineering director or
his appointee would attend the SCB review and make the final decision.

Following the SCB action, the VCS change package was reboarded
with the PCB for close out action. If the SCB had disapproved the
change, the VCS was cancelled., 1If the SCB had approved an in-scope
no cost change, the VCS was turned white permitting the change to be
implemented. If the SCB had approved an out-of-scope or cost impact
change the PCB forwarded the change package to the Viking Project Office
for approval/disapproval.

The MO and D directorate followed the change procedure specified
in the Flight Operations Software Plan, which included an SCR from
similar to that shown in Figure 1, but did not include an impact sum-
mary form. Because MO and D was represented on the multi-agency
Flight Operations Software Subworking Group, the PCB required that MO
and D coordinate all VCS/VIC traffic within Flight Operations before
boarding changes. Therefore, MO and D appointed two change board rep-
resentatives (CBR) to the PCB to review each VIC/VCS for possible im-
pacts originating outside of MO and D, VIC/VCSs which were determined
to have a possible fmpact upon MO and D were delivered to appropriate
technical leads within MO and D for further action. Technical leads
were appointed for software changes, simulation system changes, sci-
ence instrument changes, test and training changes, DSN, VMCCC and
VL changes, Mission design changes, Plight path analysis changes,
Flight hardware/software changes, and Viking Integration Changes.
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The technical leads coordinated the changes with MO and D person-
nel, obtained SCRs, and prepared functional task descriptions (FIDs)
which summarized cost and schedule impacts for the MO and D director
to approve/disapprove. All significant ¢ ges were discussed at MO
and D Technical Staff Meetings, which were held weekly. The CDRs then
reported the MO and D director's decision to the PCB.

Changes originating within MO and D were coordinated by MO and D
with all affected agencies and approved by the MO and D director prior
to boarding a VCS and VIC before the PCB.

When all Viking Flight Team members had permanently located at
JPL, the process for changing Mission Operations Software was modified.
The originator of a requi.ements change filled out a VIC/VCS and took
it to the Integrating Contractor Software Systems Engineer (ICSSE)
for coordination. The ICSSE distributed the VIC/VCS to the appropri-
ate SSEs for further action. The SSEs obtained SCRs from the appro-
priate VFT technical personnel and returned the change package to the
ICSSE, who then scheduled a meeting between the Mission Directors and
the technical personnel involved. At that meeting the Mission Direc-
tors either approved or disapproved the change, after which the VCS/
VIC was turned white or cancelled. Since VPO was represented by the
Mission Directors, the blue and pink portions of the VIC/VCS process

were no longer required,

QUALITATIVE RESULTS: The creation of the Systems Engineering Software Con-

trol Board to monitor and control Flight Computer memory sizing and
computational timing margins was instrumental in preventing the Flight
computer from beconing overloaded. The SCB could not have accomplished
this task without the visibility available through the Software Change
Request and Impact Summary forms. There were cases in which multiple
SCR/Impact Summaries were submitted to the SCB to judge the impact of
full and partial compliance to the requirements change request.

By contrast, the process used by Flight Operations, whether at
MMC or at JPL, rarely allowed management to understand the impact

changes would have on computer loading or program performance. Since
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& the programmers were aware of the constraints on program size and run
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times, they could merely create a new load module to perform a new

<A o

task, thereby hiding the impact to the system. Flight Operations

managers attempted to control the growth of the system by refusing to

authorize any changes other than "make play". Therefore, the only

changes that came before them were marked "make play", after which

W

they were invariably approved. Fortunately, many of the changes were

designed to improve program performance and reduce computer loading

i
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requirements.
That is not to say the Flight Operations change process did not

work, In fact, it did, The overriding reason for this was that the

3 as built software system was extremely large compared to the change

traffic that impacted it. If you add a cup of water to a half filled
5 quart bottle, you will notice the change immediately. If you add a
% gallon of water to a swimming pool, you won't see the change. 1In

; that sense it is unlikely that impact summaries would have served a

useful purpose to Flight Operations management,
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QUANTITATIVE IMPACT: Typically, a Software Change Request and an Impact
Summary could be filled out in an hour or two. Some of the larger
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changes may have taken from a day to a week to work out. However,

DOV ORA

this should be viewed as a zero cost impact, since Viking did not have

3 to add any unplanned personnel to handle the task. Furthermore, most

of the work would have had to be done eventually since the vast ma-
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jority of changes were necessary and were approved.
The time consumed in processing a change fluctuated considerably.

Dtk

No accurate manpower estimate can be made for the average change.

Most VIC/VCS traffic was on the books for one to two months before

A i e e

- being cancelled or turning white. Some went through the system in a

3
1
1
7

day, One VIC, which attempted to standardize Viking Orbiter and
Lander file headers, took a year to finally resolve (and then no sin-
gle standard was reached), Keeping the above in mind, the manpower

required to coordinate a VIC/VCS, respond with an SCR/Impact Summary,

review and approve the response, and close out the VIC/VCS is esti- E

mated at one to two weeks,
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TECHNIQUE
NAME: VIKING SOFTWARE STANDARDS

SUMMARY: Documentation and flow chart standards were specified for all

No fur-
ther standards were imposed on Flight or STE software other than those

adopted by the software groups themselves.

MMC Viking software very early in the life of the project.

Mission Operations issued
a Viking Software Guide that listed standards, procedures, guidelines

and constraints to be followed. Responsibility for adhering to the
guide rested in most cases with the individual programmers,

APPLICATION CONSIDERATIONS: Management considered that controlled, uni-

form documentation was the key element needed to establish vicibility

and understanding of the development process. American National

Standard flowchart symbols were adopted to provide project wide con-

sistency. The multi-agency development of the operational software

system required nomenclature, naming, labeling and coding standards

be adopted to toordinate the effort. In addition, the project was

required to adhere to computer usage guidelines and constraints that
had been established at JPL,

RECOMMENDATION: Standards adopted at a management visibility level can be

effective and are enforceable. Standards set below that level are of

little value. On Viking, programmers tended to ignore guidelines and

non-enforceable standards. Documentation standards make reviews

easier to accomplish and lead to greuter thoroughness. Labeling and

naming standards are a convenient tool to avoid confusion. Coding

standards are of dubious value and can have negative effects when
computer run time and program size are required t. be significantly
constrained. This remark should not be interpreted relative to Struc-

tured Programming standards, which were not employed on Viking.
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HISTORY: Early in 1971 MMC formed a Viking Software Integration Group

(VSIG) for the purpose of monitoring the development of Flight, STE
and Mission Operations softwarc. The first task assigned to the VSIG
was to define and document a uniform set of standards. In October

of that year the group issued "Standards for Viking Software Develop-
ment'" which set documentation, flow chart, identification and handling
standards for all MMC developed software.

Shortly thereafter a Mission Operations and Design Directorate
was formed separate from the Systems Engineering Directorate, at
which point the VSIG was abolished. In May 1972 the "Flight Operations
Software Plan" was issued that set standards for Mission Operations
software. The plan incorporated the earlier documentation standards,
added the Software Functional Description document to the list, ime
posed labeling standards, and specified the requirement that a Viking
Software Guide be issued to establish standards, procedures, guide-
lines and constraints,

A Lander Software Integration Group (LSIG) was formed i1 the
Systems Engineering directorate. The LSIG issued a Viking Lander
Software Plan in September 1972 that incorporated only the original
documentation standards. No other standards, guidelines or con-
straints were imposed on Flight or STE software by the LSIG, which
slowly was depleted by the attrition and transfer of its members. It
would have been too late by then to impose further standards on the
STE, since the system was about to go on-line.

In January 1973 the Viking Software Guide was issued to incor-
porate administrative, integrated, lander, orbiter, and VMCCC mewmos,
The document was distributed to every programmer and engineer responsi-

ble for an operational sof tware program.

DESCRIPTION: Standards for Viking Software Development specified the

documentation responsibilities shown in Table 1.
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Functional Requirements Document
Software Requirements Document
General Design Document

Software Data Base Document
Program Description Document
Source Listing

Users Guide

Users Acceptance Test Plan
DSN/Project Compatibility Test Plan
Development Test Plan

Validation Plan

Programming Handbook

Software Design Handbook

Key:

o)
o

L -2 - B - I e B - s - B - B -

STE

Lan T o B - B o

G&C
v L E
I I
I
P 1
I I
P I I
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v: Vehicle programs written in GCSC assembly language
L: Lab support IC 7000 programs written in IOP assembly

language

E: Micro-language programming of the IC 7000 CPU and IOP

P - Project Controlled Document

Table 1

I - Informal

The document specified that it would serve as the central require-

ment collection point for software standards until the requirements

were incorporated into documents that cover procedures,

documents were defined as follows:

Briefly, the

1. The Functional Requirements Document functionally describes

a program or system of programs.

2. The Software Requirements Document specifies the software

requirements corresponding to an FRD.

3. The General Design Document responds to the SRD and out~

lines how the program or systems of programs will be

developed,
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The Software Data Base Document formally documents the de-
tailed data base for all programs.,
The Program Description Document describes the final program.

6., The User's Guide describes how the program can be used.

7. The User's Acceptance Test Plan describes the procedures that
will be used for module testing on JPL computers of ground
based Lander Flight Operations programs.

8. The DSN/Project Compatibility Test Plan describes the method
of verifying the integration of ground based Lander and Orbi-
ter Flight Operations software in the internal JPL Computer
Systems,

9. The Development Test Plan describes how testing will be con-
ducted at each stage of program development.

10, The Validation plan describes the method followed to validate
to customer satisfaction and MMC/QC that MMC developed soft-
ware/hardware systems meet all specified requirements,

11. The Programming Handbook describes the programming conven-
tions imposed by the specific computer system or systems for
which software is to be developed.

12, The Software Design Handbook records do's and don'ts for good
programming practices discovered during program development,

The organization of each of the first six documents listed above

was described on a paragraph by paragraph basis. The basic outline
for these documents was required to be followed. Subsectioning was
permitted to the degree that it was consistent with the needs for docu-

menting the information., A single outline was shown for all test docu-

.ments. The purpose of showing the outlines was to provide uniformity

and completeness of information content, A consistent outline was
generated for both requirements and design documents, The SRD outline
was as follows:

Introduction

1.1 Scope

1.2 Problem Statement

Applicable Documents
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3.

4.

5.
6.
10.

Requirements
3.1 System
3.1.1 Processing
3.1.2 Input/Output
3.1.3 Interfaces
3.1.4 Data Base
3.1.5 Limitations and Constraints
3.1.6 Diagnostics
3.2 Subprograms
3.2,N PFunction "N"
3.2,N.1 Processing
3.2.N.2 Input/Output
3.2,N.3 Interfaces
Hardware Environment
4.1 Externsl Interfaces
4.2 Hardware
4.3 Man/Machine Interfaces
Verification
Miscellaneous
Appendix

Sections 3,1.4, 3,1.5, 3.1,6 and 10 were not applicable to the
FRD, Section 3 was titled '"Description” for design documents, which
also included sections 3.1.7, Storage Allocation, and 3.1.8, Flow
Charts. In addition, each subprogram described under section 3.2 of
the PDD included the eight subsections shown under section 3.1.

A paragraph was included to describe the information required in
each subsection. The documentation standards stated that a cognizant
programmer would support the cognizant engineering in developing the
SRD, primarily because the document would significantly influence
program design.

The Programming Handbooks and Software Design Handbooks never
materialized, although the intent of the former was adopted by Mis-
sion Operations in the Viking Software Guide.
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Flow chart standards specified in the document were based on
those published by the American National Standards Institute, The
coding guidelines listed were relatively brief and generally ignored.
The software handling standards merely addressed maintaining duplica-
tion in master file storage, the intent of which was followed by the
Viking Program.

The Flight Operations Software Plan added the Software Function-
al Description document and specified its organization (refer to the
Integrated Software Functional Design technique). It also specified
the numbering system that would be used to identify and control all
MMC and JPL documents,

The Viking Software Guide contained standards for Viking soft-
ware symbology notation, use of non-minimal language, Viking l.ander
terminology, Viking Orbiter terminology and Viking acronvms. The
symbology notation standardized the first two characters of every
program name, subroutine and data table name that would be delivered
to the Mission Control and Computing Facility (i.e. - IBM 360/75 com-
puter system) for incorporation on the Mission Build. The non-mini-
mal language standard requiied programs that operated on two or more
different computer systems use comment cards to show the exact coding
differences required by each system.

Guidelines included descriptions of minimal languages, language
comparison charts and programming style. Procedures addressed pro-
gram conversion, documentation production, test activities and pro-
gram delivery,

File naming standards were incorporated in the Software Data
Base Document, Every permanent file used by a Viking program was as-
signed a uwnique five alpha character designator., MMC expanded this
to a twelve character string that included spacecraft, mission, date

and version designators. No file naming standard was ever adopted
for Viking Orbiter programs.

The Mission Control and Computing Center (MCCC) documented guide-

lines and constraint standards required to be followed by all projects
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using their facilities. These standards imposed limits on core allo-
cation, contiguous core allocation, CPU time, amount of print/plot
output, number of tape drives, large-capacity storage, direct access

storage, and sizes of program card decks.

QUALITATIVE RESULTS: The documentation standards were basically a sound

idea. They simplified the task of the author to organize and present
material. They undoubtedly led to more complete documentation than
otherwise would have been realized, The process of reviewing the
documents was also simplified.

There were differences of opinion over the value of the FRD.

The Mission Planning and Flight Path Analysis groups liked the idea,
carried it out, and felt it was a worthwhile exercise. The remaining
groups considered it an unnecessary additional step and developed
their SRDs directly. The principal difference between the two ap-
proaches was that one provided for an intermediate requirements re-
view and the other did not.

The level of detail indicated for the SRD was needed by Viking.
The principal disadvantage was that the organization of the require-
ments implied some design criteria. This had a negative effect when
cognizant programmers were not available to support the document
generation,

The use of external file naming convention standards made it very
easy to checkpoint and recall data recorded by a particular instrument
on a particular Martian Sol (day). The standard also permitted an
efficient automated file management system to be developed (refer to
technique on-line data file management system).

MMC management did not place proper emphasis on the MCCF sym-
bology notation standard and the lander programmers did not under-
stand it. This could have had a very serious cost and schedule im-
pact on lander software had it not been for JPL's willingness to help
resolve the problem., The standard required that all subroutine names
begin with the characters LM and all data table names begin with the
characters LZ, The reason for the standard was to prevent MMC de-

veloped software from conflicting {n name with any other software on
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the Mission Build., By not following the standard, MFC was faced

with the task of changing literally thousands of call statements to
subroutines, However, JPL came to their rescue by crcating a private
Viking subroutine library (VIKILIB), which made it possible to waive
the standard. This example stresses the importénce for a developing
agency to know and understand any enforceable standards set by a user
agency.

The use of flow chart standards simplifies the design review
process., Consistency is more important than the particular selection
of symbols. The Viking Lander Flizht sof tware group developed their
own standards in this area, rather than adopting the ANSI standards
used by the rest of the project.

The setting of a standard for the use of non-mirimal language
effectively reduced the minimal language standard to a guideline.
Although it was not enforceable (no standarc set below management's
visibility level is enforceable) it was followed because it eased the

conversion task of the programmer.

QUANTITATIVE IMPACT: T»e documentation standards cost four to five man

months to develop. The Viking Software Guide cost an additional four
to five man months, The ANSI flow chart and MCCC guidelines and con-
straints standards were available at no additional project cost,

The automated on-line data file management system and the inter-
computer transfer function were developed at less cost because file
naming conventions were standardized. The estimated savings in these
areas is one man year, Even then each individual file would have re-

quired some form of standardization,
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TECHNIQUE

NAME: FLIGHT OPERATIONS SOFIWARE PLAN

SUMMARY: The Flight Operations Software Plan was the controlling document

for Viking operational software development. It established manage-~
ment roles and responsibilities, the software design and development
process, and the methods by which management would control and imple-

ment the software system,

APPLICATION CONSIDERATIONS: Development of an integrated software system

requires that compatible standards, procedures and processes be es-
tablished to minimize interface problems, ambiguous terminology and
communcations problems., This was particularly essential to Viking,
since several agencies and contractors were responsible for various
poctions of the software system. A unified plan agreed upon by all
parties that clearly and consistently outlined the method by which the
software system would be developed and implemented was considered man-
datory by the Viking Project. No consideration was given to permit-
ting each operational software developer to independently manage their
development processes.

RECOMMENDATION: The first step taken in developing a software system

should be to write a software plan. The plan should define manage-
ment roles and responsibilities, specify documentation requirements,
establish milestones by which progress can be measured, define con-
figuration management control, and describe the development process to
be followed from initial design through system integration., Once a
plan has been formalized and agreed upon, management should take ap-
propriate steps to assure that it will be followed. If this is done,

schedules and costs can effectively be controlled.
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HISTORY: The Viking 75 Project Flight Operations Plan was prepared under

Contract Number NAS1-9000 by the Martin Marietta Corporation, Denver
Division., The Integration Contractor Software System Engineer (ICSSE)
was responsible for its generation and publication.

The plan was written during the latter part of 1971 and early 1972,
It was concurred upon by Flight Operations managers at the Viking Pro-
ject Office, the Jet Propulsion Laboratory and Martin Marietta Corpora-
tion. ©On 15 May 1972 it was approved by the Viking Project Manager, at
which time it became the controlling document for the development of
the Viking Operational Software System.

Eight minor revisions were made to the plan using the Viking Inte-
gration Change Control system. The final revision was incorporated on
19 June 1974,

Copies of the plan were distributed to all Flight Team members,

programmers and engineers.

DESCRIPTION: The plan consisted of five sections and three appendicies,

organized as follows:
1,0 Introduction
1.1 Purpose
1.2 Scope
1.3 General
1.4 Acronyms and Abbreviations
1.5 Definitions of Terms
2.0 Applicable Documents
2.1 General
2.2 Reference Documents
3.0 Management of the Flight Operations Software System
3.1 Introduction
3.2 Software Sub-Group
3.3 Integration Contractor

3.4 Design Responsibility
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4,0 Software Design and Development Process

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

Intrxoduction

Software Functional Description and Integrated Software Func-
tional Design

Functional Requirements Document

Sof tware Requirements Document

Software Data Base Development and Definition

General Design Document, Schedule and Work Plan Development

Program Development, Testing and Release

Test Plan Development

Testing

4.10 Project Software Delivery
4.11 Software Maintenance and Support
5.0 Management Control Method

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

General

Milestones

Documentation

Requirements Definition
Design Monitoring

Review

Approval of Detail Design
Software Control Board
Software Handling and Labeling

5.10 Computer Program End Product

S5.11 Software Development Progress Monitoring

5.12 Programming Guidelines and Conventions
5.13 FOS S/ Interfaces with On-Board S/W

Appendicies
A Documentation
B Software Change Control - Flight Operations

c.

Program Labeling

The plan established roles and responsibilities for the ICSSE,
MMC software System Engineer (VLSSE), VO Software System Engineer

(VOSSE) , Mission Computer Control Center Data System Project Engineer
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(DSPE), Cognizant Engineers (CE), Cognizant Programmers (CP), and

: Flight Team members who were users of a particular computer program.
The primary responsibilities of the SSEs were to plan, coordinate and

monitor che development of the Operational S.itware System. Cognizant

Engi'.eers were made responsible for program requirements and testing,

and their associated documentation. Cognizant Programmers were madé

responsible for program design and development and their associated

documentation, Flight Team members were made responsible to support :
and review development of program and test requirements. E

Documentation recuirements were specified relative to organization,
responsibility, review, concurrence, approval and change control. This
included program documents (functional, requirements, description, test
and user), the Integrated Software Functional Design (ISFD), the Soft-
ware Data Base Document (SDBD), and the Lander/Orbiter Software Test
Plan.

The principal management control methods employed were: establish- ;
ment of milestones to support schedules; preparation of documentation, §
monitoring of design response to requirements; formal reviews of docu-
mentation, software end products, and test results; approval of de-
tailed design; change management; software handling and labeling; re-
lease of software end products; software development progress monitor- )
ing; and establishment of programming guidelines and conventions.

The software development progress monitoring required the SSEs
to maintain and publish detailed schedules and to hold weekly telecons
to discuss progress and resolve problems. The CEs were required to
maintain Schedule and Work Plans by which the SSEs could measure pro-
gress, Each SSE was to establish a Software Design Team (SDT) composed
of CPs and CEs to review schedules, identify interfaces and review
design concepts., The CPs were required to review test results with the
%SEs at critical points during program development. Computer usage
reports were required to be sent weekly to the SSEs, The SDT was re-~
quired to review General Design ocuments, working flow charts, SDBD

inputs, test reports, Program Description Documents and User Guides.
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The SSEs were required to review program listings on an intermittent
basis to verify conformance to guidelines and conventions, complete-
ness of the program, and, in critical areas, the coding logic. Finally,
the SSEs were required to monitor corrective plans aud actions for pro-

gram errors uncovered after program delivery.

QUALITATIVE RESULTS: The strongest feature of the plan was that it speci-

fied the means by which it could be made to work. That was by creating
roles and responsibilities for SSEs which made them responsible for

the development process. The overall plan was successful because it
led to an orderly development of the software system.

The principal reasons that programs had to be modified and rede-
livered were due to new requirements, poor designs, program to program
interface errors, and errors detected due to the lack of good test data,
How the plan treated each of these subjects, and how it might have been
improved to lessen the impact of these redeliveries will be discussed
in the following paragraphs.

Requirements were written by a cognizant engineer (CE) and documen-
ted in a Software Requirements Document (SRD). The CE was supported by
a cognizant programmer (CP) concerning programming techniques, feasi-
bility and I/0 formats, and by an SSE concerning interface requirements.
The SRD was reviewed by appropriate Flight Team Members, technical pecr-
sonnel, the SSE, the Data System Project Engineer, and by a VPO techni-
cal monitor. A formal review was then conducted by the SSE to assure
communication and resolution of all comments, after which each of the
reviewers concurred with, and the responsible director approved, the
SRD, The definition of concurrence was explicitly stated relative to
each of the reviewers, covering such items as Qatisfaction of functional
requirements, consistency with system design, technical correctness,
and conceptual correctness. The plan should have also required the
reviewers to estimate SRD completeness in terms of potential new require-
ments, This would have had the effect of forewarning those programmers
who were d«veloping operational software in parallel and dependent on

Flight hardware or software that significant change traffic was potential,
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As such, during the design phase, those programmers would have tended
to model requirements as data rather than as part of the program struc-
ture, thereby giving up (in some cases) efficiency for flexibility.

Program des.gns were developed by a CP and documented in a General

Design Document which was reviewed at a meeting attended by the CE, CP,
SSE and technical personnel. The deficiency here is that the plan did
not take into account the CPs experience, the fact that the CE and
technical personnel usually will not understand the ramifications of
the design relative to the computer system, nor the fact that the SSE
had too many responsibilities to be able to give adequate thought to
design ramifications. The plaq should have specified a criteria for
the selection of CPs, which it did not, It also might have required
that one or two outside progrmmmers attend the review to question the
CP as to how the design was to be implemented, and comment on what they
thought of the approach.

The plan identified the SDBD to document all interfaces and re-
quired that each interface be tested by Software Integration. The word-
ing here was perfectly adequate. However, the milestones section of
the plan should have required interface testing to be conducted as an
extension of Users Acceptance Testing, which would have been prior to
placing the software under strict change control. This would have
forced a top-down approach to integration, wherein programs would be
delivered in subsystems, rather than by the "as available/as needed"
approach actually used by integration, This would not have reduced the
number of errors detected, but would have significantly reduced their
impact on redeliveries.

Finally, the plan did not address the subject of test data, other
than to mention a CE or a CP was responsible for its generation. The
plan should have specified requirements for the development, review,
documentation and approval of test data, stressing the completeness of

the data to assure thorough program testing.

242

i i o i, R

'E

E




QUANTITATIVE IMPACT: The software plan was negotiated and written at a
cost of six man months. Beyond that it is difficult to describe it in
quantitative terms, other than to state that it contained 99 pages.
The true impact of the plan was that it established the basis for suc-
cessfully developing a million plus source card software system on
schedule. The impact of techniques specified or implied by the plan
are described separately in this report. They include HOL utilization,
different development sites, the Integrated Software Functional Design,
Cognizatn Engineer/Cognizant Programmer, SCR/Impact summary, software
standards, Management Visibility, Flight Operations Software Subgroup,

and the Software Data Base Document.
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TECHNIQUE

SOFTWARE DEVELOPMENT MANAGEMENT VISIBILITY

SUMMARY: progress was monitored by maintaining five levels of schedules

based on a series of significant milestones. Program and system level
requirements, design, interface and test documents were reviewed and
approved, Software change traffic was closely monitored, widely re-
viewed and well documented. Weekly meetings were held to air problems.
Open items lists were maintained. Software Systems Engineers were
established to monitor the implementation of the software design, de-
velopment and testing and to assure that all interfaces, requirements

and schedules were correctly and completely satisfiec,

APPLICATION CONSIDERATIONS: Software systems are frequently delivered late,

not documented accurately, contain unidentified risks, overrun costs,
are unreliable, and fail to meet mission objectives. This was of par-
ticular concern to the Viking Project, since the launch windows were
narrow and planetary operations had to be completed during a four month
period between Mars Orbit Insertion and the conjunction of Mars with
the sun. Therefore, not only was a well defined software development
cycle established, but a great deal of emphasis was placed in providing
management with sufficient visibility to assure that the plan was

carried out,

RECOMMENDATION: The need for management visibility into any development

process is obviously necessary if costs and schedules are to be con-
trolled., The use of documentation, milestones, reviews, presentations,
meetings and change control are necessary but not sufficient to assure
a reliable system that meets the mission objectives will be delivered
on schedule. Root level program schedules and software systems engi-
neers, used effectively, can sigaificantly enhance management

visibility,
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HISTORY: The degree and type of visibility management had into the Mission
Operations software development process varied as a function of the
development phase,

During the software system definition phase visibility was very
good., The software plan and the integrated software functional descrip-
tion were carefully reviewed at the director and Project manager levels.

Milestones were well defined, and detailed schedules were developed,

The quantity of software to be developed and the results of computer
loading studies gave top management visibility to allocate resources
on a realistic basis.

This was followed by the requirements phase, wherein management
had the least visibility at any point in the development cycle. It was
restricted to monitoring schedules and reviewing each Software Require-
ments Document (SRD) prior to its release.

Visibility improved during the design and code bhases. The SRDs
were under rigid change control so that impacts caused by requirements

changes were reflected in weekly updates to schedules. Reallocations

in personnel assignments were made to prevent serious schedule slip-
pages. Management could also monitor the development of the Software
Data Base Document, which defined interfaces and the common data base,
and the Lander/Orbiter Software Test Plan, which showed the system
integration process and indicated the resources that would be required
to carry it out.

The certification, conversion and user acceptance test phases per-
mitted the lander, orbiter and integrating contractor software systems
engineers to assess which requirements and constraints had been met in
test and which had not. The latter were placed on waiver lists, the
resolution of which could be monitored by all levels of management.

The software was now placed under rigid change control, and errors
detected during the unit verification and system integration phases
were made highly visible by means of a very efficient failure report
system, Corrections to these errors could be controlled at the direc-

tor level and implemented through an Integration Change Control Board.
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During the spacecraft compatibility test phase, the failure report
system was changed to a Viking Incident Surprise Anomaly (VISA) system,
which gave management the added visibility to assess the projected
impact that software errors and requirements changes would have on

specific operational phases,

DESCRIPTION: Sixteen milestones were identified to provide management visi-
bility into the development process of each program, In addition, the
cognizant engineers for each program were required to keep weekly as-
sessments of percentage completion during the design, code, debug and
programmer test periods., If the percentage completion estimate was
not compatible with the schedule for an ensuing milestone, the cogni-
zant engineer was required to change the projected completion date
shown for that milestone to an earlier or a later date, as appropriate.
Three columns were maintained for the schedules of each milestone;
planned, projected and actual, Therefore, when a projected schedule
date was changed, management could assess the impact it would have rela-
tive to the entire software system development process. Manpower and
resources were reallocated, as required, to maintain a consistent over-
all schedule.

The impact of software requirements changes was handled by sched-
uling phased deliveries for programs. Separate schedules were main-
tained for each phase of program delivery.

The milestones vsed to monitor Viking program software development
progress were:

1. Release of Software Functional Description

. Functional Requirements Document sign-off complete

. Software Requirements Document available for review

Software Requirements Document sign-off compiete

General Design Document sign-off complete

.

Program design and initial module code complete

Module testing complete

Q@ ~N O™ W e LN
*

Certification Test/Users Acceptance Test Plan available for

review
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9. Certification Test/Users Acceptance Test Plan sign-off

complete

R T e T e T

10. Program development complete
11. Certification test complete

12, Acceptance test complete

RSP o | S T

13. Program delivery to VMCCC for integration
14, Unit Verification test by VMCCC complete

R

15. Program integration tests complete

16. Project software delivery

The program delivery milestone required delivery of all program
documentation, including the Program Description Document and User's
Guide for which no earlier milestones existed. Therefore, projected

and actual schedules were maintained for each deliverable item for this

YA Y AN M ) i -

4 milestone.
% Weekly meetings were held between upper management, team leaders,
é and the software systems engineers. Progress, problems and conflicts
: were aired at these meetings. Open item lists were issued and monitored.
é% A Viking Integration Change/Viking Change Summary/Software Change
3 Request (VIC/VCS/SCR) system was established to monitor all changes to
3 software requirements. A VIC impacted more than one agency and re-
quired concurrence of all parties before it could be approved. The
VCS was used for Lander hardware or software changes. The SCR was used
for lander or orbiter software changes implemented at JPL, A Project
; Change Board met weekly to discuss the status of all open change trvaf-
fic. Representatives from each subsystem were required to attend these
é meetings to assure that any impact to their subsystem would be recog-
é nized and taken into proper account.
3 Lectures and presentations were held at frequent intervals wherein
all programmers and engineers were briefed on management concerns, the
development cycle, and items pertinent to the software system and its
status,

Preliminary and Critical design reviews were held on the integrated

software functional description of the software system,
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The integrating contractor software systems engineer was required
to review and approve the results of all users acceptance tests and
provide upper management with written reports of those reviews.

The Software Subworking Group, which was composed of the integra-
tion, lander, orbiter and institutional software systems engineers,
was required to issue monthly reports to upper management stating work
accomplished, problems encountered that required resolution, and work
planned for the following month,

Changes to the common data base required formal written approval
by upper management before they could be implemented.

An Integration Change Control Board met weekly to discuss the
status of all programs scheduled to be delivered or redelivered to the
software system. The board was chaired by a Project Manager and at-
tended by the software systems engineers and representatives of soft-
ware programs to be discussed. The need for and impact of changes or
waivers were aired at these meetings. The ICCB assured that software
deliveries complied with established procedures.

Several documents played a key role in providing management visi-
bility throughout the development stage. The Software Functional De-
scriptions and Integrated Software Functional Design permitted manage-
ment to determine which programs were required, how they would inter-
face, what utility programs would be needed, conduct computer program
assignments and loading studies, hold a system critical design review,
and determine integration requirements. The Lander/Orbiter Software
Test Plan proved to be an extremely useful tool to the project. It
allowed management to schedule manpower and resources, and assured them
that inter program communications would be thoroughly tested, The
Software Data Base Document gave management a single source by which
they could be assured that all program interfaces and the common data
base would be visible and controlled. This provided the visibility by
which management could determine if a change to one program would in
any way affect the operation of any other program in the system.

The JPL Mission Build process allowed management to know what

sof tware was in the system at all times.
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QUALITATIVE RESULTS: The visibility techniques management employed during

the software development process were sufficient to permit a reliable
software system that met all mission objctives to be delivered nn
schedule. The use of documentation, milestones, reviews, presentations,
meetings and change control were standard management visibility tools.
The concepts of the root level schedules and the software systems engi-
neers roles were innovative, and worked well.

A great deal of expense and effort could have been saved had man~-
agement demanded greater visibility early in the development process.
Programmer selection was essentially ignored, assignments being made
on an availability basis, rather than by experience and computer under-
standing. Critical reviews were not held to challenge requirements
especially where they invoked design. Nor were critical reviews held
to challenge the program designs themselves. As such, management con-
trol over the design and code phase was limited to monitoring schedules,
so that design inadequacies did not become visible to the software sys-
tems engineers and systems programmers until the acceptance testing and
integration phase. Costly modifications and workarounds were then re-
quired to force the program designs to meet mission timelines and com-
puter constraint requirements. This occurred with about one-third of

the programs,

QUANTITATIVE IMPACT: Ten percent of the programming and engineering manpower

effort was consumed in activities directly related to providing manage-
ment visibility., The primary efforts of the software system engineers
and their staffs were devoted to directing and monitoring the develop-
ment process and maintaining software schedules, thereby providing
management with central sources by which progress and status could be
measured, These staffs varied in size during the development stage
(see Flight Operations Software Subgroup technique).

The manpower and computer resources that might have been saved
had proper attention been paid to programmer selection and critiquing
requirements and designs is estimated to be in access of three man

years.
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TECHNIQUE
NAME: COMPREHENSIVE END-TO-END SYSTEM LEVEL TESTING

SUMMARY: A series of integrated tests were performed using the Flight Opera-
tions ground data system, a Viking Lander on-board computer and its
Flight Software, and the Viking Lander science, telemetry, communica-
tions, and power subsystems. Ten different tests, covering the four
major mission phases were completed over a 22 month span to verify com-
patibility of the various programs and demonstrate representative
Viking mission sequences. Approximately 156 software design changes
were implemented as a result of this integrated series of tests.

APPLICATION CONSIDERATIONS: The integrated testing described herein were
derived to insure and enhance mission success. The major factore that
dictated this comprehensive testing were: a) error free Flight Soft-
ware was required for the on-board computer; b) scientific and engi-
neering mission design features had to be accurately translated into
uplink commands to the Flight Software and the effect of these commands
on the lander functions had to be predicted with certainty by the up-
link programs; and ¢) the downlink programs had to provide accurate
scientific and engineering data in a timely fashion so that new uplink

commands could be generated based on actual conditions encountered at

Mars.

RECOMMENDATIONS: The Viking system is a large one with many interrelated
software and hardware elements whose mission application required virtu-
ally error free performance. Mission success is strongly dependent on
comprehensive testing of the critical system elements where the empha-
sis is placed on testing mission level functions and performance re-
quirements on an end-to-end basis, This provides a necessary check

and balance against the design requirement testing done by the develop-
ers of the individual hardware/software elements of the system. The
class of integrated testing described herein was a mandatory part of

the Viking develiopment,
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HISTORY: The Flight Operations/Flight Software integrated test concept was
not part of the original Viking development plans. The concept was
» recommended by several people on the project and further emphasized
by some audit/review committees in the late 1973, early 1974 time
period. Detail planning began in August 1974 and an initial series of
tests were approved by the customer by early September 1974. As the
benefit of the tests became apparent more were defined and approved for

implementation.

DESCRIPTION: The Flight Operations/Flight Software Integrated Tests (FOFSIT)
were a series of tests conceived to satisfy the following objectives:
a) Demonstrate compatibility between the Viking Lander on-board
computer Flight Software and selected portions of the ground
Mission Operations Software System (MOSS);
b) Demonstrate this joint set of software is compatible with
“flight~like" Viking Lander hardware; and
¢) Demonstrate this combined set of software and hardware is
compatible with selected mission design requirements and repre-
sentative Viking mission sequences,
Each test involved running a series of the Flight Operations pro-
grams in the Viking computer environment at the Jet Propulsion Lab
(JPL) in Pasadena to produce uplink commands for the Flight Software
in the on-board computer (GCSC). These commands were transferred to
Denver by tape or data line where they were loaded into the on~board
computer via the operational uplink communications port. For tests in-
volving the interplanetary Cruise, Preseparation Checkout, or Landed
surface operation mission phases, the Flight Software/on-board computer
were run in a test bed composed of a full up, operational Viking Lander.
This non-flight article lander with its power, telemetry, communica-
tions, science, and G&C subsystems was made available after an environ-
mental qualification test program had been completed, For the test
involving Descent to the surface of Mars the Flight Software/on-board
computer combination were coupled to a hybrid computer facility pro-

grammed to simulate the descent vehicle and Martian environment.
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When the Viking Lander or the descent trajectory simulation were
run under control of the Flight Software a lander leve. downlink tele-
metry data stream was recorded, This data was then transferred to JPL
by magnetic tape or data line where it was processed thriugh a series
of downlink programs to produce science and/or engineerin; outputs,

Table 1 provides a summary of the integrated test program composed
of 10 individual tests covering the four major mission phases. The
general test configuration for these mission phases is shown in Figures
1 and 2. The 22 individual software programs involved in the inte-
grated testing included:

a) twelve batch Univac 1108 programs with a total of 147,000

source cards;

b) seven batch IBM 360/75 programs with a total of 88,000 source
cards,

¢) two real time IBM 360/75 programs with a total of 230,000
instructions for telemetry and image processing; and

d) one Flight Software program with a total of 18,432 words.

The following mission and spacecraft design constraints had a
significant influence on the design and implementation of the inte-
grated tests described herein:

a) The lander downlinked data to earth, directly and/or relayed
through the orbiter, only once a day over a 20 minute one
way light time path;

b) After the lander was separated from the orbiter the descent
program in the on-board computer could not be modified by
uplink;

c) During surface operations the lander was in a near autonomous
operating mode running a preprogrammed mission in the on-
board computer that could be modified by uplink only once
every two days except in emergency conditions {(once a day
maximum) ;

d) The mission was designed to be adaptive and the adaptive re-
action time, as measured from on-board downlink data genera-
tion to implemented adaptive uplink commands, varied from 3

days for emergency conditions to a maximum of 21 days; and
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Mission
Phase/
Test Name

LR

Cruise

U RPN

Presep C/0
(FCT-3)

Descent
(FCT-4)

!
%
i

Descent

4 Landed
(FCT-1)

4 Landed
- (Multiday)

Landed
(Multiday
Extension)

it i

Table 1

Test Description

Maintenance functions for bat-
teries, tape recorder, & 1
science instrument computer
overlay & memory readout
functions

Precursor to launch pad test of
lander C/0 functions done prior
to descent in Mars orbit during
the mission

Precursor to launch pad test of
compressed descent sequence
using modified G&C equations/
constants, Included landed in-
itialization sequence (lst

post land function)

Nominal full descent in a simu-
lated Mars environment for a

2 burn deorbit mission. In-
cluded full uplink of G&C
constants

Precursor to launch pad test

2 short landed segments in-
volving real time imaging over
the direct downlink, a tape
recorder playback over the relay

link, and command updates via the

uplink

A fully integrated science/tele-
metry/communication sequence
with 2 uplink periods., Based
the planned mission sequences
for 6 out of the first ten days
on Mars, Tested 58 of 104 Flt
Software major capabiiities

A fully integrated sequence
with three uplink periods.

Tested an additional 30 of

the 104 Flt Software major

capabilities
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Test
Profile
Time

10 hrs

6 hrs

3 hrs

S hrs

2 hrs

154 hrs

62 hrs

Flight Operations/Flight Software Integrated Test Summary

Programs
Tested

14

15

15

Test
Period

Feb thru
Jul 75

Dec 74
thru
Apr 75

Dec 74
thru
Apr 75

Jan thru
Sept 75

Dec 74
thru
Apr 75

Apr thru
Oct 75

Sept
thru
Dec 75

b
,
vwiﬁ

.
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Flight Operations/Flight Software Integrated Test Summary

Mission
Phase/
Test Name

Landed
(FOS-VER)

Presep C/0
(FOS-VER)

Landed
(Switch-
over)

--------------------------------------------------------------------------- -

Table 1 (continued)

Test

Test Description Profile
Time

A test of the first 17 days of 419 hrs

the landed pre-programmed mis-
sion (PPM) stored in the on-
board computer., No uplinks

A test of the lander C/0 func- 52 hrs
tions and uplinks done during

the 52 hr period prior to de-

scent of the lander

Test of four uplinks derived 7 hrs
to reinitialize the lander for

mission operations if a switch

to the backup on-board computer

had occurred. Test included

uplink processing and lander

operations; no downlink pro-

cessing at JPL

1)

2)

3)

4)

Programs
Tested

15

Test
Period

Nov 75
thru
Apr 76

Nov 75
thru
Apr 76

Feb thru
Jun 76

Test profile time covers the duration of Viking Lander

operation; JPL computer processing time is excluded

Programs tested include only those involved in Viking

Mission operations; test support programs not included

Tes: period includes time to run the uplink programs at

JPL, run the Flt Software in Denver, and process/analyze

the downlink data via the programs at JPL
A total of 22 different Flight Operations/Flight Software

programs were used in the overall test program
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Uplink Programs

Inertial Sequence &
Reference & Targeting Command
Trajectory Data Generation
(2) (1) 3)
Trajectory
Verification
| (1)
On-Board Uplink
C Commands
Downlink omputer &
Flt Software
Commands
(1)
Vehicle & Mars
Environment
Simulation
Downlink Programs
Real Time Decommutation Trajectory
Telemetry Smonthing Reconstruction
Processing & Analysis & Evaluation
L P'—l
(1 (3)

(Number of programs

shown in parentheses)

Figure 1, Descent Test

(Entry Science )

Data)




Uplink Programs

Sequence Sequence Uplink
Planning Integration & Commands
Command Gen,
2
(3) 2) Viking Lander
Hardware & )
Flt Software
Lander
Command )
Simulator
(1)
Downlink Data

Downlink Programs

Real Time Data Science
Telemetry Decommutation Processing
Processing & Analysis

(1) (2) l (5) ,

Engr. Data
Real Time
Image
Processing
Notes:
1) 1. Number of programs in parentheses

2. File transfer program not shown

3. Cruise & Presep C/0 tests in~
volved a subset of programs
shown

Figure 2, Landed, Cruise & Presep C/0 Tests
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e) The on-board computer was the central controlling source for
performing, on a time shared basis, all lander functions in-
cluding science control and data acquisition from seven ex-
periments, direct and relay communications to earth, data
storage management via tape recorder and core memory, and
lander power management,

As a result of these constraints the integrated testing empha-
sized, in order of priority: a) uplink programs, b) Flight Software
and lander operations, and c) downlink programs. Tests involving ex-
terded periods of lander operations were required to verify compati-
bility of the many interactive functions. The greatest emphasis was
placed on full validation of the uplink programs that simulate lander
operationsg including those of the Flight Software. This validation
was done by direct detail comparison of the uplink predictions with
the actual functions performed by the lander and its Flight Software.

The overall integrated test program covered a 22 month period be-
ginning in August 1974 with a planning phase. In December 1974 a 200
page test plan was produced, covering the first six tests listed in
Table 1, Nine of the ten tests involved running the Flight Software
in the on-board computer in a full up Viking lander. For this portion
of the testing additional detail test procedures were developed to
provide a means to a) monitor, in real time, proper lander sequencing
and hardware safety, and b) control the ground support equipment to
acquire downlink data generated by the lander. Although all the tests
were run in a fairly informal "engineering test'" atmosphere, a signi-
ficant portion of the overall effort was expended in the development of
test plans and procedures (approximately 10-127% of the total manpower
expenditures),

Generally, each test required several iterations (average of 3
to 5 passes) through the applicable uplink programs before a safe and
adequate set of uplink commands were available for use with the Flight
Software/on-board computer in the lander or descent test beds. Al-
though the downlink data, in general, had to be prncessed more than

once (average of 2 to 3 passes) to obtain satisfactory results, fewer
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iterations were required than in the uplink area., The uplink and
downlink data processing for most tests was accomplished by a small
group assigned to the integrated test program. The time spans to ac-
complish the iterative uplink/downlink testing at JPL for an individual
test ranged from a few weeks to a few months. During the actual mis-
sion operations the equivalent processing was accomplished by a large
team of people in a few days in a single pass,

Table 2 provides a summary of the equivalent test iterations for
the portion of the test involving the Flight Software/on-board computer

in the descent or Viking lander test beds.

Table 2
Integrated Testing - Test Bed Utilization

Test Name Test Bed Number of Total
(Ref, Table 1) Iterations Hours
Cruise Viking Lander 2-1/2 25
FCT's Viking Lander 4 52
Descent Descent Hybrid Sim. 3 15
Multiday Viking Lander 2-1/2 385
Multiday Extension Viking Lander 1-1/4 77
FOS-VER Presep C/0 Viking Lander 2 104
FOS-VER Landed Viking Lander 1 419
Switchover Viking Lander 3 21

1098

QUALITATIVE IMPACT: The qualitative impact of the testing described herein
can be su;;arized as follows:
a) Immature software - In terms of meeting the mission objec-
tives, many of the programs tested were found to be immature.
In particular, the three programs that 1) integrated science
experiment/engineering subsystem sequences and modeled the
various lander functions, 2) generated lander uplink commands,
and 3) simulated Flight Software functions/commands required

the majority (i.e. 48%) of the design changes implemented,
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b) Lander "signatures" - Quicklook analysis of the downlink
data from the integrated test revealed many anomalies. Ex-
tensive analysis indicated most of these were not caused by
any design problem or failure in the hardware or software
(i.e., they were signatures of a normal system). The accept-
able items were cataloged and the availability of this know-
ledge during mission operations avoided unnecessary problem
solving and delays.

¢) Mission design validation constraints - The design and imple-
mentation of many of the integrated tests were based on vari-
ous of the Viking mission design strategies; this provided
a means to test the validity of each strategy. The testing
identified many mission design problems and constraints. As
a result revised strategies were developed and validated in
the integrated test series, The accepted constraints were
documented and served to guide the development of related
mission design strategies.

d) Flight Team training - Initially the integrated tests were
performed by a centralized group assigned to the task., Most
of the group members were on the Flight Team but their inte-
grated test assignments were not necessarily related to the
functions they were to perform during the mission operations,
During the last three tests (i.e,, Multiday Extension, FOSVER,
and Switchover) tasks such as uplink generation, downlink
processing, etc, were performed by the appropriate Flight
Team groups. This experience proved a valuable aid in train-
ing people for their actual mission assignments with realistic

data.

QUANTITATIVE IMPACT: The quantitative impact of the integrated testing de-
scribed herein can be summarized as follows:
a) Duration of integrated test program: 22 months;
b) Programs tested: 22 programs involving approximately 483,000

source cards/instructions;

259




c¢) Number of tests: 10 tests covering 4 mission phases;

d) Hours of real time lander (Flight Software) operation: tests
ranged from 2 to 419 hrs; 1098 hrs total time;

e) Software design changes derived from test program: approxi-
mately 156 changes affecting 20 of 22 programs tested (Refer-
ence Table 3 for details);

f) Manpower cost: approximately 380 manmonths; peak loading
26 to 28 people for a 6 month period;

g) Computer Cost: Univac 1108 @ JPL 275 hrs

IBM 360/75 @ JPL 2300 hrs
IBM 370/155 @ Denver 250 hrs
CDC 6400 @ Denver 40 hrs
h) Loss of mission critical data or objectives due to software
design failures during actual mission: None.
Table 3

Software Design Changes

Program Type Programs Changes % of Total
Affected

Uplink sequence integration and 3 75 48.1%
command generation/simulation
Flight Software 1 16 10.37%
Downlink real time processing and 3 27 17.3%
data decommutation/analysis
Science analysis 4 23 14.7%
Descent unique - uplink & downlink 4 10 6.47%
Miscellaneous 3 5 3.2%
Programs with no impact 2 0

Totals 22 156 100.07%
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TECHNIQUE
NAME: TECHNICAL AND MANAGEMENT AUDITS

SUMMARY: The Viking Project Office (VPO) formed a group of NASA software
managers, known as the Tindall Committee, to review the Viking software
development approach and design. Following this, the VPO conducted
three independent audits by software experts from around the country.
MMC held a semi-independent audit led by the head of the Systems De-
velopment Corporation. Technical audits by MMC management were used

to measure progress and maintain schedules.

APPLICATION CONSIDERATIONS: The successful development of ;ny major soft-
ware system is a considerable task for experienced professionals.
Neither the VPO nor MMC had ever built a system as large as required
to support the Viking Mission, Therefore the desire to have experi-
enced software development managers review and comment on the Viking
approach manifested itself in the Viking managers minds early in the
program. During the coding phase of development MMC managers knew
their visibility into the process would be limited. Technical audits

offered them the opportunity to assess progress, thereby enhancing the
chances for schedules to be met.

RECOMMENDATION: Management is typically reluctant to shift significant
amounts of resources to accommodate obviously well intentioned and rea-
soned recommendations originating from within their working ranks. It
is difficult for them to weed out the good ideas from those that are
necessary, By bringing in experienced experts from around the country
to audit the development process, management can obtain a basis for
making such decisions, Equally important is the fact that such audits

are likely to produce recommendations concerning areas or concepts
that have been overlooked.
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HISTORY: 1In 1971 the Viking Project manager formed a committee of software
managers from Johnson Space Center, Goddard Space Flight Center, Amss
Research Laboratory, Marshall Space Flight Center, and NASA headquar-
ters. The committee eventually became known as the Tindall committee,
named for its leading spokesman, H. W. Tindall of JSC. The purpose of

this committee was to attend monthly Viking management status reviews

L TP, 1. vy

-

and make crmments, assessments and recommendations to the Project man-

ager relative to the Viking approach. The committee stayed in existence

for approximately two years, monitoring progress up to and including

the critical design reviews for Flight and Mission Operations software.
In late 1973 MMC brought in three software managers with different

o

backgrounds to perform a semi-independent audit of the software develop-

ment process. This included the head of Systems Data Corporation, an

PG Gl ST A - AR Y AR

f IBM executive and a member of a software consultant firm,
Shortly thereafter the Viking Project Office conducted an independ-
ent audit of Flight software. For this purpose they brought in experts

i
—

—? from both industry and government,

ij Three software managers from JSC were brought to Denver at the
request of the Viking Project Office in the spring of 1974 to audit

the Mission Operations software system,

3 Finally, the Viking Project Office arranged for a group of experts
from GSFC to attend a presentation of the Flight and Mission Operations

AT,

software development process late in 1974,
In addition to these outside audits, the VPO, MMC and JPL managers

LAY

held monthly meetings to review progress. This included audits of the
3 major problem areas encountered by the Software System Engineers.

Firally, the MMC Mission Operations and Design director conducted

individual indepth audits on each program for which he was responsible,

DESCRIPTION: During the tenure of the Tindall Committee its members would
sit in and passively monitor the proceedings of the Flight Operations
Working Group, which consisted of the managers responsible for the
Viking Lander, Viking Orbiter, Viking Mission Control and Computing

Center, Tracking Data System and Deep Space Network software development,
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In addition, the committee attended the preliminary and critical de-
sign reviews for both Flight and Mission Operations software.

An early finding of the committee was that the multi-agency Viking
managers could not resolve problems amongst themselves, Month after
month the same problems remained unresolved., Furthermore, too many of
the problems were technical in nature. One major recommendation made
by the committee at this time was that management should concern itself
primarily with handling schedules and resources and make the SSEs re-
sponsible for the design and development process. In that way, manage-
ment would only be required to resolve those problems that the SSEs
could not resolve, which should greatly reduce their task. A second
recommendation was that the multi-agency Viking Flight Team be organized
immediately in order to develop a working rapport long before it was
needed to support the mission., Both recommendations were adopted.

The committee offered numerous suggestions to help resolve inter-
agency problems, influenced the Integrated Software Functional Design,
recommended that schedules be carried to several levels of detail (five
were adopted by Viking), and pointed out the need for a computer load-
ing study that covered the entire planetary operations phase on a day
by day basis.

The semi-independent audit sponsored by MMC in late 1973 led to
the decision to reallocate resources to accommodate end-to-end tests
for the cruise, descent and planetary operations of the mission. The
auditors flatly told MMC management that there was no way to know whe-
ther or not the system would work without such tests, and none had been
scheduled. The idea was not new, since it had been recommended earlier
by MMC software developers, The fact that it was repeated by an accre-
dited outside source provided the straw that broke the camel's back
in this area,

The independent auditors brought in by VPO to review Flight soft-
ware saw the need for the Systems Engineering director to place soft-

ware on an equal basis with hardware. //
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The audit by JSC might have been more fruitful had it occurred
a year earlier. They recommended that individual program requirements
be constantly reviewed (o try and weed out any unnecessary ones. Most
of the software had been developed by that time, so it was impractical
to make extensive use of the recommendation. Two programs were reviewed
with only minor success. JSC expressed concern over the inter-agency
integration task, but could offer no constructive comments on the sub-
ject. Finally, JSC stated that they believed the programmer, rather
than the engineer, knows best how to test a piece of software. MMC did
not accept this recommendation since they were primarily concerned with
the function the software was to perform, and the eagineer knew the
functions. They required that the programmers deliver working software
to the engineer who then was required to acceptance test it.

The final audit conducted by GSFC came toward the end of the soft-
ware development process. For that reason it amounted to more of a
review than an audit. About all GSFC was able to comment was that a
sound approach had been taken and no major item had been overlooked.

The VPO, MMC and JPL managers frequently required that the SSEs
make semi-formal presentations both before them and before the cogni-
zant engineers and programmers. The intent of these presentations ef-
fectively made them status and design audits by management. The audi-
ence would comment, criticize and raise questions following each pre-
sentation., Action items would be assigned at these presentations to
resolve problems.

During the coding phase of operational software programs, the MO
and D director would notify the cognizant engineer of a program that
an audit of the program would be held in three days before the Mission
Director. At these audits the ~ngineer had to demonstrate what had
been accomplished, what remained to be done, and how the schedule would
pe met. On a few occasions, when the Mission Director was in Denver,
the engineers were given only a two or three hour notice of such an
audit. On some occasions the directors were not satisfied that the
schedules supported the work to be done, based either on what had been

accomplished or on the amount of new requirements facing the enginecer.
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In these instances the engineer was required to maintain a level 6
schedule, which broke the work assignments down to a daily basis over

a period of about a month.

QUALITATIVE RESULTS: The audits were extremely valuable to the Viking Pro-
ject and contributed directly towards the success of the mission.
Technical inter-agency software problems were resolved much easier
when the responsibility for handling them was shifted from the managers
to the SSEs,

The establishment of the Viking Flight Team early proved to be a
sound idea., The members of the team quickly realized that their re-
sponsibilities lay within the directorate and group to which they had
been assigned even when the group leader or director was from a dif-
ferent agency. By the time the VFT was needed, responsibilities were
well established and understood, which resulted in smooth operations
during the mission and quick response to anomalies.

The implementation of five levels of schedules played a major role
in developing the system on schedule.

The computer loading analysis study, conducted at the recommenda-
tior of the Tindall committee, led to the realization that the Viking
Project would have to install a third 1108 computer at JPL to meet mis-
sion timelines. The computer was installed, and subsequent events
proved that it was needed.

The scheduling of end-to-end tests for the Flight and Mission Op-
erations software systems may have made the difference between mission
success and mission failure., Although management was not convinced
that the tests, which were an unscheduled and expensive resource drain,
would do no more than give them a warm feeling that the system would
work, they nevertheless accepted the auditor's recommendation. When
the tests were finally conducted, they revealed literally hundreds of
incompatibilities, errors and misunderstandings. Had the audit not

! been made, the tests would not have been conducted. 1In that cvent the
problems most likely would not have surfaced until planetary operations,

at which time they would have been extremely serious.

265




-

By auditing software at the program level, the MO and D director
was able to reallocate resources to maintain schedules when it was
evident that an engineer had underestimated the scope of a task, Such
discoveries were made at these audits.

The value of audits by outsiders is that they will feel compelled
to find something that you are doing wrong. Therefore, if you conduct

such an audit and fail to get any recommendations of significance, the

probability that you are on the right track and doing a good job is
extremely high.

QUANTITATIVE IMPACT: The direct costs of the outside audits was equivalent
to hiring consultants for a few days. The indirect costs of the audits
was the time spent to prepare for and conduct them. Preparation was
generally easy, because the speakers had merely to discuss their accom-
plishments, plans and problems, all of which were very familiar. On

é some occasions the speakers had to spend two or three days preparing i

slides and viewgraphs. Since relatively few audits were held, the
total time consumed by them could not have exceed more than a few man

months.
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TECHNIQUE 3

' NAME: GROUND DATA SYSTEM (GDS) TEST PROGRAM

SUMMARY: The GDS Test Program was a subset of the Flight Operations (FOS)

Test Program. The objectives of the GDS tests were to verify and demon=-
strate the capability of the GDS to support Flight Operations Personnel
Test and Training (FOPT&T) and to verify the capabilities committed to

the Viking Project to support missi n operations. The GDS tests were

Il Ml

© et

end-to-end tests of all earth based facilities which were required to

support mission operations and personnel training. The tests involved

all operational subsystems of the GDS including telemetry, tracking,

G UG il

command, and monitor and operations control. Both real time and non
f real time functions were verified, including the generation of VO and
4 VL command uplinks, products required for operational decisions, and

all simulation data required for VFT trairing.

|

% APPLICATION CONSIDERATIONS: The GDS Tests proved to be invaluable in pre-
3 paration for the personnel training program. Numerous problems were

exposed in spite of the fact that, in theory, all capabilities which

were tested during GDS tests had been previously tested in some other

1 element of the FOS Test Program, Furthermore, though these tests were
3 classified as "engineering" tests, the training benefits which were
= realized far exceeded expectations. The personnel training program

which followed was far more successful than anyone had expected.

5 RECOMMENDATION: The GDS Test Program exposed numerous technical problems
that required resolution prior to the start of the personnel training
program. It also provided invaluable training benefits for the Viking
Flight Team working in concert with the personnel of the institutional
facilities. The GDS Test Program was thus a necessary bridge between
the development tests and the personnel training tests. Without this
bridge, the personnel training tests would have had to deal with numer-
ous technical and procedural problems which could have jeopardized the

capability of the Viking Flight Team to adequately preparc for the

planetary operations.
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HISTORY: The need for a GDS Test Program was recognized in mid 1972. The

objective of the GDS tests was to verify and demonstrate the readiness
of the GDS to support key milestones in the development of the FOS.
The tests were scheduled to occur in late 1974, following delivery of
all the software and hardware required to conduct Viking mission opera-
tions. The GDS tests would be preceded by various engineering and
operational tests conducted by institutional personnel of the Deep Space
Network (DSN) and the Viking Mission Control and Computing Center Sys-
tem (VMCCCS) including interface tests between the two institutions.
The GDS tests would be followed by the FOPT&T program in early 1975.
The FOS would then be operational prior to the launch of the first
spacecraft in August 1975. Further studies over the next year revealed
that this ambitious FOS development program could not be implemented
prior to launch. The delivery of the FOS was then divided into two
phases. The phase one delivery would occur prior to launch, and would
include all hardware, software, personnel and procedures required to
conduct launch and cruise operations. Phase two delivery would occur
after launch but prior to the start of planetary operations and would
include the remaining capabilities required to conduct planetary opera-
tions. The FOS Test Program, including the GDS Test Program, was suit-
ably modified to be compatible with the new FOS development approach.
The schedule risk implied by the phased development was recognized.
Accordingly, a subset of the planetary capabilities was scheduled to
be delivered in phase one, and the GDS Test Program was amplified to
include precursor tests of the planetary design of the GDS during the
preltunch period in order to identify basic problems and constraints
which may require a long lead time for correction. This subset included
DSS-14 in a planetary-like configuration (some planetary capabilities
were not available), and some elements of the Project software and
Simulation System.

The objective of the GDS Test Program thus evolved to the follow-
ing: ro verify and demonstrate the readiness of the GDS configurations
to support key activities in the development of the Viking FOS. The

activities are:
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a. Flight Article Compatioility Tests (FCT) with a Viking Lander,
a Viking Orbiter, and the compatibility test station MIL-71
at Kennedy Space Center (KSC).

T T T

Vi

b. Launch and cruise training exercises and flight operations

with the 64 Meter Deep Space Stations (DSS), i.e., DSS-14

T

at Goldstone, California; DSS-43 at Canberra, Australia, and

DSS-63 at Madrid, Spain and the prime 26-Meter DSS net; i.e.,

DSS-11 at Goldstone, DSS-42 at Canberra and DSS-5! at Madrid.
¢, Cruise flight operations with the secondary 26-Meter DSS net;

i.,r., DSS-12 at Goldstone, DSS-44 at Canberra and DSS-62 at
Madrid.

/
d. Launch and cruise training exercises and flight operations

with the Near Earth Phase Network (NEPN) including facilities
;. of the Air Force Eastern Test Range (AFETR) and the Goddard
3 Space Flight Center (GSFC) used to acquire spacecraft data
prior to the initial acquisition by a DSS. i

e, Planetary Verification Tests with DSS-14 prior to launch.

Qg f, VFT planetary training exercises and mission operations.

PR
Rt

DESCRIPTION: The Flight Operations System (F)NS) Test Program for Viking
was defined in the FOS Test Plan, PL-3713006. This plan established

St

O

the overall objectives, purposes and scope of FOS testing. The Ground
Data System (GDS) Test Program, a subset of the FOS Test Program, was
defined in the GDS Test Plan, PL-3720313. This plan provided the ob-

jectives and description of each GDS test and established the facili-

ol P PR 1

ties required to support each test. The detail test objectives, accept-
ance criteria, test approach and Viking Flight Team (VFT) support re-
2 quirements for each test were defined in a GDS Test Script. The step

T gy

by step sequences required to execute each test were defined in the
test Sequence of Events (SOE).

3 Tests conducted prior to launch were designated "launch and Cruise
(1L&C) Phase Tests" while those conducted during cruise to prepare for
the planetary operations were designated "Planetary Operations Phase

Tests". The Launch and Cruise Phase Tests included .. ' tests in
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support of FOS milestones (a) through (e) inclusive, as defined in the
previous section. These tests were divided into four distinct
categories,

The conduct of the tests in all four categories were chronologi~
cally interwoven because of the planned delivery schedule of the vari-
ous GDS facilities, The more complex all-up system tests of each type
were, in general, preceded by prerequisite tests of reduced complexity.
The specific tests in each category are defined below:

Category 1 - Tests of ‘the FCT Configuration

A GDS test (designated GDS 7.0) was performed to
verify and demonstrate the readiness of the GDS to
support FCTs. Simultaneous telemetry and command
functions were successfully performed with MIL-71
during this test. The sequence of telemetry data
states (data rate gng format) was representative of

the sequences planned for the FCTs,

Category 2 - NEPN Tests
Two tests (GDS 8.1 and GDS 8.2) were performed with
the NEPN to support launch. The first test demonstra-
ted data flow from SIMCEN at JPL to the compatibility
test stations, STDN MIL and TEL-4, via MIL~71, and
the return of data to the VMCCC and MSA. The second
test attempted to demonstrate telemetry and tracking
data fléw using the NEPN down range stations for a
representative launch sequence. It was discovered
that the telemetry data could not be frame synched
in the Mission and Test Computer Facility (MICF).
Post test investigations revealed that a configura-
tion change was required at MIL-71 to correct the
problem. This configuration was made and successfully
demonstrated in a special test conducted in parallel
with the Flight Operations Personnel and Training test
DT~1. This configuration was then utilized with suc-

cess in the Operational Readiness Tests (ORTs) and

launch., 270
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Category 3 - Cruise Tests
Thirteen tests were performed to verify and demon-
strate the readiness of the launch and cruise con-

figuration of the GDS to support VFT launch and cruise

flight operations and training exercises. These tests

were conducted with the nine DSS facilities of the

f
i

DSN. The test designation, test type and applicable
DSS are identified in table ).

Table 1
Launch and Cruise GDS Tests
GDS Test Deep Space
Designation Test Type Station (DSS)
1.1 Telemetry DSS-11
1.2 Command DSS-11
1.3 Tracking pSS-11
2.3 Tracking DSS-14 )
1.4 Combined Systems DSS-11 !
3.4 Combined Systems DSS-42, DSS-43, DSS-44
DSS-61, DSS-62, DSS-~63
and DSS-12
\ individually
3.5 Combined Systems DSS-42, DSS=~43, DSS-61
& Hultiple DSS-63, DSS-14 and DSS-11
Stations collectively with realis-

tic overlap
Tests 1.1, 1.2, 1.3 and 2.3 were performed to prepare
for the more complex Combined Systems Tests. All
tests were successfully performed and all test objec~-
tives were met. Five tests were performed to verify
and demonstrate the operation of the planetary :esign
' of the GDS. The test designations, test type, appli-
cable DSS, and the mission phase simulated during the
test are identified in Table 2,
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Table 2

Planetary Verification Tests

GDS Test Test Type DSS Simulated Mission
Designation Phase
2.1 Telemetry DSS-14 Planetary-1 VL and

1 VO serially

2.7 Combined DSS-14 Planetary~1 VL and
Systems 1 VO serially
2.6 Telemetry DSS-14 Planetary-2 VOs and
1 VL simultaneously
9.2 Combined DSS-11, DOY 175 of the Primary
Systems DSS-14 Mission Design (PMD)
9.3 Combined DSS-11 Planetary-2 VOs and
Systems DSS-14 1 VL simultaneously

Tests 2,1, 2,7 and 2.6 were performed to prepare for
the 9.2 and 9.3 tests by sequentially increasing the
complexity of test functions., These initial tests
were not totally successful; however, judgement was
made that the problems encountered were understood
well enough to permit implementation of the 9.2 and
9.3 tests., Tests 9.2 and 9.3 were accomplished suc-
cessfully with most test objectives satisfied. The
tests did demonstrate the integrity of the Planetary
Operations design of the GDS; however, GDS 9.2 demon-
strated that the VO simulation math model (OSIM) re-
quired significant development. to be useful for Plane-
tary Operations training exercises, and that improve-
ments were required in usage of the General Purpose
Computer Facility (GPCF) in order to accommodate the
enticipated software loads. GDS Test 9.3 demonstrated
the need for analcg recordings to recover data which

would otherwise be irretrievably lost in the event of
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failure of critical, non redundant equipment at the
64-Meter Deep Space Station, This capability was
added to the 64-Meter Stations in time to support
planetary operations and was utilized on numerous
occasions with varying degrees of success.

There were eight GDS tests performed during the Planetary Opera-
tions Phase Tests., The objectives of these tests were to verify and
demonstrate the readiness of the planetary configuration of the GDS,
including the Viking Project Simulation System (VPSS) to support the
planetary FOPT&T, and the readiness of the GDS to support planetary

mission operations.

GDS Test 10.0 - This test was performed to verify the operations
of the institutional portion of the VPSS (exclusive of the project sup-
plied spacecraft simulation models) interfacing in the long loop mode
with the compatibility test station (CTA-21) located at JPL, Telemetry
data states representative of planetary operations were demonstrated.
The responses of the DSN portion of the VPSS to control messages gen-
ecated in the VMCCCS were verified.

GDS Test 5,1 - This test demonstrated that the VPSS, including the
institutional portion (MSIM) and the Project supplied spacecraft simu-
lation models, OSIM and LSIM, could interface in the long loop mcde
with a 64-Meter DSS to simulate a mission segment encompassing the Mars
Orbit Insertion (MOX) for spacecraft B, This test was accomplished
with DSS-14,

GDS Test 5.2 - GDS Test 5,2 verified the capability of the GDS to
process the spacecraft X-band products, This test was coanducted during
scheduled Viking passes.

GDS Tests 5.31 (DSS-14) and 5.32 (DSS-43 and DS5-63 Individually) -

These three tests were structured primarily to verify readiness of the

plaretary configuration of the GDS to conduct planetary flight opera-
tions, The maximum design loading conditions were imposed consistent
with the committed capabilities of the VMCCC .ud the DSN, Telemetry,
tracking, command and monitor functions were performed simultaneously.
Real time displays wece generated in the MSAs, The generation of

telemetry data records up through and including Experiment Data Records
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(EDRs) and first order VL imaging products were verified. These data

records were generated from Intermediate Data Records (IDRs) which

were prepared by the DSN using interim IDR software. First order Viking
Orbiter (VO) Visual Imaging Subsystem (VIS) products were not verified
because the capability was not yet delivered.

GDS Test 6.0 - This test was structured primarily to verify readi-
ness to support the planetary phase of VFT test and training. A seg-
ment of the Primary Mission Design (PMD) (as reflected in the Flight
Operations Personnel Test and Training (FOPT&T) test scripts) was se-
lected for simulation activity. The math models OSIM and LSIM were

CE e T o T s T e 3 K
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used to provide the simulated telemetry data for this mission segment.
The test involved DSS-14, DSS-43, and DSS-63 in accordance with a repre-

g R A s RN e

sentative 24 hour time~line. Batch processing of software programs
: representative of the selected mission segmert was accomplished in the

Mission Control and Computing Facility (MCCF) 360/75 and GPCF 1108 com-
puters for downlink processing activities,

; GDS Test 11,0 - This test was incorpocated into the GDS Test Pro-
3 gram in order to verify capabilities which were not available for GDS
Tests 5.31 and 5.32 and 6.0 to verify the untested capabilities (except
q VIS first order processing) and to demonstrate the readiness of the

k= planetary configuration of the GDS to support real time and near real

- time planetary operations. The requirement to test VIS processing had
2 not been incorporated into this test in view of the extensive VIS data
processing performed as a normal part of cruise operations. This test
g verified the suitability of special GDS configurations which had been
3 devised to support three critical mission activities - (1) Mars Orbit
Insertion (2) Viking Lander Direct Link Transmissions and (3) Trans-

mission of critical data over the Viking Orbiter high rate subcarrier,
QUALITATIVE RESULTS: This section describes the specific benefits derived

2 from the GDS Test Program, and a critique on the successes and diffi-
1 culties encountered.

274




1)

2)

3)

Numerous hardware and software design deficiencies were ex-
posed during the tests. 1In most cases, these deficiencies
were corrected prior to the start of VFT training. The train-
ing exercises were thus conducted with a minimal number of
incidents caused by design errors, permitting the VFT to con-
centrate on their training objectives.

During conduct of the launch and cruise phase GDS tests, a
list of liens was compiled for unexpected characteristics of
the GDS, Each lien was dispositioned in one of two ways:

the lien was removed by corrective action for the observed
characteristic, or the lien represented a constraint or char-
acteristic which must be observed by the VFT in planning and
conduct of mission operations, As a result of periodic re-
views on the status and disposition of these liens, a deci-
sion was made to generate a document which compiled all guide-
lines, constraints and limitations on the operation of the

GDS which were identified during all Ground Systems Test
(including the GDS tests and all other tests of the FOS test
program) and which must be observed during Viking flight opera-
tions, This document, VFT-003 Viking 75 Project Guidelines
for the Operation and Use of the Viking Ground Data System,

was published on 24 June 1975 and was continually updated
throughout the planetary development phase and planetary
operations of the Viking Project.

Due to limitations of the simulation system, some capabilities
which were required for mission operations were not tested
during the GDS test program, The simulation system was ade-
quate to perform end-to-end tests of the real-time portion

of the GDS, but the data was not adequate in some cases to
generate non real time products. In one particular instance,
orbiter image data (VIS) érocessing, the lack of adequate
testing resulted in the discovery of serious VIS processing
problems during cruise operations. Fortunately, the exten-

sive processing of VIS data during cruise operations enabled
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most of these problems to be solved prior to the start of

the planetary operations wherein the VIS Data was critical

for selection of & landing site. This panic could have been
avoided if the simulation system requirements were more care-
fully reviewed early in the development cycle and all defi-
ciencies eliminated., The importance of an early and sustain-
ing interraction beiween the developers of the simulation
system and the users {the VFT, including the GDS Test planners)
cannot be overemphasized. In the Viking program, this inter-
action was not as thorough as it should have been which not
only caused some test deficiencies as described above but

also led to the necessity for a multitude of changes in the
simulation system during the GDS Test and FOPI&T period.
Numerous GDS tests, special tests conducted by GDS personnel,
and tests conducted by the VMCCCS personnel were run to as-
certain Flight Support 360/75 computer loading guidelines.
(The multimission real time computer) Each of these tests

had slightly (or markedly) different results because the load-
ing on the computer proved to be sensitive not only to the
input data and the data quality, but also to the manner in
which the computer is utilized by the various users. As a
result, the loading guidelines changed through an evolutionary
process by the identification and measurement of the loading
parameters until finally a set of guidelines was established
that satisfied both the needs of the Viking Project and the
MCCC.

During the course of preparation for planetary operations,

the GDS configuration (hardware configuration and MOSS)
changed as the detail planning matured. The GDS Test Program
was initially scheduled to be cumplete prior to the start of

the VFT planetary test and training program. Before the pro-

‘gram was complete, it became clear that additional tests were

required, and hence GDS Test 11.0 was incorporated into the

program. Fortunately the resources, both GDS and personnel,
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6)

7

could accommodate this addition. 1In the future, a GDS test
should be planned as a contingency just prior to the start
of operations to verify the final hardware/software configura-
tion.
During the planetary GDS test period there were three major
activities competing for the GDS and VFT resources:
a) Conduct of the GDS tests including post test data proces-
sing;
b) Preparation for the VFT Planetary test and training pro-
gram;
c¢) Conduct of Viking cruise operations.
These three competing activities taxed some elements of the
VFT to the limit, As a consequence, some of the post test
data processing activities as defi;ed in the GDS test scripts
were not completed prior to the next milestone (although, in
most cases, complete enough to make meaningful conclusions).
Moreover, when incompatibilities were discovered fixes had
to be devised in an unexpectedly short time period to prepare
for the next activity. The GDS and VFT did achieve the state
of operational readiness on schedule. However, in retrospect,
the planetary GDS test program should have been started one
month earlier to reduce the conflict for resources and permit
the completion of all planned test activities. This more
conservative approach would have increased the benefits of
the GDS Test Program.
One of the fundamental objectives of the GDS Test program was
to verify the readiness of the configurations of the GDS to
support the VFT test and training. Hence, the VFT had to
implement the test sequences under the direction of G per-
sonnel without the prior benefit of training, This proved
to be a difficult challenge to which the VFT favorably re-
sponded. The training benefits were important not only during
the Launch and Cruise Phase GDS Tests, but also during the

planctary phase wherein the VFT had experiance in cruise
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operations. The planetary configuration of the GDS was far g
more complex than the cruise configuration. Furthermore, in
many instances, the planetary modes were contrary to the
cruise experience of the VFT, thus leading to confusion with
regard to specific instructions in the test SOEs., For example,
during cruise the HSDL was customarily used for VO high rate
telemetry data at 1 Kbps and 2 Kbps. In the planetary opera-
tions VO high rate data is normally routed over the WBDL, ir-

4 e

respective of data rate. Thus, an invaluable by-product of

the GDS Test program was the experience gained by the VFT

and these benefits were realized during the very successful
test and training program which followed.

8) The test schedule philosophy required scheduling retests for
all of the complex combined systems tests. This provided
the assurance that resources would be available for a retest
in the event that (1) the test was not successful, or (2)
problems were identified in this test which required fixes
or workarounds. In this manner, difficult scheduling pertur-
bations on short notice were avoided. 1If the retest was not
required, then the facilities were released back to the in- *
stitutions to support other activities, In the main, this
philosophy proved to be prudent. More than half of the sched-
uled retest periods were actually needed. In two cases, ad-
ditional retests were required beyond the planned retest
periods, These two retests were easily accommodated, because

there remained some unused retest periods from other tests,

QUANTITATIVE IMPACT: There were 19 GDS tests and eight retests conducted
during the launch and cruise phase, not including the two tracking
tests conducted with a flight spacecraft. The total test hours corre-
sponding to these 27 tests was approximately 260 hours, not including
countdown activities or pre and post-test data processing, Three of
the 19 tests involved the generation of non-real time products follow-

ing the tests, The launch and cruise phase tests were conducted
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between February 1975 and July 1975. During this period, the manpower
from the GDS test organization was nine engineers and one aide., There
were approximately eight VFT personnel that supported each test, in ad-
dition to the dozens of institutional personnel (DSN and VMCCCS), The
time required for each of the VFT support personnel to prepare for the
test was approximately eight hours. The manpower required to generate
the post-test data procucts was not significant.
Following completion of the launch and cruise phase tests, the
GDS test organization was reduced to three engineers and one aide to
prepare for the planetary phase tests., These tests were conducted be-
tween November 1975 and May 1976, with the peak load occurring between
December 1975 and February 1976. During the planetary phase, seven
tests and four retests were conducted. The total test time was approxi-
mately 140 hours. The manpower required for post-test activities was
significantly greater than that required for the launch and cruise
tests. An estimate of the number of manhours is not available, since
no accounting records were kept. A reasonable guess is two to three
manmonths for VFT personnel., As noted in the previous section, the
GDS test activity competed for resources with other activities, and
not all planned post-test activities were actually accomplished. Two
of the Planetary GDS Tests utilized the spacecraft simulation models,
OSIM and LSIM. The time required by the model operators to prepare
for the tests was significant; however, there are no specific account-
ing records from which to generate actuals, A reasonable guess {s
four manmonths,
In summary, the GDS Test Program expenditures are estimated as
follows:
1) Twenty-six tests plus 12 retests for a total of 400 hours of
test time;
2)  Approximately 600 hours of DSS time including 400 hours of
test time and 200 hours of countdown;
3) Approximately 1000 hours of "360/75 computer time including
780 hours of test time, 50 hours of countdown, and 120 hours

of batch processing and math model preparation;




4)

5)

6)

7)
8)

Approximately 720 hours of Univac 1530 computer time includ-
ing 620 hours of test time, 50 hours of countdown, and 50
hours of non-real time processing;

Approximately 670 hours of Univac 1219 computer time includ-
ing 620 hours of test time and 50 hours of countdown;
Approximately 50 hours of Univac 1108 computer time for batch
processing;

Approximately 92 manmonths for GDS Test Engineers;
Approximately 18 manmonths for VFT support persontel.
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TECHNIQUE RELATIONSHIPS TO STRUCTURED PROGRAMMING SERIES ﬂ

1 The techniques described in this report have at most an indirect rela-
tionship with the Structured Programming Series, as described in RADC-TR-74-
300 (Volumes I through XV). The primary reason for this is that Viking did

not require that structured programming teckniques be followed. Top down
modular designs were used for the Flight and System Test Equipment software
systems, each of which operated in a single computer. 1In addition, these

¢ systems were developed in assembly language code, A top down integrated

3 functional design approach was taken to structure the multi-computer/operat-
ing system/program Mission Operations software system. Although most of
this software was written in FORTRAN, structured programming was not invoked
1 because a significant number of programs were obtained by modifying exist-

% ing code and because the guidelines and constraints imposed by the Viking
Mission Control and Computing Center were restrictive relative to program

3 size and run times. Tables 1 through 4 cross references the techniques

A

described herein with appropriate sections of the Structured Programming
i Series,

4 Table 1
2 Mission Operations Techniques Structured Programming Series
Volume/Sections
: Overview 1/2; 1X/2, 3
High Order Language I/App A
Dif. Dev/Int Sites I/App A
§ Computer Loading Pred. 1X/3, 4
,, Lander Command Simulation
E Prog. & Data Base I/F Mgmt 1/2
On-Line Data File Mgmt 1/2
] Int. S/W Functional Design 1/2; IX/3
Mission Build Process v/2, 3; v1/4
Cog Eng/Cog Prog. 1/2; %/1, 2
1 S/W Data Base Document 1/2
FO S/W Subgroup 1/2; IX/2; X/1, 2
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Table 2
Flight Software Techniques

Overview

Emulated On-Board Computer
VL Comp, EXEC Prog.

H/W S/W Int, Lab.

Ind. Verifier
Timing/Sizing Monitoring
Reg. Gen, for Flt H/W & S/W
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Table 3
STE Software Techniques

Qverview

Test Data Base

Viking Test Language
Test System Simulator
Flt Sys., Test & C/0
Sci. Inst. Perf. Verif,
Viking Test Seq. Gen

Table 4

Management Techniques

SCR/Impact Sum,

Viking S/W Standards

FO S/W Plan

S/W Dev. Mgmt Visibility
Comp. End-to-End Testing
Tech & Mgmt Audits

Ground Data System Testing
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Structured Programming Series

Volume/Sections
X/3; X/1, 2
I11/1
IX/4

Structured Programming Series

Volume/Sections
X/3; X/1, 2

11/1
11/1

11/1

Structured Programming Series

Volume/Sections
IX/3
1/3; v11/3
IX/2
1/2; 1X/2
Xv/2
IX/2
Xv/2
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COMMENTS RELATIVE TO STRUCTURED PROGRAMMING SERIES

Volume 1, Section 2: Viking interfaces were worked early and did not cause
a delay in integration. Test data often was poor, A modular integra-
tion approach was taken, The Mission Build process provided the Pro-
gramming Support Library function.

Volume I, Section 3: Standards relative to code were not enforced,

Volume I, Appendix A: Code efficiency was a function of programmer skill

and clarity of requirements, Compilers caused some inefficiency pro-
blems,

Volume II, Section l: Emulation and special processing techniques were em-

ployed to check Flight Code and STE test sequences before they were
used in test,

Volume V, Sections 2, 3: The Mission Build process provided for Programming
Support Library type functions.

Volume VI, Section 43 The Mission Build process provided a library organiza-
tion similar to that described,

Volume VII, Section 3: Viking found it necessary to develop each type of
document described,
Volume IX, Section 2: Viking applied the four management functions described.

Auditing played a major role in supporting the control function.

Volume IX, Section 3: Viking followed the basic development cycle described,
The reasons for source code updates was primarily caused by require-

ments changes, Pr:gram improvements and program errors also contribu-
ted significantly,
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Volume IX, Section 4: Data was collected relative to computer loading and
associated human activities; it proved to be very valuable. Timing and

sizing dat2 was also needed to prevent overloading the Flight computer,

, Volume X, Sections 1, 2: A process similar to the Chief Programmer Team

i description was used to develop both the STE and Flight software sys-
tems, This tended to reduce upper managements visibility into the de-
velopment process., The Sofiware System Engineer/Cognizant Engineer/
Cognizant Programmer philosophy used to develop the million plus source
card Mission Operations software system significantly differed from

this approach. It proved to be highly successful.

Volume XI, Section 2: Viking experienced most, if not all, of the estimating
problems listed. Because the development period spanned a long period
of time, the Project Manager applied a rather interesting approach to
controlling costs. Every six months or so, the budget allotted to man-
agers would be ordered cut. The managers then would reassess their
resources and drop efforts that had earlier appeared sound, but with
time did not prove to be too practical. In that way, Viking was abie
to adapt to changes in the state of the art and maintain sufficient
resources to implement them without experiencing serious overruns in

most software areas,

Volume XV, Section 2: The end-to-end and ground data support tests, con-
sidered together, provided the actual validation tool for Viking. This
was not foreseen until midway through the development phase, and was

not recognized until the tests were actually performed.
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RECOMMENDATIONS FOR AIR FORCE APPLICATION

Each of the techniques described in this technical report are appli-
cable to specific situations that can arise during the development of a soft-
ware system. The primary value of the report should be to increase the
ability of the Air Force to understand the nature of software development
and to apply this knowledge to recognizing those items that can and have im-
pacted costs and schedules, The following recommendations are made relative
to software management functions:

1) Follow a top down development cycle that includes the following

phases

a, Mission Definition

b, System Requirements
c. System Design

d. Module Requirements
e. Module Design

f. Code anrd Debug

ge Module Test

h. Subsystem Integration
i, System Integration

jo Mission Test

2) Write a software management plan that defines and can control the

development cycle from requirements through final system delivery. The

plan should be geared to the software task at hand. At a minimum it
should specify management roles/responsibilities, documentation require-
ments, developmental milestones, any standards that will be imposed,
reviews that will be required, baselines that will be established, the
software control process, the change control procedure, the level of
testing that will be required, and delivery procedures for the soft-

ware end product,

3) Estabiish meaningful milestones that can be measured. Items such
as documentation release, approvals, reviews, baselines, deliveries

and tests are useful in this context,
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4) Don't wait until the test and integration phase to find out if
the software system will support the mission. Determine as early as
possible if operational problems will exist, Computer loading and

operational analyses can be used to support this function.

5) Stress the importance of requirements to be complete, accurate and
precise, They should go beyond the technical needs for the software
and address such items as all known constraints, human engineering pro-

blems and test considerations.

6) Establish baselines to control requirements, design and end

products,

7) Place requirements under control and don't permit changes to them
to be approved until their impact on costs, schedules and resources

are understood.

8) Stress the importance of designing to meet thc requirenents. Also
stress the importance of designing to take advantsge of the target

computer characteristics.
9) Don't permit coding to begin until the design has been approved,

10) Establish an independent test and integration team to test the
software =2cainst requirements. Let the programmers test the roftware

against its design.
11) Maintain central sources for requirements and data.

12) Gear configuration management to bringing software under control
as soon as practical. Do not begin formal integration until the soft-

ware is under control (i.e. - out of the hands of the programmers).

13) Stress the importance of test data. Begin the effort to collect
it early in the development cycle. Avoid the use of scaffolds (i.e. -
fake, hand generated type data) wherever possible. If they are neces-
sary, have them developed independent of the programmer responsible

for the software that will process them,

14) Plan on uncovering errors during every phase of test and integra-
tion. Greater emphasis on the requirements/design phase should reduce

the number and seriousness of errors,
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In addition to the above it is recommended that the Air Force adopt a
policy of hiring independent software experts to audit the development ap-
proach and problems faced by contractors responsible for building large
and/or complex software systems. The auditors should have experience in
developing similar systems, and the same auditors should not be used over
and over again. The audit report should be made available both to the Air
Force and to the contractor.

No recommendation is offered relative to which is best - the chief pro-
grammer approach, the Software Chief approach (refer to STE and Flight over-
views), the SSE/CE/CP approach (refer to Flight Operations Software Subgroup
and Cognizant Engineer/Cognizant Programmer techniques), or the software
pool approach. The size and/or nature of the software zystem will influence
most ccitractors as to which approach is most appropriate. In any event,
the Air Force should recognize that each of these approaches are sound, and
the selection of the perticular approach should be left up to the software
developer,

Since Viking did not require structurad programming techniques be
followed, no recommendation can be made relative to their value. However,
some techniques associated with structured programming were followed. These
included modular design, in-line procedures, minimizing the use of uncondi-
tional transfers, and code walk-throughs. All of these features tended to

improve software reliability.
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RECOMMENDATIONS FOR FURTHER STUDY AND ANALYSIS

1. The data driven design concepts used for the flight and test software
systems proved operationally to be extremely practical. Modifications to
lander hardware components could easily be tested by merely changing data
base items. Significant and safe changes to landed operations were avail-
able to the Viking Flight team, who uplinked 60000 words of code controlling
data modifications to each of the Viking Landers. It is therefore recom-
mended that the Air Force study the influence that designing requirements

to be data rather than code has c¢cn system reliability, schedules and costs,

2. The issues involved with software portability need further study, Em-
phasis slould be placed on systems as well as programs. Topics that should
be addressed include programmer education, pathfinder studies, design stan-
dards, language choices, phases of testing, data base management, interface
requirements, translation techniques, and methods that can maintain near

optimal performance across differing computer capabilities,

3. The concept of attempting to write a Users Guide as part of the require-
ments phase should be studied from human engineering and software reliability
point of views. Such a technique could prove to be cost effective from e

software change point of view,

4, The relative values of software documentation should be studied. This
would include establishing minimal documentation requirements, concepts for
reducing the amount of documentation and increasing reliability through cen-
tralization, determining how long documents should be maintained by type, and

setting standards for the content, controul and organization of the documents.

5. A study to determine the value of a Chief Programmer approach as a func-
tion of the size and scope of the software task, especially as it relates to
software only or software/hardware development, should be made. Particular
emphasis should be placed on determining its impact on management visibility
during the development phase. Methods for improving the ability of the soft-
ware developers to understand technical and human engineering requiremerits

should be addressed.
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6. A study should be conducted to determine aids, mechanisms, tools and
procedures that can be used to provide for early software control to improve

system reliability.

7. A trade-off study on the types of functions where assembly language is
cost effective over HOL should be made., The average assembly language pro-
grammer is of higher quality than the average HOL programmer. In all proba-
bility, the bit manipulating Viking Lander decalibration and decommutation
program would have been better designed, smaller and more efficient if the
original requirement had been to write it in assembly language rather than
FORTRAN,
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ACRONYMS AND NON-STANDARD ABBREVIATIONS
AFETR Air Force Eastern Test Range
AGE Automated Ground Equipment
AHCF Analog/MHybrid Computing Facility
BCD Binary Coded Decimal
ccpu Computer Control and Display Unit
€DC Central Data Corporation
CE Cognizant Engineer
cp Cognizant Programmer
CPU Central Processing Unit
CRT Cathode Ray Tube
DART Dynamic Algorithm Replacement
DAS Direct Access Space
DCE Data Conversion Equipment
DSI Data Systems Integration
DSN Deep Space Network
DSPE Data Systems Project Engineer
DSS Deep Space Station
EDR Experiment Data Record
FCT Flight Article Compatibility Tests
FIFO First In First Out
FOPT&T ¥light Operations Personnel Test and Training
FOS Flight Operations System
FOWG Flight Operations Working Group
FRD Functional Requirements Document
GCF Ground Communication Facility
GCSC Guidance, Control and Se juencing Computer
GDD General Design Document
GDS Ground Data System
GPCF General Purpose Computing Facility
GPSSM General Purpose Simulation System Modcl
GSFC Goddard Space Flight Center
HOL High Order Language
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HSDL
ICCB
ICS
ICSSE
IDR
IPDS
IPL
1/0
I0P
IRU
ISAM
ISFD
JPL
KSC
L&C
LCOMSM
LOL
L/9ST
LPM
LRC
MCCF
MMC
MO&D
MOSS
MSA
MICF
NEPN
NoCC
0CIMSM
OLDFMS
ORT
08
PMD
PTC
RA

L R L e R e e T e e R A s e i 7 3 e

High Speed Data Line

Integration Change Control Board
Interpretive Computer Simulation
Integrating Contractor Software System Engineer
Intermediate Data Record

Interface Point Data Set

Image Processing Laboratory
Input/Qutput

Input/Qutput Processor

Inertial Reference Unit

Index Secuential Access Method
Integrated Software Functional Design
Jet Propulsion lLaboratory

Kennedy Space Center

Launch and Cruise

Lander Command Simulation (program)
Low Order Language

Lander/Orbiter Software Test (plan)
Lines Yer Minute

Langley Research Center

Mission Control and Computing Facility
Martin Marietta Corporation

Mission Operations and Design (directorate)
Mission Operational Software System
Mission Support Areas

Mission Test and Computing Facility
Near Earth Phase Netwr.ck

Network Operations Centrol Center
Orbiter fomputer Simulation (program)
On-Line Data File Management System
Operationsl Readiness Test

Operating System

Preliminary MNission Design

Procf Test Cap.ule

Radar Altimeter

291

T i ROV FIn ¥ Ry ez ot 8]




e < BRI A SN R AVEIE e AT g il gAMb 27 S AR, San I P AN AT st PRLE it SO Sl ol CQITTIL weerae o)
Radar Return Simulator

RS Reactica Control System

RTPM Real-Time Program Management

SACT Status and Criteria Table

SCR Softwere Change Request

SDBD Software Data Base Document

SFD Software Functional Description

SOE Sequence of Events

SRD Software Fequiremeants Document

SSE Software System Engineer

STACOP System Test and Checkout Program

STE System Test Equipment

SWSG Software Sub-Group

TDE Terminal Descent Engine

TDLPR Terminal Descent Landin; Radar

TDS Tracking Data System

TRB Translation Control Block

TRCB Transfer Control Block

TSE Test Support Equipment

TSS Test System Simulator

UAT Users Acceptance Test

UvT Unit Verification Test

VADF Viking AGE DPzcommutation File

VAGF Viking AGE Group File

VALF Viking AGE Interface File

VvCs Viking Change Summary

VDA Valve Drive Amplifier

VFT Viking Flight Team

VIC Viking Integration Change

VIS Viking Imaging Subsystem .

VL Viking Lander

VLC Viking Lander Capsule !

VLSSE Viking Lander Softwarc System Engineer




VMCCC
Vo
VOSSE
VPO
VPSS
VSIG
VTL
VTocC
WBDL

Viking Mission Contrcl and Computing Center
Viking Orbiter

Viking Orbiter Software System Engineer
Viking Project Office

Viking Project Simulation System

Viking Software Integration Group

Viking Test Language

Volume Table of Contents

Wide Band Data Line
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BASE UNITS:
Quantity
length
mass
time

electnic. current
thermodynamic temparsture
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
sohd angle

DERIVED UNITS:

Acceleration

activity (of & radioactive source)
angular acceleration
angular velocity

area

density

electrit capacitance
clectrical condut tance
electric field strength
electric inductsnce
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency

tlluminance {
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
puwer

pressure

quantity of electnicaty
quantity of heat
radiant intensity
specific heat

stress

thermal condud ivity
velooity

viscosity, dynamic
viscosity. kinematn
voltage

volume

wavenumber

work

S1 PREFIXES:

METRIC SYSTEM

Unst

metre
kilogram
second
ampere
kelvin
mole
candels

radian
steradien

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

Lilogram per cubit: metre
farad

siemans

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

Jux

candels per square metre
lumen

ampete per metre

weber

tesla

ampere

wsil

pascal

<oulomb

joule

watt per sterachan

joule por kilogram-kelvin
pascal

watt per metre-kelvin
metre per sixond
pascal-socond

square metre per sex ond
volt

cubic inetre

reciprocal metee

joule

Multiphcation Facturs

1 000 000 OB D00 + 106

1 000 000 000
1 000 000 -
1 000 -
100
10 -
01
001
0001 -
0000 00V -
0.000 046 001 «
0 000 000 000 001
0 ({10 000 (1 10 001
0 LK) (00 000 DIKE 4H) 001

* To bee avarded where possible

v
o~
1
100
"
10!
10 ?
1o
10 ¢
10"
1"
10-
‘|| L]

o s 5 4 s | B

S1 Symbol

m

kg

s

A

K

mol

cd

rad

1

¥

S

H

\V

v

J

N

Hz

Ix

im

wb

T

A

W

Pa

C

]

Pa

\I

I
Profix
tera
RINS
mogs
kilo
herto®
doks®
dect®
centl®
milli
micm
nano
plio
fomto
atto

Farmula

nvs
(disintegration)is
radrs
rad’s
m
kgm
AV
AN
Vim
V-s/A
WIA
V:A
WIA
N-m
JUN
ke-mis
{cycla)is
inum
cdim
cd-sr
Alm
\.g
Wbm

Vs
N'm
A-s
N-m
Wisr
Fhg-K
Nm
Wm-h
ms
Pas
s
WA

m
{waveym
N-m

St Symbal

b
{,
M
1Y
h
da
d
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MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advancad
development programs in command, control, and communications
(¢3) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic gquidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainabilitv and
compatibility.
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