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EVALUATION

This report describes the softwa'ie development technology and management
practices employed on a large and complex system development by the Martin
Marietta Corporation.

The intent of the RADC program to which this document relates, TPO V/3.4,
is to describe and assess software production and management tools and methods
which significantly impact the timely delivery of reliable software.

The study contract is one of a series of six, with different firms,
having the similar purpose of describing a broad range of techniques which
have been found beneficial.

RADC is engaged in promoting utilization of Modern Programming Technology,
also called Software Engineering, especially in large complex Command and
Control software development efforts.

fG~rW.WEBER
Project Engineer
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PREFACE

This document is organized to permit the reader to extract any of the

three overview.; or 30 techniques describing Viking software development as

stand-alone papers. In addition, the first page for each technique prcvides

the reader with a summary, applications consideration and recommendation for

that technique. Thereafter, the history, description, qualitative results

and quantitative impact of using the technique are described.

The preparation of this report could not have been accomplished without

considerable assistance from fellow Martin Marietta employees who were or

are members of the Viking Flight Team. Grateful acknowledgement is expressed

to the following individuals for their support.

J. R. Anderson J. D. Goodlette C. A. Ourada

W. B. Anthony K. W. Graham C. W. Ratliff

J. A. Beacon J. R. Herrington D. G. Roos
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D. L. Davidson J. K. Kerekes E. A. Scown

P. A. DeMartine W. S. Lakins P. S. Stafford

N. G. Freeman W. J. Luckow K. F. Thompson
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Mission Operations Software Development Overview

1.0 Introduction

The Viking Mission Operations Software System (MOSS) was developed

over a three year time period. Phased deliveries of integrated software

systems were needed to support test, training, launch, cruise and planetary
operations. Capability was added and improved with each new system. This

overview presents a brief history of the development of these systems, stres-

sing the problems encountered and their resolutions. Each system was de-

livered on schedule. The overall approach taken by Viking management was an

excellent one that led to the availability of a very efficient software sys-

tem during planetary operations. Because of the soundness of this approach,

the problems encountered during development were all minor in nature.

1.1 The Operational Software System

The Viking Mission Operations Software System (MOSS) consists of six

interrelated software subsystems. They were designed to support Mission

Planning, Tracking and Flight Path Analysis, Orbiter Uplink, Orbiter Down-

link, Lander Uplink, and Lander Downlink activities. The system was in-

stalled in the Viking Mission Control and Computing Center (VMC 3 ) at the Jet

Propulsion Laboratory (JPL), Pasadena, California. The VMC3 consists of
three facilities; a Mission Test Computer Facility (MTCF); a Mission Control

Computer Facility (MCCF); and a General Purpose Computer Facility (GPCF).

Viking Orbiter (VO) real time telemetry software and near real time

first order image processing software resided in a dedicate.' 1230/1219/1616

computer system in the MTCF.

Viking Lander (VL) real time telemetry software, VO and VL real time

* command software, and VL near real time first order image processing soft-

ware were processed by a multi-mission (MVM, IIELIOS, PIONEER, VIKING) real

time 360/75 computer system in the MCCF. A second 360/75 computer set was

s ipplied by the ?ICCF to support batch operations. The software processing

functions assigned to this computer were VL command generation, power and

thermal performance, system data record decommutat ion and decelibration,

experiment data record generation, VO command generation, and Viking ground
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support scheduling. The batch operation was under control of a real time

operating system and lacked many features common to general purpose computers.

The GPCF provided two 1108 general purpose computers to the project.

One was used for Mission Planning, science analysis and data record genera-

tion; the second was used for flight path analysis and sequence generation

processing.

Second order image enhancement software was developed by the Image

Processing Laboratory (IPL), a separate division of JPL. This software was

not considered a part of the MOSS and was not subject to Viking MOSS Con-

figuration Control.

Thle Deep Space Network (DSN) supported the command and telemetry link

between the spacecraft and JPL. High speeo and wide band data lines connec-

ted the lab with Deep Space Stations (DSS), where command stack and telemetry

receipt software interfaced the MOSS with the ground radar portion of the

communication link. This DSN software was considered an integral part of

the MOSS and was subject to Viking Configuration Control.

1.2 Multi-Agency Responsibilities

The Langley Research Center (LRC) was directed by NASA to manage the

Viking Project. Contracts were awarded to the Denver Division of the Martin

Marietta Corporation (MMC) and Divisions 220, 430 and 910 of the Jet Propul-

sion Laboratory to develop the operational software system.

MMC was responsible for VL batch and Mission Planning Software, speci-

fying requirements for VL real time so tware, and the integration of the

six software subsystems.

Division 220 of JPL was responsible for VO batch and Tracking and

Flight Path Analysis software, specifying requirements for VO real time soft-

ware, and support the integration of the VO Flight Path Analysis software

subsystems.

Division 910 of JPL was responsible for VMC3 institutional software,

implementing the real time VL and VO software requirements, and maintain.Lng

the integrity of the operational software system thru a process called the

Mission Build.
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Division 430 of JPL was responsible for the development and mainten-

ance of the software installed at the Deep Space Stations.

1.3 Quantitative Software Description

A total of 278575 source cards were delivered to MCCC batch operations

for the 22 Viking Lander software functions developed by MMC in Denver. Ap-

proximately 24000 pages of documentation wam written to support these de-

liveries. lhe cost to accomplish this task was 1783 man months.

These figures account for all activities conducted by the Cognizant

Engineers and Cognizant Programmers to develop the twenty-two programs from

mid 1972, when the effort to write the Software Requirements Documents began,

until early 1976 when the final versions of the programs used to support

planetary operations were delivered.

The documentation figure includes all Functional Requirements, Soft-

ware Requirements, General Design, Program Design, Users Acceptance Test Plan,

and Users Guide documents developed by the CEs and CPs for the 22 prograns.

The estimated effort expended by development phase is as follows:

Requirements 20%

Design 10%

Code and Debug 15%

Test and Integration 257.

Change Traffic 30%

The requirements, design and code phases cover initial program develop-

ment. The test and integration phase covers certification tests at ?#C, pro-

gram conversion at JPL, acceptance testing, and redeliveries caused by errors

detected durini initial integration plus anv new requirementtL incorporated

prior to January, 1975. At that time all planetary programs had been de-

livered to the integration build and all launch and cruise programs were in-

corporated on the initial launch and cruise operational software system

(MOSS 2.1). The change traffic phase represents the level of effort required

to redeliver programs following MOSS 2.1 for reasons of new requirements,

program errors, and performance improvements.
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2.0 The Requirements and Design Phase

2.1 Organizing for the Task

A Flight Operations Working Group (FOWG) was formed and made responsi-

bie for the development of the Mission Operations Software System. Its

membership was made up of the managers responsible for the development of

VL, VO, VMC3 and DSN softwa,, and it was chaired by the LRC Project Soft-

ware Manager.

The FOWG created a Software Subworking Group to manage the details of

the MOSS development. Its first assignment was to document a Flight Opera-

tions Software Development Plan. The subworking group consisted of a Pro-

ject Software Systems Engineer from LRC, an Integration Contractor Software

Systems Engineer (ICSSE) from MMC, a Viking Orbiter Software Systems Engi-

neer (VOSSE) from Division 220, and a Data Systems Project Engineer (DSPE)
3

from the VMC . As chairman of the subworking group, the ICSSE was responsi-

ble for the coordination of inter-agency agreements and the software develop-

ment plan.

The Flight Operations Software Development Plan became the controlling

document for the development of the operational software system. It defined

the change control procedures to be followed within and among the software

developing agencies, specified program documentation requirements on a para-

graph by paragraph basis, defined development, test, integration and delivery

milestones that would permit the FOWG to monitor development progress, iden-

tified roles and responsibilities, and specified configuration management

control procedures. It was concurred upon by each member of the FOWG and

approved by the Viking Proj-.t Manager.

2.2 Defining the Software System

Software Functional Descriptions (SFD's) were written to document the

purpose, description, input/output requirements, and estimates of frequency

of use and computer CPU, core and mass storage resources required for each

operational software system candidate program. They were used to develop

an Integrated Software Functional Design (ISFD) which showed the top down

design of the data flow for the six software subsystems. This task required

a considerable amount of iterative effort in obtaining inter-agency coordina-

tion and agreement. Functions were combined, separated, created and discarded.
8



The SFD/ISFD concept proved to be an extremely useful software manage-

ment tool. It provided a basis for developing schedules, planning resources,

and making personnel assignments on a program by program basis. The ISFD was

the baseline for program definition and interface requirements. It provided

the means by which both Preliminary and Critical Design Reviews on system

functions and data flow were held. The SFD's became the basis for elimina-

tion of duplicate functions and for computer loading studies, which were

used to make program/computer assignments.

2.3 Three Mission Operations Software Systems

During the development of the Integrated Software Functional Design

the Flight Operations Working Group formulated plans for its implementation.

Resources available to support software integration, spacecraft compatibility

testing, and personnel training dictated that three Mission Operational Soft-

ware Systems (MOSS) would be required.

MOSS 1 would contain only those software functions required to support

Data System Compatibility tests. MOSS 2 would iacorporate the additional

software functions required to support Data System Pathfinder Compatibility

testing, Ground Data System Launch and Cruise Configuration testing, Flight

Operations Launch and Cruise Configuration Personnel Test and Training,

Flight Article Compatibility testing, and Flight Operations for Launch and

Cruise. MOSS 3 would contain all software functions identified in the ISFD

and would be used to support Ground Data System Planetary Operations Con-

figuration Testing, Flight Operations Planetary Operations ronfiguration

Personnel Test and Training, and Flight Operations for Planetary Operations.

2.4 Different Development Philosophies

The Jet Propulsion Lab had more than a decade of exp r-ence in develop-

ing software to support space exploration missions. Most of the software

functions needed to support the Viking Orbiters were therefore obtained by

modifying existing programs already operational in the GPCF. This led to a

bottom up program development approach which required that the Viking Orbiter

software subsystems adapt to the established conventions and procedures for

using the individual programs. Subsequent computer loading studies, geared

9



from a cost effectiveness point of view, took into account where software

already existed. As such, only one VO program, the Command simulator, was

moved to the MCCF to balance the computational load of the MOSS.

The challenge to HMC to develop the Viking Lander software subsystems

was significantly different. Some descent analysis, power and thermal pro-

grr-ns had been developed on MMC computers that could be modified to support

lander Flight Path Analysis and spacecraft performance functions. But the

mission planning, ground resource, sequence generation, command generation,

flight computer simulation, data decommutation and decalibration, and sci-

ence analysis functions had to be built from scratch. The process was fur-

ther complicated when the computer loading studies indicated that these

software subsystems would have to be split between the MCCF and GPCF. This

added the requirement that a file management program be designed to control

inter-computer data transfers to prevent the overloading of available tape

drive resources.

A top down approach to VL software system development was adopted. It

included parameter passing and common data base file management control

functions, common time utilities used by all VL programs, and required the

use of unique file header records that were compatible with both the MCCF

and GPCF.

Commitments by JPL to other projects limited computer resources avail-

able to the Viking Project. For this reason the MMC software was developed
3

in Denver on non-target computers, and the VMC issued a Guidelines and Con-

straint document that specified module size, number of tape drives and mass

storage requirements for the off-site developed software.

Programs destined for the GPCF were developed on CDC 6500 series computers,

and those for the MCCF on IBM 370 computers. Minimal 1OL c Jing standards

were adopted to simplify the process of converting to the target computers.

Pathfinder studies were made that indicated the conversion process would

not pose any serious problems.

Considerable effort was expended in an attempt to standardize inter-

face naming conventions and header record requirements for the VO and VL

software subsystems. However, because of the differences in development
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philosophies, a common approach agreeable to both parties could not be

found. Eventually, the VOSSE was made responsible to integrate the VO sub-

systems under supervision of the ICSSE, who remained responsible for the

integration process. Interfaces between the two subsystems were kept at a

minimum. They were individually negotiated, often with considerable compro-

mise. However, because the VO/VL interfaces were non-standard relative to

each system, they received greater attention then they might have otherwise.

2.5 Milestones and Schedules

A hierarchy of schedules were developed to provide an orderly delivery
3

of software to the VMC that would not compromise available computer re-

sources. High level schedules provided significant milestones for upper

management visibility. Lower level schedules were very important for mon-

itoring programmers progress on coding and testing. They were very detailed.

2.6 The Development Cycle

A cognizant engineer and a cognizant programmer were assigned to each

program. The cognizant engineer formalized the program requirements in a

Software Requirements Document (SRD). Approval of the SRD authorized the

cognizant programmer to design the basic flow for the program and write a

General Design Document (GDD). After the GDD was approved, the cognizant

programiner began coding and the cognizant engineer wrote a Users Acceptance

Test Plan (UAT). The rationale was that the programmer would test his code

during the debug stage and implement the design, whereas the engineer would

assure that the program formally met the requirements specified for it in

the SRD. Some software developers do not like this approach, claiming the

programmer, rather than the engineer, knows best how to test the program.

Nevertheless, the process adopted by Viking proved very effective. Its weak-

nesses were that many vague SRD's were approved because users did not under-

stand all that was needed, which led to confusion, replanning, reprogramming,

retesting and redelivery, and that some engineers failed to write UATs that

fully tested the requirements. Its strengths were that it uncovered numerous

misunderstandings of requirements by programmers and disclosed cases of poor

program design. Observe that the weaknesses can be controlled by management,

whereas the strengths are difficult to realize if the programmer testing

approach is adopted.
1I
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Concurrent with the requirements/design/code phase were the develop-

ment of two extremely important and useful documents. They were the Soft-

ware Data Base Document (SDBD) and the Lander Otbiter Software Test Plan

(L/OST Plan).

The SDBD described in exacting detail each file and parameter that

would reside in mass storage accessible by Viking program software. Tile

cognizant engineers and programmers were required to sign an agreement for

all files produced or processed by their programs. This agreement indicated

that they understood the file structure and data contents, and that the file

was compatible with their program. The interface agreements were then ap-

proved by the ICSSE, concurred upon by the VOSSE, VLSSE and/or DSPE as ap-

propriate, and included as part of the file descriptions. The SDBD was in-

valuable in locating errors and resolving interface problems; when an inter-

face test failed the document invariably could be used to point directly at

the cause. The SDBD also contained descriptions of utility programs and

the Common Data Base.

The L/OST Plan specified the requirements for individually testing

each interface shown in the ISFD. It included test descriptions, resources

required, success criteria, and procedures. This permitted management to

foresee, early in the development cycle, the facilitik:., personnel and data

that would be required. The plan also described single thread tests for

the major software subsystems that would demonstrate the Cata flow and in-

dicate what procedures would be required to use the software as a system.

During the software coding time period plans as to how the software

sy.;tem would be integrated and implemented were finalized. MC software

would be required to pass a formal certification test in Deiiver prior to

being taken to Ji'L. The test would be similar to the UAT. A Viking Lander

Software Systems Engineer (VLSSE) was appointed as a member of the Software

Subworking Group to monitor the certification process. The UAT's would be

rum from private software sources at JPL. The ICSSE was responsible for VL
3programs, the VOSSE for VO programs, and the DSPE for VMC programs. Tle

ICSSE would chair all Viking software post UAT reviews. Following this the

programs would be subject to change control, placed on an Integration Build

arnd unit verified by Data Systems Integration (1)SI). L/OST integration

12



would then be performed by the ICSSE and VOSSE, DSI next would test the

software to assure it's compatible with the multimission environment. At

specified points in time, copies of the Integration Build would be made that

became the current version of the Mission Build. Spacecraft compatibility

and Ground Data System test and training could then be conducted using the

Mission Build. Finally, after test and training were completed, the Mission

Build would become the Mission Operations Software System.

Post UAT changes to programs caused by new requirements or software

failures would be controlled by an Integration Change Control Board (ICCB).

Requirements changes prior to the UAT complete milestone already were under

control of the ICCB. This occurred when the SRD was approved.

2.7 Additional Comments

During the Requirements and Design phase, progress towards generating

the three Mission Operations Software Systems (MOSS) proceeded relatively

smoothly. Milestones were added and changed under Flight Operations work-

ing configuration control as the process unfolded. Schedules were modified

to accomnodate new requirements, and plans for future testing evolved as

management gained insight into the system description and integration approach.

A clear cut workable approach to the development cycle was formalized.

Management had some concern about the constant reworking of schedules

caused by changing requirements. The software was being developed in par-

allel with Flight hardware and software. Changes in those areas created the

need for changes to the operational software under development. The result

was that the time period allotted for integration functions had to be re-

duced, since the delivery date for the on-line MOSSs could not, be changed.

The schedule for MOSS 1 proved to be overly optimistic ii that it

moved scheduled software delivery dates forward by several months. This was

to impact the development of MOSS 2 significantly, because it prevented pro-

grammers from developing MOSS 2 software during the MOSS 1 UAT and integra-

tion time period. The impact should have been foreseen, hut it was not.

File management software should be developed before any program that

will he ,lependent upon it is developed. This was not accomplished on Viking

13



because of a combination of events. When MOSS 1 was defined, the file man-

agement software delivery schedule was moved forward two months so that it

would be delivered first. The Software Integration group, responsible for

its development, was understaffed at the time, so that only one programmer

was available to write tile software. This was further complicated by the

fact that the JPL computer systems were not well documented at that time.

The result was that the MOSS 1 file management software was poorly designed

relative to MOSS 2 software requirements, especially in the area of VO/VL

interfaces. It became mandatory that a redesign effort be taken in parallel

with MOSS 2 software deliveries, resulting in frequent failures during MOSS 2

interface testing. Hlad it not been for the fact that it was under develop-

ment by an exceptionally cimpetent and dedicated individual, serious schedule

slippages would have occurred.

An item that was not worked properly during this time period was tile

negotiation of the structure, contents, and naming conventions of VL/VO in-

terface files. The VOSSE and ICSSE agreed to negotiate file naming conven-

tions and header record structures, and continued exchanging information as

the individual systems developed. As matters turned out, the ICSSE did not

have sufficient Project support to force compliance with agreements made

with the VOSSE, and because of the divisional organization at JPL the VOSSE

=did not have full control of the VO software. This proved to be a mistake,

since final negotiations impacted developed software in both systems.

Software requirements should have been given far more IttentLen by

middle management than they received. Items that should have been stressed

more include program run time, .,rinted output formats and quantities, and

plot requirements. In addition, had this attention been extended to include

critical reviews of the initial program designs, some of the design problems

%incovered after program delivery may hrave been avoided.

A rather interesting technique was used by NASA to validate the mal-

agement approach and svste design. NASA gathered a committee of software

experts from around the country to review and critique Viking software during

this phase. The conuiiittee agreed with the overall approacll, and contributed

many constructive suggest ions.
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3.0 The Test and Integration Phase

3.1 User Acceptance Testing

Conversion of lMC developed software and VO and VL User Acceptance

Testing proceeded nominally on the 1108 computers in the GPCF, but were

difficult to accomplish on the 360 computers in the MCCF. The 1108 was a

general purpose computer with considerable mass storage capability, which

made it easy to use. In addition, turn-around time on the 1108 was

reasonable.

The 360 was controlled by a real time operating system designed to be

efficient for command and telemetry functions. Batch operations were re-

stricted to 400 - 500 Kbytes core. No roll out/roll in features were avail-

able. Programs were scatter loaded. Direct access storage space was limi-

ted. The user was required to request a specific disk pack computer con-

figuration be mounted to permit Viking softwar;e to operate.

The first programmers to bring their software to the MCCF for conver-

sion and User Acceptance Testing began slipping their schedules almost im-

mediately because of poor turnaround time. Two to three day delays were not

uncommon. It became apparent to the ICSSE and the DSPE that Viking software,

which was the first major batch software system supported by the MCCF, would

require special treatment.

The resolution of the 360 computer turnaround problem was to block

computers for Viking users. The ICSSE submitted 360 computer usage fore-

casts to the DSPE on a weekly basis. Schedules were then issued which

allowed Viking users to know when computers would be available during the

following week. Typically, four to six hour blocks of time were scheduled

on second and third weekday shifts, and during daytime hours on weekends.

When a computer was blocked for Vikiiug, programmers could ac" -ss it from

peripheral equipment located in an adjacent user area. They could monitor

the computer run and load status, and receive their output promptly.

The 360 blocked computer environment caused programmers to develop bxd

habits. They would come prepared to make as many job submittals As possible

during block time, often making conflicting ones that would hang the computer.

15



They would overload the computer, causing the system to crash or their pro-

grams to abend. They only glanced at their output during block time, and

submitted many sloppy and unnecessary runs. They overworked themselves and

kecame inefficient. However, generous amounts of block time were made avail-

Z.'hle to them, and ample time had been scheduled for conversions ar , UAT. A

such, they were able to meet their delivery date commitments.

Reviews were held at the completion of User Acceptance Testing. The

cognizant engineers were required to demow trate that their programs had

met all succes.; criteria specified An the User Acceptance Test Plans. The

UAT Review was a profit incentive milestone. Management kept a close eye

on conversion and UAT progress to assure that the milestone would be met on

or ahead of schedule.

Occasionally waivers had to be Isaued for specific subfunctions that

were not included, or because the UAT demonstrated that a prograrl violated

a computer set constraiaL of size, run time or pcripheral equipment usage.

Programs delivered with waivers often were required to be scheduled for cor-

rective redelivery at a later date.

Waivers were also required for functions that had to be tested artifi-

cially because the true environment was not available. This occurred for

some early deliveries because the file management functions that accessed

the common data base, the common data base itself, the time utilities, or

interfacing programs were not ready.

3.2 Unit Verification Testing

As soon as the UAT review was completed, the program was delivered to

DSI to be incorporated on the Viking Integration Build, where it was no

longer accessible , the programmer fo modification. Dur peak delivery

periods, the Integration Build was updated weekly. The DSI was required to

unit verify the program to assure that it had been correctly incorporated

on the build. The unit verification test (UVT) was a subset of the UAT;

the data and procedures to run it were included with program delivery.

The UVT sometimes failed because the program had not been incorporated

on the integration build properly. This happened mostly with 360 operations
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because of the complexity of the build decks, or that a required module was

not on the build, or that a programmer had not turned all of the required

build slip forms into operations. When this occurred the program, or rompo-

nents thereof, had to be redelivered via the same responsive but rigid change

control procedure used for the initial delivery. The fix would Lhen be in-

corporated with the next integration build update, and DSI would rerun the

UVT. Since a month was allotted between the UAT complete milestone and the

UVT complete milestone, these failuces rarely jeopardized schedules.

3.3 Lander/Orbiter Software Test Integration

The initial L/OST integration was conducted following unit verification

testing of the MOSS 1 programs on the integration build. It demonstrated

that what had been delivered was a collection of programs that individually

worked fine to perform their required functions, but could not communicate

with one another to form a workable software system. This find ng was to

prove true for MOSS 2 programs as well.

It should be emphasized that the purpose of L/OST integration was to

assure that every interface would work. Since they were being tested for

the first time, it was anticipated that a large number of errors would be

uncovered.

The high rate of failure detec:ted by L/OST integration established Lhe

extreme value of the SDBD. The reasons for failures could be detected very

quickly. Invariably, only minor changes to code were required to correct

the situation. Had the SDBD exercise not been done as deta2ied and cu piete

as it was, it is reasonable to conclude that the L/OST integration failure

impact would have been major, and the Mission Build would have been compro-

mised. In addition, the SDBD permitted management the visibility to know

that when a change to a program did not affect the SDBD ir: :..y wey, the

change would not affect any other program in the system. Thus, the software

system itself was structured by the SDBD as well as the ISFD.

The reasons for failures detected by L/OST integration wsre numerous"

there had been misunderstandings in the file header structure, precision

requirements, file access methods, fixed vs floating point data, file struc-

tures, number and types of records generated, data units, and operating
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system differences between originating and receiving computer sets. Overall,

eighty percent of the interface tests failed the first time they were at-

tempted, and fifty percent of retesting uncovered new errors.

The fact that the UAT was made -n incentive milestone was q contribu-

ting factor to this finding. Rarely was a schedule missed. But emphasis

had been p on unit testing. Interfaces rarely had been tested because

it was notre uired. Scaffolds had been used to demonstrate that inter-

faces would work, but they hnd been built based on individual programmers

interprelions.

The significant failure rate uncovered by L/OST integration, combined

with a much greater change traffic caused by new requirements than had been

anticipated, was not compatible with meeting Mission Build schedules using

the UAT/Integration Build/UVT/L/OST integration developnmnt cycle. There-

- fore, after failure reports .ere issued and program corrections made, L/OST

integration was performed prior to redelivering the software to DGI. This

permitted corrections to be made for newly discovered interface failures

prior to placing the redelivered ;oftware under rigid change control. This

modification of the development cycle proved to be workable, permittiag pro-

grams to be placed on the integration build that formed a usable software

system.

3.4 The Mission Builds

The concept of the JPL Mission Build is probably of major importance

whenever one conceives of real software control. Despite all the problems

and headaches encountered during the development of Viking operational soft-

ware, which extended well into the compatibility test phase, tLe build pro-

cess permitted man.'ement to control At llt times what ivas o-- -ational, what

SWaS LO ,aceme operational, and how and when it would beconmt , erational.

It allowed management to know what the operational capabilities would be be-

fore a system was delivered. This was because Mission Builds were copies

of the current known status of an integration build. It guaranteed the

structured integrity of the system. Finally, it provided a means for the

software system to evolve and mature over the eighteen month period prior

to planetary operations.
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As previously mentioned, Mission Builds were copies of the Integra-

tion Build taken at scheduled points in time. Each was given a unique MOSS

designation, and changes to them were not permitted. Controlled overrides

to portions of programs on the build were possible, but highly visible.

Such patches were permitted to be incorporated to correct local problems

only when authorized by the Mission Director.

MOSS 1 consisted of a small subset of Viking software. It was not

adaptive, and virtually worked with "canned" runs. MOSS 1.1 had to be sched-

uled to incorporate changes to the real time portion of the system. It was

adequate to support the spacecraft hardware communication compatibility test

for which it was designed.

MOSS 2 incorporated all of the basic Viking launch and cruise opera-

tional software functions. Management realized that the heavy change traf-

fic caused by new requirements, plus the fact that single thread sequence

and compatibility testing could uncover errors, required that several more

mission builds be scheduled. Furthermore, MOSS 2 demonstrated to them that

some of the programs were long running resource hogs that would require

performance improvement to support the mission.

IVor these reasons, five mission builds were scheduled as updates to

MOSS 2. Each would be designed to incorporate changes required to support

specific spacecraft compatibility tests conducted in preparation for launch.

The final update, MOSS 2.5, would support launch and cruise operations.

Following the first mid-course maneuver, MOSS 3 wouL; be placed on-

line to incorporate planetary software functions, to support lander space-

craft compatibility testing, Flight Team test and training, and cruise opera-

tions. Four updates to MOSS 3 were scheduled to incorporate potential, but

unknown, software changes authorized by the Mission DirecLor.

UAT, UVT and L/OST integration milestones and schedules were revised

for the MOSS 2.1 - 2.5 and MOSS 3.0 builds. The development cycle now over-

lapped comtatibility testing for launch and cruise operations.
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3.5 Single Thread Tests

Originally, sequence tests had been incorporated into the L/OST Plan

as the final step of the integration phase. They were intended to demon-

strate that the software system could meet the mission requirements. They

were extremely involved, requiring resources, personnel and data that could

not be supported by the project during the period scheduled for L/OST inte-

gration. For this reason single thread subsystem tests that were designed

to establish that data could be passed between and among programs in a co-

herent fashion were scheduled. The single thread tests generally worked the

first time they were tried, and demonstrated the operability of the system

using the integration build. They were conducted for uplink and FPA soft-

ware scheduled for the MOSS 2 build series. Single thread tests for descent

and downlink science software systems were not performed because the analy-

tical nature of the programs required realistic data, which was not available.

3.6 Sequence Tests

The fact that the final planetary software system did not have to be

placed on line until after launch permitted sequence integration tests to

be conducted from th ., integration build, rather than from a MOSS. This

proved to be a very fortunate turn of events because the tests ran into

problems caused by the lack of good test data during User Acceptance Testing.

Sequence tests were conducted independently for the descent and landed sci-

ence software systems. Single thread uplink capabilities had been estab-

lished, and all program interfaces functioned properly prior to the start

of these tests.

The integration build software system was used to generate uplink

commands, which were written to tape and sent to Denver to be processed by

the Viking Proof Test Capsule and associated test simulators. There, realis-

tic data was generated to simulate descent and landed science. This data

was written to tape and sent to JPL to drive the downlink portions of these

software systems.

The science data went thru the downlink system relatively smoothly.

A new user group was conducting the test, and they experienced some delays

in learning how to use the system. All programs ran as advertised, the
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data flowed to the science analysis programs, which processed the interface

files without error and produced page after page of wrong answers. This

finding was directly attributable to vagueness in specifying software re-

quirements and in the lack of adequate test data during User Acceptance Test-

ing. Once again the SDBD proved its value. The science cognizant engineers

turned to it to learn what their data should look like at each stage as it

passed thru the software system. They were able to state precisely what.

errors had occurred within each program in the loop, including their own.

All the errors were easy to uncover, and were minor in nature. Failure re-

ports were written, programs were corrected and the downlink portion of the

landed science sequence test was rerun prior to program redelivery. This

time the answers were all correct.

The downlink portion of the descent sequence test uncovered a different

problem. The lander decommutation and decalibration function could not pro-

cess the data using the available computer set resources. The function had
passed UAT using scaffold test data that had been good enough to demonstrate

all program functions worked correctly, but not good enough to demonstrate

the program would be unable to handle the quantity of data that would be

required to support descent operations. It took almost a month to finally

piecemeal process this descent data. The descent analysis programs were

then run, and a few minor errors were uncovered. A Tiger Team was formed

to resolve the dccommutation and decalibration problem. The ultimate solu-

tion was to design a software procedure for allocating computer set resources

that would not overload the system. Part of the redesign re.,ired a con-

straint waiver that permitted use of additional tape drives when data for

the two Viking descents were to be processed. The fix was tested and in-

corporated six months before it was needed to support planetary operations.

The sequence tests were the final step in the Mission Operations Soft-

ware Development process.

3.7 Operational Considerations

Users tended to get their own job done by any means available to them,

and without regard to other users. They hogged resources, which often

caused other programs to fail. Because of the limiLted resiurces in both the
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MCCF and GPCF, and the large amounts of data expected to flow thru the sys-

tem during operations, the software integration group came up with the means

by which management could solve the problem. An on-line data file manage-

ment system automated file control in the MCCF that controlled the use of

the limited direct access storage space available in that system. Conflict-

ing programs were not allowed to be placed in a computer at the same time.

Users were required to release tape drives and direct access space as soon

as possible. Files were removed from the system with regularity by the Data

Processing Team. Users were disciplined to get their jobs done at prescribed

times.

During cruise emphasis was placed on permitting limited software changes

as approved by the Project Manager. Generally, modifications were permitted

that improved program efficiency. The user engineers responded favorably

and creatively in this atmosphere.

Shortly before planetary operations began, a crackdown on users was

made by Management. Visibility into the controlled MOSS made it easy to

detect that some unauthorized software was being run on the system. Manage-

ment rationalized that engineers would very naturally view the computer as

a tool by which they could make their own job easier. It ws apparent that

several small programs had been developed for this purpose. Each of these

programs was required to be identified, and the individual users were re-

quired to explain their purpose and functions to the Mission Directors. All

of the functions were worthwhile and innovated. None of them affected the

integrity of the software system. Some functions were deemed necessary to

support Viking operations. They were required to be delivered to DSI, unit

tested, and placed on the MOSS. The remaining functions were declared to

he non-essential software. Since they were useful, their us. rs were per-

M' mitLed to run them during low activity, non-critical perious. or on off-

line computers.
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4.0 Lessons Learned

Management's requirement that the software system be placed on line

ten months before launch so that it would be available for test and training

was paramount in the success of planetary operations. It allowed time to

uncover software errors, time to determine additional needs, time to rede-

sign for performance improvement, time to let the system mature, and time

to develop user discipline and procedures.

Programs should be developed on target computers whenever possible.

When this is not possible, sound management planning for the conversion

process is mandatory if costs and schedules are to be met.

The Integrated Software Functional Design is an extremely effective

means to allow management to monitor and approve the overall design of a

software system.

The Software Data Base Document is an invaluable aid in solving inter-

face and integration problems.

Development of program dependent system software should precede de-

velopment of program software.

Person to person communications, requirements specifications, and test

data generation are the hardest things to do well. Strong emphasis should

be placed in these areas early in the development cycle.

Software development can meet reasonable schedules if it is monitored

and managed down to its root level.

The Software test and integration effort will be at least as costly

as the software requirements, design and coding effort.

Software should be brought under configuration control at an early

date and tested as a system before it is to be delivered as a system.

Management should have the ability to adapt to new situations as they

arise, and be prepared to replan schedules and resources.

Rushing software development will not produce useful software.
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Software programs should be tested to meet their requirements, not

their code. Software systems should be tested to meet their mission objec-

tives, not their design.

The development of any major software system requires that competent

software systems engineers, who understand both the needs of the system and

the individual programs that make up the system, be given firm control over

the development process.

Meaningful software milestones should be defined to provide the means

by which progress can be monitored.
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TECHNIQUE

NAME: HIGH ORDER LANGUAGE UTILIZATION

SUMMARY: During the initial phase of the development of Viking Mission

Operational software the requirement that FORTRAN be used for code

was made mandatory. Waivers were granted that permitted the use of

assembly language for specific functions that could not be implemented

by a FORTRAN compiler. Waivers were eventually granted for some func-

tions that permitted replacement of FORTRAN code with assembly language.

APPLICATION CONSIDERATIONS: The decision to use FORTRAN was based on

several reasons. Orbiter software could be generated by modifying

existing software already coded in FORTRAN. Lander software was re-

quired to be developed on non-target computers. Each computer system

had assembly languages which had different instruction sets, but all

computers had FORTRAN compilers. Many of the software functions were

analytical in nature, making FORTRAN appear to be an ideal HOL. The

level of programmer expertise required to program in FORTRAN is not

too great, reducing the potential impact caused by personnel turnover.

Finally, high order languages ease the task of locating errors in

logic when anomolous conditions are detected.

RECOMMENDATION: The concept of using HOL for all functions that can be

accomplished by it and using an appropriate assembly language for the

remaining functions will produce a software system with a good basic

design. In the event that the system must operate within limited com-

puter resources, timelines, and budget, as was the case tith Viking,

some functions will be inefficient. These should be replaced with

assembly language to get improvements as required for specific

applications.
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HISTORY: The basic functions required to be developed for the Viking

operational software system were examined during the very early

stage of Viking. None of them seemed to be complicated, and it

appeared at the time that they could all be implemented reasonably

well using FORTRAN. The use of that high order language was looked

upon favorably by management because the program to computer assign-

ments were unknown at the time. In addition they felt it would

simplify the conversion process as well as make the software logic

readable to a far wider range of individuals, thereby making manage-

ment less dependent on tile individual talents and personalities of

programmers.

This desire to make the software more visible and less computer de-

pendent led management to mandate that all Viking software functions

would be developed in FORTRAN. The problem of permitting the use of

a low order language would not be resolved until an actual situation

occurred that required resolution.

The first indication that some assembly language software would be

required came during the requirements definition phase for the Lander

Command Simulation (LCOMSM) program. An Interpretive Computer Simula-

tion (ICS) program was available in FORTRAN and could be modified for

Viking. However, its size and run time violated Viking computer re-

source constraints and mission timeline requirements. Considerable

effort was made to resolve this problem, but no solution could be

found. As a result, an innovative scheme which required low order

language development became the only viable alternative to the Viking

managers. A project wide waiver system was adopted to permit functions

to be developed in assembly language in the event that FORTRAN could

not be used to meet Viking needs.

Eventually, the waiver was used to permit assembly language subfunc-

tions to be developed to improve program efficiencies.
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DESCRIPTION: With the exception of the Lander Command Simulation program,

all software functions planned for the Viking operational system were

developed in FORTRAN. After the original implementation of the soft-

ware, assembly language subfunctions were required to be developed for

the reasons outlined below.

The file management program that transferred interfacing data files

between the UNIVAC 1108 computer and the IBM 360/75 computer required

an interactive capability with the two operating systems in order

to become sufficiently adaptive to changing requirements so that its

code would not be impacted.

The IBM FORTRAN compiler did not provide some functions that were

available on the UNIVAC compiler. This resulted in poor core utiliza-

tion and unacceptably large CPU requirements. Assembly language sub-

functions, similar to those available in the UNIVAC compiler, were de-

veloped for the IBM programs to resolve this problem.

A number of programs increased in size, because of new requirements,

to where they violated the 65 K word maximum core restraint imposed

on the UNIVAC 1108. A number of subfunctions used in common by these

programs were rewritten in assembly language to conserve core, which

solved the problem.

FORTRAN DATA statements, used by the Lander Sequence of Evenis program,

were replaced with assembly language functions that took advantage

of 1108 operating systems capabilities to provide output capabilities

more readable to the users.

Conversion of floating point numbers transferred between the 1108 and

360/75 computer systems was accomplished using assembly language to

satisfy the guidelines and constraints of core utilization.

27



The requirement for on-line data management functions materialized for

IBM 360/75 operations. This required interactions with the operating

system that could only be accomplished using assembly language code.

Finally, assembly language functions were developed for both the 1108

and 360 computer systems to improve computer run times and reduce com-

puter resource loads. These were in the areas of dynamic core alloca-

tions, compressing the use of disk space, freeing unused core during

program execution, and supporting bit manipulation.

The final software system consisted of approximately 90 percent FORTRAN

and 10 percent assembly language.

QUALITATIVE RESULTS: A significant use of low order language was required

to be developed and included in the Viking Mission Operations Software

System. The overriding reason for this was that available computer re-

sources could not support mission load and timeline requirements because

of inefficiencies in CPU, core and mass storage caused by FORTRAN com-

pilers. There were only a few instances in which assembly languages

were used to perform functions thar could not be done in FORTRAN. Given

sufficient computer resources, even these functions could have been

circumvented.

The quality of the software itself was more a function of programmer

experience rather than whether FORTRAN or assembly language was used;

some programmers were limited to using FORTRAN.

QUANTITATIVE IMPACT: The estimate of the cost impact to th "iking Project

caused by replacing unacceptable FORTRAN code with assembly language is

subjective and difficult to assess. The personnel who accomplished the

task did so in parallel with extensive program modificitions caused liv

program failures and new software requirements. Many of the assembly

language functions needed to be -eveloped were available in the JPL

library or had been developed by the Lander Conuand Simulation program.
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A large amount of this task was accomplished by the 360 and 1108 com-

puter consultants, who, as members of the Software Integration Group,

were funded to support just such activities. They would have been

available whether or not assembly language modifications had been re-

quired. For these reasons, the cost to replace FORTRAN with assembly

language probably did not exceed two man years, and may have been much

less.

The cost that the project would have borne had it not permitted any

assembly language to be developed is also subjective, but easy to

assess. Assuming that mission timelines could %ave been met with the

exclusive use of FORTRAN, one additicnal 360 and one additional 1108

would have been required to support Flight Team training and planetary

operations. This is a net cobt increase of fourteen computer months,

which represents a 50 percent increase in computer resources over a

seven month period.
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TECHNIQUE

NAME: DIFFERENT DEVELOPMENT/INTEGRATION SITES

SUMMARY: The Viking Lander software subsystem of the Mission Operations

Software System was developed at MMC on non-target computers. Pro-

grams were unit tested prior to being delivered to JPL to be inte-

grated into the MOSS.

APPLICATION CONSIDERATIONS: The forecasts for the loads on the computer

sets at JPL indicated that the MMC portions of the Viking operational

software system could not be developed on them. The MMC facility

contained CDC 6400, CDC 6500 and IBM 360/75 computer sets, whereas

the JPL facility contained UNIVAC 1108 and IBM 360/75 computer sets.

The operating systems of the IBM computers at the two facilities were

different. No equipment similar to the JPL UNIVAC 1108 system was

available in the Denver area. Pathfinder studies indicated software

could be developed on non-target computers without creating any seri-

ous conversion problems.

RECOMMENDATION: Manpower, computer time, and schedule slippages can be

reduced by planning, organizing and controlling software development

activities in a manner which will allow for an easier conversion pro-

cess. Functions developed in a minimal HOL can be convnrted with rela-

tive ease. Functions required to interplay with the operating system

should be developed on target computers. Programer education should

be stressed. The same compilers should be used on both the development

and integration computers.
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HISTORY: One of the problems which faced the management of the Viking

mission operations lander software development was that the develop-

ment computers differed from the operational computers. The Martin

Marietta facility consisted of CDC 6400 and CDC 6500 and IBM 360/75

whereas the JPL computer facility consisted of IBM 360/75s and UNIVAC

1108s. Thus the software conversion task became a management concern

very early in the software development activities.

Great amounts of manpower and machine-time can be spent converting

software. This coupled with the extra costs of not meeting scheduled

delivery dates can cause software conversion to be an expensive task.

Many times much of this manpower, machine-time, and schedule slippages

could be reduced by planning, organizing and controlling the software

development activities relative to the conversion process. The prin-

ciple methods used in the management of the conversion process by

Martin Marietta on the Viking project were: 1) predominate use of a

minimal high order language; 2) education of programmers and engineers

on system differences and similarities; 3) emphasis on the fact that

the software would eventually reside in another computer system; 4)

pathfinder operations to seek out problems which might occur prior to

the actual conversion process; 5) establishment of MMC computer con-

sultants at JPL to gain familiarity with both the various computer

systems and the operational procedures; 6) the requirement that the

software be demonstrated to unit function properly prior to the con-

version process.

DESCRIPTION: Prior to initiating software development the MQIC management

examined the need for standards requLred to develop soL't are on non-

target computers. One output of this analysis was t,, require the use

of FORTRAN except when individual software requirements represented

-in actual need for assembly programming. This decision was based on

several reasons. FORTRAN compilers were available on the various

computer systems at both JPL and IIHC. Some of the prototype software

for mission operations were already written in FORTRAN. The pro-

gramming skills of the MMC engineers and programmers was limited in

many cases to FORTRAN._ 31



Once the decision to use FORTRAN was made, a study was undertaken to

determine what differences existed between the various FORTRAN com-

pilers on the UNIVAC 1108, IBM 360, and CDC 6000 series computers.

This study showed that there were variations in permissible number

sizes, that some features of FORTRAN were not available on all the

FORTRAN compilers, and that some implementations went beyond the

standard FORTRAN. A document entitled "Characteristics of FORTRAN,

CDC 6000 Series, IBM System/360, UNIVAC 1108" was written which showed

the minimal language that would be used to reduce conversion costs be-

tween the development computer and the integration computer. A second

reason set forth for the usage of the minimal language was that for

some programs the development machine at ME had been determined but

the final machine at JPL had not been decided upon. The target computer

would be determined at a later date when computer loading studies could

je made and analyzed.

The education of the engineers and programmers in the conversion pro-

cess was next undertaken. Lectures were given which involved discus-

sions regarding the minimal language document and its contents. The

minimal language document was incorporated along with JPL documentation

on the IBM 360s and the UNIVAC 1108s into a document entitled "Viking

Flight Operations Programmer Guide". This was distributed to all pro-

grammers and engineers. The primary point stressed during this educa-

tion process was that by following the minimum language requirements

during software development the conversion efforts of the programmer

would be lessened. Other point. stressed during this education were

that by using the guidelines set forth, along with thorough documenta-

tion, change over between programmers and engineers caused by changes

in manpower would be less costly.

A pathfinder study w.1s made that converted representative software

which had been developed on the CDC 6500 using the minimal language

to both the IBM 360 and UNIVAC 1108 at JPL. The time required for

conversion of code was recorded and the software was then run on -he

UNIVAC 1108 and IBM 360 until the test cases matched the CDC 6500 runs.



The computer runs were logged and all problems were noted. The re-

sults of the pathfinder study showed that by using the minimal lang-

uage documents the conversion process would be simplified. The path-

finder study also demonstrated that it was easier to convert from CDC

6500 to UNIVAC 1108 then from CDC 6500 to IBM 360. Thus all software

that would eventually reside on the UNIVAC 1108s at JPL would be de-

veloped on the CDC 6500 at MMC.

The next step taken to ease the conversion process was to establish

O C computer consultant personnel on site at JPL to learn about the

specific operational differences between the ME computer systems and

the JPL computer systems. This initially consisted of one person who

was the focal point for all questions by MMC personnel on the JPL com-

puter systems. The procedure for gathering and disseminating informa-

tion was to funnel all questions through one individual at ZINC, who

then contacted the HC computer consultant at JPL. The consultant

would then be responsible for contacting various JPL individuals to

gain the answers to the questions. These answers were the, distributed

via inter-office memos to all the MW development programmer, of mis-

sion operations software.

The computer consultant proved to be of such value that a second con-

sultant was appointed. One now had responsibility for inquiries into

the differences between the ZIC IBM facility and JPL IBM facility, and

the other had responsibility for inquiries between the UNIVAC facility

at JPL and the CDC facility 4 *1C. The consultants were organization-

ally members of the lander .:oftware integration group.

After a mission operations software program completed certification

testing at the MMC facility it was brought to JPL for conversion and

user acceptance testing. The MW. consultants at JPL established the

methods by which the programs were brought t.) JPL. This was done by

generating special purpose software or by defining the actual utility

programs which were to be used in generation of the tapes required

for program conversion and data tapes fvr program testing.
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The MMC consultants took an active role in the software testing at

JPL, and were responsible for insuring proper delivery of the soft-

ware to Data System Integration.

QUALITATIVE RESULTS: The software conversion task was done on schedule,

although not without some problems. Many of the problems that did

occur had to do with the altering of the engineers and programmers

normal work habits. This occurred in the IBM 360 conversion effort.

Due to the operational procedures at JPL, in order to receive the

necessary turnaround time to do prograin ccnversion and testing, blocks

of computer time had to be scheduled. These blocks of time were usu-

ally 4 to 6 hours in duration during the week starting at 9:00 PM to

4:00 AM, and up to 48 hours duration on the weekends. The pressures

of trying to make as many runs as possible and meet delivery schedules

forced many extra errors into the software. Instead of doing a detailed

analysis of the code and the dump of the program the programmer or engi-

neer would shot-gun many runs to try to fix errors. During longer block-

time stretches many engineers and prograrmers would work until they

introduced new errors due to physical an,; t.2ntal exhaustion. This

altering of normal work habits did not occur on the I0S conversion

effort. The turnaround was excellent and the machine was available

for use during normal working hours. Blocks of time were only required

in very special cases and were planned by the engineer and programmer

so that the use of the time was optimized. In short, the conversion

process requires good computer turnaround during normal working hours

to be efficient.

The 2ThIC IBM 370 to JPL IBM 360 conversion effort had some problems

than were not foreseen. The JPL version of OS was a real-time system

with standard OS features but was a different release than the MMCs

IBM OS. This caused problems in the conversion effort. In one in-

stance the difference in FORTRAN compilers between tMC IBM and JPL

IBM caused schedule slippages due to errors in the target compiler

tLat were not discovered until the conversion process began. This

problem happened early in the conversion process and two steps were
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taken to help solve the problems: 1) the release of the .npiler JPL

had was installed at MMC for use by the software still .& development

and 2) the release of the MMC compiler was installed at JPL for use

when needed.

There were technical problems as well. An example on the 1108 was that

the lander trajectory simulation program (LATS) had a subroutine which

contained a namelist for input, which was very large. This large name-

list coupled with a large amount of equivalent statements caused an

overflow in the internal tables the compiler used. Thus the routine

was not compiled correctly. In order to solve this problem, a special

version of the compiler with larger tables was generated strictly for

use by this subroutine. Eventually the namelist was split into many

namelists which then allowed the standard JPL compiler to process the

subroutine.

There was one other problem which occurred that should be reported.

This was an internal conversion effort done at MMC on the CDC. The

operating system was changed from MACE to SCOPE during the period in

which the software was being developed. This change caused many sched-

ule impacts in the Viking software development. Much time was spent

by the development programmers changing their job control cards, their

file naming conventions, their file structures, and in learning how

the system worked. This coupled with extra down time and running of

two operating systems caused much confusion. The conclusion is tuat

any operating system change should not be allowed concurrent with a

major software development activity.

The software should iave been maintained at JPL after .,s initial

delivery to JPL. Deliveries of the software were scheduled to include

various programs and sub-sets of the programs required sor test and

training operations which were carried on throughout the spacecraft

compatibility test phase. Mien a program was deliverd to support

such a test the programmers and engineers would take the final converted
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program back to MMC, convert back to the MMC computer, and then do the

development required tor the next delivery. This was an extra task

that should never be required.

It should be stressed that by following the concepts discussed herein,

the conversion of the MMC developed Viking mission operations soft-

ware was done on schedule within budget, and successfully supported

two Viking missions.

QUANTITATIVE IMPACT: Total manpower for cognizant engineers and programmer

activities involved in developing, testing and documenting Viking

lander operational software produced an average of 7 lines of code

per day. Individual programs varied from a low of 3.3 lines of code

per day to a high of 12.4 lines of code per day. These figures are

reasonably within the industry for software developed on target com-

puters, indicating the impact of conversion was relatively low. One

program was delivered two months late because of differences in com-

pilers, which was a conversion problem. All other programs were con-

verted on schedule. The conversion process represented approximately

five percent of the development effort for 1108 programs, and approxi-

mately ten percent of the development effort for 360 programs.

36



TECHNIQUE

NAME: COMPUTER LOADING PREDICTION ANALYSES

SUMMARY: Two types of computer loading prediction analyses were conducted

for the Viking Mission. They included hand analyses of predicted CPU

requirements and use of the General Purpose Simulation System (GPSS)

program. Both indicated that the planned Mission timelines could not

be met. The Viking Flight Team (VFT) conducted a full scale test that

verified the findings of the loading analyses. The key decisions re-

sulting from these efforts included changing the Mission Design from

two parallel to two serial landed missions, acquiring an additional

1108 computer set to support operations, and decreasing the planned

frequency for commanding the vehicles.

APPLICATION CONSIDERATIONS: Operations analyses of timelines and computer

loading analyses are applicable to software systems supporting missions

subject to environmental surprises, such as Viking. On the other hand

if the software system is being developed for use in a steady-state

environment a computer loading analyses made for any point in time

should be sufficient. Two techniques for accomplishing the loading

analyses are available. One approach is to use a complex computer

program such as GPSS (available from either UNIVAC or IBM) to model the

throughput of each computer used by the system. The second approach

is to perform hand analyses of requirements versus capabilities for

basic parameters such as CPU time.

RECOMMENDATION: Computer loading analyses are a proven useful tool to soft-

ware managers. Two areas should be concen~raEed up- .,iydependent of

the technique selected; I) the quality of the inputs will determine

the accuracy of the output, and 2) careful interprlaLtion of the out-

put is required if correct conclusions are to be dr.wn.
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HISTORY: All computer loading analyses performed for Viking were accomplished

in conjunction with operations analyses of missio tinaelines. Three

basic stages to the process evolved that were not apriori planned.

These were operations analysis, critical period analysis, and VFT Test

and Training.

During 1973 management was developing the Viking Mission design.

The key factors of concern were the Mars encounter dates, the landing

dates, and the frequency and duration of the biological investigations.

At that time the planned nominal sequence was as follows:

I. Viking I encounters Mars

2. VL-l lands 12 days later

3. VL-l initiates biological investigations 4 days later

4. Viking II encounters Mars 8 days later

5. VL-2 lands 12 days later

6. VL-2 initiates biological investigations 4 days later

7. VL-l terminates biological investigations 60 days later

8. VL-2 terminates biological investigations 24 days later

The prime Viking landed missions were each planned to have 90 day

durations, with about 65 days of overlap. Shortly after the mission

was established the Integrating Contractor Software System Engineer made
a hand computer loading analysis based on Mariner 9 experience and pro-

posed seven day look-ahead for lander planning. The analysis indicated

the computer complex at JPL would not be adequate for Viking.

Management therefore directed that an analysis of a two day mission

period should be conducted. The fifth and sixth days after the Viking

II landing were selected. Representatives from each Viking Flight Team

defined the products they would produce, the inputs they would require

and the computer runs they would need. After this data was gathered

a cursory time line/computer loading analysis was made that indicated

that neither the VFT nor the computers could support the events planned

for these days; people were both waiting to use computers and not ready

to use them when they were available. As a result of this analysis

the Mission Design was changed to the following sequence:
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1. Viking I encounters Mars

2. VL-i lands 19 days later

3. VL-I initiates biological investigation 7 days later

4. Viking II encounters Mars 21 days later

5. VL-I terminates biological investigation 27 days later

6. VL-2 lands 3 days later

7. VL-2 initiates biological investigation 7 days later

It is emphasized that the decision to slow down the pace and go

to a serial mission could have been made from either an operations

analysis of people overload or a computer loading analysis that demon-

strated computer overload. Furthermore, the decision to go to a serial

mission was made when the software system was less than half finished,

so that only rough estimates of the characteristics of the programs

were known.

At this time the Viking Project issued a separate contract to de-
velop a General Purpose Simulation System Model (GPSSM) for the Mission

Control and Computing Center (MCCC) system. This was a joint effort

by MMC and JPL personnel, using the IBM GPSS as the basis for the model.

A Critical Period Analysis covering a 12 day period of the serial

mission was conducted in parallel with the GPSSM development. The pur-

pose of the analysis was to study timelines and computer loading in

more detail and to prepare for VFT test and training activities. By

this time more software was developed allowing better inputs for the

computer loading analysis.

Because the GPSSM had not yet been verified, a hand analysis was

again made. The results of the analysis indicated that more UNIVAC

1108 capability would be needed to avoid another mission simplifica-

tion. Since lead time for purchasing an 1108 prior t,- pLanetary opern-

tions was becoming tight, the time saved by hand analysis was quite

beneficial.

At this time the Viking Project and JPL faced the choice of pur-

chasing or leasing a third 1108 or of adding a second Central Proces-

sing Unit to each of the two existing 1108s. In order to make this

decision, a full scale test involving the VFT was scheduled to be
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conducted during the three day Memorial weekend in May of 1975. Prior

to the test both the GPSSM and hand analyses were used to predict the

outcome of the test. The test confirmed both analyses, and was the

tool that verified the accuracy of the GPSS model. The results of the

test led to the decision to purchase a third 1108.

It was not that Viking needed three 1108s but rather that Viking

plus the non-Viking JPL users would require that capacity. The deci-

sion to add a third 1108 rather than increase the CPU capability was

based on the fact that it would result in less sharing between Viking

and non-Viking users.

Early in 1976 VFT test and training exercises were conducted in a

series of tests using the simplified Mission design, the extra 1108,

and .odified operational strategies based on the results of computer

loading analyses. The tests demonstrated that the system could operate

to support the mission timelines.

DESCRIPTION: The processes used to conduct the computer loading analyses

were as follows.

Programmers estimated program run characteristics, such as CPU

time, I/0 time, core usage, disk space, and tape drives. Each program

could be used for different tasks having different characteristics.

Data was gathered for every case.

Engineers then estimated when, how and why they would use the pro-

grams in each mode. Each team would indicate what time or times during

the day that each program mode would need to be run in order to satisfy

mission objectives. Estimates of how long it would take to analyze

the results of a computer run before the next run could be made were

also included.

The hand computer analyses were then based on adding up the CPU

time required for each computer during each team's shift and matching

it with the inputs supplied by the programmers and engineers. A sub-

jective judgement factor then had to be applied. If during any eight

hour period, CPU reqtiirements in excess of 4 hours for the 360/75 or

5 hours for the 1108 indicated insufficient computer capacity was

available. The early analyses indicated 8 hours CPU time on the 1108

would be required, stressing the need for an additional computer.
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The GPSS modeled all of the inputs obtained from the engineers

and programmers. The program modeled both 1108 and 360/75 operations.

The characteristics included core capacity, CPU rate, I/O rate, tape

drives, and delays caused by humans examining computer runs. The model

would not allow runs to begin when core or tape drives were unavail-

able, nor would it allow a program to begin if it required input from

another program that had not completed. As such, the model did not

overload the computers. Rather, it would indicate that one day's work

required two days to complete if insufficient computer power was

available.

The GPSS modeled the scatter load feature of the IBM 360/75, but

did not model the core swapping feature of the UNIVAC 1108. It accoun-

ted for print and plot times, but not for system outages. The model

is now a standard tool used by JPL as a scheduling tool and for the

purpose of estimating potential system performance improvement.

QUALITATIVE RESULTS: Sufficient evidence for the potential usefulness of

computer loading analyses to managers of software development has been

presented. A few important aspects are worth noting.

The primary error source of the analysis is the quality of the

input. Since the quality of the output is limited by the quality of

the input, the cheaper and faster hand analysis offers advantages over

a complex simulation model, which would have to be validated before it

could be relied upon. In cases where most runs can be executed over-

night, one day granularity is sufficient to achieve an understanding
of the problem. In a mission operations environment where a sequence
of runs needs to be accomplished during a working day shift, a granu-

larity of 4 or 8 hours should be used.

Most members of the VFT felt that the hand analyses were adequate

and the GPSS was an expensive luxury, although a significant number

of team members did not hold this point of view. The use of the GPSS

did have two generally agreed upon side benefits. People generating

inputs for analysis tended to be more careful and thorough when they

knew their data would be used in GPSS rather than for a hand analysis.
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Also, management was more impressed with GPSS results anc paid more

attention to the implications, regardless of whether or not they under-

stood how the GPSS worked.

The Memorial Day test by the VFT to verify the GPSS provided addi-

tional guidance concerning operational procedures and file management

problems. These areas were ignored by the hand analyses and treated

inadequately by GPSS.

One final point should be made relative to the computer loading

analyses. They only reflected how the VFT thought the mission would

be run. They did not take into account the affect that the resolution

of the 360/75 file management problem had on changing the way operations

there were conducted (refer to the on-line data file management system

technique). They did not account for the 16 day ddlay in finding a

satisfactory landing site for Viking I, nor for the additional Mission

Planning activities for both Vikings I and II (neither Viking was set

down at its originally planned landing site). They did not account

for maintaining a reduced Viking I mission during the primary Viking

II mission. Finally, they did not account for the data rate changes

resulting from the scientists analyzing data and then trying experi-

ments that were not originally planned. Their primary value was to

determine the level of activity that could be supported, which allowed

management to realistically assess how much could be accomplished.

QUANTITATIVE IMPACT: Since the computer loading analyses were conducted in

conjunction with operations timeline study analyses, it is difficult

ot determine their specific costs. Probably one man year was spent

by the VFT to generate inputs. Less than one man year was spent on

hand analyses. About three man years were required to develop the

GPSS model. An additional one to two man years were required to main-

tain the model.

Approximately 200 members of the VFT supported tle three day Memori-

al weekend tests used to validate the GPSS. Hind it not been for the

computer loading studies, that test probably would not have been

scheduled.
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TECHNIQUE

NAME: LANDER COMMAND SIMULATION (LCOMSM) FOR ON-BOARD DEVICE CONTROL

SUMMARY: Simulation of Lander on-board commanding and computation was

required at the bit-for-bit level. An innovative technique permitted

such fidelity without the ponderously slow Interpretive Computer Simu-

lation (ICS) technique ordinarily employed in such situations.

APPLICATION CONSIDERATIONS: Several proven approaches exist for on-board

flight computer simulations. Emulation, at real time speeds, usually

requires specialized hardware and may be embedded in a "hot-bench"

testing facility. The ICS approach is proven and popular, but signifi-

cant resources are expended in their use. Reasons for poor performance

are several, with typical expansion ratios of 20 to 100 times real time.

LCOMSM achieved significant improvement through two mechanisms: 1) tak-
ing advantage of pseudo real time, i.e. segments where there is no
activity are skipped over during the simulation, and 2) the high over-

head due to execution time interpretation is avoided by performing a

translation time interpretation of static source code, and substituting

an equivalent sequence of simulation computer instructions for each

target computer operation. The latter sequence is carefully tailored

to represent the bit for bit result of on-board computer operations.

The improvement in simulation run times are significant.

RECOMMENDATION: An ICS has become a tool traditionally supplied by the com-

puter vendor. Typically written in FORTRAN to meet portability require-

ments, an inherently slow process becomes more cumbersome . The LCOMSM

approach is attractive where many hours of simulated tim, is anticipated.

This class of application warrants the special tailoring required to

substitute simulation computer code sequences for each object computer

Op-Code. The same level of execution visibility can be attained with

any approach; trace, conditional snapshots, conditional halts, and the

like. A single host monitor could provide the necessary common ser-

vices for a variety of distinct target computers.
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HISTORY: Initially, a FORTRAN Interpretive Computer Simulation (ICS) was

considered to operationally simulate the Viking Lander Flight Program.

An ICS was available to the Viking Project that could be used for this

purpose. Analysis indicated that thirty hours of computer time would

be required to simulate one landed day's activities. Modifications to

the ICS scheme could be made to reduce the computer ru;i time to an esti-

mated three to five hours. Missionoperation timelines required that

the simulation not exceed thirty minutes, with a goal of less than

twenty minutes. Therefore, the Viking Project's digital simulation pro-

gram for the Mars lander computer became an attempt to solve two re-

source problems inherent with interpretive computer simulations. These

problems were the resources required to develop a new simulation and

the computer resources used by the simulation operationally.

The problem of computer resource consumption was addressed by

first designing the LCOMSM program to minimize the work required to

simulate a Viking lander computer. The approach taken was to place

the object code of the Flight Program into the IBM 360/75 computer.

Two methods to accomplish this were considered, a source code inistruc-

tion translation process and an interpretive process.

The source code instruction translation process could be automated

by subprograms called Instruction Translation Macros, one for each of

the Flight Computer instruction set. The Flight program would be trans-

lated into source code which, when assembled into object code and exe-

cuted on the IBM machine, exactly would simulate the Guidance, Control

and Sequencing Computer (GCSC) processing of the original Flight program.

As a consequence of the source code expansion effect of the trans-

lation process, the simulation object code core requirements are large.

However, having done the translation and assembly, the a~tual execu-

tion of the object code would be very fast. Since the code resident

in core is a translated version of the Flight Program, a simulated GCSC

memory map would not be immediately available. Rather, the contents

of IBM core would have to be mapped, by address, to the contents of

the simulated GCSC core. This approach imposed a requirement on the

original source code. Namely, the source code had to define a monotonic

mapping, by address, of object code into core. Unfrtunately, the
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existence of unusable GCSC memory locations as well as programming

techniques utilized in the Flight Program made it impossible to meet

this requirement. Consequently, the translative simulation approach

had to be discarded even though it offered the fastest operational

simulation.

DESCRIPTION: An interpretive simulation of the GCSC was used by LCOHSH.

The design approach was to assemble the Flight Program source code

directly into object code, load it into core on the IBM machine just

as on the GCSC (allowing for differences in word lengths), and simulate

the GCSC processing of the identical object code in the course of exe-

cution on the IBM. The GCSC was simulated by interpreting each object

code instruction in terms of the GCSC's response to it, as would have

been done had the translative approach been taken. The major difference

was that, rather than solving the problem once and for all at the source

code level before execution begins, the interpretive process must be

performed for each instruction as it is encountered in the course ol

execution. Therefore, the interpretive approach required more CPU time

for a given simulation. However, since the sotrce code was not trans-

lated prior to assembly, the core requirements were smaller in the in-

terpretive approach. Host significantly, since the object code was an

exact representation of the actual GCSC load, a memory map of the GCSC

being simulated was immediately available at any desired simulation

time with a simple readout of. the IBM core.

The development of the interpretive simulation for a real time

process was a difficult task, since it was hard to realize if a real

time process was being simulated correctly and even harder to know why

it was not. For this reason a aajor emphasis was plar-d on providing

as much visibility as possible of what the simulation was doing. The

program was designed to produce simulated program execution traces for

both high and low level processing. As soon as the program was ready

for testing it incorporated a full instruction and processor state

trace. Becruse of the volume of data this trace produced, a post

proce:;sor was developed to allow scans of the data in several different

modes. In addition, the capability was introduced to trace the functions
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of the s,.julated lander executive for both Input/Output and scheduling.

This allowed a higher level of program execution visibility, which

meant that much less output was produced during a given run. The pro-

gram was designed to allow for tracing of both selected data cell usage

or instruction execution to facilitate finding incorrect simulation or

invalid simulated program loads. To verify simulator accuracy, the

program was designed to compare the simulated processor commands issued

with the set defined by a functional simulation of the same period.

In order to minimize the work required, the LCOMSM program design

included the mapping of several of the hardware capabilities of the

GCSC into the hardware capabilities of the IBM 360. This consisted,

in part, of the mapping of several GCSC registers to IBM 360 general

purpose registers. In addition, a unique timekeeping system was de-

vised which eliminated most of the usual processor time associated with

the task.

The program design was enhanced to include the concept of Dynamic

Algorithm Replacement (DART). As incorporated in LCONSM, the simula-

tor could identify, during a run, that the simulated program was doing

some algorithm for which a replacement existed. The replacement would

do precisely the same thing as the simulated algorithm with the excep-

tion that the instructions did not have to bc individually interpreted.

Instead, a host computer code body was executed with the subsequent

savings of processor time.

QUALITATIVE RESULTS: The LCOMSM program was able to model elapsed times for

90 day simulation runs without error. The program was developed in less

than 30% of the original development estimate. The simulation provided

a time compression slightly greater than 200 to 1, which should be com-

pared with the 8 to 1 time compression estimated to be the best that

could be obtained by modifying an available FORTRAN ICS program.

QUANTITATIVE IMPACT: The operational impact of the LCOMSM design can best

be judged by comparing Its computer resource requirements with the

I Orbiter Computer Simulation Program (OCOMSH), which used a FORTRAN

Interpretive Computer Simulation. The Lander Flight Program was four
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times larger than the Orbiter Flight Program. LCOMSM required 120 Kbytes

of Main Core and 138 Kbytes of Large Capacity Storage (LCS), whereas

OCOMSM required 183 Kbytes of Main Core and 287 Kbytes of LCS. Any

Viking 360 batch program, except OCOIHS, could be run in the computer

while LCONSM was executing. No other Viking batch program could be

run in the computer while OCOMSM was executing. This was important due

to the throughput characteristics of the two programs. LCOMSM would

require approximately 5-1/2 minutes of CPU time to simulate one landed

days operations and throughput the job in 6-1/2 minutes. OCOMSM would

require 8-1/2 minutes of CPU to simulate one synchronous orbits opera-

tion, but the throughput time for the job took approximately 70 minutes.

The systems impact of this was that about half of the Viking batch IBM

360/75 computer time had to be dedicated to OCOMSM exclusively. This

proved to be a continuing cause for delays in obtaining output for any

other batch job. In addition, because LCOMSM throughput time was rela-

tively good, the program allowed for job resubmittals without causing

a major impact to normal operations.

The final version of LCOMSM used for planetary operations contained

11535 source cards. The cost to develop the program from requirements

through delivery of the final version used for planetary operations was

87 man months, or approximately 70 minutes per source card.
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TECHNIQUE

NAME: PROGRAM & DATA BASE INTERFACE MANAGEMENT

SUMMARY: A common data base was used by all Viking Lander operational pro-

grams to access critical tables and constants, such as flight computer

turn on times, lander coordinates, and length of a Martian day. Inter

computer file transfer software permitted user files te be readily

available on any computer system, transparent to the users.

APPLICATION CONSIDERATIONS: Viking Lander operational software was required

to be developed from scratch rather than by modifying an existing sys-

tem. Mission planning, sequence generation, flight path analysis,

spacecraft health and science analysis programs used significant amounts

of common tables and constants. These prograns operated on two differ-

ent computer sets and required large amounts of interface data to func-

tion correctly. Using tape drives to transfer data between programs

during operations would have compromised mission timelines. Coordina-

tion of large amounts of data separately used by programs is subject

to considerable human error. For these reasons inter-computer transfer

and common data be3e file management software was developed and used

by these programs.

RECOMIENDATION: A single source for accessing critical data subject to a

low rate of change can be a useful tool in reducing chances of human

error. Care should be taken to coordinate data values among all users.

A single source for transferring data between computers is attractive

when large amounts of data are to be transferred and comauter tape

drive resources are limited.
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HISTORY: At least as early as March 1972, it was realized that the Viking

Project would have some unique data base problems. One of the data

bases identified as being desirable was the Flight Operations Data Base

(the. data used and generated by the Flight Operations software). One

segment of the FOS data base was named the Common Dpia Base. This data

base would contain data items used by more than one program (but in

some cases, data used by only one program). The types of data eligible

for admission to this data base were tables and constants whose values

were not expected to change more than a few times during the mission.

This data base was meant to replace data normally compiled within the

program as DATA statements or as data input into the program without

change each time the program was executed. Having a system of programs

operating from a common data base offered many attractive features. It

forced consistency of data among the va:ious application programs.

That is, all programs used identical values for tables and constants,

such as epochs and clock drift tables. A common data base allowed up-

dating of constants to take place simultaneously among all using pro-

grams. Data base management procedures allowed control and documenta-

tion of values used, and change history information. Operational re-

sponsibility for data availability resided with a central data base

manager rather than being divided among the operational groups.

Another segment of the Viking data base was the management of

inter-program data files. Viking file management was defined to be an

automated system which would checkpoint files and transfer files between

machines. The checkpointing activity would provide file security and

load/off-load on-line mass storage space. File trinsferral was com7,.!--

cated by the usage of IBM 360 and UNIVAC 1108 computers for the Viking

Flight Operation Software System. Programs on one systen required files

created on the other.

Early attempts at defining methods and operation of a general file

checkpoint system were frustrated by lack of agreement .r.ong the affec-

ted user groups-,and lack of definition of system us,ge. As a result,

several different methods of checkpointing were eventually used for

Viking. The file transfer scheme used 7-track magnetic tape as a uni-

versal transfer medium. An electrical interface was established be-

tween one computer pair at a time (IBM-LNIVAC).
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The file transfer software concept fluctuated wildly during the

early systems integration time period. The detailed techniques for

translation and the extensive Input/Output requirements necessitate

thorough familiarization with the machines and operating systems. This

was initially a probleem since the early software development was done

in Denver without easy access to the machines that were to use the sys-

tem. Since file manipulation is dependent on file structure, either

great flexibility is required or total definition of file structure

must be available. Total definition is impossible until the file gen-

erating software is totally defined. For Viking the file transfer

algorithms were designed to maximize flexibility and generalize. The

design goal was to have greater capacity than required at the time, but

excess capacity was continually used up as the systems integration ac-

tivities progressed. The decision to perform data translation by the

file transfer software was contested early in the preliminary design.

The alternatives are to design the data files in such a way that trans-

lation requirements are reduced (i.e. transfer files in external BCD);

to have the programs which use transferred files embed translation

within their own structure; or to have specific file translators attached

as pre-processors to the using programs.

DESCRIPTlu,1 . The Common Data Base on the IBM 360 system used for Viking was

based on ISAM (Indexed Sequential Access Method). Subroutines were

written which allowed read only access of data base records by name.

The data base could be read directly or sequentially: the subroutines

were linked into the application programs. The using programs and the

data base were totally insulated from each other. Several programs

were written to permit the basic necessary management f.. ctions for

data base operations. These functions were: load, modifv, list, and

reorganization. The actual data for the data base was collected, punched

into cards and loaded. An access meLhod, similar to ISAM, was developed

for the UNIVAC 1108.

Inter-machine file transfer was enacted by pairs of programs. A

program on the source machine copies a file to tape for the tape trans-

fer, or enques files Lo a real time communication program for electrical
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interface file transfer. A program on the destination computer read

the tape and/or electrical interface communication line and placed the

files on regular on-line mass storage. Files were translated to the

word and record format of the receiving computer when necessary. Tables

describing the structure of files were placed onto the common data base

to supply specific translation details. Two types of tables were used,

transfer control blocks and translation control blocks. Transfer con-

trol blocks, TRCBs, contain basic input file information such as file

format, output file information such as record size, file space allo-

cation parameters and flags indicating cataloging/allocation techniques,

and for non-character data, a string of symbolic addresses of transla-

tion control blocks, TRBs. TRBs are a linked set of tables describing

specific translation details and translation criteria. Translation

details are ordered pairs of numbers of words and translation technique

to be used. Translation techniques are integer to integer, character

to character, single precision floating point to single or double pre-

cision, straight binary transfer, et al. Translation criterion is a

data condition and one or two addresses of TRBs th@t are branched to

if the condition is met. Unformatted files, when transferred between

unlike computers, must be accompanied with detailed information about

record structure. These details are contained in TRBs and reside in

the Common Data Base. The symbolic addresses of the TRBs are contained

in the TRCB for the file being received. Each TRB contains triggering

information and translation information. Triggering is the branching

process that allows different TRBs to be enacted. At the beginning of

file reception, TRB number 1 is given control. Upon the detection of

a specified condition, another TRB will be given control. The condition

can be either the length of the record being translateu or the contents

of any single data word contained within the record. TRB branching can

be on the basis of the condition being true or untrue. That is, trig-

gering to a new TRB can be based on a record length being equal to some

quantity or not equal to that quantity. On the IBM receiving program,

only the first 32 bits c. a data item participate in the compare.

Should the trigger condition be met, the reference number of the TRB
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to be branched to is located in the old TRB. A new TRB number outside

the range of one to fifteen will terminate the translation and set the

error flag within the receiving program. This can be used to detect

anomalous conditions. The time of enactment of new TRBs is variable.

If the enactment time field contains the character string 'ELSE' or

'PRES', triggering will take place after the current record is trans-

lated by the present TRB pattern. For 'PRES' and 'POST', triggering

takes place only when the trigger condition is met. For 'ELSE' trig-

gering always takes place. When the trigger condition is met, one TRB

is activated; when the trigger condition is not met, a different TRB

is activated. The purpose of the 'ELSE' trigger is to provide a double

branch capability. The purpose of the 'PRES' and 'POST' triggers is

to use a single TRB translation pattern to process a string of identi-

cally structured records and then branch to a new TRB when the string

is broken by a differently structured record, or a record containing

different data.

Transfer control blocks are keyed to the receiving program by in-

formation contained in the first data record. As each file was gen-

erated, a two record header was created. The first record contained

(at least) a five character generic file name. This generic file name

is the symbolic key for access to the common data base. In this way,

file transfer is dependent only upon data crntent. Two other methods

of synchronizing received files with transfer control blocks are: pro-

viding manual inputs to the receive program or using a stringent file

naming convention. Manual inputs are prone to error; ftic naming con-

ventions are difficult to adhere to rigidly, although file name method

of keying TRCBs eludes the manual input problems and places no restric-

tion on data file format. It also allows transfer of f-les which were

not orig;nally expected to be transferred. However, th1i independence

of file content and file name was judged to be the overriding concern,

and seems to he more in keeping with the concept of utility routines.

Since file name syntax differs between systems, the file names were

changed by the receiving program to the syntax of the roceiving

operating system.
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QUALITATIVE RESULTS: There exist lessons to be learned from development

and usage of these data base and file transfer schemes. Since the data

base is essential to proper development of application programs, data

base software and data base techniques should be thoroughly debugged

and tested before the application program development is started. This

was done in parallel with application program development for Viking

and resulted in an initial lack of confidence by the application pro-

grammers. The confidence gap manifested itself in somewhat poor usage

of data base concepts and in invariably assuming it to be responsible

for application software anomalies. Gathering the data for insertion

into the data base is a monstrous task and requires great cooperation

from the suppliers. Data quality and responsibility should be assigned

to cognizant groups of people for ongoing maintenance and control.

However, all responsibility fcr manipulation of the physical data base

should reside within a single authority.

Changes to data during operations on a common data base must be

performed with great care so that all using groups know ahead of tie

the details of the change. In general, agreement of all using groups

should be obtained before changes are done.

During the Viking mission, the data base software and technique

worked well in practice and conceptually, and no modifications of

scheme or concept seem to be errant.

QUANTITATIVE IMPACT: The Viking data base access method software and data

base utility software required about four manmonths of programming and

checkout effort for both the IBM and UNIVAC systems. The file transfer

software development cost was about one man year. The total effort for

the software function of which these were the major components produced

7923 operational source cards for a cost of 57 man months. These figures

include the development of an experiment data record generation capa-

bility and reflect all costs from requirements development through

final delivery of the program version used for planetary operations.
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The use of a Common Data Base had a negative impact during develop-

ment, test and training. Approximately one man month was lost by users

believing software errors were the cause of test repeatability failures,

whereas the actual causes were ultimately traced to changes to the com-

mon data base. No impact of this type was observed during operations.

Use of the file transfer software reduced the tape drive alloca-

tion requirements during operations by approximately 30 percent for the

entire Viking software system.
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TECHNIQUE

NAME: ON-LINE DATA FILE MANAGEMENT SYSTEM

SUMMARY: The on-line data file management system (OLDFMS) was designed to

assist in the management of data sets suited for residence on direct

access devices in the IBM 360/75 system configuration for Viking batch

operations. The system was developed after determining that the pro-

posed manual procedure for handling files on the 360/75 batch computer

could not adequately accomodate the anticipated 200-400 daily data

management activities.

APPLICATION CONSIDERATIONS: The volume of data forecast to be processed

daily on the 360/75 computer necessitated the development of a process

to perform data management functions with minimum human intervention.

Direct access space (DAS) was limited to approximately 12000 tracks for

non-temporary storage of lander files, which were expected to require

a minimum of 9000 new tracks daily. Thus data set creation could not

exceed file removal, which in turn could not be performed until adequate

checkpoint was completed. This translated into 200-400 actions required

daily to create, checkpoint, remove, and restore mission files. Main-

tenance of good records indicating which data sets were ready for re-

moval and checkpointing was mandatory to allow DAS space to be made

available. Tracking a data set's location also required accurate records.

RECOMMENDATION: The on-line data file management system is perhaps unique

to the Viking Lander 360/75 batch operations. It was developed to re-

solve a very difficult data management problem that did -,t exist for

Viking 1108 operations, since adequate data management Lools were avail-

able there. It proved to be superior to the 1108 file management sys-

tem. It greatly simplified user requirements, significantly reduced

the existing job failure rate and did not lose data sets. The lesson

learned is that designing a data management tool based on user needs,

computer set idiosyncracies and software system design produces a more

efficient system than using existing albeit adequate management tools.
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HISTORY: The data management procedures used on the IBM 360/75 were found

to be unacceptable to meet Viking Mission time lines. Those on the

1108 were deemed adequate.

The Univac 1108 operating environment was such that it promoted

standard file management practices to be performed by each user of the

system. Maintaining permanent data sets on mass storage is generally

impractical because:

1. special coordination is required with operations personnel

to identify a data set having permanent status, primarily

intended for program libraries, data bases, etc.;

2. accounts are charged for data sets remaining on direct access

storage at the end of each day (non-permanent data sets are

then purged after accounting);

3. if execution is desired on another available machine, unle-cs

a data set is permanent on the object configuration, the user

must move data sets.

Item 1 above virtually eliminated Viking utilization of permanent

data sets because the naming conventions required that each data set

be given a unique name to help identify the file's content. Thus, if

a data set was required on subsequent days, it was the user's responsi-

bility to ensure that his files were properly placed on tape prior to

terminating a session. In addition, the charge on abandoned data sets

was incentive enough to remove files when no longer required.

These procedures with which 1108 users are burdened were necessarily

followed throughout software deliveries to JPL and user acceptance test-

ing. Thus learning to use the system effectively was virtually manda-

tory. It is interesting to note that most 1108 programs were originally

developed on the CDC system, in Denver, where the same -oncept of no

permanent direct access storage prevailed.

By contrast, the 360/75 system accommodated permanent direct access

storage via user packs during software deliveries and user acceptance

testing. This was different from the 370 developnment environment in

Denver in that available space was reduced by roughly a factor of six.
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Though this posed few problems initially, because data sets were resi-

dent until manual action was taken to remove the entry, a build-up of

leftovers became a growing problem. Since Disk pack contents were con-

sidered permanent, when personnel departed after completing user accept-

ance testing there was no incentive to remove data sets no longer re-

quired, and there was no obvious need to move data sets to tapes which

might be necessary for the next delivery phase. What happened was that

other teams would arrive to deliver ond test software only to discover

that there was insufficient direct access space for them to operate.

So they would resort to deleting data sets left by other users, many

of which were important.

In short, there was little visibility or control of direct access

storage usage. No incentives existed to use the resource in a rational

manner. Because no self-training could develop as occurred on the 1108,

it became obvious that self-policing would not accomplish the goals of

maintaining direct access storage (DAS).

Attempts were made to guarantee that data sets would be check-

pointed to tape and subsequently could be retrieved on direct access

storage space. This task was cumbersome and somewhat ineffective be-

cause there was no way to assure that the data set contents was the

latest. Regardless of the shortcomings of the checkpointing procedures,

no method could be devised to remove unneeded data sets, except for pol-

ling and policing users. Frequently, even the user could not recall

the criticality of a file's contents.

While it was possible to clear direct access storage daily on the

360/75, it was impractical for several reasons:

1. No reliable software existed that could readily checkpoint a

collection of data sets to tape that could be retrieved in-

dividually (an entire pack could be moved to tape, but nothing

short of the entire pack could be restored).

2. There was no firm central control over pack contents because:

it would have been a full-time job for which no funds were

authorized; usina the available software tools would require

an immense amount of computer time to be consumed; to ensure

57



I-7

data set contents, the pack control time would have to be

separate from pack user time; and finally, coordination (i.e.

file names to be checkpointed) would be difficult, if not

impossible, due to varied block time/shift assignments.

Users might have been required to checkpoint files, but the avail-

able software utilities were extremely burdensome, error-prone, and

would have consumed an estimated 20-30% of available CPU time. In addi-

tion, most 360 users were accustomed to having their data sets perma-

nently resident on direct access storage (DAS) in the Denver installa-

tion. Even though direct access storage was more abundant, moving files

to tape was not an alien concept. However, because of the general pain

associated with the effort, and the tremendous amount of storage avail-

able, the action was seldom taken.

The computer environment at JPL was significantly different from

that in Denver during development. In Denver, the computer was generally

accessible twenty-four hours a day, whereas computer availability at

JPL was by assigning the computer for exclusive use by Viking lander

program developers for a specified period known as block-time. This

approach resulted in prolific activity within a typical 4-6 hour block,

generating an atmosphere of frenzy that sometimes bordered on panic,

end left little room for thought about data management. Block-time

participants worked almost always in a sloppy, barely-look-at-results

mode, trying to use as much of the precious available computer time as

possible before the blocktime ended. It was very difficult to perform

data management activities during non-block time periods because a modi-

fication to the non-block time computer configuration was invariably

required.

The Viking lander file naming convention allowecd f,, one to iden-

tify: a data set as being mission or test; the type of data it con-

tained; whether the contents were applicable to mission A or B, or both;

and a final unique qualifier identifying the source link of data. In

particular, the first level qualifier "VS" denoted a test data set and

IT"H", a mission data set. A second level qualifier identified the type

of data set using an agreed to five character generic which was docu-

mented in the Software Data Base Document. The third and final qualifier
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indicated lander association by the characters: XA, XB, or XX, for

Lander A, Lander B, or both, respectively. This was followed by five

digits, the meaning of which was well defined for the file. For exam-

ple, Lander downlink data.files used the day of year the data was re-

corded on earth and the version for that day. In particular, the Lander

power program, LPWR, creates three data sets to generate the electrical

load profile. They are: the PROFL file, which contains a complete

load profile; the COMR file, which contains a detailed power profile

for each individual component; and the PWRIC data file, which will be

used to provide initial power profile conditions to process data on the

next downlink. A forecast run of Day 250 for mission B landed, nominal

temperature, would have a qualifier of XB250L3. Should another run be

required for the same time frame, and the original files were to be

retained, the qualifier would appear as XB250L4.

The full mission data set names of these files are VM.PROFL.XB250L3,

VM.PWRIC.XB250L3, and VM.COMPR.XB250L3.

An obvious advantage to using a well defined naming convention is

to reduce, and make more meaningful user input. As for the above exam-

ple, the PROC parameters might be the following:

//MISSION-B,DAY-250,TYPE=3

File headers were conceived in anticipation of the naming conven-

tions to allow receiving programs the opportunity to verify that the data

set they were using was in fact the one requested. In addition, a cre-

ation date was included to pinpoint the time the data set was written,

thereby guaranteeing the uniqueness of each data set.

Whereas naming conventions could have been implemented earlier,

they could not have preempted file headers, since the header was an en-

coded part of data set creation and could not be inadvertently modified.

The file headers provide an additional check on the uata set contents.

However, it should be noted that no requirements were imposed to guaran-

tee that the file version field would be properly maintained.

The data management problems encountered during user acceptance

testing were amplified when the data systems integration (DSI) group

begati verifying software deliveries. Test checks were submitted to

59

-i



DSI for program delivery verification, but test data to be processed

by these runs often pointed to a direct access pack that was not part

of the DSI computer configuration. Thus, more often than not, a re-

quired data set was not accessible.

It should be noted that it was required to have data sets avail-

able, but frequently they were on the wrong packs (in practice often

data flight packs and development packs had identical identifications

which enhanced the confusion), or sometimes they ended up on temporary

copies of packs. Temporary copies of packs were required to be mounted

when, as often occurred, two computers whose configuration requirements

overlapped were scheduled concurrently. Rather than being concerned

with individual data sets, emphasis, by default, was placed on maintain-

ing direct access volumes with virtually no regard for content integrity.

This approach was not because of any lack of concern, but was rather

due to the lack of proper, usable tools to cater to individual data sets

which, no doubt, fostered undefined procedures--other than identifying

the location of data sets--for delivering test data.

The GDS testing conducted during the spring of 1975 brought the

worsening data management problem into the limelight when one test was

a total failure because required data sets were missing. As a result

of this, procedures were defined to assure that required data sets

would be placed on the appropriate packs. A tape copy was required to

be available in case the direct access copy was, for any reason, not on-

line at the initiation of the test. Finally, the proper personnel were

required to be present for the test to work out any anomalies which

might arise, such as fetching a mission data set from tape.

Despite these procedures, requirements and precautions, some test

sequences had to be cancelled because the required data sets were not

available. This was not the result of negligence; numerous data sets

had been copied to the appropriate packs, but subsequently some were

removed because of a breakdown in comvunications about the validity of

the presence of the data sets on the direct access storage. Further-

more, the required backup tape copy did not exist because of a lack of

computer availability combined with an additional breakdown in comnuni-

cations that led to the presumption that the action had been performed.
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The inception of Viking flight-batch operations established a DAS

configuration which was permanently on-line (for all practical purposes),

thus automatically eliminating problems directly attributable to block-

time processing. The initial MS configuration provided two 2314 packs

(4000 tracks each) with plans to incorporate a third for lander activi-

ties when mission/testing activities increased.

Throughout most of 1974 and the first half of 1975,%manual proce-

dures were defined to handle the management of Viking data files. This

included the establishment of logs to be maintained by each user group

to track their files and a central point of control to actually manage

the MS and better utilize tape facilities. This responsibility was

assumed by a data processing team (DPT) figure known as fileman, whose

original charter was to expedite file transfers between the 1108 and

360 computer systems. It became fileman's function to respond to flight

team needs for file checkpointing, deleting, and restoring. In addition,

fileman, being a focal point for DAS management, was respcnsible for

coordinating with users to remove no longer required data sets when IhS

space was close to extinction. This involved personally polling each

user with a volume table of contents (VTOC) of each of the packs to

determine which data sets could be removed.

As might.be expected, users were most reluctant to remove data

sets from MS unless there was virtually no space available, at which

point filemed prompted a campaign to personally contact each user and

confront them with the hard facts. Although there was some improvement,

removal was never adequately performed voluntarily, employed only during

a crisis.

User reluctance to remove no longer required data sets from the

DAS was based on a fear of not being able to retrieve thi file if it

was needed later and a somewhat innate lack of confidence in the many

manual interactions necessary to perform the desired function--particu-

larly in a timely manner. Looking more closely at the steps required,

it is apparent that a number of weak links undermined the confidence

level of the user.
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The user was more than familiar with the problems of locating DAS

space for a data set, even when file sizes were unknown. This reouired

checking the VTOC listing of each pack to determine which might be

likely to have adequate available space at the time allocation would be

attempted (when the job was run). If the job was rerun, old copies re-

quired purging. Unless the user acquired a VTOC to note the size of a

data set prior to checkpointing and removal from DAS, there was no

record maintained of space used. Space allocation was the principle

problem fileman had to face to restore a data set, after checking that

the data set name was not already in existence. The possibility of the

job running half-way and then resubmitted (or inadvertently rerun)

grossly complicated the allocation task. It should be noted that the

utility could allocate space, but its default values were generally

much larger than required and that amount of space was frequently not

available.

Then of course, there was the conveying of the tape and file to

fileman, which had to be transformed into input to the IEUMOVE utility.

Two more pitfalls quickly arose: possibility of transposing information;

and generating a syntax error on the utility control card. Once the

restore was performed, the user had to be informed of the success of

the generation so they could submit their run.

Although central point was now coordinating the checkpointing, re-

moving and restoring functions, there was no central source for data

set tracking. Thus the thermal personnel had to query the power person-

nel for the location of a needed file. This required that either the

on-duty power people were cognizant of the information, or that someone

had remembered to make note of it before going home for the week-end.

The stumbling blocks are simple to perceive, but their impacts were

overwhelming. Though numerous procedures were written, and elegant

logging forms were designed, the implementation of the original file

management scheme was unsatisfactory, relying too heavily on people to

record log entries immediately upon receipt of the information, without

error, and to interact with other individuals to convey mundane - albeit

important - information concerninF data set location. Even the most

conscientious personnel failed because of a timing problem, or a mis-

placed message. The coordination effort, already intensified to cope
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with activities associated with mission activities, could not realisti-

cally be broadened to encompass file management problems. In a critical

situation, more time was devoted to maintaining the basic vital func-

tions than to coping with the actual crisis.

DESCRIPTION: Just prior to the launch of Viking I, OLDFMS development was

initiated. The initial concern was to provide immediate relief to file-

man by greatly simplifying the interface with standard OS utilities.

This would simultaneously reduce the potential for error and incresse

file management capacity by decreasing the amount of information re-

quired to perform each function. For example, to checkpoint to tape

and remove three data sets from DAS, the fileman was required to keypunch

the following information onto cards:

/ / EXEC CHKPOINT,TAPE=1783

if not cataloged

COPY DSNANE=VS.OPDFE.XAOOOOO,TO=2400=(1783, I) 1, [FROM-2314VIYO I
COPY DSNAME-VS.TEMPF.XAO0201 ,TOi2400=(1783,2) , LFROM'2314-VIKO02)

COPY DSNAME=VS.LPWRF.XA00604,TO=2400f(1783,3) , [FROu2314=VIK002]

II EXEC REMOVE

SCRATCH DSNA 4E=VS .OPDFE.XAOOOOO,VOL=2314=VIKOOI

SCRATCH DSNAIME-VS .TEMPF.XAO0201 ,VOL=2314=VIKO02

SCRATCH DSNAMEVS.LFPRF.XA00604 ,VOL-2314=VIKO02

if (UNCATLG DSNAE=VS.OPDFE.XA03000

cataloged UNCATLG DSNAME-VS.TEMPF .XAO0201

UNCATLG DSNAMEfVS .LPWRF.XA00604

If the data set being copied to the first file could not be done

for some reason (data set already scratched, keypunch error, etc.), then

subsequent requests could not be honored and the progri- would abnormally

terminate. Before the data sets could be removed, the output of the

checkpoint run had to be scanned visually to ensure everything was

copied successfully. Upon delivery of the Phase I File Management pro-

gram, the same process could be done by merely keypunching:
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// EXEC CHKPOINT, TAPE=1783,FILE-1,NAME-FILEMAN,SCRATCH=YES

D=VS.OPDFE .XAOOOOO

D=VS. TE4PF .XA00201

D=VS.LPWRF.YA00604

If the data set was not cataloged, the program would search the DAS

packs to locate the file. The scratch would not be performed unless

the data set was successfully copied.

In addition, software was provided to punch system catalog entries

allowing fileman to extract pre-punched cards to rqspond to user requests

(via a file request form), thus eliminating keypunch errors.

The Phase I File Management also provided for a simplification of

restoring and allocating data sets. For example, pre-Phase I restora-

tion of a pre-allocated data set requiring 150 tracks would appear as:

// EKEC PGM=IEFBRI4

//A DD DSN=VM.TEMPF°XAOD10,DISP=(,CATLG),UNIT=SYSDA,

// VOL=SER=VIKO02,SPACE=(TRK, (150,10))

// EKEC LRESTORE,TAPE=9768

COPY DSNAE-VM.TEMPF.XA00I0,FROM=2400=(9768,1
3),

TO=2314=VIKO002

Notice the requirement to explicitly define the object DAS volume,

necessitating an educated guess as to which volume would contain the

data set. Phase I could accomplish the task as follows:

I/ EKEC LRESTORE,NAME=FILEMAN,TAPE=9768,FILE=13

D=VM.TEMPF.XA000 I0,TRKS= 150

Available DAS volumes woild be searched until the required space

could be allocated, if it was available.

Data sets could also be pre-allocated for programs to alleviate

the necessity to choose a volume prior to job submittal.

// EXEC RESERVE, NAME=USER

D=VM.LPWRF.XA07633,TRKS=700 ,SEC=100

D=VM.CMPAR.XA07633 ,TRKS= 100

However, this method of input was in addition to specifying the

data set names in the program process, thus complicating run submittals

for the user. Phase II wauld allow for data set names and space

requirements to be extracted from standard Troc entries, making the al-

location phase totally transparent to the user.
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Phase II incorporated the logging of data set transactions into a

permanently available data set which recorded such things as when a

data set was allocated, checkpointed, removed, or restored. In addi-

tion, the number of tracks required for the data set and its DCB (data

control block) attributes were recorded.

Thus a central point of information was established, readily acces-

sible to any user at any time. Fileman generally acquired a log listing

several times a day for reference purposes, removing the burden from

flight team users of acquiring a log report.

The log report was presented by generic and mission/test qualifica-

tion. That is, data sets, under VM.IANCO would appear together, sepa-

rate from VS.LANCO data sets. For each entry space was provided to

display the date of creation, a date for terminating on-line residence,

two checkpoint tapes/files, tracks consumed, data set organization, re-

cord format, block-size, record length, the current status of the data

set (original, inactive, restored), and last time of log entry modifica-

tion. If a coimnent were entered for a given entry, it would optionally

be displayed on the following line.

Log entries could be made only for generic-mission/test qualifiers

that followed naming conventions and ware identified to the log by file-

man via log configuration software. Additions were made to the alloca-

tion, checkpointing, removing, and restoring modules to update by en-

tries (if a log were present--comiplete downwards compatibility was

maintained throughout), and new software was provided for manual updating.

Log initialization (/reconfiguration) allowed for ei.Lh type entry

(e.g., VM.OPDFE, VM.TEMPF, VM.GCSCI) to be assigned an owaer. The re-

port would contain the owner specification to further identify the data

sets. However, the owner identification was more intended for use in

Phase III software to assist in performing automatic chckpointing/

removing of data sets. In addition, the log contained (for each type

entry) a noiiinal space requirement and retention periol (i.e., number

of hours data sets of the given type would be required on DAS), intended

strictly for Phase III operations, but part of Phase II to let the con-

* cept gradually develop. Thus, when automatic capabilities became

available, most data set types had been identified.
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Phase III software incorporated auto,atic checkpointing/removing,

and a new function known as PROVIDE. All three packages used informa-

tion from the OLDFMS log to perform their tasks. A Viking mobile tape

rack that could hold over 100 tapes was provided to support the delivery,

since the requirement for humans to know what tapes were needed was

taken over by the software.

Automatic checkpointing would scan the log by owner, type entry,

or in entirety, selecting data sets which were original, had been writ-

ten (as opposed to being just allocated), and had not yet been check-

pointed adequately (some data sets required double checkpointing). The

data sets entries which met criteria were then passed to the standard

checkpointing software.

Auto-checkpointing was always performed selectively rather than

q aerying the entire log. The reasons for t-his are as follows:

1. Data sets were categorized by retention requirements; those

required for only 30 days; those required for 60 days; those

required to be retained until end of mission. Thus it was

desirable to not intermix groups on the same tape.

2. The OS utility IEHMOVE (utilized for checkpointing) could not

support multi-volume checkpoints; therefore, it would gen-

erally be impossible for all data sets requiring checkponting

to be processed in a given run. However, multi-volume check-

points could have caused more harm than benefit when consider-

ing the possibility of restoring a data set spanning tape

volumes.

3. Checkpoints could be performed in parallel (several jobs),

reducing the elapsed time to process.

Automatic removing would scan the log similar to atito-checkpointing,

with identical selective options. The auto-remove software would basi-

cally remove data sets whose active periods had elapsed. It was possi-

ble to increment or decrement the current time to allow for additional

flexibility in defining data sets eleigible for removal. Original,

restored, or all expired data sets could be optioned as candidates for

processing.
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Original data sets could not be removed unless adequate checkpoints

had been created. Thus if an original data set was scheduled for re-

moval, but was not adequately checkpointed, a message would be displayed

to reflect the situation.

Phase III also enhanced the checkpointing function by using the log

to ensure tape files could not inadvertently be over-written. Thus, for

multiple checkpoint runs using the same tape, fileman did not have to

maintain and enter the "next" available file number and, indeed, could

not enter one which could destroy checkpointed data sets without sub-

stantial effort to override several safeguards and suffer verbal abuse

issued by the software before succumbing to the hazard.

QUALITATIVE RESULTS: The PROVIDE function was probably the most effective

piece of software in the entire OLDFMS package, the culmination of

efforts to virtually eliminate manual user intervention in the file man-

agement scheme. Though extremely simple in concept, the impact of the

user being able to say to the system "I need data set X", and it is

made available, is unsurpassed. PROVIDE instilled user confidence in

the on-line data file management system.

The ability to obtain an input data set for processing regardless

of its status (active or inactive) prompted users to define extremely

Sshort active periods for many data sets (some as short as a few hours).

As a result, most data sets were retained on DAS only whsile required for

processing. PROVIDE promoted extensive flexibility in managing the I\S

resources by allowing fileman to remove data sets which were perhaps

still required, in an effort to free-up space for other users.

The incidence of job failures due to "data set not found" went to

zero when PROVIDE was incorporated. If the data set was in the system,

it was available, whether active on E\S, or residing on a checkpoint

tape to be restored. A user's job requirements were virtually self-

contained.

OLDFMS was able to greatly enhance mission software operations

because:

1. it reduced substantially job reruns due to lack of DIS space

or missing data sets;

67



2. it eiliminated the necessity for manual interfaces concerning

file management details;

3. it allowed fileman to respond to critical file action requests

in a timely manner;

4. it established a central point of information for data set

tracking;

5. no data sets were lost or misplaced.

Had OLDFMS been available for development, UAT's and system test-

ing, substantial time savings could have been realized with reruns be-

cause of missing files or inadequate DAS space reduced and additional

processing eliminated to reproduce data files inadvertently destroyed.

Software to maintain and use OLDFMS logging was somewhat under-

scoped, partially because its user acceptance exceeded all expectations.

More effort could have been spent on software to remove no longer main-

tained data sets and associated tape recycling though existing tools

could perform the task, requiring substantial manual processing.

QUANTITATIVE IMPACT: Prior to development of OLDFMS, operational rimelines

could not be met. The job failure rate due to inadequate direct access

space and files being removed from the system ranged from 5 percent to

30 percent, depending on the level of activity. After implementing

OLDFMS, no job failed for these reasons, and mission timelines could be

met. Delays inherent in preparing to submit a typical run were reduced

by an average of thirty minutes per run. Manpower costs for the design

and implementation of OLDFMS were approximately 5 man months, distributed

over a nine-month time period.

This relativeLy low cost of development was possible because many

file transfer software functions, which were used by OLDFMS, had already

been developed. As such, the cost to develop OL)FMS fro-n scratch would

have been more like one man year.
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TECHNIQUE

NAME: INTEGRATED SOFTWARE FUNCTIONAL DESIGN

SUMMARY: Software Functional Descriptions (SFD) were written for each candi-

date Mission Operations software function. Concurrence by Flight Team

members established the requirement for a program. The SFD's were com-

bined to form an Integrated Software Functional Design (ISFD) of the

entire software system. The ISFD was subjected to preliminary and cri-

tical design reviews by the Flight Team Directors and the Mission Direc-

tor. Upon acceptance by the Mission Director, the ISFD was placed under

change control to establish the baseline design for the Mission Opera-

tions Software System.

APPLICATION CONSIDERATIONS: Each Flight Team group war in a posiLion to de-

fine the functions they would need to support and control the Viking

spacecraft during Mission Operations. A requirement that these func--

tions be documented offered management a tool by which they co-ald con-

bine functions used by more than one group, determine which should be

performed through procedures and which through software, and establish

program need date as a function of mission phase. By integrating and

ccnbining the individual functions, the data flow for the entire soft-

ware system could be established.

RECOMMENDATION: A software integrated functional design provides an excellent

means for management to understand and structure a software system. It

can be used to determine the amount and type of software necessary to

be developed, thereby laying the foundation for manpower and computer

resource requirements. By establishing the data flow of the system,

it makes visible the integration requirements for the system.
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HISTORY: The Flight Operations Software Plan specified the need for soft-

ware functional descriptions and an integrated software functional de-

sign of the Mission Operations Software System. The lander, orbiter

and institutional software systems engineers were required to gather

software functional descriptions for each candidate element of their

software systems. They delivered them to the Integrating Contractor

Software System Engineer (ICSSE), who was responsible for publishing

them and generating an ISFD from them.

This proved to be a lengthy iterative process, wherein numerous

meetings were held among the software systems engineers and the various

Flight team groups to understand the need for and interplay between the

various functions. An initial ISFD was generated and subjected to con-

siderable review by each of the Flight tea- groups, primarily to deter-

mine interface rquirements and uncover system deficiencies.

Eventually, six software systems were defined to support mission

planning, lander and orbiter uplinks and downlinks, and tracking and

flight path analysis. Diagrams for each of these systems were used by

the ICSSE to conduct a preliminary design review of the system, which

was held before the mission directors and representatives of the vari-

ous Flight team groups.

Following the PDR the iteration process continued and brief text

descriptions were developed for each of the software systems.

The critical design review was held in a high school auditorium

before an audience of several hundred people; included were Flight team

members, directors, and outside software experts brought in by NASA to

critique the Viking software development approach. To accommodate

such a large audience, the ICSSE used very large diagrams for each sub-

system, the largest of which was ten feet high aid forty feet wide.

Following the CDR, the Mission Director approved the ISFO. The

SFD's and ISFO were then incorporated as an appendix to the Flight

Operations System Design document and placed under Viking Integration

Change Control. The software syste-A was now structured such that any

change to the ISFO woald affect syste.n data flow and impact more than

oie program.
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DESCRIPTION: The software design and development process began with the

identification of software which was the basis of the ISFD. Identifi-

cation of software was accomplished by the appropriate Flight Opera-

f tion subgroup by preparation of a SFD for each required function. TheI

SFD was written in accordance with the following format and requirements.

1. Propram Title

2. Functio..al Description - Give a brief description of the gen-

eral functions to be performed by the program. While the

;anctions -re of main interest, some information on capabili-

ties -nd mathematical method is also desirable.

3. Utilization - Describe the intended use for Viking operations

in general terms with reference to mission phase, frequency

of use, use in program run streams, etc. For new programs,

a step-by-step functional description of the program opera-

tion is recommended to facilitate the integration process.

4. Input/Output - Describe all data and program interfaces. both

internal and external to the particular operations software

element. This section shall be broken up into subsections

entitled "Input" and "Output".

5. General - State whether the program is essentially a new pro-

gram, a current existing program, or one that will be derived

from an existing program. If the latter, name the baseline

program, co-nputer developed on and the magnitude of modifica-

tion. If po3Sible, give sone indication of expected program

size and running time. Specify any anticipatud or known pro-

gram constraints.

6. Bibliography - Give references to pertinent documents which

would provide more information about the planned prograv or

which describes the existing progran.

The ISFD was developad in a series of increasingly conplex stages.

A target program, such as the Lander Sequence Generatio-i Program (LSEQ),

was shown as a box. The inptic section of the SFD for this target pro-

gran was then used to determine what information was required to be

made available to the program. A logical subset of the remaining SFDs

were examined to see if they could or did gei)erate output for the
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target program. When a source for input to the target program was found,

the source program was added to the diagram and an arrow was drawn to

indicate the data flow. This sometimes required modifying the output

section of the SFD of the source program. If no input source for the

target program could be found, the input was shown to be manual. The

output section in the SFD of the target program was treated in a similar

fashion, showing each output item either going to another program, to a

printer, a plotter, or to archives. In this fashion, a simplistic over-

view of the entire software system was generated which accounted for

each SFD.

The basic system flow diagram was next iterated upon by the various

Flight team groups to determine if manual inputs would require new soft-

ware functions to be defined, to ascertain which prints and plots would

generate information required to produce manual input to other programs,

and to assess whether some functions should be moved from one program

to another.

Following this iteration, more detailed diagrams were drawn that

indicated the means by which interfaces would be accomplished. Symbols

were used to s',.o mass storage files, tape files, card files, and manual

interfaces. The latter illustrated that printed output from one program

would become punched card input to another program. File management

functions were now determined and added to the diagrams.

Comtputer loading studies were conducted to balance the computational

loads on the available computer systems. Tne ISFDs then were expanded

to show the computer systems involved. A rough estimate of thro'ighput

time for data to be passed through the system could now be made.

The final step in the generation of the ISFD was to write a short

narrative describing the software program3 used by each subsystem,

how they would be operationally used, aid how information wo-ld fio'

through the system.

QUALITATIVE RESULTS: The ISFD was extremely valuable to the success of de-

velopin:; a software systen that was both reliable and minimized the

amount of software necessary to be developed to support all mission
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objectives. It permitted the project to assess system capabil4 ties

during the design stage. It provided a structure for the overall sys-

tem that was visible and easily controllable by management. It lay the

foundation for the system integration requirements and the development

of the Software Data Base Document.

The document was maintained through integration of the software

system, after which the Software Data Base Document was used to control

changes to the system structure and integrity.

QUANTITATIVE IMPACT: The cost to develop the SFDs and ISFD was approximately

five man years. Changes to and maintenance of the descriptions cost

an estimated two additional man years. A total of 130 SFDs were written

to describe 61 lander, 56 orbiter and 13 institutional software func-

tions. From these, six ISFDs were developed showing 8 Mission Planning,

24 VO Uplink, 18 VL Uplink, 40 VO Dowilink, 53 VL Downlink and 13 FPA

functions. The total number of functions shown in the ISFDs adds up to

156, which illustrates that 26 adaptations were made to allow functions

to support more than one subsystem. Thus, had the ISFD approach not

been taken, it is reasonable to c.include that some redundant software

functions would have been developed at additional cost in manpower and

computer resources.

R
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TECHNIQUE

NAME: MISSION BUILD PROCESS

SUMMARY: Viking operational software code, including object, source and pro-

gram listing, was placed under strict control at the beginning of the

system integration phase through a process known as the Mtssion Build.

Software could only be added to the Mission Build by Viking Mission

Control and Computing Center (VMCCC) personnel, who were responsible

for maintaining the Build. During integration and operations, only

object code on the Build was available to users .; n read only mode.

The Mission Build process is a software control process that assures

deliverables will function as built within a computer system.

APPLICATION CONSIDERATIONS: The Mission Build process was developed at the

Jet Propulsion Laboratory to control the development, integration and

use of operational software systems in a multi-mission environment.

The process permitted only authorized software to be made available to

users, and prevented the software of one project from conflicting with

the software of any other project. Use of this process was mandatory

for real time operational software. The Viking Project elected to in-

voke the process for all batch operations as well, since it afforded

them a practical and established means to control their software system.

RECOMMENDATION: The Mission Build process is conceptually an excellent means

by which management can control a software system. The process should

include a capability to provide temporary'overrides that are transparent

to users. The process of generating, updating and mainr ining a build

will be costly in manpower and computer resources. The resultant con-

figuration control is well worth the additional cost. The override fea-

ture of the build offers the advantage of being able to correct errors

or add new functions without inadvertently introducing errors to deliv-

ered software. This feature should not be used for real time systems

except in extreme emergencies, but should be incorporated as the stan-

dard procedure for modifying batch systems.
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HISTORY: Both Integrating Contractor Lander/Orbiter software integration

and VMCCC integration testing were conducted using software programs

resident on the same mass storage media, called the Integration Mission

Build. The method of adding programs to or updating programs on the

Integration Mission Build varied by facility, as described below. The

Integrating Contractor integration was limited to running Viking Lander

and Orbiter software under control of the VJCCC operating system, where-

as the VWCCC integration also included running Institutional MCCC soft-

ware and non-Viking Project software.

Software System One (MOSS 1) was obtained by copying and saving

the Integration Mission Build when all the integration for that system

had been completed. The integration process continued, adding and modi-

fying programs on the Integration Mission Build and performing the inte-

gration tasks for each of the remaining software systems. Copies of

the Integration Mission Build were made as the integration for each

software system was co mpleted.

The Mission Control Computing Facility (NCCF) supported the Viking

Project with two IBM 360/75 computer systems. One was used to support

multi-mission, multi-project, real time program operations. The second

computer system was used to support both Viking and MCCF batch program

operations. The initial concept was to convert Lander pro3rams developed

on Martin Marietta computers by submitting program decks as oier the

counter batch jobs to MCCF operations personnel. Dring preparation

for Users Acceptance Testing, Project software was then to be innorpora-

ted on a Development Mission Build, which was available on a daily basis

but did not usually have the same operating system as the Integration

Mission Build. This sounded fine in principal but did not work in

practice. Th software developers not only wanted te use the Integra-

tion Mission Build operating system, but they also wanted to link edit

their programs to controlled delivered software library elements rather

than linking to uncontrolled software library elements whose status

could change at any time without visibility to the user. For this rea-

son they plazed their programs on a private disk pack, knomn as DO'N05,

which was assigned to and controlled by the Integration Contractor
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Software System Engineer (ICSSE). During conversion and Users Accept-

ance Testing, the software developers reqcested the Integration Mission

Build packs, or copies thereof, plus DSNO06, to be mounted on the sys-

tem. This precluded being able to run during daytime operations when

the Development Mission Build packs were mounted. Blocks of time were

therefore made available to these users during second and third shifts

and on weekends to allow them to use controlled software. Following

Users Acceptance Testing, Project software was placed on the Integra-

tion Mission Build and unit verified by the Data Systems Integration

Group (DSI) of the VMCCC. The ICSSE then performed the required Lander/

Orbiter integration tests.

Frequently program malfunctions were detected during ICSSE inte-

gration. When this occurred, modifications to the program were made

and written to disk pack DSNO06 and the integration test was completed

using that pack to override the appropriate porcions of the Integration

Mission Build. Upon completion of this testing, failure reports were

written against those portions of the program that malfunctioned on tbe

Integration Mission Build, but worked with the DSNO06 override. This

failure report procedure permitted the ICSSE to authorize redelivery

of the corrected and tested portions of the program to the VMCCC to

be incorporated as permanent updates to the Integration Mission Build.

Each redelivery required the DSI to unit verify those portions of the

program that had malfunctioned, after which the ICSSE repeated the inte-

gration test without DSNO06 being mounted.

Tne General Purpose Computing Facility (GPCF) supported the project

by making either of two general purpose UNIVAC 1103 computer systems

available on a daily basis. The initial conversion of Lander programs

from W9C computers to the GPCF computers was by submittfn, prograns

decks as over the counter batch jobs to GPCF operations personnel.

The same EXEC-8 operating system was available for both general use

aid the Integration Mission Build and programnaers could map their soft-

ware to controlled delivered software library elements during standard

daytime operations, using the qualifier VIKING. During preparation

for User Acceptance Testing, individual pro-ram Bench Mark tapes were
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written and submitted to be run as batch jobs. The Users Acceptance

Tests were conducted in the same environment. Following this, GPCF

program integration tapes co.taining source, objact and listing of the

program, were submitted to DSI. These were comblined onto a series of

GICF integration tapes under control of the DSI. The software was made

available to users by the DSI who had the contents of the tapes read

into the computer under the qualifier VIKINQ.

Unfortunately, qualifier VIKING was frequently not on the system

during second and third shifts and on weekends during dpvelopment and

ICSSE integration. This caused problems in submitting orernight or

weekend runs, which were desirable since computer rates were consider-

ably cheaper during these periods. For this reason the ICSSE, who con-

trolled the delivery of the software, created aa identical Integration

Mission Build under his control that contained the originals of the

controlled software elements. This ICSSE Build was made available at

all times to users under the qualifier V1KIN . Integration testing

was conducted under this qualifier, and program malfunctio.s were trea-

ted in a fashion similar to that described above for the MCCF. Effec-

tively what had happened was that the Integration .ission Build was for

all practical purposes merely a copy of the ICSSE Build; actual control

of the software system during this period had by default passed fron

the lII to the ICSSE.

DESCRIPTIO4: The JPL Mission Build process is a iechaitsm by which tile

elements of various operational softwrare systems are integrated within

the fazilities of the Hissiet Control and Computing Center (MCCC) to

support controlled mult!-Project, multi-mission op2rations. The inte-

gration portion of the process is relative to the Operdiing Systems,

institutional software and computer complexes; the integration of the

operatioial software systems is the respoaibility of the Projects that

use the Missioa Build process, aid is indepa-dent of the build process.

As such it is a software control process.

Tnere are -normally three distinct Mission Build phases:
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a) Tie development Mission Build is used for software develop-

ment and User Acceptance Testing (UAT). Change control is

maintained at the progra-mmer/engineer level. This phase was

not used by the Viking Project.

b) The integration Mission Build is created by MCCC Data System

Integration (DSI). Only software accepted by DSI is placed

on this Mission Build. Chaige control is maintained at the

SSE/DSPE/DSI level.

c) The flight support Mission Operations Software System (MOSS)

is the final product of DSI which is delivered to Operations

and the Operations Program Data Base (OPDB). Cnange control

is -maintained by the multi-project MCCC Change Control Board.

The process used by Viking began with the A.ivery of post-UAT

software elements to DSI. 1CCC integration testing then consisted of

delivery verification (Unit Verification Tests - UVT), subsystem/program

verification, system peiformance tests, system loading tests, and

facility level demonstration tests. How each of these were accomplished

will be discussed in the following paragraphs.

After each software element satisfied the UAT requirement, it was

delivered to DSI. The items that ac-companied each delivery were:

1) The program deliverables as applicable to the facility in

which the software end product will be operated;

2) Tne docunentation required to define a-id u3e the software

element;

3) An Inventory Chaige Authorization (ICA) form completed and

signed by the software element supplier which certifies that

the deliverable successfully completed a UAT;

4) A conmleted Inventory List identifying all ite. s required to

b-2 delivered to DSI. Each item included in the delivery pack-

age was identified, aid a schedule delivery dat
. was provided

for each item not included in the package;

5) An Estimate,] Parameter List that provided a.!equate informa-

tion for comp:iter loading analyses and to verify conforimance

WiLh the MCCC guidelines and cons.taints;
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6) A copy of the authorized change package if the delivery was

the result of change action. For changes to the integration

Mission Build to correct progran errors, the signatures of

the appropriate SSEs were required. Changes based on new

requirements or to the MOSS also required the signatures of

appropriate Mission directors.

The program deliverables to the Mission Control and Computing

Facility (MCCF) included a TRIO tape created under Real-Time Program

Management (RTPM), Load Module descriptor cards, Mission Build Input

cards, and test decks for unit verification and regression tests. The

TRIO tape was a scratch tape generated by each final UAT run. It con-

tained program source, object and listing. The contents of the tape

were dumped to Bank Disk packs following UAT. Delivery to DSI authorized

MCCC personnel to run the Mission Build input cards, which transferred

the program elements from the bank disks to the Mission Build packs.

The program deliverables to the General Purpose Computing Facility

(GPCF) included a GPCF integration tape and a print of the table of

contents of each file on the tape. File 1 contained the runstreams and

EEC-8 run control statements for the UVT test case; file 2 contained

the test case data; file 3 contained the absolute program elements;

file 4 contained the relocatable elements for each absolute element;

file 5 contained the symbolic or source elements of the absolute ele-

ments; and file 6 contained any necessary run control cards, data ele-

ments, and all symbolic relocatable and absolute elements for each

utility progran included with the delivery. Delivery to OSI authorized

them to concatenate the delivered object code onto Mission Build GPCF

tapes, which were the source of the operational software system in this

facility.

A UVT was conducted for each program delivery, reaieivery or modi-

fication to verify that the program was successfully incorporated into

the Mission Build. These were user supplied regression tests. Failure

reports were prepared when software was not successfully incorporated

into the Mission Build which permitted the SSEs Lo take corrective

redelivery actions.
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The objective of the subsystem/program test phase was to verify

the successful performance of each system or program, and the proper

interfacing of each system or program. Tnese tests were essentially

combined progcam acceptance tests which verified each program's proper

performance with the integration version of the facility operating sys-

tem. They were functional performance tests used to examine computer

memory and execution time requirements.

The system performance tests were run independently at each facility

of the MCCC. The purpose of these tests were to evaluate the overall

performance of the elements of the software system when operated con-

currently. They were used to examine program to program interference

and operating system interference that could cause performance degrada-

tion during operations.

The system loading tests were run independently for each facility

to identify loading problem areas, recommend alternative solutions, and

determine system constraints.

The system demonstration test was conducted with project support

to demonstrate to all applicable projects that the software systems

could meet all flight support and testing requirements.

Upon the completion of successful demonstrations, the system was

made available to Computer Operations.

QUALITATIVE RESULTS: The Mission Build process worked very well for 360/75

MCCF operations, but was only marginally successful for 1108 GPCF opera-

tions. The reason for this lies in the differences in the procedures

for creating the builds on the two systems.

The TRIO tape concept used by the ?ACCF had the effect of forcing

the programmers to follow a procedure that did not leave them with a

working copy of the link-edited object code of their program on a pri-

vate tape. Also, an easy to control override feature that was trans-

parent to users was available. The override patches could only be

generated when the link-edit Mission Build pack, MSC3A9, was mounted

on the system. This pack was not a standard mount during operations

and could only be placed on the system when authorized by the Mission
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Director for a short period of time during which the override patch

would be catalogued as a data set on one of the Viking Direct Access

storage packs. Finally, if a software element failed, only that ele-

ment had to be redelivered to the Build, at which time all user programs

of that element were re-linked to it.

The GPCF integration tape concept used by the GPCF provided far

less software control. The final Bench Mark tapes the programmers

were required to generate contained all of the software elemnts needed

to run their programs. This made it possible to maintain private sources

from which programs could be run, or modified, during operations. In

addition, overrides of software elements were not possible. When a

software elemet failed and was corrected, every program that was mapped

to that element had to be remapped, using a private source, and then

be redelivered.

In both facilities the Mission Build process provided excellent

control over all deliverables made to both the integration and opera-

tional software systems.

The amount of testing conducted by the DSI during the Mission Build

process was greater than needed for the benefits derived. They were

essentially stand alone regression tests of proven program runs that

allowed DSI to demonstrate to the various projects that the software

systems were operable. They did not establish that the soLware sys-

tems could handle mission data flows or timelines, nor did they estab

lish that the individual programs could be used to form an operational

software system. The operational software system was established by

Project integration, compatibility, and team training testing.

Divorcing the build process from the integration process caused

problems and increased expenses. Early in the develorn-it phase, the

Viking ICSSE failed in an attempt to negotiate combining these efforts.

The result was, predictably, that the number of redeliveries caused

by detection of malfunctions during integration was more than should

have beea required. The MCCC objected to this, stating Lt was taxing

their resources to the limit. Tilts prompted the ICSSE to maintain

private builds in both fazilities, using SECURE in the GPCF and disk
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pack DSNO05 in the MCCF. In that way, the ICSSE reduced the nu'nber of

deliveries required. In addition, the ICSSE build in the MCCF was typi-

cally more advanced than either the Integration Mission Build or cur-

rent MOSS. At one point the Mission Director was forced, albeit reluc-

tantly, to use the ICSSE build (rena-ned the Viking Test Build and given

project control through the ICSSE) to support critical compatibility

testing in a timely fashion.

The action taken by the ICSSE should have been totally unnecessary

had meaningful controls been applied to the Integration Mission Build.

The refusal of the ?lCCC to permit overrides made sense for realtime

operations, bit was nonsense for batch operations. The build had been

conceived to protect real time systems, wherein an error introduced

through ai override could be fatal to the entire system. Viking was

the first batch user of the process. Errors in batch programs only

cause the program itself to fail, and not the system. Therefore, it

would have increased software control to have permitted override cor-

rections to be made against the batch Integration Build, since the de-

livered software was unaffected by the overrides (i.e. to use an over-

ride one must deliberately point to it, otherwise the override is ig-

nored). The use of DSNO06 was a people control process rather than a

software control process. Changes, rather than overrides, had to be

made. Therefore, unlike the build process, it was possible to introduce

errors into previously delivered working software.

QUANTITATIVE IMPACT: The Mission Build Prozess permitted management to know

and control the status of the integration and operational software sys-

tems at all times. Without using the build, all batch software func-

Vions would have been available under individual rather Ltan- management

control. Therefore, the cost of the process was an additional price

the project was willing to pay to -nsure system integrity.

Approximately 40 Integration Builds were made by the VMC3 for

Viking 360/75 Batch operations. Ea:h required the eiclusive use of a

computer for six hours. Unit verification of the pro-rans delivered

to this build required an eight ma'i year level of effort and approxi.

mately 303 computer hours. In ad-ition, foorteen operating systeM3 were
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made by copying the integration build, each of which required eight

hours of computer time. Based on this, it is estimated that the addi-

tional cost to 360 operations to use the build process was eight man

years, 650 hours of computer time and 72 direct access storage disk

packs.

The Mission Build process on the 1108 system was considerably dif-

ferent, and its impact will be judged accordingly. The integration

build process was accomplished by concatenating new deliveries to the

current operational system, rather than maintaining a separate build.

Also, unit verification of programs was easier to accomplish on this

system because all test data and files were delivered with the program

on the GPCF tapes. These were accomplished at a cost of eight man years

and approximately 400 computer hours. To store this software an aver-

age of six tapes for each of 41 programs (due to redeliveries) and six

tapes foreach of 12 operational systems, or a total of 318 tapes were

required. The cost to the ICSSE to make permanent versions of current

software available to users at all times was a 200 dollar per month

storage fee for two years. This was actually not an impact, since it

was more than off-set by savings realized by using the system when night-

time and weekend rates were effective.

8

I.

83



TECHNIQUE

NAME: COGNIZANT ENGINEER/COGNIZANT PROGRAHMER

SUMMARY: Each Mission Operational software program was assigned a Cognizant

Engineer (CE) and a Cognizant Programmer (CP). Tne CEs were responsi-

ble for generating program requirements and testing the program to meet

those requirements. The CPs were responsible for designing, implement-

ing a-id defining the procedures for operating the programs.

APPLICATION CO.SIDERATIONS: The rationale for adopting this concept was

based on the belief that an engineer who understood requirements would

not necessarily understaid how computer systems could be used to imple-

ment them. Oce a programmer implemented working software, the engi-

neer would then be in a position to test the software to meet the require-

ments. The primary reason for a3signing a particular programmer to be

responsible for the design, development and implementation process,

rather than using a software pool, was to have a second individual be-

come thoroughly familiar with all the requirements for the software

function. A secondary purpose was to provide an incentive for pride in

workmaiship.

RECOVLENDATION: Management can increase personnel work incentive by adopt-

ing the CE/CP aproach to program develop-ent. Programmers will gen-

crate working software based oi their interpretation of requirements,

which are not necessarily correct. Requiring the CEs to wcite the pro-

gran a:ceptance test plan provides the balaice required to assure the

programs will function to iieet the engineering requiremcrls.
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HISTORY: The Cognizant Progra-mer/Co-nizant Engineer philosophy was first

documented in Standards for Viking Software Development, issued by )MC

in October 1971. The concept was not adopted for Flight or System Test

Equipment software development. In those areas, engineers were assigned

to write the Software Requirements Documents, after which they were

given new assignments. This in part is responsible for the fact that

no formal acceptance test plan or equivalent was ever written for the

STE software system, even though it was developed for a general purpose

computer. The CE/CP approach did or could not realistically be applied

to Flight software, which had to be validated by emulation techniques,

by an independent validator, and by tests involving the entire lander

hardare/software digital system.

Mission Operations adopted the CE/CP concept and specified it as

a requirement in the Flight Operations Software Plan. It was used to

develop all Lander and Orbiter operational programs. Two lander pro-

grams did not follow this procedure.

The lander power program was originally developed by a single engi-

neer who could code in FORTRAN. The engineer did not understand the

scope of the task and thought he could do it by himself. During the

coding phase he begai slipping his schedule. Management formed a Tiger

team to assess the situation, the result of which was to assign a new

cognizant engineer plus a cognizant programmer to assure the program

would be delivered on schedule.

The file management program developed to support the common Jata

base and inter-computer file management functions was originally assigned

a CE aid e CP. However, when the progra, was taken to JPL in December

i973, the CE declined to move to California aid dropped off the Viking

project. At that time the CP was made both the CE and CP for the func-

tion. lie was directly supervised by the Integrating Contractor Software

Systems Engineer. He was able to handle the task, but was typically

delinqjent in providing the required support docunentatioi. The resiult

wa. that members of the Software Integration Group were freq.tently

required to come in at odd hours to show ,sers how to run the pro-ram.

Eventually, satisfactory documentation was prodiced.
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DESCRIPrION: The roles specified for the cognizant engineers and cognizant

programer in the Flig' t Operations Software Plan were as follows:

Role of the Cognizant Engineer (MC/JPL). A Cognizant Engineer

(CE) shall be assigned by the appropriate department at the request of

the Software System Engineer (SSE). The M4C CE shall serve as the co-

ordinator of, aid is responsible for providing the Functional Require-

ments Document, the Software Requirements Document, and the test docu-

ments for the specific program over which he is assigned cognizance.

Tne JPL CE shall have overall responsibility for the development of the

software program and is responsible for the FRD, the SRD and test plan

for the specific prograus rer which he is assigned cognizance. Tne CE,

as a member of the software design effort at HIC or JPL, will support

the related SSE and the users of the progra) in the performance of this

role. The CE is responsible for the following specific tasks:

a. MIC CE - Develop, with the concurrence of the related SSE, a

schedule for the preparation of the SRD and test plans;

b. JPL CE - Develop, with concurrence of the related SSE, a sched-

ule for the development and testing of ea:h program;

c. Establish the detail requirements and prepare the FRD and SRD

for which he is cognizant;

d. Review and concur with the General Design Document (GDD) and

Schedule and Work Plai g-3eerated in response to the SRD;

e. Review all requests for changes to the GD;

f. Coordinate the inputs, provide the Certificato. Test/Users

Acceptaice Test Plan (CT/UATP), the aasoziated test data re-

quirements, and test procedures to 'e dsed daring the tests;

g. Work directly with the CP aid provide resolution of details

which have not been clearly defined in the SAD;

h. Perform Certification and/or Users Acceptaice Test in accor-

daice with the applicable teat plai aid w.ite the test report.

The necessary aisistai:e in performi-ng this task will be pro-

vided by th2 SSE aid CP.

i. Support software c lifigaration naiagen. .t in a:-cordanr.e with

the co"-trol proe:u-res in AppenJix B of this plan;
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J. Support the generation of the User's Guide and concur in its

readiness for delivery;

k. Support the maintenance of the deliverable items.

Role of the Cognizant Programmer. When requested by the SSE, the

Cognizant Programner (CP) shall be assigned by the appropriate depart-

ment with the concurrence of the CE. Any reassignment shall be con-

curred in by the CE and SSE. The CP shall be responsible for the

following:

a. Tne coordination and generation of the General Design Document

(GDD), Program Description Document (PDD), User's Guide and

inputs to the Software Data Base Document (SDBD);

b. Develop, with the concurrence of the related SSE and CE, a

schedule for the program development aid documentation;

c. Review all chaiges requests to the SRD and prepare change re-

quest impact summary on software design and development;

d. Support data generation for software certification and user

acceptance testing;

e. Generate, with coordination of the CE, test cases for use in

compatibility testing and integration;

f. Coordinate with the CE diring the final development of the SRD;

g. Support all software testing;

h. Design, code, and test the programs to meet the requirements

of the SRD and specifications of the GDD and system coastraints

identified by the SSE;

i. Support the SSE and CE in the generation of the deliverable

items of the program aid documentation for TDS/VMCCC integra-

tioa and operational system release;

J. Support the FOS in training, testing, mission operations, and

progrn mainteaaace;

k. Implement all changes to the ODD, PDD and SDBD after their

release and approval;

I. Support software configuration mana3ement in a-cordance with

the control procedures in Appendix B of this plan.
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QUALITATIVE RESULTS: The quality of the software produced was a function

of the relative abilities of both the cognizant engineer and the cogni-

zait prograumner. The talent available to the Viking Project ranged

from mediocre to excellent in both categories. When either the pro-

granner or the engineer was excellent, the resultant software end pro-

dict was very good.

Tne ability for the engineer to clearly and accurately specify re-

quirements was extremely important. In some cases the programmers

learned and understood the requirements as well as the engineers.

Some friction developed on a few of the programing teans. This

was only partially die to personalities. Management tended to over-

emphasize the importance of the engineer to the detriment of the pro-

gramer. That is, when everything went well the engineer got the credit,

but when problems cave up they were too often blaied on the programmer.

The roles of the CE and CP should be kept in prop3r perspective by any

project adopting this technique. ''

The prime disadvantage to selecting the CE/CP technique over using

a engineering pool/software progr&mming pool is that each programmer

must develop every function required by the program. This makes it more

difficult for systems ent ieering and integration to generate a comon-

ality of utility sdbroutinL used by a maltiple of prograins. However,

the improvement in commeications availa'-le with the CE/CP more than

offsets this lisadvantage.

QUANTITATIVE IMPACT: This techniqje did not entail any kind of a :ost im-

pact, since the save nimber of programners and enineers would nave been

needed if an engineering pool/software pool had been used. Tne develop-

ment effort for the Viking Lander operatioal software .grams broke

dox.n a3 45 percent for cnaineer participation aid 55 percent for program-

mer participation. Half of the engineering hours were spent on require-

ments generation aid dacu.nentatLon; the other half wa3 spent oa test

plai generatioa and test support. Two-third3 of the programner hours

were spent on deAign and code; the remaining third "a3 spint on testing

aid maintenaice.
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TECHNIQUE

NAME: SOTWARE DATA BASE DOCUMENT

ISU RY: The Software Data Base Docum,nt (SDBD) provided central viability

[ to the Software Systems Engineers, Cognizait Engineers and Cognizant

IProgr-mers of the use of tables, buffers, files and constants. It pro-

vided the means of identifying common data and implementing a common

Idata base internal to the operational software system. After develop-

ment the SDBD provided centralized documentation aid control of all

common data aid interface files used by the Viking Flight Tea.
I

APPLICATIO. CONSIDERATIONS: A considerable amount of data was common to

I more than one Viking operational program. These data consisted of such

itums as computer turn-on times, one-way light time tables, Martian

parameters, descent parameters, lander coordinates and antenna pointing

parameters. Coordination of data that would be subject to little or no

change was necessary to assure the integrity of the software system.

In addition, files interfacing stand-alone software modules required

centralized visibility ro control their structure aid provide a means

of assessing system level impacts caused by chaiges to individual soft-

ware modules.

RECOMMEr;DATIO(4S: The need for a centralized document is essential to provide

,management with the visibility to control and coordinate data and file

U structures internal to a software system. This holds true regardless

of the method used to implement the data processing of the software

systemi.
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HISTORY: The Flight Operations Software Plan, issued in the spring of 1972,

specified that all tables, buffers, files and constants used by the

Flight Operations Software System would be compiled into a single docu-

ment, entitled the Software Data Base Document (SDBD). The responsi-

bility for coordinating and maintaining the document was assigned to

the Integrating Contractor Software System Engineer (ICSSE). The SDBD

was to contain data and files comson to multiple programs, common to

only one program, and an index of constants established as standards

for all programs.

The SD3D was to be placed under the Viking Integration Change/

Viking Change Summary (VIC/VCS) change control system beginning with the

milestone for issuing the General Design Documents (GDD) of each pro-

gram. In actual practice, each time an interface file description was

added to the SDBD it became a baseline and was automatically placed

under VIC/VCS control. Delivery of these descriptions did not neces-

sarily correspond to the specified milestone.

Two documents were to be issued. These included an MNC SDBD under

control of the ICSSE and a Viking Mission Control and Computing Center

(VIMCCC) document under co.trol of the Data System Project Engineez

(DSPE). The *C SDBD contained the VL-VL, VL-VO, and VO-VO interface

file descriptions. The VfCCC document contained the VL-VMCCC, VO-VMCC,

VMCCC-VHCCC and VCCC-IPL (Image Processing Laboratory) interface file

descriptions. The VL and VO programs were the batch portion of the

Mission Operations software system, the VMCCC p-ograms were the real

time, near real time and institutional portion of the software system,

and the IPL programs processed Lander and Orbiter imaging telemetry.

The Viking Laader and Viking Orbiter Software Systems Engineers

(VLSSE and VOSSE) were required to concur on deliveries a id chairges to

data and files affecting their software systems. Following milestone

12 (program delivery to V4CCC) the DSPE also wnq required to concur

with changes to VL or VO interface file descriptions. The ICSSE was

requjired to concur with all interface descriptions affecting VHCCC

software.
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The software plan therefore emphasized requirements for controlling

interface file descriptions, but failed to make references to control-

ling what it referred to as tables, buffers and constants. Probably

this was the reason why only tables and constants used by Lander programs

were incorporated in the SD3D. The Orbiter software system did not in-

clude a connon data base and the tables aid constants used by each pro-

gra-n were documented with that progrn. The Lander software system

required the development of a nommon data base and associated read only

file management software. Therefore, lander progran documentation re-

ferenced all keys used to access the cotmon data base. The conmoa data

base itself was documented in the SDBD.

DESCRIPTION: This description will be limited to the ?9C SDBD. The develop-

ment of the document was conducted by the Software Integration Group

under the direction of both the ICSSE and VLSSE. The VOSSE supplied

the VO-VO interface file descriptions. The VO-VL interfaze descrip-

tions were negotiated by the affected programmers and engineers throu.gh

the VOSSE and ICSSE.

Files interfacing multiple programs were identified in the Inte-

grated S. 'tware Functional Design (ISFD). The Cognizant Progra-mners of

each lander prograr identified all files that interfaced two oz more

load modules of their program. Ea.h of the above files were assigned

generic identifiers and listed for inclusion in the SD3D. The process

of obtaining file descriptions then consisted of obtaining a detailed

descriptio.. of the purpose, fo:mat, data cotent, size (which coald be

variable), frequency of use and sto:age media from the CE or CP re-

sponsible for the program that generated the file. The WaITE statement

for formatted files wa3 also included. The file description was then

taken to the CP/CE team of ea-h program :hat accessed =he file. If all

parties Areed to the descriptioa, they signed their nama5 to a coacur-

rence fo:m that was included with the file description in the S3D. If

there were disagreements, the Software Integration Group wojid cal fo:

a meting Mmoang every CE and CP asso:iated with zhe file. At that

meeting a . agreement as to the files descriptioa would ,- reachad aid
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all parties would sign the concurrence sheet. If the resolution was

that the file would have a slightly different format on the 360 than

on the 1108, the differences in format were clearly identified and in-

corporated into the file description. Aftp "  CEs and CPs signed the

concurrence form, the appropriate b sign the form, thereby

authorizing the inclusion of the desL n into the SDBD. The de-

scription now was under Viking Integration Change Control.

The tables and constants to be incorporated in the common data base

were collected in a different fashion. Each CE/CP team identified the

need for a table or constants to the Software Integration Group. This

included only data that would be constant or relatively stable during

development and operations, such as one-way light time tables, lander

coordinates, the diameter of Mars, the time of separation or the value

of pi. Each table, constant, or group of related constants would then

be assigned a unique identification generic, called a key, by which it

could be accessed through the file management software. A specific

individual was made responsible for the values associated with each

key. In the event that two programs requested different values for the

sane constant (time of separation, whether to represent the Mars diame-

ter in meters or feet, etc), the affected CE/CPs would be contacted and

art agreement would be reached. The value- were then inco:porated in

the conunoa data base. They remained under control of the ICSSE until

the software system was placed on-line. At that time a computer print-

out of the common data base was reduced and incorporated into the SDBD.

Any chaages thereafter had to be approjed by the directors responsible

for affected programs. The users of the keys would be notified of the

change in writing, and a new printout of the common data base would be

taken and kept in a central location available for inspe, tion by any

Flight team member. The SDBD was not updated to reflect the change;

rather it was the user's responsibility to attach the change notice to

their copies of the SD3D.

The SDBD was also used as a central point to document the time

utilities, methods for accessing the Parameter Passing File, and mis-

cellaneous material on commoA utilities. It contained a cross index
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section that showed every file a program used aid every prograim accessed

by a file. It also identified the five character generic that appeared

in the header record of each file for data ianagement and inter-computer

transfer uses.

QUALITATIVE RESULTS: The interface file descriptions greatly simplified and

facilitated the software system integration process. Despite tht fact

that every affected engineer and prograluner cvacurred with the struc-

ture and content of a file, most interfaces did not work the first time

they were tested. The SD3D made it easy to determine the reasons for

the failures.

Because of limited .anpower resources available to develop the

SD3D, the document was somewhat la-.king in respect to tables and con-

stants contained in the common data base. Multiple entries of constants

occurred and not all constants that should iave been included were actu-

ally included. Some programs accessed tables and constants as input

data rather than from the coinmon data base. The potential for error

was therefore greater thaa it should have been during planetary opera-

tions. Procedures had to be established to coordinate the use of multi-

ple sources for one-way light time tables, the lander coordinates and

the Flight computer clock counter.

=The fact that the tables a-id constants were not p-ablished until

the software system was delivered also caused sonc problems. During

the early stages of progran deliveries the counoa data base software

was not fully tested. As a result some prograwners hai to build in the

option to a:cess common data through either input cards o: the conmon

data ba3e in order to meet their acceptance test schedules. Because

the data base had not been published, the CE/CP tean soi0utimes had to

guess at values for constants not yet agreed ipon, such as time of sepa-

ration. Tnen six moths later Vien the test case was repeated to as-

sre the program was still the saae as had originally beeri delivered,

the user would dLsco-er that the program ou.tput was different thai

expected. Tnis then led to a failure report, aid time and effort would

be spent trying to locate the soirce of the error.
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The two shortcomings noted for the SDBD were both in areas where

people failed to recognize the importance of the document. The concept

is extremely valuable, and should be emphasized, implemented and en-

forced in the development of any major software system.

QUANTITATIVE IMPACT: A four to five man year level of effort was made to

develop and .maintain the SDBD for the life of the project. In order to

have assured compliance with the tables and constants portion of the

document, an additional one to two man year effort would have been

required.

The SDBD was issued in two volumes, which combined were about two

feet thick. Volume I contained interface descriptions for II VO-VL

files and for 104 VL-VL viles. Volume I contained interface descrip-

tions for 48 VO-VO files, plus four common data base descriptions. They

were the Viking Lander I and Viking La'ider II common data bases as they

existed on the 360/75 and 1108 computer systems.
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TECHNIQUE

NAME: FLIGHT OPERATIONS SOFNARE SUBGROUP

SUJMtMRY: The Viking Project placed the responsibility for planning, co-

ordinating aid monitoring the development of the Flight Operations

software system in the hands of a multi-agency Software Subgroup. This

group was conposed of four Software Systems Engineers who were indivi-

dially responsible for Lander software, Orbiter software, Institutional

software, aid Project software system integration.

APPLICATION4 CONSIDERATIONS: Tne multi-agency managers responsible for the

operational software system were each members of a Flight Operations

Working Group (FOWG). None cf them were experienced in resolving tech-

nical problems relative to conputer science or large data -management

systems. When it became evident that it would take a significant co-

ordination effort to reach agreements, the FOWG elected to establish
the Software Subgroup for that purpo3e. Only tho3e problems that could

not be resolved by the subgroup would then be presented to the FOWG

with recoinendations.

RECOkfMDENDATION: The resolutioo of traleoffs between 'iardware and software

requiremenits aid the management of software resources and schedules is

freq.tently haivdled by no.-software o:iented personnel. This will be

successful only if maiagement understanids the software develoment pro-

cess ail realizes that software mu.st be triated on an equal basis with

hardware. The maiagement of the software development itself requires

ai ability to resolve technical prograi level problems in a nanner that

will not impact syste' level perfornance. It also requires the ability

to foresee potelitial performance deficiCe1Cie; early in the develop-nent

process. Fo: these rcasons ecpzeienced software systems engineers

sho-jId be made respoisible for software developnent at the system

lecel.

95



HISTORY: It is obvious to make a Software Syscems Engineer (SSE) responsi-

ble for the development process of a relatively small software system.

Such was the case for the Flight and Test Viking software systems.

The problem of developing a large multi-agency, multi-faceted soft-

ware system is quite different. The Mission Operational Software System

contained engineering, telemetry, sequence generation, command genera-

tion, flight path analysis, science analysis and imaging programs for

both Lander and Orbiter. In addition it contained mission planning,

tracking data, ground resource and institutional software. Separate

teams were established to develop the software for each of these func-

tions. Cognizant engineers were made responsible for requirements and

end product testing, ind cognizant programmers were made responsible

for design, code and implementatioa.

But this left unanswered such questions as what programs were

needed, are redundant functions being developed, what standards and pro-

cedures should be followed, how will the system function, can the sys-

tem be made to operate within available computer resources, how will the

programs be integrated to form a system, and what assurance is there

that the programs will be adequately developed and tested. To resolve

these and associated questions, four SSEs were identified. They were

not made responsible for the software itself; rather, they were made

responsible to assure that a viable and efficient system would be gen-

erated on schedule.

DESCRIPTION: The Flight Operations Software Plan identified the Software

Sub Group as follows:

Planning, coordinating and .w.aitoring of development of the Flight

Operations Software System is the respoasibility of the Software Sub

Groap (SWSG) under the direction of the Flight Operations Working Group

(FOWG). Tne SWSG shall provide guidance for the functional design of

the system, and shall coordinate, integrate, review and advise on the

design, development aid implementatioa of the system. The SWSG shall

emphasize Lander and Orbiter software integration and shall resolve

any software interface problems that may arise. Problems that cannot
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be resolved by the SWSG shall be presented to the Flight Operations

Working Group with recommendations. Specific SdSG responsibilities

shall include:

a. Review and coordinate FOS software schedules;

b. Participate in the evaluation and coordinati.oa of the Flight

Operations functional requirements so that Viking software

requirements can be developed;

c. Review the software design generated in response to the Soft-

ware Functional Descriptions and the LFOS Functional Specifi-

cation;

d. Review the Functional Requirements Document aid the Software

Requirements Document to assure that the requirements have

been defined as necessary for software design;

e. Identify problem areas where analyses are required to design

an integrated TDS/VlCCC/Project software system that will

meet FOS functioaal requirements;

f. Provide guidance for software planning, design, and impleniva-

tation;

g. Evwluate the -eadiness of the software system for flight

operaLions;

h1. Resolve or recomnend solutions to software interface problems

involving M14C, JPL-VOS, TDS aid VMCCC;

i. Monitor the implementation of the overall FOS software design,

development and testing to assure that all interfaces, design

req.irements, and schedules are correctly and completely

satisfied;

). Evaluate the realiness of the FOS software system for integra-

tion int. the TUS covputer complex:;

k. Evaluate the readiness of the TDS/VMCCC Mission Independent

Software System to support Project software testing a-td

implemcentat ioa;

1. Coordinate FOS ground softwtre interfaces with the on-board

software anid ardware.
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The members of the SWSG were then identified to be A.n Integration

Contractor Software System Engineer (ICSSE), a NMC Software System

Engineer (VLSSE), an Orbiter Software System Engineer (VOQ E), and a

HCCC Data System Project Engineer (DSPE).

The ICSSE was given overall integration responsib. lity for the

Viking Project Software System. Principal duties specified included

coordinating Orbiter, Lander and TDS/VMCCC software interfaces and in-

terfaces of ground software with on-board software, integrating and

publishing software development schedules and status reports, control-

ling adherence of the software design to the planned design, implement-

ing HM software at JPL, and assuring software configuration management.

The principle dities of the VLSSE were to provide status and sched-

ules to the ICSSE, coordinate Lander schedules, exercise Lander soft-

ware configuration management, review the progress of Lander software

implementation, assure Lander documentation and test data generation,

aid assure the readiness of the final program products for certifica-

tio.i and user acceptance testing.

The VOSSE duties paralleled those of the VLSSE for orbiter de-

veloped software.

The DSPE was made responsible to assure MCCC constraints were not

violated, compile computer usage estimates for development and generate

them for integration, coordinate MCCC data system constraints upon

Viking, participate in MCCC data system configuration control, prepare

MCCC data system integration schedules, and assure generation of proper

data system documentation.

QUALITATIVE RESULTS: Tne accomplishments of the Software Subgroip members

played a major r,le in delivering an efficient operatio;ial software

system to the Viking Project o: schedule.

The SSEs resolved numerois intez-agency disput,:s and problems, a.

developed aid implemented the Integrated Functional System Design, the

Software Data Base Document, the Viking Soitware Guide, the Lander

Orbiter Software Test Plai and the VHCCC Data Sytern and Integration

Plani. They developed data .management requirements, collected,
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controlled and enforced interface agreements, assured software deliver-

ies complied with procedures, supervised certification, conversion, and

acceptance testing, negotiated computer time, held audits and reviews,

maintained schedules, wrote procedures, resolved conpu. system pro-

blems, and conducted the Preliminary and Critical Design Reviews.

Finally, they gained the confidence of the engineers and prograrmners,

ran the software, coordinated failure reports and redeliveries and inte-

grated the system.

Whereas the SSEs were given a fair degree of latitude in carrying

out their duties, the most significant difficeities they encountered

were caused by decision making policies of the non-software oriented

management directly above them. Four examples will b:e given to impress

upon, the reader the importance of management understanding the software

process before events unfold rather than after the fact.

Maiagement dld not initially understand the limitations of co, Yputer

systems. As soon as the system design was formulated, the SSEs conduc-

ted loading analyses studies which showed that three or four large main-

fra-ne cm1p'.ters would be needed, Management 'Ield firm to the decision

that the system would operate in o.e real time 360/75 and one general

,,urpose 1108. The SSEs were therefore forced to assign programs to

computers under these groundrules. The final system included two 360/75

comiputers, each operating a little more than half the time, for real

time and batch operations, plus two I1OS general purpose co.wnuters

operating full time with a third 1103 available for emergencies and peak

loads. Had management faced this decision early, more efficient pro-

gram loading could have been realized.

Haaagement did not always treat software o:i an equal basis with

hardware. Tne SSEs requested that telemetry formats contain some addi-

tio.al time tag words reqaired fr-r data xialysis. The request was re-

jeted, aii complex aid inefficient software functions hai to be de-

veloped to resolve the situatio.i. This increased the running time for

the decalibration and decommutr~tion software functions and caused pro-

blemi beginning with the third week of planetary operations. Some

science data was incorrectly time tagged, not because of software errors,

but be.-ise of" the co.plexity of the requirements for distinguishing
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old data from new data. The problem was quickly resolved by modifying

the requirements and then implementing minor software changes.

Management rushed software development. The SSEs provided sched-

ules that took into account both the software development scope and

permitted a top down approach to system integration. Management direc-

ted that several real time and batch programs would be delivered up to

five months earlier than shown on the schedules to support Software

System One testing. The SSEs argued that the batch programs were not

needed (because Flight computer software would at most be only capable

of producing a memory dump) and that early program conversion, accept-

ance testing and integration efforts would jeopardize final program de-

livery schedules. Tnis advice was rejected, and the programs were de-

livered early and on schedule. They were not adaptive, were unreliable,

aid could only be run in a "cained" fashion, being very limited as to

what data could be processed. No Flight software was available for

Software System J)ne testing, so not even a memory dump could be taken.

For that reason, no one even bothered to run the batch programs. KAn-

agement learned from this experience not to rush future software

deliveries.

Management did not fully understand the software integration pro-

cess. The SSEs originally specified in the software plan that Lander/

Orbiter interfa:e integratioa testing woAld be ciaducted prior to pro-

gra.g delivery. The reason for this was that the SSEs knew that a large

number of errors would be uncojered. Management changed the plan to

require program deliveries be made before integratioa tests could be

conducted. There is nothing wrong with this as lv.g as one is willing

to accept the fact that most programs will have to be redelivered. But

when that happ2ned, management jumped on the SSEs for 1rnkin- too many

deliveries; each was costly in resources becaise of the involved pro-

cedures and retesting that had to be followed. The end result was that

the SSEs ignored the plan and reverted to their original approach, there-

by controlling the number of redeliveries reqiired. It is important to

realize that first deliveries were in:entive deliveries, and redeliver-

ie3 wece not.
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QUANTITATIVE IMPACT: The amouint of support given to the Software Subgroup

SSEs is shown in table 1. The numbers reflect the average manpower

levels for the years shown. The figures include the SSEs and their

staffs.

1971 1972 1973 1974 1975 1976 Manyears

ICSSE 1 3 4 7 6 4 23

VLSSE 0 0 1 4 1 0 6

VOSSE 1 1 3 6 6 4 21

DSPE i 1 2 2 2 2 10

Totals 3 5 10 19 15 1) 62

Table 1. Software System Engineer Ma-ipower

Tne figures reflect all activities stated .erein for the SSEa. In ad-

dition the ICSSE ma:power includes developing all VL data management

software, maintaining two MlC computer consultants, developing the cot1-

mon data base, developing u ility programs, and maintaining three lander

programs. The VISSE effort also includes developing the VL time

utilities.
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Flight Software Development Overview

tid t roduc t o~n

S [h,- Viking Lander Flight Software System~ was developed over a1 tive

~a'time period. Signi ficant difficulties wvrt: ex~perienced during the

ilor portion -t its !,vteiopm-_-nt caused by U~nder science and engineering

inar d-are subsyster, design changes. This overview emphasizes the major pro-

:Vmrs, their soWutions. and the significant accomplishments that ultimat ly

,,tto -in effective and efficient Flight Software System which worked well

during the. mnission.

1.1 The Viking Lander Flight Software System

?ht- Viking Lander Flight Software System consists of a set of softwar-

MxjUkles, called the Flight Program, which reside in a Guidance, Control and

Sequencing Computer (GCSC). The GCSC interfaces with Viking Lander hardware

subsystems thin input/output channels and interrupt registers. The Flight

Program was the semti-autonomous controller of the Lander. It was rvquire:d

to perform prelaunch Lander checkout functions, control Lander science and

engineering hardware subsystem activities during interplanetary cruise, and

Perform Lander checkout and calif-ration functions while in Mars orbit. Dutr-

ing the descent to thte Martian surface the Flight Program 'performed naviga-

tion, guidance, and steering functions, and controlled telemetry format

-nodes, power management, pyrotechnic firings and uppcr atmospheric sciencific

investigation subsystems. Once upon the surface of Mars the Flight Progrnr.

1rt-uiredl to control the various scientific investigation instrumients,

Per~orm telemo'try data manaigement, and controi all uplink and downlink cot--

municitions activities.

1.2 Software Development Responsibilities

i1Lingl-v Research Cvnter was responsible to NASA fo.uuat-sr

th. m lnagement of the Viking Project. Contracts we-re m-irdwd to the lDen~cr

Division of the Martin Marietta Corporation to develop the fligh~t sottware
-- stem r thViigLnesadt the Jet Propulsion Laboratory to

clev,. lop the flight 4;oftwarv system for the Viking Orbiters.
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This narrative is limited to a discussion of the development of the

Viking Lander Flight Software System.

1.3 Quantitative Software Description

Several versions of the flight program were developed for the 18432

word Guidance, Control and Sequencing Computer (GCSC). The version that was

launched contained a pre-separation checkout code overlay strategy. There-

fore it is estimated that the delivered flight program used to support mis-

sion operations contained 20000 instructions, developed at a cost of 1609

man months. It should be pointed out that this development effort permitted

the Viking Flight Team to uplink 60000 code controlling data words to each

Viking Lander during operations. In addition to the flight program develop-

ment costs, 494 man months were required to produce approximately 200000

instructions of emulation, simulation and diagnostic support software.

The documentation that supported the flight software development con-

sisted of a Software Requirements Document (1000 pages), a General Design

Document (500 pages), a five volume Program Description Document (1500 pages),

two timing and sizing reports (500 pages each), a PLIR report (500 pages) and

a CDR report (500 pages), or a total of approximately 5000 pages.

The estimated effort expended by development phase for the flight pro-

gram is as follows

Definition 8%

Design 22%

Programming 25.

Test 23%

G&C Analysis 22%
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2.0 The Requirements and Design Phase

2.1 Organizing for the Task

The original concept for Viking software development was that a single

unified management approach would be applied to all of the software systems.

A Viking Software Integration Group was formed to develop and document

"Standards for Viking Software Development" which listed the documentation,

flow chart and basic configuration management requirements for all MMC

developed software. Subsequently, the multi-agency management coordination

effort required to develop the operational software system led to the decision

that that system would be placed under a Mission Operations and Design (MO&D)

Directorate and the Test and Flight software syscems would be developed under

the Systems Engineering Directorate. Coordination between these directorates

was established by means of a Viking Change Summary (VCS) procedure that was

designed to assure system wide visibility into all hardware and software com-

ponent change traffic.

The Systems Engineering Directorate was responsible for the Flight soft-

ware group, the Lander hardware component groups, the Systems Test Equipment

group, the Systems Engineering group, and the Guidance and Control group for

descent. A Lander Software Integration group was chartered to monitor the

development processes of the Flight and STE software systems and to write a

Lander Software Development Plan. The software plan established a Software

Change Board whose primary purpose was to assess the impacts that hardware

component changes had on the growth of Flight software and to recommend solu-

tions or courses of actions to be taken.

The Lander Software IntegraLion Group within Systems Engineering was in

existence for a relatively short time; as such it was essentially ineffective

in monitoring the flight software development. This task was accomplished by

the Systems Design and Integration Group until September 1974 and the MO&D

Lander Performance Analysis (LPA) group thereafter.

2.2 Defining the Software System

The Flight Software System was initially only partially defined. It

then evolved through an extensive trial-by-error iterative process. The rea-

son for this can partially be traced to a lack of trained software leads and

105



software management personnel who inappropriately viewed Flight software as

being one of several independent components that collectively formed the

Viking Lander system. It ':as in part caused by the January 1970 discussion

of President Nixon to postpone the Viking Mission from 1973 to 1975. But it

was primarily caused by the difficulties encountered by the hardware designers

to develop lightweight, compact and sophisticated science instrument sub-

systems.

The concept of the Flight Program for Viking 73 included two computers

and two programs. A Guidance computer would be used to perform the descent

phase of the mission and a sequencing computer would perform the landed sci-

ence sequences. Each computer would have its own resident software.

The Guidance and Control (G&C) subsystem was designed based on the two

computer configuration and requirements for the descent phase were levied.

With the G&C subsystem being designed independent from the Lander science

and engineering subsystems, a consistent and well defined subsystem, which

included descent software requirements, evolved.

Problems arose from the fact that each of the other Lander subsystems

were developing independently, and were experiencing serious hardware design

problems in areas of power, thermal, weight and packaging. Systems engineer-

ing was greatly concerned about these problems, and concentrated their efforts

in resolving them on an independent subsystem basis. The functional through-

put for the entire digital system was therefore constantly changing.

With one subsystem evolving around one computer and all other subsystems

evolving around an unidentified sequencer, when the decision was finally

made to incorporate a single but block redundant computer fo, Viking 75, the

Flight software system definition faced two serious problems. One problem

was how to interface a computer to an existing and disjoint set of subsystems

and produce a consistent set of software requirements; the other problem was

how to choose a computer for the task.

The first problem was eventually resolved in an engineering sense, but

maintained a consistent position of creating problems that needed resolution

throughout design, development, test and operations. For example, the design

of the Flight program to use a single register for both telemetry and science

I/O caused conflicts that went undetected until late in the integrated system

tesr phase which required costly changes to the Flight software to fix.
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Attempts were made to standardize the system interfaces but the resulting

mixture was far from standard, thus forcing a complex software interface and

a complex computer I/O structure.

The problem of how to choose a computer was solved using a novel tech-

nique - buy a computer that fits the software. The concept of "software

first" was important in the fact that an adequate computer could be specified

with a high degree of assurance as to its capacity for the job. In addition

"software first" provided early subsystem evaluation allowing design criteria

changes prior to hardware build. The objective of "software first" was to

perform a detailed computer timing and sizing task for the Flight Program

and to define computer architecture adequate for the required accuracy and

program control.

2.3 The Program Design Phase

The program design phase began with the "software first" criteria for

selecting a Guidance, Control and Sequencing Computer (GCSC). An executable

performance analysis was conducted with a "procurement language" Flight pro-

gram to provide verification that the computer, the G&C subsystem, and the

flight algorithms were a compatible set. The approach taken was a two-pronged

assault geared to produce a solution. The first was to perform a design

level sizing and timing analysis on Lander engineering and science software

tasks. The second was to emulate the hypothetical Flight computer in real

time by microprogramming the descent portion of the Flight program on a

Standard Computer Corporation IC-7000 computer set.

These analyses led to firm minimal requirements for the GCSC hardware

design. However, at this point in the development of the Viking Lander,

wight was the most critical problem faced by management; almost every Lander

hardware subsystem was too heavy. For this reason, the third jest computer

was procured from a software point of view. The selected lightest in weight

computer was adequate, but was poor in its instruction set and architecture,

which made coding inefficient.

Although "software first" proved system viability, software costs and

design problems were not adequately considered in the system design and inter-

face areas. The system interface requirements coordination was accomplished

by the Systems Design and Integration Group within the Systems Engineering
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Directorate. Although the flight software development group assisted and was

involved in resolving interface problems, the System group provided adequate

coordination and requirements definition. If fault is to be discussed in

providing necessary coordination, it was that the original coordination/

requirement definition was given to the G&C group. This was a correct

approach for descent requirements; however, for engineering and science

requirements the G&C group was not structured to handle interface require-

ments. The Flight Software Integration group then assumed the requirement

definition of the Systems Design group; however, the Systems Integration

group continued requirement definition for most science and sequencing

requirements. Not until the Systems Design and Integration group was dis-

solved was the total flight software coordination accomplished within one

group, i.e., Lander Performance Analysis within MOWD. Even with the constant

shift of responsibilities, flight software definition was accomplished effec-

tively.

The software requirements were functional rather than specific. They

consisted of Descent G&C requirements, a Sequence of Events (SOE) generat d

by the Lander Sequencing Group, and software specifications based on a spe-

cific sequence of events. The G&C requirements were specified by using

blocks of FORTRAN statements that only partially defined the descent software

requirements. The S.O.E. was a project controlled list of events, commands,

and times that the software should meet. This was intentional, since a

specific sequence was required *and the Systems Design and Integration Group

did not want a general capability designed into the Flight computer.

Although the software requirements document did define a set of require-

ments for the software design, none were included for a software executive.

In this area it was up to the programmers to use their best judgement in

assessing the needs of the science comaunity of users. It slould also be

noted that many of the requirements evolved as the systems &..egration group

and flight software development group became knowledgeable of the hardware

design, including the GCSC.

The difficulties for the flight software group to obtain firm and com-

plete requirements relative to the evolving Viking Lander system were con.pli-

cated by physical considerations. The Flight software development activity

was located in a laboratory one mile away from the rest of the project.

108



Although an txtensive Mission Planning/landed science strategy activity was

going on, the flight software personnel were almost never involved to obtain

an understanding of how the flight software should interface with the Flight

Operations software and users. If it were not for the eiforts of one particu-

larly dedicated and competent individual who worked this interface, the

development of the Flight operations and GCSC software would have produced

mutually incompatible designs. After both software systems were well into

integrated testing, the Missions Operations management realized the severe

limitations of the Flight software to the mission strategy and created a

full-time group responsible for the integrate' software design and test

activity.

2.4 The Development Cycle

The development cycle took into account the inadequacies that existed

during the software design phase. System integration held meetings between

users and programmers, using the flow charts as the point of departure. In

this manner, software capabilities could be discussed in a coherent fashion

to iron out single level problems and inconsistencies. As the flow charts

were accepted on a one by one basis, coding could begin.

The documentation requirements were standard in accordance with Viking

software development, as specified in the Lander Software Development Plan.

No software standards were imposed on the Flight Software Group, but guide-

lines were available. The Flight Software Group therefore organized their

own standards relative Lo such things as labeling conventions, subroutine

conventions and coding standards; however these standards were not consis-

tently enforced.

To combat the changing and diverse requirements inherent with Lander

hardware subsystem development, a modular system design had been generated

that employed an Operating System as the module control manager. 'The Operat-

ing System allowed both absolute and relative time scheduling of modules.

Modules were assigned one of five levels of execution priority. All I/0 and

interrupt service was handled by the Operating System routines. Module inter-

face to these routines was controlled by Macro cal!ing sequences. The levels

of standardization allowed modules to be changed anti modified with a minimum

itpact to the systew, design. Sinct. changing requirements contintwo on into
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operations, the decision to modularize subsystem and function software and

provide standard Operating System sources proved to be highly successful in

accommodating change with confidence.

The modular design also simiplified the development cycle. The module

design would be coordinated with the user, as described zbove. It then would

be coded and debugged in the IC-7000 emulator. Unit testing then would take

place on a module by module basis. Collections of modules would then be

tested by interfacing hardware subsystem simulators with the IC--7000. Final-

ly, the software modules would be placed in the CCSC when it becae available,

and integrated system level tests with Lander hardware components would be

conducted.

The flight software development process was hindered by the lack of the

assembler that was adequate for the task. The first assembler provided fixed

address code. About halfway through the development phase, the Flight Soft-

ware group made the decision to develop a relocatable assembler, which was

needed to cope with the change activity and the multiple revisions of the

flight code. Later on a decision was made to use the IBM 370 assembler, which

was also being used for the Flight Operations Command software. After one or

two assemblies were made with this assembler, the project manager made the

decision that all fuLure updates would be accomplished by manual "patches"

using the basic GCSC octal code. This was done even through a great many

changes had to be "patched" because of problems discovered in integrated test-

ing (see section 3.3). The result was that a "listing" of the flight code had

to be created post facto using the IBM 370 assembler, which was a laborious

and costly process. Because of the patching, i.e. using "jumps" to upused

memory and jumping back, the resulting listing of a contiguous function was

not contiguous in core. This proved to be a burden for Flight Operations

during the mission in reviewing Memory readouts and making s, 'tware changes

via uplink.

The assembler should have been developed for both the Flight and Command

software systems and used through all development cycles. Major revisions

after testing could then have been accomplished by proper reassembly of the

flight progran,.
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1.0 The Test and Integration Phase

3.L Module Testing

The IC-7OO computer was subdivided into two sections. Each section was

controlled by a separate programmable CPU. One CPU was microprograiined to

provide an emulation of the instruction set of the GCSC. The second CPU was

microprogrammed to provide a separate and distinct control instruction set

that was used to provide analysis, monitor and trace functions, and to sitnu-

late the discrete, interrupt and I/O register hardware of the GCSC.

By this technique the module testing could be accomplished by means of

the control CPU which could activate the GCSC emulator CPU, monitor t:he emu-

lation, and provide printed output status reports to a SC-4000. These status

reports described ;'he data flow and external responses of the emulation.

Thus each module could be tested individially under ctntrol of the

Op.,ating Sybtem to assure they met their design prior to tetin6 them in con-

junction with the hardware system they were to control.

3.2 Subsysten Testing

-= The IC-7000 computer resources were inadequate to permit the module test-

int portion of the development phase to overlap the subsystem test phase.

These phases were required to overlap because of constant changing software

requirements. A second IC-7000 computer system was purchased to solve the

problem. 11is eventually provided a system for component integration test-

ing and a system for module development testing.

The most significant problems encountered during suL Ysuam componen

hardware/software testing were the lack of good development tools, testing

aids and a stable laboratory environment. It was a circular problem that

could be traced back to the l ck of detailed software requirements.

Flight program subsystem testing would identify an inad. ,,uacy in the

laboratory control software system that accessed and controlled hardware

subsystem simulators, The labocatory software would be modified, and then

the Flight program would identify onother need.

Subsystem testing slowed to almost a standstill. No Flight program

development was being performed because the development bed was in a con-

stant state of flux, anti the development bed could not be completed due to
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continual changing requirements. By placing the laboratory software under

strict change control and performing extensive laboratory qualification tests

the process of conducting subnystem testing finally was able t~o proceed at an

acceptable rate to support the development cycle.

3.3 Integrated System Testing

The Viking Lander Proof Test Capsule (PTC) was built as a third Viking

Lander to support integrated system testing. It was similar in every respect

to the two Viking Landers that were sent to Mars. An analog-digital Hybrid

computer system was developrd to simulate the Viking Lander descent through

the Martian atmosphere to te'uchdown on the planet. During integrated system

descent testing, the Hybrid :omputer both modeled and bench tested the descent

science and engineering hardware subsystems to test the responses those sub-

systems would sense during actual operations. Control of the PTC could be

accomplished only through the System Test Equipment at IMC. GCSC memory maps

were generated by the Flight Operations Software System at JPL, sent over high

speed data lines to Denver, and input to the PTC Flight computer via the STE.

Integrated system testing established that the computer was adequate for

descent. The digital interface logic to the descent science and engineering

hardware subsystems proved to be ideal for precise sampled data digital con-

trol. The Flight Program Operating System was also well designed in this

area.

The computer was designed for power cycling control of I/O and mentory

when not in use. This proved to be an excellent concept and worked well

during the mission.

Integrated system testing uncovered deficiencies in the computer hard-

ware design which required costly Flight software changes and workarounds to

be implemented as well as imposing mission constraints on the Flight Team.

These deficiencies included subsystem conflicts caused by using a single I/O

register for both telemetry and science control, and noise induced spurious

false interrupts being sent to the computer during I/O switching.

Due to the lack of a fully integrated lander hardware/software design

plan, the landed science and landed telemetry modules had not made adequate

use of the priority and scheduling features provided by the executive. As

a result of this expensive fixes to both the Flight and operational software
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were required based on the results observed during integrated hardware/

software testing of mission sequences.

3.4 Postscript

For descent, a strong analytical systems group was available and devel-

oped the basic descent equations and logic in FORTRAN simulations prior to

development of Flight code. As such, the descent design and testing went

through a fairly orderly process (design - code - module - closed loop emvula-

tion testing using real time hybrid modeling of the vehicle - integrated

hardware/software testing) with a minim=mn of problems. Plus it worked in

perfect harmony with the Mission Operations Software System during the actual

flight.

For landed operations, cruise and preseparation checkout, the systems

engineering group was not software oriented enough. Because of this, not

enough manpower of the right type was placed on insuring a total integrated

hardware/software design between the flight vehicle, the Flight software, and

the Mission Operations Software System. This led to problems in integrated

testing with the Mission Operations software and, due to the lead time of

launching the Flight software, placed a heavy burden on revising the Mission

Operations software. Due to the integrated nature of the Flight and Mission

Operations software a different management structure than was used should

have been used.

As was done in descent, the system analysis group working with each sub-

system or experiment should have developed a software requirements document

which would have specified the functional flow chart level requirements of

each function (for instance the Gas Cromatograph Mass Spectrometer or the

Uplink process). At the next stage, the relationship of each program te

implement these functions could be defined. In this manner two prograns

implementing the same function, such as the Lander Sequence of Ever, : program

and the Flight program, would derive their requirements and "ndels from a com-

mon source.
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4.0 Lessons Learned

The Viking Flight program development was much more costly than it

should have been because of the initial lack of trained software managers,

visibility into software problems, and an insufficient concern about these

matters by management. Despite the many and significant problems faced by

the Lander hardware component subsystem developers, software development and

integration problems should have been brought to Director level attention for

resolution at an earlier date than they were.

The Lander development organization was structured similar to the Viking

Project organization, which lacked the technical ability to monitor and man-

age development to the root level. The problems generated by this organiza-

tional structure eventually led to a series of independent audits during the

period in which subsystem testing slowed to almost a standstill. It was not

until then that the difficulties encountered by the software developers came

to the proper attention of the System Engiaeering Director. Only then were

software problems treated on an equal basis with hardware problems, the

result of which was that the ever changing requirements and lack of visibility

received immediate response.

Although the flight software development had difficulties, it should be

remembered that Viking was unique in its hardware complexity. Many hardware

changes were required to meet weight limitations, additional redundancy and

budget cuts. Even with knowledgeable managers in the area of flight software

design, the hardware changes would have taken place and the flight software

revised accordingly. Perhaps the lesson learned in this respect, is recog-

nition that a flight software program must change as the hardware is revised.

A schedule that incorporates flight software deliveries, reassemblies, etc.

at the outset of the project was badly needed. A flight software development

group must be structured to accommodate requirement revisions.

The flight software development group in Viking did accommodate numer-

able changes although there was a prevailing attitude that a change in

requirements was indicative of someone not doing their job raLher than an

ongoing software development process that should be expected.

Another area that should be addressed is defining within the test program

the integration of flight software utilization in a systems test configura-

tion. Although the flight software executive was used in the test program,
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the landed operations software was not used until the Plugs Out Test (POT).

This created a situation where many people became familiar with only the test

software, and after launch, were not aware of the limitations and constraints

of the flight software.

In conclusion, even with alleged faults of poor requirement definition

and lack of knowledgeable software managers, the flight software design was

excellent, and, it resulted as a combined effort of the Flight Software

Development Group, Systems Design, Systems Integration, Flight Software Inte-

gration Group and HO&D Lander Performance Analysis Group. Those using the

software became aware of the capabilities and constraints, and utilized the

flight software in its fullest to perform an excellently executed mission.
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TECHNIQUE

NAME: EMULATED ON-BOARD COMPUTER (GCSC)

SUMMARY: A ground-based, microprogrammable computer was used to emulate the

Flight Computer throughout all phases of GCSC software development.

This software-fLrst approach to the Lander computer system development

facilitated computer timing and sizing specification, permitted early

development of critical computer programs, and provided considerable

visibility into test and evaluation activities.

APPLICATION CONSIDERATIONS: During the early phases of software and hardware

definition it became evident that several problem areas could be satis-

fied by an emulation approach. Accurate sizing and timing estimates

could be obtained by coding a hypothetical computer representing the

class of available spaceborne digital computers. Computer memory capa-

city and speed have significant impact on power, weight, and volume;

all were critical performance characteristics. In addition, we were

committed to an Analog-Hybrid six-degree of freedom simulation of sepa-

ration from the orbiter through soft landing on the surface of Mars.

Integrated testing with real sensors and actuators was deemed important

in this process. Emulated representation of the on-board computer would

provide bit-for-bit fidelity. Unlike an "interpretive Computer Simula-

tion" (ICS) approach, emulation offered the prospect of real time test

and evaluation. Finally, most of the classic problems inherent with

punched tape and limited visibility associated with on-board computer

usage would be avoided.

RECOMMENDATION: Emulation is now a proven concept in computer system develop-

ment. The approach offers the same type of advantages with any embedded

computer system where the target computer is undeveloped or unavailable.

The power of the technique is illustrated by the fact that the first

flight computer was substituted for the Emulator and was running the

descent program in a full simulated environment within just one week

of computer delivery.
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HISTORY: Conventional approaches to software development have utilized the

"lnterpretive Comput-,r Simulation" (ICS) wherein the flight computer is

simulated by interpreting its instruction set and action through programs

written on a host computer. A typical response time, while quite vari-

able, might be as much as 500 times slower than the actual machine. It

is also difficult to anticipate, and thereby program, situations which

can occur in a real time environment. Consequently, in order to develop

software in a real time environment which could Include actual devices,

we decided against the ICS approach and pursued the emulation course.

Although the characteristics of the flight computer were not speci-

fied, sufficient general information was available early on the Viking

project to convince us that microprogratauable computers then in existence

could provide a real time emulation of the future flight computer.

It was recognized at the onset that an emulation would not, and

could not, provide a one to one time relationship with the actual machine

on an instruction by instruction basis. Indeed, for this to theoreti-

cally occur, the basic cycle time of the microprograrnuable computer ucould

have to be a submultiple of that of the actual machine. The stress, in

a real time sampled data system, is upon accomplishing identical proces-

sing over a sample period.

The microprograuable computer chosen was a Standard Computer Corpo-

ration iC-7000. It consists of two processors both of which are micro-

programmable. One is the Central Processing Unit (CPU) and the second

r is labeled the Input/Output Processor (OP). Each incorporates a con-

trol memory whose contents define the machine, i.e., the instruction

set. interrupt structure, etc. for that processor.

The initial use of the complex consisted of an emulation for a

hypothetical flight computer. Inasmuch as the actual machine had not

been specified, it was felt that software development could proceed with

a typical computer representing the class ot candidates available. This

emulation aided sizing and timing specifications for the GCSC, helned in

early development of the man/machine and various system interfaces.

The characteristics of the microprogranunable complex dictated tha"

flight computer emulation he done ort the CPIV and that the lOP slw-%';d bc

used to implement 1/O related aspects and to cn-unicate with all
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external devices including the man/machine interface and control. Con-

sequently, a basic lOP language was defined and implemented in conjunc-

tion with development of the hypotehtical flight computer emulator.

The lOP language implementation proved to be an on-going, continual

endeavor throughout the life of the project. A new instruction would

be implemented as a need was generated. lOP microprogramming included

implementation of an interrupt system. The LOP, in addition to provid-

ing the interface linkage for the CPU to implement flight computer I/O,

also functioned as overall system problem control. Its language was

used to perform tasks such as data recording, starting and stopping of

runs, establishing an initialization state, etc.

Flight computer emulation began when selection of the flight com-

puter was made. The emulation was mechanized in respect to the logic

design of the GCSC and not in respect to the information found in what

is commonly termed "programming manual". Design changes to the GCSC

were tracked and implemented in the emulation.

As the overall system needs and requirements developed, additional

requirements were forced onto the CPU microprogram over and above the

basic microprogram related to real time flight computer emulation. The

end result real time emulation bore little resemblance to the initial

design because of these factors and changes in GCSC design.

Three emulations have been mentioned in the above - (a) the hypo-

thetical computer; (b) real time GCSC; (c) TOP. Another version of the

GCSC emulation was also developed and warrants discussion. This was

called the "GCSC Trace" emulation. Its purpose was to provide a listing

to the user to aid in program development. User control was provided

to allow printout to occur only as desired. The printout provided

machine state information following execution of each in. :ruction and

included the instruction, its location, various register contents, and

time. TRACE, in actuality, consisted of a CPU microprogram and an lOP

program. Whereas much of the GCSC instruction emulation was identical

to that of real timE, the interface to the lOP was drastically different.

TRACE could be considered an analogous to the ICS type operation.

Two versions of TRACE were eventually developed. The preliminary

version used lOP programming to keep track of time-related aspects,
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e.g., instruction execution time, sample time, delay times, etc. As

a result, the operation time was quite slow (about 300:1). A later

version incorporated these features in the microprogram and resulted

in a speedup (around 30:1 and in some unique instances could even run

faster than real time). The latter microprogram was, of course, con-

siderably more complex than the former.

As the characteristics of the GCSC became defined, some rather

drastic incompatible features became apparent in respect to the micro-

programmable machines capability. This was particularly true in respect

to GCSC I/O. The GCSC design was driven by power requirements and inter-

faces were required with several unique external devices. The result

was several I/O registers of varying length and unique time out periods.

Also, the GCSC had partial power down or "go to sleep" capability. It

was readily apparent once these characteristics became known that the

basic microprogrammable computer could not handle the implementation

requirements. Consequently, a hardware design modification was made

to the computer to aid in the microprogram implementation.

DESCRIPTION: Four distinct microprograms were developed and are de scribed

separately.

A. HYPOTHETICAL COMPUTER EMULATION - The initial computer emulated

was that of a "computer" typical of the class of computers avail-

able. The general characteristics were:

24 bit word

2's complement arithmetic

24 instructions

A simplified I/0 and interrupt structure were included.

B. lOP LANCUAGE EMULATION - The instruction set incorporated into

the IOP evolved over the life of the project and supported over

200K words of support software. The general features are:

36 bit word

2's complement arithmetic

163 instructions

interrupt system

Virtually the entire control core (2048 18 bit words) was utilized
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in the process. The IOP micro language bears little resemblance

to that of the CPU.

The 1OP larguage supports all standard I/0 peripheral device

interfaces in additibn to the unique devices associated with the

Viking system.

C. GCSC REAL TIME EMULATION - The general characteristics of the GCSC

are:

24 bit word

.47 instructions some of which have several subsets

2's complement arithmetic

8 level priority interrupt system

10 I/0 registers

18 K memory

2 K protected memory area

3 soft index registers

multi level indirect addressing

some error detection logic

Sleep mode capability

Programmable Timer

The real time emulation is bit-for-bit functionally equiva-

lent with the GCSC. Emulation design was performed from the stand-

point of the logical design of the GCSC. The priority interrupt

system was emulated, for example, on a one-for-one equivalent of

the flip-flop structure involved.

Several areas of incompatibility were evident between the

GCSC and the microprogrammable computer as the GCSC design pro-

gressed. In many instances, use of the microprogrammable machine

capability was compromised or bypassed in order to ,keet functional

equivalence. Some examples are as follows:

(a) Index Registers - 3 soft index registers were utilized

in the GCSC whereas the micro computer has several hardware

t.,dex registers allowing indexing to be done as part of the

instruction fetch with no additional time penalty. Use of

this feature as is would result in a non exactness of memory

contents between the two machines (the 3 memory cells assigned
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to indexing). An exact equivalence could be achieved, of

cvurse, via appropriate microprogramming. However, by so

doing, all instructions which are indexable must be tested,

when executed, to determine if the feature is called for.

The result is a critical time loss in addition to consump-

tion of control core.

A compromise solution proved satisfactory in this case.

Hardware indexing was utilized but the 3 memory cells were

maintained via microprogram. That is, any instruction which

modified these cells also modified the hard index registers.

(b) Multi-Level Indirect - This feature of the GCSC was not

designed into the basic hardware capability of the micro

machine. Although it could be accomplished via microprogram-

ming, the same penalties exist as for index registers -

excessive execution time and core consumption. This feature

was discarded as a programmer option thereby eliminating the

problem.

(c) Divide - The GCSC divide instruction contained some

rather peculiar features (for example, the l.s.b. of the

quotient was always "1") which disallowed use of the divide

hardware in the micro machine and forced microprogramming of

the GCSC divide algorithm. Consequently, emulation divide

time was significantly greater than that of the GCSC. This

condition was, however, of little consequence since flight

programmers avoided the use of this instruction because of

its pecularities. In fact, its main claim to fame was as

a low power time killer - an instruction which consumes

little power (only one operand memory reference) and takes

a relatively long time to execute.

(d) I/O - Major difficulties in emulation of the flight

computer via the micro program technique were associated

with I/O. Problems therein are amplified when real time

is involved. Consider the differences between the two

machines. I/O in the micro computer is handled through
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the Input/Output Processor which is linked to the CPU via

common memory and through interrupts. That is, either

processor may interrupt the other at the micro level.

Interrupt interpretation and data transfers are mechanized

through memory interrogation. Both processors have access

to CPU control core. Thus, data transfer is parallel and

a degree of handshaking is implied in mechanization. Once

the information is obtained and interpreted by the IOP, it

can then establish the necessary linkage with the external

devices.

The flight computer I/O design, by contrast, reflects

extreme sensitivity to power consumption. All data transfers

are serial, register lengths are variable and transfer times

are device dependent. A total of 10 registers, from 3 to 35

bits in length, are incorporated. Four of these relate to

data transfers with external devices and are independent of

one another. An "I/O complete" or "time out" interrupt is

generated when a register is loaded or emptied. One register

may connect to several external devices and, consequently,

would have several time out periods. The other six registers

relate to discrete registers, error detection, power control,

and one to indicate which register has "timed out." Thus,

more than one operation can be in process simultaneously and

many distinct timing intervals are possible. The problem of

using a single, parallel data linkage to simulate the four

distinct serial linkages is complex and the timing require-

ments further complicate the problem. Once the flight com-

puter I/O design began to crystallize, it becx-, quite obvi-

ous that an I/O bottle-neck would exist if modeling were

limited to the basic micro machine capability. This became

painfully true in respect to the timing involved. An over-

whelming amount of microprocessing time would be consumed in

attempting to maintain the four channel simulation.

Additional hardware was designed and added to the micro

machine to solve the problem. The various timing periods
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involved were produced via hardware, thereby permitting the

data transfers to occur in parallel (at the micro level) upon

time out and, consequently, simulate the serial transfer.

The I/O instruction structure also created problems since

several fields required decoding in determining instruction

intent. This implies a considerable amount of time and core

overhead in decoding. Additional hardware modifications were

made to reduce the effect, especially in time sensitive areas.

(e) "Sleep" Operation - Because of power constraints, the

flight computer allows a partially powered down mode to be

established. It may then "wake up" as a result of external

interrupt or termination of a specified time interval. This

feature was emulated by suspending instruction execution

during the sleep interval while remaining receptive, at the

micro level, to those elements corresponding to the "awake"

portion of the flight machine.

(f) Timers - In addition to a sampling clock and the disc, s-

sed I/O time periods, a I ms. and a 12 ms. timing period were

designed into the flight computer. These items were associ-

ated with the power conservation and "sleep" mode. Emula-

tion of these features via the micro code consumed too mauch

core and execution time. The problem was solved by augmenting

the hardware to provide the capability.

Although the above items are significant and dia have consider-

siderable impact on the emulation process, the achievements of the

technique are a credit to its flexibility. Modifications were nec-

essary only because of the real time aspects of the '-oblem.

Table I is a timing comparison between the (;CSt. and the emu-

lator. A variety of conditions are evident - from near exactness

to a wide variation in both directions.
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INSTRUCTION OR FLIGHT
INSTRUCTION TYPE COMPUTER EMULATOR

ADD 8.68 7.70

SHIFT 4.34 - 23.44 8.41 - 17.34

DOUBLE ADD 13.02 14.52

MULTIPLY 83.33 31.35

DIVIDE 123.26 168.68

STORE 8.68 8.45

INDEXING 4.34 0 (111W index registers)

INDIRECT ADDRESSING 4.34 1.4 (11/W index registers)

INTERRUPT 8.b8 23.62

OUTPUT 8.18 17.15 - 113.2

INPUT 8.68 10.15 - 24.5

Table I. Emulation Timing Comparison (IN ps)

Input/output and interrupt aspects produced the greatest vari-

ation in timing and the poorest results. This was primarily due to

two factors: (each flight computer I/O instruction was in reality

a group of instructions, i.e., several subsets existed for each

thereby requicing an extensive amount of decoding at the micropro-

gram level; (b) communication linkages between CPU and IOP required

servicing time.

Other items such as multiply, indexing, and indirect addres-

smig tend to counteract the I/O timing. A reasonable degree of

comparison exists for other instructions.

Again, individual instruction time is not the critical factor.

The ability to perform the required flight program processing within

a sample period is the critical item. For the instruction mix

involved, emulation execution time was slightly faster than GCSC

execution time.

Many features were also implemented in the micro program as an

aid to overall system operation. For example, a read and write of

flight program reset points was implemented. This feature allowed

the user to run for any period of time, stop and store the machine

state. Similarly, any stored reset point could be read and the
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operation reinitiated. The machine state is determinable and may also

be established via micro program whereas this may be impossible or dif-

ficult at a higher level.

D. TRACE EMULATION - This microprogram, in association with an IOP program,

functioned to provide the user with a printout, or listing, of the CCSC

state (instruction, location, register content, effective address and

contents and execution time) after each instruction. Much of the micro-

code is identical to that of the real time emulation but many differ-

ences exist. TRACE must store all state conditions and make them avail-

able upon request. Also, the time related aspects have a different con-

notation than in real time and micro code in these areas differs con-

siderably. TRACE was used for initial program development and in

attempts to gain insight into problem areas.

QUALITATIVE RESULTS: The emulation approach enabled us to obtain reasonable

timing and sizing estimates for the spaceborne computer prior to issuing

its specifications. This was accomplished through emulation of a hypo-

thetical machine. This approach also accelerated the laboratory system

design and mechanization whereby interfaces between the various com-

ponents, the man/machine interface, etc. were mechanized and operational

early in the program. Also, operational runs were made to verify descent

algorithms using this language before the GCSC specifics were known.

After the GCSC characteristics became known, the hypothetical emti-

lation was phased out as the real time and trace emulation were devel-

oped. These items were operational at least a year in advance of (;CSC

availability. Consequently, program development was well underway when

the actual machine became available.

Insight and visibility into program operation were possible through

the approach which would not have been possible with the actual machine.

Aerospace Lomputers typically have little visibility provided to the

user.

One aspect of the approach which proved quite useful as an aid to

program debugging was the ability to exat'ine conditions at a lower level

than normal machine instruction level - the microcode level. Fhis
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technique was used many times to "look" at the internal machine state

and thereby determine the problem cause.

Emulation also provides the capability to determine and thereby

record machine state. Within the system framework, it often became nec-

essary to stop Lhe run after a long period of elapsed time and record

all conditions as a reset point so that the exact state could be later

reestablished without processing from the initial starting point. This

is relatively easy to do at the microcode level but may be extremely

difficult at the program level. Indeed, once the GCSC became available,

a considerable amount of effort was expended in accomplishing the same

task.

Emulation offers the user a large degree of flexibility as is illus-

trated by the changing instruction set of the IOP. As needs develop,

changes can be made to accommodate that need. This capability is not

realized without some expense as the user must develop his software and

the personnel at the micro level must be intimately familiar with the

machine.

In respect to the microprogramming effort per se, many difficulties

were centered around a lack of control store. Both IOP and CPU control

store consisted of 2048 18 bit words. The real time emulation was a

constant process of fitting in system or CCSC design changes without

exceeding core or execution time limitations. IOP control core was com-

pletely consumed via emulaLion of the IOF language. The final version

of TRACE (Fast Trace) also consumed the entire CPU control core.

Some additional comments in respect to real time emulation are war-

ranted. It should be understood that real time emulation is not auto-

matically attainable. It was possible for Viking because the GCSC was

a relatively slow machine. The microprogrammable machin, must be a

basically faster device than the computer to be emulated.

Careful attention should be given to the compatibility of the two

computers if at all possible. Otherwise, considerable difficulties may

appear as the emulation proceeds. This situation was painfully evident

in respect to the GCSC real time emulation. Characteristics of the

microprogrammable computer were completely ignored in respect to GCSC

selection and its specifications. The result was a series of "find-a-
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solution" processes culminating in many instances with hardware modifi-

cation to the micro machine.

QUANTITATIVE IMPACT: Table II summarizes the manpower expended in the dif-

ferent Viking microprogramuing tasks.

PROGRAM MANMONTHS

Hypothetical Computer Emulation 4

lOP Language Microprogram 16

Flight Computer Real Time Emulation 20

Flight Computer Trace Emulation 8

Hardware Modi fications 10

Table Ii. Manpower

Manpower consumed in the microprogramming effort includes a learn-

ing period. In respect to the lOP effort, the figure represents the

manpower consumed over a five year project lifetime rather than an amount

required to begin utiilzation of the resource. Basic operation consumed

approximately six man months but, as the system developed, additions and

changes were made to the instruction set and the operational philosophy.

The result was a more or less continual, low key effort.

Flight computer emulation manpower consumption reflects the effort

expended in learning associated with the flight computer - an understand-

ing of its operation at the logic design level and in tracking the design

and its changes from the conceptual to the developed stage over a three

year period. As design changes occurred, changes were forced upon the

emulation. Further, as previously stated,the micro program involved

implementation of system functions. Probably 707 of the manpower would

be attributable to emulation of the I/O instructions.

Manpower used for trace emulation reflects basic design and check-

out and also tracking of changes made to flight computer design.

The figures presented also represent expenditures involved in gener-

ation and checkout of programs used as checkout drivers or "micro-program

diagnostics". Approximately 157. of the manpower could be attributed to

this activity, support of Flight Software development over a three year
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period and documentation and support of Flight Software development over

a three year period.

Hardware modifications relate to those items previously discussed

which were incorporated to satisfy I/0 requirements.
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TECHNIQUE

NAME: VIKING LANDER COMPUTER EXECUTIVE PROGRAM (EXEC)

SUMMARY DESCRIPTION: This program was conceived and developed to act as a

mini-operating system for the on-board computer. It was designed to

accommodate and coordinate the variety of mission functions requiring

computer services on board the Viking Lander. Common services performed

include input/output, communications control, time reference, scheduling,

and sequencing control. In essence the task programs could use the

facilities provided by the virtual computer (EXEC) without regard for

possible interference with concurrent tasks, or irrelevant detail of

device operation.

APPLICATION CONSIDERATIONS: Several distinct mission phases were identified

early: subsystem checkout prior to landing, control over the descent

to the Mars surface, and science instrument operations while landed.

Within each phase, several devices could be active concurrently and

some devices were active over more than a single phase of operation.

Sufficient commonality was observed pertaining to device services and

scheduling functions that a centralized executive control program

appeared attractive. Attendant overhead for a generalized executLive

had to be justified in an environment where low power and weight were

prime considerations.

RECOMMENDATION: The Central Executive Program concept is sound and more

widely accepted at this time (mid '76) than it was five years ago for

space applications. The application program isolation provided in

this approach facilitated necessary change of external functions. The

10% critical timing overhead and merory requirements (4.5K words) are

now considered quite reasonable in view of the capabilities provided.

Initial resistance has been overcome only gradually as the role and

function of centralized management of computer resources has become

revealed and appreciated.
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HISTORY: The Viking Lander Computer (GCSC) is a general purpose digital

computer with relatively small and conventional instruction set (27

Op codes with sub codes for I/O). The I/0 is a special design that

provides for serial data paths to lander subsystei, and accommodates

several levels of interrupt.

Control of many lander subsystems was assigned to the computer

(GCSC) at the outset: all of the guidance, navigation and attitude

control; sequencing of separation. parachute deployment, radar acti-

vation, and rocket engine firing; and telemetry data acquisition con-

trol. Early in the project, control over the science instruments fol-

lowing soft landing was folded into the GCSC, thereby eliminating a

separate controller/computer. Serial I/0 through shared registers in

the GCSC implied built-in conflict possibilities and required I/0

register managemetit. The flight control problem was based upon cyclic

computations over 20 msec, 40 msec, and I sec periods, while the sci-

ence devices require task scheduling with one second granularity.

Once landed, control over the science and lander subsystems requires

commanding each device individually with special control sequences

spaced in time. The communication subsystem provides a means for

modifying or changing these command sequences on a daily basis from

the control center at JPL.

Initially, separate executive programs for each mission phase

were considered. Analysis showed that there was considerable overlap

at the phase transitions and that centralized control throughout the

transition period would be beneficial. Thus, a single c%. c'utive, pro-
viding general services as well as phase peculiar services, was chosen

for development.

The EXEC program provided the necessary management of computer

facilities so that tasks could be active concurrently w liaut concern

for one another. The resulting isolation provided considerable simpli-

fication of the application tasks, and assured centralized coordination

of computer resources.

The EXEC program remained remarkably stable throtughout the project

development. In retrospect, some services provided were rarely employed.

On the other hand, additional facilities to aid in specification of
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event and time dependent actions would h3ve aided understanding and

facilitated change.

DESCRIPTION: The Viking - ght Program consists of a 'virtuai machine' oper-

ating system known us the Flight Executive and a set of user application

programs to control the Prelaunch, Preseparation, Descent, and Landed

Phases of the Viking Lander Mission. The Viking Flight Program is per-

manently resident in the memory of the Guidance Control and Sequencing

Computer (GCSC), and provides the capability to control Viking Lander

functions from prelaunch GCSC memory load through the duration of the

Landed Mission.

The Viking Flight Program is redundant in the sense that it resides

in both memories of the block redundant GCSC. Both program loads are

identical and provide full mission capability. The system is not dyna-

mically redundant in that only one GCSC block has control at any given

time and no computer-to-computer communication exists. Both coutputer
blocks may be independently operated and checked out prior to separa-

tion from the orbiter, and either computer may be switched on or off

during the Landed Phase; but only one computer block will be powered

on at any time. The decision as to which GCSC block is to be employed

during the Descent Phase will be made by Flight Opetations and commanded

via the Orbiter/Lander interface.

The Viking Flight Program provides command and control capability

to the Lander subsystems employed for the following: communications

with Flight Operations, experimentation, navigation, g.idance, stcering

and control, data processing, power distribution, and pyrotechnic opcra-

tions. Operating within the constraints of the Lander and its subsys-

tems, the Flight Program can be activated at any time following load of

the GCSC memory.

A significant portion of the Executive and Lander subsystem soft-

ware may be viewed as an extension of the GCSC hardware. In effect, the

code associated with 1/0, flow of control, timing, and related basic

functional elements of the computer, acLually transform the GCSC into a

distinct, but related processor. This new or "vi.tual" processor pre-

sents an altered interface to the oser which at once facilitates requests
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for scheduling, timing, and 1/O service functions while coordinating like

services, managing available resources, and coping with conflicts.

It is useful to examine and describe this transformed machine for

at lcas# two reasons:

First of all, the virtual machine is much simpler to employ from

the individual user's point of view. Details of low level timing, hard-

ware communication protocol, and accommodation of shared usage are of no

concern to any one user - each views the machine as exclusively his.
Programs describing particular application tasks are easier to understand

aad test since clarity of function is not buried in the extensive detail

required of cooperating process implementation.

Secondly, the virtual or transformed machine may be treated itself

as a device - a device possessing an augmented instruction set. Each

pseudo-instruction or directive is.characterized by a certain execution

time, an assumed initial state of the machine, communication register

utilization, the function performed, and the resulting state of the

machine. The entire virtual machine may be designed, tested, and e:,,-

uated in a manner similar to that used for the hardware machine itsc If.

This observation has important implications with regard to a basis for

acceptance testing and selecting departure points for formal verifica-

tion.

Contiuui ,,: with the secondpoint above, a suitable virtual machine

"integrity test" would be a program exercising the augmented instruc-set

in a manner designed to check the extremes of virtual machine operation.

Such diagnostics concentrate activity in both time and s,.Ice in a nanner

much more severe than encountered in a typical operational environment.

Successful completion, however, assures proper performance whenever these

functions are employed within an actual application. Proper execution

of hardware instructions, once evaluated, provides a ba. is for proceed-

ing with software testing. In like manner, proper behavior of the aug-

mented instruction set should be tile basis for application programming

and evaluation with respect to the virtual machine.

While it is possible and even beneficial to construct lay-rs of

virtual machines, each built upon the primitive operations of a more

elementary machine, a single level will be described below for the
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GCSC. Briefly, the augmented instruction set includes such operations

as scheduling (ENQUE, DEQUE), input/output (IOR), power state control

(TURNON, TURNOFF), and interrupt control.

The virtual machine is perhaps best understood from the application

programmers' point of view.

Control of the virtual machine was based upon the hardware interrupt

structure. At the top of this control is the highest priority and thus

most urgent interrupt. Any unmasked interrupt will cause control to pass

to that level and the associated processes initiated. Upon completion

of that level's processes, the interrupt is cleared allowing control to

pass to the next pending interrupt level. If no interrupts are pending,

control drops through to the software controlled Schedule Stack, POP,

which initiates the next appropriate task. Stacked tasks are established

from an initiation time and specified priority determined during the

scheduling processes of the Forty Millisecond and One Second Scanners.

There is always one task at the bottom of the Stack, the Power State

Switching Program (PSSP). This lowest priority task places the hardware

into a "HALT" or "SLEEP" state dependirg upon the amount of time avail-

able until the next scheduled activity. Only external demands for atten-

tion will disturb the computer from the SLEEP state, while any unmasked

interrupt may cause control transitions in any state.

Once POPped from the stack a user program has access to both the

hardware Operation Codes and the commands provided by the virtual mach-

ine. As indicated, a task may be interrupted and suspended in favor of

a more urgent task. In this event the suspended task is PUSHed into the

stack until ultimately resumed via a POP.

Tho commands of the virtual machine provide services for the user

program. In general these commands are requests for an operation that

must be coordinated or scheduled along with a host of similar 'eques z

from other user programs for specified delays, task activation, serial

I/O, and power group control.

The virtual machine manages the serial I/O registers. Peculiarities

of register devices and shiring of facilities are accommodated. There

was a closv interplay of the -ycle complete and real time interrupts

(CCI and RTI) and associated processes. Timing and control requirements
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dictate the Memory Readout and Telemetry Modes execute at this level of

control. A Wait Bit Processor indicated how a user task may continue

execution following completion of a specific I/O operation.

The user may be connected to specific external interrupts via the

external interrupt handler. Here, the virtual machine filters all but

the one of interest from the bits of the External Internal Register (R5),

temporarily passing control to a special entry user task which completes

appropriate housekeeping and initiates 1/0 and scheduling requests. The

user is allowed a maximum of 500 microseconds to complete such opera-

tions at this level of control.

A third level of user control is provided by the RTI level proces-

ses. Up to five programs may be established at this level. This con-

trol level was provided to meet the requirements for tightly coupled

CCI/RTI processes and for high frequency, periodic tasks.

External access to the virtual machine is provided with UPLINK.

This process is itself scheduled or initiated in emergency conditions

since it requires direct access to both R3 and R2. Uplink occurs at

the EXI level and provides a means to update any specified memoiy loca-

tion, an orderly alteration of the Mission Scheduled Event Table, and

immediate ENQUE/DEQUE/IOR operations. The latter, thorough powerful,

must be used with care since they perform isolated actions uncoordinated

with on-going processes.

In this description, certain detail has been supressed in order to

promote overall understanding. Within the context of this virtual mach-

ine any of the flight user programs can be considered ixidependently with

the assurance that necessary coordination and timing operations are prop-

erly carried out. In order to effectively utilize the virtual machine

capacities, it is important to understand the function, limitations,

and constraints associated with the services provided. these services,

as seen by the user programmer, will be described in, the following para-

graphs.

The virtual machine processes exist to provide scheduling and I/O

capability at the 'SINGLE INSTRUCTION' level as seen by the user pro-

granmer. From the programmer's point of view, the task is simplified

because there is no need to generate redundant code or be encumbered
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by various subroutine calling sequences in order to schedule a mission

event or issue a command to an external device via the GCSC I/O reg-

isters; the problem of I/O timing is reduced to insignificance as seen

by the user programmer. In addition, the problem of testing the flight

program is greatly simplified; if the user programmer used the I/O or

scheduling instruction properly, then the task to be performed will

operate correctly. The virtual instruction set consists of twelve basic

instructions divided into five classes: two device-power control in-

structions (TURNON, TURNOF), five interrupt control instructions

(INTSET, EXIENB, EXIDIS, EXISAV, EXIRES), three event scheduling in-

structions (ENQ, DEQUE, EXIT), one I/O scheduling instruction (IOR),

and one instruction to read input discrete register R6 (READR6). The

device-power control instructions, the interrupt control instruction,

READR6 and the DEQUE instructions always return control to the calling

program, while the ENQ and IOR instructions return at the user's option.

The EXIT instruction (as the name implies) does not return control to

the user. All of the virtual instructions are assembler-level macro-

instructions which generate subroutine calls to the executive routines

which service them. The structures of these macros are explained in the

code module descriptions of the service routines: the power control

macros are serviced in the Power State Switching Processor; INTSET,

READR6, ENQ and DEQUE are serviced by the Executive Utilities module;

EXIENB, EXIDIS, EXISAV and EXIRES are serviced by the External Inter-

rupt Module; IOR is serviced by the I/O Request Handler; and EXIT is

serviced by the POP function in the Programmable Timer Interrupt Handler.

Power Control

TURNON or TURNOF DEVICE

These instructions cause the GCSC Power Groups which interface with

the specified device to be enabled or disabled, re.5pectively. The de-

vice itself is not switched on or off; power is merely made available

to the interface circuits. Actual device switching is done by I/O com-

mands via the Power Conditioning and Distribution Assembly (PCDA).

I/O Request Scheduling

IOR Address of I/O Data Block (IORB)

This instruction causes the specified IORB to be linked into the
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EXEC's 1/0 request list. There are three lists, one for I/O Register

RI and two for R4. The lists are FIFO queues, so that the first IORB

in the list is the first one processed. The registers can all operate

simultaneously, but scheduling priority is done in R2, R1, R4 order.

The desired - ster is specified in the IORB, as are the number of I/O

commands ana the command addresses. As soon as the IORB is linked (not

after the I/O has actually been performed) control is given to the EXEC

scheduler. If the programmer wishes to regain control himself, he

appends an 'R' to the instruction:

IORR Address of IORB

Event Scheduling

ENQ Address of event data block (ENQB)

DEQUEn Event specification

EXIT A

The ENQ instruction causes the event described in the specified

ENQB to be linked into the EXEC's Program Scheduled Events Table (PSET).

The ENQB contains information regarding the priority and number of t .e

event, when to initiate the event for the first time, how many times to

reinitiate the event and at what frequency, and the entry address of the

event. PSET is scanned for events every 40 msece

After the link is made, control is normally transferred to the

scheduler. If the user desires instead to return to his own code, he

appends an 'R' to the instruction.

ENQR Address of ENQB

The DEQUEn instruction causes the specified event(s) to be removed

from PSET. The n can assume a value from I thru 4, and th- event

description changes in each case. If n=1 (DEQUEI), all events with the

specified event number AND priority are removed from lSET. For n-2. all

events with the specified event number ONLY (any and all priorities) are

removed from PSET. For n-3, PSET is completely cleared. And for n=4,

all events with the specified priority, event number AJND entry address

are removed from PSET.

After the deletion is made, control is always returned to the

user.

The EXIT instruction causes a transfer of control from the user's
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program to the scheduler. The general form of the instruction is:

EXIT A (A = blank, 0, +, or -)

Where A - Blank results in an unconditional transfer; A='0'

results in a transfer only if the A-Register contents are zero; A='+'

transfers if A-Register bit 0 is off; and A='-' transfers if bit 0 is

on.

The following table is provided to summarize the virtual instruc-

tion set:

Instruction Operands & Effect

TURNON Device Name
Enable GCSC Power Groups for
specified device, and return.

TURNOF Device Nam2
Disable GCSC Power Groups for
specified device, and return.

IOR Address of IORB.
Link this IORB to the I/0 chain
for the appropriate 1/0 register

for process-.,g, and exit to sched-
uler.

IORR Address of IOR3.
Same as IOR. except return to
caller after linkage complete.

ENQ Address of ENQIS.
Link this ENQB to the appropriate
PSET priority chain, and exit to
scheduler.

ENQR Address of ENQB.
Same as ENQ except return to user
instead of scheduler.

DEQUEI Event Priority & Number
Remove all events with this event
number from this priority level .

of PSET, and return.

DEQUIE2 Event Priori ty & Number
(Priority ignored) Remove all1
events with this evnt number from
ALL priority levels of PS'T, and
return.

DEQUE3 No Operand Required
Clear PSI'ET & PSETI (Remove ALL
schedu ld events), and return.
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Instruction Operands & Effect

DEQUE4 Event Priority, Number & Address
Remove all events with this pri-
ority, number and entry address
from PSET, and return (more selec-
tive than DEQUEl).

EXIT A
Transfer to Scheduler
If condition 'A' is true.
A = Blank: unconditional.
A = 0: transfer if A-reg is zero.

A = +: transfer if A-reg

is positive.
A = -: transfer if A-reg is

negative.

INTSET Desired interrupt service status.
Enables or disables the specified

interrupt.

EXIENB Mask to enable desired external
interrupts. The user's mask is
logically OR'ed with the executive

external interrupt mask to allow
processing of the user's EXI's.

EXIDIS Mask to disable Desired EXI's.
The user's mask is logically AND'ed
with tile executive FXI mask to
ignore the specified EXI's.

EXISAV Mask indicating which EXI's to
save for later processing. "lie
user's mask is logically OR'ed
with the executive EXI save uask
to delay processing of the speci-
fied EXI's.

EXIRES No operand required. Clears the
executive EXI save mask and inmedi-
ately processes all saved EXI's.

READR6 No operand required. tead 1/O
register Rb and rtt t conteuts
to user in the A-it, , Ler.

QUANTITATIVE RESULTS: In spite of early criticism from certaiu flight S/W

experts (who were G&C oriented) the Flight Software E-ecti tive structure

and design was excellent for Viking. By using a Lentrai master schedul-

ing technique, priority and interrupt structure and stand.irdi-ed l/O it

allowed orderly development through many iterations of the a iplication's
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programs for descent, communication, landed science, etc. The overhead

was a bit heavier than required for descent only, but the common execu-

tive minimized memory required to do the total flight job. The concept

of using standard scheduling (ENQUE) and I/O (IOR, IORB) functions has

allowed many mission functions not previously planned to be implemented

% ry simply by the Flight Team with no software change outside the normal

process of altering data base through commanding.

In face, the ground software is more restrictive than the flight

software for mission operations.

The advantages of centralized resource management achieved through

the EXEC pseudocode operations were several. They can be summarized

from two points of view. First, the EXEC service calls appear as virtual

machine instructions at the source code level. These "instructions" are

high-level in that they invoke whole sequences of code at the machine

language level, yet appear as single lines compatible with the rest of

the source text - even to the point of providing the standard assembly

level indirect and indexed addressing options. We are confident that

many potential errors were avoided through use of these MACRO calls

which accurately and mechanically generated the required detailed calling

sequences. The mnemonic macro names and operands additionally provide

clarity and understanding of the intended sequence of operations as dis-

tinct from the information hidden in the expanded sequence of assembly

level instructions. The power of the technique can be illustrated by

the fact that some science application programs consist of nothing but

a series of IOR's (input/output requests) and a concluding exit.

The second advantage, closely related to the first, is the isolation

afforded to application programs through the F.XEC services. All ques-

tions of conflict resolution, device peculiarities, such as redundant

transmission of individual commands spaced precisely in time, and I/0

completion interrupt clean-up arc handled by the EXEC routines and

hidden from the application programmer. His view is t:hat of the sole

system user. Again, the clarity of intent and avoidance of error was

significant.

Finally, the virtual machine concept led to a third advantage not

originally anticipated. Verification of the F.XEC services was viewed
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as an extension of the hardware self test program. The EXEC commands

were tested as though they were individual instructions of the virtual

machine on an absolute basis. That is, the full range of the implied

service was evaluated on a stand-alone basis as distinct from the

instances of its use. Once verified independent of the application

class, the EXEC services could be used with confidence in modified or

new application sequences. Re-verification involved only the applica-

tion program instructions and EXEC interfaces - the virtual machine

instructions, per-se, required no further testing.

QUANTITATIVE RESULTS: The overhead required by the executive was directly

related to the amount of I/O activity required. Timing was only cri-

tical during descent when 1/0 had to be serviced, sequences scanned

and calculations made in less than real time. A sequencer would have

been approximately twice as fast to accomplish this, but would have

had to been recoded everytime a requirement changed. For single I/O

operations, the executive required two milliseconds of E ten milli-

second cycle. This represents the greatest overhead burden.

The development and maintenance of the executive required a con-

tinuous two man level of effort for five years. This effort covered

requirements, design, code. test, integration, maintenance and mission

operations.

1
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TECHNIQUE

NAME: HARDWARE/SOFTWARE INTEGRATION LABORATORY

SUMMARY: In order to assure compatibility and performance between the flight

program and the Guidance and Control (G&C) subsystem an Integration

Laboratory was built. It provided capability for stand-alone cali-

bration, diagnostics and test of G&C hardware as well as to operate that

hardware with Flight software in a simulated real-time environment.

This Integration Laboratory was extremely useful in early identification

of system interface problems as well as acting as an independent source

to compare hardware build signatures with realistic responsiveness. As

a result, the reliability of the system integration process on flight

vehicles was greatly increased.

APPLICATION CONSIDERATIONS: A hardware/software test facility which provides

a high degree of visibility and control has usually only been implemented

on manned type missions where a very high reliability is required. In

the case of Viking the extremely difficult descent presented an equally

complex situation that could not accept the classical approach to hard-

ware/software mating. With the Viking approach to laboratory integration

the hardware was mated and analyzed with the software at each step in the

system build.

RECOMMENDATION: Although this approach has been used in the past only on

expensive and complex developments, its yield in reliability has been

shown to be cost effective. With new advances in computer and hardware

fntegration techniques this type of facility can be utilized at a signi-

ficant decrease in cost to provide real advances in test and reliability

for smaller progems.
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HISTORY: The Viking Hardware/Software Integration Lab was conceived at the

beginning of the Viking project as a Guidance and Control (G&C) subsys-

tem test facility. The Viking G&C system consisted of an Inertial Refer-

ence Unit (IRU) composed of gyros and accelerometers, a Radar Altimeter

(RA), a Terminal Descent and Landing Radar (TDLR), Reaction Control

System Thrusters (RCS), Terminal Descent Engine Values (TDE), Terminal

Engine Shutdown Switches (TESS), and the Guidance Control and Sequencing

Computer (GCSC). The original intent of the laboratory was to test the

hardware and software interfaces of the G&C subsystem. Since a GCSC

delivery was not due until very late in the program and a specific com-

puter had not even been chosen, an IC-7000 microprogrammable computer

built by Standard Computer Co. was installed in the facility to act as a

flight computer for the preliminary G&C subsystem development and inte-

gration. The IC-7000 had a microprogramming capability that was used to

emulate the flight computer and to provide an interface with the G&C

hardware. As an interface tool the IC-7000 was found to be adequate,

but it was soon realized that it had the potential to also support the

entire flight software development and te-t activity. This activity of

hardware/software integration and software" development was to continue

for the entire Viking Lander development.

The IC-7000 is a dual microprogrammable processor machine in which

one processor (the CPU) was used to emulate the GCSC (refer to Enulated-

On-Board computer technique) and the second processor (the IOP) became

the interfacing I/O to the "environment". The "Environment" was a

multitude of possibilities including an Analog!Hybrid Simulation of the

Martian atmospheric condition and flight dynamics with Analog/Hybrid,

models of the G&C hardware, digital models of the G&C hardware, or the

actual G&C hardware. With these capabilities actual harlware performance

could be compared to software models and be played against various "worst

case" flight conditions.

In addition to playing hardware controlled by Analog/hlybrid simula-

tions against the flight soft' re, the hardware could be calibrated,

tested, and interfaced in a stand-alone condition. With such a config-

uration, software verification, system validation, and engineering per-

formance testing were all performed within the bounds of the sa-me lab
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with closed loop tests being able to be performed with or without hard-

ware in the loop. Eventually the lab was connected to a 4.8K bit high

speed data link with the Viking Mission Control Center at JPL. With such

an interface Mission Control could send test data to the lab, a test be

performed, and the results could be sent back to JPL for flight control

analysis. All in all the lab supported the project from inception

through operations.

DESCRIPTION: The lab is represented in block form in figure 1. Each of the

block components is described as follows.

DATA CONVERSION EQUIPMENT (DCE):

The DCE is the system interface controller. It is an addressable

serial and parallel channel controller as well as the data formatter for

each interface. The prime interfaces were between each external compo-

nent and the IC-7000.

STANDARD COMPUTER CORP IC-7000:

The IC-7000 is a parallel processor machine. Each processor is a

micro-programmer with 2K words of control store. The processors share a

common memory of 64K 36-bit words and have peripherals including, 1200

LPM printer, 2311 disk, card reader/punch, 3 tape drives. One processor

(the CPU) is used to perform the emulation of the GCSC. When an emula-

tion level test is being performed the CPU operates on the Flight Soft-

ware. When a GCSC hardware level test is being performed the GCSC is

utilized as host for the flight software. The other processor (the lOP)

acts as host for the Run Time Operating System, the Open Loop Vehicle

Models, and as the Interface Control Monitor. The lOP was also host for

system interface diagnostics and G6C hardware diagnostics. In addition

to being used to directly support test and integration efforts, the IC-

7000 was host for all flight software developrient tools, including data

recording, post run analysis programs. assemblers. and file management

utilities.
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HICH SPEED DATA LINE (HSDL):

The HSDL is a 4.8K bps dual line full duplex interface between the

DCE and the Jet Propulsion Lab (JPL) Real-Time 360-75 Command Center.

The interface was defined at JPL to be an additional Deep Space Network

station so that transmissions to and from JPL could look like spacecraft

communication. In addition card image data could be transmitted. Thus

in support of operations JPL could transmit final vehicle conditions to

the Lab prior to beginnin& the descent to the surface of Mars and a real-

time simulation could be performed with analysis and results transmitted

back to JPL for final verification. For flight crew training simulated

vehicle telemetry data could be transmitted directly to JPL telemetry

displays where flight crews would be required to respond to anomalies.

GCSC/TEST CONDUCTORS STATION:

The Test Conductor's Station acts as a computer display panel for

the GCSC as well as displaying vehicle simulation specific data such as

power status, operational modes, engine states, etc.

ANALOG HYBRID COMPUTING FACTLITY (AHCF) INTERFACE:

The AHCF was used to simulate the Mars environmental condition, the

Viking Flight Dynamics, and the G&C equipment. The G&C equipment simula-

tions, the actual G&C hardware, or combinations thereof could be used as

stimuli to the GCSC or the GCSC simujator. As an example, the RA, TDLR,

and RCS thrusters were modeled in the AHCF with the actual IRU being

torqued by the AHCF and being read by the GCSC. TDE cotmands were- laser

linked to the test stand to fire actual flight type engines with the

engine responses fed back to the AIICF models. The result was a closed

loop test of actual G&C hardw-c, modeled G&C hardware, and actual flight

software. The AHCF interface is a serial channel controller that inter-

faces the DCE to the AHCF. AHCF data could be acquired from the inter-

face and fed to the X, T, plotter.

INERTIAL REFERENCE UNIT (IRU):

The IRU consists of a four axis gyro system - three cardinal axes

and one skewed - and a four axis accelerometer system - three along the

cardinal axes and a redundant one along the X-axis. The IRUI is cabled
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to the IRU controller and then either to the interface to the DCE or to

the Proof Test Capsule (PTC) which is a third Viking Lander built for

systems testing. The gyros can be torqued either by the AHCF or by

commands from the GCSC.

TERMINAL DESCENT LANDING RADAR (TDLR):

The TDLR is a four beam doppler radar used to provide lateral veloc-

ity data for vehicle landing. The Doppler Spectrum Simulators are used

to drive returns for each beam. The TDLR is connected to the control and

interface unit which connects to the DCE.

VALUE DRIVE AMPLIFIER (VDA) CONTROLLER & INTERFACE:

The VDA controller and interface serves as interface for the

Reaction Control System (RCS) thrusters (which are in effect only elec-

trical loads), as interface for the Terminal Descent Engine (TDE) values,

and as controller and interface to the 96K bps OPCOM lazer communications

link to the Engine Test Stand. The actual engines can be fired, the lab-

oratory values fired, or AHCF simulations used for closed loop testing.

RADAR AMTMETER R:

The RA is a doppler Radar Altimeter which is used to update the

inertial navigator during atmospheric descent. The Radar Return Simula-

tor (RARS) is usrd to provide stimulus to the RA. The RA is connected

to the control console which is interfaced to the DCE.

GUIDANCE, CONTROL & SEQUENCING COMPUTER (GCSC):

The GCSC is a block redundant flight computer. Either GCSC(A) or

GCSC(B) may be powered on. No computer to computer interface exists.

The GCSC interfaces to the DCE for all I/O data and can be interrogated

and controlled via the GCSC/Test Conductor Station. Either GCSC or the

GCSC emulation may be the host for the flight program.

QUANTITATIVE RESULTS: The hardware/software integration lab proved to be a

valuable tool for building and testing reliable software. Tic successful

operation of two Viking Landers on the surface of Mars verifies this

fact. The lab provided i common tool for software development, software
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testing and verification, G&C systems analysis and integration, G&C

system performance testing, off-nominal and failure mode analysis, and

operational support and crew training. This amount of flexibility using

a system where run controls and data visibility are the same whether

using hardware or models yielded a very efficient test and development

facility. The problem areas associated with the Lab were:

1) Trying to use the facility too early in the facility development

cycle while extensive changes were in progress - this was resolved

when the development ended;

2) Limited computer resources for the amount of software and hardware

development and integration required - this was resolved by instal-

ling a second IC-7000 for software development purposes; and

3) Modeling difficulties due to lack of a High Order Language proces-

sor - this problem was not solved using the IC-7000 complex for

Viking.

QUANTITATIVE IMPACT: The hardware cost of the lab excluding G&C Flight hard-

ware was approximately three million dollars. The analysis, flight soft-

ware development, simulation software development, and test and diagnos-

tic software development cost was approximately seven million dollars.

For a ten million dollar cost a highly reliable software system was

produced for a one billion dollar project, which was not an unreasonable

percentage of the project cost. Today, the Lab and its development

costs would be considerably less due to the advancements in microproces-

sors, associated interfaces, and microprogramming skills.
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TECHNIQUE

NAME: INDEPENDENT VERIFICATION OF ON-BOARD PROGRAMS

SUMMARY: The on-board computer operations were so critical to mission suc-

cess that several means were employed to assure error-free software. A

separate contract was established to evaluate in detail the algorithms,

implementation, and testing of the Lander on-board computer system. The

independent verifier performed analyses and tests, using their own tools

and interim development products. The overall experience was favorable

in helping to identify possible difficulties and in imposing additional

discipline on the software development process.

APPLICATION CONSIDERATIONS: Independent verification means redundant verifi-

cation, and therefore is usually considered only where software error

implies high risks and costs. Redundant activities may include the

entire spectrum of development - and, in fact, are considered more effec-

tive where this is done. Rederivation of equations; independent scien-

tific simulations; in-depth analysis of concept, design, and code; and

finally exercise of developed code and data may all be productive in

identifying discrepancies and producing error free code. The full spec-

trum of independent verification was employed for the Viking Lander on-

board software - beginning with the Software Requirements Definition

(SRD).

RECOMMENDATION: Independent Verification and Validation (V&V) has long been

standard for certain Air Force contracts where software criticality is

a prime consideration. Multiple viewpoints throughout evaluation has

proven useful in identifying both specific discrepancius and classes of

software errors. Improving automated tools and introduction of formal-

ized development disciplines affect independent V&V in two ways: first,

the costs associated with the activity are declining, and second, the

probability of initially producing error-free software is increasing.
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HISTORY: The Viking Project Office (NASA, Langley) determined that due to

the criticality of the Viking Lander Flight Software an independent V

and V effort would be made. TRW Systems, Redondo Beach, Calif. was

given that contract. The contract included responsibility to verify

the Flight Software Requirements, the Command List, the Guidance and

Control Analysis, the Analog/Hybrid Vehicle and environmental models,

and the Flight Program. The effort lasted for over three years on-site

at NASA Langley under direct NASA supervision.

DESCRIPTION: The independent verification was accomplished in four major

areas: Documentation Review, Analysis and Modeling Review, Dynamic

Interpretive Simulation of the Descent portion of the Flight program,

and static interpretive simulation of the landed and on-orbit flight

program functions. The documentation and analysis reviews were performed

by senior TRW personnel on-site at NASA Langley. The simulations were

performed on the NASA computers at Langley free-of-charge to the con-

tractor. Although the simulations were accurate, they were extremely

time consuming and often took many days to set up and perform a single

execution.

QUALITATIVE RESULTS: Probably the most significant qualitative result of the

independent verifier was the confidence it gave to the Project Office

that every step that could be taken to assure a correct and error free

flight program would be launched was accomplished. No significant tech-

nical problems were uncovered by the independent verifier. Many docu-

mentation errors were identified and code problems in preliminary soft-

ware versions were noted. There were discussions and debates about

development and design techniques but all in all no system, software,

or operational procedural problems were encountered.

QUANTITATIVE IMPACT: MMC believes the cost for independent verification of

the flight program was in the neighborhood of 2 to 3 million dollars

for the three year effort accomplished by TRW.
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TECHNIQUE

NAME: ON-BOARD COMPUTER TIMING AND MEMORY SIZE MONITORING

SUMMARY: Classically, memory size and worst path timing are critical in

aerospace applications. A 50% margin for each was allocated at prelim-

inary design time. Accepting the fact of inevitable change, a margin

allocation curve was also established at preliminary design time in order

to control margins throughout the project development phase. The plan

originally called for a few hundred words margin at launch time to accom-

modate last minute changes during operations.

APPLICATION CONSIDERATIONS: The high relative cost per change with low

margins has been well established. Changes made with limited spare

room or time often lead to redesign of existing code with attendant

ripple effects. Some published results indicate that relative costs

begin to rise where margins are less than 50%. With many of the Viking

Lander devices and subsystems at the state-of-the-art, 50 margins at

preliminary design time was deemed essential. Perhaps more important,

was the realization that margin monitoring was also essential. Where

continuing system change can be anticipated, software changes rapidly

consume margins unless they themselves become a part of the change

controls.

RECOMMENDATION: Management is well advised to pay close attention to timing

and memory size when a relatively small computer is to be used to per-

form a significant real time task. This requires a considerable effort

to obtain accurate estimates of the impact of proposed changes. The

50% growth margin used by Viking was not great enough to avoid the neces-

sity of optimizing algorithms and designs already coded.
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HISTORY: During the development of the Viking Lander on-board program, con-

stant control was exercised over the growth of the program within the

time and space domains of the computer hardware. This was done because

there were several precedents of program development problems due to

unchecked growth. In order to achieve good control several tools were

developed and used throughout the life of the project.

The first problem with respect to obtaining good control was to

establish realistic values for the memory and time margins. The approach

used was to define a hypothetical computer and then to program the

descent guidance and control equations for it. The descent phase was

picked for two reasons. First, a significant amount of analysis had

yielded a set of descent control equations which could be coded. Sec-

ondly, the descent phase represented the major area of concern about

timing. Based on this exercise, the number of instructions to be exe-

cuted was obtained along with their frequency of execution.

The sources of good size values were: first, the code size defined

by the descent software; and second, the code size estimated by coding

the flowcharts established for the remainder of the on-board program.

Together, these produced the initial program memory size requirement.

To this memory size was added a 50% growth margin. That value was

defined to be the limit for program size growth. The two values defined

a linear growth curve, starting with the program size at the date the

analysis was made and terminating with a full computer at program deliv-

ery. This growth curve defined, at any given time when an audit wasI made, whether the program growth was being contained.

The hypothetical computer characteristics were included within

the computer procurement drawing as a statement of desired instruction

set and timing. This also allowed for the generation of memory and

timing impact summaries for each of the prospective computer vendors.

Then once the vendor's machine characteristics were known, the impact

to timing was well defined. In addition, there are instruction set

versus memory requirement relationships defined by information theory.

Using them, a memory impact was defined for each of the possible com-

puters. This exercise informed the project management that the selected

computer would have little impact timewise but that the m-emory would
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have to be 2000 words larger if the initial 50% margin was to be

maintained.

Following selection of the on-board computer, a software change

control mechanism was installed. This provided a definition of what

changes were outstanding and their associated time and size impact.

Management could then weigh changes against any possible growth viola-

tions. In order to make this accurate, all changes were forced thru

this control system.

During the course of the on-board program development there were

several major stresses on the control mechanism. Each of these involved

the definition of a significant violation of the size or time margin

curves. The first was the incorporation of a generalized on-board

executive. The design change was necessitated by the total program

requirements, but presented an unknown risk to the time margins. In

order to gain an insight into the timing of the then current sequencing

algorithm and the proposed processing, a discrete simulation model was

constructed. The model was used to define the worst case time consump-

tion by the executive. With this known, it became apparent that there

was minimal risk to incorporate the generalized executive.

The second major -Lress occurred when the development of coded

modules for nearly all of the on-board program was completed. The

resultant code size violated substantially the size growth curve. As

a result a set of code reduction changes were proposed. Incorporation

of the changes brought the program size back within the established

growth curve. However, they necessitated substantial changes to the

already coded and partially tested program.

The third major stress was due to the violation of time margins

by the descent control code. This was isolated thru the use of an

emulator for the on-board computer. The descent code, ran in an emu-

lated mode, was shown to take too long during certain descent phases.

As a result, the descent control equations were changed in order to

reduce the number of calculations required. In addition, some algorithms

used during descent were optimized with respect to time. 11is problem

had been brought to management's attention quite early, due basically

to the enforcement of regular time and size audits. Ikscause of this,
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there was ample time to analyze and correct the problem.

DESCRIPTION: The components of a good timing and memory size monitor system

are: accurate software audit reports, timely report generation and

total software change control. One cannot emphasize enough the impor-

tance of any of these components. Without any one of them, the process

of monitoring is susceptible to failure. In describing each, one can

take the Viking on-board program development and show why each is

required.

The generation and reporting of the current program size and time

requirements was basically an audit. For the audit to be effective, the

process of generating realistic data had to be accurate. In the case of

the on-board software, this was done directly by timing the known worst

case loops via an emulator. The availability of an emulator greatly

simplified and improved the accuracy obtained from this task. Because

the landed phase development was significantly behind the descent devel-

opment, the size values obtained were prone to error. However, by coding

candidate modules from flowcharts relatively good size values were

obtained. In fact, some module size values as originally defined were

within ten percent of the final size of the coded flight module.

Since the on-board program was constantly changing, the size and

time requirements were audited by management monthly with approximate

values maintained between audits. This provided, given an accurate

audit process, an actual input. The input was then used to update the

graph for memory growth. Using this graph management Ladily established

trends of rapid growth. When they were recognized, the change traffic

was interrupted and a status meeting held to define which changes to

reject, together with requirement changes or design changes to incor-

porate.

The audit process depends upon an accurate sampling process. This

in turn depends upon accurate reporting of current size. impact of

changes in progress and impacts for proposed changes. Software changes

were forced to proceed through a control system for the on-board program.

This entailed initially the complete definition of the change require-

ments. The on-board software development group used these requirements
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statements to define the impact of the proposed change on memory usage

and, for descent control changes, the impact on timing. The proposed

change and associated impact was then presented to a management team

for consideration. The team could then approve or reject the changes

as too large an impact, or as an unnecessary requirement. In this

manner the modifications to the memory and time requirement were made

by one group. This caused the auditing of the memory and time margins

to be quite accurate.

QUALITATIVE RESULTS: As a result of timing and sizing monitoring, the on-

board program was developed and delivered successfully. The concept of

regular and highly visible audits seemed to allow for ample time to

recover from major stresses. In addition, management was provided suf-

ficient information to control a highly volatile software development

task. A time when the system seemed to fail was when the entire soft-

ware group was devoted to the development process to the detriment of

the audit process. As a result, the audit would encompass a very long

time period and nominally would define a significant change to the size

and time margins. In addition, continual auditing seemed to force a more

disciplined development.

The growth constraint curve was a linear line connecting a 13K

memory size in July 1971 to an 18K memory size in October 1974. Twice

large accummulations of new code caused the current memory size estimate

to violate the constraint curve. The first occurred between March and

May 1973, when as built code rapidly grew from 15.5K to 18.5K. The

second occurred between February and June 1974, when as built code grew

from 16.5K to 19K. On each occassion management was forwarned that an

unacceptable growth was taking place, thus permitting them time to assess

the need for and ramifications of candidate redesign efforts. On both

occassions management required the implementation of agreed upon design

changes that brought the as built code below the memory size constraint

curve. These two instances demonstrate the practicality of using he

technique.
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QUANTITATIVE IMPACT: The process of monitoring the memory size and timing

margins of the flight computer was a planned event that did not require

additional staffing. As such, there was no manpower cost impact.
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TECHNIQUE

NAME: REQUIREMENTS GENERATOR FOR FLIGHT HARDWARE AND SOFTWARE

SUMMARY: The Viking Lander Guidance and Control system in the flight environ-

ment was extensively analyzed via simulation and other supporting tech-

niques before hardware and software specifications were written. This

led to the generation of detailed specifications for hardware and soft-

ware which produced results that were compatible in later integrated

software/hardware closed loop tests and in actual flights with minimal

revisions. An auxiliary technique of this process was the FORTRAN spec-

ification of the Flight software routines to be consistent with the over-

all system analysis and simulation models.

APPLICATION CONSIDERATIONS: This approach has been used generally on aero-

space guidance and control contracts, but more often than not the simu-

lations evolve too late to influence the hardware design or significantly

change the software. By having a complete six-degree-of-freedom simula-

tion early in the program, models for all components (inertial sensors,

radars, actuators, aerodynamics, etc.) could be evaluated closed loop

with preliminary flight software control laws and algorithms for overall

system accuracy, stability and response.

RECOMMENDATION: An algorithm design and specification language is one of the

missing gaps in software development technology. The use of FORTRAN for

this purpose can be helpful, but should only be used as an overall state-

ment of a suitable solution. It should not be used as an implementation

requirement on logic control or computational sequences.
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HISTORY: In the development phase of Viking, a simulation was used to ana-

lyze different radar designs, variations of parachute and aeroshell

mechanics, propulsion dynamics, and flight software algorithms. The

models were all written in FORTRAN. These formulations, after con-

siderable experience, were directly translated into models for an analog-

digital hybrid real-time simulation which was used for closed-loop test-

ing of the descent phase flight software and guidance and control hard-

ware. Having the FORTRAN flight software models in the hybrid simula-

tion allowed a three-way comparison of the FORTRAN program, the hybrid

real-time simulation, and the hybrid real-time simulation mixed with

Flight software/hardware combinations. Because of this testing, timing

and phasing problems were identified and corrected very early in Viking

deve lopment.

DESCRIPTION: The six-degree-of-freedom simulation (MOD6MV) was developed

from the MOD6DF program developed by Litton, Incorporated for the Air

Force. The program provided a modularized structure which handled

dyramic integration of differential equations, inter module communication

through a common array, random noise generation, standard data input,

standard print output, vehicle dynamic staging control, and plots. There-

fore within this structure it was a simple process to develop the Viking

peculiar models, using Guidance & Control engineers who only had rudi-

mentary FORTRAN experience. This program later evolved into the Flight

Operations Lander Trajectory Simulation (LATS) program used for pre-

separation analysis of candidate landing trajectories.

The Flight Software Requirements Document (descent phase) was writ-

ten directly from the FORTRAN algorithm models. This had to be trans-

posed by hand to a typed version using greek letter symbols, etc.,

because the customer objected to the style of FORTRAN type equations.

QUALITATIVE RESULTS: FORTRAN is one of several machine independent program-

ming languages. With its algebraic statement capabilities, the computa-

tion problem can be stated succinctly and with precision. FORTRAN has

0several shortcomings as a specification tool for flight computations,

r- however. FORTRAN is not a sufficiently high order language for
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specifying conditional computations, identifying accuracy constraints,

and performing vector and matrix operations. Thus, these operations

tend to force undesired detail on conditional statements and matrix

element calcul.arions, and allow accuracy specifications to be ignored

or only implied.

Complete, precise, consistent, and concise requirements are highly

desirable but difficult to obtain. Typically, the programmer must care-

fully analyze a partial problem statement, ask questions, fill in missing

detail, and resolve inconsistencies. Some of these problems were solved

through use of the FORTRAN simulation and could have been expanded to

integrate all descent phase functions with minor additional effort.

The program documentation (SRD, Flight S/W flows, etc.) should use

a consistent nomenclature which can be related directly to the simula-

tion model. FORTRAN provides this (upon agreement between the system

analysts and flight programmers) with some limitations which can be

worked around. Furthermore, it is highly desirable to use nomenclature

common to standard keypunches and typewriters as opposed to special

greek letters and math symbols. As such it would have been preferable

to structure the SRD routines directly from the FORTRAN listings using

comment fields to specify accuracy and range of variables because many

typographical and reproduction errors resulted from the Greek letter

translation.

Other lander system requirements for sequencing during the descent

phase which did not affect guidance and control were not included in

the simulations. Therefore, these requirements were coufusing to the

flight programiers since they were not integrated into the C.&C speci-

fications. For consistency, the simulations should have included a

FORTRAIN sequencing module which would have been a direct analog of the

Flight program version.

It is very important to have a system analysis group which is

capable of integrating, simulating, and specifying all requirements in

a consistent language. The language should have one to one correlation

with the simulations and the actual software/hardware. Although this

is commonly done in Guidance and Control, it could and should be ex-

tended to any spacecraft flight software operations. On Viking, many
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hardware/software and software/software incompatibilities resulted from

the lack of end-to-end simulation modeling of portions of the system,

and the lack of an analytical systems group working those mission phases.

QUANTITATIVE IMPACT: The manpower costs involved in developing the six-

degree-of-freedom MOD6MV simulation to analyze and generate descent

flight hardware and software requirements were approximately 40 man

months. The additional effort required to develop a 12169 source card

Lander Trajectory Simulation program for Flight Operations was 73 man

months, which, with overtime, amounted to more like 80 man months.

The total effort required to develop the G&C hardware and software

requirements was approximately 25 man years of which 12 to 15 involved

the development and use of MOD6MV.
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System Test Equipment Software Development Overview

1.0 Introduction

The Viking Systems Test Equipment Software System was developed to con-

trol and monitor Viking Lander flight article hardware checkout and verifi-

cation. It was the first of the three software systems built by Martin

Marietta for the Viking Project. This narrative discusses in chronological

order the process followed to develop the system.

1.1 The STE Software System

The Viking Systems Test Equipment (STE) Software System was developed

to provide the means to check out and analyze the performance of the Viking

Lander hardware component subsystems and the Automated Ground Equipment (AGE)

hardware. It was placed on-line at the start of lander system integration

testing and continued to support verification of the integrity of each lan-

der subsystem up until launch. During cruise and planetary operations it

was used by the Viking Flight Team to simulate anomolous conditions on the

Proof Test Capsule.

The system was comprised of a Honeywell H-632 computer set, computer

peripheral equipment, and MMC designed and built hardware test equipment.

Both manual and computer hardware test equipment were employed. The manually

controlled hardware was used primarily for RF alignment and circuit test pur-

poses. The computer controlled hardware consisted of analog to digital con-

verters, discrete output circuits, discrete scanning circuitry, and telemetry

monitors. In addition, both digital and RF links were available to control

information transfers between the STE computer and the Guidance, Control and

Sequencing Computer (GCSC) in the lander.

The STE Software System was comprised of three major software subsystems.

A pre-test software subsystem prepared interface data files and Viking Test

Language test sequences for on-line, real time execution. An on-line soft-

ware subsystem supported real time execution of the test sequences to con-

duct the actual checkout operations, provided interaction with an operator

for control and status of test operations, processed discrete, digital and
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telemetry data received from the lander'subsystems, and generated both

printed logs and a comprehensive tape history to record the proceedings.

Finally, a post-test software subsystem provided a means for extracting

data from the history tapes and producing selected plots, printouts, and

limited mathematical analysis of the data.

1.2 Software Development Responsibilities

The Langley Research Center was responsible to NASA Headquarters for

the management of the Viking Project. A contract was awarded to the Denver

Division of Martin Marietta Corporation to develop computer controlled sys-

tems test equipment to checkout and verify Viking Lander hardware components

and subsystems. No other agencies or manufacturers were directly involved

in this task.

1.3 Quantitative Software Description

The STE software system contained 133,000 words of instructions written

in assembly language code. The system was developed at a cost of 600 man

months. Supporting documentation included a Software Requirements Document

(200 pages), a General Design Document (400 pages), a Program Description

Document (1000 pages) and Users Guide (400 pages).

The estimated effort expended by development phase is as follows:

Definition 107.

Design 20.

Programming 35%

Test 35%
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2.0 The Requirements and Design Phase

2.1 Organizing for the Task

The Systems Test Equipment Group was organized in 1970 as an independent

entity within the Systems Engineering Directorate. The purpose of the sys-

tem was to provide a means to exercise various Viking Lander hardware compo-

nents then passively monitor and record the resultant Lander responses.

Theref6re, the system design would be adaptive to, rather than impacted by,

changes to Lander hardware. The Viking Integration change procedure under

the control of the Project Change Board was the means by which the STE and

lander developments were coordinated.

A Software Chief was appointed by the STE manager to be responsible

for the design, development, control, implementation and maintenance of the

software portion of the STE.

2.2 Defining the Software System

During the period in which the STE Software System had to be designed

neither requirements nor a Lander Software Development Plan had been gen-
erated by Systems Engineering. The STE Software Chief therefore formed a

software team with individuals who had experience in developing similar com-

puter controlled test systems.

Requirements for the overall design were obtained through consultation

with systems engineering groups, who had solely hardware backgrounds. Some

detailed information was available in areas of interface signal characteris-

tics and testing descriptions. All requirements concerning the software

control system, the selection of the computer set and peripheral equipment,

and the man-machine interface had to be developed by the software team.

The approach taken was to outline the design of a flexible software

system, wherein specific requirements relative to hardware components and

intccfaces could be treated as data. In this way if the requirements should

be found to be inadequate at a later date, only a minimal amount of rework

would be reouired in complex areas.
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The software team identified the need for three software subsystems.

An off-line pre-test software system would translate Viking Test Language

test sequences, nomenclature data, signal address data, conversion and cali-

bration data, status and criteria data, decommutation data and configura-

tion data into object code to be stored in tables and files in mass storage.

An on-line software subsystem would provide STE software support during

testing. An on-line control language would be generated to permit a test

operator to input instructions via a CRT keyboard or a cardreader. The on-

line software subsystem would interpret the control language, locate and

input the appropriate test sequences and support data from mass storage, and

execute the test sequences. Discrete and digital stimulus and control data

would be output as directed by the test sequences. Telemetry and hardline

analog, discrete and digital monitor data would be input to the STE computer

from the Viking Lander and STE hardware via a data bus controller. On-line

evaluation would consist of change detection and limit checks. Data would

be time tagged and placed in mass storage in an Operations Test Log for

post-test analysis. Finally, an off-line post test software subsystem

would be developed to provide additional processing of data recorded during

testing. This processing would include the preparation of reports, sorting

and recording of special data tapes, and limited processing of engineering

and science data from the Operations Test Log.

The STE Software Chief selected the PDP 11-45 computer; however, the

decision was reversed by management and the Honeywell H-632 computer set

was selected as the hardware that would support the software system. The

primary rationale was based on initial cost estimates; the H..632 was less

expensive. Other factors that supported the decision included its I/O bus

capability, a FORTRAN compiler was available, it had a byte/bit instruction

set, the CPU speed was reasonably good, and it appeared to have sufficient

tape and direct access disk mass storage capabilities.

As it turned out, the H-632 was removed from Honeywell's product line

within two years, the I/O pcction of the computer had design problems, the

FORTRAN compiler contained so many errors as to make it useless, the bit/

byte instructions worked so slowly that only limited usage was allowable,

the instruction speed turned out to be 50 percent slower than advertised,
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the magnetic tape controllers were prone to data dropout, and the disk data

was easily destroyed whenever power transients occurred. Honeywell coopera-

ted with MC by supplying onsite field maintenance personnel (at considerable

cost to the Project) and assisted MM with top engineering support for major

fault isolation. But as a discontinued product line, all activity terminated

in correcting the H-632 hardware and software design problems. This forced

the senior STE programmers to support computer troubleshooting. This sup-

port requirement was to continue through launch of both Vikings. The costs

involved easily offset the initial lower price -,f the H-632.

2.3 The Software Design Phase

Initially the software team collectively outlined a top level software

system design. Then the Software Chief subdivided the team into four in-

dividual sections, each responsible for a major software component. Techni-

cal lead programmers were made responsible to develop more detailed require-

ments and an intermediate design for the specific tasks their section had

been assigned.

One section was responsible for the file management functions and

Viking Test Language processing required by the pre-test software subsystem.

The other three sections were responsible for the executive, display and

monitor processing functions required by the on-line software subsystem. The

display function included the definition of the on-line control language.

The executive function required the development of a real-time control sys-

tem and an input/output control handler. The monitor funcLion included dis-

cretes, analog to digital data, digitals and telemetry.

The Software Chief considered the post-test software subsystem proces-

sing requirements to be too vague and incomplete for an intermediate design

to be developed in parallel with the other two software subsystems.

The STE Software Requirements Document (SRD) was written by Systems

Engineering during the period in which the intermediate design efforts of

the pre-test and on-line software systems were being conducted. As such it

was coordinated with the Software Chief in order to be consistent with the

fait accompli design. It served merely to document the details of the hard-

ware component interfaces, the on-line control languages, the input/output
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bus handler, and the Viking Test Language. It contained only a passing

reference to the post-test processing software subsyst. . Furthermore,

Systems Engineering did not provide personnel to maintain the 51W after it

was issued. By default the STE Software team was made responsible to gather

and define the post-test processing requirements. Nothing more was done in

this area until after both the pre-test and on-line software subsystems be-

came operatiorsiL.

2.4 T' Development Cycle

The STt Software System was scheduled to be designed, coded and checked

out in a span of approximately eighteen months. In most areas of the on-line
/

software development, schedules were generous enough that the software sys-

tem was not a pacing item of the project, and these schedules were met.

There were some unforeseen areas which required additional tasks not

originally planned. It was discovered that the vendor supplied disk file

management system was inadequate, so a new design was implemented to manage

all areas of the disk, except for a small region to contain the vendor sup-

plied batch operating system.

The technical leads monitored the progress of their workers and provided

the Software Chief with status reports. The Software Chief held weekly de-

sign reviews to allow every member of the team the opportunity to assess the

developing system design. A technical lead would discuss the design status

of a single subsystem at each of these meetings. The technical leads were

rotated so that by the end of a month the team had reviewed the entire sys-

tem. As the intermediate designs were completed, the Software Chief schedu-

led design reviews to permit management, system engineering, STE hardware,

and system integration personnel the opportunity to understand and critique

the software system development process. Critical areas of some programs

were analyzed for speed and core usage predictions to assure safety margins.

However, no meaningful computer loading analyses could be performed since

there was no way to assess the resources that would be required by the post-

test system.

The Software Chief relied heavily upon the integrity of the individual

technical leads for the adequacy of the design and the completeness of the

coding and checkout.
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When the coding for each individual software function was completed,

a test demonstration was held to assure the Software chief and management

that the software would perform its required tasks and was ready for test

and integration.

The development cycle was therefore a straightforward process managed

by the Software Chief. No serious impacts were caused by hardware changes,

primarily because of the flexibility built into the Software system design.

The technical leads had control over specific portions of the system, and

were free to modify or change their code as they saw fit to the extent that

no requirements were overlooked or violated. The Software Chief maintained

visibility over the entire process through the eyes of the technical leads

and was solely responsible for coordinating and resolving system level soft-

ware problems within the STE.
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3.0 The Test and Integration Phase

3.1 Module Testing

The module test phase was very informal. No test requirements, test

plans, test procedures, test schedules or test results were formally docu-

mented. It was the duty of each technical lead to perform unit checkout for

each of the subsystems for which he was responsible.

Checkout driver programs were written by the individual programmers. In

addition a standardized driver was available for all on-line packages. The

actual test cases were designed solely at the discretion of the programmers

and the technical leads.

The module tests for on-line programs were conducted primarily for the

purpose of demonstrating how the software worked to a system integration

lead, who had been made responsible for the integration of the individual

pieces of that system. The system integration lead had the authority to

modify or change any software part so as to improve overall system efficiency.

3.2 Subsystem Integration Testing

After each program was module tested it was turned over to the system

integrator, who attempted to integrate the program into the on-line system.

This was physically accomplished by turning program decks over to the inte-

grator. The integrator would then sit down with the individual programmers

to learn the procedures for running the software.

The initial integration of the on-line software subsystem with the STE

hardware in the System Test Bed consisted of a fairly thorough checkout of

the analog and discrete systems, but the telemetry system and digital down-

link and up-link channels to the Lander Guidance, Control and Sequencing

computer were not verified.

The technical lead responsible for the on-line monitor functions had

assigned programmers the tasks of developing the discrete, analog to digital

and digital functions, and had taken sole responsibility for the telemetry

system software. When the telemetry system software was not turned over to

the system integrator in a timely fashion, the Software Chief required that

the technical lead demonstrate that the software functions had actually been
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developed and coded. In particular, the Software Chief wanted to be assured

that the as delivered software would be capable of monitoring every speci-

fied lander telemetry format.

This points out the degree to which management's visibility as to what

was happening was limited to relying on the integrity and competence of the

technical leads. In the instance of the telemetry system software it proved

to be a serious mistake.

From all outward appearances the monitor function technical lead was

experienced and competent for the task. The software design for the tele-

metry monitor had been reviewed and appeared to be sound and reasonable.

During subsystem testing, the technical lead had, when ordered by the Soft-

ware Chief, demonstrated that the software code could process each telemetry

format correctly. However, for that demonstration the technical lead had

generated special code to make the telemetry model appear to work, knowing

full well that it could only handle one of the formats and could not meet

the requirements of the STE. It wasn't until after the software was added

to the on-line system that the Software Chief became aware that a problem

existed. Coincidental with this, the technical lead tendered a resignation

and left the company.

* 3.3 System Integration Testing

During the first attempts to interface the STE with Viking Lander hard-

ware in the System Test Bed it was discovered that the telemetry monitor

software code could not process the various formats of telemetry frames. It

is academic as to whether or not the design could have been salvaged had the

programmer not quit the company. The problem was a real one and a serious

one.

The effort to develop a new telemetry monitor function was further im-

pacted by management. The Viking Lander Software Plan specified validation

and verification requirements for the STE hardware/software system. To ac-

complish this six months of integration testing prior to beginning vehicle

sequence validation in the System Test Bed had been scheduled. To save

costs, management elected to modify this approach by ignoring the Software
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Plan and deleting the six month STE integration effort. The net result was

that the software was never validated, formally or otherwise. The develop-

ment process merely continued until the system.worked. In addition the STE

programmers had to support vehicle sequence validation during regular shift

time, and perform integration, maintenance and the telemetry function de-

velopment on second shift. It proved to be an inefficient use of people,

and as they grew tired they became very error prone.

System integration of the non-telemetry portions of the on-line system

was conducted in parallel with the crash effort to redesign and recode the

telemetry monitor function. It amounted to a two to three man effort, work-

ing 16 hours per day, seven days a week for a month to produce a modified

system. By the time the situation was corrected, 24 man months had-been

wasted. The most irritating part of it all was knowing that the problem

could have been avoided, or at the least minimized, had management required

a visible means of establishing adequate criteria and procedures to monitor

the various stages of software development.

During the checkout of the modified telemetry software monitor function

a new problem was uncovered. It was found that the N35 interface console,

which was the main STE hardware to Honeywell H-632 computer interface, did

not react to commands as planned. A sequence of operations had been adopted

which worked within the timing requirements of the on-line system and pro-

vided adequate I/O in the telemetry area. However, when all systems were

run concurrently, the I/O Bus transfers became confused and caused the on-

line system to abort.

This problem was never completely solved but eventually was managed.

After a schedule slippage of approximately a month, it was found that two

pieces of hardware logic sections in the N-35 that should have been slaved

to one another, actually were independent of one another. As information

passed through the N-35, a race was on in the hardware logic. When the bad

guy won the race, the system would abort. Hardware corrections were made

to attempt to correct the situation, and some software modifications were

incorporated to attempt to avoid it, but no one was ever able to identify

all the causes. Even though no permanent solution was found, the impact was

minimized by adopting procedures designed to control the problem.
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By October of 1972 both the pre-test and on-line software subsystems

were operational and could support Lander systems testing. About this time

efforts to develop the post-test software subsystem were initiated. The

reasons for this late start were a continuing lack of meaningful requirements

plus the impact caused by schedule slippages in integrating the vehicle with

the on-line system.

The initial design of the post test system was based upon what the lead

programmer thought would be logical requirements. Before design could be

implemented, it was disclosed that the post test system would have to pro-

cess telemetry stream data recorded on analog tapes. The design under de-

velopment did not accommodate such an ability, and had to be scrapped. It

was then decided that the post test system would be a modification of the

on-line system so chat it could access the hardware interface drivers. This

decision greatly reduced the development time of the post test processor,

and retained the flexibility to use any previously developed code that could

function within the on-line system. By late 1973 the post test system was

finally operational.

3.4 Maintenance and Operational Test Support

The STE Software System functioned adequately to support Lander testing,

first in aenver and then at Kennedy Space Center. The procedures adopted to

handle the N-35 I/O Bus problem reduced the number of test aborts to less

than one per week, which did not prove to be a serious handicap.

One problem occurred that can be blamed on the lack of an initial over-

all systems design, which would have defined every function that was to be

developed and permitted computer loading analyses to be performed. The pre-

test software system was slow and consumed most of the off-line processing

hours available each day. Because of this post test off-line processing

was frequently delayed or cancelled because of a lack of computer time.

The only other problem that merits mention was the amount of computer

set and peripheral equipment down times. Whereas the H-632 computer set had

been selected for cost effective reasons, it increased costs during the main-

tenance and operational test period. The design errors inherent in the com-

puter forced entire crews to wait, sometimes for several days, while trouble

shooting efforts took place.
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Originally it had been planned to slowly take STE programmers off of

the Viking Project. By the time the STE was moved to KSC for operational

test support, there were to be no programmers left. As matters turned out,

the number of programmers assigned to STE peaked during this period. This

was only partially due to the problems with maintaining the H-632. New re-

quirements for software functions constantly arose, both in Denver and at

KSC. Two new programs were written at the Cape to assure that Flight loads

would be correct.
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4.0 Lessons Learned

Software design should be made flexible when requirements are weak and

incomplete. This was done for the STE software system and was the main rea-

son for experiencing as few problems as occurred.

The lack of good system requirements at the start of software develop-

ment will lead to wasted manhours downstream in the development.

Computer loading studies should be conducted early to aid in develop-

ing efficient software designs from a user point of view.

A strong standardized executive system was designed that relieved the

module programmers of the necessity to address problems inherent in I/O

timing conflicts. This permitted reliable code to be developed with less

effort than otherwise would have been required.

Schedule programmers to remain on a project beyond software delivery

dates. Unforeseen maintenance problems can arise that require thorough

familiarization of the software to resolve. Also, new requirements should

be anticipated.

It is a risk that can have serious repercussions when a single pro-

grammer is permitted to develop an important piece of software even with some

kind of technical monitoring. An obvious way to avoid this is to require

that at least two programmers be assigned to each program. This is not al-

ways practical from a personality point of view, and sometimes is not pos-

sible due to manpower resource considerations. The STE Software Chief had

in fact assigned two programmers to develop the original telemetry function.

But the technical lead turned out to be a loner who did not cooperate with

his assistant.

The selection of the least expensive computer that was adequate to sup-

port STE software requirements proved to be a costly mistake when the pro-

duct line was dropped by the manufacturer. Future projects should keep this

fact in mind.
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TECHNIQUE

NAME: TEST DATA BASE STRUCTURE

SUMMARY: The Viking Project was characterized by extensive use of automation

during all phases of test and flight operations. A major task was the

collection, management, and configuration control of the information

required by the various computers serving the project. An equally impor-

tant task was the definition of the interfaces between the various infor-

mation subsystems, including man-machine interfaces.

APPLICATION CONSIDERATIONS: The generation of the basic data files-had to

be completed prir- to committing the system to test. Each file played

an important part in linking the System Test Equipment (STE) software,

application programs and test equipment to the test task. The data had

to be put into a form that was immediate recognizable and usable by

design personnel, sequence writing and test operations personnel. It

had to be put in a form that was compatible with the software interface

and applications programs (test sequences). Since the flight computer

would play an important role in Lander tests, the mechanisms for data

inputs and table inputs to that computer had to be implemented.

RECOMMENDATION: The Viking data base structure concepts and implementation

techniques are highly recommended for use on programs similar in com-

plexity to Viking. They proved to be viable, visible, efficient, and

easily manageable. MMA is adapting the Viking Data Base Sttucture to

their PACE program.
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HISTORY: Some concepts of technique and data base structure evolved from

previous MMA programs and studies such as the MMA Computerized Aero-

space Ground Equipment (CAGE) design for the MOL program; the bulk of

Viking data base structure design techniques, concepts and implementa-

tion were developed during the on-going Viking program. The resultant

system was derived thru extensive give and take during the evolutionary

process, with special significance given to synergistic effects between

STE SOFTWARE, FLIGHT COMPUTER TEST SOFTWARE (STACOP), Test Sequence,

Test Equipment Vehicle designs and test requirements. The basic data

base structure (due to its impact on software and test sequence designs)

was developed relatively early in the Viking schedule. Modifications

to technique and additions to the data base files continued throughout

the program.

The Viking test data base was structured to provide a realistic

tie-in between all of the various components that made up the test

environment. These components were:

1. Test Vehicle

2. Test Equipment

3. Test Interface

4. Data

. 5. Software

6. Test Sequence

7. Management and Control

8. Test Environment

DESCRIPTION: The test data base structure can best be described in its rela-

tionship to the total command and information system.

The basic task of the information system was to provide the STE

computer with sufficient software and data to enable it to control and

monitor the VLC/STE system during all phases of Viking system level

testing. The methods of implementation were influenced by the considera-

tions below.

Volume of Data

Tihe information required by tie STE computer included detailed data

on each stimulus and monitor point in the total hardware system. It
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includes all the standard messages and commands that were sent over all

the digital interfaces. In this context 'data' included automated pro-

cedure so it included functional information on all STE and VLC opera-

tions that were visible at the system level.

Continuous Monitoring of All Data

It was a requirement of the STE that all data be monitored continu-

ously, i.e., each data sample arriving at any interface had to be com-

pared with predefined criteria and appropriate displays made or alter-

nate action taken in the event of a criteria violation. The success

criteria had to be dynamically modified as the system responded to test

stimuli.

Testing Multiple Vehicles in Multiple Configurations

Each of the Viking test articles had to be tested in all mission

configurations; landed, entry capsule and spacecraft. Each vehicle, in

each configuration, represented a unique data environment which had to

be exactly defined for the STE computer. Most of the data required was

common to all test configurations.

Incremental Availability of Data

The information required to support Viking System level testing

became available at different points in time. The first was available

when design criteria was released. The final parametric data was not

available until just prior to the time a test was to be run.

Commonality of Data

A single data item might be common to all test articles and to many

test procedures for each test article. A change to such a data item

could have a significant impact. This was compounded by the fact that

the test articles and associated information libraries were in varying

states of completion.

Data Supplier and User Interface

Most of the originators of the information required by the system

were not computer or programming oriented. To the maximum extent pos-

sible, all input and output data was to be in English or in standard

engineering format.
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Operator Interface

The ON-LINE test operator had to be provided with 'selected' data

on the test operation in progress. In the event of a problem, the

operator had to have the capability to request additional data and/or

implement workaround procedures.

Conceptual Design

The Viking STE information system was structured on design concepts

intended to solve all the explicit and implicit problems identified

above.

The characteristics of the information required for Viking System

Level testing was such that three separate but interrelated regimes

were required, the data regime, the test sequence regime and the soft-

ware regime.

Data Regime

The data files contained all the static and descriptive information

about the test articles and their interfaces with the system test equip-

ment, and as appropriate, interfaces with the facilities and associate

contractors. A special class of data was included in the same data base

to support general simulation activities. Design goals driving the

system were:

a. To accept data in engineering terms and formats;

b. Require that each data item be entered only once;

c. Accept data as soon as it became available;

d. Provide for retrieval of selected data subsets;

e. Accommodate data changes with a minimum of impact, but

provide knowledge of what that impact was to other

information elements or subsets.

Test Sequence Regime

The test sequences contained the "tests". Derived from test

requirements, and ttilizing the data base and Viking Test Language, the

automated test sequences defined, scheduled, and set criteria on the

functional happenings to occur aboard the Lander during the tests, the

STE-SET UPS for the test and the required interaction between the Lander

and the STE. Requirements for the test sequence subsystem were:
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a. Compatibility with data base files;

b. Compatibility with STE software off-line system (file

management, translator and load algorithms);

c. Compatibility with the on-line system;

d. Knowledge of test article functional design;

e. Knowledge of functional interaction between the test

article and STE;

f. Knowledge of STE SET-UtP requirements;

g. Knowledge of configuration control methods;

h. Provision for modularity in sequence preparation and

execution;

i. USE OF VTL language.

Software Regime

The software was designed to accomplish all the processing necessary

to support on-line testing, off-line data management, and to provide

workable Man-Machine interfaces for all processing activities. Design

goals were that the software subsystem should: provide maximum diag-

nostic capability to detect as many errors in data and sequence input

as possible, be unaffected by changes in the VLC or VLC/STE interfaces,

provide the necessary visibility to the operator to allow proper decision-

making during all processing, and provide for the interaction capability

in that the decisions could be implemented.

The Viking on-line operating system has to be considered as a data

driven system. As such, it is necessary to understand some facets of

implementation of Viking data handling techniques. The Status and

Criteria Table (SACT) is tne single most important item in the under-

standing of the system. It is the common interface between most of the

elements in the total system. In a programming sense, the SACT is an

interrupt table. Each data or criteria change represents a potential

interrupt. The conditions under which the interrupts are to be honored,

and the action(s) to be taken in response to the interrupt, are control-

led by the test sequence writer, and to a limited extent by the test

operator.

The physical structure of the SACT may vary from system to system,

but the function of the SACT remains the same.
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The SACT is an array or table consisting of a line entry for each

interface point in the system for which dynamic status must be main-

tained. Fields are allocated in each line entry for many types of data.

The format and content of the SACT entry is dependent upon the type of

interface point which is being represented. Typical entries in the SACT

are:

A. Status - Latest significant data sample received;

B. Care Bit - Criteria open or closed;

C. Inactive - Should data be ignored;

D. Type Info - Continuous, momentary, telemetry, etc.

E. Display Info - CRT, line printer, console light, etc.;

F. Criteria - As appropriate to signal type;

G. Aperture - As appropriate;

H. Source of Criteria - Initial conditions, seq. TB, etc.;

I. Alternate Action - Stop, Go To, Abort, etc.;

J. Special Bits - As required;

K. Spare;

L. Address in mass storage where other information

concerning the interface point is stored;

M. Simulator Peculiar Bits;

SACT Usage

The SACT is constructed by the data loading software when a spe-

cific sub-set of data is selected from the master file and placed in

mass storage for use by other software, thereby accomp:lishing an inter-

face function with the on-line software subsystem and with other off-

line software modules.

The on-line software subsystem uses the SACT as a storage facility

for dynamic data and as a source of 'instructions' n.a to how the data is

to be processed. It should be noted that these instructions may be

modified by the test sequence in progress, or by the on-line test

operator.

Other usages of the SACT can he inferred from the contents of the

SACT as presented above.
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Description of Basic Information System Elcments

The STE on-line and off-line software subsystems are an integral

part of the information system. The software provides the capability

to store, convert, correlate and display the large volume of data flow-

ing into and out of the information system. It is analogous to a com-

munications system in that information may be input in one form, stored

in another form, transmitted in another, and output in still another

form (or in several forms to suit the various users or receivers). The

function and scope of the software is determined by the information

structure and its interfaces, and by the hardware elements of the proj-

ect.

STE Software

It is important to realize that the effectiveness of the software

is determined by the extent to which the information needs and inter-

faces are properly defined early in the program. In many cases, the

same considerations apply to the proper selection of hardware.

Basic Data Files

There are three basic files in the information system. These are

the interface file, the group file, and the decomutation file. They

are classed as 'basic' because each entry is a direct representation

of a fixed characteristic in the hardware or software. The exceptions

to this are the criteria entries in the VAIF.

Each building block or sub-structure within a composite structure

must have a fixed point of reference or 'anchor' that 'locks' it into

place in higher level structures. The 'interface point' provides that

reference point for all data files.

The Viking AGE Interface File (VAIF)

As implied above, the interface points tie the entire system

together. The ID symbol positions the IPDS in the file and 'connects'

it to a hardware subystem or interface, as well as serving as a short-

hand address for all man-machine interfaces.

The 'descriptor' provides functional information about the inter-

face point in standard engineering terms. The interface point data set

contains all of the information required by the sequence writer, the test
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operator, and the STE software.

In addition to the above, the TSS Logic in the IPDS defines the

functional relationship of the IP to other interface points in the VAIF.

VAIF Structure

The VAIF is structured on the 'page' principle in thaL each inter-

face point has a page or set of data associated defining it. This con-

sists of characteristic, parametric and functional information.

Each page is made of 'lines', where each line is input on a punched

card. Effectivity is implemented at the line le'vel. (Each card has

its own effectivity codes).

Information in the VAIF is organized by Inte ,face Point Data Sets

(IPDS's). Each IPDS is a uniquely identified block of data containing

enough information to describe one interface assignment in the system

to both the STE computer and the human user.

The VAIF is maintained as a Source File (card image) on magnetic

tape. Although information from the VAIF is essential to almost every

step of system operation, only two programs interface directly with the

VAIF tape. The pretest File Manager is used to update the VAIF, to

provide copies of the current VAIF tape, and to make listings of the

VAIF. The Data Base Manager uses card numbers and effectivity codes to

select only the information needed by the computer for a particular

application from the VAIF, then formats this selected data into the

BIDs and the SACT. The Binary Interface Data Set (BIDS) is a disk-

resident file used primarily by the Sequence Translator to convert an

IPDS name into either a command word or an address recognizable by the

On-Line operating system.

Every electrical interface between the Viking STE and the Lander,

either command or monitor (digital analog, and discrete), is represen-

ted in the VAIF as an IPDS.

The format of the VAIF allows single lines or entire blocks of

comn.ents to be inserted among the IPDS's. The 'file loader' will

ignore an lPDS without a zero card and any card numbered 900 to 999.

Included in the comments at the front of the file are definitions

of symbols and abbreviations, descriptions of formats, sample IPDS's;

in general, notes on the structure of th, VAIF and the relationship of
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the VAIF to the entire system. Following are examples of VAIF IPDS's:

EXAMPLE OF TM MONITOR IPDS

0001 B4002 INTL EQPT PLATE NEAR BAT ASSY 1 TEMP 000 BTE

0003 B4002 TYPE-AM TM AVL-VOP 001

0004 B4002 SACT=0868 002 BTE

0007 B4002 APER-2 LIM-50/100 084 COM C

0008 B4002 RANGE-0/300 UNIT-DF ACC-3.61 100 STE

0010 B4002 AMB-50/100 108 COM C

0012 54002 OPLIH-50/105 109 COM C

0013 B4002 SC142,0,O,300,255 110 STE

0016 54002 120,03377,152.7,.040 112 COM C

0017 54002 CHN-R4 EXC- PART-SV74D12-1 600

0020 B4002 OR(C8001,C8002,C8003) 831 COM C

0022 B4002 C-OPLI A-STOP D 850 COM C

0023 B4002 AND(C4001M) 861 COM C

0024 B4002 * REV-329,343,378,403 990

EXAMPLE OF DISCRETE COMMAND

0001 S1418 STE DOU-3-018 % 000 STE

0002 S1418 FIRE B/S CAP SEP CUT VO CMD 75J 000 CON 567

0004 S1418 TYPE-CON DIS STM AVL-V 008

0005 S1418 DQU-3 CHANNEL-018 031 BTE

0007 S1418 STE RELAY TURNS AROUND VLC SIG NWR 2 951

0008 S1418 P20, REG-O BIT-18 952

EXAMPLE OF DISCRETE MONITOR

0001 S2418 srE DMC-3-018 000 STE

0002 S2418 FIRE B/S SEP CUT VO CMD 75J (J29-cG) 000 CON 567

1 0003 S2418 MONITORS S1418 000 TEl

LE 0004 92418 TYPEDM H!L C AVLVOP 0001

0005 S2418 SACT-0361 002 BTE

0006 S2418 TYPE=CON DIS AVL-V 008

0007 S2418 DSU%3 CHANNEL-018 032 BTE

0008 S2418 OFF 082 BTE
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EXAMPLE OF DISCRETE HONITOR (Continued)

0009 S2418 F304 AWS FUNCT CODES 700

0010 S2418 C=OFF A-STOP D-P CATEG- 850 BTE

0011 S2418 AND(S1418) 861 COM 567

0012 52418 P20 951

The Viking AGE Group File (VAGF)

The VAGF contained groups of related IPS to provide a short-hand

mechanism for all user's of the VAIF. This might be the test sequence

writer, the on-line test system operator, or the requestor for post-

test data reduction.

The Viking AGE DECOM File

The Viking AGE Decom File contained the data required by the tele-

metry docommutation software for decommutation of the various Lander

telemetry formats. This data included information such as format identi-

fication, discrete or analog data, word length, most significant bit

first or lease significant bit first data, and format length.

QUALITATIVE RESULTS: The Viking Data Base as structured worked very will in

support of the Viking program. Since the total software and data system

was a new design, compatibility with the total information system was

"designed in". That is, the STE softfare system was driven by the data

base. This design made it easy to change requirements without being

required to change code. Defining all interfaces (commands, monitors,

telemetry, etc.) with appropriate associated parametric information in

one central file was of specific value. The ability of this file to

provide for man/machine interfaces greatly enhanced understanding and

control of the system during test operations.

QUANTITATIVE IMPACT: The Viking software data file system required 168 engi-

neering man moaLths to develop. This development process contained

throughout the life of the STE.

The Viking AGE Interface File (VAIF) contained 1289 line printer

pages. Each page c:ontained from 3 to 10 IPDS's. Four hundred forty

revisions were mace to this file. The Viking AGE Group File (VAGF)
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contained approximately 40 pages. The Viking AGE Decon File (VADF)

contained 16 decoamutation files. The latter were incorporated in the

Mission Operational Software System and used to decounutate the tele-

metry received from the Viking Landers on Mars.

i

I
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TECHNIQUE

NAME: VIKING TEST LANGUAGE (VTL)

SUMMARY: Viking Lander hardware, subsystem, and system integration and test

was performed by a computer based system, the System Test Equipment

(STE). The STE software design gave the Test Engineer access and control

over the testing process via a relatively simple test language. Test

sequences prepared by test engineers were carried out in two stages:

translation and checking of the near English sequence into an intermedi-

ate form, and subsequent interpretive execution by the STE computer.

APPLICATION CONSIDERATIONS: System/Subsystem test and evaluation requires

considerable on-the-spot flexibility. Preconceived test sequences while

adequate for fully understood and working hardware, can rarely cope with

special tests and malfunction isolation. Moreover, the test support

software had to be conceived, designed, built, and verified long before

flight versions of the hardware devices would be available. The total

volume of test sequences employed grew considerably over the final inte-

gration and test phases. Individual test sequences, written in a pro-

gramming language, and modified in response to a fluid testing environ-

ment would have presented an unmanageable software development problem.

RECOMMENDATION: User oriented languages, and test languages in particular,

are a proven concept. Martin Marietta has employed the concept on

several large projects over the past decade. The particular variations

employed on the Viking Project are deemed worthy of wider application.

These are: (1) a very simple language that is easy to learn and use

with confidence; and, (2) a tightly controlled database that contains

all the detailed configuration differences and details - all invoked

by device name in a specific test sequence.
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HISTORY: The Viking Test Language (VTL) instruction set was conceived and

finalized early in the program. This was necessary due to the cloas

tie-in between ground checkout hardware, system data base, and checkout

software. No new elements were required during the program. New

requirements in test were reflected in data base changes, ground computer

checkout software changes, and Flight Computer System Test and Checkout

Operation Program (STACOP) software changes. New capabilities were pro-

vided thru the use of the VTL such a3 being able to reset test time by

test sequence and the capability of calling from disk a set of pre-

established command uplinks by VTL. These capabilities provided timing

synchronization between Viking Flight Computer operations and ground

computer operations.

The VTL was utilized from the beginning of test. Buildup o" the

system test bed throughout all phases of integrated system testing pro-

ceded as follows:

a. System Test Bed - hardware, software, sequence debug and test

b. Proof test capsule testing (thermal VAC, VIB Acoustics, etc.)

c. EMC testing

d. Lander buildup and integrated system test

e. Plugs out testing

f. Flight compatibility testing

g. Lander orbiter interface tests

h. Launch pad tests

i. System test bed tests with PTC in support of cruise descent

and landed science evaluation operations.

DESCRIPTION: Test Laniuaxe Overview - The Viking Test Language (VTL) is a

high order computer language which gives the test engineer access and

control over the testing process. The Viking Lander and STE colmand

and monitoring operations were performed by test sequences constructed

from the VTL elements. These sequences resided in computer core during

on-line operations and were essential computer subroutines.

The test sequences written in the near-English symbology of the

VTL were keypunched into symbolic source card input to the computer's

off-line assembly/translation process. The output of the assembly/
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translation process was an expanded object file which ir turn was loaded

to the on-line operating disk. The sequence resided on disks until

called by the test operator for execution.

The test sequence (TS) is analogous to a book. It has a beginning,

an end, and in the middle there is a general theme. A test sequence is

written, reviewed, controlled and executed as an end-to-end operation.

The scope and length of a given TS is determined during the initial plan-

ning and integration activities, but is primarily a function of the test

task. The test sequence is called, initiated, and executed T!iole or in

part and stopped as required for manual test operations. The test opera-

tor controls the test via CRT/Keyboard and manual pushbutton controls.

A subset of the Viking test sequences was the 'abort' sequences.

The abort sequence is analogous to an "alterpate ending" for the story

that the normal test sequence has started.

The Abort Sequence is written using the same symbology and form as

a normal TS. The abort sequence is different only in the way it is

called into execution. The call statement is a default condition occur-

ring within the normal TS.

If, during test sequence execution, an abnormal status is encoun-

tered, and if the TS writer has chosen an Abort Sequence as a secondary

action, the normal sequence will immediately terminate and the on-line

software will call and begin executing the named Abort Sequence.

The Abort Sequence is the only real branching capability of the

VTL.

The test sequence consists of a sequence identifier and descriptor

(title) and a main body. The identifier is an alpha numeric number in

the order of 4 XOI-A which provides the calling and configuration con-

trol mechanism. The main body of the sequence contains the VTL compo-

nents required for performing the required rest function.

COMPONENTS OF THE LANGUAGE

Test Block - A Test Block (TB) is analogous to a paragraph in a TS.

As a general case a TB contains a single stimulus staterncnt. or a clost-ly

related set of stimuli, some time delay, and the necessary criteria

statements to provide the evaluation of ithe resultant responses.

The TB is assigned a number (T1INNNN) and a 32 character descriptor
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by the TS writer. The TB number serves to identify any displayed data

or criteria violation during TS on-line execution. The data message

contains the TB number relative to when the criteria was established

and the TB number in which the criteria was violated or requested for

display. This feature provides for quicker analysis by reminding the

analyst of the headings or original purpose of the test.

The TB 32 character descriptor also serves as an outline to the

writer of the TS and as an aid to the reviewer of the TS. This descrip-

tor appears in English form in TS translated listings and is displayed

during the on-line execution of a TS. The on-line automatic display

feature enables the operator to track the real time execution of the TS.

Alternate Action "STOPS" - If during execution of a TB, a criteria

violation is sensed for which the secondary verb "STOP" has been speci-

fied, sequence execution will stop at the end of that TB.

The test block is a sequence entry and exit point.

Prior to initiating a sequence in the Automatic Mode, "START ON"

and "STOP ON" points may be specified. These points are identified in

terms of TBs, i.e., SSB, TB01052, TB20510.

TEST LANGUAGE STATEMENT

A test statement is a line of unexpanded (VTL) source code. It

will generate one or more VTL elements during translation. The VTL

statement exists before translation to machine instructions and the VTL

element exists after translation. To the TS writer, the two terms are

almost interchangeable.

A test element is analogous to a single action in a conventional

handwritten test procedure, such as pressing a button, reading a meter,

etc. Some VTL statements result in single actions. A repeat statement

(REPT) is expanded by the translator into more than one element.

Two forms of Test Language Statement exists: the executable and

the non-executable. The executable VTL statement refers to its require-

ment to be acted upon during the translation process by the software

and being placed in an "object" form in the object sequence created.

The test language statement may take several forms but in general

will always consist of a verb, a noun, and an adjective. In addition,

the statement may contain time, either to initiate a timer or a time
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as to when the statement is to be executed. It may contain a command

to cause a display (CRT and/or line printer) or it may contain a sec-

ondary verb such as an "abort" sequence identifier or a 'STOP'. Certain

types of VTL statements will contain effectivity nomenclature which is

used during translation and loading to disk operations. The effectivity

function provided a capability to run a given sequence against one or

more vehicles where unique differences in instruments would call for

different commands to be executed. For example, camera gains and off-

sets.

STATEMENT ARGUMENTS

The VTL arguments are analogous to the noun, verb, adjective, etc.

used in normal sentence structure and will be explained in those terms.

VTL Test Element Format - The general form of the EXECUTABLE test

element/statement is shown below. Each modifier field is also defined.

Executable test elements perform actual test operations. The numbers

listed below are the column numbers on an input card or on a coding form.

TIME VERB NOUN ADJ EV TH D VERB 2

1- 9- 17- 25- 49- 52- 57-

TIME - The Time entry allows an element to be executed at some increase

of time. The time entry is optional. The first character must start

in Col. 1 and the entry must not exceed Col. 8.

I) Tn + i This is the general form for referencing an event

timer where n = 1, 2, 3, and i is an increment of milli-

seconds or seconds. The "+" means at the specified time

increment, execute this element. See WHEN element for

additional information.

2) Event timers provide relative timing between the various

executable elements within a test block.

3) Event timers are reset and started by a TI, T2, or T3 in

columns 49 and 50 of a VTL statement.

4) Event timer references must allow 5 milliseco nds for each

executable element.

5) Event timers can be reset and started as often as required

in a given test block.

6) Timing increments can be in milliseconds or minutes and seconds.
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VERB - Each executable test element statement requires a VTL primary

verb in this field beginning at Col. 9. The verb specifies the element

action, such as command a relay closure or establishing monitoring cri-

teria. The other element statement fields shown above provide fo: ele-

ment modifiers, as dictated by each verb and its sequence function.

NOUN - The nouns (beginning at Col. 17) declare the object of the primary

verb action and consist of identifiers for interface points, commands,

and measurements.

ADJECTIVE - The adjectives define the primary verb action; such as con-

dition, limits, values, and references. The adjective field starts at

Col. 25.

1) ON, OFF - self explanatory discrete conditions:

OPEN - don't care condition.

CLOSE - reverts to the condition established before the

last OPEN statement.

2) OPLIM - operating limits as separately defined for analog

voltage measurements: i.e., 23/32 VDC.

3) AMB - ambient condition: opposite ot OPLIM where measure-

ment is OFF/false, and also ambient temperature, pressure

type measurements.

4) LIMITS - For analog monitors, actual limits and engineering

units can be written on the card in the form lower/upper,

units. Both limits and units must be entered.

EVENT TIMER - Tn is the general form for reinitializing an event timer,

where n = 1, 2, 3, or 4. The event timer field starts in Col 49.

1) Timers specified in this element field are initialized to

begin timing after the primary action specified in the

element is complete.

2) Timers provide a maximum time of 99 minutes and 59 seconds.

3) Timers are reset by each test block and event time does not

carry across TB boundaries. A timer can be reinitialized

by its entry in this field on succeeding elements.

4) Refer to TIME field for event timer functions.

DATA DISPLAY - The D field, Col 52, provides the capability to display

data to the line printer and CRT. When used, the value of the NOUN is
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displayed.

1) In the case of a criteria violation the value of the noun shall

be automatically displayed by the on-line system whether or not

the test writer used display for the failed element.

2) L - display to the CRT.

C - display to the line printer and CRT.

VERB 2 - Secondary verbs allow for alternate actions in case of criteria

violation. These actions are only allowed for monitor functions i.e.,

DISPLAY, WHEN, ESTAB and CHECK elements.

I) GO TO - The GO TO secondary verb allows the test writer to

abort the present test sequence when the primary action

fails. The GO TO secondary verb is an implied GO TO inas-

much as the words GO TO are not written. The tent writer

simply writes the name of the sequence to which control is

to be transferred of the form PBNN-A (for Planned) GO TO

requires off-line translation and cannot be used as a

primary verb. Execution of the GO TO causes the on-line

interpreter to initiate lockout flags which prevent the

resumption of the test sequence. The GO TO sequence is

loaded for execution by the on-line system and provides all

hardware backout provisions. When the GO TO verb is exe-

cuted, its execution results in an immediate and complete

abort of the sequcnce and no return is possible, except

by recalling the sequence and specifying a "start on"

point.

2) ABORT - Same as "GO TO" sequence except as follows:

A. There is only one location in CPU memory for one ABORT

sequence. This means that special provisions must be made

by the on-line operator to load the correct ABORT sequence

for the normal test sequence which is to be running. On-

line control language will be used to load the ABORT.

B. The ABORT sequence when called by a test sequence

criteria violation, will not require access time delays

such as loading from the disk to the computer memory. By

having placed the ABORT sequence in memory it will be
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accessed and executed with the minimum time delay possible.

3) STOP - The STOP secondary verb allows the test writer to cause

the sequence to pause after execution of a display element or

to pause after completion of the test block when the primary

action fails. The sequence can be resumed and thus is not

aborted. STOP cannot be used as a primary verb and requires

translation by the off-line system. The STOP secondary verb

is wriLten STOP. If the STOP verb is executed, the test will

be discontinued after completion of the Test Block being exe-

cuted. At this point the test operator may request that a

Recovery Sequence be executed, or another TB selected as a

starting point, or the test can be continued from the point

at which it stopped by depressing the "P", then escape on the

CRT keyboard.

The general form of the NON-EXECUTABLE test element statement is

shown below with field definitions. Non-executable test elements com-

m~nd or control the off-line translator. Comments, sequence identifica-

tion, and RPPT, the repeat code name, and ENDR verbs are no.-executable

_elements.

IDENTITY ELEMENT TYPE MODIFIERS.- DATA, LISTS

1- 9- 17-

IDENTITY - A name or label which identifies data, listings or a

routine to the translator. An asterisk in Col 1 of

this field identifies comments.

ELEMENT TYPE - This field defines the element type (REPT, GROUP,

LIST, etc.) starting in Col 9.

MODIFIER - Data and listings are located in this field as neces-

sary for each identifier and verb, starting in Col 17.

DEFINITION OF VTL ELEMENTS

The BEGIN element marks the beginning of the first executable

statements in a test sequence. It is an executable element and requires

translation by the off-line system. When executed, the on-line interpre-

ter is reinitialized for a new test sequence and all flags, counters and

sequence timers are initialized. In addition a display is made to CRT

and line printer according to the on-line requirements. The BFGIN v,-rb
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does not require any modifiers. The Test Block or Critical Block ele-

ment must follow immediately after the BEGIN element.

The CHECK test element interrogates the value or state of any cur-

rently monitored parameter. It is an executable element and requires

translation by the off-line system. Execution of the CHECK element will

not change the status and criteria tables. It evaluates the parameter

with respect to the limits or conditinns specified in the adjective

field.

The DISPLAY element causes up to 40 characters to be displayed to

the LINE PRINTER and/or the CRT. The display area reserved on the CRT

screen for this type of display is one line long. The element does not

utilize an adjective or initiate a timer and the second verb is optional.

This form of the DISPLAY element specifies messages (not data) to be

displayed to the test operator on the CRT and line printer. It is an

executable element and requires translation by the off line system.

The ESTABLISH element is used to establish monitoring criteria on

discretes, discrete groups and analogs. The ESTABLISH test element

changes the status and criteria tables in the Monitor system for dis-

cretes, and analogs. It is an executable element and requires transla-

tion by the off line system. When executed by the on-line interpreter,

the criteria will remain as changed until another ESTABLISH element is

executed for the same monitor parameter. This is true even though the

seniuence has reached the End element. In all cases, if the adjective

used is OPEN, the secondary verb must be blank. If the adjective OPEN

is used, the adjective CLOSE may be used. CLOSE will restore the adjec-

tive state to that state which exists just preic:-%a to the OPEN state.

The WHEN element provides the capability to synchronize or pace

the test sequence based on external discrete imonitor occurrence. This

is accomplished by a tbr-e step execution of the element. Step ctae

"opens" 'he criteria or, the wronitor being addressed. Step two alerts

the systm to an expected change and the expected state of the discrete

monitor(s). Step three is completed when the discrete monitor(s)

change(s). Step three would also start event timers and displays if

these options were invoked. Step three would be accomplished immedi-

ately if the discrete monitor(s) was already .n the expected state.
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Failure of the element occurs when the time period specified-elapses

and the discrete does not change to the expected state. The-WHEN ele-

ment is an executable test element and requires translation by the off-

line system. All WHEN elements require use of the time modifier.

The END test element marks the end of a test sequence. It is an

executable element and requires translation by the off-line system.

When executed, the on-line interpreter displays and records completion

messages to the test operator. It also puts the on-line software into

the monitor mode. The END verb does not require any modifiers.

The SET element enables control of stimulus discretes and commands

to be implemented via hardware. It is an executable element and re-

quires translation by the off-line system.

The REPEAT element is a nonexecutable test element and is not part

of the translated object code. It serves as a translation control com-

mand only. It is used to define repeat blocks in the REPEAT input sec-

tion (before the Begin element) of the test sequence source input decks.

It is also used to identify where.in the sequence code the repeatable

code should be inserted (after the BEGIN element). Repeatable coding

features allow the test writer to reduce the burden of rewriting the

same or similar string of coding. These features provide the capability

to write a string of coding once and to give it a name. Whenever this

string is repeated the name of the coding string becomes the primary

verb. The translator will substitute the repeatable code for the name

at translation time. Repeat tests can be referenced for use as many

times as required in the body of the test sequence. If RCBs are not

needed, the Repeat input section is left out of the sequence.

The ENDR element terminates a repeat code block. It is not exe-

cutable and is not included as part of the translated object output.

It serves as a source input control card only and as such will appear

as part of the source listing output only. The ENDR verb does not

require any modifiers.

A Sequence ID (SID) card is used to identify the sequence to be

translated. The SID card must always be the first card of each Test

Sequence. Translation will not be performed without the SID card.
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The sequence descripcor appears at the top of each listing page and is

displayed on the CRT during on-line execution of the sequence.

Test Block Numbers (MN) are provided to allow sequence writers

to identify blocks of test elements which perform modular test func-

tions. TBN is used during execution tv inform the test operator of the

test block to be executed in the test sequence. Test Block Numbers

will be followed by a descriptive text identifying the test block which

is to be executed. During translation the Test Block Number and its

corresponding text are formulatei into a special display command element.

When executed by the on-line system, the TBN is displayed on the CRT

and line printer.

QUALITATIVE RESULTS: Utilization of a relative simple test language for

test control of the Viking Lander system proved invaluable all during

the program, expecially in the final stages. The relatively easy "tie-

in" between test data results (line-printer printouts) and the test

sequence provided hardware and science oriented engineets (not neces-

sarily with any computer software background) the capabil..ty of under-

standirg test aspects and test results. The "QUICK-LOOK" of data re-

sults were enhanced to a g,.eat degree.

The positive aspects of the VTL as verified during Viking test
are :

1. Design and control of tests by hardware oriented engineers;

2. Test sequence/procedure English Form lent itself to checking

by e:gineers and checkers not software oriented;

3. Capb,'ity for rapid tirnaround of test sequences for mal-

func.t i ,, isolation, sequence updates and alternate mode

testing;

4. Capability for entry points for r~ijning a sequen,:e in parts

or in jumping from parts of one sequence to parts of another

sequence;

5. Capability for changing abort sequences easily;
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6. Capability for changing data acquisition modes quickly and

easily (significant due to the many TM formats and data rates

of Viking);

7. Easy change of software decommunication of TM data compatible

with 6 above;

8. Easy tie-in between test data results and test sequences;

9. Follow-on testing with reduced manpower;

10. Versatility of VTL with the other system components for run-

ning a great variety of tests;

11. Capability for sectionalized testing.

The difficulties encountered with the VTL were more related to the

implementation of the VTL concept rather than in the language itself.

These difficulties probably were no more ir less than would be encoun-

tered with any new system introduced to engineering and test personnel.

It was found through trial and error, that a test sequence writer
must have the same basic logic talents that a software or hardware de-

signer has and should be system oriented. To write a Viking test se-

quence, required knowledge of the test article (operation and inter-

faces), the system test equipment operational setups and man-machine

interfaces, the software operational interfaces, the system test and

checkout operational programs, the data base and the test language plus

the other associated disciplines such as test system simulator, con-

figuration control etc.

Probably the most significant item in the use of a VTL language

for a system as complex as Viking is the selection of the test sequence

writers/designers.

QUANTITATIVE IMPACT: The responsibilities of the personnel who developed

the Viking Test Language sequences differed relative to the test stage.

The responsibilities, and approximate effort for each are as follows:

1. Test sequence design and generation - 50%

2. On-line test support for sequence debug - 10%

3. On-line test support - 20

4. Data review - 101
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5. Working anomolies 3%

6. Identifying data file changes - 2%

7. Inputs for software changes - 2.

8. Procedure development - 3.

The time required for application program test sequence design de-

creased exponentially as the Viking test program progressed. This can

be attributed to the human learning process plus the establishment of

a data bank of sequences which could be drawn upon for major or minor

portions of new test sequences. Early in the program a 3000 line se-

quence took two to three weeks to develop. Later on a similar sequence

typically could be generated in 8 hours. Completely new sequences still

required approximately 100 manhours to develop.

During Viking system test bed operations in support of cruise and

Landed science few sequences took more than 8 hours to develop. More

time was spent in establishing requirements and writing test procedures.

A total of 1565 test sequences, containing 974144 lines, were gen-

erated for Viking. Of these 332 exceeded 1000 lines and 88 sequences

exceeded 3000 lines.

The development of the Viking Test Language translation software

subsystem took an effort of 52 manmonths to generate 11486 lines of

code.
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TECHNIQUE

NAME: TEST SYSTEM SIMULATOR (TSS)

SUMMARY: The Test Sy& tem Simulator (TSS) was conceived and developed to pro-

vide the capability to debug the Viking automated test sequerces prior

to using them to actually test hardware. The TSS is a general purpose

data driven software simulator that operates in the Honeywell H-632

computer system. No hardware other than the computer set and its stan-

dard peripherals is required for simulation. The data required and

simulation statements became an integral part of the master data file

used to support translation of automated test sequences and computer

controlled testing.

APPLICATION CONSIDERATIONS: Rationale for developing the TSS was influenced

by the necessity to have test sequences designed and ready prior to

hardware availability. Factors considered were: adequate debug of se-

quences could preclude hardware damage; sequence timing problems could

be rebolved; possible hardware problems could be detected early; se-

quence debug could save many manhours of time in translation; and the

simulation would increase sequence designers understanding of the Lander

system.

RECOMMENDATION: The test system simulator technique as used on the Viking

Project is a t,"-en concept. It provided a valuable tool in debugging

automated test sequences for a relatively low cost. A simulator of this

design can be used to support a parent project in sequence and procedure

debug, sequence of events verification, failure modes and effects analy-

sis, power profile, hardware/software design verification, and crew

training and certification. The use of the simulator technique will

not eliminate the need for bread boards, prototypes or test beds.
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11ISTORY: The Viking Test System Simulator was tormuiat-d in early 1972. It

was recognized that a simulator could be of decided value; however, due

to the pressures on the program, little time or mone-: was available for

accomplishing the task. The basic design philosoph', of the TSS, simply

stated, was to provide a mechanism whereby design and test engineers

could incrementally add bits and pieces ot data concerning any part of

the test or mission hardware, software or operational considerations,

to the computer raem.ry bank. The computer would integrate all of the

data into a single unified model, and use this model to assist the

engineers as much as possible throughout the program. The first cut

at the approach was to provide a simple functional simulator which in-

cluded simulatted vehicle discrete connand and discrete responses with

appropriate timing. Additional logic was added thru data base simula-

tor inputs as time permitted a'd as Lander component and science instru-

ment final designs were completed. The power and pyro subsystem se-

quences were the first sequences run thru the simulator. With this

came the task of debugging the simulator software and simulator logic

statements in the data base along with the sequences. Some debug of

software and simulation logic was required when new logic was added to

the data base. As the power, pyro, vibration -coustic, pyro shock and

initial mission sequence of events were designed, they were debugged by

the simulator. The simulator proved effective in this respect.

At this point in the program many parallel sequence design efforts

were ire progress or beginning to develop, such as combined system tests

(vehicle health checks for the proof test capsule during thermal vacuum

tests), electromagnetic compatibility test, science-end-to-end evalu.-

tion tests, etc. Manpower to continue logic development and training

time was limited. Logic for meteorology and x-ray was developed as

time permitted with additional work being performed in other system

areas. The above sequence types were run against the simulator with

respect to power up, pyro, and basic discrete logic functions.

Beyond the discrete stimulus and response stages, it became in-

creasingly difficult to provide the simulator logic.
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The advanced design of the System Test and Checkout Program

(STACOP) which was the test software loaded in the flight computer made

the testing more autonomous and less dependent upon commands initiated

by STE. Com.iands were initiated by table look up in the flight com-

puter or by macro programs.

The Gas Chromatograph Mass Spectrometer and biology instruments

were driven by internal programs, in themselves, as commanded by single

initiate commands.

Each of the science instruments had many modes of operation which

changed data response timing.

Testing evolved to the use of actual flight software for system

test where all sequencing of events were initiated by the loaded program.

By the end of the Viking sequence generation, approximately 50% of

the vehicle logic and about 95% of the supporting hardware had been

simulated.

DESCRIPTION: The test system simulator (TSS) is a general purpose, data

driven simulator that runs in the Honeywell H-632 computer system. It

can simulate the operation of any system where the relationship between

the elements of the system can be described by a logical expression.

No hardware other than the computer and its standard peripherals are

required for simulation. The simulation is time and resource oriented

in that a response to a stimuli may occur immediately or at a specified

time after the pre-roquisite conditions for the response are established.

When a condition exists thav supplies or depletes a resource, such as

electrical power, the composite rate is calculated and the total is in-

tegrated as a function of time. When the system being simulated in-

cludes a computer, the programming of the computer is simulated by ap-

propriate entries in the data base.

The TSS consists of the three basics: the input, the operating

system, and the output.

The input stimuli, environment definition, and criteria r re input

to the simulator as a series of time oriented control statements (pro-

cedures) from mass storage (or in the form of a card deck). These may

be input in parallel, the control statements from each being inter-

leaved as a function of time.
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The logic for the TSS resides as a subset of the Viking STE data

base. The logic is designed to provide the TSS with the 'transfer

function' of the component, sub-system, or system. The logic consists

of two general types. The first is a direct representation of hardware

circuits. The second is 'functional' logic. Each type has its own spe-

cial considerations. The logical unit in the TSS is the 'terminal'.

Terminals are classified in several ways. The most general distinction

is between status and message terminals. A status terminal is used to

'remember' the state of a hardware point or a software flag or buffer.

All status terminals have an entry in the VIKING information system

status and criteria table (SACT).

Messages are not true terminals. They are stored in mass memory

and accessed when 'SET' by the test language or the on-line control

language. A message may be a pulse or a digital word. A special class

of message is the delay type. A delay terminal is used to cause an

event to occur at a pre-determined time after a specific set of condi-

tions exist. All delays are momentary. Most messages do not have an

entry in the SACT. A SACT entry is required if the message is generated

automatically.

All TSS logic is expressed as 'AND' functions or 'OR' functions.

'Nesting' of functions is not allowed; the equivalent of the nesting

function is implemented thru the use of sub-terminals. 'NOT' functions

are available and timing is accomplished thru the use of the 'delay'

terminals.

TSS peculiar terminals were created, as required, to provide a

complete model of VLC or STE functions. The I D symbols were structured

so as to position the IPDS in the appropriate part of the VAIF (adjacent

to related IPS in the real system).

The hardware logic (power buses, relays, circuit breakers, switches,

push buttons etc), are directly represented by TSS terminals. A mag-

netic latching relay is represented by a 'memory' terminal, A command

may be a monentary command, or a continuous discrete stimulus. A normal

relay may be a continuous terminal or a memory terminal (if it was

'latched' by another terminal). The capacity of the TSS, with existing
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computer memory is approximately 10000 terminals. This capacity could

be significantly increased with a nominal software effort without an

increase in computer hardware.

Much of the logic is functional in nature. A command may establish

a mode directly without any representation of the individual circuit

elements involved in the mode. The same is true of most software logic

in that individual bits and instructions are not represented.

A powerful mechanism is the inclusion of configuration items in

the logic. This means that the configuration could be changed on-line.

Special Interface data points are assigned for this application.

The operating system of TSS includes three major software subsys-

tems; the sequence expander (TSSE), the binary file management system

(TSSB), and the run-time programs (TSSR). In addition, various input/

output, scanning and conversion subroutines are used.

The sequence expander performs a function equivalent to the VTL

translator in the real system. The TSSB is the simulation language

'compiler'. It reads the source statements (VAIF DATA CARDS) and per-

forms the conversions, table construction, and linkages required to

construct the model of the system to be simulated. The data for the

specific model desired is selected based on the load effectivity state-

ment. The first function of the TSSB is to read the load statement to

set up the selection process. After a card has been selected, control

is transferred to the appropriate card processor. The 'model' construc-

ted by the TSSB is a combination of the data stored in the SACT and in

the Viking Binary Interface file.

The load algorithm controlling the data selection process is writ-

ten specifically to satisfy the requirements of the Viking program.

The simulator run time software utilizes the renl system status

and criteria table which is a key element. All of the run-time routines

use the SACT in the same way. The run time software includes the run

time executive, which provides an environment wherein the tasks that

comprise the TSS run-time simulator can be executed according to their

respective states and priorities. The six priority tasks are the Timing

System Transmitter, Dynamic Status Change, Dynamic Response Simulation,
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Test Language Processor, Control Language Processor and 'riming System

completion. Since the simulator runs according to pseudo-time rather

than real time, there is no need to respond to interrupts. Hence, all

processing can proceed at one CP level.

The timing system tran,!mitter (TCB) task resides at a priority

that is higher than all tasks which process jobs that are required to

be performed at a specific pseudo-time. Because of its high priority,

it is able to transmit jobs to the executive without interruption. It

then deactivates, allowing tasks of lower priority to execute the jobs

which have been held for them.

The Dynamic Status Changing (DSC) task processes all changes-of-

status that occur to any Status and Criteria Table entry. The Dynamic

Status Changing Task is activated by any task with a properly encoded

job word in the TCB.

When the task gets control a test is first made to determine if

this is a bits-per-second return. If so, then bits are added to the

specific bit buffer and the task deactivates. If it is not a BPS re-

turn, then a test is made to determine whether the new status is dif-

ferent than the current status. If no change is required, this task

deactivates.

If a change is required, a test is made to see if the Status and

Criteria Table (SCT) entry is failed in its current status. If so, a

message is formatted and output. If the SCT entry is not failed, a

check is made to see that it has not already changed a, the current

pseudo-time. Then its status is changed and corresponding power level

changes are made.

The Dynamic Response Simulation Task (DRS) task simulates the re-

sponses to all change-of-status that occur to any Status and Criteria

Table entry or command. The DRS task is activated only by the Timing

System Completion Task when it has determined that the pseudo-time must

be changed.

When this task is activated, one pass is made over the Status and

Criteria Table, searching for those entries which have been marked as

"Affected" by change of status or command. When such a SCT entry is
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found, its proper status is computed based upon the logic equations in

the Binary Interface Data Set (BIDS). This new status is compared with

the current status; if they are the same then no change-of-status is

required so the next SuT entries are checked. If the new status and

current status differ then the new status is sent to the Dynamic Status

Change Task, which resides at a higher priority, for final processing.

If the SCT entry is of the "Delayed" type, the job to the DSC task will

be held in the Hold-Chain until the proper pseudo time.

When the DSC task makes the change of status, it may also mark

additional SCT entries as "Affected", and will again set the response-

simulation-required flag. After completing one pass over the SCT, the

flag is tested to see if further responses are required. If so, another

pass is made over the SCT. This process is repeated until all responses

are complete for the current pseudo-time, then this task deactivates.

The Test Language Processor Task processes Test Language Sequences

from the disk as specified by the Control Language Processor. When

this task gets control the first thing it checks is to see if an exter-

nal wait is set so that control cards can be read and processed by the

CLP in parallel with the sequence. If it is time to honor the wait,

control is passed to the Control Language Processor task. Otherwise,

updating of flags and timers in the current sequence buffer is performed

and the time field on all executable elements is processed to check if

a delay is required. If no delay is required, the element is formatted

and displayed.

The proper processor for the current element gains control now and

processes that element. On return any errors found by the processor

are flagged and displayed. An update to the sequence pointer is done

so that the next element will be processed when this task again gets

control. If an error has occurred while processing the current element,

control is given to the Control Language Processor so that the operator

can decide what corrective action needs to be taken. Otherwise a delay

of 5 milliseconds pseudo time is performed by suspending the task for

this amount of time.

The Control Language Processor Task processes all control state-

ments for controlling the simulation run. The control statements are
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divided into four basic categocies: sequence control, statements that

are equivalent to test language statements and general control state-

ments including statements beyond the test language capabilities. The

control statements belonging 4to each category are:

Sequence Control - CALL, EXEC, MODE, PROCEED, RESTART, RESUME, RUN,

START ON, STOP ON, TEST.

Test Language Equivalent - ACQUIRE, ESTAB, SET

General Control - CLEAR, CARD, DUMP, FAIL KEY, INACTIVE, MOD, RE-

MOVE, RESTORE, SAVE, SETDEL, SETMAX, STOP, TIM, TST 1 T,

WAIT

Display - CANCEL, C PRINT, DISPLAY, GROUP, STATUS, VIEW

When the Control Language Processor Task is activated it inputs a

control statement from the card reader or the CRT keyboard, outputs the

control statement to the CRT and line printer. If the statement is

"XEC, PROCEED, RESTART, RUN, or RESUME the necessary processing is per-

formed followed by a call to the Executive to deactivate the CLP task

and activate the TLP task. If the control statement is not one of the

above, the necessary processing for that control statement is performed

and a new control statement is input.

The Timing System Completion Task resides at a priority that is

lower than all tasks which process jobs that are required to be per-

formed at a specific pseudo-time. Hence, control falls to this task

only when all jobs for the current pseudo-tJme have been processed. The

main function of the Timing System Completion Task 1.a o make sure that

all jobs for the current pseudo-time have completed and then advance

the pseudo-time clock. When all jobs for the new pseudo-time are com-

plete, control again falls to this task. Hence, this task never de-

activates.

The Man-Machine interface is an important part of the operating

system. It is essentially the same during simulation as it is during

on-line operation. Input is thru sequence tapes, CRT Keyboard, and

card reader. Output is CRT display and line printer tabulation. Hard-

ware functions such as circuit breakers, pushbuttons, connection of

205



test equipment, etc., are accomplished by control statements (since no

project hardware, other than computer hardware is involved in the

simulation).

The TSS operator has a 'Hands on' capability for total control of

the system during any point in simulator operation. Since the TSS

operates in 'pseudo-time', and controls this time, the operator may

'freeze' the system while he evaluates the data to determine a course

of action. If alternate courses of action appear appropriate, he may

save the status of the total system. After each alternate is tried,

the system may be restored to the saved point in preparation for the

next alternate.

The basic time increment is the millisecond. The on-line system

stops the clock while it accomplishes all the operations necessary at

that time. The time is then advanced to the next time in the timing

system 'delay line'. The next time may be a VTL element, a delayed

response, an automatic stimulus, or the expiration of the time delay

specified by a wait command.

On-line error and special messages provide the operator with infor-

mation on the functioning of the TSS, the operator/software interface,

and interaction of the "-arious logic terminals. They consist of eight

characters, and are displayed in the first field of the CRT data lines,

and the fifth field of the kine printer display.

Simulator output is in the form of li'ie printer tabulation and

redl-time cathode ray tube display. The level of detail to be displayed

may be controlled by the operator. Several mechanisms exist to specify

critical functions to be 'high-lighted' on both the line printer and

CRT. All output is in engineering terms and all changes are in the

form of a measurement or terminal number with a 40 character, English

language descriptor.

QUALIiATI. RESULTS: The data that drives the TSS is compiled using a simu-

lation language so simple in structure and use that it is hardly recog-

nizable as a new language. The simulation statements become an integral

part of the master file used to support translation of automated test

sequences and computer testing and data monitoring and display.
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Three major characteristics of the TSS distinguish it from other

forms of computer modeling techniques. These are its commonality with

the system being simulated, the universality of its capability to sup-

port the parent project and the ability to operate on incomplete data.

An important benefit is derived from using the TSS to debug Viking

test sequences in that some sequence errors are detected that do not

show up as errors when the sequence is run against actual hardware.

Some of these errors may result in overstressing mission hardware in a

manner that is not visible, even during post test data processing.

As the mission rardware and software is exercised in its various

configurations and modet, the adequacy of the design is established.

The TSS does not elminate the requirement for integrated hardwarc/

software validation, but it can provide early visibility and can de-

tect some types of design inadequacy.

The commonality of man-maciine interface between TSS operation,

and operation with the real syst,.n, makes the TSS an effective training

tool. Training may be accomplished concurrent with sequence debug, with

no use of, or risk to mission hardware. Selected failures can be simu-

lated to provide a realistic certification environment.

As the data file is loaded into mass memory, the TSS software con-

structs a 'model' using whatever data is available from the file. Sev-

eral pre-run and 'on-line' techniques exist to bridge the gaps in the

logic until complete data is available. The significant point is that

the TSS ma) be used very early In any new project.

The Test System Simulator does not replace intelligence sequence

design. There is no way for it to d,termine what tests or commands

should have been run'or put in the sequence without unnecessarily com-

plicating the logic.

Viking testing both at KSC and in Denver's system test bed per-

mitted jumping from test block to test block in different sequences.

The basic TSS did not catch the synergistic effects resulting from this

type of operation. However, sufficient experience had been accumulated

by then so that little risk existed.
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QUANTITATIVE IMPACT: The cost to develop the TSS was considerably reduced

by taking advantage of existing STE software. That portion unique to

the TSS was developed in 9 manmonths. To develop all of the software

from scratch would probably have required a one to two man year level

of effort.

Fourteen manmonths were consumed it generatini inputs. running

sequences and reviewing outputs. Computer resources required up to

30 minutes set up time per sequence, processing 30 to 100 sequence lines

per minute. Approximately 5 percent of the 9?4,144 Viking test sequence

lines were processed by the simulator.
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TECHNIQUE

NAME: FLIGHT SYSTEMS TEST AND CHECKOUT PROGRAM (STACOP)

SUMMARY: The Viking Lander hardware was configured such that th'e only feasi-

ble communication and control paths to on-board subsystems and science

experiments were through the Flight Computer and Telemetry Systems them-

selves. A special computer program (STACOP) was written for the onboard

compt'ter to facilitate the extensive checkout operations required for

system integration, test, and prelaunch operations.

APPLICATION CONSIDERATIONS: Since the on-board equipment was largely con-

trolled by the on-board computer, there was no need to complicate in-

terfaces by having separate STE connections with all devices and sub-

systems. Several operational pathz existed to the flight computer

(GCSC) from which the desired sequencing and control could be accom-

plished. Capabilities provided via STACOP included: simple one-by-one

command thruput to n specified device, and return of status words;

stored list of commands to be issued to specified devices at specified

time intervals; accommodation of individual computer/device interaction

for selected subsystems; management of several subsystem interactions

where thruput/response activities could not provide timely and coordina-

ted combined testing operations. The first three general capabilities

were originally implemented. The fourth was added later in the develop-

ment as more complex system testing rqquirements were identified.

RECOMENDATION: STACOP provided the needed mechanism to perform required

testing via the on-board computer. It was based upon the existing GCSC

operating program services so that relatively little new code was needed.

Careful consideration must be given to possible timing and interaction

requirements as part of complete system checkout operations. Delays

associated with uplink commanding, STACOP interpretation, on-board com-

manding telemetry return, and STE checking are too cumbersome to accom-

modate realistic interaction of several on-board subsystems throughout

system level exercises.
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HISTORY: The STE was developed to test the Viking Lander hardware component

subsystems. Since the Guidance, Control and Sequencing Computer (GCSC)

could access and monitor these subsystems directly via I/O, interrupt

and discrete registers, it was natural to consider developing a general

purpose test program that could execute in the GCSC under control of

the STE. In that way the STE could exercise sequences that would test

the hardware interfaces between the GCSC and the Lander subsystems. The

Viking Systems Test and Checkout Program (STACOP) was defined to meet

this requirement.

It was envisioned that STACOP and Flight software could be com-

pletely checked out and verified using the Standard IC-7000 GCSC emula-

tor and that no significant problems would be encountered when the soft-

ware was loaded into the actual Lander GCSC. This proved to be overly

optimistic, since the very first time that a GCSC load was attempted

via the STE, the attempt failed and the load was not realized. GCSC

test support equipment (TSE) was made available on a temporary basis to

resolve this problem. The permanent solution was to develop a Computer

Control and Display Unit (CCDU), of which three were produced.

The CCDU was connected directly to the Lander GCSC by means of

cables routed through the bottom of the Lander equipment bay. The CCDU

was used to monitor the STACOP program during tests that the lander

bottom plate was not required to be installed. During tests in which

the plate was installed, GCSC visibility was reduced to merely a power

on/power off prediction. A GCSC memory readout function was added to

STACOP to provide greater trouble shooting capability when the CCDU was

not available.

STACOP was used during Lander integration, subsystem verification,

and pre-launch checkout for two and on-half ycars prior to the Viking

launches. It was a general purpose test program in the sense that it

was not a canned sequence of pre-programmed events which drove the

Lander through a rigid series of operations.

DESCRIPTION: The System Test and Checkout Program (STACOP) was operated in

the Guidpnce, Control and Sequencing Computer (GCSC) in a Viking Lander
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Capsule configuration which included an interface with the System Test

Equipment (STE) Honeywell 632 computer. A modified version of the His-

sion Executive of the Viking Flight Program was employed to perform

input/output processing, scheduling and interrupt processing. The exe-

cutive acted as a resident Operating System for the GCSC with STACOP

being a collection of functions to be performed under direction of the

STE and using the services of the executive.

The STACOP functions consisted of an initialization program, a con-

troller program, an external interr'upt processor, a discrete input regi-

ster monitor, a telemetry preraa, a priority interrupt processor, a

command storage common routine, the Honeywell GCSC self-test program,

a command processor, an output subroutine, and a terminate STACOP com-

mon routine.

The STACOP functions were controlled by the STE via directives

transmitted to the GCSC through a STE/GCSC interface. The directives

contained information specific to individual functions and included

processing requests to schedule ur terminate stored sub-programs, input

or output serial or guidance and control data, read or issue discretes,

store data into memory, and downlink memory data. The STACOP program

could communicate with the STE by transmitting downlink messages via

the STE/GCSC interface.

The STACOP program was initialized following GCSC power-on. During

operations, STACOP would process priority interrupts, external inter-

rupts and status changes obtained by monitoring a discrete register.

These events would occur during the normal performance of the various

Viking Lander hardware subsystems. In response to the STE Data Ready

external interrupt, STACOP would receive and process directives from

the STE. Thus the input parameters received by the STACOP program

were interrupts, discretes and uplink directives. The output parameters

of the STACOP program were commands and data issued to the VL hardware

subsystems and STE downlink messages.

The STACOP program and data consisted of 7724 GCSC memory words.

The program loader was 139 words. The executive, including the GCSC

;elf-test program, was 4522 words. No flight software other than that

mentioned herein operated in the GCSC when STACOP was run.
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QUALITATIVE RESULTS: STACOP provided a very flexible means of controlling

Lander operations. Test Sequences, written in the easy-to-use Viking

Test Language, were translated by STE into "Directives" which were then

uplinked to STACOP for processing. Hundreds of test sequences were used

during Viking Lander development. Some tests were very simple and

focused upon only one lander component, while other tests were designed

to test many components simultaneously. An important advantage of this

philosophy of testing is the Engineer involved with the development of

a particular Lander component could also be intimately involved in the

testing of that component without having to be well versed in the area

of computers and software. Also, during Lander integration, testing -

could proceed even though many of the Lander components were not yet

installed.

STACOP served as a test-bed for Flight and Flight-like programs.

The STACOP program consisted of several actual Viking Flight Program

modules including the Executive Program with its Interrupt Processor,

Input/Output Processor and Task Scheduler, the GCSC Self-Test (Diagnos-

tic) Program, and the Telemetry Program. Other programs within STACOP

while not being actual Flight Program modules, were written following

the same programing philosophies, techniques, limitations, and con-

straints as those used to develop the Flight Program. In this way,

many thousands of hours of execution time had already been logged by

the time the Viking Flight Program was first loaded into a real GCSC.

It should be emphasized that visibility into a system central

computer, like the GCSC, provides much more than just a programmer tool

to monitor software performance. It can also provide visibility into

the performance of other components apd even the entire system under

actual operating conditions. If the CCDU would have been .vailable

during all Viking Lander testing, some software problems, hardware pro-

blems and other problems which, with limited visibility appeared to be

software or computer problems, could have been idetitified and corrected

sooner, resulting in less down time and less risk of equipment damage.
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QUANTITATIVE IMPACT: The original STACOP program was developed with a one

man year effort, largely because many functions were available from

Flight code. Thereafter, an additional man year development effort

was required to handle new requirements and correct errors.
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TECHNIQUE

NAME: SCIENCE INSTRUMENT PERFORMANCE VERIFICATION

SUMMARY: The science instrument data recorded during the STE checkout and

verification testing of the Viking Lander subsystems were dumped to mag-

netic tape. This magnetic tape was then used as input to large scale

computer systems to provide realistic test data for the development of

the science instrument Mission Operational Software System analysis pro-

grams, which in turn provided verification of science Flight Article

subsystem instrument performance.

APPLICATION CONSIDERATIONS: During Post-test analysis the STE was required

to analyze and verify the performance of the Viking Lander science in-

strument subsystems. The Honeywell 632 Computer Set used by the STE

could not compile the FORTRAN science instrument analysis programs. In

addition, no realistic data were available to support the development

of the science instrument analysis programs. Therefore, the technique

of taking the raw data gathered by the STE to the science cognizant

engineers for analysis offered a cost effective means to resolve both

of these problems.

RECOMMENDATION: The technique greatly aided two areas of Viking software.

It helped the STE area by providing evaluation of the recorded science

instrument performance data, and it provided realistic, rather than

hand generated, test data to the Viking Flight Team science engineers.

The technique is applicable to any project developing both vehicle

checkout systems and operational support systems.
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HISTORY: No formal requirements were generated for the STE post-test soft-

ware subsystem during the early development phase. However, at that

time plans were formulated to compile the developmental versions of the

Mission Operational science analysis programs on the Honeywell H-632

computer system. Ir that way the programs could be used to analyze the

performance of the Viking Lander science instruments.

No more consideration was given to this subject until late in the

STE software system development period when work finally began in earnest

to develop the post-test subsystem. At that time the X-ray fluorescence

science analysis program, ICAN, was converted to run on the Honeywell

computer. It was then discovered that the FORTRAN compiler available

on the Honeywell system, which was an unfinished, one-pass compiler

with 45 open hooks, was incapable of producing executable code. In

addition, no floating point hardware or software capabilities existed.

The options available to carry out the original plan were therefore

limited to developing a FORTRAN compiler that would work, or writing

a floating point software function and develop assembly language ver-

sions of the science analysis programs.

The programmers that were developing the STE post-test software

subsystem suggested that a better approach would be to develop a capa-

bility to allow the science instrument performance data gathered in the

STE to be made available to the science analysis programs that were

operational on a CDC 6500 computer set. This met opposition from two

sources. The STE Software Chief opposed the concept, believing that

the STE would lose control over the process. The Viking Flight Team

Lander science team leader took the position that it was an additional

resource consuming task done purely to support the STE and of no value

to the scierce team. Resolution of the problem was further compounded

by the fact that two separate directorates were involved, and no sys-

tem integration team existed that could have forced a resolution.

The result was that the problem was resolved at the worker's level

behind management's back and without management approval. The science

cognizant engineers supplied the STE programmers with the necessary
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requirements to develop the technique, and the STE programmers did the

rest. Once it became a fait accompli, it was reluctantly accepted by

management. Eventually it became the approved method of validating

science instrument performance.

DESCRIPTION: The requirements to accomplish this technique were:

(1) to record on the STE system all science instrument data dur-

ing checkout tests;

(2) record this data on magnetic tape by instrument; and

(3) process the magnetic tape to produce data files in a format

acceptable to the various Viking Flight Team science programs.

The following discussion describes how each requirement was met.

The data recording requirement on the STE was specified in the STE

Software Requirements Document, and had been developed before the post-

test processing problem arose. However, telemetry data were recorded

in a serial manner as they occurred which resulted in all types of data

(e.g., science, engineering) being interspersed on the recording media.

The recording media was the Operational Log Tape (OLT) which was always

on-line during Lander System. The OLT could span over several reels

during a lengthy test.

Given that the data were recorded on the OLT, the problem was to

strip a desired data type from the tape and produce files containing

only one data type. The Viking STE Post-Test System had the capability

to strip data of a specific type from the OLT and place it in a disk

file. This satisfied the first requirement. After the data were in a

file on the disk a systems utility (DISKS) was used to write the data

on to magnetic tape. This satisfied the second requirement.

In order to process the magnetic tape written by DISKS some soft-

ware had to be developed for the large scale CDC 6500 computer. This

software had to be prugrammed to read the tape, recognize the data

type (e.g. seismometry, X-ray, etc.), and construct an input file Ihat

the science analysis program could process.
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The file formatting software tnat was generated was a FORTRAN pro-

gram that incorporated available CDC system supplied library routines

to perform the bit manipulation. It worked out well and satisfied the

requirement.

QUALITATIVE RESULTS: The primary benefits derived from this technique were
~as follows:

1. The verification of science instrument performance in the

STE environment was accomplished.

2. Realistic data were provided for the development of the science

analysis programs. Without using this technique, the Lander

science team would have had to hand generate test data,

greatly increasing the chances for error.

3. Programming time and effort were saved in trying to find a

method to process science data in the STE.

4. Coordination was established between the ground testing of the

flight articles and the Viking Flight Team science members.

The serendipitous fallouts realized by using the technique were

far more interesting and proved to be of value to the science team.

The first of these fallouts was the discovery that some of the for-

mats for science program files were not as documented (e.g. time words,

ID bits, data start locations, block sizes, etc.).

Next it was discovered that the algorithms developed for the seis-

mometry analysis program were wrong. This was verified by the scientists

who had developed the algorithms. The impact of not discovering this

until integration would have been much more costly to correct.

Finally, when the uplink/downlink Viking Lander science sequence

tests were conducted, the science cognizant engineers were able to pro-

cess the downlink telemetry in Denver. Then when the same telemetry

data passed through the Mission Operational Software System and was pro-

cessed by the science analysis programs at JPL, they were able to make

direct comparisons of printouts to verify that the system was operating

correctly.
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QUANTITATIVE IMPACT: Because the technique was developed in a clandestine

manner, it cost very little to implement. No documentation or formal

testing were required. Implementation of the technique required four

man months and three hours of CDC computer time. These costs are very

economical, considering that the alternatives were to write a new

FORTRAN compiler or write all of the science analysis programs in assem-

bly language.

When the sequence tests were first run at JPL the science engineers

were able to immediately detect that the answers were wrong, which re-

duced the effort required to locate the error sources.

Finally, Viking experience was that programs that were tested with

hand-generated data typically failed when realistic data became avail-

able. This phenomena did not occur with the science analysis programs.

The net savings to the project by using this technique can therefore

be estimated at 5 to 10 man months.
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TECHNIQUE

NAME: VIKING TEST SEQUENCE GENERATION

SUMMARY: Viking Test Sequences written by test engineers were prepared using

two basic methods. They could be written on Viking Test Language (VTL)

coding forms, key punched on 80 column cards, and then input into the

STE pre-test file management system by a card reader. The second method

was to generate them by use of the MARTIN-DIGITAT computer system and

TOPS programs, which consisted of a CRT/Keyboard driven on-line batch

computer system that prov-aed for file creation, editing and file dump

to tape.

APPLICATION CONSIDERATIONS: During later stages of the Viking program, the

second method of test sequence generation was used almost exclusively.

It was found that the keyboard/CRT editing capability provided for a

much greater flexibility for update, modification, and merge of sequence

elements. Sequence generation and modification time could be reduced

from the keypunched card method on the order of eight to one. In addi-

tion, the CRT/Keyboard driven computer system contained sub-programs

that were aids to sequence generation. Foremost of these were a diag-

nostic program that permitted a quick check of sequence element noun/

verb/adjective compatibility, sequence timing and test block numbering.

The program provided diagnostic messages to the sequence designer for

correction iterations. Another sub-routine provided for test block

renumbering. The CRT/Keyboard driven capability was preferred by se-

quence designers from a human engineering point of view.

RECOMMENDATION: It is recommended that a computer file generation and edit-

ing system be provided for generating application programs (test se-

quences) for any system comparable in complexity to Viking.
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HISTORY: The use of the computer file editing system for sequence prepara-

tion evolved naturally from other usages. These usages were system

statusing and special purpose programs which could produce listings of

Direct Communication System Uplink Commands and Surface Sampler Commands

and responses.

This technique was used in support of the Viking Test Language tech-

nique described elsewhere in this report. The detailed description ot

the test sequence l4ngudge is presented there.

DESCRIPTION: The on-line SIGMA 5 file generation, editing and management

system is an established file management system available at MHC. Its

application to the Viking sequence or application program generation

task provided the following capabilities:

1. File Creation

2. Write Line Commands

3. Read Line Commands

4. Move and Delete Line Commands

5. ove and Keep Line Commands

6. Find Text Commands

7. Replace Text Commands

8. Merge Lines from one Sequence to Another

9. Copy a Sequence to a New File Number (Identification)

10. Test Block Renumbering

11. Quick Check Capability

12. Copy to Line Printer

13. Copy to Tape

QUALITATIVE RESULTS: The benefits derived from use of the computer file

generation and editing technique were significant. Sequence design

could be accomplished eight times faster than by using the card genera-

tion technique. Updates and modifications could be made quickly.

Finally, it saved translation time by providing a diagnostic capability

for detecting errors.
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QUANTITATIVE IMPACT: Approximately 95 percent of the 974144 sequence lines,

plus 90 percent of the modifications, 
were generated using the 104

Sigma 5 computer system.
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TECHNIQUE

NAME: SOFTWARE CHANGE REQUEST/IMPACT SUMMARY

SUMMARY: A Software Change Request (SCR) was prepared and processed to

secure authorization to the method of implementing changes to released

software. The SCR also provided for control, coordination, and sched-

uling of the proposed software changes into the Viking Change Summary/

Viking Integration Change (VCS/VIC) system. An SCR impact summary was

used to collect pertinent impact information to support evaluation of

proposed changes.

APPLICATION CONSIDERATIONS: Software change request procedures were well

established at MHC and JPL prior to the Viking Project. Only minor

modifications were needed to adapt them to Viking's needs. The flight

computer was resource limited relative to the amount of potential soft-

ware involved. Impact summaries were defined to estimate memory sizing.

and computational timing impacts that would result from software changes.

RECOMMENDATION: It is well known that hardware wears out with time. It is

not too widely known that software wears out with change. Given suffi-

cient change traffic a software system will eventuailly become ineffi-

cient and error prone. Viking Lander and Orbiter aoftware adapted from

existing programs was in general less efficient than Viking software

developed from scratch. Any software change procers should attempt to

protect software efficiency and flexibility when authorizing new re-

quirements to be implemented. A useful technique for accomplishing

this is to review and approve the method of implementation separate

from the requirements request.
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HISTORY: The go-ahead to implement requirements changes to MMC developed

hardware or software was authorized by the approval of a Viking Change

Summary (VCS). In the event that the change affected the Viking Pro-

ject Office, Viking Orbiter, Viking Mission Control and Computing

Center, Tracking Data System and/or the Deep Space Network, a Viking

Integration Change (VIC) also had to be approved by all affected

parties.

The VCS/VIC forms were color coded in green, blue, pink and white.

The green form was used to coordinate the change, the blue to obtain

Project approval for out-of-scope changes, the pink to allocate addi-

tional costs, and the white to show final approval. A Project Control

Board (PCB) was established to control and monitor all VCS/VIC traffic,

assuring that all potentially impacted parties were aware of the pro-

posed requirements changes.

Software Change Request (SCR) forms were used to respond to the

VCS/VIC system in the same sense that the design process responds to

the requirements process. Impact summaries accompanied the SCRs to

assess delta changes to core memory, drum, and disk space, computa-

tional timing, schedules and manpower.

DESCRIPTION: The method of responding to change requests originating through

the VCS/VIC system differed among the Systems Engineering Directorate,

the Mission Operations and Design Directorate, and Mission Operations

at JPL. However, each followed the same basic philosophy that the

method of implementation should be reviewed and approved separately

from the requirements request.

The Systems Engineering Directorate documented the change procedure

for Flight and STE software in the Viking Lander Software Plan. It in-

cluded both a SCR form (Figure 1) and an Impact Summary form (Figure 2).

The primary reason for including the Impact Summary form was to main-

tain visibility and control over the growth of Flight soft-are.

Any member of the Viking Flight Team could originate a Flight or

STE hardware/software requirements change by preparing a VCS and taking

it tc the Project Control Board. Typically, software changes were

needed to support hardware changes. If the PCB felt that the change
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request merited consideration, the VCS was turned green and sent to

the appropriate hardware and software groups for further assessment.

The software group would then prepare a SCR to describe how the change

could be implemented and an Impact Summary showing estimated delta

impacts to computer resources. The change package was then taken to

the Software Change Board (SCB) for review and approval/disapproval.

The SCB had been created by the software plan expressly for this pur-

pose. It was particularly reluctant to approve changes that would

significantly reduce Flight computer memory or computational timing

margins. When such cases arose, the Systems Engineering director or

his appointee would attend the SCB review and make the final decision.

Following the SCB action, the VCS change package was reboarded

with the PCB for close out action. If the SCB had disapproved the

change, the VCS was cancelled. If the SCB had approved an in-scope

no cost change, the VCS was turned white permitting the change to be

implemented. If the SCB had approved an out-of-scope or cost impact

change the PCB forwarded the change package to the Viking Project Office

for approval/disapproval.

The MO and D directorate followed the change procedure specified

in the Flight Operations Software Plan, which included an SCR from

similar to that shown in Figure 1, but did not include an impact sum-

mary form. Because MO and D was represented on the multi-agency

Flight Operations Software Subworking Group, the PCB required that MO

and D coordinate all VCS/VIC traffic within Flight Operations before

boarding changes. Therefore, MO and D appointed two change board rep-

resentatives (CBR) to the PCB to review each VIC/VCS for possible im-

pacts originating outside of NO and D. VIC/VCSs which were determined

to have a possible impact upon MO and D were delivered to appropriate

technical leads within MO and D for further action. Technical leads

were appointed for software changes, simulation system changes, sci-

ence instrument changes, test and training changes, DSN, VMCCC and

VL changes, Mission design changes, Flight path analysis changes,

Flight hardware/software changes, and Viking Integration Changes.
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The technical leads coordinated the changes with MO and D person-

nel, obtained SCRs, and prepared functional task descriptions (FTDs)

which summarized cost and schedule impacts for the MO and D director

to approve/disapprove. All significant c" ges were discussed at MO

and D Technical Staff Meetings, which were held weekly. The CDRs then

reported the MO and D director's decision to the PCB.

Changes originating within MO and D were coordinated by MO and D

with all affected agencies and approved by the MO and D director prior

to boarding a VCS and VIC before the PCB.

When all Viking Flight Team members had permanently located at

JPL, the process for changing Mission Operations Software was modified.

The originator of a requiements change filled out a VIC/VCS and took

it to the Integrating Contractor Software Systems Engineer (ICSSE)

for coordination. The ICSSE distributed the VIC/VCS to the appropri-

ate SSEs for further action. The SSEs obtained SCRs from the appro-

priate VFT technical personnel and returned the change package to the

ICSSE, who then scheduled a meeting between the Mission Directors and

the technical personnel involved. At that meeting the Mission Direc-

tors either approved or disapproved the change, after which the VCS/

VIC was turned white or cancelled. Since VPO was represented by the

Mission Directors, the blue and pink portions of the VIC/VCS process

were no longer required.

QUALITATIVE RESULTS: The creation of the Systems Engineering Software Con-

trol Board to monitor and control Flight Computer memory sizing and

computational timing margins was instrumental in preventing tile Flight

computer from becosting overloaded. The SCB could not have accomplished

this task without the visibility available through the Software Change

Request and Impact Summary forms. There were cases in which multiple

SCR/Impact Summaries were submitted to the SCB to judge the impact of

full and partial compliance to the requirements change request.

By contrast, the process used by Flight Operations, whether at

MIC or at JPL, rarely allowed management to tnderstand the impact

changes would have on computer loading or program performance. Since
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the programmers were aware of the constraints on program size and run

times, they could merely create a new load module to perform a new

task, thereby hiding the impact to the system. Flight Operations

managers attempted to control the growth of the system by refusing to

authorize any changes other than "make play". Therefore, the only

changes that came before them were marked "make play", after which

they were invariably approved. Fortunately, many of the changes were

designed to improve program performance and reduce computer loading

requirements.

That is not to say the Flight Operations change process did not

work. In fact, it did. The overriding reason for this was that the

as built software system was extremely large compared to the change

traffic that impacted it. If you add a cup of water to a half filled

quart bottle, you will notice the change immediately. If you add a

gallon of water to a swimming pool, you won't see the change. In

that sense it is unlikely that impact summaries would have served a

useful purpose to Flight Operations management.

QUANTITATIVE IMPACT: Typically, a Software Change Request and an Impact

Summary could be filled out in an hour or two. Some of the larger

changes may have taken from a day to a week to work out. However,

this should be viewed as a zero cost impact, since Viking did not have

to add any unplanned personnel to handle the task. Furthermore, most

of the work would have had to be done eventually since the vast ma-

jority of changes were necessary and were approved.

The time consumed in processing a change fluctuated considerably.

No accurate manpower estimate can be made for the average change.

Most VIC/VCS traffic was on the books for one to two months before

being cancelled or turning white. Some went through the system in a

day. One VIC, which attempted to standardize Viking Orbiter and

Lander file headers, took a year to finally resolve (and then no sin-

gle standard was reached). Keeping the above in mind, the manpower

required to coordinate a VIC/VCS, respond with an SCR/Impact Summary,

review and approve the response, and close out the V[C/VCS is esti-

mated at one to two weeks.
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TECHNIQUE

NAME: VIKING SOFTWARE STANDARDS

SUMMARY: Documentation and flow chart standards were specified for all

MMC Viking software very early in the life of the project. No fur-

ther standards were imposed on Flight or STE software other than those

adopted by the software groups themselves. Mission Operations issued

a Viking Software Guide that listed standards, procedures, guidelines

and constraints to be followed. Responsibility for adhering to the

guide rested in most cases with the individual programmers.

APPLICATION CONSIDERATIONS: Management considered that controlled, uni-

form documentation was the key element needed to establish visibility

and understanding of the development process. American National

Standard flowchart symbols were adopted to provide project wide con-

sistency. The multi-agency development of the operational software

system required nomenclature, naming, labeling and coding standards

be adopted to coordinate the effort. In addition, the project was

required to adhere to computer usage guidelines and constraints that

had been established at JPL.

RECOMMENDATION: Standards adopted at a management visibility level can be

effective and are enforceable. Standards set below that level are of

little value. On Viking, programmers tended to ignore guidelines and

non-enforceable standards. Documentation standards make reviews

easier to accomplish and lead to greater thoroughness. Labeling and

naming standards are a convenient tool to avoid confusion. Coding

standards are of dubious value and can have negative effects when

computer run time and program size are required t. be significantly

constrained. This remark should not be interpreted relative to Struc-

tured Programming standards, which were not employee on Viking.
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HISTORY: Early in 1971 MMC formed a Viking Software Integration Group

(VSIG) for the purpose of monitoring the development of Flight, STE

and Mission Operations software. The first task assigned to the VSIG

was to define and document a uniform set of standards. In October

of that year the group issued "Standards for Viking Software Develop-

ment" which set documentation, flow chart, identification and handling

standards for all MMC developed software.

Shortly thereafter a Mission Operations and Design Directorate

was formed separate from the Systems Engineering Directorate, at

which point the VSIG was abolished. In May 1972 the "Flight Operations

Software Plan" was issued that set standards for Mission Operations

software. The plan incorporated the earlier documentation standards,

added the Software Functional Description document to the list, imt

posed labeling standards, and specified the requirement that a Viking

Software Guide be issued to establish standards, procedures, guide-

lines and constraints.

A Lander Software Integration Group (LSIG) was formed it, the

Systems Engineering directorate. The LSIG issued a Viking Lander

Software Plan in September 1972 that incorporated only the original

documentation standards. No other standards, guidelines or con-

straints were imposed on Flight or STE software by the LSIG, which

slowly was depleted by the attrition and transfer of its members. It

would have been too late by then to impose further standards on the

STE, since the system was about to go on-line.

In January 1973 the Viking Software Guide was issued to incor-

porate administrative, integrated, lander, orbiter, and VMCCC memos.

The document was distributed to every programmer and engineer responsi-

ble for an operational software program.

DESCRIPTION: Standards for Viking Software Development specified the

documentation responsibilities shown in Table I.
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FO STE G&C

V L E

Functional Requirements Document P

Software Requirements Document P P P I I

General Design Document P P P I

Software Data Base Document P

Program Description Document P P P I

Source Listing I I I I I

Users Guide P P P I I

Users Acceptance Test Plan P

DSN/Project Compatibility Test Plan P

Development Test Plan I I

Validation Plan P P

Programming Handbook I I I I I

Software Design Handbook I I I I I

Key:

V: Vehicle programs written in GCSC assembly language

L: Lab support IC 7000 programs written in IOP assembly

language

E: Micro-language programming of the IC 7000 CPU and lOP
P - Project Controlled Document I - Informal

Table 1

The document specified that it would serve as the central require-

ment collection point for software standards until the requirements

were incorporated into documents that cover procedures. Briefly, the

documents were defined as follows:

1. The Functional Requirements Document functionally describes

a program or system of programs.

2. The Software Requirements Document specifies the software

requirements corresponding to an FRD.

3. The General Design Document responds to the SRD and out-

lines how the program or systems of programs will be

developed.
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4. The Software Data Base Document formally documents the de-

tailed data base for all programs.

5. The Program Description Document describes the final program.

r 6. The User's Guide describes how the program can be used.

7. The User's Acceptance Test Plan describes the procedures that

will be used for module testing on JPL computers of ground

based Lander Flight Operations programs.

8. The DSN/Project Compatibility Test Plan describes the method

of verifying the integration of ground based Lander and Orbi-

ter Flight Operations software in the internal JPL Computer

Systems.

9. The Development Test Plan describes how testing will be con-

ducted at each stage of program development.

10. The Validation plan describes the method followed to validate

to customer satisfaction and MMC/QC that MMC developed soft-

ware/hardware systems meet all specified requirements.

ii. The Programming Handbook describes the programming conven-

tions imposed by the specific computer system or systems for

which software is to be developed.

12. The Software Design Handbook records do's and don'ts for good

programming practices discovered during program development.

The organization of each of the first six documents listed above

was described on a paragraph by paragraph basis. The basic outline

for these documents was required to be followed. Subsectioning was

permitted to the degree that it was consistent with the needs for docu-

menting the information. A single outline was shown for all test docu-

,ments. The purpose of showing the outlines was to provide uniformity

and completeness of information content. A consistent outline was

generated for both requirements and design documents. The SRD outline

was as follows:

I. Introduction

1.1 Scope

1.2 Problem Statement

2. Applicable Documents

232



3. Requirements F
3.1 System

3.1.1 Processing

3.1.2 Input/Output

3.1.3 Interfaces

3.1.4 Data Base

3.1.5 Limitations and Constraints

3.1.6 Diagnostics

3.2 Subprogxams

3.2.N Function "N"

3.2.N.1 Processing

3.2.N.2 Input/Output

3.2.N.3 Interfaces

4. Hardware Environment

4.1 External Interfaces

4.2 Hardware

4.3 Man/Machine Interfaces
5. Verification

6. Miscellaneous

10. Append ix

Sections 3.1.4, 3.1.5, 3.1.6 and 10 were not applicable to the

FRD. Section 3 was titled "Description" for design documents, which

also included sections 3.1.7, Storage Allocation, and 3.1.8, Flow

Charts. In addition, each subprogram described under section 3.2 of

the PDD included the eight subsections shown under section 3.1.

A paragraph was included to describe the information required in

each subsection. The documentation standards stated that a cognizant

programmer would support the cognizant engineering in developing the

SRD, primarily because the document would significantly influence

program design.

The Programming Handbooks and Software Design Handbooks never

materialized, although the intent of the former was adopted by Mis-

sion Operations in the Viking Software Guide.
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Flow chart standards specified in the document were based on

those published by the American National Standards Institute. The

coding guidelines listed were relatively brief and generally ignored.

The software handling standards merely addressed maintaining duplica-

tion in master file storage, the intent of which was followed by the

Viking Program.

The Flight Operations Software Plan added the Software Function-

al Description document and specified its organization (refer to the

Integrated Software Functional Design technique). It also specified

the numbering system that would be used to identify and control all

M C and JPL documents.

The Viking Software Guide contained standards for Viking soft-

ware symbology notation, use of non-minimal language, Viking J-ander

terminology, Viking Orbiter terminology and Viking acronyms. The

symbology notation standardized the first two characters of every

program name, subroutine and data table name that would be delivered

to the Mission Control and Computing Facility (i.e. - IBM 360/75 coat-

puter system) for incorporation on the Mission Build. The non-mini-

ral language standard requied programs that operated on two or more

different computer systems use comment cards to show the exact coding

differences required by each system.

Guidelines included descriptions of minimal languages, language

comparison charts and programming style. Procedures addressed pro-

gram conversion, documentation production, test activities and pro-

gram delivery.

File naming standards were incorporated in the Software Data

Base Document. Every permanent file used by a Viking program was as-

signed a unique five alpha character designator. MMC expanded this

to a twelve character string that included spacecraft, mission, date

and version designators. No file naming standard was ever adopted

for Viking Orbiter programs.

The Mission Control and Computing Center (MCCC) documented guide-

lines and constraint standards required to be followed by all projects
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using their facilities. These standards imposed limits on core allo-

cation, contiguous core allocation, CPU time, amount of print/plot

output, number of tape drives, large-capacity storage, direct access

storage, and sizes of program card decks.

QUALITATIVE RESULTS: The documentation standards were basically a sound

idea. They simplified the task of the author to organize and present

material. They undoubtedly led to more complete documentation than

otherwise would have been realized. The process of reviewing the

documents was also simplified.

There were differences of opinion over the value of the FRD.

The Mission Planning and Flight Path Analysis groups liked the idea,

carried it out, and felt it was a worthwhile exercise. The remaining

groups considered it an unnecessary additional step and developed

their SRDs directly. The principal difference between the two ap-

proaches was that one provided for an intermediate requirements re-

view and the other did not.

The level of detail indicated for the SRD was needed by Viking.

The principal disadvantage was that the organization of the require-

ments implied some design criteria. This had a negative effect when

cognizant programers were not available to support the document

generation.

The use of external file naming convention standards made it very

easy to checkpoint and recall data recorded by a particular instrument

on a particular Martian Sol (day). The standard also permitted an

efficient automated file management system to be developed (refer to

technique on-line data file management system).

*HC management did not place proper emphasis on the HCCF sym-

bology notation standard and the lander programmers did not under-

stand it. This could have had a very serious cost and schedule im-

pact on lander software had it not been for JPL's willingness to help

resolve the problem. The standard required that all subroutine names

begin with the characters LM and all data table names begin with the

characters LZ. The reason for the standard was to prevent MW de-

veloped software from conflicting in name with any other software on
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the Mission Build. By not following the standard, WI was faced

with the task of changing literally thousands of call statements to

subroutines. However, JPL came to their rescue by creating a private

Viking subroutine library (VIKILIB), which made it possible to waive

the standard. This example stresses the importcnce for a developing

agency to know and understand any enforceable standards set by a user

agency.

The use of flow chart standards simplifies the design review

process. Consistency is more important than the particular selection

of symbols. The Viking Lander Flight software group developed their

own standards in this area, rather than adopting the ANSI standards

used by the rest of the project.

The setting of a standard for the use of non-mirnimal language

effectively reduced the minimal language standard to a guideline.

Although it was not enforceable (no standard set below management's

visibility level is enforceable) it was followed because it eased the

conversion task of the programmer.

QUANTITATIVE IMPACT: The documentation standards cost four to five man

months to develop. The Viking Software Guide cost an additional four

to five man months. The ANSI flow chart and MCCC guidelines and con-

Ftraints standards were available at no additional project cost.

The automated on-line data file management system and the inter-

computer transfer function were developed at lesb cost because file

naming conventions were standardized. The estimated savings in these

areas is one man year. Even then each individual file would have re-

quired some form of standardization.
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TECHNIQUE

NAME: FLIGHT OPERATIONS SOFTWARE PLAN

SUISARY: The Flight Operations Software Plan was the controlling document

for Viking operational software development. It established manage-

ment roles and responsibilities, the software design and development

process, and the methods by which management would control and -imple-

ment the software system.

APPLICATION CONSIDERATIONS: Development of an integrated software system

requires that compatible standards, procedures and processes be es-

tablished to minimize interface problems, ambiguous terminology and

couuncations problems. This was particularly essential to Viking,

since several agencies and contractors were responsible for various

portions of the software system. A unified plan agreed upon by all

parties that clearly and consistently outlined the method by which the

software system would be developed and implemented was considered man-

datory by the Viking Project. No consideration was given to permit-

ting each operational software developer to independently manage their

development processes.

RECOIOENDATION: The first step taken in Oeveloping a software system

should be to write a software plan. The plan should define manage-

ment roles and responsibilities, specify documentation requirements,

establish milestones by which progress can be measured, define con-

figuration management control, and describe the development process to

be followed from initial design through system integration. Once a

plan has been formalized and agreed upon, management should take ap-

propriate steps to assure that it will be followed. If this is done,

schedules and costs can effectively be controlled.
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HISTORY: The Viking 75 Project Flight Operations Plan was prepared under

Contract Number NASI-9000 by the Martin Marietta Corporation, Denver

Division. The Integration Contractor Software System Engineer (ICSSE)

was responsible for its generation and publication.

The plan was written during the latter part of 1971 and early 1972.

It was concurred upon by Flight Operations managers at the Viking Pro-

ject Office, the Jet Propulsion Laboratory and Martin Marietta Corpora-

tion. On 15 May 1972 it was approved by the Viking Project Manager, at

which time it became the controlling document for the development of

the Viking Operational Software System.

Eight minor revisions were made to the plan using the Viking Inte-

gration Change Control system. The final revision was incorporated on

19 June 1974.

Copies of the plan were distributed to all Flight Team members,

programmers and engineers.

DESCRIPTION: The plan consisted of five sections and three appendicies,

organized as follows:

1.0 Introduction

1.1 Purpose

1.2 Scope

1.3 General

1.4 Acronyms and Abbreviations

1.5 Definitions of Terms

2.0 Applicable Documents

2.1 General

2.2 Reference Documents

3.0 Management of the Flight Operations Software System

3.1 Introduction

3.2 Software Sub-Group

3.3 Integration Contractor

3.4 Design Responsibility
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4.0 Software Design and Development Process

4.1 Introduction

4.2 Software Functional Description and Integrated Software Func-

tional Design

4.3 Functional Requirements Document

4.4 Software Requirements Document

4.5 Software Data Base Development and Definition

4.6 General Design Document, Schedule and Work Plan Development

4.7 Program Development, Testing and Release

4.8 Test Plan Development

4.9 Testing

4.10 Project Software Delivery

4.11 Software Maintenance and Support

5.0 Management Control Method

5.1 General

5.2 Milestones

5.3 Documentation

5.4 Requirements Definition

5.5 Design Monitoring

5.6 Review

5.7 Approval of Detail Design

5.8 Software Control Board

5.9 Software Handling and Labeling

5.10 Computer Program End Product

5.11 Software Development Progress Monitoring

5.12 Programming Guidelines and Conventions

5.13 FOS S/W Interfaces with On-Board S1W

Append ic ies

A Documentation

B Software Change Control - Flight Operations

C. Program Labeling

The plan established roles and responsibilities for the ICSSE,

MMC software System Engineer (VLSSE), VO Software System Engineer

(VOSSE), Mission Computer Control Center Data System Project Engineer
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(DSPE), Cognizant Engineers (CE), Cognizant Programmers (CP), and

Flight Team members who were users of a particular computer program.

The primary responsibilities of the SSEs were to plan, coordinate and

monitor che development of the Operational S'Ztware System. Cognizant

Engf'eers were made responsible for program requirements and testing,

and their associated documentation. Cognizant Programmers were made

responsible for program design and development and their associated

documentation. Flight Team members were made responsible to support

and review development of program and test requirements.

Documentation requirements were specified relative to organization,

responsibility, review, concurrence, approval and change control. This

included program documents (functional, requirements, description, test

and user), the Integrated Software Functional Design (ISFD), the Soft-

ware Data Base Document (SDBD), and the Lander/Orbiter Software Test

Plan.

The principal management control methods employed were: establish-

ment of milestones to support schedules; preparation of documentation,

monitoring of design response to requirements- formal reviews of docu-

mentation, software end products, and test results; approval of de-

tailed design; change management; software handling and labeling; re-

lease of software end products; software development progress monitor-

ing; and establishment of programming guidelines and conventions.

The software development progress monitoring required the SSEs

to maintain and publish detailed schedules and to hold weekly telecons

to discuss progress and resolve problems. The CEs were required to

maintain Schedule and Work Plans by which the SSEs could measure pro-

gress. Each SSE was to establish a Software Design Team (SDT) composed

of CPs and CEs to review schedules, identify interfaces and review

design concepts. The CPs were required to review test results with the

MSEs at critical points during program development. Computer usage

reports were required to be sent weekly to the SSEs. The SDT was re-

quired to review General Design ' ocuments, working flow charts, SDED

inputs, test reports, Program Description Documents and User Guides.
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The SSEs were required to review program listings on an intermittent

basis to verify conformance to guidelines and conventions, complete-

ness of the program, and, in critical areas, the coding logic. Finally,

the SSEs were required to monitor cotrective plans a1,d actions for pro-

gram errors uncovered after program delivery.

QUALITATIVE RESULTS: The strongest feature of the plan was that it speci-

fied the means by which it could be made to work. Th-at was by creating

roles and responsibilities for SSEs which made them responsible for

the development process. The overall plan was successful because it

led to an orderly development of the software system.

The principal reasons that programs had to be modified and rede-

livered were due to new requirements, poor designs, program to program

interface errors, and errors detected due to the lack of good test data.

How the plan treated each of these subjects, and how it might have been

improved to lessen the impact of these redeliveries will be discussed

in the following paragraphs.

Requirements were written by a cognizant engineer (CE) and documen-

ted in a Software Requirements Document (SRD). The CE was supported by

a cognizant programmer (CP) concerning prograing techniques, feasi-

bility and I/O formats, and by an SSE concerning interface requirements.

The SRD was reviewed by appropriate Flight Term Members, technical per-

sonnel, the SSE, the Data System Project Engineer, and by a VPO techni-

cal monitor. A formal review was then conducted by the SSE to assure

communication and resolution of all comments, after which each of the

reviewers concurred with, and the responsible director approved, the

SRD. The definition of concurrence was explicitly stated relative to

each of the reviewers, covering such items as satisfaction of functional

requirements, consistency with system design, technical correctness,

and conceptual correctness. The plan should have also required the

reviewers to estimate SRD completeness in terms of potential new require-

ments. This would have had the effect of forewarning those programmers

who were developing operational software in parallel and dependent on

Flight hardware or software that significant change traffic was potential.
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As such, during the design phase, those programmers would have tended

to model requirements as data rather than as part of the program struc-

ture, thereby giving up (in some cases) efficiency for flexibility.

Program des.gns were developed by a CP and documented in a General

Design Document which was reviewed at a meeting attended by the CE, CP,

SSE and technical personnel. The deficiency here is that the plan did

not take into account the CPs experience, the fact that the CE and

technical personnel usually will not understand the ramifications of

the design relative to the computer system, nor the fact that the SSE

had too many responsibilities to be able to give adequate thought to

design ramifications. The pla should have specified a criteria for

the selection of CPs, which it did not. It also might have required

that one or two outside progremmers attend the review to question the

CP as to how the design was to be implemented, and comment on what they

thought of the approach.

The plan identified the SDBD to document all interfaces and re-

quired that each interface be tested by Software Integration. The word-

ing here was perfectly adequate. However, the milestones section of

the plan should have required interface testing to be conducted as an

extension of Users Acceptance Testing, which would have been prior to

placing the software under strict change control. This would have

forced a top-down approach to integration, wherein programs would be

delivered in subsystems, rather than by the "as available/as needed"

approach actually used by integration. This would not have reduced the

number of errors detected, but would have significantly reduced their

impact on redeliveries.

Finally, the plan did not address the subject of test data, other

than to mention a CE or a CP was responsible for its generation. The

plan should have specified requirements for the development, review,

documentation and approval of test data, stressing the completeness of

the data to assure thorough program testing.
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QUANTITATIVE IMPACT: The software plan was negotiated and written at a

cost of six man months. Beyond that it is difficult to describe it in

quantitative terms, other than to state that it contained 99 pages.

The true impact of the plan was t~at it established the basis for suc-

cessfully developing a million plus source card software system on

schedule. The impact of techniques specified or implied b? the plan

are described separately in this report. They include HOL utilization,

different development sites, the Integrated Software Functional Design,

Cognizatn Engineer/Cognizant Programmer, SCR/Impact summary, software

standards, Management Visibility, Flight Operations Software Subgroup,

and the Software Data Base Document.
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TECHNIQUE

NAME: SOFTWARE DEVELOPMENT MANAGEMENT VISIBILITY

SUMMARY: Progress was monitored by maintaining five levels of schedules

based on a series of significant milestones. Program and system level

requirements, design, interface and test documents were reviewed and

approved. Software change traffic was closely monitored, widely re-

viewed and well documented. Weekly meetings were held to air problems.

Open items lists were maintained. Software Systems Engineers were

established to monitor the implementation of the software design, de-

velopment and testing and to assure that all interfaces, requirements

and schedules were correctly and completely satisfied.

APPLICATION CONSIDERATIONS: Software systems are frequently delivered late,

not documented accurately, contain unidentified risks, overrun costs,

are unreliable, and fail to meet mission objectives. This was of par-

ticular concern to the Viking Project, since the launch windows were
narrow and planetary operations had to be completed during a four month
period between Mars Orbit Insertion and the conjunction of Mars with

the sun. Therefore, not only was a well defined software development

cycle established, but a great deal of emphasis was placed in providing

management with sufficient visibility to assure that the plan was

carried out.

RECOMMENDATION: The need for management visibility into any development

process is obviously necessary if costs and schedules are to be con-

trolled. The use of documentation, milestones, reviews, presentations,

meetings and change control are necessary but not sufficient to assure

a reliable system that meets the mission objectives will be delivered

on schedule. Root level program schedules and software systems engi-

neers, used effectively, can sigaificantly enhance management

visibility.
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HISTORY: The degree and type of visibility management had into the Mission

Operations software development process varied as a function of the

development phase.

During the software system definition phase visibility was very

good. The software plan and the integrated software functional descrip-

tion were carefully reviewed at the director and Project manager levels.

Milestones were well defined, and detailed schedules were developed.

The quantity of software to be developed and the results of computer

loading studies gave top management visibility to allocate resources

on a realistic basis.

This was followed by the requirements phase, wherein management

had the least visibility at any point in the development cycle. It was

restricted to monitoring schedules and reviewing each Software Require-

ments Document (SRD) prior to its release.

Visibility improved during the design and code phases. The SRDs

were under rigid change control so that impacts caused by requirements

changes were reflected in weekly updates to schedules. Reallocations

in personnel assignments were made to prevent serious schedule slip-

pages. Management could also monitor the development of the Software

Data Base Document, which defined interfaces and the common data base,

and the Lander/Orbiter Software Test Plan, which showed the system

integration process and indicated the resources that would be required

to carry it out.

The certification, conversion and user acceptance test phases per-

mitted the lander, orbiter and integrating contractor software systems

engineers to assess which requirements and constraints had been met in

test and which had not. The latter were placed on waiver lists, the

resolution of which could be monitored by all levels of management.

The software was now placed under rigid change control, and errors

detected during the unit verification and system integration phases

were made highly visible by means of a very efficient failure report

system. Corrections to these errors could be controlled at the direc-

tor level and implemented through an Integration Change Control Board.
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During the spacecraft compatibility test phase, the failure report

system was changed to a Viking Incident Surprise Anomaly (VISA) system,

which gave management the added visibility to assess the projected

impact that software errors and requirements changes would have on

specific operational phases.

DESCRIPTION: Sixteen milestones were identified to provide management visi-

bility into the development process of each program. In addition, the

cognizant engineers for each program were required to keep weekly as-

sessments of percentage completion during the design, code, debug and

programmer test periods. If the percentage completion estimate was

not compatible with the schedule for an ensuing milestone, the cogni-

zant engineer was required to change the projected completion date

shown for that milestone to an earlier or a later date, as appropriate.

Three columns were maintained for the schedules of each milestone;

planned, projected and actual. Therefore, when a projected schedule

date was changed, management could assess the impact it would have rela-

tive to the entire software system development process. Manpower and

resources were reallocated, as required, to maintain a consistent over-

all schedule.

The impact of software requirements changes was handled by sched-

uling phased deliveries for programs. Separate schedules were main-

tained for each phase of program delivery.

The milestones used to monitor Viking program software development

progress were:

i. Release of Software Functional Description

2. Functional Requirements Document sign-off complete

3. Software Requirements Document available for review

4. Software Requirements Document sign-off complete

5. General Design Document sign-off complete

6. Program design and initial module code complete

7. Module testing complete

8. Certification Test/Users Acceptance Test Plan available for

review
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9. Certification Test/Users Acceptance Test Plan sign-off

complete

10. Program development complete

11. Certification test complete

12. Acceptance test complete

13. Program delivery to VMCCC for integration

14. Unit Verification test by VMCCC complete

15. Program integration tests complete

16. Project software delivery

The program delivery milestone required delivery of all program

documentation, including the Program Description Document and User's

Guide for which no earlier milestones existed. Therefore, projected

and actual schedules were maintained for each deliverable item for this

milestone.

Weekly meetings w4ere held between upper management, team leaders,

and the software systems engineers. Progress, problems and conflicts

were aired at these meetings. Open item lists were issued and monitored.

A Viking Integration Change/Viking Change Summary/Software Change

Request .VIC/VCS/SCR) system was established to monitor all changes to

software requirements. A VIC impacted more than one agency and re-

quired concurrence of all parties before it could be approved. The

VCS was used for Lander hardware or software changes. The SCR was used

for lander or orbiter software changes implemented at JPL. A Project

Change Board met weekly to discuss the status of all open change traf-

fic. Representatives from each subsystem were required to attend these

meetings to assure that any impact to their subsystem would be recog-

nized and taken into proper account.

Lectures and presentations were held at frequent intervals wherein

all programmers and engineers were briefed on management concerns, the

development cycle, and items pertinent to the software system and its

status.

Preliminary and Critical design reviews were held on the integrated

software functional description of the software system.
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The integrating contractor software systems engineer was required

to review and approve the results of all users acceptance tests and

provide upper management with written reports of those reviews.

The Software Subworking Group, which was composed of the integra-

tion, lander, orbiter and institutional software systems engineers,

was required to issue monthly reports to upper management stating work

accomplished, problems encountered that required resolution, and work

planned for the following month.

Changes to the common data base required formal written approval

by upper management before they could be implemented.

An Integration Change Control Board met weekly to discuss the

status of all programs scheduled to be delivered or redelivered to the

software system. The board was chaired by a Project Manager and at-

tended by the software systems engineers and representatives of soft-

ware programs to be discussed. The need for and impact of changes or

waivers were aired at these meetings. The ICCB assured that software

deliveries complied with established procedures.

Several documents played a key role in providing management visi-

bility throughout the development stage. The Software Functional De-

scriptions and Integrated Software Functional Design permitted manage-

ment to determine which programs were required, how they would inter-

face, what utility programs would be needed, conduct computer program

assignments and loading studies, hold a system critical design review,

and determine integration requirements. The Lander/Orbiter Software

Test Plan proved to be an extremely useful tool to the project. It

allowed management to schedule manpower and resources, and assured them

that inter program communications would be thoroughly tested. The

Software Data Base Document gave management a single source by which

they could be assured that all program interfaces and the common data

base would be visible and controlled. This provided the visibility by

which management could determine if a change to one program wotuld in

any way affect the operation of any other program in the system.

The JPL Mission Build process allowed management to know what

software was in the system at all times.
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QUALITATIVE RESULTS: The visibility techniques management employed during

the software development process were sufficient to permit a reliable

software system that met all mission objctives to be delivered nn

schedule. The use of documentation, milestones, reviews, presentations,

meetings and change control were standard management visibility tools.

The concepts of the root level schedules and the software systems engi-

neers roles were innovative, and worked well.

A great deal of expense and effort could have been saved had man-

agement demanded greater visibility early in the development process.

Programmer selection was essentially ignored, assignments being made

on an availability basis, rather than by experience and computer under-

standing. Critical reviews were not held to challenge requirements

especially where they invoked design. Nor were critical reviews held

to challenge the program designs themselves. As such, management con-

trol over the design and code phase was limited to monitoring schedules,

so that design inadequacies did not become visible to the software sys-

tems engineers and systems programmers until the acceptance testing and

integration phase. Costly modifications and workarounds were then re-

quired to force the program designs to meet mission timelines and com-

puter constraint requirements. This occurred with about one-third of

the programs.

QUANTITATIVE IMPACT: Ten percent of the programming and engineering manpower

effort was consumed in activities directly related to providing manage-

ment visibility. The primary efforts of the software system engineers

and their staffs were devoted to directing and monitoring the develop-

ment process and maintaining software schedules, thereby providing

management with central sources by which progress and status could be

measured. These staffs varied in size during the development stage

(see Flight Operations Software Subgroup technique).

The manpower and computer resources that might have been saved

had proper attention been paid to programmer selection and critiquing

requirements and designs is estimated to be in access of three man

years.
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TECHNIQUE

NAME: COMPREHENSIVE END-TO-END SYSTEM LEVEL TESTING

SUMMARY: A series of integrated tests were performed using the Flight Opera-

tions ground data system, a Viking Lander on-board computer and its

Flight Software, and the Viking Lander science, telemetry, communica-

tions, and power subsystems. Ten different tests, covering the four

major mission phases were completed over a 22 month span to verify com-

patibility of the various programs and demonstrate representative

Viking mission sequences. Approximately 156 software design changes

were implemented as a result of this integrated series of tests.

APPLICATION CONSIDERATIONS: The integrated testing described herein were

derived to insure and enhance mission success. The major factore that

dictated this comprehensive testing were: a) error free Flight Soft-

ware was required for the on-board computer; b) scientific and engi-
V

neering mission design features had to be accurately translated into

uplink commands to the Flight Software and the effect of these commands

on the lander functions had to be predicted with certainty by the up-

link programs; and c) the downlink programs had to provide accurate

scientific and engineering data in a timely fashion so that new uplink

commands could be generated based on actual conditions encountered at

Mars.

RECOMMENDATIONS: The Viking system is a large one with many interrelated

software and hardware elements whose mission application required virtu-

ally error free performance. Mission success is strongly dependent on

comprehensive testing of the critical system elements where the empha-

sis is placed on testing mission level functions and performance re-

quirements on an end-to-end basis. This provides a necessary check

and balance against the design requirement testing done by the develop-

ers of the individual hardware/software elements of the system. The

class of integrated testing described herein was a mandatory part of

the Viking development.
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HISTORY: The Flight Operations/Flight Software integrated test concept was

not part of the original Viking development plans. The concept was

. recommended by several people on the project and further emphasized

by some audit/review committees in the late 1973, early 1974 time

period. Detail planning began in August 1974 and an initial series of

tests were approved by the customer by early September 1974. As the

benefit of the tests became apparent more were defined and approved for

implementation.

DESCRIPTION: The Flight Operations/Flight Software Integrated Tests (FOFSIT)

were a series of tests conceived to satisfy the following objectives:

a) Demonstrate compatibility between the Viking Lander on-board

computer Flight Software and selected portions of the ground

Mission Operations Software System (MOSS);

b) Demonstrate this joint set of software is coLrpatible with

"flight-like" Viking Lander hardware; and

c) Demonstrate this combined set of software and hardware is

compatible with selected mission design requirements and repre-

sentative Viking mission sequences.

Each test involved running a series of the Flight Operations pro-

grams in the Viking computer environment at the Jet Propulsion Lab

(JPL) in Pasadena to produce uplink commands for the Flight Software

in the on-board computer (GCSC). These commands were transferred to

Denver by tape or data line where they were loaded into the on-board

computer via the operational uplink communications port. For tests in-

volving the interplanetary Cruise, Preseparstion Checkout, or Landed

surface operation mission phases, the Flight Software/on-board computer

were run in a test bed composed of a full up, operational Viking Lander.

This non-flight article lander with its power, telemetry, communica-

tions, science, and G&C subsystems was made available after an environ-

mental qualification test program had been completed. For the test

involving Descent to the surface of Mars the Flight Software/on-board

computer combination were coupled to a hybrid computer facility pro-

gramned to simulate the descent vehicle and Martian environment.
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When the Viking Lander or the descent trajectory iimulation were

run under control of the Flight Software a lander leve. downlink tele-

metry data stream was recorded. This data was then transferred to JPL

by magnetic tape or data line where it was processed through a series

of downlink programs to produce science and/or engineerin, outputs,

Table 1 provides a summary of the integrated test program composed

of 10 individual tests covering the four major mission phases. The

general test configuration for these mission phases is shown in Figures

I and 2. The 22 individual software programs involved in the inte-

grated testing included:

a) twelve batch Univac 1108 programs with a total of 147,000

source cards;

b) seven batch IBM 360/75 programs with a total of 88,000 source

cards,

c) two real time IBM 360/75 programs with a total of 230,000

instructions for telemetry and image processing; and

d) one Flight Software program with a total of 18,432 words.

The following mission and spacecraft design constraints had a

significant influence on the design and implementation of the inte-

grated tests described herein:

a) The lander downlinked data to earth, directly and/or relayed

through the orbiter, only once a day over a 20 minute one

way light time path;

b) After the lander was separated from the orbiter the descent

program in the on-board computer could not be modified by

uplink;

c) During surface operations the lander was in a near autonomous

operating mode running a preprogrammed mission in the on-

board computer that could be modified by uplink only once

every two days except in emergency conditions (once a day

maximum);

d) The mission was designed to be adaptive and the adaptive re-

action time, as measured from on-board downlink data genera-

tion to implemented adaptive uplink commands, varied from 3

days for emergency conditions to a maximum of 21 days; and
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Table 1

Flight Operations/Flight Software Integrated Test Summary

Mission Test Programs Test
Phase/ Test Description Profile Tested Period
Test Name Time

Cruise Maintenance functions for bat- 10 hrs 8 Feb thru
teries, tape recorder, & 1 Jul 75
science instrument computer
overlay & memory readout
functions

Presep C/O Precursor to launch pad test of 6 hrs 9 Dec 74
(FCT-3) lander C/O functions done prior thru

to descent in Mars orbit during Apr 75
the mission

Descent Precursor to launch pad test of 3 hrs 7 Dec 74
(FCT-4) compressed descent sequence thru

using modified G&C equations/ Apr 75
constants. Included landed in-
itialization sequence (1st
post land function)

Descent Nominal full descent in a simu- 5 hrs 14 Jan thru
lated Mars environment for a Sept 75
2 burn deorbit mission. In-
cluded full uplink of G&C
constants

Landed Precursor to launch pad test 2 hrs 9 Dec 74
(FCT-1) 2 short landed segments in- thru

volving real time imaging over Apr 75
the direct downlink, a tape
recorder playback over the relay
link, and command updates via the
uplink

Landed A fully integrated science/t#le- 154 hrs 15 Apr thru
(Multiday) metry/communication sequence Oct 75

with 2 uplink periods. Based

the planned mission sequences
for 6 out of the first ten days
on Mars. Tested 58 of 104 Flt
Software major capabilities

Landed A fully integrated sequence 62 hrs 15 Sept
(Multiday with three uplink periods. thru
Extension) Tested an additional 30 of Dec 75

the 104 Flt Software major
capabilities
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Table 1 (continued)

Flight Operations/Flight Software Integrated Test Summary

Mission Test Programs Test
Phase/ Test Description Profile Tested Period
Test Name Time

Landed A test of the first 17 days of 419 hrs 15 Nov 75
(FOS-VER) the landed pre-programmed mis- thru

sion (PPM) stored in the on- Apr 76
board computer. No uplinks

Presep C/O A test of the lander C/O func- 52 hrs 9 Nov 75
(FOS-VER) tions and uplinks done during thru

the 52 hr period prior to de- Apr 76
scent of the lander

Landed Test of four uplinks derived 7 hrs 2 Feb thru
(Switch- to reinitialize the lander for Jun 76
over) mission operations if a switch

to the backup on-board computer
had occurred. Test included
uplink processing and lander
operations; no downlink pro-
cessing at JPL

Notes: I) Test profile time covers the duration of Viking Lander

operation; JPL computer processing time is excluded

2) Programs tested include only those involved in Viking

Mission operations; test support programs not included

3) Tes period includes time to run the uplink programs at

JPL, run the Flt Software in Denver, and process/analyze

the downlink data via the programs at JPL

4) A total of 22 different Flight Operations/Flight Software

programs were used in the overall test program
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Uplink Programs

Inertial Sequence &
Reference & Targeting Command
Trajectory Data Generation

(2(1) (3)

Trajectory

Verification

1(1

On-Board Uplink

Downlink Computer & Commands

Commnands Fit Software

Vehicle & Hars
Environment
Simulation

Downlink Programs

Real Time Decommutation Trajectory
Telemetry Smonthing Reconstruction
Processing & Analysis & Evaluation

(1) (3) (Entry Science (2)

(Number of programs Data)
shown in parentheses)

Figure 1. Descent Test
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Uplink Programs

Sequence Sequence Uplink

Planning Integration & Commands
Command Gen. ,

(3)Lne (2) VikingitadreSfe Lander

Lander_____

Command
Simulator

(1)

Downlink Data

Downlink Programs

Real Time Data Science
Telemetry Decommutation Processing
Processing & Analysis

(1) (2) (5)

Engr. Data

Real Time
Image
Processing

Notes:

(1) 1. Number of programs in parentheses

2. File transfer program not shown

3. Cruise & Presep C/O tests in-
volved a subset of programs
shown

Figure 2. Landed, Cruise & Presep C/O Tests
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e) The on-board computer was the central controlling source for

performing, on a time shared basis, all lander functions in-

cluding science control and data acquisition from seven ex-

periments, direct and relay communications to earth, data

storage management via tape recorder and core memory, and

lander power management.

As a result of these constraints the integrated testing empha-

sized, in order of priority: a) uplink programs, b) Flight Software

and lander operations, and c) downlink programs. Tests involving ex-

terded periods of lander operations were required to verify compati-

bility of the many interactive functions. The greatest emphasis was

placed on full validation of the uplink programs that simulate lander

operations xiacluding those of the Flight Software. This validation

was done by direct detail comparison of the uplink predictions with

the actual functions performed by the lander and its Flight Software.

The overall integrated test program covered a 22 month period be-

ginning in August 1974 with a planning phase. In December 1974 a 200
page test plan was produced, covering the first six tests listed in
Table 1. Nine of the ten tests involved running the Flight Software

in the on-board computer in a full up Viking lander. For this portion

of the testing additional detail test procedures were developed to

provide a means to a) monitor, in real time, proper lander sequencing

and hardware safety, and b) control the ground support equipment to

acquire downlink data generated by the lander. Although all the tests

were run in a fairly informal "engineering test" atmosphere, a signi-

ficant portion of the overall effort was expended in the development of

test plans and procedures (approximately 10-12% of the total manpower

expenditures).

Generally, each test required several iterations (average of 3

to 5 passes) through the applicable uplink programs before a safe and

adequate set of uplink commands were available for use with the Flight

Software/on-board computer in the lander or descent test beds. Al-

though the downlink data, in general, had to be processed more than

once (average of 2 to 3 passes) to obtain satisfactory results, fewer
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iterations were required than in the uplink area. The uplink and

downlink data processing for most tests was accomplished by a small

group assigned to the integrated test program. The time spans to ac-

complish the iterative uplink/downlink testing at JPL for an individual

test ranged from a few weeks to a few months. During the actual mis-

sion operations the equivalent processing was accomplished by a large

team of people in a few days in a single pass.

Table 2 provides a summary of the equivalent test iterations for

the portion of the test involving the Flight Software/on-board computer

in the descent or Viking lander test beds.

Table 2

Integrated Testing - Test Bed Utilization

Test Name Test Bed Number of Total

(Ref. Table 1) Iterations Hours

Cruise Viking Lander 2-1/2 25

FCT's Viking Lander 4 52

Descent Descent Hybrid Sim. 3 15

Multiday Viking Lander 2-1/2 385

Multiday Extension Viking Lander 1-1/4 77

FOS-VER Presep C/O Viking Lander 2 104

FOS-VER Landed Viking Lander 1 419

Switchover Viking Lander 3 21

1098

QUALITATIVE IMPACT: The qualitative impact of the testing described herein

can be summarized as follows:

a) Immature software - In terms of meeting the mission objec-

tives, many of the programs tested were found to be immature.

In particular, the three programs that 1) integrated science

experiment/engineering subsystem sequences and modeled the

various lander functions, 2) generated lander uplink commands,

and 3) simulated Flight Software functions/commands required

the majority (i.e. 48%) of the design changes implemented.
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b) Lander "signatures" - Quicklook analysis of the downlink

data from the integrated test revealed many anomalies. Ex-

tensive analysis indicatee most of these were not caused by

any design problem or failure in the hardware or software

(i.e., they were signatures of a normal system). The accept-

able items were cataloged and the availability of this know-

ledge during mission operations avoided unnecessary problem

solving and delays.

c) Mission design validation constraints - The design and imple-

mentation of many of the integrated tests were based on vari-

ous of the Viking mission design strategies; this provided

a means to test the validity of each strategy. The testing

identified many mission design problems and constraints. As

a result revised strategies were developed and validated in

the integrated test series. The accepted constraints were

documented and served to guide the development of related

mission design strategies.

d) Flight Team training - Initially the integrated tests were

performed by a centralized group assigned to the task. Most

of the group members were on the Flight Team but their inte-

grated test assignments were not necessarily related to the

functions they were to perform during the mission operations.

During the last three tests (i.e., Multiday Extension, FOSVER,

and Switchovet) tasks such as uplink generation, downlink

processing, etc. were performed by the appropriate Flight

Team groups. This experience proved a valuable aid in train-

ing people for their actual mission assignments with realistic

data.

QUANTITATIVE IMPACT: The quantitative impact of the integrated testing de-

scribed herein can be sunmmarized as follows:

a) Duration of integrated test program: 22 months;

b) Programs tested: 22 programs involving approximately 483,000

source cards/instructions;
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c) Number of tests: 10 tests covering 4 mission phases;

d) Hours of real time lander (Flight Software) operation: tests

ranged from 2 to 419 hrs; 1098 hrs total time;

e) Software design changes derived from test program: approxi-

mately 156 changes affecting 20 of 22 programs tested (Refer-

ence Table 3 for details);

f) Manpower cost: approximately 380 manmonths; peak loading

26 to 28 people for a 6 month period;

g) Computer Cost: Univac 1108 @ JPL 275 hrs

IBM 360/75 @ JPL 2300 hrs

IBM 370/155 @ Denver 250 hrs

CDC 6400 @ Denver 40 hrs

h) Loss of mission critical data or objectives due to software

design failures during actual mission: None.

Table 3

Software Design Changes

Program Type Programs Changes % of Total
Affected

1. Uplink sequence integration and 3 75 48.1%

command generation/simulation

2. Flight Software 1 16 10.3%

3. Downlink real time processing and 3 27 17.3%

data decommutation/analysis

6. Science analysis 4 23 14.7%

5. Descent unique - uplink & downlink 4 10 6.4

6. Miscellaneous 3 5 3.2%

7. Programs with no impact 2 0

Totals 22 156 100.0%
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TECHNIQUE

NAME: TECHNICAL AND MANAGEMENT AUDITS

SUMMARY: The Viking Project Office (VPO) formed a group of NASA software

managers, known as the Tindall Committee, to review the Viking software

davelopment approach and design. Following this, the VPO conducted

three independent audits by software experts from around the country.

IMC held a semi-independent audit led by the head of the Systems De-

velopment Corporation. Technical audits by MMC management were used

to measure progress and maintain schedules.

APPLICATION CONSIDERATIONS: The successful development of any major soft-

ware system is a considerable task for experienced professionals.

Neither the VPO nor MMC had ever built a system as large as required

to support the Viking Mission. Therefore the desire to have experi-

enced software development managers review and comment on the Viking

approach manifested itself in the Viking managers minds early in the

program. During the coding phase of development MMC managers knew

their visibility into the process would be limited. Technical audits

offered them the opportunity to assess progress, thereby enhancing the

chances for schedules to be met.

RECOMMENDATION: Management is typically reluctant to shift significant

amounts of resources to accommodate obviously well intentioned and rea-

soned recommendations originating from within their working ranks. It

is difficult for them to weed out the good ideas from those that are

necessary. By bringing in experienced experts from around the country

to audit the development process, management can obtain a basis for

making such decisions. Equally important is the fact that such audits

are likely to produce recommendations concerning areas or concepts

that have been overlooked.
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HISTORY: In 1971 the Viking Project manager formed a committee of software

managers from Johnson Space Center, Goddard Space Flight Center, Ames

Research Laboratory, Marshall Space Flight Center, and NASA headquar-

ters. The committee eventually became known as the Tindall committee,

named for its leading spokesman, H. W. Tindall of JSC. The purpose of

this committee was to attend monthly Viking management status reviews

and make cnmments, assessments and recommendations to the Project man-

ager relative to the Viking approach. The committee stayed in existence

for approximately two years, monitoring progress up to and including

the critical design reviews for Flight and Mission Operations software.

In late 1973 MMC brought in three software managers with different

backgrounds to perform a semi-independent audit of the software develop-

ment process. This included the head of Systems Data Corporation, an

IBM executive and a member of a software consultant firm.

Shortly thereafter the Viking Project Office conducted an independ-

ent audit of Flight software. For this purpose they brought in experts

from both industry and government.

Three software managers from JSC were brought to Denver at the

request of the Viking Project Office in the spring of 1974 to audit

the Mission Operations software system.

Finally, the Viking Project Office arranged for a group of experts

from GSFC to attend a presentation of the Flight and Mission Operations

software development process late in 1974.

In addition to these outside audits, the VPO, MMC and JPL managers

held monthly meetings to review progress. This included audits of the

major problem areas encountered by the Software System Engineers.

Finally, the MMC Mission Operations and Design director conducted

individual indepth audits on each program for which he was responsible.

DESCRIPTION: During the tenure of the Tindall Committee its members would

sit in and passively monitor the proceedings of the Flight Operations

Working Group, which consisted of the managers responsible for the

Viking Lander, Viking Orbiter, Viking Mission Control and Computing

Center, Tracking Data System and Deep Space Network software development.
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In addition, the committee attended the preliminary and critical de-

sign reviews for both Flight and Mission Operations software.

An early finding of the committee was that the multi-agency Viking

managers could not resolve problems amongst themselves. Month after

month the same problems remained unresolved. Furthermore, too many of

the problems were technical in nature. One major recommendation made

by the committee at this time was that management should concern itself

primarily with handling schedules and resources and make the SSEs re-

sponsible for the design and development process. In that way, manage-

ment would only be required to resolve those problems that the SSEs

could not resolve, which should greatly reduce their task. A second

recommendation was that the multi-agency Viking Flight Team be organized

immediately in order to develop a working rapport long before it was

needed to support the mission. Both recommendations were adopted.

The committee offered numerous suggestions to help resolve inter-

agency problems, influnced the Integrated Software Functional Design,

recommended that schedules be carried to several levels of detail (five

were adopted by Viking), and pointed out the need for a computer load-

ing study that covered the entire planetary operations phase on a day
by day basis.

The semi-independent audit sponsored by MO1C in late 1973 led to

the decision to reallocate resources to accommodate end-to-end tests

for the cruise, descent and planetary operations of the mission. The

auditors flatly told MC management that there was no way to know whe-

ther or not the system would work without such tests, and none had been

scheduled. The idea was not new, since it had been recommended earlier

by HMC software developers. The fact that it was repeated by an accre-

dited outside source provided the straw that broke the camel's back

in this area.

The independent auditors brought in by VPO to review Flight soft-

ware saw the need for the Systems Engineering director to place soft-

ware on an equal basis with hardware.
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The audit by JSC might have been more fruitful had it occurred

a year earlier. They recommended that individual program requirements

be constantly reviewed Lo try and weed out any unnecessary ones. Most

of the software had been developed by that time, so it was impractical

to make extensive use of the recommendation. Two programs were reviewed

with only minor success. JSC expressed concern over the inter-agency

integration task, but could offer no constructive comments on the sub-

ject. Finally, JSC stated that they believed the programmer, rather

than the engineer, knows best how to test a piece of software. MMC did

not accept this recommendation since they were primarily concerned with

the function the software was to perform, and the engineer knew the

functions. They required that the programmers deliver working software

to the engineer who then was required to acceptance test it.

The final audit conducted by GSFC came toward the end of the soft-

ware development process. For that reason it amounted to more of a

review than an audit. About all GSFC was able to comment was that a

sound approach had been taken and no major item had been overlooked.

The VPO, MMC and JPL managers frequently required that the SSEs

make semi-formal presentations both before them and before the cogni-

zant engineers and programmers. The intent of these presentations ef-

fectively made them status and design audits by management. The audi-

ence would comment, criticize and raise questions following each pre-

sentation. Action items would be assigned at these presentations to

M, resolve problems.

During the coding phase of operational software programs, the MO

and D director would notify the cognizant engineer of a program that

an audit of the program would be held in three days before the Mission

Director. At these audits the engineer had to demonstrate what had

been accomplished, what remained to be done, and how the schedule would

oe met. On a few occasions, when the Mission Director was in Denver,

the engineers were given only a two or three hour notice of such an

audit. On some occasions the directors were not satisfied that the

schedules supported the work to be done, based either on what had been

accomplished or on the amount of new requirements facing the engineer.
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In these instances the engineer was required to maintain a level 6

schedule, which broke the work assignments down to a daily basis over

a period of about a month.

QUALITATIVE RESULTS: The audits were extremely valuable to the Viking Pro-

ject and contributed directly towards the success of the mission.

Technical inter-agency software problems were resolved much easier

when the responsibility for handling them was shifted from the managers

to the SSEs.

The establishment of the Viking Flight Team early proved to be a

sound idea. The members of the team quickly realized that their re-

sponsibilities lay within the directorate and group to which they had

been assigned even when the group leader or director was from a dif-

ferent agency. By the time the VFT was needed, responsibilities were

well established and understood, which resulted in smooth operations

during the mission and quick response to anomalies.

The implementation of five levels of schedules played a major role

in developing the system on schedule.

The computer loading analysis study, conducted at the recommenda-

tior of the Tindall committee, led to the realization that the Viking

Project would have to install a third 1108 computer at JPL to meet mis-

sion timelines. The computer was installed, and subsequent events

proved that it was needed.

The scheduling of end-to-end tests for the Flight and Mission Op-

erations software systems may have made the difference between mission

success and mission failure. Although management was not convinced

that the tests, which were an unscheduled and expensive resource drain,

would do no more than give them a warm feeling that the system would

work, they nevertheless accepted the auditor's recomnendatlon. When

the tests were finally conducted, they revealed literally hundreds of

incompatibilities, errors and misunderstandings. Had the audit nor

been made, the tests would not have been conducted. In that event the

problems most likely would not have surfaced until planetary operations,

at which time they would have been extremely serious.
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By auditing software at the program level, the MO and D director

was able to reallocate resources to maintain schedules when it was

evident that an engineer had underestimated the scope of a task. Such

discoveries were made at these audits.

The value of audits by outsiders is that they will feel compelled

to find something that you are doing wrong. Therefore, if you conduct

such an audit and fail to get any recommendations of significance, the

probability that you are on the right track and doing a good job is

extremely high.

QUANTITATIVE IMPACT: The direct costs of the outside audits was equivalent

to hiring consultants for a few days. The indirect costs of the audits

was the time spent to prepare for and conduct them. Preparation was

generally easy, because the speakers had merely to discuss their accom-

plishments, plans and problems, all of which were very familiar. On

some occasions the speakers had to spend two or three days preparing

slides and viewgraphs. Since relatively few audits were held, the

total time consumed by them could not have exceed more than a few man

months.
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TECHNIQUE

NAME: GROUND DATA SYSTEM (GDS) TEST PROGRAM

SUMMARY: The GDS Test Program was a subset of the Flight Operations (FOS)

Test Program. The objectives of the GDS tests were to verify and demon-

strate the capability of the GDS to support Flight Operations Personnel

Test and Training (FOPT&T) and to verify the capabilities committed to

the Viking Project to support missi n operations. The GDS tests were

end-to-end tests of all earth based facilities which were required to

support mission operations and personnel training. The tests involved

all operational subsystems of the GDS including telemetry, tracking,

command, and monitor and operations control. Both real time and non

real time functions were verified, including the generation of VO and

VL command uplinks, products required for operational decisions, and

all simulation data required for VFT training.

APPLICATION CONSIDERATIONS: The GDS Tests proved to be invaluable in pre-

paration for the personnel training program. Numerous problems were

exposed in spite of the fact that, in theory, all capabilities which

were tested during GDS tests had been previously tested in some other

element of the FOS Test Program. Furthermore, though these tests were

classified as "engineering" tests, the training benefits which were

realized far exceeded expectations. The personnel training program

which followed was far more successful than anyone had expected.

RECOMMENDATION: The GDS Test Program exposed numerous technical problems

that required resolution prior to the start of the personnel training

program. It also provided invaluable training benefits for the Viking

Flight Team working in concert with the personnel of the institutional

facilities. The GDS Test Program was thus a necessary bridge between

the development tests and the personnel training tests. Without this

bridge, the personnel training tests would have had to deal with numer-

ous technical and procedural problems which could have jeopardized the

capability of the Viking Flight Team to adequately prepare for the

planetary operations.
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HISTORY: The need for a GDS Test Program was recognized in miJ 1972. The

objective of the GDS tests was to verify and demonstrate the readiness

of the GDS to support key milestones in the development of the FOS.

The tests were scheduled to occur in late 1974, following delivery of

all the software and hardware required to conduct Viking mission opera-

tions. The GDS tests would be preceded by various engineering and

operational tests conducted by institutional personnel of the Deep Space

Network (DSN) and the Viking Mission Control and Computing Center Sys-

tem (VMCCCS) including interface tests between the two institutions.

The GDS tests would be followed by the FOPT&T program in early 1975.

The FOS would then be operational prior to the launch of the first

spacecraft in August 1975. Further studies over the next year revealed

that this ambitious FOS development program could not be implemented

prior to launch. The delivery of the FOS was then divided into two

phases. The phase one delivery would occur prior to launch, and would

include all hardware, software, personnel and procedures required to

conduct launch and cruise operations. Phase two delivery would occur

after launch but prior to the start of planetary operations and would

include the remaining capabilities required to conduct planetary opera-

tions. The FOS Test Program, including the GDS Test Program, was suit-

ably modified to be compatible with the new FOS development approach.

The schedule risk implied by the phased development was recognized.

Accordingly, a subset of the planetary capabilities was scheduled to

be delivered in phase one, and the GDS Test Program was amplified to

include precursor tests of the planetary design of the GDS during the

preltunch period in order to identify basic problems and constraints

which may require a long lead time for correction. This subset included

DSS-14 in a planetary-like configuration (some planetary capabilities

were not available), and some elements of the Project software and

Simulation System.

The objective of the GDS Test Program thus evolved to the follow-

ing: rn verify and demonstrate the readiness of the GDS configurations

to support key activities in the development of the Viking FOS. The

activities are:
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a. Flight Article Compatibility Tests (FCT) with a Viking Lander,

a Viking Orbiter, and the compatibility test station MIL-71

at Kennedy Space Center (KSC).

b. Launch and cruise training exercises and flight operations

with the 64 Meter Deep Space Stations (DSS), i.e., DSS-14

at Goldstone, California; DSS-43 at Canberra, Australia, and

DSS-63 at Madrid, Spain and the prime 26-Meter DSS net; i.e.,

DSS-11 at Goldstone, DSS-42 at Canberra and DSS-51 at Madrid.

co Cruise flight operations with the secondary 26-Meter DSS net:

i.p., DSS-12 at Goldstone, DSS-44 at Canberra and DSS-62 at

Madrid.

d. Launch and cruise training exercises and flight operations

with the Near Earth Phase Network (NEPN) including facilities

of the Air Force Eastern Test Range (AFETR) and the Goddard

Space Flight Center (GSFC) used to acquire spacecraft data

prior to the initial acquisition by a DSS.

e. Planetary Verification Tests with DSS-14 prior to launch.

f. VFT planetary training exercises and mission operations.

DESCRIPTION: The Flight Operations System (FOS) Test Program for Viking

was defined in the FOS Test Plan, PL-3713006. This plan established

the overall objectives, purposes and scope of FOS testing. The Ground

Data System (GDS) Test Program, a subset of the FOS Test Program, was

defined in the GDS Test Plan, PL-3720313. This plan provided the ob-

jectives and description of each GDS test and established the facili-

ties required to support each test. The detail test objectives, accept-

ance criteria, test approach and Viking Flight Team (VFT) support re-

quirements for each test were defined in a GDS Test Script. The step

by step sequences required to execute each test were defined in the

test Sequence of Events (SOE).

Tests conducted prior to launch were designated "launch and Cruise

(L&C) Phase Tests" while those conducted during cruise to prepare for

the planetary operations were designated "Planetary Operation3 Phase

Tests". The Launch and Cruise Phase Tests included tests in
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support of FOS milestones (a) through (e) inclusive, as defined in the

previous section. These tests were divided into four distinct i

categories.

The conduct of the tests in all four categories were chronologi-

cally interwoven because of the planned delivery schedule of the vari-

ous GDS facilities. The more complex all-up system tests of each type

were, in general, preceded by prerequisite tests of reduced complexity.

The specific tests in each category are defined below:

Category I - Tests of the FCT Configuration

A GDS test (designated GDS 7.0) was performed to

verify and demonstrate the readiness of the GDS to

support FCTs. Simultaneous telemetry and command

functions were successfully performed with MIL-71

during this test. The sequence of telemetry data

states (data rate and format) was representative of

the sequences planned for the FCTs.

Category 2 - NEPN Tests

Two tests (GDS 8.1 and GDS 8.2) were performed with

the NEPN to support launch. The first test demonstra-

ted data flow from SIMCEN at JPL to the compatibility

test stations, STDN MIL and TEL-4, via MIL-71, and

the return of data to the VMCCC and MSA. The second

test attempted to demonstrate telemetry and tracking

data flow using the NEPN down range stations for a

representative launch sequence. It was discovered

that the telemetry data could not be frame synched

in the Mission and Test Computer Facility (MTCF).

Post test investigations revealed that a configura-

tion change was required at MIL-71 to correct the

problem. This configuration was made and successfully

demonstrated in a special test conducted in parallel

with the Flight Operations Personnel and Training test

DT-l. This configuration was then utilized with suc-

cess in the Operational Readiness Tests (ORTs) and
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Category 3 - Cruise Tests

Thirteen tests were performed to verify and demon-

strate the readiness of the launch and cruise con-

figuration of the GDS to support VFT launch and cruise

flight operations and training exercises. These tests

were conducted with the nine DSS facilities of the

DSN. The test designation, test type and applicable

DSS are identified in table ].

Table 1

Launch and Cruise GDS Tests

GDS Test Deep Space

Designation Test Type Station (DSS)

1.1 Telemetry DSS-11

1.2 Command DSS-11

1.3 Tracking DSS-11

2.3 Tracking DSS-14

1.4 Combined Systems DSS-II

3.4 Combined Systems DSS-42, DSS-43, DSS-44

DSS-61, DSS-62, DSS-63

and DSS-12

individually

3.5 Combined Systems DSS-42, DSS-43, DSS-61

& Multiple DSS-63, DSS-14 and DSS-11

Stations collectively with realis-

tic overlap

Tests 1.1, 1.2, 1.3 and 2.3 were performed to prepare

for the more complex Combined Systems Tests. All

tests were successfully performed and all test objec-

tives were met. Five tests were performed to verify

and demonstrate the operation of the planetary dJesign

of the GDS. The test designations, test type, appli-

cable DSS, and the mission phase simulated during the

test are identified in Table 2.
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Table 2

Planetary Verification Tests

GDS Test Test Type DSS Simulated Mission

Designation Phase

2.1 Telemetry DSS-14 Planetary-I VL and

1 VO serially

2.7 Combined DSS-14 Planetary-i VL and

Systems i VO serially

2.6 Telemetry DSS-14 Planetary-2 VOs and

1 VL simultaneously

9.2 Combined DSS-lI, DOY 175 of the Primary

Systems DSS-14 Mission Design (PMD)

9.3 Combined DSS-11 Planetary-2 VOs and

Systems DSS-14 1 VL simultaneously

Tests 2.1, 2.7 and 2.6 were performed to prepare for

the 9.2 and 9.3 tests by sequentially increasing the

complexity of test functions. These initial tests

were not totally successful; however, judgement was

made that the pioblems encountered were understood

well enough to permit implementation of the 9.2 and

9.3 tests. Tests 9.2 and 9.3 were accomplished suc-

cessfully with most test objectives satisfied. The

tests did demonstrate the integrity of the Planetary

Operations design of the GDS; however, GDS 9.2 demon-

strated that the VO simulation math model (OSIM) re-

quired significant development to be useful for Plane-

tary Operations training exercises, and that improve-

ments were required in usage of the General Purpose

Computer Facility (GPCF) in order to accommodate the

anticipated software loads. GDS Test 9.3 demonstrated

the need for analog recordings to recover data which

would otherwise be irretrievably lost in the event of
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failure of critical, non redundant equipment at the

64-Meter Deep Space Station. This capability was

added to the 64-Meter Stations in time to support

planetary operations and was utilized on numerous

occasions with varying degrees of success.

There were eight GDS tests performed during the Planetary Opera-

tions Phase Tests. The objectives of these tests were to verify and

demonstrate the readiness of the planetary configuration of the GDS,

including the Viking Project Simulation System (VPSS) to support the

planetary FOPT&T, and the readiness of the GDS to support planetary

mission operations.

GDS Test 10.0 - This test was performed to verify the operations

of the institutional portion of the VPSS (exclusive of the project sup-

plied spacecraft simulation models) interfacing in the long loop mode

with the compatibility test station (CTA-21) located at JPL. Telemetry

data states representative of planetary operations were demonstrated.

The responses of the DSN portion of the VPSS to control messages gen-

erated in the VMCCCS were verified.

GDS Test 5.1 - This test demonstrated that the VPSS, including the

institutional portion (MSIH) and the Project supplied spacecraft simu-

lation models, OSIM and LSIM, could interface in the long loop mcde

with a 64-Meter DSS to simulate a mission segment encompassing the Mars

Orbit Insertion (MOI) for spacecraft B. This test was accomplished

with DSS-14.

GDS Test 5.2 - GDS Test 5.2 verified the capability of the GDS to

process the spacecraft X-band products. This test was co:ducted during

scheduled Viking passes.

GDS Tests 5.31 (DSS-14) and 5.32 (DSS-43 and DSS-63 Individually) -

These three tests were structured primarily to verify readiness of the

planetary configuration of the GDS to conduct planetary flight opera-

tions. The maximum design loading conditions were imposed consistent

with the committed capabilities of the VMCCC Iad the DSN. Telemetry,

tracking, command and monitor functions were performed simultaneously.

Real time displays were generated in the MSAs. The generation of

telemetry data records up through and including Experiment Data Records
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(EDRs) and first order VL imaging products were verified. These data

records were generated from Intermediate Data Records (IDRs) which

were prepared by the DSN using interim IDR software. First order Viking

Orbiter (VO) Visual Imaging Subsystem (VIS) products were nor verified

because the capability was not yet delivered.

GDS Test 6.0 - This test was structured primarily to verify readi-

ness to support the planetary phase of VFT test and training. A seg-

ment of the Primary Mission Design (PHD) (as reflected in the Flight

Operations Personnel Test and Training (FOPT&T) test scripts) was se-

lected for simulation activity. The math models OSIM and LSIM were

used to provide the simulated telemetry data for this mission segment.

The test involved DSS-14, DSS-43, and DSS-63 in accordance with a repre-

sentative 24 hour time-line. Batch processing of software programs

representative of the selected mission segment was accomplished in the

Mission Control and Computing Facility (MCCF) 360/75 and GPCF 1108 com-

puters for downlink processing activities.

GDS Test 11.0 - This test was incorpocated into the GDS Test Pro-

gram in order to verify capabilities which were not available for GDS

Tests 5.31 and 5.32 and 6.0 to verify the untested capabilities (except

VIS first order processing) and to demonstrate the readiness of the

planetary configuration of the GDS to support real time and near real

time planetary operations. The requirement to test VIS processing had

not been incorporated into this test in view of the extensive VIS data

processing performed as a normal part of cruise operations. This test

verified the suitability of special GDS configurations which had been

devised to support three critical mission activities - (1) Mars Orbit

Insertion (2) Viking Lander Direct Link Transmissions and (3) Trans-

mission of critical data over the Viking Orbiter high rate subcarrier.

QUALITATIVE RESULTS: This section describes the specific benefits derived

from the GDS Test Program, and a critique on the successes and diffi-

culties encountered.
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1) Numerous hardware and software design deficiencies were ex-

posed during the tests. In most cases, these deficiencies

were corrected prior to the start of VFT training. The train-

ing exercises were thus conducted with a minimal number of

incidents caused by design errors, permitting the VFT to con-

centrate on their training objectives.

2) During conduct of the launch and cruise phase GDS tests, a

list of liens was compiled for unexpected characteristics of

the GDS. Each lien was dispositioned in one of two ways:

the lien was removed by corrective action for the observed

characteristic, or the lien represented a constraint or char-

acteristic which must be observed by the VFT in planning and

conduct of mission operations. As a result of periodic re-

views on the status and disposition of these liens, a deci-

sion was made to generate a document which compiled all guide-

lines, constraints and limitations on the operation of the

GDS which were identified during all Ground Systems Test

(including the GDS tests and all other tests of the FOS test

program) and which must be observed during Viking flight opera-

tions. This document, VFT-003 Viking 75 Project Guidelines

for the Operation and Use of the Viking Ground Data System,

was published on 24 June 1975 and was continually updated

throughout the planetary development phase and planetary

operations of the Viking Project.

3) Due to limitations of the simulation system, some capabilities

w!Kch were required for mission operations were not tested

during the GDS test program. The simulation system was ade-

quate to perform end-to-end tests of the real-time portion

of the GDS, but the data was not adequate in some cases to

generate non real time products. In one particular instance,

orbiter image data (VIS) processing, the lack of adequate

testing resulted in the discovery of serious VIS processing

problems during cruise operations. Fortunately, the exten-

sive processing of VIS data during cruise operations enabled
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most of these problems to be solved prior to the start of

the planetary operations wherein the VIS Data was critical

for selection of a landing site. This panic could have been

avoided if the simulation system requirements were more care-

fully reviewed early in the development cycle and all defi-

ciencies eliminated. The importance of an early and sustain-

ing interraction beLween the developers of the simulation

system and the users bthe VFT, including the GDS Test planners)

cannot be overemphasized. In the Viking program, this inter-

action was not as thorough as it should have been which not

only caused some test deficiencies as described above but

also led to the necessity for a multitude of changes in the

simulation system during the GDS Test and FOPT&T period.

4) Numerous GDS tests, special tests conducted by GDS personnel,

and tests conducted by the VMCCCS personnel were run to as-

certain Flight Support 360/75 computer loading guidelines.

(The multimission real time computer) Each of these tests

had slightly (or markedly) different results because the load-

ing on the computer proved to be sensitive not only to the

input data and the data quality, but also to the manner in

which the computer is utilized by the various users. As a

result, the loading guidelines changed through an evolutionary

process by the identification and measurement of the loading

parameters until finally a set of guidelines was established

that satisfied both the needs of the Viking Project and the

MCCC.

5) During the course of preparation for planetary operations,

the GDS configuration (hardware configuration and MOSS)

changed as the detail planning matured. The GDS Test Program

was initially scheduled to be cumplete prior to the start of

the VFT planetary test and training program. Before the pro-

gram was complete, it became clear that additional tests were

required, and hence GDS Test 11.0 was incorporated into the

program. Fortunately the resources, both GDS and personnel,
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could accommodate this addition. In the future, a GDS test

should be planned as a contingency just prior to the start

of operations to verify the final hardware/software configura-

tion.

6) During the planetary GDS test period there were three major

activities competing for the GDS and VFT resources:

a) Conduct of the GDS tests including post test data proces-

sing;

b) Preparation for the VFT Planetary test and training pro-

gram;

c) Conduct of Viking cruise operations.

These three competing activities taxed some elements of the

VFT to the limit. As a consequence, some of the post test
0

data processing activities as defined in the GDS test scripts

were not completed prior to the next milestone (although, in

most cases, complete enough to make meaningful conclusions).

Moreover, when incompatibilities were discovered fixes had

to be devised in an unexpectedly short time period to prepare

for the next activity. The GDS and VFT did achieve the state

of operational readiness on schedule. However, in retrospect,

the planetary GDS test program should have been started one

month earlier to reduce the conflict for resources and permit

the completion of all planned test activities. This more

conservative approach would have increased the benefits of

the GDS Test Program.

7) One of the fundamental objectives of the GDS Test program was

to verify the readiness of the configurations of the GDS to

support the VFT test and training. Hence, the VFT had to

implement the test sequences under the direction of QI per-

sonnel without the prior benefit of training. This proved

to be a difficult challenge to which the VFT favorably re-

sponded. The training benefits were important not only during

the Launch and Cruise Phase GDS Tests, but also during the

planetary phase wherein the VFT had experiance in cruise
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operations. The planetary configuration of the GDS was far

more complex than the cruise configuration. Furthermore, in

many instances, the planetary modes were contrary to the

cruise experience of the VFT, thus leading to confusion with

regard to specific instructions in the test SOEs. For example,

during cruise the HSDL was customarily used for VO high rate

telemetry data at 1 Kbps and 2 Kbps. In the planetary opera-

tions VO high rate data is normally routed over the WBDL, ir-

respective of data rate. Thus, an invaluable by-product of

the GDS Test program was the experience gained by the VFT

and these benefits were realized during the very successful

test and training program which followed.

8) The test schedule philosophy required scheduling retests for

all of the complex combined systems tests. This provided

the assurance that resources would be available for a retest

in the event that (1) the test was not successful, or (2)

problems were identified in this test which required fixes

or workarounds. In this manner, difficult scheduling pertur-

bations on short notice were avoided. If the retest was not

required, then the facilities were released back to the in-

stitutions to support other activities. In the main, this

philosophy proved to be prudent. )ore than half of the sched-

uled retest periods were actually needed. In two cases, ad-

ditional retests were required beyond the planned retest

periods. These two retests were easily accommodated, because

there remained some unused retest periods from other tests.

QUANTITATIVE IMPACT: There were 19 GDS tests and eight retests conducted

during the launch and cruise phase, not including the two tracking

tests conducted with a flight spacecraft. The total test hours corre-

sponding to these 27 tests was approximately 260 hours, not including

countdown activities or pre and post-test data processing. Three of

the 19 tests involved the generation of non-real time products follow-

ing the tests. The launch and cruise phase tests were conducted
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between February 1975 and July 1975. During this period, the manpower

from the GDS test organization was nine engineers and one aide. There

were approximately eight VFT personnel that supported each test, in ad-

dition to the dozens of institutional personnel (DSN and VMCCCS). The

time required for each of the VFT support personnel to prepare for the

test was approximately eight hours. The manpower required to generate

the post-test data procucts was not significant.

Following completion of the launch and cruise phase tests, the

GDS test organization was reduced to three engineers and one aide to

prepare for the planetary phase tests. These tests were conducted be-

tween November 1975 and May 1976, with the peak load occurring between

December 1975 and February 1976. During the planetary phase, seven

tests and four retests were conducted. The total test time was approxi-

mately 140 hours. The manpower required for post-test activities was

significantly greater than that required for the launch and cruise

tests. An estimate of the number of manhours is not available, since

no accounting records were kept. A reasonable guess is two to three

manmonths for VFT personnel. As noted in the previous section, the

GDS test activity competed for resources with other activities, and

not all planned post-test activities were actually accomplished. Two

of the Planetary GDS Tests utilized the spacecraft simulation models,

OSIM and LSIM. The time required by the model operators to prepare

for the teats was significant; however, there are no specific account-

ing records from which to generate actuals. A reasonable guess is

four manmonths.

In summary, the GDS Test Program expenditures are estimated as

follows:

1) Twenty-six tests plus 12 retests for a total of 400 hours of

test time;

2) Approximately 600 hours of DSS time including 400 hours of

test time and 200 hours of countdown;

3) Approximately 1000 hours of'360/75 computer time including

780 hours of test time, 50 hours of countdown, and 120 hours

of batch processing and math model preparation;
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4) Approximately 720 hours of Univac 1530 computer time includ-

ing 620 hours of test time, 50 hours of countdown, and 50

hours of non-real time processing;

5) Approximately 670 hours of Univac 1219 computer time includ-

ing 620 hours of test time and 50 hours of countdown;

6) Approximately 50 hours of Univac 1108 computer time for batch

processing;

7) Approximately 92 manmonths for GDS Test Engineers;

8) Approximately 18 manmonths for VFT support personnel.
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TECHNIQUE RELATIONSHIPS TO STRUCTURED PROGRAMMING SERIES

The techniques described in this report have at most an indirect rela-

tionship with the Structured Programming Series, as described in RADC-TR-74-

300 (Volumes I through XV). The primary reason for this is that Viking did

not require that structured programming techniques be followed. Top down

modular designs were used for the Flight and System Test Equipment software

systems, each of which operated in a single computer. In addition, these

systems were developed in assembly language code. A top down integrated

functional design approach was taken to structure the multi-computer/operat-

ing system/program Mission Operations software system. Although most of

this software was written in FORTRAN, structured programming was not invoked

because a significant number of programs were obtained by modifying exist-

ing code and because the guidelines and constraints imposed by the Viking

Mission Control and Computing Center were restrictive relative to program

size and run times. Tables 1 through 4 cross references the techniques

described herein with appropriate sections of the Structured Programming

Series.

Table I

Mission Operations Techniques Structured Programming Series
Volume/Sections

Overview 1/2; IX/2, 3

High Order Language I/App A

Dif. Dev/Int Sites I/App A

Computer Loading Pred. IX/3, 4

Lander Command Simulation

Prog. & Data Base I/F Mgmc 1/2

On-Line Data File Mgmt 1/2

Int. S/W Functional Design 1/2; IX/3

Mission Build Process V/2, 3; VI/4

Cog Eng/Cog Prog. 1/2; X/l, 2

S/W Data Base Document 1/2

FO S/W Subgroup 1/2; IX/2; X/, 2
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Table 2

Flight Software Techniques Structured Programming Series
Volume/Sections

Overview IX/3; X/l, 2

Emulated On-Board Computer II

VL Comp. EXEC Prog.

H/W S/W Int. Lab.

Ind. Verifier

Timing/Sizing Monitoring IX/4

Reg. Gen. for Flt H/W & S/W

Table 3

STE Software Techniques Structured Programming Series
Volume/Sections

Overview IX/3; X/l, 2

Test Data Base

Viking Test Language 11/1

Test System Simulator II/1

Fit Sys. Test & C/O

Sci. Inst. Perf. Verif.

Viking Test Seq. Gen 11/1

Table 4

Management Techniques Structured Programming Series
Volume/Sections

SCR/Impact Sum. IX/3

Viking S/W Standards 1/3; VII/3

FO S/W Plan IX/2

S/W Dev. Mgmt Visibility 1/2; IX/2

Comp. End-to-End Testing XV/2

Tech & Mgmt Audits IX/2

Ground Data System Testing XV/2
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COMMENTS RELATIVE TO STRUCTURED PROGRAMMING SERIES

Volume I, Section 2: Viking interfaces were worked early and did not cause

a delay in integration. Test data often was poor. A modular integra-

tion approach was taken. The Mission Build process provided the Pro-

gramming Support Library function.

Volume I, Section 3: Standards relative to code were not enforced.

Volume I, Appendix A: Code efficiency was a function of programmer skill

and clarity of requirements. Compilers caused some inefficiency pro-

blems.

Volume II, Section 1: Emulation and special processing techniques were em-

ployed to check Flight Code and STE test sequences before they were

used in test.

Volume V, Sections 2, 3: The Mission Build process provided for Programing

Support Library type functions.

Volume VI, Section 4: The Mission Build process provided a library organiza-

tion similar to that described.

Volume VII, Section 3: Viking found it necessary to develop each type of

document described.

Volume IX, Section 2: Viking applied the four management functions described.

Auditing played a major role in supporting the control function.

Volume IX, Section 3: Viking followed the basic development cycle described.

The reasons for source code updates was primarily caused by require-

ments changes. Pr..gram improvements and program errors also contribu-

ted significantly.
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Volume IX, Section 4: Data was collected relative to computer loading and

associated human activities; it proved to be very valuable. Timing and

sizing dati was also needed to prevent overloading the Flight computer.

Volume X, Sections 1, 2: A process similar to the Chief Programmer Team

description was used to develop both the STE and Flight software sys-

tems. This tended to reduce upper managements visibility into the de-

velopment process. The Software System Engineer/Cognizant Engineer/

Cognizant Programmer philosophy used to develop the million plus source

card Mission Operations software system significantly differed from

this approach. It proved to be highly successful.

Volume XI, Section 2: Viking experienced most, if not all, of the estimating

problems listed. Because the development period spanned a long period

of time, the Project Manager applied a rather interesting approach to

controlling costs. Every six months or so, the budget allotted to man-

agers would be ordered cut. The managers then would reassess their

resources and drop efforts that had earlier appeared sound, but with

time did not prove to be too practical. In that way, Viking was able

to adapt to changes in the state of the art and maintain sufficient

resources to implement them without experiencing serious overruns in

most software areas.

Volume XV, Section 2: The end-to-end and ground data support tests, con-

sidered together, provided the actual validation tool for Viking. This

was not foreseen until midway through the development phase, and was

not recognized until the tests were actually performed.
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RECOMMENDATIONS FOR AIR FORCE APPLICATION

Each of the techniques described in this technical report are appli-

cable to specific situations that can arise during the development of a soft-

ware system. The primary value of the report should be to increase the

ability of the Air Force to understand the nature of software development

and to apply this knowledge to recognizing those items that can and have im-

pacted costs and schedules. The following recommendations are made relative

to software management functions:

I) Follow a top down development cycle that includes the following

phases

a. Mission Definition

b. System Requirements

c. System Design

d. Module Requirements

e. Module Design

f. Code and Debug

g. Module Test

h. Subsystem Integration

i. System Integration

J. Mission Test

2) Write a software management plan that defines and can control the

development cycle from requirements through final system delivery. The

plan should be geared to the software task at hand. At a minimum it

should specify management roles/responsibilities, documentation require-

ments, developmental milestones, any standards that will be imposed,

reviews that will be required, baselines that will be established, the

software control process, the change control procedure, the level of

testing that will be required, and delivery procedures for the soft-

ware end product.

3) Establish meaningful milestones that can be measured. Items such

as documentation release, approvals, reviews, baselines, deliveries

and tests are useful in this context.
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4) Don't wait until the test and integration phase to find ou't ,if

the software system will support the mission. Determine as early as

possible if operational problems will exist. Computer loading and

operational analyses can be used to support this function.

5) Stress the importance of requirements to be complete, accurate and

precise. They should go beyond the technical needs for the software

and address such items as all known constraints, human engineering pro-

blems and test considerations.

6) Establish baselines to control requirements, design and end

products.

7) Place requirements under control and don't permit changes to them

to be approved until their impact on costs, schedules and resources

are understood.

8) Stress the importance of designing to meet th% requirements. Also

stress the importance of designing to take advantage of the target

computer characteristics.

9) Don't permit coding to begin until the design has been approved.

10) Establish an independent test and integration team to test the

software eaiinst requirements. Let the programmers test the roftware

against its design.

11) Haintain central sources for requirements and data.

12) Gear configuration management to bringing software under control

as soon as practical. Do not begin formal integration until the soft-

ware is under control (i.e. - out of the hands of the programmers).

13) Stress the importance of test data. Begin the effort to collect

it early in the development cycle. Avoid the use of scaffolds (i.e. -

fake, hand generated type datA) wherever possible. If they are neces-

sary, have them developed independent of the programmer responsible

for the software that will process them.

14) Plan on uncovering errors during every phase of test and integra-

tion. Greater emphasis on the requirements/design phase should reduce

the number and seriousness of errors.
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In addition to the above it is recommended that the Air Force adopt a

policy of hiring independent software experts to audit the development ap-

proach and problems faced by contractors responsible for building large

and/or complex software systems. The auditors should have experience in

developing similar systems, and the same auditors should not be used over

and over again. The audit report should be made available both to the Air

Force and to t'e contractor.

No recommendation is offered relative to which is best - the chief pro-

grammer approach, the Software Chief approach (refer to STE and Flight over-

views), the SSE/CE/CP approach (refer to Flight Operations Software Subgroup

and Cognizant Engineer/Cognizant Programmer techniques), or the software

pool approach. The size and/or nature of the software zystem will influence

most ccntractors as to which approach is most appropriate. In any event,

the Air Force should recognize that each of these approaches are sound, and

the selection of the particular approach should be left up to the software

developer.

Since Viking did not require structured programming techniques be

followed, no recommendation can be made relative to their value. However,

some techniques associated with structured programming were followed. These

included modular design, in-line procedures, minimizing the use of uncondi-

tional transfers, and code walk-throughs. All of these features tended to

improve software reliability.
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RECOMMENDATIONS FOR FURTHER STUDY AND ANALYSIS

1. The data driven design concepts used for the flight and test software

systems proved operationally to be extremely practical. Modifications to

lander hardware components could easily be tested by merely changing data

base items. Significant and safe changes to landed operations were avail-

able to the Viking Flight team, who uplinked 60000 words of code controlling

data modifications to each of the Viking Landers. It is therefore recom-

mended that the Air Force study the influence that designing requirements

to be data rather than code has en system reliability, schedules and costs.

2. The issues involved with software portability need further study. Em-

phasis should be placed on systems as well as programs. Topics that should

be addressed include progranmer education, pathfinder studies, design stan-

dards, language choices, phases of testing, data base management, interface

requirements, translation techniques, and methods that can maintain near

optimal performance across differing computer capabilities.

3. The concept of attempting to write a Users Guide as part of the require-

ments phase should be studied from human engineering and software reliability

point of views. Such a technique could prove to be cost effective from a

software change point of view.

4. The relative values of software documentation should be studied. This

would include establishing minimal documentation requirements, concepts for

reducing the amount of documentation and increasing reliability through cen-

tralization, determining how long documents should be maintained by type, and

setting standards far the content, control and organization of the documents.

5. A study to determine the value of a Chief Programmer approach as a func-

tion of the size and scope of the software task, especially as it relates to

software only or software/hardware development, should be made. Particular

emphasis should be placed on determining its impact on management visibility

during the development phase. Methods for improving the ability of the soft-

ware developers to understand technical and human engineering requirements

should be addressed.
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6. A study should be conducted to determine aids, mechanisms, tools and

procedures that can be used to provide for early software control to improve

system reliability.

7. A trade-off study on the types of functions where assembly language is

cost effective over HOL should be msde. The average assembly language pro-

grammer is of higher quality than the average HOL programmer. In all proba-

bility, the bit manipulating Viking Lander decalibration and decommutation

program would have been better designed, smaller and more efficient if the

original requirement had been to write it in assembly language rather than

FORTRAN.

4
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ACRONYMS AND NON-STANDARD ABBREVIATIONS

AFETR Air Force Eastern Test Range

AGE Automated Ground Equipment

AHCF Analog/Hybrid Computing Facility

BCD Binary Coded Decimal

CCDU Computer Control and Display Unit

CDC Central Data Corporation

CE Cognizant Engineer

CP Cognizant Programmer

CPU Central Processing Unit

CRT Cathode Ray Tube

DART Dynamic Algorithm Replacement

DAS Direct Access Space

DCE Data Conversion Equipment

DSI Data Systems Integration

DSN Deep Space Network

DSPE Data Systems Project Engineer

DSS Deep Space Station

EDR Experiment Data Record

FCT Flight Article Compatibility Tests

FIFO First In First Out

FOPT&T Flight Operations Personnel Test and Training

FOS Flight Operations System

FOWG Flight Operations Working Group

FRD Functional Requirements Document

GCF Ground Communication Facility

GCSC Guidance, Control and Seluencing Computer

GDD General Design Document

GDS Ground Data System

GPCF General Purpose Computing Facility

GPSSH General Purpose Simulation System Modcl

GSFC Goddard Space Flight Center

HOL High Order Language
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HSDL High Speed Data Line

ICCB Integration Change Control Board

ICS Interpretive Computer Simulation

ICSSE Integrating Contractor Software System Engineer

IDR Intermediate Data Record

IPDS Interface Point Data Set

IPL Image Processing Laboratory

I/O Input/Output

lOP Input/Output Processor

IRU Inertial Reference Unit

ISAM Index Sequential Access Method

ISFD Integrated Software Functional Design

JPL Jet Propulsion Laboratory

KSC Kennedy Space Center

L&C Launch and Cruise

LCOMSM Lander Command Simulation (program)

LOL Low Order Language

L/OST Lander/Orbiter Software Test (plan)

LPM Line. 7er Minute

LRC Langley Researc' Center

MCCF Mission Control and Computing Facility

MMC Martin Marietta Corporation

MO&D Mission Operations and Design (directorate)

moSS Mission Operational Software System

MSA M:ission Support Areas

FgrCr Mission Test and Computing Facility

NEPN Near Earth Phase Netw,,-rk

NOCC Network Orerations C'ntrol Center

OC/MSM Orbiter romputer Simulation (program)

OLDFKS On-L'.ne Data File Management System

ORT Operational Readiness Test

OS Operating Sy.item

PMD Prelimlrary Mi:ssion Design

PTC Procf Test Capsule

RA Radar Altimeter
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RARS Radar Return Simulator

RLS Reactica Control System

RTPH Real-Time Program Hanagement

SACT Status and Criteria Table

SCR Software Change Request

SDBD Software Data Base Document

SFD Software Functional Description

SOE Sequence of Events

SRD Software Requirements Document

SSE Software System Engineer

STACOP System Test and Checkout Program

STE System Test Equipment

SWSG Software Sub-Group

TDE Terminal Descent Engine

TDLR Terminal Descent Landini Radar

TDS Tracking Data System

TR Translation Control Block

TRCB Transfer Control Block

TSE Test Support Equipment

TSS Test System Simulator

UAT Users Acceptance Test

UVT Unit Verification Test

VADF Viking AGE Pzcommutation File

VAGF Viking AGE Group File

VAIF Viking AGE Interface File

VCS Viking Change Summary

VDA Valve Drive Amplifier

VFT Viking Flight Team

VIC Viking Integration Change

VIS Viking Imaging Subsystem

VL Viking Lander

VLC Viking Lander Capsule

VLSSE Vikinig Lander Software System Engineer
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VMCCC Viking Mission Control and Computing Center

VO Viking Orbiter

VOSSE Viking Orbiter Software System Engineer

VPO Viking Project Office

VPSS Viking Project Simulation System

VSIG Viking Software Integration Group

VTL Viking Test Language

VTOC Volume Table of Contents

WBDL Wide Band Data Line
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METRIC SYSTEM

BASE UNITS:

Quantity Unit SI Symbol Formula

length metre m
mass kilogram kg
time' sefond a

eledtrm current ampere A
thermodynamic temparature kelvin
amount of substance mole mol
luminous intensity candela cd

SUPPLEMENTARY UNITS:

plane angle radian rad

solid angle steradion s

DERIVED UNITS:

Acceleration metre per second squared n'

activitV (of a radioactive source) disintegration per second (disintegrationi's

angula r acceleration radian per second squared rad's

angular velocity radian per second radii

area square metre m

density kilogram per cub-.t metre kgwm

electric capacitance farad F A-saN

electrical condutlance siemnns S AN
electric field strength volt per metre M

electric inductancec henry It V-s/A

electric potential difference volt VW'A
electrii resistance ohm V-A

electromotive fort e volt W/A

energy toleI k
entropy toule per kelvin K

force newton N k!:-Mls

fre'quency heri Ilz (cycle~s

illuminance (lux lx !mJM

luminance candela per square metre cd/m

luminous flux lumen Imt cd-sr
magnetic field strength ampere per metre Alm
m~tgnetic flux weber WYb V-a

Magnetic flux density teala T Wb/m
m#'gnetomotive force ampere A)I
power watt W i

preisure Pascal -s
quantity of electricity coulomb C As

quantity of heat toule' N-m

radiant intensity watt per steradian W'sr

specific heat joule per kilogram-kelvin l'kg.K

stress paical I'a Nim

the-rmal conductivity watt p.*r metre-kelvin W'~m-k

ve-lot i1V metre per set tind MIS

%isi osit'.. dynamic past al-second Pa.$

viscosity. kinemalti Aquare' metre per set ond mS

voltage votn '
volume cubic metrem
wavenumber rec iprocal metre I wevOVy

"ork joiule' I N-in

St PREFIXES:

MiuIt ip icat ion Fadoi rs l'rnfit NI Symixol

1 000 0(j O1(1( 000 'tr Ii~cr

I0 0cI000 00 W i gig& t.

1 000 000~ tir cong M
I 00(1 i kilo k

100) Ill' hirrto h
10 to, uleks dat
o(110 ii lrdt* d

001 to Pnnt* I

(1001 to-, milli m
0(100001 - 10 1 Micro 0

0.04t0000IG001 - 0-1 nano r
0 000 000t000 on1 10.13 pif0 p

(I 000 000 onol I H 14)on0I to-,' formil
(I ofitI (104 000 000~ 0410(01 Ill 14t

T,p b.. aviiiclec where possibl.
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MISSION
Of

Rome Air Development Center

RAWC plans and conducts research, exploratory and advanced
development programs in command, control, and conminications
(C3) activities, and in the C3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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