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EVALUAT ION

This report is the first Technical Report. It is a theoretical
analysis of a method for obtaining solutions for conducting bodies of
revolution with an unspecified cross section. The approach involves
applying the method of moments to the E-field, H-field and the combined
field integral equations, respectiveily. The final solution is a linear
combination of the H-fleld and E-field integra! equations. This technique
is an improvement over previous single field techniques, because at
certain critical frequencies the single fieid techniques appear to become
unstable. This does not happen with the combined field approach.

A second report glving the computer program for this technique is
being prepared. These reports will enable the practical computation
of the backscatter cross section of many complex bodies of revolution.
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U, INTRODUCTION

Formuias for the computation of the electric surface current and far
scattered field of a perfectly conducting body of revelution are derived
for arbitrary plane wave excitation. Computer program subroutines which
implement these formulas in the resonance region will appear in a forth~
coming report. Computations show that both the H-field solution and the
F-field solution deteriorate near internal resonances of the conducting

surface, but that the combined field solution does not.

The field solutions are obtained by applying the method of moments
to the H-field integral equation, the E-field integral equation, and the
combined field integral equation for a perfectly conducting body of revo-
lution. Although the computer program subroutines are written explicitly
for a perfectly conducting hody of revolution, they are directly applica-
ble to the more difficult problem of plane wave scattering by dielectric

bodies considered by Wu [11].

Our H-field solution is similar to that of Uslenghi [2], generalized
to oblique incidence and with expansion and testing functions equal to
four impulse approximations to triangle functions divided by the cylin-
drical coordinate radius. We use Gaussian quadrature instead of Simpson's
rule for integration. Our treatment of coincident impulses is simpler
than Uslenghi's. The impulses are combined in groups of feur, not to
make the H-field solution more efficient, but to make it compatible with
the E-field solution. Actually, for low order solutions where much more
effort is required to obtain the matrix elements than to solve the system
of linear equations, it is wasteful to combine the impulses 1f all one

wants 1s the H-field solution aione.

Our F-field solution is in some respects a simplification and

in other respects a refinement of an earlier E-field solution [3].

(1] T. K. Wn, "Flectromagnetic Scattering from Arbitrarily-Shaped Lossy
Nielectric Bodies,” Ph.D. Thesis, University of Mississippi, May 1976,

(217 P.LLE. Uslenpghi, "Computation of Surface Currenis on Bodies of Kevolu-
tion," Alta Frequenza, vol. 39, No. 8, 1970, pp. 1-12.

[3] . R. Mautz and R. V. Harrington, "Radiation and Scattering from Bodies
of Revolution,'" Appl. Sci. Res., vol. 20, June 1969, pp. 4054735,
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The interaction between impulse portions of the expansion and testing
functions is calculated in the game way as in the H-field solution.
Computationally, this new E-field solution is roughly three times faster

than that of [3] with comparable accuracy.

Our combined field formulation 1s that proposed by Oshiro et al.
[4,5]. It is obtained by the method of moments applied to a weighted
average of the H and E field integral equations for a perfectly conduct-
ing bodv of revolution. The matrix operator for the combined field
solution is a iinear combination of the matrix operators for the H and
E field solutions. The excitation vector fcr the combined field solu-
tion is the same linear combination of the excitation vectors for the

H and E field solutions.

IT. STATEMENT OF THE PROBLFM

We seek the electric surface current and the far scattered field
of the perfectly conducting body of revolution of Fig. 1 excited by an
incident plane wave, In Fig. 1, ¢,¢,z are cylindrical coordinates,
and t,¢ form an orthogonal curvilinear coordinate system on the surface S
of the body of revolution. Also, u, and Bw are orthoponal unit vectors in
the t and ¢ directions, respectivelv. The coordinate origin is on the
axis of the body of revolution but not necessarily at the lower pole as
in Fig. 1. Figure 2 defines the propagation vector kt of the incident
plane wave, the transmitter coordinate Gt, the coordinates er, ¢r (re-
ceiver coordinates) at which the far scattered field is observed, and
the propagation vector &T of a hypothetical measurement plane wave which
travels from the receiver location (Or, ¢r) toward the origin. Note that
the $ cocrdinate of the transmitter is zero such that &t is in the xz

T r
1 are . ‘he 0
Lo Us and H¢ are unit vectors 1in the (t, Vs Or’

and @r directions respectively,

t t
plane. In ¥Vig. 2, Ups U

We consider separately a 0 polarized incident plane wave defined

[4] ¥.K. 0Oshiro, K.M, Mitzrer, and S.S. locus et al., "Calculation of Radar
{'ross Section,'" Air Force Avionics Laboratory Tech. Rept., AFAL-TR-70-21,
Part 11, April 1970,

[5] A. 1. Popglo and ¥, Kk, Miller, "Intepral Equation Solutions of Three-
bimensional Scattering Problems,'” Chap. 4 of Computer Techuigques ftor

Electromagnetics, edited by R, Mittra, Perpamon Press, 19713,
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Fig, 1. Body of revolution and cocordinate system.

2. Plane wave scattering by a conducting bodyv ot

revolution.
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by ik .
i t etz
™ = u. kn e
~ ps)
(1)
. -jk._»r
i ) t, vt -
o=k <ugde
and a ¢ polarized incident plane wave defined by
. -j T
it wt
o=y ke )
. -jk 1T
i _ ¢ wt a
- (Et:‘3¢)e

where Ei and Ei denote incident electric and magnetic fields respec-
tively, r is the radius vector from the origin, k is the propagation
constant, and n is the intrinsic impedance. Fither plane wave gives
rise to t and ¢ directed electric surface currents on S and Or and ¢r

directed far scattered fields.

II1I. H-FIELD SOLUTION

The HU-field solution is obtained by applving the method of
moments to the H~-field integral equation. The H-field integral equa-
tion is derived by setting the component tangential to S of the total

magneti~ field equal to zero just inside S.

The boundary condition that the total tangential magnetic field

is zero just inside S is written as

s i S . -
-n X H™ = nxli just inside S %))

where n is the unit outward normal vector to S, H is the magnetic
. . - . i ,
field due to the electric surface current on S and H  is the incident

magnetic field given by either (1) or (2).

™ . ) .. -
'e obtain an expression tor n=<H1, we note first that from

page 98 of [6]

[6] R. ¥. Harrington, Time~Harmonic Flectromapnetic Fields, MoGraw-11ill
Book Co., 19671.
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. Joiklz-r'
g><ﬂ“ = lim nx ¥V x JJ‘T(r') - ds"' (4)

A

5-+0

where § is the distance between the field point r and the inside face

of the surface S, Eﬁ is a running source point on S, and J({j) is the
electric surface current on S. Next, we view J(Ej) in (4) as the

current which resides on AS plus the current on S minus AS vhere AS

is that portion of S inside a sphere of radius ¢ centered at the point

on S nearest r. Let ¢ be so small that A5 is essentially flat and that
the electric surface current on it is constant. 1f & is appreciably less
than &, then, from Ampére's law, the contribution to Bﬁ<@? from the cur-
rent on AS is 71/2 where J»is the value of the current on 4S. Moreover,
this contribution to Q*:HS comes exclusively from a small portion of AS

in the immediate vicinity of r. The current on that portion of AS for
which the distance to the field point r is appreciably greater than § does
not contribute to Q‘KHS. We now let § - 0 in which case r becomes a point
of §, the contribution —J/Z comes from the value of ﬂ’at the single point
r, and the current on any portion of *S§ which does not contain r contri-

butes nothing to nx Uh‘ Hence,

. S o iklrer]
TR e { v LGty S g (5)

2 . b Jr-r']

-

where r o is exactly on 8§ and where the improper intepral in (5) is con-
vergent .

In view of (5) and the vector identity

Lokl R

) T i, L

S Cerhy gD ()

fr~r'! lr»r'!

(3) becomes




J(r) . ]+jk]r—zf} il )
SR S EPRIRIE S L1 o A I NI G YL ISR FON
2 4TT )) ¥ 3 “ e Vm A -t e
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for r on S. Henceforth, we assume that the outward normal vector n is

given bvn = u xu_ . 1f u. is chosen such that n = - u(r bd U then our
v A O

M(f\ st “— !

evaluations of tlie terms proportional to n in (7) will have the wrong

o signs throughout the remainder of this report.
i I
I(r') = ula(er, 00 o] gt e (8)

Lt

where u' and u; are unit vectors in the t' and 4' directions respec-
4

tively, then, as shown in Appendix A, (7) becomes

l' g 2“'
T (t, b k {’ t .
Et{ (7’ ) e j p'de’ ,)( de'CT (e '+ [ ((p'~p)cos v -(z'~z)sin V')
271
. ; [ v 2 ‘b' k3 [ 3 1 ( ' & ' ' ' '?
cos M=2p cos v'isin (T\] + EJ ptde J' ds'er e,y "+ ) (2 -2) sin ¢ b
£ 2 «,
& 0 -
§ R 3 20
o 3 ¢ ’
J t,h k .t , .
+ou, -»~~*,;-1-——)- + oo J plde! J dATCT (e ) "sin v ocos vi-posin vicos v
M - [

— ] 0
N‘~ 4 1) "
X N 1 o
. ' . . ' s . ' k I ' ( Voot ' '
: - (z'-2) sin v sin v"') sin ' + oo et b odg e (GRS D)

4 ]

N
: ) . ! 2o i
: [(("=Mvos v ~ (z'=2)sin vicos p'+ Zn'teos v osin (5 )]% < o= H (9
where
: I+ kR kR
N Lo R} AJ{'—\V v " (1o
KR

; ty
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S 5 .
R ='\/(n~--p')Z + (z-z')7 + 4pp' sin

(1)

In (9), both n and Qi are to be evaluated at {t,*) on S and v is the
angle between ty and the 2 axis. v is positive if U, points away

from the z axis and v 1s negative 1f U, roints toward the = axis. The
variables o', z', and v' are respectively p,z, and v evaluated at :='.
Tf the electric surface current is bounded and if S curves smoothly,
then all the iterated integrals in (9) cenverge because the integrands

-1
are at least as well hehaved as R .,

According to the method of moments, we let

t t ~ ¢ b ,
r) = ) 7 3o+ 2
j( ) !, (I 1 o j(tyd)l I_] j _](tp(i))) (] )

vhere J;4(t,®) and Jﬁj(t,¢) are expansion functions defined by

t ingd -
= f 2]
an qt.j(t) e (13)
J¢ = u, f, (t) ejnb (14)
~1j wth

Fxpansion functions whose t and ¢ components are proportional to

jnd

e are especially suitable bececeause they make the t and ¢ components

. . . jnd .
of the left-hand side of (9) proporticnal te e, The coefficients
t q . . , . .
17, and Tsf are determined by solving the matrix equation which results
when (12) is substituted via (8) into {9) and the inner product of {9)

t $ .
with testing functions Wmi(t,¢) and wni(t,ﬁ) defined by

t - )"-j [ng .
}:Jm‘i Evltri(t) ¢ (15
& - =t .
wmi = H¢’1<t> o (i6)




is taken. For an inner vroduct equal to the dot product integrated

over S, the matrix equation decomposes into

i - 1] - 2
YLt Ytb ft It
n n n n
- » n=0, +1, +2... Qan
. >
Y¢t Y¢¢ f® L
Ti n n n

2t 2 . t
where I~ and Ii are column vectors whose jth elements ave I]
. nj

? -
Iﬁ are column vectors whose ith ele-

and
N

I¢. regspectively, Also, Tt and

nl : n

ments are given by

ALl
- € i -jn¢
Tat = f dte £, (t) f dp(y, xn) - 1" e (18)
¢
and
2T
Ad" = + . i —jnq') .
To1 Jd"ofi<t)f di(u, xn) - 1 e (19)
0
tt bt to

respectively. Finally, Yn , Yq . Yn , and Yi¢are square matrices

i

whose 1jth elements are given by

(Yit)ij =T f dt o fi(t)fj(t)ﬂi-k3 f dep £, (1) f dt'p'fj(t')[((ohn)cos v’
- (z'~z) sin v') G, = Gypcos v'] (20)
(Ygt)ij = jk3 J dfﬁ)fi(t) f dt'p'fj(t') (p'sin v cos v'-p sin v' cos v
- (z'-z) sin v sin v')03 zn
(th),A = jk3 ( dt o £ (t) ( dt'p'f (et (2"-2)0C, (22)
n iy J i J B 3
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m‘f - .
G =a L dve £ () F kD] aep £l (e ( de'p "€ ) [(G-p)cos v
n “ij i i i J i
- (z'-z) sin v)G, + Glp' cos v] (23)
where
i
~ ; LI 2 2 LR ¢ L
01 = 2 d¢'G sin”($'/2) cos (nd") (24)
a
m
Cz = J d¢'G cos ¢ cos (ng') (25)
0
"
13 = J dé'G sin ¢ sin (nd") (26)
0
We define pfi<t) to he a four impulse approximation to a triangle
function in the following manner. Letting t = (p,z) denote that p and

z are cylindrical coordinates of the point t, we define an odd number

greater than ox equal to 5 of consecutiv2 points t = (p,z) = tI =

(o;, z;,-), i=1,2,...P on the generating curve of the body of revolution
such that (p“, ZI) and (p;, z;) are the poles. If the body of revolu-
tiorn has no poles because the generating curve closes upon itself as

with a torus, then three points must be overlapped such that

. )= {(p., 2z, 1i=1,2,3.

O 341 "pogrg it %

Preferably, the points t: should be such that n = u, X u, whee U

¢ -
poinis from t, to t,, .
i i+l

then ail expressions which can be traced back te the

[£ the points t_ are chosen such that
1
n = - u, ¥
“ < ot ?
terms proportional to n in (7) will have the wrong signs.
We now approximate the generating curve by drawing straight lines

between the points (..)I,z;), i=1,2,...7 and define points

SRR B B A S T AL T Bt A A Al hhad baSL AR A el Ik R PR R TR ATy TV e
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R TS [ S & 5 .
- tj - (Dl“ Zi) = (e e e ‘,W«f;__wmq (27

on this approximate generating curve. The length d_i of the Interval

cer.tered about ti is given by
/ - ~ 2 Z -
dy = oypq =) (ayyy - ozy) (28)

In terms of coefficients Tp+41~4 defined by

’: 2
x r } dei—l
i N .
4i-3 T Td,, ¥ 4,0
K (d + X4 a4
. _ Ry T3 )% (29)
4i~2 d?i-l + dZi
k(d +Xa 4
. _ KWyian Y5 Yy
L. 3 K
LA PSR PTT)
2
T _ M
41 T(g1e1 + dy10p)
we construct
4
bf. (8) == T 7 5 (t-t ) (30)
i k Ly Tprat-a 00T 21 30,

where §(t) is the unit impulse function. The right-hund side of (30)
is the desired four impulse approximation to a triangle function

' {(see Fig. 3).

substitution of (30) into (20) - (23) vyields

N oaloa .
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Fig. 3. Trisngle function (solid) and four impulse

approximation (arrows).
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SR (1),
¢t 5
(Yn )ij 4 4 (Y‘)s
" - le Motai-g qzl Q+bj-4 (31)
)= =
SN (v3),
b
Y
H | BON
where s denotes the double subscript p+2i-2, q+2j-2 and
k((ojmpi) cos vj - (zj~zi) sin vj)Cz—kpiGlcos Vj’ i#]
(MDyy = (32)
T .
kzd - kpi G1 cos v, y  15]
i%4
9 — . S _ ‘, . . _ - N e . \’
(Y._)ij Jk(pjsin v, cos Vj p;sin vjpos vy (zj ;sin v sin vj’C3 (33)
(Y3)11 = jk(z]. - 2,06, (34)
( k{(p,-p,)cos v, - (z,-z.) sin v )G, +kp G cos v, , 1#j
j i i j i i” 2 jol i
= ’ -
(Ya)l] - \’ (35)
. L eoa s
L kzl + kpih] cos vy y 1=j
‘ ) 494

Here, v, is the angle between the approximate generating curve at

2

(pi,zi) and the z axis. The term -——— in (32) and (35) was obtained
k dio,

by replacing one of the coincidert impulse functions in the first inte-

gral on the right-hand sides of both (20) and (Z23) by an equivalent pulse

over the interval of lengpth di.




In (32)-(35), ”1’ Gz, and 03 are piven by (24) to (26) 1in which
G 1s given by (10) with R of (11) evaluated at (pyz,p'.2") = (oi,zi,pj,zi).
When i = j in (32Y-(35), none of the integrals G]’GZ’ and G,3 convergo~be;

cause
R = ZQisin (¢'/2)

This lack of convergence is ascribed to use of the impulse representa-
tion (30) rather than to any deficiency in the H-field integral equa-
tion (9). To obtain convergence for i = j, we replace the above R hy

an equivalent distance Re given by

R, =\/(di/4)2 + 4p§sin2(¢'/2) (36)

Expression (36) may be obtained by displacing the field point a distance
di/4 perpendicular to the plane of the source loop. Now, di/4 is the
equivalent radius [7] of a flat strip whose width is di' Fxpression (36)
can also be obtained by averaging R2 for field points displaced a dis-
tance di/4 in either direction along the approximate generating curve

from the source loop.

An N¢ point Gaussian quadrature formula is used to calculate the

integrals Gl’
and R by either (11) or (36). According to this quadrature formula,

G2,and G3 defined by (24)-(26) in which G is given by (10)

ki N\f’
F(a)de" = 5 T A f( (x + 1)) (37)
2 Lo A Ggo 1))
k=1
0
where f(4¢') is the function being in<egrated and x, and Ak are constants

k
tabulated by Krylov [8]. 1In (37), the multiplier g'and argument g(xk+])

[7) E. A. Wolff, /sntenna Analysis, .John Wiley and Sons, Inc., New York,
1966, p. 61.

sl v, 1. Krylov, Approximate f?{“ﬂi&ﬂl&f‘ of Integrals, translated by

A. H. Stroud, Macmillan Co., New York, ]9_62, Appendix A.




nsteald of just X are due to the transformation of Krylov's Interval
\

from -1 to | into the interval from O to wn.

The ~3~JL~~terms in (32) and (35) destroy some symmetry proper-
k7d . p,
i
ties of (31). If the »gwjt—-terms were absent, then
k d.p.
i
Y1 = - (Y
(YD, = - )
(Y2),. = - (Y2), (38)
ij ji
(Y.;)ij = - (Y3)ji

and replacement of (i,3,p,q) by (j,i,q,p) in (31) would show thar

tt _ b

(Yn )ij = - (] )ji
bey _ bt

(Yn )ij = (Yn )ji. (39)
to - té

e I S

An efficient method of computing (31) which takes (38) and (39) into

account is described in a subsequent report.

IV. FE-FIELD SOLUTION

The F-field solution is obtained by applying the method of moments
to the l~field integral equation. The E-field integral equation is de-
rived by setting the component tangential to S of the total electric field

equal to zero on S,

The boundary condition that the total tangential electric field

is zero on § is written as

I 1o -] Fl on S (40)

n -tan n ~tan




where R is the electric field due to the electric surface current

P

. 1 . .
on S, E7 is the incident electric field given by either (1) or (2)
and n is the intrinsic impedance. The subscript tan denotes tan-

gential components on S8, The 1/n terms are included in (40) to give

it the dimensions of current.
o
The field E” can be expressed in terms of a vector potential

A and a scalar potential o as

S

B = - jwA(D - 7o) (41)

where

Loik| x|
ACT) = n ” 1) ———— ds' (42)
S bn|x-v'|
—ik|r-r']
B(I) = - ” o T s (43)
- € J \J
g Avlr—z (

Here, r and r' are vectors to the field and source points respectively,
J(r') is the electyic surface current on 5, k is the propagation con-
stant, u is the permeability, e is the permittivityv, and o is the sui-

face charge given by

g = - —]— lim e | = = 2= Y e T(r) (44)
Jw ASH0 ~

where u is the unit vector tangential to S and normal to the curve (
which bounds the small portion AS of S. u_ points away frem AS. The

operator V + is the surface diverpence on S.
-5

Following the method of moments, we write

i
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~
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¢

w-nj

¢
nj

are expansion functions defined by

t -t
where Ini and 1 are coefficients to be determined and Jni and J

t iné
Jo, = f.(t)e
.jnj e J( e
(46)
¢ né
J", = u f Ye-
“nj % j(t ¢
Next, we take the integral over § of the dot product of (40) with each
one of a collection of testing functions ﬂ;i’ Hii defined by
WS o=y (e
~mi ~t i
(47)
¢ - y o —imé
Hmi E¢fi(t)e
to obtain the matrix equacion
Tzt T+ 250 10 - ¥
I mn° n m- n m
(48)
J ozt 15+ 221 1% = v
mn n m- n m
n
where the Z2's are square matrices whose ij-th elements are defined by
Pq 1 ([ ,p q q
7, = = Wheooo. JwA(I ) + V2(317,))ds 49)
(/mn)ij n )J ~mi (Jué(—nj) - (Jnj))4S (49)
S
where p mav be either t or ¢ and q may be either t er ¢ and n = Yu/r is
the intrinsic impedance. Also, G; and &ﬁ are columm vectors whose i-th
elements are given by
I VL (50)
mi N ~mi -




e b ———

Tt
where p may be either t or ¢. Lastly, fn and Tﬁ are column vectors

cf the coefflcients Isi and I:’ appearing in (45).

The following manipulations serve to transfer the differential

operator on ¢ in (49) to Ezi' Since S is closed,

” v, r (e Wds =0 (51)

where W denotes‘ﬂg Now, the representation

i

- 13 19
e " ¥ =T 3% (o Weu) + 5 70 W %) (52)
‘é of the surface divergence and the definition
_y 3L 30 5
I T Y ae v Y ooe (53)
of the surface gradient imply that
VU « (PW) =0V sW+W-V 0 (54)
~8 -~ wg e ey

In (54), the surface gradient of ¢ can be replaced by the ordinary
three-dimensional gradient of ¢ because (53) is the component of the
three-dimensional gradient tangential to S and Eyis tangential to S.

Substitution of (54) into (51) and then (51) into (49) vields

N r
oo A pq = 11_9.‘_ {wp . q + p q 1 -
.» (Zmn)ij . J]I S é(ﬁnj) O @(gnj)}ds (55)
where
‘P = e -—1-- . p 3
I Juw YS Emi >0

Since, as shown in Appendix B, (55) is zero for m # n, (48)

reduces to

17




ST TEETT AT, M R TATETIR RO ITROAT NI T AT 0 T s 40 s e e e ey s
T s e TR BT, o T TS T 54\ TR e o A 7T .

[ St 2t ] [»I_.»r. | ot
n n n
‘ , n=0, +1, +2,... (57)
i Z«&t zdwb 'I*dv ";fb I
_n n n n

where qu 1e Z:g of (35). It is also shown in Appendix B that the

elements of qu are given by

)
(Zsc)ii = § J dt f (ol {k"ofj(t)p'fj(t')(cssin v gin v' + G[+ cos v cos v')
e 2 E, () =2 ('F, (£'))G,) (58)
ot Phy at" 5 4
(2% = o dtef () | et kPeEL (t") Gosin v' + B0 (0tE (e))C) (59)
n “1ij i i 6 p ot' j T4

td . ' g1 2 n o .
) = - C . [w ; - T » {
(7n )ij [ dt [ de’p fj(t ¥ (k Ofi(t) 6 sin v + s (pfi(t)) (4) {60)

(ZM) = { ( dtpf, (t) dt'p'f (t')(kzr“ - ——nz G,) (61)
n Ty 4] CtPiy R S op' T4
:ﬂ where v is the angle between the tangent to the generating curve and
- the z axis and where
by
L, {’T o TKR
. " .\ G = I e— Y& &*
e LT AT S cos (i) (62)
0
('” e"]'kR
Gy = ) d¢’ R cos ' cos (nd") (62)
0
n e—ij
) = u‘ S e — - u' 51 { \r'
06 { d¢ R sin ¢' sin {(n¢") (64)
i Jd
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) 77_/1)
+ bpp! Sin”(l;' (65)

R = ’\/(o—‘ N2 4 (zmz)?

Here, p, z, and v depend on t while o', z', and v' depend on t'.

To evaluate (58)~(bl), we choose for cfi(t) the four impulse

approximatrion (30) to a triangle function which reads

5(t—tp+21'2) (66)

e~

0
pH4i-4

==

ofi(t) =

p=1

where §(t) is the unit impulse function and Ti and ti are defined by

(29) and (27) respectively. For é%‘(pfi(t)), we choose the four impulse

approximation
4
Lo ey = Yo 5 (et ) (67)
de i pel ptbi-4 pt2i-2

to the derivative of the triangle function as shown in Fig. 3. Figure 4

illustrates (67). The coefficients 7' appearing in (67) are given

p+4i-4
by

'l" = H_....(_l_%i—] .
4i-3 (l,),[__] + d‘)j

d, .

1 - S

4i=2 (],,i_] -+ (l"’i
| (68)
(,’_

'ly' ey —— e A‘—.l~:}.l.‘1_._4‘ -
Bl
N o “d:’;i U
loi dllfl t d_‘i*’

whore (ll, is detined by (28).

Substitatinge (66) and (67 into (53Y-(61), we obtain
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tt © R Y ot
= T (A.sin v, ,si 3,8 s -
(Zn )ij 1 X ) {Tp, q,(quin v, isin vj, + CALJS v, 1cos vj,) Tp,Tq.bJ (69)
p=1 q=1
_l/"f.n d)t § § a
4 @y, = - {tr ,7 ,G.8in v,, + T ,1',G,} (70)
k n 13 p=l q=1 P q 6 j kpi' P Q 4
tq § § n
2., = ) {T ,7 ,6,8in v,, —>—T',T ,G,} (7D
/ n “ij p=1 q=1 6 1 kpj, p'q’ 4
ﬁ‘” 5o 4 4 n2
@', =3 ) ) 7T (6 - == G,) (72)
\ n “1ij L0 Tp'Te’ S 2 4
4 p=1 g=1 K p 10yt
i
'f{ where p' = p + 41 - 4
. q'' =q+ 43 - 4 (73)
K i'=p+ 21 -2
-, Ptm g+ 2y -2
The subscript i' denotes evaluation at ti,ﬁ The subscript j' denotes
E evaluation at ti" In (69 - (72), GA' GS’ ard G6 are given by (62) ~ (64)
f in which R of (65) is evaluated at t = ti" t' = tj' which, in terms of
!_‘ cylindrical coordinates, is at p, z,p',2' = pi.,zi,,pj,,zj,. If 4" = 3°',
'(7 we replace R by the equivalent distance Re given by (36) which, with i
ff replaced by i' reads
]
A
R = \ﬂd 102+ 4p2 sin® (6'/2) (74)
, e i' i'
E The Nb point Gaussian quadrature formula (37) which reads
3 (
- 4
o T . N\@ "
ke i r‘}' . (- i
. J f(p ') dd 5 k:l Akf(z (xk + 1)) (75)

0
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defined by (62) - (64).

is used to calculate the integrals G , and G

4 % 6

Since replacement of (1,i,p,q) by (i,i,q,p) 1n (73) implies re-
placement of (1',j',p',q°) by (3',1',q9',p") in (69) - (72), and since
G4, G_, and G6 are symmetric in 1’ and j', it is evident chat

5
tt tt
Z = (Z
7.0y = FDyy
Lot Lt -
Z = - (Z 76
@5y == ey (76)
L b
Z = (Z
( n )ij ( n )ji
An efficient method of computing (69) - (72) which takes advantage of (76)
is described in a subsequent report.
V. COMBINED FIELD SOLUTION
In this section, we assume that the incident field (gi,ﬂ}) due
to sources outside the perfectly counducting body whose closed surface is
S induces a unique electric surface current J on S and that this I satis-
fies (3) and (40) which read
5 A . \
-nx H({(J) =nxH just insdide S an
1l 8 1 i
n I‘:'tan(g) " 1 ~tan on $ (78)
where n is the unit outslde aormal vector to S, (E?,HS) is the field due
to J, and the subscript tan denotes tangential components on S. The ques-—
tion arises whether (77) alone is sufficient to determine J, whether (78)
alone is sufficient, or whether infcrmation must be drawn simultaineously
from both (77) and (78).
If both J anl T + ﬁ satisfy (77), then
HY (9 =0 just inside 3 (79)

~tan .~




S -

Maxwell's equations will be satisfied if

S, A 2.8 4
Vo vox HO(D) = kKH°()  dinside $ (80)

The solution J to (77) is not unique for values of k at which (79) and
(80) admit a nontrivial solution i. This j will be called a magnetic
cavity mode. Similarly the soluticn J to (78) is not unique for values

of k at which

s -, , .
Etan({) =0 on S (81)

Vox ¥ ox Es(ﬁ) =k E‘(i) (82)

ar

admit a nentrivial solution Q_ca]led an electric cavity mode. Comparison
of (79) and (80) with (81) and (82) shows that the magnetic and electric
cavity modes occur at the same values of k and that the magnetic field of
the magnetic mode is proportional to the electric field of the electric
mode inside S. The electric mode field vanishes outside § bhecause its
tangertial electric fileld is zero just outside S, but the magnetic mode
field does not vanlish outside 5 because its tangential magnetic field is

not zero just outside S.

The assumed existence of a unique solution J to the physical
problem implies that the incident field is orthogonal to a nontrivial
solution, if it exists, of the adjoint field problem. The adjoint nag-

netic field operatcr has been determined by Marin [9].

‘Je will show that the solntion J to the combined fleld formu-

lation [4,5]

e B8 - 2R () =noxont o4 S just ide S (
n < H7(T) . ﬁtan(¢> n x i = Eean ju inside 83)
is unique and satisties both (77) and {(78) whenever o is a positive real

number.

[9] .. Marin, "Natural-Mode Representration of Transient Scattered Fields,"
[FFE Trans. Anternnas Propagat., vol. AP-21, pp. B809-818, Nov. 1973,

g
Iy




The solution to (83) is unique {f

S [$1 ]
- x M7 (. - =R J = 4
n x 1 (I) ; LL- u (J) 0 (84)

implies that J = 0. Scalar multiplication of (84) by its complex conju-

gate and integration over S lead- to

(e |? + ol pe () 1%yds + 22 [reat [[ () « W)Y + (-nyds] = 0
atan = n2 [lean ‘= n aljy e SRR LI S| n
° : (85)

The bracketed quantity in (85) is the real power flowing inside S and hence
is either zero if the media is loss-free or greater than zero if the medla

is lossy. Thus, (85) implies that

H® (1) =0 inst inside S (86)
~tan =~

8 =
B (D) =0 on S (87)

Since (87) implies that Hiar(J) is also zero just outside S, we nbtain the
desired result that J = 0. Hence the soclution to (83) is unique. The

statement on page 224 of 5] that (83) has an infinite number of solutions

at eigenfrequencles is aot corract.

Tf (83) is true, thea (84) - (87) are vaiid with H°(J) replaced
by ﬂs(i) + ﬂi and Eé(g) replaced by g?(g) + E}. Therefore, (83) implies
poth (77) and (78).

Since (83) is the linear combination of (3) and (40) with relative

welght o, the method oy moments formulation obtained from (83) 1s the saue

linear ccibination of (17) and (57). Hence,

PY”‘ ad 25t 20| T —l (1 | ot {
’ n n n n n n n
ta i = + « ’, n=0,+1,4+2. .,
gt X N T N x4 0
| v e j R Al 1] L fn J RS ! ‘ ?/n | (88)




_— . S A, e VT 1 ik i 0 L

where all matrices and column vectors have the same meaning as in

Sectiong YTl and IV except that f; and f:
(455, give the combined field solution for J.

now, when substituted into

VIi. FAR FIELD MEASURFMENT AND PLANE WAVE EXCITATION

In this section, measurement vectors are used to obtain the far
field of the surface current J. The plane wave excitation vectors nezded
for the H-field, E-field, and combined field solutions are then expressed

in terms of these measurement vectors.
By reciprocityv,

8 = . c
2@ - [ 3 - magae (89)

s, s e . o .
where F7(J) is the far electric field dre to J, I&r is a receiving electric

<ipole at the far field measurement point, and E(I&r) is the electric field

due to I&r evaluated at r on S. [f ¢ 1is tangent to the radiation sphere,

" “r
] e ik - x
: BOL) = = T e (50)
b r
E ] where r_ is the distance bhetween the measurement point and the origin in

. the vicinity of $ and Er is the propagation vector of the plane wave coming

from 1&r' Substi  ving (45), (48), and (90) into (89) and 1etting&r be

. r
either ug or Uf’ w.e obtain

) o

TSy _ ~th =40 1 | 2t
l},”(kg) o jkr_ [ R RS L B
. -ine | e T 91
s anry 1 t S0 1 | |
R¢(£), Pn }21 . n

. ) . " .
where qu is the transpose of a column vector qu whose i-th element is
n n

given by




J(=k_* r + n(¢=5))

R Rg‘il = k[ dep £, () f dé (gp 'B;)e ©2)
0

where ¢ is the azimuth of the far field measurement point. In {91), EZ(g)

: r . T )
and EZ(J) are respectively the u, and u, components of E.(i)‘

~8 ~
With a view toward evaluation of (92), we note from Figs. 2, A-1,

and A-2 that

% be
k Ut Yy = - sin ercos v + cos ersin v LOS(¢—¢r)
. cul = - cos 8 sin(¢-¢ )
) 1 V*d’) ] ) r‘ r (9 3)
'ﬁ u cu = sin v in(é~¢ )
4 ~t s r
»i' u, s ul = ros (¢—¢ )
Up = C 9.
"Kr. r = kz cos er + kp sin ercos(¢-¢r)
Substituting (93) and (30) into (92) and taking advantage of the integral
f; fermula
2 T
-n j(kp sin Orcos & + no)
‘ J (kp sin 0 ) = J—f- { e ds (94)
" n T VA
4]
ceduced from (9.1.21) of [10] for Bessel functions, we obtaln
i; [10] M. Abramowitz and T. A. Stegun, "Handbook of Mathematical Functions,"

U. S. Government Printing Office, Washington, D.C. (Natl. Bur. Std.

3 U. S. Appl. Math. Ser. 55), 1964, p. 1360.




to n & jkzcos()r
= -2J s n . - y 6 )
Rni i p£1 Tp+41 4( _Tnbin Groos v+j(!n+1 J wl)cos rs1n V)e
46 n 4 jkz cos Gr
Rg = - ™ p__z_l Torat-4WUnpy FJpo)c0s 6, e
(95)
4 jkz cos 8
té - n . : r
R =i pzl ToriigTpgp HT_)sin vee
4 jkz cos 6
¢¢ . ,40F1 ‘ _ r
Rhi ™3 z r]p+4i--4(Jn+1 Jn-l) ¢
p=1
where
Jn = Jn(kp sin er) (96)
In (95), p, 2, and v are to be evaluated at t = tp+21~2'
Substitute (1) and (2) into (18) and (19) to obtain
2
pq 7 (. 3Gk, r-nd
2pq _ , . t 9
[ni f dtofi(t) J d¢(gp><g) (Et><gq) e 97)
0
and then substitute (1) and (2) into (50) where_ggi is given bv (47) to
obtain
2n (K \
r i~k 1 ~ n¢)
Pq ( : (u +ut vt~
Voi = k| drof (®) J Ao o+ ude (98)
0

where p is either t or ¢. The additional superscript ¢ on the left-hand
‘: {: ‘ sides of (97) and (98) is either 0 or ¢ according as the incident electric
field 1s 6 polarized as in (1) or ¢ polarized as in (2). Comparison of

{97) with (92) shows that




T e R A T R P Ll

* e d | o
ItO lt(b _*d)(b ﬁrbe
n n -n ~n
- (99)
._A). —r ..
I¢8 Iqbcb j{t‘b _ﬁte
 'n n . -n -n .
where the R's on the right-hand side of (99) are to be evaluated at
_ 8r = 6t. Comparison of (98) with (92) leads to
o IPq _ 3P4
s P (100)
i. where p is either t or ¢, q is either 0 or ¢, and ﬁgg is to be evaluated
3 at ¢ = 0 .
3 i r t
i- ; The expressions (45) and (91) for the electric surface current and
ﬁ far field can be simplified by combining the 4+n and -n terms. Substitu-
f' ting (46) into (45), we obtain
Q _ v jnd .= Ftq Forday . o :
J n=§_m e {(E T Dy + (¢ T Yu,} (101)
. E o o ’ #tq
where f is the transpose of the colummn vector f of the fj‘t)’ and n and
qu are column vectors of the coefficients Igj and I:j respectively. The
additional superscript q is either 6 or ¢ according as the incident elec-
. tric field is 9 polarized as in (1) or ¢ polarized as in (2). The column
e vectors fﬁq and f:q appearing in (101) are obtained by solving either the
H-field matrix equation {17), the E-ficld matrix equation (57), or the
combined field matrix equation (88) with the additional superscript q cn
the column vectors therein to denote the polarization of the incident
:;“,$: \ electric field.
Inspection of (20) - (26) and (58) - (64) reveals that
‘ Jtt yte ytt ytd
-n -n n n
= » n=0,1,2,.., (102)
yot yde _ytt Y¢¢'
-n ~n L n n .
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and

o St L L0 St gt
e, ~n -n n n
%Lifﬁ} l = s, n=0,1,2,... (103)
ch'pt R g0t b8
e -n -n n D
.j»i From (95), it is apparent that
N ?{te —ﬁtdﬁ 'ﬁte ﬁﬁtﬂ
N -n -n n n
= , n=0,1,2,... (104)
§¢5 §¢¢ 59 f¢¢
L ~u -1 ..n n -
?':lﬂg Substitution of (104) into (99) and (100) gives
e e <+ i = -
[‘ 28 3te 3o —It‘b]
-n -n n n
= », n=0,1,2,... (105)
-+
§¢e f¢¢ .90 %¢¢J
-n -n n n
and
_ I o te Gto e
S -n -n n n
R = » 1n=0,1,2,...  (106)
§¢9 §¢¢ Lf§¢9 §¢¢
i 24 - _j n n
Since the properties (102) and (103) survive matrix inversion, it is evi~
dent from (17), (57), (88), (105), and (106) that
Fto Fto ' - Ft9 gt ¢
-n -n n n
= , n=0,1,2,... (107)
f¢0 FoO ;f¢0 o
-1 -n | 'n n

In view of (107), (101) becomes




(R
i

= ot8 o . >t ) Y N
(f IO )Bt + nzl {2(f In )HtCOa(n¢) + 24(f In )H¢ sin(n¢) !

(108)

3
Il

= TN, + nzl (24 T Dy stne) + 2(F THy, cos(na)

where f is a row vector of the fi(t). If pfj(t) is the triangle function

itself rather than the four impuise approximation (30) to the triangle

function, then

o + {21‘te

$6 R
gl ol Yt hy nigtcos(n¢) + 2] IniE¢Sln(n¢)}
J = h
o t=t_" -
S P2i41
(109)
0 - £ Y
¢’ 1019¢ + nil {ZjInjEtuin(n¢) + LInig¢ cos(ns) }
t=t>, . -
i P21+1

Fquations (104) and (107) reduce the specializations of (91) ror

6 and ¢ polarized incident electric fields to

~jkr
r oc
s - zine 1 gE0gte v SEOFLE | 506360 3
ROe(l) G- {2 ko fo + 2 (Rn fn + Rn Tn )cos(n¢r)r
r n=1
_jkrr o
s . ne “that0, =bdrgo .,
Fop (D 5 {nzl (R AT+ RO 510 (ny )1
(110)
_jkr“ )
.8 _ne ¢ StOtd s dOrddy
E()d)(i) i 111;:1 (Rn fn + Rn {n )bill(ﬂdwr)}
-jkr N
POy = g Lophdpde oy gt g b ey o))
b Jvrrr 2 o o ”i] n n noon r
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In (110), the first subscript on ES denotes the component under con-
sideration whereas the second subscript denotes the polarization of

the incident electric field.

The scattering cross section o is that area for which the incident
wave contains enough power to produce by omnidirectional radiation the
scattered power density at the far field point. Specializing o to the

four different polarizations, we obtain

!
i s 2
pq 2nr B (J)
02 - 13 rnpq (111)

A 4

where p is either 6 or ¢ and q is either 6 or ¢, In (111), p is the
receiver polarization, ¢ is the transmitter polarization, A = 2n/k is

the wavelength, and Esq(a) is given by (110).

VIT. FEXAMPLES

Computer program subroutines have been written to calculate the
square matricec and measurement vectors needed for the H~-field, F-¥Field
and combined field sclutious. These subtroutines will be described und
iisted in A subsequent report. Some computatioral results obtained with

these subroutines are given in this section.

We compare computed approximations to the electric current induced
on the surface of a ccnducting sphere by an axial incident plane wave with
the known exact solution. Figure 5 is a plot of A versus ka where k iIs

the propagation constant, a is the radius of the sphere, and A 1s defined

by

I 1= 0
S
hi' 1 [ as

: - i .
Here, S is the surface of the sphere and B is the ‘ncident magnetic

(1i2)

field. Also, 1Y is the exact electric current glven by (6-1013) of {6]
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and J i{s the computed approximation to QF. The squares, circles, and
triangles in Fig. 5 tell which field solution (E-field, H-field, or
combined field with o« = 1 in (88)) J is obtained from. In (112), the
expression

1= -w-19-0-15" (113)

A~ ~—

where * denotes complex conjugate is the time average of the square of
the length of the time dependent vector whose root-mean-square phasor
is (L-10).

The number P (maximum value of (i+l) in (27)) of data points on
the generating curve is 31 for all the examples of this section. These
data points, equallyv spaced from the lower pole to the upper pole of the
sphere, give 14 expansion functions for the t directed electric current
and 14 expansion functions for the ¢ directed current. Both surface
integrals in (112) are evaluated by integrating analytically in ¢ and
by sampling in t at the 30 points defined by (27). The number N¢ of

points used in the Gaussian quadrature integration (37) is 20.

Tn Fig. 5, the H-field solution is generally the best and the
F-field solution is the worst as far as J is concerned. For both E-field
and H-field solutions, the error in J is large at resonances of the spheri-
cal cavity which are tabulated on page 270 of [6]. The combined field solu-

tion is not affected by these resonances. Note that the error in J for the

F~field solution has a peak around ka = 1.35 which i1s far from any resonance.

This peak disappeared when the number P of data points was reduced from 31

to 21.

. 2
Figure 6 compares the nowmalized radar cross section o/na” in the

backscattering direction obtained from the H-field solution, the E-fieclc

solution, and the combined field solution with the exact nlvnz. The

exact n/vaz is calculated from (6-105) of [6] in which AG is our o. In
Fig. 6, the squares denote the H-field solution, the circles denuote the
F-field solution, the triangles denote the combined field solution, and

the solild line denotes the exact solution. The E-field, H-fleld and
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combined field solutions for o/wa” are heginning to deteriorate for the
larger valaes of ka in ¥Fig. 6. At ka = 6, there are only 5 expansion

fimetions per wavelength.

oy

Figures 7 and 8 show the curves of liga. 5 and 6 respectively
in more detail in the vicinity of the first resonance which occurs at
ka = 2.744. The disturbance in the H-field solution occurs quite close
ro the resonant frequencv, but the disturbance in the E-field solution
ovceurs at a slightly higher frequency. Although the error in I for the

”

F-field solutior is tremendous, the errvor in o/ﬂaL for the F-field solu-
tion is quite small except at two or three points. The fcllowing expla-
nation is offered. Accordirg to Section V, the F-field golution does not
determine how mucu of the electric cavity mode current is contained in J
Hence, we suspect that our numerical F-field solutien does not contain
the right amount of the electric cavity mode. If this suspicion is true,
then the radar cross section can still he quite accurate bacause the

electric cavity node does not radiate any cxvernal field.

Figures 7 and 8 show that the combined field solution is much
better than eicher the VM-field solution or the F-field solutism in the

vicinity of the first resonance.

VIt DISCUSSION
An H-fieid solution, on K-field solurion and a combined field

solution for plane wave scatteriap from a perfectly conducting body of

revolution have heen developed and csnounded.  The H-ficld sslution is

a modification and peneralization to obligue incidence of Uslenghi o {2
impuise solution.  Instead of impulse expansion fuictiens and Simpson's
rile for intepration with respect to the azimuth o) we usce four impulse
approximations to triangle fanetions and Caussian quadratoere inteprat ion. ;
The ¥-tield sotution is that of [1] wich fmpulse Creen's funetions obrained
from Ganssian guadratare iotegration in the azimith ! instead of pulse

The i

cpcte fanet fons obeained drom equal dnterval, equal wefvht sampiing.
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combined fiecld formulation is a linear combination of the couations for the
Hefleld and f~field solutions. Computer progran subroutines which caleulate
the square matrices for the H-field and P-field solutions and the plane wave
mezasurement vectors wiil appear in a fortheoming report.  The subroutione which
calculates the square matvix tfor the T—-field solTution cxecutes appreciably
faster and requires considerably less qarorage to obtain the same kind of

accuracy as a previous solution [117.

The H-field and F-ricid asoluticns deteriorate in the viecinitvy of
cavity resonances hecause theiy homopeneous cquations admit noatrivial solu-
tions at these vesopances., In Section V, it is showm that the homopencous
equation associated with the combined field vormulation has no nontrivial
selution 7f the relative weight o of the F-field equation is real and, if
the inside media is lossy, positive. Yor this reason the combined field
solution i4 much better than either the PV-fiela or E~field solutions in the

vicinity of cavity resonances. Figures 7 and 8 bear this out

For the examples of Sectrion VII, the relative weight o of the F-ficld
equatior. in the combined field formulation is unity. "his puts the H~ficld
and F~field equations on a more or less equal feoting because the magnitude
of the excitation due to the H-field equation is then that due to the E-field
equation rotated 90° in space. According vo ¥ig. 6, the H-field solution
for o/ra” is generally a bit more accurate than the E-field solutiusn away
from the cavitv resonances. This supgests that one weights tue F-field

equation less than the H~field equation in the combined field formulation.

Oshiro et al. [4,5] conclude from their plots of mean error vetsus o

for 1 < a < 1 that an o value on the ovrder of 0.2 is hest. However, tnere

is no logical reason for ruling out negative valnues of o when the electric
surface current radiates into a loss-fresz inside media because then the left-
hand side of (85) does not depend on the sign of a. We see little significance
in tbe facts that the magnitude of the combined field excitation on the right-
hand side of (83} is peuerally larger on the illuminated poition of the surfarve
of the body of revolution than in the shadow zone for u - 0 and that the oppo-
site is true for o < 0,

[11] R.F. Harvington and .J.R. Maurz, "Radiation and Scattering from Rodices
ot Revolution," Report AFCKL-69-0305, Contract No. F-19628-67-0-0237
between Syracuse Vniversity and Alr Force Cambridge Research laboratorices.
Yuly 1969,
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AFPPENDIX A

DERIVATION OF THE H-FIELD INTEGRAL EQUATION

The purpose of Appendix A is to obtain (9) from (7) and (8). In

view of (8),

(r-r') * 2" = (rp') %oul TR+ (et o ua®et,en) (a-1)

The cross products on the right-hand side of (A~1) are evaluated by expres-
3ing all vectors in terms of unit vectors up, u¢, and 4, in the p, ¢, and z

directions respectively.

r = Bpp + u,z (a-2)
r'= Bpp’cos(¢'~¢) + Ebp'sin(¢'"¢) + uzz' (A-3)
B£= Eosin v' cos(¢'~¢) + 2¢sin v' sin(¢'-¢) + u,cos v' (A~4)
u'= - u sin(¢'~0) + u cosi¢'~¢ (A5
) o (¢"~9) o) i¢'-9) N )
Fquation (A-3) has been obtained bv first writing
r' =u'n' + u 2! (A-6)
~A A‘p “waZ
and then ucing Fig. A-1 to express gg in terms of up and H¢' To verify
(A-4), use Fig. A-2 to express Eé in terms of gg and u, and then use
Fig. A-1 to express Hs in terms of u and Yy
Substitution of (A~¢) ~ {A-5) into (A-1) yields
(r-r") x JG") = {u {(~p'ecos v' + (2'-z) sin v') sin(y'-¢)
e v -~p
+ h¢(“(Q‘Q.COS(¢'~¢)) cos v' - (2'-2) sin v' cos{4$'~¢))
+ up sin v'sin(¢'-¢) )} Jt(r',¢') + {Eo(z'~z) cos (b~
+u {z'-z) sin(¢'~¢) + = (-n" + p cos(d"=4)) ] J®(t',¢') (A-7)
o T

39




Fig. A-1. Unit vectors u , u gg, and g% in xy plane.
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u
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Fig. A-2. 1tmit vector g; in 'z plane.
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To find the g, and Uy components of (7), we need
et 20 [C-x) < e ] = gy - [G-r) x I(x)] (A-8)
uy cno Hrmrh) > J(g") ] = =g s [(e-r") x ("] (A-9)

With the help of

u = usin v + ucos v (A-10)
a~t ~0 “~~Z

and (A-7), (A-8) and (A-9) become

u o en x [(z-x") x J(£")] = {((p'-p)cos v' - (2'-2) sin v')cos($'~¢)

~t ——

a.—-,&\-‘?-;—w‘-em-nm«"l. A 753 o A s AN

Dy e

'_
1%. - 2p cos v'sinz(ﬁﬁfj5} Jt(t',¢') + (z'-2) sin(¢'u¢)J¢(t',¢') (A-11)
;%:f 4, * @ X [(x-z') * J(x")] = (p'sin v cos v' - p sin v' cos v

- (z2'-2) sin v sin v') sin(¢'-¢) Jt(t',¢') + {((p'~p)cos v
'—
- (z'-2) sin v) cos(¢'-¢) + 2p'cos v sinzcigjb} J¢(t',¢') (A-12)
The distance IETKfl appearing in (7) is the square root of the

sum of the squares of (z-z') and the projection of (r-r') in the xy

plane. Hence,

lr-r'| = \/(z-Z')2 + p'2+02—200'005(¢'—¢) =1/(o—p ')+(z-2')2+4op'sinz(gif-)
a (A-13)

An Integral with respect to ¢' results when the surface intepral in
(7) 1is iterated. Because this integral with respect to ¢° is an integral
of a 2m periodic function of ¢' over the period 27, ¢' may be replaced by
¢’ + ¢ without changing the value of the integral. Substitution of (A-11) -
(A-13) into {7) leads to the desired H-field integral equation (9).




APPENDIX B

DERIVATION OF THE F-FIELD MATRIX EQUATION

SR The testing functions Eﬁi appearing in (55) are defined by (47).
R From (55}, (47), and (52), we obtain

t -1

“mi jwp at (pf (e))e” ?
(8-1)
¢ _ m jmé
3 i wp f (t)e”
The vector and scalar potentials A and ¢ appearing in (55) are given by
(42) and (43) with ggj defined by (46). In agreement with (44), (46),
: and (52), and in analbgy with (B~1), the charge density ¢ appearing in
“;'7; (43) is specialized to either osi or Uij given by
t _ -1 3 ' e . ing’
Unj jwp' T (p f]-(t e
(B-2)
- 4 of =B £ (e yeine'
3 nj wp'

In view of the above considerations, (55) can be rewritten as

i ‘mn’ 1§ 2 2 e‘jk|§“Evlej(“¢‘”m¢)
B P O P P

brfr-r'l

(7t¢)

(7ii)i) (cont. on next page)




; ; _ -
F T - * * — 'l_' ~ ' '
. : | Jeef (0 E, (e Dy »ul - gy (f () o (o7, (')
Tkof, () E (EDu, *u' - 2= pf (1) o7 (p'E.(t")
TR T e e ke AT BET Ty
i (B~3)
e jkpfi(t)p fj\t )gt Yy + Te¥ ot (Dfi\t))p fj(t )
P, ()p"E_(£") (=
RS | e 1( Je j]( ) { g¢ l‘id) kpp')
S j' To facilitate evaluation of the dot products appearing in (B-3), we
. write
b u =u sin v+ u cosv
~t o) Az
(B-4)
1 u' = u' sin v'+ u cos v'
= -z
i where s %, and v' ave defined in Figs. A-1 and A-2. With the help of

(B-4), we obtain

sin v sin v' cos(¢'~4) + cos v cos V'

-

v ’ e "L'“lt ) ut B
b
W
C ' = Voadn(a
f th ue sin v' sin(¢'-¢)
B (B-5)
X oe - ' = _ LI
U gq) sinv sin(¢'-¢)
ceu' = cos(¢'-
,, Yo% (¢"-0)
The distance ]_1:_—(" 1s given by (A-13) which reads
¥ e =N
lr-r'| = \/(p~o') + (z=2")° 4 hop'sin’ (4)—.,—(2) (B-6)




In view of (B-5) and (B-6), the integrands of (B-3) are pericdic
functions of ¢' with period 2m. Hence, ¢' can be replaced by (¢'+¢)
without changing the values of any of the integrals. When this is done,
the ¢ dependence of the integrands hecomes ej(n»m)¢ which when integrated
gives 27 for m=n and zero for m ¥ n. Taking the liberty of replacing the
double subscript un by the single subscript n, we obtain (58) - (61}). The
forms (62) - (64) of the ¢' integrals follow from the even or odd symmetry

of the terms in (B-5) about (¢'-4) = 0 and the even symmetry of (B-6) about
(¢'-0) = 0.
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