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SECTION I

INTRODUCTION

1.2 OVERVIEW AND TECHNICAL APPROACH

The extended Kalman filter (EKF) is a general non-
linear estimation technique which can be applied to the prob-
lem of estimating the aerodynamic coefficients of a body from
free-flight measurements of its motion. The basic technique
can handle a wide range of nonlinear aerodynamic models and
trajectory measurement systems, and it accounts for random
errors in the trajectory measurements, stochastic disturbances
to the body's motion, and a priori information about the aero-
dynamic coefficients to be estimated. This report describes
an application of the EKF to the estimation of the aerodvnamic
coefficients of a six-degree-of-freedom rotationally symmetric
rigid body, based on discrete free-flight trajectory measure-
ments, such as those made at the Air Force Armament Laboratory
(AFATL) Aeroballistic Research Facility test range. These
measurements consist of three spatial positions and three
angular orientations, relative to a fixed inertial coordinate
system, and time-of-flight at 50 downrange positions along
the trajectory. The algorithm incorporates a stochastic mea-
surement model that approximates the conditions which exist
at the test range.

In addition to estimates of the projectile aero-
dynamic coefficients, the EKF algorithm provides an estimate
of the rms error associated with each parameter estimate.
Algorithm performance is evaluated by estimating the aero-
dynamic coefficients from synthetic, computer-generated tra-
jectory data. These data are derived from the same projectile
dynamic model that is used to design the filter algorithm.
This report presents evaluaticn results including assessments
of the accuracy of the estimates; the consistency between the
estimation errors and their standard deviations computed by
the filter; and the sensitivity to projectile trajectory,
measurement noise level, and initial conditions.

1.2 ORGANIZATION OF THE REPORT

Section II of this report summarizes and discusses
the equations of the extended Kalman filter and provides the
mathematical basis for its application to the estimation of
aerodynamic coefficients. Section III describes the details
of the projectile dynamic model and illustrates the applica-
tion of the EKF technique. Performance and sensitivity study
results are given in Section IV, and Section V summarizes the
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ok conclusions of the study and provides suggestions for future
238 related investigations and applications of the EKF parameter
F estimation technique. Section VI presents the recommendations
S0 resulting from this effort. Finally, Appendix A gives some
i of the detailed equations required to implement the algorithm.
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o SECTION II

b THE EXTENDED KALMAN FILTER

The extended Kalman filter is an extension of optimal
k! (minimum-variance) linear filtering theory to problems which
L i involve significant nonlinearities, e.g., the projectile aero-
dynamic coefficient estimation task. This section provides
the background, mathematical models, and notational conven-
tions needed for understanding the EKF algorithm developed in
P i this study. The discussion assumes a basic familiarity with

g ! random variables and state-space notation; additional details
A can be found in References 1 through 8.

2.1 KALMAN FILTER EQUATIONS

AT

To apply Kalman filtering theory to any estimation
problem, it is necessary to derive a linear, stochastic, first-
order, vector matrix differential equation which models the
nanner in which the system states interact and propagate as a
function of time. For linear systems, this equation has the
¥ general form

; X(t) = F(t)x(t) + G(t)w(t) + u(t) (1)

where x(1) is an nxl column vector representing the system
§ state, F(t) is an nxn dynamics matrix which defines the inter-
7 action of the state vector components, and w(t) is a pX1
:1) column vector of white gaussian noise inputs such that*

E[w(t)] = 0; Coviwl= Elw(t)w(1) ] = Q(t)s(t-1) (2)

The matrix G(t) is an nxp distribution matrix which indicates
how each component of w(t) affects each component of the system
; state derivative, and u(t) is a nx1 column vector of known

i system inputs. Note that the ¥, G, and Q matrices may be

% time-varying. For a projectile model, the elements of the
State vector x will typically be prOJectllo positions and
velocities, the elements of w will be random inputs such as
wind disturbanCPﬁ and turbulence effects, and the elements of
u will be known inputs such as average wind velocity.

*The symbol E[ ] denotes mathematical expectation; Cov (w]
denotes the covariance matrix of w.

kil i ot 2 o .




At discrete instants of time, tx, it is assumed that

measurements of linear combinations of the state variables
are made. The equation describing this measurement process
has the general form

B ™ ket S 35

where zy is a vector of r measured quantities at time tk, H
is an rxn observation matrix describing the linear combina-
tions of state variables which comprise Zy in the absence of

k

noise, and Vi is an r vector of zero mean gaussian measurement
errors with a covariance matrix, Rk’ defined by

T 10} ; k # 3
E[sz.] = (4)
- Rk y o E= 3

At any time t, the objective of optimal estimation
theory is to process all the measurements taken up to that
time and produce an estimate &(t) of the system state x(t)
having minimum error, in a statistical sense. The optimiza-
tion criterion most often chosen is that of minimizing the
mean square estimation error. This minimum mean-square error
estimate is calculated with the Kalman filtering algorithm.

As measurements become available, there is essentially
an instantaneous change in the knowledge of the state i(tk)-
Denoting the optimum estimate of §(tk) just prior to the
availability of 2y as gk(-) and the optimum estimate of the
state vector immediately after processing Z) as gk(+), the
Kalman filter generates the optimum estimate of the system
state according to the following algorithm:*

X(t) = F(OX(t) + u(t) ; X(t,_ 1) = X _,(+) (5)

X (%) = X (=) + Kk[gk - ukgk(-)] (6)

*Only the continuous form of the Kalman filter with discrete
measurements is considered heoere,

1
3
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where kquation (5) is used to calculate the estimate between
measurements and Equation (6) is used to update the estimate
when new data is received at each time tk‘

The nxr matrix Kk is the Kalman gain matrix. Let
X(t) denote the error made in estimating x(t), i.e.,

X(t) = x(t) - x(t) (7)

and let

P(t) = cOv[g(t)] = E[g(n)g(t)T] (8)

Kk is then computed using the following equations:
P(t) = F(t)P(t) + P(L)F(t)T + G(£)a(t)G(t)T (9)

with P(tk_l) = Pk_1(+) and
-1
K, = Pk(-)Hg[HkPk(—)HE + Rk] (10)
P (+) = [I i Kka]Pk(—) (11)

where Pk(—) is P(t) Jjust before the measurement at time tk and
Pk(+) is P(t) Jjust after tk' Equation (9) is used to calcu-

late the estimation error covariance between the measurements;
Equations (10) and (11) are used to calculate the Kalman gain
matrix for use in Equation (6) and to update the estimation
error covariance matrix when a measurement arrives.

Figure 1 illustrates the structure of the optimal
linear Kalman filter. This estimation algorithm has two dis-
tinct phases. Equations (5) and (9) describe the time evolu-
tion of the state estimate and its error statistics between
measurements under the influence of system dynamics and noise,
This process is commonly referred to as extrapolation.
Equations (6), (10), and (11) indicate how the estimate and
its error covariance are updated at the measurement time to
reflect the new information available. The algorithm is opti-
mum in the minimum mean-square error sense as long as the
assumed mathematical model for the system is accurate.
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Figure 1. Structure of an Optimal Linear Kalman Filter

A unique feature of the Kalman filter is that the
performance analysis is inherent in the algorithm for Kk.

The matrix P(t) is a complete description of the second-
order error statistics of the estimate. 1In particular, the
diagonal terms of P(t) represent the minimum mean-square
error obtained in estimating each component of x(t). Note
P(t) is specified for all time by Equations (9), (10), and
(11). Knowledge of neither x(t), x(t), nor Zy is required

to obtain a performance analysis for the optimal filter.

In other words, the performance of the filter is completely
determined by its mathematical model, assuming that this
model accurately represents the system which generates the
measurement data.

In summary, the following conditions must be met to
implement an optimum Kalman filter:

° The system must be linear.

° The matrices F(t), G(t), and u(t)
must be known functions of time.

® The vector input w(t) must be a zero
mean gaussian white noise process
with known covariance matrix,

Q(t)s(t-1).

° The measurements must obey Equation
(3), and Hk must be known for all k.




® The measurement errors Vi must be a

gaussian white sequence with its co-
variance matrix, R and its mean

known. i

) To initialize the filter equations,
the initial statistics of x must be
known.

If the aerodynamic coefficient estimation problem
could be put into a form which met all of the conditions
listed above, the design of an optimal estimator would involve
only the direct implementation of the Kalman filter equations.
However, the projectile dynamics considered here are nonlinear;
the linearity requirement is violated. Furthermore, the ob-
Jjective of estimating the projectile aerodynamic coeificients,
which is tantamount to estimating parameters of the matrix F
in Equation (1), introduces additional nonlinearity. One
means of overcoming these problems is the extended Kalman
filter described in the next subsection.

2.2 EXTENDED KALMAN FILTER EQUATIONS

Since the problem under consideration cannot be
realistically modeled as a linear system, a nonlinear estima-
tion technique must be used. One method is the extended ]
Kalman filter which is essentially a conventional Kalman
filter design applied to a mathematical model of the system |
obtained by linearizing the system about the current state :
estimate. The structure of this algorithm is illustrated in
Figure 2. Note that, because of the linearization procedure, i
tlie covariance calculation is now dependent upon the state
estimate. Consequently, it is not possible to calculate the
covariance matrix, as a function of time, off-line since it
is dependent upon the measurement data. The extended Kalman 1
filter yields very nearly optimal estimates if the lineariza-
tion is accurate, i.e., as long as the state estimate is close
to the true system state.

A reasonably general mathematical model for nonlinear
stochastic systems is given by the equations

X(t) = £Ix(t), t] + G(tHw(t) (12)

.
§k=_t3kl_§(tk)]+!k P Wt e (13) ]
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Figure 2. Structure of an Extended Kalman Filter

where f and h, are nonlinear differentiable functions of the
state vector x, and w(t) and Vi are zero mean, independent

gaussian white noise processes having spectral density and
covariance matrices, Q(t) and Rk’ respectively. The measure-

ments Z, are taken at discrete times tk'
The first approach one might use to derive a :

filtering algorithm for x(t) in Equation (12) is to linearize
the nonlinear functions f and h, about an appropriate known

Sbigl

reference trajectory Z(t), and then apply conventional linear
estimation theory, i.e., the Kalman filter discussed in the E
last subsection. Thus, denoting i(tk) by X the expressions :

af
f(x, t) = f(x, t) + — (x-X) (14)
X
X=X
= oh, &
hp(xp) = h(x,) + LE™ (X -%Xy) (15)
§k=g

may be substituted into Equations (12) and (13) to derive the
corresponding Kalman filter which estimates the variation in
X, 6x(t) = x(t) - x(t), from the reference trajectory. When
the reference trajectory is chosen to be the current best
estimate of the state, X(t), the resulting algorithm is knawn
as an extended Kalman filter; the mechanization equations for
the latter are given in Table 1 (see also Reference 1). The
matrix P(t) is a first-order approximation to the estimation




TABLE 1. SUMMARY OF THE EXTENDED KALMAN FILTER

System Model x(t) = {[x(t), t] + GR)w(t) ; w(t) ~ N[0, Q(t)]

Measurement Model zZy = hk[)_c(v.k)] sV s k=12, vy~ NO, R

Initial Conditions X(0) ~Nx , P )

Other Assumptions E [!(t)!g] = Oforall k and all t

State Estimate Propagation X(t) = f[X(t), t]

Error Covariance Propagation P(t) = F[g(t), tjP(t) + P(t) F[é(t), t]T + G(()Q(t)G(t)T

State Estimate Update R 0 =% () K fz, - h[%, )1}

Error Covariance Update Pk(+) = {I - Kkalik(-)]} Pk(-)

. ; - T - = 24 -1
Gain Matrix Ky = PCIRIR, O (B IR QPGB R, O] « R}

af_li(”, t]
ax(t
dh ,[x(tk)]

= DX
Hk[’_‘(-)] = W

Flx(t), t] =
(1) = X(t)

Definitions

x(t)=X(-)

error covariance matrix, and gk(-) and Pk(—) denote the solu-
tions to the propagation equations at time ty Jjust before the

kth measurement is processed. The principal practical dif-
ference in mechanizing the extended and conventional Kalman
filters is that the gains Kk for the former depend upon the

estimate; therefore, Kk must be computed online. Consequently,

the computational burden of the extended filter is greater.
Note that the equations in Table 1 reduce to the optimal
Kalman filter outlined in the last section if

B(x(t), t) = F(t)x(t) + u(t) (16)

Ek(-’f(tk)) - Hk-’i(tk)




As a practical matter, one of the most important 4
aspects of the EKF is the accuracy of the 1ineariza§ion %
(Equations (14) and (15)) about the state estimate x(t). It 'S
the estimation error is large, this linearization is poor and '
the filter may not operate correctly. However, for the appli-
| cation considered here it has been found that the assumed
L linearization is satisfactory if the EKF is properly initial-

} ized. The details of the initialization procedure are given
ft; in Section III where the EKF equations are applied to the
g " aerodynamic coefficient estimation problem.

10 r
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SECTION III

APPLICATION OF THE EXTENDED KALMAN FILTER

This section describes how the EKF equations in sub-
section 2.2 are applied to aerodynamic coefficient estimation.
The equations of motion of the system model are given, and an
EKF design is developed. Performance results are given in
Section 1IV.

3.1 EQUATIONS OF MOTION - THE SYSTEM MODEL

This subsection presents the system model upon which
the extended Kalman filter design used in this study is based.
The problem under consideration is that of a six-degree-of-
freedom rotationally symmetric rigid body flying through a
ballistic test range. The projectile dynamic model is taken
directly from Reference 7. The equations of motion are de-
rived in a fixed-plane coordinate system and assume that the
aerodynamic coefficients are expanded as polynomial functions
of the sine of the total angle-of-attack.

Figure 3 illustrates the two coordinate systems of
interest. The first (x,y,z) is a fixed inertial system which
assumes a flat, nonrotating earth. The second (x',y',z') is
a fixed-plane axis system attached to the projectile but
having zero roll angle. In this system, the x' axis lies
along the projectile axis of symmetry, and the origin of the
system is fixed to the projectile center-of-gravity. The
(x',y',2') system is obtained by rotation of the (x,y,z) sys-
tem through the two Euler angles y and 6 in the indicated
sequence. The projectile roll angle is measured clockwise
looking downrange, i.e., from the tail of the projectile.
Figure 4 illustrates the Euler angle rotations and the rela-
tionship between the two coordinate systems.

Twelve state variables are used to define the six-
degree-of-freedom dynamic equations of the projectile. These
state variables are summarized in Table 2 with their defini-
tions and units. Table 3 defines the constants required by
the model, Table 4 defines the intermediate variables used,
and Table 5 gives the polynomial expansions of the aerodynamic
coefficients which are to be estimated.

11
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TABLE 2. SYSTFM STATE VARIABLES
SYMBOL DEFINITION |  UNITS
X Downrange position it
v Crossrange position B
o Vertical position ft
u Velocity along x' axis ft/sec
v Velocity along y' axis ft/sec
w Velocity along z' axis ft/sec
Euler angle rad
See Figure 4
8 Euler angle rad
) Roll angle about X axis l rad
ﬁ Time derivative of rad/sec
g Time derivative of & rad/sec
p Spin rate about x' axis rad/sec
TABLE 3. SYSTEM CONSTANTS
SYMBOL DEFINITION ] UNITS
d Reference diameter i : i %
2
A Reference area; A = "2 ; it
Ix Axial moment of inertia f slug-ft
|
Iy Transverse moment of inertia ’ slug—ft2
m Mass slugs
VO Reference velocity ft/sec
Acceleration of gravity, g=32.17405 ft/sec2
T m = 3.1415926536 —

13
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TABLE 4. SYSTEM INTERMEDIATE VARIABLES

SYMBOL | DFFINITION ' UNITS
j i " 1.2561
| c= 2 ‘7‘J3N'0'3[1-(6.#754x10‘6)z] 1b-sec2/ft
l
| Velocity “aznitude:
id | v o= Q:E*:'vz + w2 ft/sec

Dynamic¢ pressure,;

- ]
a = 1/2 V2 1b/ee?

Sine of the total angle-of-attack;

¢ = “vl + we/V .

TABLE 5. AERODYNAMIC COEFFICIENTS AND THEIR
POLYNOMIAL EXPANSIONS
|
SYMBCL ! DEFINITION AND EXPANSIOS‘
Co ' Ax1al force coetfficient,
. | = 2 = -
| CK cﬁ - sz- + va (\O-\)
EV |  Normal force coefficient slope:
NU | " 2
| CNax ® Cya * Cya3t
cYpu | !agnus force cuefficient slope,
i e ~ "
; CYpu CYp4 * Cypast
me Pitching moment coefficient slope:
= 2 ‘
“oa * “wn * Casat * Chav (vo'\)
[ Damping moment coefficient:
mq e 2
Cmq = Cmq * Cquu
€ Magnus moment coefficient slope:
np: < 2
| Cnp‘ i Cnp; 3 Cnp:ﬂl
Clp Spin deceleration coefficient
Cl* Fin cant moment coefficient
C[ ! Moment of i1nertia ratio coefficient; CI = 1
|
*€ is the sine of the total angle-of-attack.
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Given the variables and constants defined in Tables
: 2 through 5, the twelve state dynamic equations can be written
B as shown in Table 6. The moment of inertia ratio coefficient,

- CI’ used in Equation 11 in Table 6 is equal to one in any

real system. However, the filter can estimate the ratio Ix/Iy
: more accurately than it can be measured. Since a measured
} value of Ix/Iy is used in the filter implementation, the esti-

mate of CI adjusts for the error in this measured quantity.

‘, TABLE 6. EQUATIONS OF MOTION

§
NO. EQUATION
:3 1 X = u cosf cosy - v siny + w sinf cosy
" 2 Yy = u cosf siny + v cosy + w sind siny
3 Z = -u sinf + w cos Q
8= (28 B . o e Y
4. u = - € t g 85100 = Bw * v cos
M m X
b 5 Y Tl SR T . St T S i
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This completes the definition of the system dynamic
model. The model is used to generate projectile trajectories
from which measurements are derived to be applied to the
filter; it is also used as the mathematical model upon which
the filter design is based.

The measurement model takes noisy measurements of
position and angular orientation (x,y,z,¢,8, and ¢) and time
as the projectile passes 50 downrange measurement stations
during its flight. To each of these quantities, a random
gaussian uncorrelated noise sequence is added with a given
rms value.

3.2 EXTENDED KALMAN FILTER ALGORITHM DESIGN

In this section, the EKF algorithm summarized in
subsection 2.2 is applied to estimate the 17 aerodynamic
coefficients contained in the system model defined in sub-
section 3.1. To do this, the system model must be put into
the form of Equations (12) and (13). Let the 12 dynamic state
variables listed in Table 2 be brought together, in the order
listed, into the vector Y, and let the 17 constant aerodynamic
coefficients form the vector a. Then the equations of motion
listed in Table 6 can be expressed in state vector notation
as

v = gly,a) (18)

where g is a nonlinear vector function of y and a. Since the
unknown coefficients contained in a are assumed to be con-
stant, the dynamic model for a is given by

I

where O is the zero vector.

To apply the EKF algorithm, all of the quantities to
be estimated in Equation (18) must be expressed in state
variable form. This is readily accomplished by augmenting
Equation (18) with Equation (19) as follows:

y g(y.a)
Sl (20)

Equation (20) is a special case of Equation (12) where

X g(y,a)
Dl a y T(x,t) = 0 (21)




and

G(t)w(t) = 0 (22)

The measured quantities in this application are sys-
tem states except for the time measurement. Thus, the state
measurements are linear, and Equation (13) can be expressed
as

2, = Hki(tk) + Vi k=1,2.,5:-.,;90 (23)

where tk is the measured measurement time and 2, are the noisy

measured values of x, y, z, ¢, 6, and 4. For this case, the
Hk matrix is time-invariant and given by

i'l R R S T e N 7
|8 .4 8 B & 0. 0 O
Do Bl skl R B |
He = | - [0] |
k1o 8 0o 9 9 0 1 o0 ov %20 (34)
|0 g W 8 u e 3y 9 |
a5 B 4. 9 O 0 0 1) ]

The vector Vi in Equation (23) represents the measure-

ment noise and consists of the combined effect of the position
and time measurement errors. Since the random time measure-
ment error, €., is very small for this application (0.5 usec

rms), the projectile velocities can be assumed constant over
the error interval and the total measurement error is approxi-

mated by
Vi = ¥y - Hpex(t,)e, (25)
The covariance of Vi is thus given by
. . 280 10 "
- 1
Rk = Rk + Hk E[E(tk)i(tk) ]Hk o} (26)
where Xﬁ is the measurement error without time measurement

error, R& its covariance matrix, and Oy the rms value of the

time measurement error. For the current application, the
second term on the right-hand side of Equation (26) is sig-
nificant only in the measurement of the projectile roll angle,
which changes at a high angular rate. Consequently, Rk is

assumed equal to R except for the diagonal element associated
k

17
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with the roll-angle measurement error, which is approximated
by

o (] A2 2 o~
Rk(6,6) = Rk (6,6) + p of (27)
where 6 is the estimate of projectile spin rate. The validity

of this approximation is demonstrated by the results presented
in Section IV of this report.

Before presenting the performance and sensitivity
results, a few specific implementation details should be dis-
cussed. First, the filter design is based upon the correct
values of the projectile constants, d, Ix’ Iy' m, and g.
Normally each of these quantities will be measured off-1ine
with some errors. Except for the ratio Ix/Iy’ none of the

projectile constants can be estimated by the filter indepen-
dently from the aerodynamic coefficients. For example, in
Equation 4 of Table 6, CX is estimated by assuming that the

value of A/m is known. In practice, the filter can estimate
only the combination, A/m Cy, not EX and A/m individually.

In this sense, the problem is over parameterized, and all
measured or unknown quantities cannot be estimated indepen-
dently. Therefore, for convenience any measurement errors in
the projectile parameters are attributed to uncertainty in
the aerodynamic coefficients, in order to maintain the expli-
cit form of the equations of motion in Table 6.

Second, the assumption.of a flat non-rotating earth
is not valid for data generated in a ballistic range and must
be accounted for in an operational program. Third, the compu-
tation of the F(X(t),t) matrix in Table 1 requires the compu-
tation of

af(x,t)
F(x,t) = —— (28)
Ix(t)

This matrix of partial derivatives is explicitly derived for
the filter's implementation. The only assumption made in
this derivation is that the air density, p, is independent of
altitude, z. While not strictly correct, the error induced
by this approximation is trivial. Appendix A gives the de-
tailed equations used to compute this matrix.

Finally, the initialization procedure is very impor-
tant to the proper operation of the filter. Before the first
measurement, only very rough a priori estimates of the

18
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projectile's position and downrange velocity at the first mea-
surement station are available. Thus, the angular and trans-
lational position and velocity initial estimates are set to
zero or nominal values for this station, and their error co-
variances are initialized at correspondingly high values.

The coefficient estimates and their error covariances are
initialized based upon the a priori knowledge of the projec-
tile's aerodynamic properties. Based on these initial con-
ditions, the first measurement set is processed, and the filter
estimate and its covariance are updated. This single measure-
ment of six positions brings the error covariance of the posi-
tion estimate down to the measurement noise level but provides
no information on the six velocities at the first station.
Thus, the velocity estimates remain extremely poor.

The filter estimates and covariance are prcpagated
to the next measurement time, and the second filter update is
performed using the second measurement set. This greatly
improves the estimates of the six projectile velocities be-
cause two sets of accurate position measurements at different
times have been processed. However, the error covariance at
this point has not been computed correctly. Recall that the
EXKF design requires a linearization about the state estimate
to propagate the error covariance between two measurements.
Between the first and second measurements the velocity esti-
mates are very inaccurate, resulting in a poor linearization.
Consequently, the covariance after the second measurement is
not a good reflection of the true error covariance. This
problem must be corrected at the second measurement if future
measurements are to be processed correctly.

The following filter resetting procedure was found
to be a satisfactory method of correcting the problem de-
scribed above. Immediately after the second measurement up-
date, the filtering problem is essentially restarted by re-
setting the error covariance matrix as follows: the error
covariance matrix off diagonal elements are all set to zero;
the diagonal elements corresponding to positions are reset to
the measurement noise levels for those positions; the diagonal
elements corresponding to coefficient estimates are set to
their original values assumed before the first measurement;
the diagonal element corresponding to the velocity along the
projectile axis of symmetry is unchanged; and the diagonal
elements corresponding to the other two translational veloci-
ties and the three angular velocities are increased by a fac-
tor of ten over their current values. This covariance matrix
is then propagated together with the estimate to the third
measurement, the third update occurs, and normal processing
continues thereafter. Since the estimates of position and
velocity are fairly accurate after the reset, the lineariza-
tion is good over the propagation between the reset and the

i,




third measurement and the filter operates properly, correctly
computing the estimates and their corresponding error covari-
ance matrix. Essentially, the reset starts the filter over
after the second measurement update with a new initial co-
variance matrix that is a much more accurate representation
of true velocity estimation errors. The effectiveness of
this initialization procedure is demonstrated by the experi-
mental results presented in Section IV.




SECTION 1V

PERFORMANCE AND SENSITIVITY RESULTS 1

This section presents performance and sensitivity
results obtained using the EKF algorithm described in sub-
section 3.2, Test procedures and performance measures are
discussed, a nominal test case is defined, and the filter
performance for this case is demonstrated. Finally, sensi-
tivities to variations in the nominal test conditions are
investigated.

4.1 TEST PROCEDURES AND PFRFORMANCEF MEASURES

Experimental data is generated by a trajectory simu-
lation program which integrates the equations of motion given
in Table 6, based on given true values for all the components
of the model. As the downrange position of the projectile
reaches each measurement station, the time, position, and
angular orientation of the projectile are computed and cor-
rupted by independent zero-mean gaussian noise sequences.
Thus, the input data to the filter consists of 50 sets of
seven measurements (three angular positions, three transla-
tional positions, and time). The filter design is specified
by the system model and its constants. It begins with a given
initial state estimate X0 and an assumed covariance matrix,

P
0"

The performance of the filter is evaluated by observ-
ing its estimation error in relation to the error standard
deviations obtained from the covariance matrix computation.

If the errors are consistent with the computed standard devia- |
tion, then the filter is considered to be operating properly
and its absolute performance can be judged by the estimation
errors achieved. Thus, there are two basic measures of per-
formance, estimation error and consistency between this error
and its computed standard deviation. !

4.2 THE NOMINAL CASE ]

The nominal trajectory is obtained by integration of
the equations of motion in Table 6, using the projectile con-
stants listed in Table 7, the trajectory dynamic initial con-
ditions (at t=0) listed in Table 8, and the true aerodynamic
coefficient values listed in Table 9. As the downrange posi-
tion (x) of the projectile passes the 50 measurement station
locations listed in Table 10, measurements of time, angular
position, and translational position are made. These

21




TABLE 7, NOMINAL PROJECTILE CONSTANTS

L SYMBOL DESCRIPTION NOMINAL VALUE
d Diameter 9.8333x10'2 Tt
(33 mm)
m Mass 2.4865x10"2 slug
(0.80 #)*
I | Axial moment of inertia 3.2376x107° slug-ft2
' (0.15 # in.2)
I. | Transverse moment of inertia | 2.6764x10™% slug-ft2
e (1.24 # in.2)
V, |Reterence velocity 3.3457x10° ft/sec
| (Mach 3.00)

*32.174 # = 1 slug

TABLE 8, TRAJECTORY GENERATOR AND FILTER
DYNAMIC STATE INITIAL CONDITIONS

TRAJECTORY | TRUE VALUE AT | INITIAL VALUI RMS EKROR

MODEL INITIAIL FIRST ASSUMFD BY ASSUMED BY

DYNAMIC CONDITION: MEASUREMENT FILTER AT FILTIR Al
STATL UNITS t=0 STATION; t=t4 t=t4 t=t,

x ft 0.0 5.03 5.0 X0

y ft 0.0 131 & 104 0.0 1.0

% ft 20,0 20.008 20.0 1.0

u ft/sec 3,361.,0 3,3140.7 3,000.,0 600 .0

v ft/sec 0.0 =201.0 0.0 300.0

w ft/see 0.0 137.2 0.0 300.0

[ rad 0.0 0,060 0.0 ; 1.0

0 rad -1.745 x 10-3 0.040 f 0.0 ‘ 1.0

b rad 0.0 16.05 ‘ 0.0 200.0

¥ rud/sec 0.0 56,85 l 0.0 100.0

§ rad/scc 55.0 S18. 11 0.0 100.0

P rad/scc [ 10,703,0 10,700 8 l 10,0000 1,000.0
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B TABLE 9. TRUE COEFFICIENT VALUES, INITIAL FILTER ESTIMATES,
b AND INITIAL ASSUMED STANDARD DEVIATIONS OF ERRORS
. RMS ERROR |
3 IN INITIAL |
| INITIAL | ESTIMATE | INITIAL
AERODYNAMIC . FILTER | ASSUMED BY | PERCENT i
COEFFICIENT | TRUE VALUE | ESTIMATE | FILTER | ERROR ‘
e 0.225 0.300 0.2 1 33
: ' 1
|
sz 1.5 { 0.0 1.0 ! -100
Co -0.54x10~% | 0.0 1.0x107% | -100 1
XV | | {
g 2.87 é 2.75 0.32 | -4
Can 10.0 Lo g0 5.0 - -100
Gy -0.9 5.0 0.1 g
pa i -
[ |
Ypo3z | 5.0 | 0.0 3.0 - -100 5
7 | | |
2 | 3.15 | 9,50 N ;
N | 5 ‘
G | -6.0 i 0.0 | 6.0 -100 ;
ik | 2. 58x104 | 0.0 | 3.0x10°% | -100 |
ma V ! ; ' i |
| | |
c | =18, -15.0 | 5. 17 i
4 | 18.0 | 15.0 5.0 17 |
f : ! - 1
€ aaz | 10.0 | 8.0 5.0 100 |
! 1 l
{ ’ { 1
C ! 0. 0. ! : b -
oo | 3 | 0 | 1.0 100
Sy " | 2.0 oty | 2.0 ~ -100
| |
|
Cip | -0.024 i -0.015 | 0.015 | -38
C 1.0x103 ? 0.0 1.0x1073 | -100
16 i i a : y &
‘. | |
Cq i 1.00 j 1.01 0.01 | 1




TABLE 10, MEASUREMENT STATION LOCATIONS

STATION DOWNRANGE POSITION STATION DOWNRANGE POSITIOX

NUMBER (FT) NUMBER (FT)
1 5 26 275
2 15 27 290
3 25 28 305
4 35 29 320
5 45 30 335
6 55 31 350
7 65 32 380
8 75 33 395
9 85 34 410
10 95 35 425
5L 115 36 440
12 125 37 445
13 135 38 470
14 145 39 485
15 155 40 500
16 170 41 515
17 180 42 530
18 190 43 545
19 210 44 560
20 220 45 585
21 230 46 600
22 240 47 615
23 250 48 630
24 260 49 645
25 270 50 660
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measurements consist of the true values of these gquantities
corrupted by independent sequences of uncorrelated zero-mean
gaussian noise samples. The standard deviations of the noise
sequences for the measurement of position (translational and
angular) and time are given in Table 11. Figures 5 and 6 are
plots of some of the states of the nomiral trajectory to
illustrate its general form and frequency content. Figure 6

also includes a plot of the total angle-of-attack, a, defined
by
2 2
a = sin-l(e) = sjn_l[ b4 ; - ] (29)
This trajectory represents a model of a 30mm projectile travel-

ing at approximately Mach 3 with initial Euler angle rates of
8(0) = 55 radians per second and {(0) = 0 radians per second.

The filter design is based upon the same equations
of motion and projectile constants as the nominal trajectory.
The filter is initialized at time ty when the projectile

activates the first measurement station. Table 8 gives the
true values of the projectile dynamic states at tl' the ini-

tial filter estimates, and the initial rms errors in the esti-
mates assumed by the filter at time ty. Note that only rough

knowledge of the initial positions and velocities is assumed
by the filter.

TABLE 11, NOMINAL MEASURFEMENT ERROR STANDARD DEVIATIONS
SYMBOL DESCRIPTION i NOMINAL VALUE
(of Translational Position (x,y,z) ! 0.01 ft
b Measurement Error Standard | (~0.1 in.)

Deviation

3

o, Angular Orientation (v,@, ' 1.73x10”° rad
Measurement Error Standard | (0.1 deg)
Deviation

Ct Time of Measurement Error { 0.5 usec

Standard Deviation

25
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Figure 6.
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In a similar manner, Table 9 gives the true values
of the 17 aerodynamic coefficients, the initial values of the
coefficient estimates, and the rms estimation errors assumed
by the filter. Table 9 also lists the percent errors in the
initial coefficient estimates. This completes the specifica-
tion of the trajectory, measurement process, filter design,
and filter initialization for the nominal case.

Figures 7 through 13 illustrate the coefficient esti-
mation error performance of the extended Kalman filter for
the nominal case. The estimation errors (solid lines) are
plotted as percent errors relative to the true coefficient
values, that is,

= )

Percent estimate error = 100 (€ (30)

where C represents the estimate of a coefficient, C its true
value. Also plotted on the same figures (dashed lines) are
the normalized positive and negative one-o values of these
errors as computed by the filter covariance matrix. These

one-0 values are defined as

Normalized computed _ 100 VIC (31)
standard deviation C

where PC is the value of the diagonal element in the filter

covariance matrix associated with C. Table 12 summarizes the
filter errors at the end of the trajectory.

Figures 7 through 13 indicate that, in all cases,
the parameter estimation errors achieved are consistent with
the standard deviations computed by the filter. Some of the
coefficients are estimated very accurately by the filter while
others are not estimated at all. This is due to the fact
that some of the coefficients have very little effect on the
trajectory and are therefore not visible in the data. Others
strongly affect the trajectory and are easily estimated. The
covariance calculation correctly distinguishes between these
coefficient types and extracts most of the available informa-
tion from the data.

An attempt was made to improve the estimates for the
nominal case by filtering the nominal data set a second time.
This was done using the final coefficient estimates and their
respective covariances as the filter initial condition for
the second pass through the data. Since the filter begins
the second pass with better estimates, the linearization
assumed in the EKF derivation should be more accurate, and
the filter should be closer to an optimum design. Table 12
lists the results of this experiment, designated Test No. 1,
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as well as the results for other tests not yet discussed.
The second pass—through the data results in no real
ment in estimation accuracy,

extracted almost all of the available information.

improve-
indicating that the first pass

Another illustration of the fact that all pertinent

information about the coefficients has been extracted from |
the data is obtained by integrating the trajectory using the

estimated coefficients and comparing it with the nominal tra-

jectory based on the true coetficients. Figure 14 shows the !
trajectory states y, v, and y for the trajectory generated

using the estimated values of the coefficients provided by

the EKF for the nominal case. These curves are virtually

indistinguishable from their true counterparts in Figures 5
and 6.
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4.3 PERFORMANCE SENSITIVITY TO TRAJECTORY AND MEASUREMENT
FERROR LEVEL

Table 12 summarizes the performance of the EKF for
the nominal case and several additional simulations. Tests
No. 2 and No. 3 are designed to show the sensitivity of EKF
performance to the amount of angular motion in the trajectory.
I ""The”znnditjong_ior these two tests differ from the nominal
case only in the“fﬁTTTa%~nanjtions on the trajectory generator.
Recall that for the nominal tfgﬁﬁvtepghggv initial Fuler angle

——

rates are e
1(0) = 55 radians per second

v(0)

0 radians per second




In Test No. 2, €(0) is set to zcro resulting in a trajectory
without the high frequency nutational motion seen in Figures
5 and 6. In Test No. 3, 9(0) is set equal to 100 radians per
second vielding a trajectory with a nutational motion of
approximately twice the amplitude of the nominal trajectory.

E In each case the filter operated in a consistent

* manner. The final estimation errors and their computed stan-
i dard deviations are shown in Table 12. For Test No. 2, the
% : lack of angular motion severely affects the filter's ability
E to estimate those coefficients associated with projectile 1
nutations. This problem is correctly reflected by the co-
: variance calculations. The lack of angular motion helps,
B! however, in the estimation of the drag coefficients C, and

CXV and in the spin damping coefficients C]p and Cl@‘ Test

No. 8 has large amplitude angular motions which aid in the
estimation of coefficients associated with this motion. For

example, the estimates of sz, Cmq' and (maa are greatly im-

proved. Jt is also interesting to note that there is a degra-
dation in the estimates of CY and CXV from the nominal case.

In Test No. 4, the time measurement noise is set to zero both

in the measurement model and in the filter computations; other-
wise, everything is the same as the nominal case. Time mea- ,
surement noise apparently has a negligible effect on the esti- :
mation of all coefficients except those associated with the
spin rate, Clp and Clé' Due to the high spin rate of about

10,000 radians per second, time errors look like increased
roll position measurement errors as described in subsection
3.2. With no time measurement noise, the effective errors in
roll angle measurement are smaller, thereby reducing the
coefficient estimation errors.

In Test No. 5, the translational and angular position
measurement noise variances are raised by a factor of ten.
This change is made in both the measurement error model and
in the filter design. As might be expected, the higher noise
environment degrades the parameter estimates. In particular,
the ability to estimate CXv is almost lost, and those coeffi-

cients which were accurately ¢stimated in the nominal case

are generally degraded by factors of two or more in the higher
noise environment. This effect is to be expected and it is
accurately accounted for by the EKF's covariance calculation.

In summary, the study demonstrates that aerodyvnamic
coefficient estimation accuracy is strongly influenced by the
S test scenario in which the filter operates. However, the EKF
i algorithm generally extracts most of the information about
each coefficient available from the data and correctly assigns
uncertainties to the estimates,

IR




1.1 PERFORMANCI. SENSITIVITY TO MODELING ERROR

In subsection 4.3, all of the experiments involve a
filter design where the filter assumes the trajectory model
actually used to generate the data. In many practical appli-
cations, the filter design model may only be an approximation
to the system which generates the data. Such modeling error
can severely affect the performance of the filtering algorithm.
Table 13 summarizes the results of the nominal case and three
experiments designed to test the effect of modeling error on
filter performance.

TABLE 13, FILTER SENSITIVITY TEST RESULTS
' »
| FINAL PERCENT ERROK AND (NORMALIZED STANDARD DIVIA L 1GN)
; ' | st no
{ g Rl WIGH NOISE
> Rl ¥ > N
ALRODYNAMIC | INITIAI NOMINAL, TEST NO. 6 | Cxe MGy MODLLING
CORFFICLENT | CONDITIONS CASE ay UNMODELED | UNMODELED l FRPOR
, S : g -
Ce | 33 (89) DA SN0 3 0. 00,58 ' 2
. | |
[ 21000 (n7d 91 (64) 01 (61) 1 -13% (41) | -102 (65)
Cxy | -100 (185) ~61 (45) ot R ", | -73 (88)
£ I M :
(.'N' -4 (11) 6 (3) (I 2 3 ! G {3 ! 2 {7}
Criey -100 (50) =105 (509 ~105 (50) | =105 (50) } ~90 (50)
Vot ‘ '
(xw' a 11 ¢11) 8 (11) & (11) i LRy - i [ S 0 ]
(% ; [ =100 (60) -97 (60) 98 (60) | -97 (6O) | -99 (60)
Ypo3 | 4 | |
| @ .
(" I 7 f 0.4 (0.,8) 0. (OB Y ey (0L T =0 ¥ KX
mt | i
Ca | 100 (100) =24 (R2) 23 2y | 107 (55) .62 (93)
i |
€ ey i -100 (117) A8 (73) Sk (73 ; - 5 30 (99)
(‘mq [ =17 (28) -2 (3) 2 (3) { =2 3y | ~0.R (8)
} -1 % = 5 - ) (H0 -10 50 | =100 (50
Cng2 100 (207 100 (50) 100 (50) | -100 (50) | (50)
r“r‘ | =100 (333) -10 (12) ~g ey o =10 K12y =08 (34)
C 4 -100 (100) -102 (100) 102 (106) ; 102 (100y | <100 (100)
nj. t.
|
Z L
rlp -38 (63) 1 (14) =2 (6 | vy ) 1o(15)
Cre ~100 (100) -11 (55) - 5 (R 11 (55) : 17 (5H8)
‘} g ) -0.01 (0.02) [-0.01 (0.02) | -0.01 (0.02) | 0.003 (0.06)
/| |
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Test No. 6 investigates the influence of unmodeled
time measurement noise. Here the filter assumes that the rms
time measurement errors are zero when they are actually the
same as for the nominal case. The effect of this modeling
error is significant only in the estimates of those coeffi-
cients associated with the spin rate dynamics, Clp and C]S.

While the table seems to indicate performance improvement,
this is not necessarily the case since the errors involved
are random. Figure 15 shows the estimation error and standard

deviation of C,p for the nominal case. Figure 16 shows them

for Test No. 6: evidently the standard deviation is lower but
the actual estimation error is larger. Thus, the average
error performance is poorer than nominal, and the standard
deviation gives a less conservative indication of the rms
error. The same e¢ffect is shown in Figures 17 and 18 for

Clé‘ Figures 19 and 20 show the effect of this modeling error

on the filter roll angle residual process. This process is
defined to be the difference between each roll angle measure-
ment and the value of that measurement predicted by the filter
based upon past data. In these figures, the residuals are
normalized by their computed standard deviations which are
calculated from the filter covariance matrix. The residual
process for Test No. 6 in Figure 20 has a much larger rms
value than that for the nominal case shown in Figure 19. The
fact that the rms normalized residuals in Figure 20 are so
large is a good indication that modeling error exists in the
roll dynamics or measurement model .
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Test No. 7 investigates the effect of not modeling

the aerodynamic coefficients‘va and CmnV’ which account for

changes in E& and fm“ as velocity changes. Figure 21 illus-

trates the effect of this modeling error on the estimates of
C‘” and Cmus; note the poor performance and apparent divergence

as compared to the pominal case in Figures 7 and 10 where
these estimates are much better behaved. Clearly, these ve-
locity terms must be modeled by the filter if the aerodynamic
coefficients change with velocity. Table 13 summarizes the
results of this experiment.

Test No. 8 investigates the effect of the filter
assuming rms position and angle measurement errors three times
larger than actually exist. Table 13 shows that there is
some degradation in performance, but it is not as large as
might be expected. The computed standard deviations are
overly conservative in this case, which might be desirable in
a practical operational program.

4.5 DISCUSSION OF RESULTS

In the absence of significant modeling error, the
IKF algorithm demonstrates excellent performance. While the
design is known to be suboptimal because of the nonlinearities
in the projectile dynamics, it appears that most of the sig-
nificant information in the data is extracted by the algorithm;
both the estimation errors and the measurenent residuals are
completely consistent with the mms values predicted by the
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EKF covariance equations.
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For the nominal case, t

and Cmm3 Percent Estimation Errors and

Test No. 7

he linear

drag coefficient CX is estimated to within 2 percent and the

drag variation with velocity (XV to within 45 perc

ent. The

other force coefficients have only a minor influence on the
trajectory and are not accurately estimated. The

efficient Cm“.

mated to within 3 percent, and Cnpq

is estimated to within 1 percent; Cmq

moment co-
is esti-

to within 12 percent.

The spin coefficient Clp is obtained to within 14 percent and

¢ to within

16

[

55 percent. Finally, the moment of

coefficient C; is obtained to within 0.02 percent.
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The algorithm is sensitive to modeling errors. This
is reflected in the measurement residual processes. In pro-
cessing test data, the residuals can indicate that the correct
projectile model is not being used, thus helping in the de-
velopment of a correct model for a given projectile. The EKF
is also sensitive to the initial coefficient errors and the
initial covariance matrix assumed for them. If these errors
and/or their covariance are too large, the linearization
assumed by the filter way be inadequate and the filter mayv
operate poorly or diverge. Fortunately, engineering judgment
in the initialization of the filter has been sufficient to
insure good filter performance in this example.

The EKF algorithm requires the integration of the
system states and the upper triangle of a 29 > 29 covariance
matrix. This is done by trapezoidal integration at a step
size of 0.05 millisecond. Larger step sizes lead to numerical
instabilities and incorrect covariance propagation. The algo-
rithm operates in approximately 300 thousand bytes of memory
on an IBM-360-145, requiring 50 minutes of CPU time to process
the 50 sets of measurement data. An operational algorithm
could be developed which would improve these time and menory
requirements considerably by elimination of unnecessary compu-
tations and storage and by improvements in the integration
technique and program organization.
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SECTION V

CONCLUSIONS
The principal conclusions of this report are:

The feasibility and accuracy of the extended Kalman
filter for bsllistic range aerodynamic coefficient
extraction has been demonstrated for a 30mm projectile.

For the example used in this work, the EKF estimates 8
of the projectile's 17 aerodynamic coefficients to
within 10 percent of their true values. The remaining
coefficients have such a small effect on the trajectory
that they cannot be estimated this accurately.

Significant coefficient variations with mach number
should be modeled and can he estimated by the EKF
algorithm.

The EKF accurately estimates the rms errors associated
with each parameter estimate.

Those coefficients which cannot be estimated from the
data are identified by the EKF algorithm, and the

a priori uncertainties assumed for them remain
essentially unchanged.

The FKF technique is general and can be adapted to
various situations and conditions. It incorporates any
a priori knowledge available about the aerodynamic
coefficients which might be available from design
considerations and wind tunnel tests.

The absolute parameter estimation accuracy achievable

is sensitive to the particular trajectory motion that

occurs, the measurement noise levels, and any modeling
errors in the filter design.




SECTION VI

RECOMMENDATIONS

The general EKF technique demonstrated herein can
be used as a tool in aerodynamic model development, test
evaluations, and ballistic range error-level calibration
because of its sensitivity to modeling errors and test con-
ditions. Other possible applications include the reduction
of wind tunnel data and the extraction of missile and air-
craft aerodynamic coefficients from onboard and external
measurements.

The EKF algorithm should be compared with other
current data reduction techniques such as the Chapmau-Kirk
algorithm. Development of an operational algorithm would
then be a natural extension of the current work. The algo-
rithm should be evaluated for projectiles other than the
30mm round used in these investigations to assess its per-
formance over a range of aerodynamic bodies. Finally, the
expansion of the current model to the asymmetric airframe
case should be pursued.
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APPENDIX A

COMPUTATION OF F(X(t),t)

The propagation of the EKF estimation error covariance
matrix, P(t), between measurements requires the computation of

the matrix F(x(t),t) as indicated in Table 1 and subsection 2.2.

This matrix contains the partial derivatives of cach filter
state derivative with respect to each filter state, evaluoted
at the current state estimate, X(t). This appendix gives the
equations used to compute this matrix.

PRELIMINARY DEFINITIONS

Table A-1 summarizes the system model upon which the
EKF algorithm design is based. The matrix F(x(t),t) is
defined with respect to this model by

31(x,t)
o (A-1)

X=X

(1)
|

-
F(X(t).t) L

Here, the element in the ith row and jth column of F is
given by

af, (x.,t)

0X .

Fij(§,t) = y

(A-2)

| %>

X=

where each function fi is defined in Table A-1, with its cor-

responding equation given in Table 6. The expressions given
in this appendix for the elements of F are derived by direct
differentiation of the appropriate functions. The only
assumption made in this derivation is that the air density,

p, is independent of altitude, z. While not strictly correct,
the error induced by this approximation is negligible.

Intermediate Constants

The following variables are defined for convenience
and are assumed to be constant for the purposes of computing
the required partial derivatives.

r I./1,
d/2

)

g

—

g
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The following variables (b1 through bS and kl through
qu) are functions of the system states., Their definitions
are given, followed by their partial derivatives with respect
to each state on which they depend.
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ELEMENTS OF F(x,t)

This subsection gives the expressions for the ele-
ments of F(x,t) in terms of the variables defined in the last
section and in subsection 2.2.
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Rows 13 through 29 of F(:,t)

Since fi(i,t) = 0 for i

in rows 13 through 29 are zero.
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