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Abstract

Procedures are presented for the systematic design of digital

filters that contain poles and zeros. The procedures are simple, fast,

and effective. All of the important algorithms are of the Levinson—type.

The first key idea in the paper is that one may begin a design by posing

a linear prediction problem for a stochastic sequence. The second is

that a high—order ‘~whitening1
” 
filter may be constructed for this sequence

and ‘finverted~ to yield a high—order all—pole filter whose spectrum

approximates the spectrum of the stochastic sequence. The third key

idea is that the all—pole filter may be used to generate consistent

unit pulse and covariance sequences for use in the Mullis—Roberts

algorithm. This algorithm is then used to obtain a low—order digital

filter, with poles and zeros, t hat approximates the high—order all—pole

filter. The results demonstrate that the Mullis—Roberts algorithm,

together with the design philosophy of this paper, may be used with

profit to reduce filter complexity and to design spectrum—matching

digital filters.

_________________________
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I. Introduction

This is a paper about the systematic design of autoregressive—moving

average (ARMA) digital filters. There are three key ideas in the paper.

The first is tha t one may begin the design of an ARNA digital f i l ter  by

specifying the power spectral density of a stochastic sequence and then

posing a classical linear prediction problem for the stochastic sequence.

The second is that this prediction problem may be solved by designing a

high—order moving average (MA) prediction filter. This prediction filter

• is related to an MA whitening filter which may, in turn, be “inverted” to

give an autoregressive (AR) filter termed an inverse filter. Identical

argumentation lies at the heart of AR or 1maximum entropy (ME) spectrum

analysis and explains why the magnitude—squared frequency response of the

AR filter should approximate the power spectrum of the stochastic sequence

[1]. The appropriate design equations are linear equations (termed normal

• equations) that may be efficiently solved using Levinson—type algorithms.

For our purposes the value of the high—order AR filter is simply that it

provides a handy mechanism for generating consistent unit pulse and covari—

ance sequences {h
k
} and (r

k
} ,  respectively. These sequences approximate

the unit pulse and covariance sequences of an idealized, unrealizable,

digital filter.

• The third key idea is that the sequences {h I~}~ and {r
k} may be used

in the approximation algorithm published by Mullis and Roberts in their

remarkable paper on the use of first— and second—order information in
p

discrete—time system design (2]. From {h.K}O and {r
k
}
~~, 

for the high—order

AR, the finite—length sequences {h.K}~ and {r
k
}
~ 

are used in the Mullis—

Roberts algorithm to design an ARMA (N,M) digital f i l ter .  The notation

ARMA (N M) denotes a digital filter with N poles and M zeros. Correspond—

•1
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ingly, AR (N
1

) wiLl denote an all—pole digital f i l ter  with N
1 
poles and

MA (M
1
) will denote an all—zero digital filter with M

1 
zeros.

Our results indicate tha t the design procedure outlined above is

simple, effective, and fast. All of the important algorithms are Levinson—

type algorithms. Moderate—order filters (e.g., Nl6 and M l6) may be de-

signed in approximately 8 seconds of CDC 6400 CPU time. Design parameters

are center frequency, bandwidth, and stopband rejection. Even for low—

order filters (e.g. N=8 and M=8) one may achieve 60 dB rejection over a

transition band that is a small percentage of the foldover frequency with

approximately 3dB passband ripple.

As an approximation tool the Mullis—Roberts algorithm is very effec-

tive: for example, an ARMA (N ,M) filter of complexity C = N + M is shown in

many instances to be a very good approximation to an AR (N
1

) f ilter for

C << N
1
. Designs for N

1 
= 256 and C = 32, and N = 64 and C = 16 illus-

trate the point. Our experience indicates that the designs presented

here are superior to those achieved by simply matching the impulse sequence

{~~ }
N+M using the Burrus—Parks algorithm [3]. Furthermore there is no

difficulty with stability because both the AR (N
1

) and ARNA (N ,M) filters

are guaranteed to be stable.

Preliminary design efforts along the lines of this paper were reported

in (4]. The designs were begun with a moderate—order MA (M
1
) filter (e.g.,

= 32) designed using the methodology of (5]. The MA filter was used

to generate consistent unit—pulse and covariance sequences for use in the

Mullis—Roberts algorithm. The results reported were mixed because the

unit—pulse and covariance sequences were not well—suited for subsequent

approximation using the Mullis—Roberts algorithm. In our opinion, and

the results seem to corroborate this view, one should begin ARNA (N ,M)
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approximations with very high—order AR (N
1
) designs (e.g., N

1 
= 256)

rather than very long or short MA designs. The reasons are three—fold:

(i) AR power spectrum approxima tTons are well—understood (6] and

virtually free in terms of numer ical design eff ort, (ii) the sequences

{h
k
}
~ 

and {r
k
}
~ 

are obtained from simple regression equations, and (iii)

the AR sequences {h IK
}
~ 
and {r

k
} are infinite—length and , therefore, appar-

ently better suited to subsequent matching and approximation by infinite

length ARNA unit—pulse and covariance sequences.

We remark that the approximat~~n algorithm of Mullis and Roberts

gives exact matching of the ARMA (N,M) and AR (N
1
) unit pulse sequences

over N + 1 indices and only approximate matching of the covarlance

sequences over N + 1 indices. When on~y a covariance sequence is to be

matched, then the Mullis—Roberts algorithm reduces to the Levinson algo-

rithm for obtaining an exact covariance match over N + 1 indices.

We feel the statistically—related filter design procedures reported

here and in [51 and [7] are becoming well—enough understood , and are

yielding attractive—enough designs, to warrant serious attention from

designers. One needs only to view t~~~ digital filter design problem as

• a problem of statistically designing a linear minimum mean—squared error

filter or predictor. Elegant solutions abound. An added dividend paid

by this way of thought is that a class of digital filter designs becomes

a logical branch of linear minimum mean—squared error filtering theory.

Some find this comforting. Others don’t need it.
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II. Beginning the Design

The design begins with specification of a bandlimited power spectrum

G(f)  of the type illustrated in Figure la. It may be helpful to visualize

the spectrum on the pasaban d interval —w < f < W as a signal spectrum S(f)

and the spectrum on the remainder of the frequency interval (the stopband)

as a noise spectrum N(f). See [5]. Then S(f) corresponds to the desired

passband characteristic and N(f) corresponds to the desired stopband

characteristic . Center frequency f
0 

(f
0 

0 in Figure 1), signal band-

width W, stopband rejection n, and total bandwidth 1/2T are design param-

eters. The rejection v~ may be visualized as a signal—to—noise ratio

n = A/A . In the design of MA filters it has been found useful to include

a transition band [5]. In the design of ARMA filters beginning with AR

filters we have not discovered a useful way to specify a transition band.

The next step is to periodically extend the spectrum C(f) using

period l/T (or foldover frequency l/2T) and scale it by 4 to obtain a

periodic spectrum G~ ( f ) :

1
~G(f) , (f( < l/2T

G~ (f)  — c 1 (1)

— 

~
), m/T — l/2T < f < m/T + 1/2T , m = 0, ± 1, ± 2,

This is illustrated in Fig. lb. The Fourier coefficients

l/2T
Ck T f G (f)e

_ i2 Tdf , k = 0, ± 1, ± 2, ... (2)
— l/2T ~

specify a covariance sequence {c k
f°,, with Ck 

= c_k. The sequence {c
k
f°
~

may be thought of as the covarlance sequence of a zero—mean sampled

data sequence {x(kT ) f°,, obtained by sampling a continuous—time random

process {x( t) }”,, that has bandlimited power spectral density G(f). Then,
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of course , C
k 

= c(t kT) where

l/2T
C(T) = f G(f)e _i 21

~~
tdf (3)

• —l/2T

• is the covariance of the process

Another connection between {c
k
} and the periodically extended

spectrum G (f)  is

G (f)  = M(z)M(z 1
)p z exp (j 2ir fT)

(4)
M(z)M(z 1) = E ckz

This says {ck
}
~~ 

is the covariance of the output of a digital f i l ter

M(z) that is driven by a white sequence with unit variance and that the

periodically—extended spectrum G ( f )  is the magnitude—squared frequency

response of the digital filter M( z ) .

The periodic spectrum G~ (f )  illustrated in Figure 1 is a legitimate

discrete—time spectrum. However , it is not rational and is , therefore ,

• not the spectrum of an autoregressive moving average digital f i l ter .

This is another way of saying the M(z) of (4) is not a transfer function

• for a filter that can be realized using a finite number of multipliers ,

adders , and delays (memory). Thus the approximation problem is one of

designing an ARNA filter H(z) whose rational spectrum H(z=ei2~~
T).

}l( z . ~ei21~~
T) approximates the irrational spectrum G (f). Of course,

H(z=e3 2 T )H(z~~~ei21~
T) is simply the magnitude—squared frequency

response of the f i l ter  H(z) .  This brings us to the next step in our

design procedure.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _• —-~~~~~~~~~~~~~~~~~~~ •
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III. Design ing an Autoregressive Approximation

The problem now is the following: given a covariance sequence {c
k
}

• corresponding to the desired spectrum G (f) , find a realizable f il t e r  11(z)

whose per iodic spectrum well—approximates G~ (f). Call [r
k
}
~~ 

the covari—

ance sequence of the f i l ter  11(z). The following relationships are in

force :

-1 —kH(z)H(z ) = • rkz

rk 
= 
2nj ~c H( z)H(z l)zk l dz (5)

j2wfT —l j2irfT —j2rfkTH(z’~e )H(z =e ) = Z r, e
k=—~

It is clear that for purposes of matching spectra , the covariances come

into play in a more fundamental way than do the unit pulse sequences.

In (5) the contour C lies within the annulus of uniform convergence of

H(z)H(z 1).

One approach to the approximation problem is to design an AR (N
1)

filter

11(z) = (6)N
1 -t1— E ct~z

in such a way that

rk = c k , k = 0 , ± l , ... ± N 1 (7)
N N

For large values of N1, the matching of {rk
}

O
1 and 1C k

}
O provides

effec tive approximation of G~(f) by H(z=e
3 2 T )H( z~~=ei21~

T
). See

equations (2) and (5). The result of (7) is achieved with the f il ter

of (6) by solving the normal equations
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C a = c

C
0 

C
1 

. . . CN 1

c1 C0

C =

CN _ l  . . c
0

(8)

= (c1, c2, . . .,  cN ~1
= 

~
‘i’ ~~~~

‘ ~~~~~~~ 1

2 
N1

K C
0 

E

Here the prime denotes matrix transpose.

These normal equations arise over and over again in speech processing

and autoregressive spectrum analysis. When statistically fluctuating data

enters the picture these equations are replaced by the famous Yule—Walker

• equations involving estimates of c
k
.

Due to the Toeplitz nature of C and the relation c bears to C, the

linear equation Ca = C may be solved very efficiently using a Levinson—

type algorithm. In the FORTRAN program of Appendix I, the subroutine

• TPLSLV implements such an algorithm. See [8] for a listing of the algo-

rithm and a discussion of computational demands.
N

In summary , the AR (N
1) coefficients are obtained by

N1solving (8) with the {c
k
}
O 

obtained from the desired spectrum G (f)

according to (2) .  For all of our designs the ck may be obtained

analytically as follows :

Ck — A 2TW sinc (2 irWkT ] +
(9)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure 2 shows the results of several AR designs. Each desi gn

• was begun with a 0 (f) of the form illustrated in Fig. 1. The idealized

G ( f )  is superimposed on each design. Important parameters are included

in the figures.

There is one other interpretation of the 11(z) given in (6) that is

worth noting, even though it has been noted many places. The filter

N
1

L(z ) = Z a
~
z (10)

with the {a1} given by (8) is the linear MA f i l ter of order N1— 1 that

minimizes the mean squared prediction error

2 
N1 2

= E[x(mT ) — 2 a
~ 
x((m—t)T)] (11)

9.=l

Here {x(LT) }~ is the sampled—data sequence that has spectrum 0 (f).

The filter

N
1

K(z ) = 1 — E a
~

z (12)

is the corresponding “whitening” filter. Of course 11(z) = l/K(z) .

Therefore, to the extent that K (z ) whiten s G~ (f)~ 11(z) inherits the

spectral properties of G~(f). It is well—known that an H(z) designed

as outlined above is stable [9].
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IV. Obtaining Unit—Pulse and Covariance

Sequences from the AR Design

No one wants a high—order AR filter , regardless of its frequency

response characteristics. However , the high—order AR design serves

• another very useful purpose: it provides a ready—made generator for

a covariance sequence {r
k
}°°,~, and a causal unit pulse sequence

that are consistent in the sense that

rk 
= I hth&+k , k 0, 1, 2 ,

z=O (13)

r_k = rk

The appropriate equations for the generation of the unit pulse

sequence 
~
h
k
}
~ 

are

10 , k < 0

hk N1 (14)

+ I aR hk t  , k .~: 
0

Here the coeff icients {a
~
}
~ 

are the feedback coefficients of H(z). See

equations (6) — (8). The symbol t5k 
denotes the Kronecker delta.

The generating equations for {r
k
} , are not much more difficult.

• The following linear relationship holds :

N

rk 
= a

~ 
rk R

• (15)

r_k rk
N

So , given the N1 covariances {r
~
}
1
1, for example , one may solve for

rN +l , and so on. Of course , the (r
~
}
1
1 are available as r

~ 
= CR,

— 0, 1, . . . ,  N1, from the AR design procedure of Section III. For

• _________ •~~~~~ •• •~~~~~~• .~ • . .•.• 
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N1
completeness we show in Appendix I how to solve for {r

~
}
0 

in terms only
N

of the {a
~
}
1
1
, and thereby completely characterize the covariance sequence

{r }°°
~,. We re—iterate that the calculat ion of Appendix II is not required

t N
in our design procedure because the {r

~
}
0
1 are available as r

~ 
= c

~
,

= 0, 1, . . . ,  N
1 
with the C R 

given by (2).

Here is where we stand: we have at our disposal a systematic

technique for generating a high—order AR (N
1
) filter that “approximates”

the idealized spectrum 0 ( f ) .  This AR (N1) f i lter  is characterized by

its impulse and covariance sequences (h,K
} and {r

k
} which are easily

obtained as outlined above. The sense of the approximation is that

rk ck, k = O , l, 2 , ..., Nl.

In the following section we use the algorithm of Mullis and Roberts

to approximate this generally high—order AR (N1) f il ter  with a much

lower order ARNA (N ,M) filter.

V. Designing with the Mullis—Roberts Algorithm

Call H(z)  the transfer function of our AR (N
1) design. Let H(z)

be the transfer function of an ARNA (N,M) filter:

• 
iI z \ = 

Q(z)
‘‘  A(z)

Q(z) = q
0 

+ q
1
z~~ + ... + q~z M (16)

A(z)  — 1 + a
1
z~~ + a2

z 2 + ... + a
N
z N

The problem studied by Mullis and Roberts is one of minimizing the

approximation error

2 
= T 

l/2T 
IA (z ei2~~

T
)I
2
IH (z=ei2~~

T
) - ~(z=e

i2
~~
T)I 2df (17)

—l/2T
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•~ In the general case H(z) is arbitrary. For our purposes it will always

be the transfer function of a high—order AR (N1) filter. The error € 2

may be written

= T 
l/2T 

IH(z=e i2
~~

T)A(z ei2
~~

T) — Q(z .me i2
~~

T) I 2df (18)
—l/2T

The main virtue of this error measure is that it leads to a tractable

minimization problem [ 2 ] .  It is a straight—forward exercise to define

A(z) Ii(z)A(z) — Q(z ) ,  invoke Parseval’s Theorem, and use (13) and (18)

to write

- • N N M N M
(19)

& 0  m 0  k 0  L 0  k 0

The minimization problem is one of minimizing €2 with respect

to the ARNA parameters {q
9~~ 

and {a
~
)
~
, subject to the constraint that

a
0 

= 1. Write this as

mm [~ 2 
— 2A (~ ’~ — 1)] (20)

a,q

where A is a Lagrange multiplier and

— (as, aN l i . . . ,  a
0Y

— ( i~~ ~M—l~ 
(21)

Note a ’ ijs — a~.

First minimize with respect to q. The constraint plays no role

and the result Is

N
— E aRh.K_R , k — 0, 1, . . . ,  M (22)

t—0

with the {h.K
} corresponding to 11(z) and the {a

~
)
~ 

yet to be determined . 

•— • —-- - •  ~~—- —-• _ _ _ _ _
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Substitute th is result into (19) to obtain

2 — .~~

M 
(23)

K = {r
lt I k=O 

hk t hk
}

Here the notation K = {d } denotes that d is the (t ,m)—th term of the
2 ,m

(N+1) x (N+l) matrix K. The matrix K is positive semi—definite if and only if

{r
k

} and lh k
}
o are consistent , as they are by virtue of our construc-

t ion method .

Now our constrained minimization problem yields the following

solution for a:

Ka* =A *
(24)

= AK~~ P

Invoke the constraint to get

= (k~/k~, k~1~•1/k0, . . . ,  1) (25)

where k = (kN , ..., k0) is the last column of K~~ . Substitution of

into (22) yields ~~ and completes the design of the ARMA (N ,M)

filter
* *— lq0 + q 1z + ... +%~z

H(z) 
* —l * —N 

(26)
l + a0

z +... +aNz

Call {h
k
}
~ 

the unit pulse sequence and {r
k
} the covariance

sequence corresponding to 11(z). Since a~ is simply the solution to a

normal equation involving positive—definite K , it follows that {hk
} is

absolutely sununable. Tha t is 11(z) is stable. Further, as shown by Mullis

and Roberts, h.K — h.K, 
k — 0, 1, . .. ,  M. The covariances rk and tk are not equal

All of the results of this section are contained in [2].
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VI. Systematic Design Steps

The design steps are summarized below and illustrated in Figure 3.

1. Specify a periodic power spectrum G (f).
p 

N12. Invert 0 (f)  to get a design covariance sequence

3. Solve the normal equations Cu = a to obtain an AR (N
1
) approxi-

mation. Typically choose N
1 
large (e.g. N

1 
256).

4. Generate {r
k

}
~
l {c

k
}o ,  N~ < N ; generate {h

k
}
~ 

using the AR gener-

ating equation (14).

~~. Construct the matrix K.

6. Solve for and

7. Scale )i(z) to get desired dc response H
0
(z—1) = H

0
.

Actually, steps 5 and 6 are replaced by a Levinson—type algorithm

presented by Mullis and Roberts for efficiently obtaining a* and

The FORTRAN listing of Appendix II describes ~ program written for a

CDC 6400 computer with SCOPE compiler to implement the design steps above .

The program was used to generate all of the designs that follow in Section

VII. The number of storage locations required for the TPLSV subroutine

to solve (8) is 3N1. The number of multiplies is approximately 2N~ and the

number of adds is approx imately N 1 . The number of storage locations re—

quired to solve for ~~ using the Mullis—Roberts algorithm is 0(N). The

number of multiplies is 0(N2). The notation 0(N) indicates here that

• 0(N)/N is a constant .

~ 

- •~~~~~~.— ~~~- •.-• • - — - - • - •
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VII. Designs

The designs presented in Figures 4—8 all have a design cu tof f

frequency of 0 .2Hz and a foldover frequency of 1.0Hz . This does not

mean the 3dB poin t , for example , is under careful  control .  It only

means the ideal spectrum with which the design was begun had a cutoff

frequency of 0.2Hz. Our convention in the figures is that ARNA(N ,M)

always denotes a filter designed according to the procedure of Section

VI. Of course, the Chebyshev and Butcerworth design of Figures 7 and 8

• are also autoregressive moving average fi l ters. These filters are denoted

CH(N ,N) and BW(N ,N) ,  respectively.

The results of Figure 4 illustrate how low—order ARNA filters may be

used to approximate high—order AR filters. Figure 4(a) illustrates that

an ARNA (8,8) filter is a very effective approximation to an AR(64) filter

when only 30dB stopband rejection is desired. The complexity of the ARNA

(8,8) is one—fourth the complexity of the AR(64) and the passband ripple

of the ARNA (8 ,8) is very low. Figure 4(b) illustrates that an ARNA (32,32)

filter is an effective approximation to an AR(256) when 90dB rejection is

desired. Figure 5(a) illustrates what happens when one fixes the number of

• poles (N=8) and the number of zeros (M 4) in a relatively low complexity

• design and then increases the stopband rejection. At 30dB rejection the

• filter characteristic is smooth in the stopband and cuts off sharply. At

90dB rejection the ripple in the passband is severe. Figure 5(b) illus-

trates that if additional zeros are added to increase the complexity, Con-

trol is maintained over the passband ripple even as the stopband rejection

is increased to 90dB.

Figure 6 shows that when complexity is already high (N—16 , M>8) and

the stopband rejection moderate (60dB), the addition of zeros does not 

~~~~~-•~~•~~~~~~~~~~~- •—-- •~~~~~~~~~~ •-• - • • •~ •~~~~• -~~~~~~~~
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dramatically influence the magnitude—squared response.

Figure 7 shows ARMA (8 ,M) approximat1on~~to ideal lowpass spectra

and comparisons with Butterworth and Chebyshev designs of order 8 and

complexity 16. If only 30dB stopband rejection is desired then an ARMA

(8 ,4) filter can be designed that yields smoother passband character-

istics than the Cheybshev f i l ter  and sharper cutoff than either the Cheby—

shev filter or the Butterworth filter . Of course , the passband ripple

is larger than that of the Butterworth fi l ter.  The ARMA (8 ,4) filter is

less complex than the Chebyshev and Butterworth filters by a factor of

3/4. As rejection is increased to 60dB , the passband ripple of an AENA

(8,8) increases, but remains smaller than the Chebyshev ripple every-

where in the passband except near cutoff. The cutoff is comparable.

Figure 8 shows ARMA (16,M) approximations to ideal b ypass spectra

and comparisons with Butterworth and Chebyshev designs of order 16 and

complexity 32. If only 60dB stopband rej ection is required , then an

ARNA (16,8) provides cutoff comparable to that of the Chebyshev with

• smaller ripple except near cu tof f .  For 90dB rejection an ARMA (16,16)

provides cutoff comparable to the Chebyshev f i l ter  of the same complexity

with less passband ripple except near cutoff.

In all of our designs run to date , well—conceived ARMA designs

exhibit relatively little passband ripple , except very near the cutoff

frequency, and cutoff characteristics comparable to Chebyshev character-

istics. When filter complexity is high and stopband rejection low,

then the filter characteristics can approximate ideal lowpass character-

istics much store closely than equivalent—complexity Butterworth or

Chebyshev designs. Reference the ARNA (8 ,8) f i l ter of Figure 4 ( a ) ,  the

ARNA (8 , 12) — 30dB f i l ter  of Figure 5(a) , and the ARNA(l6, 24) f i lter  of

Figure 6.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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VIII. Conclusions

The results presented here are only representative of what one may

achieve. Extensions to bandpass, high—pass, band reject, and comb fil-

ters are straightforward. Several points should be made: (i) there is

no requirement in these designs to begin with a rational analog filter;

(ii) there is nothing fundamental about the shape of the 0(f )  we have

started with — an inventive designer may experiment with his own choices;

(iii) the procedures presented here permit the designer to exercise

implicit control over center frequency, bandwidth , and stopband rejec-

t ion ; and (iv) one may systematically design f i l t e r s  with a rb it rary

numbers of poles and zeros.

The results of Section VII do not say the statistical designs of

this paper are better or worse than more classical designs . Only differ-

ent . The new designs do, however, offer much more flexibility.

We speculate that the fitting of long AR models and subsequent

approximation with the Mullis—Roberts algorithm may provide a useful

method of f i t t ing  ARMA spectral models to random data. The question of

order determination would , of course , be cruc ial here as it is in AR

model—fitting [6].
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APPENDIX I: Generating a Covariance Sequence from an AR Model

Write out (15) for k — 1, 2, . . .,  N~ and order the equations in

the following way:

Qr= r

0 a
1 

a2 a
3 

... aN

a
1 

a2 a3 ... aN 0

a
2 

(a1+a3) a
4 

a
5 

... aN 0 0

a a . . . a1 
0N1 N1—l

— (r0, r1, . . . ,  rN
)

The matrix Q is generated as follows : begin with the f irst  row

(0 , a , a , ... a ); left—shift this row (n—b) t imes and add the1 2 N1
mth overflow to the (n ,m+l) term to get the nth row. For example,

the fourth row is generated in the following way :

0 a
1 

a
2 

a
3 

a
4 

a
5 

... aN

0 a1 a2 a3 a4 
a

5

a
3 

a
2
+a
4 

cL
1
+a

5 a
6 ... aN 0

The vector of covariances r is obtained by solving the eigenvalue

problem

QR — AR.

for the eigenvector ~ (— r) corresponding to A = 1.

-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Appendix II: FORTRAN Program for Design of ARNA Filters

PRODRAM AR FILT 1NPUT,OUTPUT,FILMPL,TAP [’~~It.PUT ,T4Fr~ ~jtJTPuTC P R O G R A M  FOR ~TAT IST ICAL DESIGN OF AR $tJ L A R~~A ~ I~~IT~~L F 11TE ~~SWR ITTEN BY J. LU~~Y, COLO RAD O STA TE ur.Iv. . 4I’i1t~~, 197~ —77.C PROGRA M SET UP FO~ LOWP A SS r~EsIr~’~s AT PFFSE~.T AR CR A~~- 4).
C DATA READ IN SETS OF ~ r~~RDs. VA R IAs-’ LE. ~CC TrL1~ P

~~~~~~kA ~THE NUMBER OF 6 CA Rt )  SETS TO REA P I~J . ( ~~1I ~i~~ci ~~~~~ ~TtT:~~:~~T)
I-.

I N T E G E R  R S
INTEGER NMR (1O),t4E~i(1fl~INTCGE:R TOOLI1O )
DIMENSION HQ (257)
DIHENSION E (257)
D I M E N S I O N  H ( 2 5 7 ) ,~ (257),~~(7~~7)DIMENSION ON ( 2 5 7 )
DIMENSION PN(2 5 7 ) , RS (2 5 7 )  ,F ‘2 5 7) , PP(2 57 )
DIMENSION WAR (257)
DIMENSION PHAR 12),HAR (512), 512),OHA~~r (512) ,Fqr~~(5~~~)

C ALL DATA CARDS MUST ~E PR E~~!~~T EVEN IF THEY AR E
C NOT APPLICABLE TO THE PP!SE’JT RUN .
C ~LAUI( CARDS MA Y bE T~4SE~ TEO r0Q ‘~~A (JAT~

. CA R [S.
C (FOR AR flES1’,~4 S , A E3 LANX CA ~~ IS I~~S F R Tf ~ FOR T~~C NUMERATOR ORJER C A R D ( C A ~~D IN TH E SET (

~F 6 ) )
NOTE. . .EACH T~A T A  S ET AL L D~~S D ES IGN P~ ~r. AR ~~A P~ ~~BUT NOT BOTH.

C r~UC NUMBER OF DATA SETS
C NCC .1.1. 10

READ (5,250) NOC

00 240 LX =

C A R O l
C OPTION CARE )
C THIS C A R D  IS RF . A E )  IN 1011 FORMAT
C A 1. OR 0 IS FUt~CHED IN C”LU~ NS 1—B, ~ ITF TH E FU..LC~~I’.r- ‘~EA ’ ~I’~&—
C l:LIESIGN AR FILTER 0~~~0 A~ L~[SIG’ã
C I PLOT AR PH AS t 3~~’4O ‘t .OT

1:DUMP REL EVr ~1T CO E~~~. c~~’iO rUMP
C 1:D!SIGN AR MA FILTER 0=~~O A R ~1A ~ESI5~4
C 1~ PLOT AR MA PHASE O~~MO PLOT
C 1 DUMP A R~~A C O E F .  D:NO [jUMP
C 1:PLOT MAG . SQUARED 0 N 0  MA G .  SQ . PLOT
C 1zPLOT ON MICROFILM 0:N0 PLOT

C ALL COEFFICIENTS IN DUMP A RE M3P~~A LIZ E~ FOR P E.C. ‘)~~ ~‘L”T.

READ (5,270) ( T O O L ( I ) , I  = 1,10)
C
C CARD 2

JJA :NUMBLR OF CI FF ERE P~T FILTER CRD ERC Ic N~• C UNOER THE ACTIVE OPTION CA RD .
• C JJA.LE.9

C NOT E THA T JJ.~ Is T~~F ~~ LOO ~- P A C A ~~ET ~~F I’ T~~E F~~Lr
STATEMENTS ~~~ CA~ 0S h A~~ 1.

C F O R M A T 111
• 

REA O (5.250) ~J•~ -]

C CARD3
C bWS~~~I G N A L  ~~~ J.,TDTH IN ‘1? 3~~~~ .(T S~ ~~d I~ HZ

dW S.~~~N MUST ‘~E .LE. F C L ) C V ~~R F~~Er) .
F O R MA T  3F3.2

READ (5,2 80) 6~~~,°W~4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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C CARD4
C lONE IS THE SMALLEST S/N RAT iO. ITWC IS THE L A~~~FST S/N .
C ITHREE IS THE S~ N LOOP INCREMENT.
C A TYPICAL CA RD 4 IS AS FOLLOWS...003009003...THIS WOUL D
C CAU SE FILTERS WITH S/N RATIOS OF 30,60,90 DECIBELS TO
C BE DESIGNED.
C FORMAT 313

READ (5,260) IONE,ITWO,ITHREE

C CAR D 5
C NMR ARRA Y TAKES ON THE VALUE S OF NUM . ORDER FOR ARMA FILTERS.
C EAC H VALUE OF NMR SHOULD BE •LE. 128.
C FORMAT 1013

READ (5.350) (NMR(I),I = 1,JJA)

CA R D 6
C NEN ARRA Y STORES VALUES OF DEN. ORDER FOR AR OR ARMA.
C A MAX. OF 10 VALUES CAN BE STORED. EACH OF THESE MUST BE - •

C .LE,256 FOR AR , AND •LE.128 FOR A RMA .
C FORMAT 1013

READ (5,350) (NEN (I),I 1,JJA)
C

P1 3.141592654
T = 0.5
PPP:0.5/T

C T IS THE SAMPLIN G PERIOD.
C PPP IS THE FOLDOVER FREQUENCY.

MAUG 1024
NN 512

C
C THE USER SHOULD DEFINE VARI A BLES APPLICABLE TO
C THE TYPE OF FILTER TO BE DESIGNED.
C THE VARIABLES FO,RWS,BWP4,FQ .,. DEFINE THE IDEAL
C POWER SPECTRAL DENSITY OF A LOUPASS FILTER .
C THE FOLLOWiNG SECTION BRACKETED BY STARS NEEDS TO bE
C CHANGED FOR OTHER TYPES OF FILTERS.
C THIS SECTION COMPUTES THE COVA R IANCE OF THE IDEAL P.S.D.
C
C

BWQ PPP~ (BWN+BW S)
FO:PPP-3WN12.0
FQ (PPP—BWN.BW S)/2.0

C COMPUTE COVA RIAN CE— RS :SIGNAL CDV ., PN:NCISE COV.
C QN TRANSITI ON BAND COVA RTANC E

PN(1) = 2.0 a
RS(1) = 2.0 * BWSQN (1) 0.0
DO 100 J = 2,257
RS (J) SIN (2..PI*FLOAT (J=1)-*T*BWS)/(PI*T*FLOAT (J—1 ))
PN (fl:2.0*SIN (PI.BWNaFLOAT (J=1)*T)/(PI*FLDATtJ~ 1)*T)eCOS (2.0*CPI*FO*FLOAT (J—1 ) aT)
QN(J) 0.0

100 CONTINUE
C
C
C AN :NO ISE LEVEL. A S :SIGNAL LEVEL (A V A R I A B L E )
C AQ TRAN S. BAND LEVEL
C

AN = 1.0
00 230 KK = IONF :,ITWO,ITHREE
AS = 10 * *

DO 230 NNA = 1,JJA
N D E N = NEN (NNA )
MAR : NOEN • 1
IF (1OOL (1).E Q .1) GO TO 110

C FOR ARMA DESIGNS, AR ORO E R :2 56
MAR 257

110 MR = MAR — 1
RU) = A S * RS (1) • AN * PPU1) • A Q * QN (1)
DO 120 J 2,PIAR
R(J) AS * RS (J) • AN * PN (J) • A Q * QN (J)

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~
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C
R TOTAL COVARIANC E VECTO R . EQUALS SIGN~ L+NCTSE COV .. ~EI’ -l T )

C BY AS AND AN.
C ARRAY ON ALLOWS THE DESIG NER TO SPECIFY A TRANS IT1O ’4
C BAND COVAR TANCE WITH WEIG HT A Q AND CENTER FREQ . FO .

120 CONTINUE
O S = MAR — 1
DO 130 LQ = 1,BS
LOl LO + 1
PP(LQ) = — R (LQ1)

130 CON TINUE
CALL TPSLV (BS,R,PP,WAR,E)

C SUBROUTINE TPSLV SOLVES TOFOLIT ? SET OF FOLIATIONS—
R *WA R PP.

JS = MA~140 JT JS — 1
WAR (JS):WAR (JT)
IF (JS.E Q.2) GO TO 150
JS= JS—1
GO TO 140

150 CONTINUL
DO 160 1 = 1,2 5 7
A l l )  0.0
Q(I) 0.0

160 CONTINUE
WAR (1) 1.0

C GSQR :AR FILTER C~A IN COEF. SOUAR E D
GSQR = R (1)

-
• DO 170 JP 2,~~AR• GSQR GSQR • WAR (~JP) * R (J~~

)
170 CONTINUE

0( 1) GSQR * * .5
C G ENE RATE IMPULSE RES~~. S !Q ’JENCZ ~OR ~‘ULI I S / R O ~~E RT S  A LSO p 1T 4~4.

P CALL IMPT (257, H,WAR,Q)
IF (TOOL (1).NE.1) GO TO 1 80

C
C THE FOLLOWING STARRED S1CTI’~J IS USED F UR AR DESIG~’S ONLY.ALTHOUGH AR (~~):ARMA (~~,0), A TIME SA VINOt RESULTS
C BY HAVING A SEPARATE AR DESIGN ~ROCFtU Q J • TWE AR
C SOFTdAR E IS u SED FOP A R TM A 

~~ SIGNS ALSO.
C
C

CALL ARMAMG (Q ,~~AR ,M A R , W S O ,~~H’~~!,1)
CALL SPLPLT (NN,WS Q,PHASE ,HAR ,PHAR,FREQ )• WRIT E (6,330)
WRITE (6,310) NUEN,’(K
WRITE (6,330)
WRITE (6,340) D w S , BW N
WR ITE (6,330)
IF(TOOL (7).EO.0 GO TO 175
KKL = TOOL (2)
CALL PLOT (HAR , PHAR,NN, KKL,TOOL,FREC,PPP)

175 CONTINUE
WRITE (6,330)
IF (TOOL (3).EQ . 0) GO TO 1PO
WRITE (6,290)
WR ITE (6,330)
CALL PRINT (WAR ,R,H,A, MA R ,3)

C
C * * *** * * * * * * ***** * * * * * * *** * * * * * * * * * ** *  * *** * * * *  **** * * * * * **  *

180 CONTINUE
GO TO 24P IF AN A R FILTrP ~~~~

‘ BET ~J G SIr~~Er~.IF (TO ’)L (4).1O.~~) ~O TO 2 3~0 (1) = 0.0
00 190 M Y l , 2 r 7
IIQIMY)

190 CONTINUE
IDIF = ~iEN (’~N A )  — NMR (N ’-44)
JDIF  0
IF (IOIF.LT.O) JDIF 1
IF (IDIF .LT.0 IDI F = —
IF (IDIF.EO.O) r,O T O 2P0

- - - -- —~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ •~- • ~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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C GRAMMIAN SHIFT IMP. SEQ. A CCORD ING TO CIFFERENCE IN NUM .• C AND DEN. ORDER IN AR MA FILTE R (SEE MULLIS/RObERTS ).
• CALL SHIFF (H,IDIF,MAR,JDIF)

200 NFEN = NEN (NNA )
• MAR :N F E N + 1

LSTAR MAR — IDIF
• IF (JOIF.EO.1) LSTAR MAR • IfDIF

C IF NUM. ORDER .GT. DEN. ORtWR, MODIFY CCV. SEQ .
• C ( SE C MULLIS /ROBERTS )
• C HO IS UNS HIFTED IMP. SER .

IF (JDIF.EQ.1) CALL COV (HQ,R,MAR, IDIF )
C GENERATE AR MA COEFFICIENTS GIVEN IMP. AN D Coy . SEQUE~:CES.CALL MULRB (MAR,H,R,A )

CALL N LJMCF (Q,LSTAR ,MAP,HO,A)
CALL IMPT (257,H,A,Q)
WRITE (6,330)

• CALL ARMA M G (Q,A,MAR ,WSQ,PHA~ E,LSTAR )
CALL SPEPLT (NN,US Q,PHASF,HAR ,PHA R ,FREO )

• WRITE (6,330)
WR ITE (6 ,330)
IF (IDIF.NE.0) 00 10 210
N U M O R D  N E EN
GO TO 220

210 CONTINUE
NUMORD LSTAR — 1

220 CONTINUE
WRITE (,320) NFE~;,NUMORD,K~WRITE (6,330)
WRITE (6,340) BWS,BWN
WRITE (6,330)
KKK = TOOL (S)
iF (TDOL(7).EQ.D) GO TO 225
CALL PLOT (HAR,PHAR,NN ,KK ~ ,TOOL,FREO,PFP)225 CONTINUE
WRITE (6,330)
IF (TOOL (6).EQ.0) GO TO 230
WRITE (6,300)
WRITE (6,330)
IF tMAR .LT.LSTAP) MAR LSTAR
CALL PRINT (Q,A,R,H,MAR,4)

230 CONTINUE
240 CONTINUE
250 FORMAT (111)
260 FORMAT (313)
270 FORMAT (1011)
280 FORMAT (3F3.2)
290 FORMAT (9X,13H FILTER COEF .,SX,1OH CDV. SEC .,12X,1O~4 IMP. SEQ.)
300 FORMAT (9X~~11H MUM. COEF.,11X,I1H DEN. COEF.,9X,1OH COV. S[’~.,11X.h U M  IMP. SEQ.)
310 FORMA T (13H AR FILTER N , I 3,5X,~~H S/N 10** ,1 3)
320 FO Rt~AT (6H AR MA (,I3,1H,,I~~,1 4),5X,~~H S/N:1C.*,13)330 FORMAT (1HO)
340 FORMAT (SM BWS=,F5.2,SH RWN :,Fc .2)
350 FORMAT (1 013)

END
SUBROUTINE MULRB (N,H,R,A)

COM PUTES DEN. COEFS. FOP A q~~8.
C A ARRAY CONT AIN S THESE CO~~F.
C 

DIMENSION AIN),E3(257),C(257)
DIMENSION H(P4),R (N)
ALPH R h )  — H(1) * * 2
A (1) 1.0
5(1) = 1.0/ALPH
C(1) = K(1)~~AL PH
DCLI 1.0 • P1(1) * * ?/AL~’HNSTAR N — I
DO 100 I = 2,257
B(I) = 0.0
CCI ) 0.0

100 CONTINUE

_____ 
__ --• • -
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00 170 I = h ,NSTAR
GMA 0.0
BET = 0.0• DO 110 K 1,1
BET BET + A~~~) * Phi • 2 — K)
GMA GMA — AC K ) * 1-4( 1 + 2 - K)

• 11 0 CONTINUE
T H U T  = BET * L3 ( 1 )  + GM$ * C C ) )

• PHI BET * C (1) • GMA a ~ELT
ALPH ALPH — 8E1 * fl4FT — ~MA * PH I

• IF (ALPH ) 130,120,130
120 WRITE (6.190)

GO TO 180
130 DCLI DELT + (FRI * * 2 ) / ~ L~~I PLUS I + 1

~O 140 K 1,IFLUS
A (K) A C K )  — BET * B( I  • 2 — K) — GMA * CU + 2 — K)

140 CONTINUE
DO 150 K 1,IPLUS
8(K) B (K) — (TI4E1/ALPH) * A (I • 2 — K)

150 CONTINUE
00 160 K 1,JPLUS
C(K) C~ K) — (F141/ALPH) * A(I + 2 — K)

160 COr.TINUE
A l l • 2) 0.0
8(1 + 2) = 0.0
CCI + 2) 0.0

170 CONTINUE
180 RETURN
190 FORMA TC5X, 1SH FF ROP IN ~UL~~~

)
END
SUBROUTiNE ARMA M G (G,A ,N,WSOR,~~~,LST A R )

C
C COMPUTES ARM A ~A&. AND PHAS E GIVEN ~UM. AND (u N. C O E F .
C THE 0 ARRAY CONTAINS NUV . rOEFS.
C THE A ARRAY CONTAINS D!~”. CUFFS.C L S T A~~~NU M. ORDER +1
C N:DEN. ORDER +1

DPAENSION PH (512),WS (~R (512),WS~?1 (512),~~~~2(512),~~(’J),A (~~)COMPLEX OATA1 (102 4),DATA2 (1fl24)
SUM1 0.

• SUM2 0.
DC 100 I 1,N
SUM2 = SUM2 • AC ))

100 CONTINUE
DC 11 0 1 1,LSTA1~• SIW I SUM1 + O~~I)110 CONTINUE• DO 120 1 1,N
A (I) = 4( I)/SU P’?

120 CONTINUE
00 130 I 1,LSTAR
0(I) ~(I)~~SUM 113& COl~.T1NUFDO 140 1 1,f.
DATA1 (I) CMPL X (A (I),0.0)

140 CONTINUE
00 150 1 1,LSTAR
DA TA2 ( I):Cr4PLX (0 ( 1 ,0 .0

150 CONTINUE• MP N + 1
DO 160 I = M P , 1 0 2 4
DATA1 (I) CMPL X (0.,O.)• 160 CONTINUE
MP LSTA R + 1
DC 170 I = MP ,1024
DATA2 ( I )C MPLX ( 0. .0.)

170 CONTINUE

_ _ _ _ _ _ _ _ _ _  _ _ _ _  •~~~~~~~
_ _ -~••~ -_ •_ _ - _ -- _

_
• _ _ __

_

_ • • _ _ - _ _ _
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CALL FOURT (DATA1 ,1 024,1, — 1,0,0.0)
CALL FOURT (DATA2,1024s1, — 1,0,0.0)
DO 180 I : 1,512
PH(I)=57.2957795* ((A TAPJ 2CA IMASCJA TA 2 (I )),REAL (PATA2CI) )))—

CATAN2 (A 1MAG (DATAI (I )),REAL (D4T~’1(I’)))P11(I) = — PH(I)
WSQ1(I) : REAL (DATA1 (I) * Cr~JJ G (0ATA 1CI)))
WSQ2(I) = REAL (DATA2 (I) * CONJ5tDAT42 (1)))

180 CONTINUE
DO 200 I 1,512
IF (WS Q1(I)) 190,200,190

190 WSQR (I) WSQ2CI)/WSQI (I)
200 CONTINUE

• RETURN
C 1~D
SUBROUTINE SPEPLT (NN,WSO,P RA SF, rIA R ,D~1AR ,FRLO )

C• C COMPUTES A SEQUENCE OF M AO . AND DHASE PCINTc TO BE SENT TO ~L3T.C MAG. SQUARED VECTOR IS WS Q.
C MAR VECTOR CONT A INS WSQ I~’ nECIBELS.
C PHAR CON TAINS A SEQUENCr OF PMA S PCIN1~~.• C

UI MENSIDN WSQ(MN),p~~ASE (rJ N ),HAPCNN) ,PHAP( ,~~),rRçQ (~~N)
DO 100 I = 1,NN
HAR (I) :10. * ALOr,1O (WSQ (I))
PHARC I ) — PHASE (I)
FRE Q(I) = FLOAT (I — 1)/~ 12

100 CONTINUE
• RETURN

END
• SUBROUTINE PRTNT (A,B ,C,D,NA,ND)

PRINTS OUT ANY ONF,TWO,THREE.DR FOUR I—rIMENS IOMAL ,E~ UAL
C LENGTH ARRAYS. NA IS IRE NUMBE R OF AR R A Y  ELEMENTS TO ~E PRINTE .
C

DIMENSION OUT (4,257)
DIMENSION A (257) ,0 (257) ,C(257),D(257)
00 100 J 1,4
DO 100 1 1,257
0UT(~J,I) = 0.0100 CONTINUE
DO 140 ~ = I,?IA
IF (NB.EQ.1) GO TO 130
IF (NB.E Q.2) GO TO 120
IF (N~~.EQ.3) GO TO 110
01.11(4,1) = 0(I)

110 01)1(3,1) : C(I)
120 01)1(2,1) = B (I)
130 OUT (1,I) = A ( I)
140 CONTINUE

DO 150 1 1,NA
WRITE (6,160) I,C 0UT(~J,I).J 1,4)

150 CONTINUE
R E T U R N

160 FORMAT (2X,13,SX,1P4E20.7)
• END

SUBROUTINE TPSLV (N,R,PS,iJ,E)

ROUTINE WRITTEN BY DAVE FA R DEN, COLORA ~)C STATE UNIV.

DIMENSION R (N),PS (N),W (N),EfN)
NM I = N — 1
CINV 1.0/PCi)
DO 100 I 1,NM1
PCI ) = CINV * PCI • 1)

100 PS(I) = CINV * PS( I)
PS(N) = CINV * PS(N)
W (1) : PS(1)
Eli) = — R h )
A P1B = 1.0 — Ph i )  * R (1)
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DO 160 I 1,NM1
• : I • 1

THIT PS (I1)
CT = — R (I1)
00 110 L 1,1• LI I — L + 1
THET 114(1 — W (L) * R (LI)

• 110 CT ET — R C L )  * ((LI)
Cl THET/AMB

• C2 ETIAMB
11 = I • 1
IBAR 11/2
00 120 L 1,1• LI = Ii — L

120 W (L) = W (L) + CI * ((LI)
DO 130 L 1,IBAP
LI Ii — L
C3 = E (L)
(CL) EIL ) + C2 * E C L I

130 L (L1) = E (L1) + C2 * CS
IF (IBAR — 1/2) 150,150,140

140 ((IBAR ) = C3 * (1.(~ • r~~)150 W Ill ) Cl• ((Ii) : C2
-

• 160 AMB : AMB — C2 * CT
C UN NORM A LIZ E P At JD PS

• C = 1.0/CI•NV
DO 170 1 = 1eNH1

• R (J) = C * R (J — 1)
P5 ( I)  = C * PS( 1)

• 170J J — 1
• P S ( N )  C * ~~5( I~~)R( 1)  C

RETURN
(NO
SUBROUTINE PLOTC HAR ,PHAR,NM,N,TDOL ,FREQ ,PPP)

C
C MAPA AND MA PM ARE PLOTTING ROUTINES AVAILABL E A T CDL. STA TE .1.
C MAPA IS A PAPER PLOT.
C MA PM IS A MICR OFILM PLOT.
C

INTEGER TOOL (10)
DIMENSION HA R (P~~),PRA R (NM )
DIMENSION rRFQ(rN)
INTEGER XT (R),YT (6) ,PTcP),~’Th7)XT (I) 1ORFREQ(H?)
XT (2) = IOR
YT (1) 1O HMA ”NSQ (DB )
YT (2) = 1014
P1(1) 1OHPH ASF (PGR )
P1(2) 1Oh
00 100 ~ 3,~XT (1) 1OH
Y T ( I )  lOl l
P1(1) lOll

1 00 CONTINUE
MT( 1) : 1OMFZLTER
P11(2) 1O P$DESISN
P51(3) = lUll
P11(4 )  = 1011
MI(S) 1011
PIT (6) : 1OH
MT 17 )  = 411
CALL MA PA (1,FRLQ,HA R,1,N!4~.fl.0.rPP , — 1 ? O . C , 3 0 . 0 .V T , Y T , ’ T ,  — 1)

CALL MA DA (2, FR EQ , H A R , 1 , N N , O ,0 , !~P3 , — 12 0 .0 , 30 . C) , XT , YT , ’iT. — j )
CALL MA DA (4 , F R E Q , HA R , 1 , N M , O . Q , P P P , — 12Q .C,3O.fl.XT,YT,’~1, — 1)
IF (T U O L ( 8 ) . E Q . 0 )  00 10 110
CALL MAPN ( 1 , F R ( Q , HA R , 1 , N N, f l .O , PPp, — 12 0 .C , 30 . 0 ,X T ,Y l , M T ,  — 1)
CALL MAPM (2,FREO,HAR,1,NP’.O.C.FPD , — 12O.0,30.O,XT,YT,~’T, — 1 )
CALL MA PM (4,FRLQ,HAR ,1,NM .0.P,~~pP, — 1 O.0,3O.3,XT,YT ,~’T. — 1)

L -~~
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110 IF (N.E Q.O) GO 10 120
CALL MA PA (1,FREQ,PHAR,l,NN,O .O,~ P~ ,—3~ 0. ,•~~~~ 0. , X T , Y T ,~~T ,—1 )
CALL MAPA (2,FRE Q,PHAR,1,NN,fl.0,PPP.—360. .3 (-O.,Xl,YI,MT,—1 )
CALL MAPA (4,FPEQ,PHAR,1.NN,P.fl,PPD ,~~36O.,3( 0.,XT,YT,~’T,—1 )IF (TOOL (8 ).EQ.0) 60 10 120

• CALL MAPM (l,FR(Q,PHAR,1 ,NN,O.O,PPP,—360.,360.,XT,YT,MT,—l)
CALL MAPM (2,FRE~~,PHAR,1,NN. 0.U,PPP

,_ 360.,3E,0.,XT,YT,MT.~~1)CALL MAPM (4,FREQ,PHAR ,l,N’4,0.0,PPP,—360. ,3~ 0,,XT ,YT,MT.—1)120 RETURN
END
SUBROUTINE IMPT (N,H,A .t))

C• C CONPUTES AR MA IMP. P~~SPONSE GIVEN CCEFFICIE P4TS.
C N VALUES OF TIlE RESPONSE ARE COMPUTED 4’ 0 STORED iN 4.• C N.L(.257
C

DIMEN SION H(N).A(N),Q(N)
DO 130 1 = 1,11
H(I) = 0.0
SUM = 0.0
DO 110 ~.l : 2,N
IF (I — J I 1) 120,120,100

100 SUM = SUM — AIJ ) * H (I — J + 1)
110 CONTINUE
120 CONTINUE

11(I) = 0(I) • SUM
130 CONTINUE

RET OR N
EN D
SIThROUIINE SHIFF (H,K,NL,NX)

C• C TH iS ROUTI NE PERFORMS A r,RA~~’lIAN SHI~~T C~ T H E I~~PUL~~C SEQUENCE H. K IS TWE NUMBER OF SHIFTS 10 BE MA!’C .
C NL IS T~1E LE”GTH OF THE H SEQUENCE A NO IT MUST ~E CC ’.SISTENT
C WITH THE LENGTH OF PIE H SEQ. 3ENE RA TFD BY DIRT.
C NX :1 FOR LEFT SHIFTS AND 0 FOR RIGHT SHIFTS.
C

DIMENSION H (NL)
IF (NX.E Q.1) GO TO 130
I = N L

100 11(1) = H ( I  — K )

I :I~~~ 1
1F (1.GT.K) GO 10 100
I :i
IF (K) 120,120,110

110 IF (I.GT.K) GO TO 120
11(1) 0.0
1 1 + 1
GO TO 110

120 CONTINUE
GO TO 150

130 JX = 257 — K
DO 140 1 = 1,JX
4(I) = 11(1 + K)

140 CONTINUE• 150 CONTINUE
RETURN
END
SUBROUTINE NUMCFIQ,LSTAQ ,MAP ,r4’).A)

C
C GENERATES AR~1A NUM. COFFS. &IVE ;~ DEN . C~ CFS. A~ D IMP.
C StO.(UNSIIFT .D).
C 

DIMEN SION Q(LSTAR),P4Q (MAR ),4 (MA~ )• NSTAR MAR
00 120 I = i,LSTAR
DO 110 J = 1,N STA R
IF CI J • 1) 120,120,100

100 0(1) = 0(I) • Al,)) * 140(1 — J • 1)
110 CONTINUE
120 CONTINUE

Li~~~~~ 
_ _ _ _ __ _ _ _
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SUBROUTINE COVlH0,R,MAR ,ID’~~)• C
C MOOIFI!S COV. SEQ . FOR a L~~ T SiIFT:D II’P. SIC.
C

DIMENSI 3N R (257),t$Q (257)
DO 110 ~ = 1,M*RSUM = 0.0
00 100 J = 1,IDIF
SUM = SUM — 110(J) * 110(1 + J - 1)

100 CONTINUE
PCI ) = R (I) • SUM

110 CONTINUE
RETURN
END

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •~~~~~~~~~~~~~ • •~~ ~~~~~~~~~~~~~~~~~~ • ~~• •~~
• 
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