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ABSTRACT 

The work reported here has boon di roc ted alonq three nut in avenues. 

First, a new method has been developed for determination of natural 

frequencies and associated mode shapes of thin elastic plates and also 

shallow shells undergoing free, undamped vibration. This method permits 

consideration of arbitrary boundary conditions along each side of a 

polygonal plate or polygonal plan-form shell and further offers a com- 

prehensive evaluation of how well the boundary conditions have been 

satisfied alonq each edge. Second, the structural reliability of geo- 

metrically nonlinear structures subject to stationary random excitation 

has been investigated by two approaches which have been found to yield 

satisfactory predictions of reliability. Third, a technique has been 

developed for prediction of the statistical characteristics of the 

response of a nonlinear system to nonstationary random excitation. 
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CHAPTER I 

VIBRATIONS OF THIN ELASTIC PLATES 

Introduction 

Problems involving vibrations of thin, elastic plates occur in a 

wide variety of applications in structural mechanics in all aspects of 

engineering.    An excellent comprehensive summary of existing analytical 

and experimental information pertinent to this problem area has recently 

been presented by A. W. Leissa []].* 

The present investigation, concerned with free vibrations of thin 

elastic plates is based upon the assumptions that (a) the thickness of 

the plate is small compared to its other dimensions, (b) there is no 

middle surface extension or contraction, (c) points situated on a line 

normal  to the undeformed middle surface remain on this same line as the 

plate deforms during vibration, (d) stresses normal to the middle 

surface of the plate are neglected, and (e) Hooke's law is valid. 

Many problems involving free vibrations of plates have been solved 

by exact methods, energy techniques, and various numerical approaches, 

in particular finite elements.    The objective of the present work is to 

present a more generalized approach that is applicable to arbitrary plate 

contours and arbitrary boundary conditions.    Also, it is desirable to 

present a method that decreases the computer effort involved in other 

approaches.    With this in mind, the present work develops a dynamic 

analog of the Edge-Function method originally due to P. M. Quinlan [2] 

and applied successfully by him to a variety of elastostatic problems 

[3],[4] including static deflections of thin elastic plates [5] and [6]. 

*Numbers in brackets refer to references at the end of the text. 



[2] 

Governing Relationships 

The fundamental differential equation of mqtipn for the transverse 

displacement w of a plate is: 

ax"    ax2ay2 dyh atz 

where the deflection w (x,y,t) is a function of the rectangular coordinates 

x, y of the plate middle surface and the time t, ancj D is the flexural 

rigidity of the plate defined by: 

D=       Eh3 

12 (1-v2) 

where E is Young's modulus, h is the plate thickness, v in Poisson's 

ratio, and p is mass density per unit middle surface, area of the plate. 

Equation (1-1) holds only for small lateral motions of the plate (less 

than approximately half the plate thickness) and neglects transverse 

shear and rotatory inertia. 

If we introduce the Laplacian Operator V2 -jnto Equation (1-1), it 

will simplify to: 

DV«w+pi!il=o (1.2) 
at2 

Here       V" = V2 p V2       and       V2 * — + — 
3x2     ay2 

Using the method of separation of variables to solve Equation (1-2), we 

assume that w(*,y,t) = G(t) • F(x,y) (1-3) 

If we substitute Equation (1-3) into Equation (1^2), we have: 

J G(t) V*F(x,y) + F(x,y) ^SÜl = o (1-4) 
p at2 



[3] 

Then, dividing Equation (1-4) through by G(t) * F(x,y) one finds: 

D v;F(x,y) = , ^Mt)  /G(t) (I.5) 
P    F(x,y) 3t2 ' v      ' 

The left member of Equation (1-5)  is clearly independent of t, and 

the right-hand side is independent of x and y.    Thus, each side of 

Equation (1-5) must be a constant, say K?, and we can write: 

P VFU.y),      d?G(t)/dt2      ^ . 
P    F(x,y)   -"        G(t)     "" K (I"6) 

Thus, the original partial differential equation has been reduced to 

two equations 

vT(x,y) - ^K2F(x,y) = 0 (1-7) 

and 

-d-ü(i)-+ K
2G(t) = 0 (1-8) 

dt2 

The solution of the ordinary differential  Equation (1-8)  is:. 

G(t) = A cos(Kt) + B sin (Kt) (1-9) 

where A and B" are constants, and can be determined from initial conditions. 

To solve Equation (1-7), one uses the method of separation of 

variables again.    Assume: 

F(x,y) = U(y) • sin(mx + a) (1^10) 

Substitution of Equation (ITIO) into Equation (1-7) yields 

mil. 2n)2<!!!M + (mv . K2 )u(, . 0        (M1) 
dy*      dy2 ° 



[4] 

which is an ordinary differential equation, 

to three different cases, as follows: 

U(y) = 

if 1112   >   /v2P K: 

Ü 

1 if m2 = /KY 
D 

cos (Ly)    if m2 < /72P 
K D 

where 

E =    [m2 ~ /^Ip~ ] * 

L-    l^f^l2 

The splution qf (1-11) leads 

(1-12) 

(1-13) 

Thus, the time-dependent, free, undamped vibrations Qf a thin» elastic 

plate are characterized by the lateral  response w(x.y,t) given by (1-3) 

where G(t)  is given by (N9) and F(x,y) is found from (1-10) with U(y) 

given as one or the other of the three cases discussed« 

The Edge-Function metfiod involves the association of a different 

system of coordinate axes with each edge of the plate.    Let us consider 

a rectangular coprdina.te system x,y as shown in Figure 1.    With respect 

to this system, let the vertices Px, P2, ... P. of the polygonal plate 

have coordinates (xi, yi), (*2> Ya)—(x^, y^—respectively.    Each 

point P. is chosen as the origin of a rectangular coordinate system 

(x., y^, the J^. axis-of which makes an angle 8. with the positive 

direction of the x-axis a$ $hown below.    This axis w|ll ultimately be 

chosen to coincide with an pdge of the plate. 



['.>] 

Figure 1 

If a point P(x,y) in the (x,y) coordinate system has coordinates 

x\, 7i» with respect to the (x\, 'yl ) coordinate system, the relation 

between (x,y) and (xlt yx) is: 

x   = (x - x,) cos e   + (y - y ) sin 8 
1 i i l 

y   = -(x - x ) sin 0   + (y - y ) cos 6 
ii ii 

as is evident from Figure 2 

pitxiyi^, 1 

(I-H) 

Figure 2 

Analogous geometric relations may be found for the coordinates of point 

P is some (x., y.) coordinate system in terms of its coordinates in the 
J J 

(x^, yj system.    Likewise, the partial differential relations between 

the (x,y) and the x.s yj coordinate systems can be derived from the 
J  J 

chain rule. For example, we have: 



r*.] 

i -cos 9j-ir - *in *& 
j J 

9   = sin e,^— + cos 0.-~ 

IMS). 

ay wj 9Xj    wo wj ayj 

The relationships between the various second derivatives are found tp be: 

— =  cos2 e.-^-2 sine, cose. — + sin2 0. -2— 
3x2        J 9x.       J    J 3x.3y.       J 3y. 

J J J J 

— = sin2 e. — - 2 sine. cose. —*—+ cos2 e. ^y 
9y2 J  3X2. J J 3x-3y. J  3y, 

j J   J J 

= (A- - TT) sin e. cos e ■ + (cos2e. - sin2e.) *0y    ^    ajj'       "j       "j    — -j    -» "j' ^        (|.16) 

Comparable relations exist for the various necessary third and fourth 

derivatives. 

The Edge-Function Method 

Consider a thin elastic plate having n straight sides of lengths 

a-j, a2» —-, an.    A right-hand Cartesian coordinate system in the plane 

of the plate is shown in Figure (3).    The sides of the plate make angles 

6-|, e£9 
03s*"""9n w^ ^e x~axls' 
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*-X 

Fiaure 3 

The equation of undamped motion of this plate was given as 

Equation (1-1) with respect to the (x,y) coordinate system: 

3x4 3x23y2      9y"      D at2 
(1-17) 

Now, if the vertex P- of the plate is taken as an origin and side 

P- P. + 1  is taken to coincide with the positive x.-axis and a y. axis 

is selected which is normal  to x. and directed toward the interior of 
J 

the plate, then a new coordinate system (x-, y.) is obtained. Since 
j  J 

the biharmonic operator is invariant under rotation and translation of 

axes, one immediately has: 

ax^ 
+ 2 a1 

/2*w2 3xz3y^    ay" 
*; 

+ 2 (1-18) 

8"Xj^j    *J 

Using this concept, Equation (1-17) can be transformed as follows: 

a*w + 2 aS/ 
- li -2-2 

3xj        3xj3yj 

+ P^W = O 
D 3t2 

(1-19) 

After applying the method of separation of variables by letting 

w(x, y, t) = F(x,y)G(t), a time-independent differential equation is 

obtained as follows: 



[8] 

?Il!bA + 2 Zl&ti- + 3!%l). . fi K2F(x,y) = 0 (1-20) 
S 3x?y. 3yj 

or 

vT(x,y) - § K2F(x,y) = 0 

If the complementary solutions of Equation (1-19) are F(x-, y.), 
j   ■ J 

j = 1, 2, ---, n, where F(x., y-) are related to the (x-, y.) coordinate 
j  J j  j 

system, then from the property of linear homogeneous differential 

equations, it follows that the superposition principle can be applied, 

hence the sum of those complementary solutions is also a solution of 

Equation (1-17), i.e. 

F(x,y) = Z    F(x-, y,) (1-21) 
j-1   J  J 

Since F(x., y.) is a solution of Equation (1-17), and Equation 
J      J 

(1-20) is identical to Equation (1-17), due to the invariance property, 

it can be said that F(x-, y.) is a solution of Equation (1-20) or 
J     J 

8*F(Xl, y.) 3"F(x., y.)      3"F(x., y.) 
 VjL+2—iV^ + V^-'f K2F(xry,-) = 0 

3x. 3x*.3y*. 3y, u J     ° 
J J    J 0 (1-22) 

The solution of Equation (1-22) 1s: 
CO — 

F(V *J} Vl  ^""^ + Vj(V] S1" (Yj + aj}      (I.23) 

where 



[9] 

UJ(V * 

e^j 

cos (L^) 

if     m. > /„?p 
3        K D 

if 

if 

m, = /Tp' 

m. s /Tip 
J K p 

(1-24) 

and 

HJ Ej = tmj - ^ 1T (1-25) 

Lj = tl/Ki£ " mjl2 ,   m. is later found to be given by (5.6). 

The required derivatives of (1-24) with respect to the (x., y.) 

coordinate system, where the origin is taken at the vertex p. of the 

plate and the x^ axis coincides with the edge P-P^+l  are readily found 

through use of the chain rule. 

Deflection, Normal Slope, Bending Moment, Twisting Moment, Kirchhoff Force 

In discussing the free lateral  vibrations of thin plates, the 

deflection, normal slope, bending moment, twisting moment and Kirchhoff 

force can be found as follows: 

(a)    Deflection 

The deflection is defined as w(x,y,t), where w(x,y,t) = 

G(t) •  F(x,y) or 

w(x,y,t) = G(t) •    E    F(x.,y.) 
j-l 

3^y 
(1-26) 



[10] 

Substituting Equation (1-23)  into Equation (1-26), it is seen that: 

n H  v 
w(x,y,t) = G(t)  •    Z       Z    [A.Me njyj + B,Mu.(y)]sin(m.x. + a.) 

(1-27) 

where u-(y-) is defined in Equation (1-24). 

(b) Normal slope with respect to the x^-axis: 

The normal slope is defined as 6.(x,y,t) where: 

e (X,y,t) B aw(x,y,t) 

or 

0.(x,y,t) = G(t) ♦ ^^- (1-28) 
ay, 

Thus: 
n       oo 

0.(x,y,t) - G(t)  •    S       Z    [A,M{m.sin 0.,cos(m,x. + a.) - 

H-cos Oij(sin(mjxj + a.)) ■ e'Vj + B^x.^)] 

(c)    Rendincj Moment with Respect to the x.-axis: 
 . , . J..  

The bending moment is defined as M    (x,y,t) where 
yi 

Hv.(x,y,t) ■,D(»Mx^t)+v3Mxg.y.t)) 
»y-i c\»/ civ i ay^ 3x, 

or 

Mv (x,y,t) - -DG(t) (^^1,/Ii^l) 

Ak\. :< .- ■ 
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My (x,y,t) = + DC(t)    Y. [A^lni^sinMKj + vcos 0.j)sin(mjxi + a.) 
I J      ' 

+ 2(l-v)H,m.sine.-cose..cos(m.xi+a.)-Hi(cos2G.-+vsin20..) • 
JJ '  J ' <J JJJ J '   J ' \J 

Sin(m.xj+aj)}e-Vj + BjH5j(xj,yj)] (1-29) 

where U- are functions of m-, 0. ., a-, E-, x. and y.. In an analogous 
j J  ' J  J  j  J    j 

manner expressions are found for the twisting moment and Kirchhoff 

force, dentoed by R. A more general form is obtained if Q. is taken 

to represent these quantities where 

"11 = wi' "l2 = ei' Qi3 = V 0,4 = \.y.  and Qi5 = R. 

Then one has 

Q1s(iV " G(t) J,    M?!  [VW VV+VW VJ)]       ^ 
where V... and U... are functions of ra-, 0.., a., x-, and y., and are given 

in complete detail in [7]. 

Boundary Conditions: 

(a) Simply supported edge: If the edge of a plate is simply 

supported, the lateral deflection along this edge is zero, and there 

is no bending moment normal to this edge. Assuming that the simply 

supported edge is the i-th side of the plate, the boundary conditions 

there are: 

(1) w(x,y,t) = 0     at y, = 0 
1 (1-31) 

(2) M (x,y,t) = 0    at y. = 0 



(1-33) 
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(b) Clamped edge: If the edge of a plate is clamped, the deflection 

along this edge is zero, and the normal slope of this edge is also zero. 

If the i-th edge is the clamped one, then the boundary conditions there are: 

(1) w(x,y,t)■= 0       at y. = 0 
1 (1-32) 

(2) 9n.(x,y,t) - 0      at y. = 0 

(c) Free Edge: 

(1) M  (x,y,t) =0     at y. = 0 
y-j 

(2) R(x,y,t) = 0      at y. = 0 

where 

R(x9y9t) , [3aM(x,y,t) + (2^j 33W(x,y,t) 3 

ayj        3x.ay. 

which is sometimes termed the induced shear. The boundary conditions 

usually require that a suitable pair of the general Equations (1-30) 

be specified on each side of the plate. Physically, this means that two 

of the functions representing the deflection, the normal slope, the 

bending moment or the induced shear be defined on that edge. Let P. 

be any point (x., 0) on the i-th edge and Q. (P.) be one of the functions 

specified on that side. Accordingly, any boundary condition alon^i the 

i-th edge is: 

•wv-G^ jj, & <V5H<V + BÄ(ivi      (I-34) 

where s assumes any one of the values 1, 2, 3, 4, or 5. Dividing by G(t) 

we have 

w-ji, £. M*<v+ Bji&M 
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M~l 

The identity  (1-35)  is valid aloncj the i-th edge,  and musl be satisfied 

for all  x.   in the range (0, a.).    Expanding g(x-) in a Fourier sine 

series, we have: 

9(V = ^ CM S^T V = ^  [A^P,) + BiMU^(P.)] 

(1^36) 

If we now multiply both sides of (1-35) by sin (~ x.), where N is any 
ai 1 

fixed positive integer) and integrate from 0 to a. we are led to a system 

of an infinite number of equations for the values N=l, 2, 3, ». These 

equations must, of course, be truncated after a finite number of harmonics, 

say M = L terms. Then the total number of unknowns A.M and B.M in 

Equation (1-34) is given by: 

Total unknowns = 2 x (number of sides of plate) x L 
(1-37) 

For the determination of these unknown constants, one requires 2 x 

(number of sides of plate) x L simultaneous equations.    In the usual plate 

problem, there are two specified boundary conditions along each edge, thus 

the total number of specified conditions is 2 x (number of sides of plate). 

If the number H is L on every edge, then the total number of equations is: 

Total equations = 2 x (number of sides of plate) x L 

(1-38) 

Comparing Equations (1-37) and (1-38), one observes that the number N 

of harmonic equations must equal the number of terms in the summation 

in M, i.e. it is required that L = L.    Solution of this set of equations 

yields the plate natural  frequencies as well as relative amplitudes of 

free vibration in each mode. 
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It should be noted that when a plate has a free corner, or if 

the nlate is skewed, additional  functions are required.    These are 

termed Fractional-Edge-Functions and are found from (1-36) by taking 

M as a fractional  number and a, to be non-zero.    The fractional  value 
j 

is essentially determined by trial-and-error so as to minimize boundary 

residuals so as to best satisfy boundary conditions.    These Fractional - 

Edge-Functions are added to the Edge-Function series (1-34) in the 

positions PI = L+l and L+2 where L is the truncation value. 

Numerical  Results 

The first six natural frequencies for a square plate clamped on 

all  four sides as obtained by the present method (using various numbers 

of harmonics from L = 2 to L = 6) are listed in Table 1.    Also presented 

there are the results of S. Tomotika [8], D. Young [9], and S.  Iguchi 

[10] for the same problem.    The frequency parameter is X = Ka
2 /p/D a 

where K is defined in (1-6). 

TABLE 1 

Source 

Mode and X 

1 2 3 4 5 6 

Tomotika [8] 35,99 -- — — -_ — 

Young [9] 35.99 73.41 108.27 131.64 132.25 165.15 

Iguchi  [10] — 73.40 108.22 — 132.18 164.99 

L = 2 35.572 72.80 107.08 — 130.28 167.78 

L = 3 35.968 73.19 107.08 131.55 131.79 163.60 

L = 4 35.970 73.35 108.12 131.55 131.79 164.25 

L = 5 35.983 73.38 108.12 131.58 132.16 164.85 

L = 6 j  35.984 73.39 108.20 131.59 132.16 164.93 
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It is interesting to note that the use of L = 6 involves only about 20 

seconds of running time on a CDC 3600 computer to yield the first six 

frequencies indicated in Table 1. The values of deflections, slopes, 

moments, etc. at any point of the plate may now be readily found from 

the appropriate governing equations. There relative values are obtained 

by assigning to a specified point in the plate the parameter value unity, 

then comparing the values at other points to this unit value. To give 

an indication of the accuracy of the frequencies tabulated in Table 1, 

the R.M.S. values of the residual normal slopes along each of the four 

edges of the clamped square plate when vibrating in its first mode are 

indicated in Table 2. 

TABLE 2 

Boundary residual of normal slopes corresponding to the first mode 

of a square plate clamped on all sides. 

No.  of 
Harmonics 

Boundary of the Plate 
AB BC CD DA 

2 

3 

4 

5 

6 

0.0914 

0.0131 

0.0131 

0.0033 

0.0032 

0.0914 

0.0131 

0.0131 

0.0033 

0.0032 

0.0914 

0.0131 

0.0130 

0.0033 

0.0032 

0.0914 

0.0131 

0.0131 

0.0033 

0.0033 

The first two natural  frequencies of a square cantilever plate as 

illustrated in Figure 4 as determined by the present technique, as well 

as found by D. Young [9] using an energy approach are tabulated in 

Table 3. 
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DI 
< a —»1 

w F          1 

o C K*                               r 

1 iA          F           1 B 

Figure 4 

TABLE 3 

j     SOURCE OF 
DATA 

FREQUENCY PARAMETER A                          1 

.   h A2 

1   Young [9] 3.49 8.55 

Edge-Functions 3.295 8.564 

The R.M.S. values of a support deflection and free edge residual bending 

moment along DA are indicated in Table 4. 

TABLE 4 

No. of Harmonics 

L = 5 L = 7 

Deflections along DA 

Bending moments along AB 

Bending moments along BC 

0.0058 

0.1533 

0.0219 

.    0.0022 

0.0672 

0.0121 
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Results for other cases such as square plates simply supported on 

all sides, rectangular plates simply supported on all sides, square and 

rectangular plates with two opposite edges simply supported and the other 

two edges clamped, square plates with three edges clamped and the fourth 

edge simply supported, rectangular plates with two adjacent edges simply 

supported and the other edges clamped, parallelogram plates simply 

supported on all  sides and a rectangular cantilever plate are given 

in [7]. 

Conclusions 

It has been found that the Edge-Function method is well-suited to 

determination of natural frequencies and associated mode shapes of thin 

elastic plates undergoing free vibration.    For those cases where other 

methods have been used by previous investigators to determine these 

quantities,  the Edge-Function method yielded results in excellent agree- 

ment with existing analytical  results as well as experimental  values 

when those were available. 

The use of Edge-Functions for investigation of natural  frequencies 

and mode shapes of thin plates yeilds an additional bonus not ordinarily 

found in other approximate methods, namely rapid determination of how 

well the specified boundary conditions have been satisfied»    This is 

done by digital evaluation of significant structural parameters along 

the boundary, say deflection and slope for a clamped edge, which should, 

of course, vanish identically, but the small residuals corresponding to 

each of these parameters are routinely printed out be the computer.    For 

a simply supported edge, the small residual deflections and bending moments 

at a number of points along the edge are routinely determined.    Thus, only 

one may readily ascertain exactly how well  the specified boundary conditions 

have been satisfied along all boundaries of the plate. 
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CHAPTER II 

VIBRATIONS OF THIN ELASTIC SHELLS 

Introduction 

The objective of the present investigation is to present a new 

generalized approximate approach to the problem of the free vibrations 

of thin, elastic shallow shells.    The technique is applicable to shell 

structures having an arbitrary polygonal contour in the base plane and 

arbitrary boundary conditions along this contour.    The method extends 

the Edge-Function technique to the problem of shallow shell vibrations 

and permits rapid determination of natural  frequencies and associated 

mode shapes with only modest amounts of computer effort.    Further, the 

method permits evaluation of the errors involved in this approximate 

approach by indicating boundary residuals along each straight boundary 

of the base of the shell.    The specific example of a shallow spherical 

shell is investigated in detail. 

Fundamental Equations 

The basic differential equations employed in this work to describe 

the behavior of a thin elastic shell in the absence of applied loads 

are those derived in Kraus [11].    The system of equations reduces to 

two simultaneous differential equations for the normal deflection w 

and the stress function <f> of the form: 

^ V2V2$ - V2w = 0 (II-2) 



19 

Where VJ is the Laplace operator, k and k are curvatures in the x and 
x y 

y directions respectively, V.   = k    + k    , E represents Young's 
K       y 9x2       x ay2 

modulus, h the shell  thickness, \) is Poisson's ratio, p the shell density, 

t denotes time, and D = Eh3/12(l-v2).    Normal and shear stress resultants 

as well as bending and twisting moments may be expressed in terms of 

w and 4) as indicated in [11].    The tangential displacements u, v along 

the x and y axes respectively may be expressed in terms of w and if> from 

relations presented in [4].    For example, the first of these relations is: 

i2x *2, 
8u + kvw*i(^- v^i) (ii-3) 

ay2       ax2 Sx T V ~ Eh    . , aw2 

Let us consider the case of a shallow spherical shell for which 

k    = k    = k = k = 1/R where R is the radius of curvature of the shell 

middle surface.    If both w and d> exhibit a harmonic dependence on time, 

i .e. if 

w = W(x,y) sinwt (II-4) 

<J> = <J>(x,y) sinwt (11-5) 

then Equation (1)  and (2) reduce to 

DVHJ + kV2<f> = phw2W (11-6) 

~V^ - kV2W = 0 (II-7) 

where    is the natural  circular frequency of free vibration.    It is 

possible to uncouple (I1-6) and (il-7) into the form 

V6W - pVW = 0 (II-8) 

V8c|) - pVcj) = 0 (II-9) 
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where 

n"  =5Ui2 - Ek2) (11-10) 

Since there are four conditions to be specified on each edge of the 

polygonal boundary the solutions for w and $ must contain four arbitrary 

constants. 

For convenience, let us set 

i> = v-w - p*w (ii-ii) 

Substitution of this relation into (8) leads to 

V2^ = 0 (11-12) 

Formulation of Solution 

The projection of the shell onto the x-y plane is considered to be 

a two-dimensional  convex simply-connected region R, the closed boundary 

B of R being a polygon of J sides.    As in Figure 5, a set of rectangular 

Cartesian coordinate axes Oxy is chosen and the vertices and sides of 

A "!^0q 

"'i^"- 
/   \ 

/e a      Y5)pi+' 
Y.               / Xj 

PI 
 » 

Figure 5 
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the polygon B are numbered 1 to J. The typical vertex P- has coordinates 

(X., Y.) in the Oxy reference frame and the typical side, the j , is 

P-P.+l, having length a- and making an angle <J>. with the positive 
J        vJ \J J 

direction of the Ox axis.    Associated with each side j is a set of 

edge-axes x.y-, having origin at P. and directed along the (inward) 
j J j 

normal  to that side. 

The fundamental series solution of Equation (11-12) in rectangular 

coordinates, derived using the separation of variables technique is: 

ijj = >:    {[Asin(mx + a) + Bcos(mx + Bx)]e"my + [Csin(mx + a) /   \        m mm m m 

+ Dmcos(mx + 3x)]e+my} (II"13) 

where m, Am, B , Cm, and Dm are as yet undetermined constants.    The 

phase shifts am and 3  , although unnecessary here, are included for 

sake of generality later.    Since the Laplacian operator V2 is invariant 

under transformations which produce translation and rotation of axes, 

it follows that 

^ + ^|=0 (11-14) 
3Xj      3y. 

The solution of this equation will then take the form 

* = (mO {CAiSin(Vj + ^ + Bmcos(mjxJ + ^»"Vd 

+ [CjjslndiijXj + aM) + D^cosfmjXj + Bm)]e+mjyj (11-15) 

in terms of the coordinates (x-y.) of a point referred to the j     system 
J J 

of axes. Subscripts and superscripts j have been added to m and the 
J.L. 

constants Am, Bm, Cm9 and Dm to indicate association with the j  side m  m  m     m ° 
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of the boundary B.    Clearly, similar expressions arise for solutions 

associated with each of the J sides of the polygon and all such solu- 

tions may be superposed, the governing differential equation being 

linear.    Thus, a general solution may be put in the form 

* = ^  J.} .{[Amsin(njxj + an) + Bmcos<mjxj + «V^'Vj 
«J 

+ [cJslnfajX. +   am) + DjjcosdiijXj + 3m)]emjyj} (11-16) 

Analogous to the solution for a simple rectangular region, the constants 

m, in (11-16) are chosen so that 
J 

m. = 2M7r/a. (H-17) 

for M a non-negative integer, in. order to facilitate generation of the 

boundary condition equations later.    Obviously the function \\) contributes 

to the determination fo the displacement components and stress couples. 

Thus, in general, in formulating the boundary conditions for the typical, 

j    , side,  the coefficients in (11-16) associated with the j      side 

can be made implicitly dependent on the relevant boundary conditions. 

In the general solution at any point within the region R, the displace- 

ment components and stress resultants will be composed of contributions 

from each side of B, each contribution being dependent on the boundary 

conditions imposed on that particular side.    Thus, invoking St. Venant's 

principle, it is physically desirable that such contributions decay with 

increasing distance from the corresponding side.    So, in 11-16), the 

coefficients Cffl and DJ* are set equaluto zero.    Consequently, ty is chosen 

to be: 
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J 
Hi =    i    E[A^Msin(mjXj + aj + B^cosfajX.. + ^)]e^mJyJ (11-18) 

in which m. is defined in (11-17). 
J 

Each of the fundamental terms e"mJyJsin(friixi + OL) and e~mJ^Jcos(m.x. 

+ ßj^) in ^ now possesses the advantageous properties of being directly 

associated with the j-th side of the boundary and of decaying in contri- 

bution to the overall solution with increasing distance y. into the 
j 

region from that side.    Such functions, similar both in form and notation 

to those employed by Tai and Nash [7], are termed edge-functions. 

Comparable expressions for     may be written but are omitted for brevity. 

If one substitutes (11-18) into (11-11) and also carries out a comparable 

procedure for <|>, one finally obtains 

W =    I     U[X AJ'Me-W + Ai,e-(mJ + P2^ + 
j=l    M      p4    '" ^ 

2        2  1/2 
AJ

4Me-(mJ " P ]     yJ]sin(mjXj + %) + 

2 2  1/2 
B4Me"lmj " P )     yj]cos(Vj + 3m)} t™9* 

and 
h 2 

j=l M     p4   m     2ntjk   J J  IM 

^Me-K2 + p2)1/2yj. *yM - p2)1/2yj)] 

. e-W+^(ßJMe-(raJ + P2)1/2yj - 
p2     3M 

2        2  1/2 
Bj    -(raj - p )     yJ)]cos( +     )} 

P 
r 

34Me  V"J      P '      •,J)]cos(ra-xi + em)} (11-20) 
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The expression for the transverse deflection (11-19) reduces in 

the case of zero curvature, k = 0, to the corresponding expression obtained 

by Tai and Nash [7] for the transverse deflection of a thin flat plate. 

Shell boundary conditions are expressed in terms of various combinations 

of the parameters W, $, the in-plane displacements u and v along and 

perpendicular to the q-th side of■ the boundary,, the rotation i* about the 

tangent to the q-th side, the rotation p* about the normal to the q-th 

side, the in-plane stress resultant N , the bending moment M about the 

q-th side, the twisting moment M^t about that same side, the Kirchhoff 

effective shearing stress resultants T and V , and the in-plane shearing 

stress resultant Nqt, all associated with the q-th edge. Expressions 

for each of these twelve parameters are derivable in terms of the 

coefficients A1?» and B:L but are omitted for brevity. However, it is 

convenient to symbolize these boundary functions in the form 

where t is an integer ranging from 1 to 12 for the above parameters W, 

<&, u , etc. respectively. Further, let us introduce the function A.EjjJ. 

to denote the edge-function contribution toAj. stemming from the j-th 

coordinate system and associated with the particular value M. In this case 

each of the above boundary functions may be written in the form 

J 
At - I    I  A.EjJ (11-21) 

Z     j=l M Z n 

It is necessary to determine values for the frequency as well as 

the coefficients A^M and B^ so as to satisfy boundary conditions. Thus, 

boundary conditions require that four of the functions At be specified 

on each edge of the polygonal boundary. This is accomplished as follows. 
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If P' is any point (x ,0) on the q-th side of the boundary, as in 

Figure 1, the function A.(P') is specified for four values of the 

1, t^, t3 and t4. 
q    q    q        q 

parameter- t' ■   I  ,  t", t    and t  ,  say.    Consequently, equation  (11-21) 

implies that 

J 

W1 = ji M ^^ 
t = tj, tjj, t3, tj; q = 1,2 J (11-22) 

In order to obtain identity equations for the coefficients A"?»-and B'L, 

it is noted that the series of terms 

(M)     t M    q 

in the summation (11-22) does not contain negative exponential factors 

since y   = 0, so that each term involves only x .    Since the negative 

exponentials tend to diminish boundary influences this series of terms 

is dominant and consequently (11-22) may be written 

MV   "  ^  j AtEM(PV  = ä  S^l   (hiA?M + ^ 

sin(mqxq + %) + ^  (hi+rA?M + gi+4B^M) 

cos(mqxq + Bm)} (II-23) 

J 
The dash in the summation z  , indicates that the term j = q is omitted. 

j=l 
The factors h and g in (11-23) are independent of x and may readily be 

obtained from the expressions for tEJ^ by setting y = 0. Thus the left 

hand side of (11-23) is some function H(x ) of x and the identity can be 

satisfied provided that H(x ) can be expanded in the trigonometric form 

of the series on the right-hand side. On choosing 

mq = 2M-rr/aq,   M = 0,1,2,... (11-24) 

and 
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%-  ,m-0 (11-25) 

the right-hand side of (11-23) may be considered the Fourier series 

expansion of H(x ) in the range [0,a ]. 

Several methods of approximately satisfying the boundary identities 

(11-23) may be employed. Perhaps the most obvious is to multiply (11-23) 

by 
2N sin fL xdx„ 
aq q q 

and integrate from 0 to a , then repeat using the cosine function. 

This leads to a set of equations of the form 

G(xq) = 0 (11-26) 

which is actually an infinite set of equations in an infinite number 

of unknowns. It is of course necessary to truncate these equations at 

some level, say L-9  for each side j of the polygon. 
J 

Because the truncation of the harmonic series expansion of G(x ) 

at N = Lq implies that the approximation 

G(xq) = JE0 + ^ [ENcos fjl x + FNsin fül x ] (n.27) 
N=J     q       q 

is being used, another way to approximate G(x ) is to use trigonometric 

interpolation to fit a finite trigonometric series to G(x ) by a discrete 

least squares method. As is shown in [12], if a discrete Fourier series 

interpolation, based on discrete least squares fitting at 2k*-l equidistant 

internal points in the interval [0,a ] is used in approximation (11-27), 

then 
2 k* 

EN=F   kf0 
wkG(xk)C0S if xk N-0.1,2,...,Lq 

2k*-l 
FN = F   J\      **kS(xk)s1n fSl xk N = 1,2 L (H-28) 
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where 

xk =. kaq/2k* (11-29) 

and w. are weight factors defined by 

w, = 1/2:      k = 0,   k = 2k* 
k (11-30) 

= 1:        0 < k < 2k* 

The expressions (11-28) for EN and FN may be set to zero thus generating 

the requisite set of simultaneous boundary equations. This interpolation 

method of setting up the simultaneous equations has the advantage, over 

the first method above, of requiring less computational time. Furthermore, 

it is found in practice that there is very little difference in accuracy 

between the results obtained from either method. 

The set of equations arising from expression (11-27) in which the 

coefficients of the expansion must be set to zero, ensures that the 

boundary conditions (11-22) are satisfied at all points of the q-th side, 

q = 1,2,...,0, except possibly at the vertices. If the boundary conditions 

are not automatically satisfied at the end points of each side of the 

polygon, they must be imposed at these points. Thus it is required to 

set to zero both the boundary function and its derivative along the relevant 

side, so that 

G(xq) = 0 (11-31) 

and 

!rG(V = ° <n-32) 
for both ends x = 0 and x = aq of the interval and for each of the 

boundary functions corresponding to t = t 9  t^, tjj, and t*. The effect of 

these point equations, which are referred to as vertex equations, is not alone 

to ensure that the boundary conditions are satisfied at the end points of 
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the interval, but also to increase the rate of convergence of the Fourier 

series from order 1/M to at least order 1/M . Such equations clearly 

give rise to the necessity of introducing additional unknowns in the 

basic solutions (11-19) and (11-20). Since, in general, there are four 

vertex equations arising for each boundary condition on each side, a total 

of sixteen additional unknowns associated with each side are required. 

These are provided by using fractional-edqe-functions. The latter are 

edge functions of the types in expressions (11-19) and (11-20) within 

the summation signs. Whereas in the above harmonic edge-functions 

mq = 2M7r/aq,   M = 0,l,.,.,Lq5 c^ = 0;  3m = 0        (11-33) 

for the fractional-edge-functions new values of these parameters are 

defined, so that 

V2V/aq'  ^ °> *to*° (H"34) 

where V.. is non-integral. The sixteen requisite unknowns can be provided 

by including in the solution two fractional-edge-functions generated 

simply by choosing two different values for V.,. They may be incorporated 

in the general solution by adopting the convention that they correspond to 

M = -1 and M = -2 in the summations in (11-19) and (11-20). It may be noted 

that, in theory, the solution is independent of the choice of the vertex 

numbers VM and of am and s for the fractional-edge-functions. However, 

in practice it is found that a judicious choice of values will increase 

the convergence of the truncated series solution. 

It was found in [7] that the problem of free vibrations of flat plates 

could be successfully treated by use of a combination of edge functions and 

fractional edge functions. That is, the prescribed boundary conditions 

could be satisfied to the desired degree of accuracy. In the case of shell 
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vibrations this is not the case and it becomes necessary to employ 

not onlv the two types of functions used in plate analysis, but in 

addition a third type of function termed a shell polar function. 

This function contributes to the time-dependent deflections in the 

interior regions of the shell away from the boundaries, whereas the 

edge functions contribute largely in the immediate vicinity of the 

shell edges.    The shell  polar functions are of the form 

4> = Re[EZX + F ZZA+1] 

(11-35) 

W - RE[F', ZA] 

where z = x + iy (origin at any convenient interior point), z is the 

complex conjugate, E, F, and F' are complex constants, and X is an 

integer.    Details of the derivation and accompanying properties of 

these special  functions are presented in the Appendix. 

The shell  polar functions are appended to the solutions to replace 

some (or possibly all) of the fractional edge functions.    The selection 

of the ratio of fractional edge functions to shell polar functions is 

made on the basis of experience and judgment in use of this technigue 

but with the requirement that boundary conditions be satisfied to the 

prescribed degree of accuracy.    In the present investigation of a combina- 

tion of half edge functions and half polar functions was found best for 

satisfying the prescribed boundary conditions. 

Application of the boundary conditions leads to a system of homo- 

geneous equations in the unknowns A;L and B^M of the form 

£Cab(uOAb = 0,        b = 1, 2 (11-36) 
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where A, represents A"L and IvL. The C . are coefficients obtained from 

the interpolation method mentioned previously and are functions of the 

unknown frequency to. The frequencies arv  found by settinq the determinant 

of the system equal to zero, viz: 

|Cab(w)| = 0 (11-37) 

Values of CJO are determined by a suitable iteration method, such as the 

bisection procedure. 

Numerical  Results 

Let us consider the free vibrations of a thin, elastic shallow 

spherical steel  shell  of square plan-form.  The radius of curvature is 

30.0 inches, the shell thickness 0.05 inches, the length of each side 

12.0 inches  (in plan-form),  E = 30 x 10    lb/in  , Poisson's  ratio = 0.3 

-3 2      4 
and the material density is 0.732 x 10      lb-sec /in  .    Boundary conditions 

to be considered are (a) all sides simply supported, and (b) all sides 

clamped.    Natural frequencies and associated mode shapes are desired. 

The natural  frequencies are indicated by Equation  (11-37)  and a computer 

program for determination of these frequencies, associated mode shapes, 

and boundary residuals is available upon request from the authors [13]. 

For the case of simply supported edges, the first four natural 

frequencies are indicated below.    Results are compared to those due to 

Vlasov [14] as well as Malkina [15].    The investigation [15] applies to 

the case of a spherical  dome with circular pi an-form but is employed 

here as an approximation by considering the greatest circular base to 

be inscribed in the square pi an-form shell  under consideration. 
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Frequency 

Present Method 

L=l 6748.86 6759.30 6763.15 6829.48 
L=7 6748.85 6759.30 6863.63 6795.35 

Vlasov [14] 6749.51 6759.29 6827.35 

Malkina [15] 6749.42 6762.31 

The computer program developed indicates the small residual bending 

moments along each of the sides of the shell.    For example, for the 

first natural  frequency if the peak bending moment at the mid-point of 

the shell is taken to be unity, the root-mean-square-boundary residual 

bending moment (for L=7) is found to be 0.37 x 10" .    This same function 

for the fourth natural  frequency is found to be 0.88 x 10    .    Clearly 

these constitute very adequate satisfaction of boundary conditions. 

For the case of a clamped edge spherical shell, the first four 

natural frequencies are indicated below, as well as those found by the 

Malkina method [15] again usinq the greatest inscribed circular base. 

Frequency 12 3 4 

Present Method 

L=l 6746.24 6794.72 
L=7 6746.24 6788.39 6992.20 7135.09 

Malkina [15] 6746.24 6796.89 6998.91 

Again, the computer program displays the small residual deflections 

along the shell boundary.    For example, for the first natural frequency 

the root-mean-square boundary deflection is 0199 x 10     (for L=3) and 

for the fourth natural  frequency it is 0.75 x 10"    (for L=3) compared 
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to peak mid-point deflection taken to be unity.    Mode shapes are found 

by calculating the relative deflections of closely spaced points on the 

shell  then connecting all  zero-deflection points at a given frequency. 

Conclusions 

The present investigation has.indicated that, for the geometry 

considered, the Edge Function Method is well-suited to determination of 

natural  frequencies and associated mode shapes of thin elastic shallow 

shells undergoing free vibration.    For the cases discussed through 

specific examples, the present analysis yielded results in excellent 

agreement with existing analytical results. 

The computer program developed during the course of the present 

investigation is applicable to any spherical shell of n-sided plan-form. 

Further, the boundary conditions along each edge are completely arbi- 

trary and may be different on the various edges without giving rise to 

complications in frequency determination. 

The use of the present technique of analysis for determination of 

natural  frequencies »and mode shapes of thin elastic shells yields an 

additional bonus not originally found in other approximate methods, namely 

rapid determination of how well the specified boundary conditions have 

been satisfied.    This is accomplished through digital evaluation of sig- 

nificant structural parameters along the boundary, say delfection and 

slope for a clamped edge which should, of course, vanish identically but 

the small  residuals corresponding to each of these parameters are routinely 

printed out by the computer and root-mean-square values along any of the 

polygonal edges displayed.    Thus, one may readily ascertain exactly how well 

the specified boundary conditions have been satisfied along all boundaries 

of the plate. 
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APPENDIX 

SHELL POLAR FUNCTIONS 

Equation  (11-9) gives for 

VMV- p)<|> = 0 (A-l) 

one solution of which is 

V^ = 0 

from which, following O'Callaghan [12] 

4> = Re[EzX + FzzX+1];      z = x + iy (A-2) 

where E and F are complex constants and A is arbitrary.    Accordingly on 

substituting for v**<|> in (7), we obtain 

V2W - 0 (A-3) 

and Equation (11-6) then gives 

W = -—   V2c|) (A-4) 
phw2 

On introducing the operators 

3- - e ^q Yz + e    *q ^ 

__ - le    q _ -  le *q ^ 

(A-5) 

from which 

*   + _lL = 4    32 

ax2       ay2 8z3z 

and on operating with V2 on (A-2) and substituting in (A-4), we obtain 

W = *(*+3l Re[Fz*] = Re(F.z^] (A.6) 

phrw2 
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where 

F.  = qF.      q = iUlli (A.7) 
phrw7 

To fit into the general polar form for the t     derived function 

Qt = Re[EAzA* + F(BzzA*+1  + CzA*+2)] (A-8) 

where A, B, and C are complex functions of <j> and A, and where necessary 

will have a subscript t - A*., B., C.  - to distinguish the different 

functions.    Equation (A-6) for W then gives: 

A = 0;    B = 0;    C = 2;    A* = A-2 (A-9) 

Values of A, B, and C for each of the remaining eleven parameters <j>, 

u , v , etc. are tabulated below. 

Function t A* At 8t Ct 

W 1 A-2 q 0 0 

* 2 A l 1 0 

Uq 
3 X-l V1*" BflA c0

e~^ 

Vq 
4 A-l iA3 1B3 "iC3. 

ßq 
5 X-l A4/r B4/r C4/r-i C^^q/z2 

\ 
6 A-2 (X-l)e2iA, (X+l)e2i*q 2(X+1) 

V 7 X-4 0 0 D*X(X-l)e2i*q 

# 8 X-4 0 0 iC7 

% 
9 A-2 A12 B12 C12+C8/rZ

2 

Vq 
10 X-5 0 0 (X-2)i(|>qC8/f 

\ 
11 A-l A4/> B4/r C4/r-Xei(f,q C^z2 

"8t 
12 A-2 -iX(X-l)e2i<f,q -iXX' 0 

D* = D(l-v) 

X1 = (X+l)e2i,),c 
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CHAPTER III 

RELIABILITY OF NONLINEAR STRUCTURES UNDER RANDOM EXCITATION 

Introduction 

The reliability of structures subject to random excitation has 

become a topic of increasing importance to designers. For example, flight 

vehicles are often subject to turbulence, random wind gusts, jet 

engine pressures, rocket exhausts, and other pressure fields that are 

random in nature. Actually, these are almost always nonstationary 

phenomena. However, because of the difficulties involved in analysis 

of nonstationary situations it is necessary to first consider the 

response of structures to stationary excitation, i.e. the statistical 

characteristics of the pressure fields are invariant under time shifts. 

The nonlinearity under consideration is geometric in nature, which 

characterizes large deflections of structural members. The present 

investigation is confined to the response of a single degree of freedom 

system. 

In the present work the perturbation method [16] is used to deal 

with the nonlinear differential equations. Since this method has its 

limitations [17], we also use the Monte Carlo simulation method [18] 

to ascertain the range of validity of the perturbation results. Knowing 

the response, it is usually not difficult to determine significant system 

stresses. From this type of analysis together with considerations of 

first-crossing and fatigue [19] it is possible to predict the reliability 

of narrow-band type structures subject to stationary random excitation. 

The Perturbation Method 

If a nonlinear single-degree-freedom system is governed by the 
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equation: 

X(t) + Z^d(t)  + üiJ(XCt) + uX3(t)) = f(t) (III-l) 

where £ is the damping ratio, w the natural frequency of the 

corresponding linear system, n a perturbation parameter which is 

dependent upon properties of structure, and f(t) is a generalized force 

which is a stationary Gaussian random process with mean zero and the 

spectral density function <j>(u>). 

We assume a solution of (III-l) in the form of a power series 

in : 

X(t) - XQ(t) + yX^t) + y
2X2(t) + ... 

For convenience, let 

X = X0 + X1 + y
2X2 + ... (III-2) 

If E [ ] denotes ensemble average, then 

E(X X*] = E[X0XJ] + P(E[X0X|] + ECXJX^) 

+ y2(E[X0X£] + ED^X*] + E[X*X2] + ... (III-3) 

where X* = X(t+t) and E[XQX0]f E[XQX*], E[X*X-,],... 

are to be determined. 

When (III-2) is inserted in (III-l), we get 

(x0 + 'i}  + p
2X2 + ...) + 2Wnc(X0 + jiX-, + y2X2 + ...) 

+ a)2 [X0 + WX1 + y2X2 + ... + y(XQ + yX1 + ...)
3] = f(t) 

or 
2V . 2V3> (Xo + 2«n«o + W + ^h +  2VX1 + %h + <W 

+ y2(X2 + 2%d2 + ü)2X2 + 3X
2XlW

2) + y3 (...) 

+ •-• = f(t) (III-4) 

The coefficient of each power of y must separately vanish since (II1-4) 

is to be satisfied identically in y. Thus, we obtain a set of governing 
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equations for the X(t).    The first of these represents the unperturbed 

sy s tern. 

Xo + 2V Xo + "nXo = f <*> 

Xl + ^VX1 + wnXl * "unXo 

X2 + 2concX2 + ^X2 = "3u^X^X1 (II1-5) 

Because we treat the excitation f(t) as a stationary random 

process, the response is also a stationary random process after the 

transient period, and properties of the response can be deduced from 

that of.the excitation.    From random process analysis [20]» we obtain 

the solution of (II1-5) and also 

E[X0X£] = Rf(t + 8T - e2) h(e1)h<e2)de1de2 (III-6) 

-«„ECftt-e^X^t - T -e2)]h(e1)h(e2)de1de2   (III-7) 
>oo     fco 

Etfjx,] = -e^E[f(t + T - e^X^t - 82)]h(01)h(e2)de1de2   (ni-8) 

where Rf is the autocorrelation of f(t) and h(e) is an impulse-response 

function. 

To make the perturbation method more efficient, we have to simplify 

equations (III-6),  (II1-7), and (III-8).    Since the autocorrelation 

function and power spectral density function as well as complex-frequency 

response H(w) and unit-impulse response function h(e) are related through 

the Fourier Integral, then (111*6) can be written as 

E[X0X*] = [   ♦ (<■>) |H(U)|2 exp(io)t) dw (III-9) 
J -00 

/■CO 

o\   =     (f)(oj) |H(o>) |2 du (III-9a) 
0 J -«> 

For (II1-7), (II1-8), we can apply the Gaussian property [17] and get the 
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final result: 

i2u. E[X0xy]»E[X*Xl]*-3^ 
0 

♦ UJlHUJI^H'fuOexp (ion) dm    (III-IO) 

When u is not too large, for simplicity, we evaluate (II1-3) to the 

first order of    .    Substituting (II1-9) and  (111-10) into (III-3) 

2_ M   ^   fl      c.   11 E[X X*] = *(Cü) |H(w) |^exp  (iorr)   (1   - 6yiüV  H'U)} du (III-ll) 
n xo 

2 _ 
ax " 

i2M      C.   2.2 
4>U)|H(ü))|*(1  - 6Uo)V H'(üJ)) dw (Ill-lla) 

n *o 

where 

1 HU) = 
01        "    ÜD        +    2l£ui    U) 

2        2 
0)_    —   ÜJ 

H' (üJ) 2 2T 2 
(un - as )    + (2cu)nw) 

Although it is very easy using the digital computer to calculate 

(III-9a) and (Ill-lla), the pitfall of this method lies in the fact 

that we cannot prove (III-2) is convergent and actually represents a 

solution öf (III-l) within an acceptable error.    Theoretically, this 

method is only for slightly nonlinear systems, i.e. \x is \iery small. 

However, this kind of knowledge is limited.    With the purpose of 

broadening the applicability of this method, we take advantage of Monte 

Carlo simulation to solve (III-l) and compare the results with those 

from the perturbation method. 

Monte Carlo Simulation 

We have already known that the excitation f(t) is a stationary 

Gaussian random process with mean zero and the mean-square spectral 

density function <J>(üJ).    This process can be simulated [18] by the following 

series: 
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T    N 
f0(t) = af/~ z   cos(U|(t + <(>k) (111-12) 

with <{>k being uniformly distributed between 0 and 2TT and independent 

of <f). for k f  j and with <ok being a random variable independent of 

a), for k i  j and of <|>. and distributed according to the density function: 
j J 

g(u) =4^ (111-13) 2 

where 

" f 

°f= 4>U)dio (III-13a) 

is the variance of the process f(t). 

It is reasonable to simulate f(t) in this way because the simulated 

process fQ(t) has the same autocorrelation function and spectral density 

function as f(t). 

There are many basic methods for generating variates from the given 

probability distribution. The inverse transformation method seems the 

most convenient if it can be employed. We first obtain the cumulative 

distribution function F U)  and set F (w) - r: 

Fg(«) = g(ü)') du1 = r (111-14) 

Now, it is possible to find a particular w. corresponding to r. by the 

inverse function of F if it can be obtained 

^ ■ F"J (r^ (III-14a) 

where r, r^ are random numbers which are generated by different processes 

[21]. In case we cannot express  in terms of F ^U), we must either 

calculate a numberical approximation to F" or introduce another method 

instead of using (III-14a). 

Once the generized force f(t) is simulated by (II1-12) and (III-14a), 

(III-l) can be solved numerically. The accuracy of this approach is checked 



[40] 

against the exact solution obtained for the corresponding linear system. 

We use the Duhamel Integral equation [22] to solve (III-l) with n = 0: 

X(t) - A(t)sin(o)Dt) - B(t)cosUDt) (111-15) 

where 

o     e niü)rj 
A(t) - H 

1 

t ^Unf 
f0(t')^—p cos(o)Dt')dt

l (III-15a) 

t      öCwnt' 
B(t)=^ lof°(t,)^r Sin(^')dt' (IIM5b) 

Then, we obtain the variance of X(t) and compare it with the exact 

solution from (III-9a) to see if it agrees with the latter in an 

acceptable range. If so, we may conclude the simulation is good and 

what we want to do now is to solve (III-l) with y i  0, i.e. the nonlinear 

system. 

Actually, there are many approximate methods to solve the nonlinear 

equation (III-l). The important thing is that we have to avoid large 

truncation errors which result in a divergent solution. This truncation 

error, sometimes called the discretization error, is dependent upon the 

selection of the interval size. We must choose the best approach to meet 

both economy and accuracy. We find the Runge-Kutta formula with truncation 

error of fifth order to be a very satisfactory method in this consideration. 

For steps smaller than some critical size [23], the higher error order 

gives less error. 

Again, we compare the Runge-Kutta solution for the corresponding 

linear system with that from (111-15). When these studies are close, 

Runge-Kutta may be applied to solve (III-l). The variance of X(t) will 

be found. 
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Risk Function and Reliability 

The statistical  property of X(t) has been obtained by the above 

analysis.    Recalling that S(t) = k(X(t) +   X3(t)), we obtain 

Gf = kZol + 6k2 ^ +' 15 kVajj (II1-16) 
S X X X 

With this information, we can evaluate the reliability of the structure 

if we know the initial strength characteristics of the material. 

In reliability theory, cessation of the performance of mechanical 

functions is called failure. These failures can be separated into two 

groups. First is the failure occurring as a result of stresses exceeding 

their limiting or critical values. The failure due to this reason is 

called first-passage failure. Second is the failure due to repeated 

loadings, i.e. fatigue. In this case, the loadings are not large enough 

to cause a failure of the first type but they do cause the successive 

incremental reduction of the limiting response. This means that 

repeated loadings hasten the reaching of first-passage. If the particular 

structure under consideration follows the power law for flaw propagation, 

(based upon the Griffith-Irwin equation as well as the Extreme Point Process), 

[19] we get the risk function, the probability of failure after a certain 

number of cycles, is as follows: 

hp(n) = "   ,-X2,  1      "(X"un)2 exp(-^) —!  exp ^— dx (111-17) 
O    2cr  /£TT O„ 2a s     n      n 

where 

an = % + % (IH-17a) 
o   n 

"n = R0 ' "Z (III-17b) 
n 

—  2 RQ, R being the mean and variance of the initial resisting stress R 
o ° 



[42] 

—      2 
respectively, and LU and a, being the mean and variance of Zn, 

K n  3     n     n 

Zn = w   i S. with S- and the j-th peak of S(t) and independent of S. 
n  2 j-i J     J K 

for j f  k also, K is a propagation parameter. 

—  22 —     2 Thus far, R , aR , a^ are known, but IU and Oy   are unknowns. To 
o n     n 

find Uy and a -, , Crandall [24] first considered the stress process 
n ln 

S(t) to consist of a sequence of half cycles each of duration ir/u> 

and used Rice's definition of an envelope: 

uz   = £ K [/2"as]
3 r (1 + §) (III-18a) 

n 

°Z   =?Kf^s]6 (1  - r2 (1 +l)} (III-18b) 
M-l 9 

+ J- K2LV2-cs]
6 r2 (1 + |) x { z    (M-k)[H(-f,-|;l,r*(T))-l]} 

K= i 

Here, H is the hypergeometric function and 

»CO 

r*(i) s \ [(    + (W)|H(üO|2COS(ü>-ü> hdw)2 (111-19) 
as 

+ ( 2.^/..   . \.A  N2IV2 + U)|H(w)|  sin(w-w )idw)  ] 
o 

<j>(w) [H(w) | is the spectral density of the process X(t). 
o 

It is clear that the further evaluation of ot   requires the value 
n 

of r*(x) to specify the parameter of the hypergeometric function. This 

is a laborious task. One way to overcome this difficulty is to consider 

the case of small damping and to assume the argument of the hypergeometric 

function is oscillating with period 7r/wn. This is limited to white-noise 

type excitations, but it can be treated as an approximate value for 

another type of excitation, especially when the damping is small, so 

the complex-frequency response H(w) is wery  sharply peaked at about <D . 

Thus (III-18b) is approximated as: 

a     =  0.092 f K2[/2 a.]6 r2 (2.5) (IU-20) 
n      ^     a 
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Now wo are able to calculate (111-17). However, numerical 

integration needs thousands of operations with a high-speed digital 

computer. We derive the following formula from (111-17) to simplify 

the evaluation: 

h (n) = —L  exp[- \ (1 - -l-?)](^+ erf (i)   (111-21) 
n        n     n n 

2  JL + J_ 
where W = 2a2  2a

2 > and erf: ^s tne error function which can be obtained 

by the asymptotic series 

2 
erf(x) = ! - J-e"x (1 - -L + 1^3   ...) (III-21a) 

vV     x  2xJ  2^xD 

Thus the reliability of a structure which will survive N stress cycles 

is 
N-l 

L(N) = n  [1 - h (n)] 
n=o     H 

N-l 
= exp[- I    h (n)]   for h (n) « 1 (111-22) 

n=o H H 

A Numerical Example — Wind Pressure on a Structure 
p 

As an example, let m = 1 kip sec /in and w = 1.732 rad/sec for the 

system described by (1) and assume the system starts from rest, i.e. with 

initial conditions X(t) = X(t) = 0. The system is excited by a strong 

gust whose spectrum is described by Davenport's [25] empirical formula: 

Sv(f)df = 4CV
2  ^473 dx (111-23) 

\ '   "*" x ) 

where 

x = 4000 £ (cycle/foot) 

V = a standard velocity of wind at 33 feet height 

C = a resistance coefficient of the ground surface. In terrain 
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uniformly covered with obstacles 30 - 50 feet in height, 

i.e. residential suburbs, small towns, etc.  C - 0.015. 

So, the spectral density of the fluctuating part of the wind pressure 

on the structure may be assumed as 

(pavcD) 2 
,2 2 

0(f) = -   q /     4CV"  VT/T (IH-24) f (i + /r6 

Crj = pressure coefficient = 0.5 [26] 

Figure 6 shows (II1-24). 

In the following process of calculation, we must always recall that 

u) = 2irf, because (II1-24) is expressed in cycles, but in the previous 

analyses the formula are in radians. 

From (111-13), (III-13a), (111-14) and (III-14a), we get 

wi = 2*fi = 2* 40ÜÖ[(T^7:)3 " 1]1/2 i = } — 'H (-IH-25) 

With the aid of (111-12),  (III-13a), and (111-25), a typical simulated 

excitation with wind velocity V = 120 ft/sec and N = 250 is shown in 

Fig.  7. 

1.  Monte Carlo Simulation 

Fig. 8 shows the comparison between different approaches for the 

corresponding linear system. The triangles indicate the exact solution 

from (III-9a) and crosses denote solutions from the Duhamel Equation 

(111-15) based upon the simulated excitation (II1-12). If the simulation 

(111-12) is good, these values should be very close. Actually the technique 

of simulation (II1-12) is dependent on the selection of size, the number 

of cosine terms, and the time duration for computing the variance. These 

factors will be discussed later. From Fig. 8, we may conclude that the 

simulation is fairly acceptable. The results of Fig. 8 at the same time 
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indicate the accuracy of the Runge-Kutta Method for solving (III-l) 

with the excitation <111-12) on a $tep-by-step timewise basis. Fig. 9 

shows a typical simulated result using these two approximate methods. 

The fact the numerical results are too close to plot as two distinct 

curves reflects the feasibility of the present analysis. The computing 

time for this approach was 50.67 seconds. 

2.  Perturbation Approach 

Figs. 10 to 15 show a series of nonlinear responses each with 

a different value of y. For this system: (A) If y is smaller than 0.2 

the perturbation method is seen to be reasonable agreement with the 

Monte Carlo simulation for lower values of excitations. On the other 

hand, some simulated solutions-(Figs. 10, 11, and 12) seem to be 

unreliable because their values are higher than those of the corresponding 

linear system shown in Fig. 3 and reproduced in Figs. 10, 11, and 12. 

This is due to the fact we used the larger time interval (0.4 sec.) for 

higher excitations which caused a little divergence when we applied the 

Runge-Kutta formula. This deviation can be reduced when the nonlinearity 

increases. (See Figs. 13 and 14) (B) If y is larger than 0.2, application 

of the perturbation method will cause an unacceptable error, as shown in 

Fig. 14. However, in this case, the simulated approach does have a great 

advantage. All data are plotted in Fig. 15. 

Fig. 16 describes the corresponding linear system with various 

damping ratios. It is quite clear that the higher the damping ratio 

the closer these two methods agree. This hints that the perturbation 

method will do well when y = 0.3 (or larger) and simulated solutions will 

be good at higher excitations even with a larger interval size such as 

0.4 sec. These are showed in Figs. 17 and 18. The computing time for 

the perturbation approach was 2.67 seconds. 
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Here, considering the case of £ = 0.02 and u = 0.05 and V = 100 

ft/sec,  (o2
f = 0.5136 in2) we get ax * 0.284 in from Fig. 11.    Applying 

(III-1G), we obtain: 

oZ = 0.744 in2 a_ = 0.862 in (111-26) 
s J 

If the mean of the initial resistance, RQ is 3.45 kips and the propagation 

parameter K for this system is 2.435 x 10 , with the aid of (111-18a), 

(111-20), (111-21) and (111-26), we obtain the estimates of the risk 

function h (n) which is the curve A in Fig. 19. Tne reliability is 

carried out by (II1-22) and is shown by curve A in Fig. 20. Furthermore, 

we consider the statistical variation of the initial strength RQ. Curves 

B and C in Figs. 19 and 20 represent the results for variations of five 

and ten percent respectively. Similarly, in each of these two figures 

curve D, E and F are obtained for R = 3.85 kips and variations 0, five 

and ten percent respectively. 

Conclusions 

Although the approaches presented are developed for (III — 1), they can 

be extended to other nonlinear systems by the same proceudres. From the 

view point of computing for the specific example used, the perturbation 

method is more efficient than the Monte Carlo method. The perturbation 

method takes only about one-twentieth the computing time that is needed 

for the Monte Carlo simulation technique. In general, when the 

perturbation parameter is small, the method works well. However, if 

the damping ratio increases or the excitation decreases, the method still 

proves to be adequate even if the perturbation parameter is large. This 

can be explained by the fact that the system has only slight nonlinearity. 
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Nota_tjoji used in Chapter III 

X( t) X X ■ V' ' i   Displacement Response Function 

t[ ] Ensemble average or expectation 

S(t) Stress response function 

S- The j-th peak of S(t) 

wn Natural frequency of corresponding linear system 

ü>D Damped vibration frequency 

T Fundamental Period 

m Mass of structure 

£ Damping ratio 

n Perturbation of nonlinear parameter 

k Stiffness of structure 

RQ Initial strength of structure 

RQ Mean of RQ 

ö    ,ax, Standard deviation of XQ, X, S(t), and R 
T <) respectively 

f(t) Generalized force, excitation 

fQ(t) Simulation of f(t) 

a(w) Spectral density function of f(t) 

Of Variance of f(t) 

Rf Autocorrelation function for f(t) 

h(e) Impulse-response function 

H(w) Complex-frequency response 

g(w) Probability density function for u 

Fg(w) Cumulative distribution function of g(u>) 

F (u) Inverse function of F (w) 
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r,r. Generating random numbers, i - 1,2,...N 

K Propagation parameter 

h (n) Risk function, probability of structure's failure after 
p n stress cycles 

H Hypergeometric function 

V Wind velocity 

L(N) Reliability of structure 

Zn K/2 ^ S3 

u-j Mean of Z 

2n 

a^ Variance of Zn 
n 

C Resistance coefficient of ground surface 

Cp Pressure coefficient 

S (f) Spectrum of wind velocity 

Pa Density of air, 0.0024 slug/ft3 
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CHAPTER IV 

RESPONSE OF A NONLINEAR SYSTEM TO NONSTATIONARY RANDOM EXCITATION 

Introduction 

The transient mean-square response of a linear single-degree-of- 

freedom mechanical system to certain types of nonstationary random 

excitation has been studied by many authors [27,28,29,30],    The nonstationary 

input was taken in the form of a product of a well-defined envelope 

function, A(t) and a stationary Gaussian noise with zero mean, n(t). 

Caughey and Stumpf [27] have examined the case in which the envelope 

function A(t) is a unit step function and n(t) is assumed to be either 

white noise or broad-band noise whose power spectral density has no 

sharp peaks.    Results of their analysis were applied to the determination 

of the structural response to earthquake ground motion.    Bolotin [28] 

has determined the mean-square response of a structure represented by 

a second order differential equation to earthquake excitation.    In his 

analysis, he considered the ground acceleration to be characterized by 

the product of an exponentially decaying harmonic correlation function 

and an envelope function, A(t) = Ae     . 

In a recent paper [29], Barnoshi and Maurer have formulated the time 

varying mean-square response of a linear single-degree-of-freedom system 

in terms of the system frequancy response function and the generalized 

spectral density function of the input excitation.    They considered 

the envelope function to be either the unit step function or a rectangular 

step function.    Bucciarelli and Kuo [30] have recently obtained an 

approximate expression for the mean-square response to excitation 

characterized by a general envelope function subject only to the restriction 

that the envelope function is slowly varying.    Their work also gave an 
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est.im.iUHl maximum value oi   the moan-square response. 

In ail   tho above studios,   the systems   treated were  liiuwr.     ihe 

present study presents an approximate solution  to  the problem of 

transient mean-square response of a simple nonlinear system to a non- 

stationary random excitation.    Only systems with geometric nonlinearities 

(rather than materials nonlinearities) are considered and the nonlinear 

differential equation is linearized by an equivalent linearization 

technique.    The results are directly applicable to determination of 

response of an elastic flat rectangular or circular plate subject to 

random lateral  loading when the plate is approximated as a single- 

degree-of-freedom system characterized by its central deflection. 

Obviously the results also apply to other one-degree-of-freedom mechanical 

systems excited by nonstationary random forces. 

Analysis 

Consider a lightly damped single-degree-of-freedom mechanical  system 

subjected to a random excitation and governed by the equation 

y(t) + 2ccony(t) + (^(y) + g(y)) = f(t) (IV-1) 

where 

C = fraction of critical damping 

wn = natural frequency of the corresponding linear system 
N 

g(y) =   z  uky2k+i u. * o (iv-2) 
k=l    K K 

The nonstationary random excitation f(t) is expressed by 

f(t) - A(t)n(t) (iv-3) 

where A(t) is a well-defined envelope function and n(t) is a Gaussian 

stationary random process with zero mean and autocorrelation function R (T) 
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2 
We are to determine the mean-square response E[y (t)] to an input 

f(t) when the envelope function is a unit step function: 

A(t) = u(t) (IV-4) 

and n(t) has the autocorrelation functions 

Rn(r) = 2^K06(T) (IV-5) 

Although various methods can be applied to determine the response 

of nonlinear systems, the equivalent linearization technique will be 

used here. This technique was developed by Krylov and Bogoliuvov for 

the treatment of nonlinear systems under deterministic excitations, 

and then Booton [31] and Caughey [32] applied this technique to problems 

of random vibrations. 

We assume that an approximate solution of (IV-1) can be obtained 

from the linearized equation 

y + 23ey + u>* = f(t) (IV-6) 
2 

where 3   is the equivalent linear damping coefficient and u>   is the 

equivalent linear stiffness.    The error "e" due to linearization is given 

by the difference between (IV-1) and (IV-6), i.e., 

e - 2(cwn - 3e)y + (uj - oJ)y + *(*)<£ (Iv"7) 

The variables ß and w are chosen so as to minimize the mean-square 

2 2*2" 
error E[e ]. The resulting values involve E[y ], [y ] and E[yy], hence 

it is necessary to know the probability density function p(y,y). In 

general, however, p(y,y) is not known. If the input is Gaussian and 

the nonlinearities of the system are small, then the response of the 

linearized equation (II1-6) is also Gaussian. Therefore, the assumption 

is made that the probability density function p(y,y) is Gaussian with 

covariances to be determined. Before constructing the probability density 

function, however, it is necessary to find ensemble averages of y and y 
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and these are readily round by DuhameTs integral to be 

Kty] - [' h(t-.)Lrf(.)Jd. (IV-8) 

and it we assume that E[f(t)] = 0, then 

E[y] = 0 (IV-9) 

Similarly, the ensemble average of y is obtained as 

E[y] * |r h(t-T)E[f(T)]dx (IV-10) 
0 dt 

= 0 

Thus, the assumed Gaussian probability density function p(y,y) takes 

the form 

P(y,y) = L—m exP("ay2 + 2bw - c^2) (IV-1]) 
27r(det(K))

l/^ 

where 

a = E[y2]/(2det(K)) 

b = E[yy]/(2det(K)) (IV-12) 

c = E[y2]/(2det(K)) 

det(K) » E[y2]E[y2] - (E[yy])2 

This leads to 

23e = 2ca,n (IV-13) 

4 * %    {1 + z    Mk -(£^il1 (E[y2J)k (IV-14) e  n     k=l   2Kki 

It is interesting to observe that the above equivalent linear damping 
2 

23e and stiffness uQ  are identical to those found for a stationary process 

in which case E[yy] is equal to zero. 

If the nonlinearity is involved only in the velocity term such as 

g(y) it is possible to demonstrate thatthe equivalent linear damping 

and stiffness for a nonstationary process are identical to those for a 

stationary process. 



[53] 

In all cases, the mean-square response E[y ] at any time t is 
2 

obtained from the expected value of (y(t))    over the ensemble response. 

Use of Duhamel's integral  leads to 

.2n      1 

ud 

t 

0 

t 
E[y ] *-^        exp{-^^(2t-T-Tl)}sinu)d(t-T,)sina)d(t-T)A(T)A(^,)  • 

n 

where 

R (T-T'JdTdT1 (IV-15) 

"d="n<1+    ^k
i¥lli(^2])k-C2} (IV-16) d       n k=1  K   2kk, 

If the input is white noise, then (IV-15) becomes 

E[y 3 = -5s-        exp{-2cwn(t-T)}sinV(t-x)dT 
^       0 wd 

2 2 frK 0      , 2 c ü)M        0 cur        o 
°_ [1 . e"Zc**«t(l + —^ sinVt + —S- sinV^t)] ~ ÖO        O        Ll C II" A—   3111    U) J U     • Olli    ü) J 

A*     f X 2,   2\ 2 a ajj a 
H\U  w

n
+ajd> WH d 

n   n d ä (IV-18) 

Employing (IV-16), (IV-18) becomes a nonlinear algebraic equation for 

2      2 2 
E[y ] since w. is a function of E[y ] in (IV-16). This type of equation 

generally has more than one solution. However, from physical considerations 

the desired solution will be that one close to the solution of the 

corresponding linear system because only a weakly nonlinear system is 

being considered. It is convenient to solve this system through use of 

Newton's method of tangents together with iteration.    As an example, let 

us consider the case 

g(y) = yy3 (iv-19) 
p 

For various values of u and damping coefficient c, E[y ] is computed 

and the normalized plots such as shown in Figure 21 result. The normalization 

factor is determined by the stationary mean-square response of the linear 

system 
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,2n _ „j/ //i,.. 3 E[y£] = "K0/4^ (IV-20) 

The parameter }i is chosen in such a manner that given n the stationary 

mean-square response reaches 40 percent, 60 percent and 80 percent 

Of E[#s. 

If the damping is small, (IV-18) can be approximated by 

E[y2l ' E[y2]s ii^±!^l dV-21) 
0 S 1 + 3pE[yZ] 

from which the following approximate solution is obtained: 

E[y2l = J-y- ([I + 12uE[y^]s(l - e"2^)]1/2 - 1}        (IV-22) 

From the above results it is easy to demonstrate that the transient 

mean-square response for both linear and nonlinear systems does not exceed 

the stationary mean-square response to white noise. 

If instead of (IV-5) the function n(t) has the autocorrelation 

Rn(j) = K0 exp(-a|i|)cosßi (IV-23) 

(termed correlated noise) then (IV-15) becomes 

K e"2rj(i,nt  tft 
E[y2] = -~    I exp[r,m(r+i') - «|t-T,|]A(r)A(T,)sina,H(t-l) 

u)j   joJo    n a 

sina3d(t-r
,)cos&(i-T,)d'Ldil (IV-24) 

Use of (IV-4) in (IV-24) leads to the desired expression for E[y2]. In 

the interest of brevity this lengthy expression is not given. However, 

inspection of it reveals that the mean-square response depends upon 

interrelationships between damping c, the corresponding linear system 

natural frequency a> , the decay constant and the frequency 3 of the 

correlation function. 

For a white noise input, only the value of damping of the system 

influences the time required to attain stationarity. However, for the 
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correlated noise input, the time required for the response to reach 

a stationary value is influenced not only by the system damping 

coefficient, i  but also by the decay constant a  of the input noise. 

Inspection of results indicates that as a  decreases, i.e. the power 

spectral density has a sharp peak at some frequency, then the transient 

response tends to exceed the stationary value. Another interesting 

result is that the nonlinear response becomes greater than the corresponding 

linear response under certain conditions even if the system has hardening 

spring-type nonlinearity. An example of this is shown in Figure 22. 

Conclusions 

The time varying mean-square response of a nonlinear single-degree- 

of-freedom mechanical system to nonstationary random excitation characterized 

by the product of an envelope function and a stationary Gaussian random 

process has been considered.    A unit step envelope function was considered 

in conjunction with both correlated and white noise with zero mean.    The 

nonlinear governing equation was linearized by the method of equivalent 

linearization. 

For the nonstationary process it has been shown that the equivalent 

linear damping coefficient and the equivalent linear stiffness for the 

system with nonlinearities involved only in displacements or only in 

velocities are the same as those for the stationary process. 

The mean-square response depends upon the coefficients of the system 

equation, the shape of the envelope function, and the parameters of the 

autocorrelation of the process n(t).    It was proved that for white noise 

modulated by a unit step function, the transient mean-square response never 

exceeds the stationary response.    However, the mean-square response to 
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correlated noise modulated by a unit stop function may exceed its 

stationary value, especially when the power spectral  density of the 

process n(t) has a sharp peak, and its maximum value becomes several 

times the stationary value. 

It has also been shown that the mean-square response of the system 

with cubic hardening spring-type nonlinearity may be greater than the 

corresponding linear system response under certain conditions. 

The results presented are directly applicable to determination of 

response of a single-degree-of-freedom mechanical system to nonstationary 

random excitation.    In the case of a flat rectangular plate subject to 

random lateral  loading the response at the center of the plate is 

frequently the one of greatest interest and in this case the vibrating 

plate may be represented as a one-degree-of-freedom system. 
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