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SECTION 1
INTRODUCTION

1.1 Motjvation for Study of Cracks Emanating from Fastener Holes

Cracks in aerospace structures have caused catastrophic failures
resulting in loss of 1ife, destruction of millions of dollars in equip-
ment and severely reduced operational capabilities. While the elimina-
tion of possibilities for crack initiation and growth is a worthwhile
endeavor, the fact remains that flaws due to material defects, manu-
facturing methods, and in-service conditions will always be present to
some extent. This simple admission opens the door to design against
failure in the presence of flaws existing at the onset of operational
use and during perjods of fatigue growth. The fact that a crack exists
is, by itself, no longer a criteria for the scrapping of an aerospace
system nor is it sufficient reason for extensive modifications.

The United States Air Force has developed a design
criteria (1)* to reduce the possibility of catastrophic failures caused
by crack-1ike defects. This criteria has been established on the basis
of three separate yet interdependent studies:

1. At the beginning of a partfcu]ar operational period, determine
the most serious initial crack which could exist in a struc-
ture and predict the most severe operational conditions that
could occur.

2. Determine the crack sizes which would cause catastrophic

fajlure.

*Numbers in parentheses refer to references listad at the end of the

text.




-

3. Using predicted system operational data, calculate the time or
number of cycles for existing cracks to grow to critical size.
The first and last studies listed are largely measurement oriented and
thus perhaps more easily completed than the frequently complicated
theoretical problem posed by the second study. It is to the partial
completion of the second study that this work is dedicated.

A comprehensive review of aerospace structural failures completed
by the United States Air Force in 1971 (2) showed the origin of
failures due to cracks, in order of increasing frequency of occurrence,
to be:

1. Surface cracks

2. Corner cracks

3. Cracks emanating from fastener holes
A full one-third of all failures studied were due to cracks emanating
from fastener holes. While progress in the solution of surface and
corner crack problems has been promising, only two direct three-
dimensional solutions (3,4) are known to date for the three-dimensional
problem of cracks emanating from fastener holes. This work presents
stress intensity factor solutions for three crack orientations at open

and Toaded fastener holes in a finite-thickness plate.

1.2 Previous Work Leading to Stress Intensity Factors for Cracks

Emanating from Open Fastener Holes

The first major advance in the study of cracks emanating from open
holes in plates was due to Bowie (5) in 1956. He solved the two dimen-
sional problem of single and double through-cracks at an open hole

(Figures 1 and 2 ) using complex variable methods. Although not an
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Figure 1, A Single Through-Crack Emanating From a Hole in a Plate
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Figure 2, Double Through-Cracks Emanating From a Hole in a Plate



exact solution, Bowie's results have served as a basis in the framing
of other studies. Perhaps more important is the almost universal use
of his solution to establish the accuracy of other methods designed to
provide answers for the more complicated problems being attempted today.

Tweed and Rooke (6) considered the single through-crack problem
at a later date. They used a Mellin transform technique to predict
stress intensity factor relationships. Their solution is claimed to
have greater accuracy, especially for smaller crack lengths, than the
Bowie solution.

Since the publication of Bowie's work, theoretical approaches to
the more complicated three-dimensional problem of a surface flaw
emanating from a fastener hole in a plate have been limited largely
to estimates based upon extensions of related problem solutions. In
general, these estimates suffer from an incomplete application of the
many factors influencing the problem and from oversimplifications.
Nevertheless, it is worthwhile to review some of these estimates to
impress upon the reader the various directions taken in the study of
this problem.

Kobayashi (7) estimated stress intensity factors for a semi-
elliptical embedded crack adjacent to an open fastener hole in a very
thick plate, A Tinear approximation to the plane strain
stress distribution near the hole was applied to a circular crack in
an infinite solid without a hole. The stress intensity factor for an
elliptical crack was formed through an estimated shape correction to
the results for the circular crack. Surface effects and the through-
thickness stress variation seen in the three-dimensional problem are

neglected.




Hsu and Liu (8) estimated stress intensity factors for a corner
crack at a hole in a plate by using as a basis the solu-
tion for an elliptical crack in an infinite solid. They applied a
series of estimated correction factors to account for the presence of
the hole and plate surfaces. Bowie's two—dimensiona] through-crack
solution was assumed to provide a valid hole correction while an inter-
polation between three special crack shapes produced a front surface
correction. No back surface correction was introduced.

Liu (9) considered a quarter-circular crack at a hole in a plate.
He applied Smith's (10) solution to approximately account for the hole
surface and front surface, Kobayashi's (11) solution as an approximate
back surface correction, and Bowie's (5) two-dimensional solution to
approximate the three-dimensional hole effect. The resulting stress
intensity estimate was limited to a point on the crack periphery midway
between the front and hole surfaces.

Perhaps one of the more complete estimates is that of Shah (12).
He began by applying the plane strain stress distribution near a hole
in a plate under unjaxial loading to a circular crack and used a Green's
function to find stress intensity factors. He reasoned that these re-
sults also applied to two embedded semi-circular cracks emanating from
a fastener hole. Estimated crack shape correction factors were applied
to extend the estimate to elliptical shapes and Shah and Kobayashi's
(13) results were applied as approximate back surface correction fac-
tors. A constant front surface correction, independent of Tocation on
the crack border, was assumed. A final factor was applied to relate

single crack results to those for double cracks. Shah also used his



procedure to estimate stress intensity factors for cases of cracks
emanating from a neat-filled loaded fastener hole.

Grandt (14) recently applied a linear superposition technique
suggested by Rice (15) to the Bowie problem. He extended Bowie's re-
sults to cases of through-cracks adjacent to cold worked holes, open
holes with varying remote loads, and interference-fit loaded fasteners.
A necessary prerequisite for this method is a knowledge of stress in-
tensity factors and crack opening displacements for one particular
crack shape and orientation. The current lack of such information has
limited extension of Grandt's results beyond the two-dimensional through-
crack probiem.

The very nature of the estimate§ of Kobayashi (7), Hsu and Liu
(8), Liu (9), Shah (12) and others has caused many investigators to in-
tensify their efforts in seeking results through experimental means.

Hall and Finger (16) completed a series of static fracture tests
on specimens fashioned from 2219-T87 aluminum and 5A1-2.5 Sn (ELI)
titanium alloys. They suggested two empirical failure criteria for one
location on the crack front and restricted to the crack geometries
tested.

Hal1l, Shah, and Engstrom (17) performed similar experiments in
4340 steel plates é]ong with a wide range of fatigue and spectrum
loading tests.

Static fracture tests of engineering metals, while useful when
specific data on a particular material is needed, are subject to diffi-
culties when compared to theories based upon principles of linear

elastic fracture mechanics. If specimen sizing is too.small, gross

plastic deformations can produce results which are quite different from
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elastic predictions. Additionally, the point of initial failure on
the crack border is difficult to locate in metals. This has led many
investigators to the use of transparent, brittle polymers such as
polycarbonate, epoxy, and polymethylmethacrylate (PMMA) as better
materials for modeling the fracture process.

Jolles, McGowan, and Smith (18) experimentally studied the single
crack adjacent to an open fastener hole using established stress
freezing photoelasticity techniques. They extended their earlier work
(19) to more crack shapes and added the calculation of stress intensity
factors at two intermediate locations on the crack front to those at
the hole and surface intersections.

Snow (20) followed the lead of Grant and Hinnerichs (21) with a
series of fatigue experiments in PMMA. Single cracks adjacent to open
fastener holes were introduced and fatigued while crack growth data was
recorded photographically. Suitable baseline tests produced additional
information allowing for solution of the Paris fatigue relationship for
stress intensity factors. Results are published only for the inter-
sections of the crack front with the hole and with the front surface.

While the techniques of experimental fracture mechanics are surely
becoming more sophisticated and capable of producing some credible
results, theoretical solutions to the three-dimensional problem are
still few in number.

Browning (3) formed a solution based upon the Schwartz-Neumann
alternating method to obtain results for a single, embedded, semi-
circular crack emanating from an open fastener hole in a finite thick-

ness plate. Two solutions were used in the alternating procedure:



Figure 3,

A Finite Body Without a Crack, Subject to Surface Tractions




1. Stress in a finite body due to surface tractions using a

three-dimensional finite element method (Figure 3 ).

2. Stress in an infinite body due to arbitrary normal loading

applied to an embedded circular crack.
Iteration between these two solutions removes tractions on the finite
body free surfaces and the crack surface. The accumulated residuals
from freeing of the crack surface are used to compute stress intensity .
factors from the circular crack solution. Browning's results showed
trends similar to the estimates of Kobayashi (7). Unfortunately, his
solution took a large amount of computer time and suffered some djffi—
culties in the interpolation of stresses from finite element nodal
points to Gaussian quadrature points. This necessitated a specific
finite element mesh arrangement for each crack shape considered.
Nevertheless, Browning's pioneering work provided the basis for further
studies.

Ganong (4) extended the work of Browning by replacing solution 2
indicated above with the solution of Shah and Kobayashi (22) for
stresses in an infinite medium due to arbitrary normal Toading on an
embedded elliptical crack (Figure 4 ). He also decreased the compu-
tational time required by using Cholesky decomposition of the finite
element stiffness matrix and direct calculation of stresses at the
Gaussian quadrature points on the finite element models. Ganong pre-
sented results for a number of single quarter-elliptical cracks emana-
ting from open fastener holes. The versatility of the finite element-
alternating method has several facets:

1. Once the finite element stiffness matrix is decomposed, stress

intensity factor results for a wide variety of crack shapes
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Figure 4, An Elliptical Crack in an Infinite Solid
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can be found at the expense of only 250 seconds of CDC 6400
central processor time per crack problem.

2. The finite element portion of the alternating method controls
the geometry of the finite body containing the crack and is
capable of modeling the complex geometries of actual machine
parts.

3. The procedure gives stress intensity factors directly and
does not rely on extrapolating stresses or fitting crack
opening displacements as do some of the direct finite element

schemes.

1.3 Previous Work on Stress Fields in Plates with Loaded Fastener Holes

The first step of the finite element-alternating method applies a
known pressure distribution to the crack plane. In the case of an open
hole, the three-dimensional analytic solution of Sternberg and Sadowsky
(23) is used. Stress intensity factor results for certain cases of
Toad transfer to a filled fastener hole can be found in the same manner
if the crack plane stress distribution is known. The necessity for
knowledge of crack plane stress distributions is not unique to the
finite element-alternating method. Most of the estimates discussed
earlier have the same requirement. While both two-dimensional and
three-dimensional stress distributions are available for the open hole
case, the complexity of the loaded fastener hole problem has Timited
available results to two-dimensions and less generality. Figure 5
shows the pin-loaded hole case considered in this work where the ratio
Q/P ranges from 0.0 for an open hole to 1.0 for 100% load transfer to

the fastener.
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Perhaps the earliest attempt to define the stress distribution
near a pin-loaded hole in a plate was a series of photoelastic studies
by Coker (24) during the years 1913 to 1919. He was the first to notice
very large tensile stresses on the plane of minimum cross-section in
a plate of limited width.

Bickley (25), at the urging of Coker, used a classical elasticity
approach in two dimensions to analytically find stresses around a
circular hole in an infinite elastic solid due to surface tractions on
the hole boundary. Results for several realistic hole surface tractions
were calculated.

In 1935, Knight (26) made a significant contribution with a
theoretical solution which, even today, has not been greatly improved
upon. He recognized that hole surface tractions were important and
assumed their form from a study by Howland and Stevenson (27). Using
general elasticity theory, Knight then accounted for a finite plate
width of twice the hole diameter. Theocaris (28) extended Knight's
work to three additional hole diaméter to plate width ratios in 1956.

Twelve years later, Gregory (29) solved the same problem
(Figure 5 ) with the theory of infinite systems of linear equations.

For tractions on the hole boundary, he assumed that

-3/4 (IDJ (1-cos2g) for 0 < B <«
_ a -5 =
Opp = : (1.3.1)
r 0 for -1 < 8 < 0
'and
Opg = 0 for all B (1.3.2)

where a is the hole radius, h the plate half-width, T the remote
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uniaxial tensile stress, and B the angle measured from the hole edge at
the‘minimum cross-section. This boundary condition simulates a smooth,
rigid, neat-fit pin. Gregory presented only stress concentration

factor results at 8=0 for a large range of hole diameter to plate width
ratios, a/h. These results compared well with experiments, particularly
at the lower ratios of a/h.

The work of Bickley (25), Knight (26), Theocaris (28), and Gregory
(29) represent the extent of present analytic solutions for the pin-
loaded hole problem. Many important effects remain unaccounted for in
their work and the increased problem complexities cause more recent in-
vestigations to be directed toward experimentation and approximation
with finite element methods.

Froﬁht and Hi11 (30) used photoelasticity with bakelite specimens
and strain gage mountings on aluminum plates to experimentally de-
termine stress concentration factors for plates with pin-Toaded holes.
In addition to a wide range of plate geometries, they tested effects of
differing pin clearances and lubrications.

Jessop, Snell, and Hollister (31) also applied photoelastic tech-
niques to the problem, considering the interaction of various pin load
levels with three different pin clearances. Again, results were
limited to the pin-loaded hole boundary.

Cox and Brown (32) reviewed and coordinated available experimental
data in 1963 in an attempt to sort out and explain the many results.

In addition, they clarified the theoretical background as it applied
to the various findings.
These studies, while enlightening, consider only one or two special

effects of pin-plate interaction and generally present rather 1imited
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results. The increasing flexibility of the finite element method Tends
itself to studies of the many effects acting simultaneously.

Harris, 0jalvo, and Hooson (33) solved a wide variety of pin-load
problems using finite element methods. They considered both Tinear
and non-linear stress and deformation of mechanically fastened joints
and included effects of pin clearance and interference, Toad levels,
plate and pin geometry, residual stresses, and fastener bending.

Mohaghegh (34) prepared a report including 22 combinations of
fastener and plate loading, again with finite element methods. Two-
dimensional results are presented in the form of stresses around the
periphery of a fastener hole containing a rigid, smooth pin.

Brombolich (35) considered the effects of plasticity, load
sequence, and fastener interference and contact. His results again
were obtained using finite element methods and are restricted to un-
loaded fasteners in plates under remote uniaxial tension.

Due to the many effects present in the case of a pin-loaded hole
in a plate, choice of a suitable crack plane stress distribution for
adaptation to a stress intensity factor solution is not as straight-
forward as it might at first seem. 1In all 1ikelihood, an appropriate
distribution for a specific case understandably will not be found in
the literature and it becomes necessary to generate needed results

independently.

1.4 Objectives
The objectives of this work were to:
1. Extend Ganong's (4) analysis to more crack shapes and to

two additional classes of crack location relative to the hole.
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2. Apply the finite element-alternating method to cases of cracks
emanating from pin-Tloaded fastener holes.
3. Design and perform a series of static fracture tests to verify
the theoretical results.
4. Calculate mode-one crack opening displacements for cracks
emanating from fastener holes.
5. Assess accuracy by comparing the theory with experiments of
other investigators.
In the process of fulfilling these objectives, the finite element-
alternating method will be shown to accurately and efficiently calculate
stress intensity factors for a variety of cracks emanating from both

open and loaded fastener holes in finite-thickness plates.
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SECTION II
THEORETICAL APPROACH

2.1 General Problem Statement

Consider part-elliptical cracks emanating from a hole in a finite

thickness plate. Figure 6 shows the crack geometries considered in

this work and describes the dimensional parameters to be used'throughout
the report. The crack center is located at the hole edge and the crack
lies in a plane perpendicular to the axis of loading. The finite plate
geometry and Toading conditions are such that the plane of the crack is
a plane of symmetry for open hole problems. Mode-one stress intensity
factors are to be calculated around the crack border for cases of remote
uniaxial loading on a plate with an open gastener hole, and partial and

total transfer of load to a filled fastener hole (Figure 5).

2.2 General Solution Method

The finite element-alternating method used in this work separates
the problem into two problems with stress intensity factor results
obtained through an iterative procedure. Figure 7 schematically
presents two iterations of the procedure where the fastener hole has
been omitted in the interest of clarity. The top row of figures
represents Solution 1 while the bottom row shows Solution 2. In the
description to follow, letters in parentheses refer to steps in the
iteration process as shown on the figure.

The first solution, hereafter referred to as Solution 1, is that
of stresses in an unflawed finite body due to the applied remote
loading. Solution 1 produces a normal stress distribution, Py> ON the
plane where the crack is to be loacted due to remote Toads (Step a).

The second solution, hereafter referred to as Solution 2, is that of
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Figure 6, Crack Types and Locations Relative to a Fastener Hole
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stresses in an infinite body due to a pressure, “Py> applied to the

surface of an embedded elliptical crack. The solution to this problem
results in stresses at locations in the infinite body corresponding to
points on the surface of the finite body and frees the crack of residual
stress (Step b). The stresses calculated by Solution 2 at surface lo-
cations on the finite body are reversed to free its surfaces and Solu-
tion 1 again produces a normal pressure distribution at the location of
the crack in the unflawed finite body (Step c). Iteration between the
two solutions is continued until stresses on the finite body surfaces
predicted by Solution 2 and stresses at the crack location from Solu-
tion 1 are small. The superposition of results from all iterations
then gives a close approximation to the desired solution for remote
uniaxial loading on a finite body with a crack where the crack surface
is stress free and the finite body surfaces have the prescribed stress
boundary conditions. The total of normal stresses épp]ied to the crack
from all iterations to free its surfaces produces mode-one stress
intensity factors, KI’ which are computed directly from Solution 2.

It should be mentioned that in actual practice, Solution 1 is not
used to define the initial distfibution of pressure on the crack plane
for remote uniaxial loading (Step a). Rather, the three-dimensional
analytic solution of Sternberg and Sadowsky (23) for the same loading

case provides the necessary stress distribution.

2.3 Previous Work

The finite element-alternating method has its basis in the Schwartz

Newman method as reported by Kantorovich and Krylov (36). Similar
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alternating methods have been widely used in the solution of stress
intensity factor problems (13, 37, 38, 39).

Prior to Browning (3), the modeling of Solution 1 (Figure 3 ) was
formed by overlapping semi-infinite solids which greatly complicated
the alternating routine and restricted the finite body to a flat plate.
Brownings' introduction of a three-dimensional finite element method
as Solution 1 not only simplified the algorithm but allowed modeling
of more complex bodies such as plates with fastener holes. Wilson's
(40) SSAP3 finite element program with 20 node isoparametric elements
was extensively modified by Browning for this purpose.

The problem of an elliptical crack embedded in an infinite solid
(Figure 4 ), which is used as Solution 2 in the finite element-
alternating method, was first considered by Green and Sneddon (41).
They solved for stresses when the crack was subjected to a uniform
normal pressure. Shah and Kobayashi (22) extended the work of Green
and Sneddon to the case of arbitrary normal pressure on the crack where

this pressure is expressible as a ten term polynominal in x and y;

3 3 m n
p(x,y,0) = 1 [ A XY (2.3.1)
m=0 Nn=0
where m + n < 3,
The ten term limitation is due to the extensive and tedious work
required in the calculation of stresses. Smith and Sorenson (39)
programmed this solution for three stresses and six terms in the pres-

sure polynominal. Ganong (4) extended the solution to ten terms and

all six stresses.
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Ganong also performed some auxiliary studies to understand the
character of the finite element-alternating method. First, he noted
that Solution 1 predicted normal stresses only on a portion of the
crack plane where the full elliptical crack and the finite body over-
lapped. Since Solution 2 requires definition of the distribution over
the entire elliptical crack surface, the question of how to describe
the pressure on the portion of the crack lying "outside" the finite
body had to be answered. Ganong chose the edge crack problem as a test
case. Five different valid pressure distributions were applied to the
"outsidef section of the crack. Results for all cases agreed to within
1% but convergence was quite different. To study the accuracy of the
polynominal fit to these crack pressures, he ran the same test cases
for 19 ijterations. Based on the best accuracy and most rapid con-
vergence, a description of the crack pressure "outside" was chosen and
Tabeled "Tinear decay." This produced a pressure distribution "outside"
which Tinearly decays toward zero based upon the pressure along the
crack-finite body boundaries and the crack dimensions.

Ganong also established the convergence and accuracy of the finite
element portion of the solution. He applied uniaxial loading to meshes
of 16, 45, 96 and 112 elements and compared tangential stresses on the
plane z=0 to those due to the anaTytic solution of Sternberg and
Sadowsky. This study showed that finer divisions of the plate improved
accuracy with the finest division, 112 elements, having a maximum

average deviation of 2.5%.

2.4 Accuracy and Sensitivity Test of the Method

A three-dimensional approximation to the two-dimensional through-
crack problem (Figure 1 ) was made using two different finite element
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mesh configurations in Solution 1 of the finite element-alternating
method. The purpose of this comparison was to test both the accuracy
of the method and sensitivity to the number of finite elements covered
by the crack.

The first mesh configuration will be discussed later in this
section and is designed to solve the problem of a single quarter-
elliptical crack emanating from a fastener hole. The other mesh is
as described in Section IV for use in the solution of the problem of
an embedded crack adjacent to a fastener hole. Thié second mesh is
an exact division of the single crack mesh in the vicinity of the crack.
The result is twice the number of elements through the plate thickness
and across the plate width.

"The through-crack was approximated by a very slender part-elliptical
crack with a major to minor axis ratio of 2.5 or greater as shown in
Figure 8. The crack center is located at the hole edge in the center
of the plate. This crack shape was chosen for two reasons: 1) Other
shapes had been used in some of the computer check runs and it was
found that shape variation toward more slender cracks had very little
effect and 2) Experimental experience of the author has shown that the
degree of crack front curvature for this crack shape does not produce

any discernable deviation from two dimensional behavior.
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In the finite element portion of the solution method presented in
this section, the order of the shape functions determines the order of
the displacement field modeled. The shape functions for the 20-node
isoparametric element are quadratic in any one local coordinate direc-
tion. Application of the strain-displacement equation results in a
linear description of strain. A constitutive law Tinks stresses with
strains and preserves the linear order. The concern here is that the
finite element method approximates a non-linear stress field with a
Tinear one over a crack which is confined to the boundaries of a small
number of finite elements resulting in excessive stress intensity

factor errors. These comments apply to the order of displacements,
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strains and stresses prior to mapping into another coordinate system
which may or may not preserve this order. However, in this work all
mid-edge nodal points are located midway between the corner nodes which
maintains Tinearity in stresses and strains during transformations.

A major portion of this possible difficulty is avoided as follows.
Instead of initially solving for stresses at the crack location in the

unflawed finite body using the finite element method (Step a, Figure 7,

an analytic solution is used to provide this information. Stress gradients

over the crack from later iterations are more linear and thus the
finite element approximétion is better. Furthermore, these final
iterations contribute only about 25% of the final answer.

Results of the accuracy and sensitivity tests are Tisted in Table
1 and depicted in Figure 8. Comparisons are made with the through
crack results of Tweed and Rooke (6) for L/R=1.5, 1.0, and 0.5. 1In the
finite element-alternating method, as L/R decreases the total number of
elements covered by the crack decreases. It is convenient to view this
as a reduction in layers of elements in the width direction but not
through the thickness.

Inspection of Table 1 shows that deviations from the Tweed and
Rooke results do not exceed 3.2%. The maximum difference occurs when
the crack is positioned over only one layer of elements across the
width indicating that one element coverage in the width direction gives
sufficient accuracy.

The coverage of layers of elements through the plate thickness is
always four for the more coarse single crack mesh and eight for the
embedded crack mesh, regardless of L/R. The stress gradient through

the thickness is more shallow than across the plate width. The finite
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element solution can produce a better approximation to the shallow

gradient. If one element coverage in the width direction is suffi-
cient, surely one element in the thickness direction is adequate for
reasonable resutts. Therefore, very small cracks bounded by only one
finite element can be used with the assurance that stress intensity
factors may be only slightly less accurate than those for larger cracks.
Results for several small cracks can be found in this work. The
next section shows a comparison with a fatigue experiment by another
author. One crack considered has a/c=1.4 and a/t=0.3. Appendix C
presents results for a "benchmark" problem with a/c=2.0 and a/t=0.2.
Both of these cracks 1ie essentially within the boundaries of one
finite element and results are reasonable with no signs of i11 behavior

in the solutijon.

2.5 Theoretical Solution Results for Single Quarter-Elliptical Cracks

Emanating from an Open Fastener Hole

Figure 6a shows a single quarter-elliptical corner crack
emanating from an open fastener hole in a finite thickness plate. The
crack center lies at the intersection of the hole and front surface.
The plate is subjected to uniaxial tensile Toading in a direction per-
pendicular to the crack plane.

The finite element mesh to model Solution 1 of the finite element-

alternating method for this crack configuration is shown in Figure 9

for a hole diameter to plate thickness ratio, d/t, of 1.0 and in Figure
10 for d/t=0.5. The mesh is semicircular with 112 elements and z=0 is
a plane of symmetry. There are four layers of elements through the

thickness and seven divisions across the plate half-width. Planes
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inclined at 10°, 20°, and 90° from the z=0 plane further divide the
plate. Finer element divisions exist on the side of the hole where the
crack is to be located to provide improved definition of stress gradi-
ents there.

Ganong (4) used the finjte element-alternating method to find mode-
one stress intensity factors for a series of single quarter-elliptical
cracks emanating from an open fastener hole. In the interest of com-
pleteness, his results are presented in Figures 11 through 14.

Several new results for cases not considered by Ganong
will be discussed later in this section.

The calculations performed for numerous single quarter-elliptical
corner cracks emanating from an open fastener hole are listed in
Appendix A. Figures 11 through 16 are plots of magnification factor
versus parametric angle from the front surface where the magnification

factor is defined as

Ky
. (2.5.1)
o Yma

MF =

KI is the mode-one stress intensity factor, a is the crack dimension
along the hole edge, and o is the remote uniaxial tensile stress. The
parametric angle, 0, is defined by the parametric equations for an
ellipse

A cos 6

or (2.5.2)

B sin 6

A sin ¢

x
I
>
1]

i

B cos @ y

y

where A and B are the semi-major and semi-minor axes of the ellipse,
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~and x and y are coordinates of a point on the periphery of the ellipse.
A1l finite element-alternating method calculations in this work are for
a plate having a modulus of elasticity of 20x10° psi and a Poisson's
ratio of 0.25.

Ganong showed results for crack shapés of a/c=0.99 and 1.01 which
are omitted here for reasons to follow. These crack shapes were used
to approximate a circular crack with a near-circular elliptical crack
for comparison with results of other authors., Due to the limiting
forms of stresses in the solution of the elliptical crack problem (Solu-
tion 2), exact circles cannot be duplicated. Ganong reasoned that since
results for a/c=0.99 and a/c=1.01 were very close, both were accurate.
Unfortunately, further study shows that both cases are subject to
excessive errors.

The difficulties lie in the formation of the matrix which yields
stress function coefficients in Solution 2 of the finite element-
alternating method. Inspection of the equations describing terms in
this matrix shows definite tendencies for large round-off errors in
the numerical calculations when the major and minor axes of the elliptical
crack are nearly equé]. Shah and Kobayashi (22) alluded to this round-
off error problem when the circular crack shape was approximated too
closely by a near-circular elliptical crack. As a result, they simulated
a penny-shaped crack with an elliptical crack of shape a/c=0.982. In the
finite element-alternating method, the improper formation of the matrix
results in incorrect values of the stress function coefficients. This,
in turn, causes the calculation of incorrect stresses on the surface of
the finite body by Solution 2. When these stresses are reversed to free

the surfaces and applied to the finite body to find the new crack plane
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stress distribution, the body has a tendency to attempt a large rigid
body translation. Because one nodal point is always fixed in x and y,
(0, 0, 6) in this case, the body cannot translate but bends instead.

The result is large errors in the description of the crack plane stresses
and incorrect stress intensity factors.

Calculations have been successfully carried out for crack shapes of
a/c=0.90 and 1.10. No calculations have been completed in the range
0.90<a/c<0.99, yet it is thought that due to Shah and Kobayashi's
observation, the shapes to avoid are probably 0.98<a/c<1.02.

Ganong (4) identified six effects which control the variation of
magnification factor around the crack periphery. He interpreted the
results in Figures 11 to 14 in terms of these six effects. Except
for some general observations, his detailed comments will not be re-
peated. However, the six effects will be described here because they
will be useful later,

1. Hole Stress Concentration Effect. Stress intensity factors

are sensitive to the local stress field in the vicinity of
the crack. Cracks having large c/r (Figure 6a), where r

is the hole radius, extend into regions of lower stresses
away from the hole and would be expected to have lower stress
intensity factors. The reverse is true when Tow c/r places
the entire crack in an area of elevated stress and stress

intensity factors rise.
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2. Front Surface Effect. Cracks intersecting a free surface can
open more than cracks embedded in a solid under fdentica]
loading. Increased crack opening is reflected in higher
stress intensity factors.

3. Back Surface Effect. As the ratio a/t increases and the
crack approaches the back surface, stress intensity factors
increase. This is due to the decreased rigidity of the
1igament between the crack and back surface.

4., Hole Surface Effect. For small cracks, the hole surface acts
like a free surfacé. This allows the crack to open and conse-
quently increases stress intensity factors. For larger cracks,
the hole acts to restrict crack opening and stress intensity
is Towered.

5. Crack Shape Effect. The largest stress intensity factor
for an elliptical crack under uniform loading occurs at the
ends of the minor axis. The crack shape effect decreases
as an elliptical crack approaches a circular shape.

6. Through-Thickness Stress Variation Effect. For a hole diameter
to plate thickness ratio of 1.0, the stress concentration at
the hole edge varies from 2.7 at the plate surfaces to 3.1
at the center of the plate. A similar variation occurs
through tﬁe thickness at locations removed from the hole and
results in like trends in stress intensity factors.

In the present study, it is not possible to separate the six

effects and show their importance independent of one another. To do
so would require corresponding results for a problem in which one of

the effects was not important. Attempts to accomplish this usually

a1




result in two or more effects changing simultaneously rather than just
one. Only the shape effect can be so isolated at present as suggested
by Kobayashi (42). He normalizes the magnification factor (Equation

2.5.1) by multiplying by N, where
N = A%/ (A2cos2e + B2sin2e)% (2.5.3)

A and B are the semi-major and semi-minor axes of the elliptical crack
and 6 is the parametric angle from the minor axis.

Figures 11 through 14 are plots at constant a/t for varying
crack shapes, a/c. At the front surface intersection, magnification
factors change no more than about 8% over a wide range of crack shapes
due to a balance maintained between a number of effects. Increasing
a/c means decreased c/r which raises stress intensity factors due to
the hole surface effect. Decreasing c/r also places the crack border
near the front surface in a region of higher stresses which leads to
higher stress intensities. For cracks with a/c<3.0, the increase in
magnification factor as the front surface is approached is due to a
combination of front surface and crack shape effects.

Ganong (4) remarked that magnification factors were always highest
at the hole intersection due to the dominant character of the hole
stress concentration effect. While this may be true for single quarter-
elliptical cracks of a/c<2.0 as considered by Ganong, it is not the
case for a/c>2.0. Figures 11 and 13 show magnification factors for
a/c=3.0 and a/t of 0.9 and 0.5. In both cases, the location of maximum
stress intensity is shifted to an intermediate point along the crack
periphery and nearer the front surface. This is again due to a combina-

tion of several effects. As a/c increases to 3.0, c/r decreases and
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locations on the crack border near the front surface lie in an area of
higher stresses. Also, the crack shape effect causes stress intensity
factors to decrease at the hole intersection.

The variation in magnification factor along the crack periphery
for cracks with a/c<1.0 is wider than for a/c>1.0 as can be seen in
Figures 13, 14 and 15. Since the crack minor axis is along the
front surface for a/c<1.0, the crack shape effect does not reduce the
elevated stress intensity at the hole intersection as happens with
higher a/c values. The shape effect, hole surface effect and hole
stress concentration effect combine to Tower stress intensity factors
at the front surface for cracks which are long in that direction.
Figures 14 and 15 show this to be strong enough to overcome the
effect of the front surface.

Figure 16 shows magnification factor versus parametric ang1e for
the same crack with hole diameter to plate thickness ratios of 1.0 and
0.5. This reduction was accomplished by halving the hole diameter
while leaving all other plate and crack dimensions unchanged. Thus,
the only effects on the magnifijcation factor should be those of the
hole surface and the hole stress concentration. As expected, the hole
stress concentration effect dominates, resulting in a lowering of mag-
nification factor everywheré as the increased c/r, due solely to reduced
hole radius , places the crack in a region of lower stresses. The
effect of the hole surface can be seen in the wider separation of the
th curves at the hole iﬁtersection. The reduction in c¢/r increases
the rigidity of the hole with respect to the unchanged crack size.
This increased rigidity is reflected in reduced crack opening and

Towered stress intensity factors for d/t=0.5.
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It is important to recognize that stress intensity factor values
calculated at the hole and surface intersections may be subject to
question. Hartranft and Sih (43) studied the semi-circular
surface flaw in a semi-infinite solid in great detail and discovered
that stress intensity factors on the crack periphery near the surface
dropped sharply toward zero. Sih (44) explains this result with the
observation that the state of stress is very complex near a crack-surface
intersection. At all other locations, Hartranft and Sih's results compare
closely with the earlier results of Smith (45). The decrease in stress
intensity factor near the surface intersections was not seen in the present
work, due to the nature of the approximations used. However, experiments
conducted in this work show cracks to propagate at points of highest
stress intensity factor, not lowest. A small shift in this location,

while theoretically important, has 1ittle practical significance.

2.6 Comparison of Theoretical Results with Two Independent Experiments

Snow (20) reports a series of seven tests resulting in predicted
stress intensity factors for some single quarter-elliptical cracks at
open fastener holes (Figure 6a ). In his work, a starter crack was
introduced at the intersection of a hole and a surface in a plate of
polymethylmethacrylate (PMMA). The plate was cycled under low load
levels and the crack grew by fatigue. At periodic intervals, 35 mm
photographs were taken perpendicular to the crack plane. Measurements
from the photographs gave crack length versus number of cycles data.

The Paris fatigue relationship,

2 - c(ak)" (2.6.1)

was assumed to apply where C and m are material dependent constants,
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AK 1is the change in stress intensity factor during cycling, and da/dn
is the crack growth rate. C and m were determined from a single
through-crack baseline test where da/dn was measured and

AK was known. Crack length versus cycles data from the fastener hole
tests required careful differentiation to yield crack growth rates.
Knowledge of da/dn, C, and m permits solution of the Paris relationship
for stress intensities.

The most complete results shown by Snow are for an average a/c of
1.4 ahd a range of a/t from 0.23 to 0.84. Magnification factors are
presented at the hole and surface intersections only. The average hole
diameter to plate thickness ratio, d/t, for the seven tests was 1.05.
This close agreement in plate geometries between Snow's experiment and
the finite element-alternating method model permits a valid comparison
of results from the two studies.

To form this comparison, stress intensity factors were calculated
by the finite element-alternating method for single quarter-elliptical
cracks emanating from an open fastener hole where a/c=1.4, d/t=1.0, and
a/t ranged from 0.3 to 0.8. Figures 17 and 18 are plots of magnifi-
cation factor versus a/t for the experiments of Snow and the theoretical
results of the finite element-alternating method. Agreement at the hole
intersection is within 2%. Agreement at the front surface intersection
is not as close but trends with increasing a/t are identical. Here,
the finite element-alternating method predicts magnification factors
which average 13% below Snow's results.

Figures 19 and 20 show a similar comparison for an average a/c
of 1.5. Agreement between Snow's results and those of the finite

element-alternating method is with 3% at both the hole and surface
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intersections for a/t=0.5 and trends with increasing a/t are in close
accord.

The Poisson's ratio of PMMA is 0.35 while all finite element-
alternating method calculations are for a value of 0.25. Smith (46)
noted a 3% fncrease in back surface magnification factors when Poisson's
ratio was increased from 0.25 to 0.39 in his theoretical study of semi-
elliptical surface cracks. If all theoretical results shown in Figures
17 through 20 are increased by this amount, the maximum disagreement
is reduced to 10%.

McGowan and Smith (19) used stress-freezing photoelasticity to
experimentally determine stress intensity factors. Their results were
limited to the points of intersection of the crack with the hole and
front surface. Table 2 shows a comparison of magnification factors
from McGowan and Smith's experiments with results from the finite
element-alternating method. Only three of the eight tests have plate
and crack geometries close to those of existing finite element-
alternating method results. In tests 6 and 7, agreement is noted
between the stress freezing experiment and the theoretical prediction
to within 6% at the front surface intersection and to within 2% at the
hole intersection. For test 4, the difference at the front surface
intersection is about 13% and at the hole intersection is about 35%.
Smith (19) has indicated that there may be some question about test 4

and a duplicate experiment is to be conducted in the future.
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Table 2.

Comparison with Stress-Freezing

Photoelasticity Experiments

Ky

McGowan *(vz.5) ovma

and a/t a/c d/t Surface Hole
Smith (19)
Test 4 0.48 1.10 0.88 0.90 0.89
Test 6 0.46 1.55 0.94 0.98 1.24
Test 7 0.74 1.98 0.95 0.95 1.08
Finite Element-
Alternating Method *(v=.25)
(equivalent to)
Test 4 0.50 1.10 1.00 1.03 1.36
Test 6 0.50 1.50 1.00 1.04 1.24
Test 7 0.75 2.00 1.00 0.94 1.06

*No correction for Poisson's Ratio was made.
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SECTION III
DOUBLE SURFACE CRACKS EMANATING FROM AN OPEN FASTENER HOLE

3.1 Problem Statement

Figure 6b shows double quarter-elliptical surface cracks
emanating from an open fastener hole in a finite-thickness plate. The
crack centers Tje at the intersection of the hole and the front surface.
The plate is subject to uniaxial tensile loading in a direction per-
pendicular to the plane containing both cracks. Regardless of the
orientation of the crack major and minor axes, "a" refers to that crack
dimension along the edge of the hole while "c" is along the front sur-
face of the plate. Both cracks are of the same shape and depth. This
double crack configuration is seen in fatigue failures when, following
jnitiation of a single crack, a second crack propagates on the side of
the hole opposite the first. Mode one stress intensity factors are to

be calculated around the peripheries of both cracks.

3.2 Finite Element Mesh Configuration

The finite element mesh used in the solution of the double crack
problem is quarter-circular with 108 elements (Figure 21). This mesh
is arranged similar to those for the single and embedded crack config-
urations. There are four layers of elements through the thickness and
nine divisions across the plate half-width. Planes inclined at 10° and
20° from the plane z=0 further divide the plate. Finer element divi-
sions exist near the hole to provide improved definition of the stress
gradients there. The planes z=0 and y=0 are assumed planes of symmetry

and are rollered to prevent displacements in the z and y directions,
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respectively. The mesh is pictured in Figure 21 for a hole diameter

to plate thickness ratio, d/t, of 1.0 and in Figure 22 for d/t=0.5.

3.3 Changes to the Finite‘E]ement—A]ternating Method for the Double

Crack Problem

The finite element-alternating method as applied to the problem of
single quarter-elliptical cracks emanating from a fastener hole uses as
one solution that of a single elliptical crack in an infinite med1um
subjected to an arbitrary pressure distribution. No solution is cur-
rently available for the companion problem of two cracks. The diffi-
culties caused by use of the single crack solution coupled with the
finite element mesh of Figures 21 or 22 for the double crack problem
stem from a mismatch in planes of symmetry. While symmetry about the
y=0 plane is forced upon the finite element solution, the crack solu-
tion has no such symmetry about this plane. The only symmetries
recognized by the crack solution are those about planes passing through
the crack center, none of.which coincide with the plane y=0 because the
crack center is offset from the hole center. Therefore, changes to the
finite element-alternating method were necessary to allow for the
presence of the second crack and to produce a match in the symmetries.

The following changes were made to the solution method for the
double crack problem and represent one iteration. The crack referred
to as the "right" crack has its center at the intersection of the fas-
tener hole and front surface on the side of the p]ate'actua11y modeled
by the finite element mesh. The "left" crack is a mirror image of the
"right” crack about the y=0 plane. Between Steps a and b, Figure 7,

Solution 2 of the finite element-alternating method calculates residual
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stresses at the location of the left crack due to the freeing of resid-
ual stress on the right crack. These residuals are combined and applied
to the right crack (Step b, Figure 7). Solution 2 then solves for
stresses at locations on the finite body and mirror image Tocations on

a fictitious quarter plate mirrored about the y=0 plane (Figure 21).
Combined stresses from actual and mirror locations are residuals to be
removed ‘from the finite body surfaces (Step c, Figure 7).

Some care must be exercised in the use of this double crack al-
gorithm. If the major or minor axis of one crack touches the center of
the second crack, the elliptical crack solution is asked to calculate
singular stresses on the crack boundary. The obvious correction is to
avoid crack dimensions which create this problem. At first glance, the
overlapping of the two cracks also raises questions of solution valid-
ity. Crack overlap causes the elliptical crack solution to calculate
stresses on the plane z=0 inside the crack which in itself causes no
problems. Results presented in this thesis are for cracks which over-
lap only in regions outside the boundaries of the finite body. Since
the stresses in these regions are linearly decayed prior to the poly-
nomial fitting procedure which describes the crack plane stress

distribution, any possible problems due to crack overlap are eliminated.

3.4 Three Dimensional Analysis of a Two-Dimensional Test Problem

Bowie (5) solved the two-dimensional problem of double through-
cracks emanating from a hole in a plate subjected to uniaxial loading
(Figure 2). His well respected solution employed complex variable
techniques to calculate stress intensity factors. To form a comparison

using the present method, double through-cracks were approximated by
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two very slender part-elliptical cracks with major to minor axis ratios
of 2.5 or greater. This configuraiion is pictured in Figure 23 along
with results from the finite element-alternating method and Bowie's
solution. Calculations were performed for L/R of 1.5, 1.0, and 0.5.
Results at the center of the plate are presented to minimize the effects
of the surfaces and thus more closely model a plane strain situation.
The three-dimensional finite element-alternating method analysis of this
two~dimensional problem shows agreement to within 5% of the Bowie

results.

3.5 Solution Results

A list of calculations performed for various double cracks
emanating from open holes is shown in Appendix A. Comparitive plots of
magnification factor versus parametric angle from the front surface are
presented in Figures 24 through 29. The magnification factor is

defined as before,

Ky
. (3.5.1)
ovma

MF =

Crack shapes and depths used in the double crack calculations were
jdentical to those used by Ganong (4) for single cracks. This was

done with forethought so that effects of the addition of a second crack
could be analyzed. The results for the corresponding single cracks are
shown and discussed in Section II and form a basis for comparison of
double crack results. Both this author and Ganong analyzed the single
crack results with respect to the six effects mentioned in Section II.
These comments apply equally well to the double crack results with the

possible exception of the hole surface effect.
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For small single cracks, the hole surface acts Tike a free surface
which tends to elevate stress intensity factors. Bowie (5) noted for
through-cracks that when the crack length to hole radius ratio is small,
stress intensity factors for one and two cracks are approximately the
same. As cracks get larger, however, the effect of the hole is quite
different for single and double cracks. For larger single cracks, hole
rigidity restricts crack opening which lowers stress intensity factors.
The addition of a second large crack has the opposite effect since it
reduces hole rigidity and allows both cracks to open more. This pro-
duces elevated stress intensity factors with respect to the single crack
case. A1l double crack calculations presented here exhibit this trend.

Casual inspection of plots of magnification factor versus para-
metric angle (Figures 24 through 29) shows little difference from the
single crack results (Figures 11 through 15). While differences db
appear subtle, they can be as large as 8%. In all cases, the maximum
elevation in stress intensity factors with respect to the single crack
occurred not at crack intersections with surfaces but rather at para-
metric angles of from 30 to 50 degrees. At these locations, stress
intensity factors for double cracks were 4-8% higher than for the cor-
responding single cracks. The amount of increase appears to be a
function of the crack Tength along the front surface versus hole radius
ratio, c/r, regardless of crack shape or depth. As c/r increases from
0.5 to 1.0, the difference in stress intensity factors for double
versus single cracks increases uniformly from 4 to 8% at the 30 to 50
degree location. From c/r-of 1.0 to 1.34 the difference remained at

the high of 7 to 8%.
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Increases in stress intensity factors at the hole and front surface
intersections for double versus single cracks were Tower than at the
30-50 degree location. The amount of change was a definite function of
a/t as might be expected, since as a/t increases hole rigidity de-
creases. For a/t=0.5,double crack results show no increase at the hole
intersection but a 3-5% increase at the front surface. As a/t becomes
larger, stress intensity factors at the hole intersection begin to in-
crease until they are 2-5% above single crack results while values at
the front surface remain about 3-5% higher.

Figure 29 shows magnification factors for the same double crack
shape and hole diameter to plate thickness ratios, d/t, of 1.0 and
0.5. As with the corrésponding single crack problem discussed in
Section II, the only dimensional change in the reduction of d/t from
1.0 to 0.5 was the hole diameter. Both cracks extend Tike distances
along the hole and front surfaces yet the ratio c/r is doubled for the
d/t=0.5 case. The depth ratio, a/t, remains the same. Earlier obser-
vations on double versus single crack results linked magnification
factor differences at the hole and surface intersections to a/t and
at intermediate points, to ¢/r. The same trend in reverse seems to be
occurring here for changing c/r. As this ratio increases, magnification
factors decrease at intermediate points, but do not change appreciably
near the hole and front surfaces. Again, this lends support to the
dominant effect of the hole stress concentration which overshadows
effects of the hole surface. Increasing c¢/r for double cracks would
be expected to elevate stress intensity factors due to decreased hole
rigidity yet the fact that the crack 1ies in a region of Towered stress

is still more important.
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3.6 Comparison with an Estimate of Another Author

Shah (12) used a Green's function technique to estimate stress in-
tensity factors for two semi-elliptical embedded cracks emanating from
a fastener hole. He applied correction factors for the surface effects

and reasoned that for through-cracks (Figure 1.2)

2R+L
(Kq) = \| srm (Kp) . (3.6.1)
I one 2Rzl I two
crack cracks

The corresponding elliptical crack relationship was assumed to be

Tac
2R+_4f
crack cracks

where E%%—is the crack length of a through-crack having the same area

as an elliptical crack of depth a and length c. Shah's estimates could
be discussed at length in a comparison with solutions by the finite
element-alternating method. This author chooses to deal solely with

the one-to-two crack corrections predicted by both methods. Shah's
factor actually corrects doub]é crack results to find stfess intensity
factors for a single crack but comments below will treat this in reverse
for comparison with the present study.

While Shah's one-to-two crack correction factor tends to over-
estimate the average differences found with the finite element-alter-
nating method by only about 1 to 2%, his factor predicts a constant
correction for all locations on the crack front. The present study
indicates there can be as much as an 8% variation along the crack
border. Figure 27 shows a comparison of Shah's estimate with present

results for double cracks having a/c=0.5 and a/t=0.25.
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Static fracture tests of plates having cracks of various shapes
and locations relative to fastener holes were performed by the author.
Comparison of the theory with a large number of these experiments is

presented in Section VI.
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SECTION IV
EMBEDDED CRACKS EMANATING FROM AN OPEN FASTENER HOLE

4.1 Problem Statement

Figuré 6c shows a single half-elliptical crack emanating from an
open fastener hole in a finite-thickness plate. The crack center is
located at the edge of the hole, midway through the plate thickness.

The crack major axis is always parallel to the hole centerline. The
crack has no front or back surface intersections but some results are
shown for cases where 2c=t. This configuration will be referred to as
an embedded crack. The finite width plate is subject to uniaxial
tensile loading in a direction perpendicular to the crack plane. Stress
intensity factors are to be calculated along the crack periphery. While
many in-service failures have resulted from corner cracks at fastener
holes, the embedded crack has recently gained attention due to failures

in aircraft jet engine turbine rotors due to cracks of this type.

4.2 Finite Element Mesh Configuration

The finite element mesh used in the solution of the embedded créck
problem (Figure 30) is similar to that used by Ganong (4) for the
single corner crack emanating from a fastener hole. Both meshes have
112 elements with the difference that the embedded crack mésh has
symmetry about the x=0 plane in addition to the z=0 plane. Therefore,
all 112 elements 1ie in the direction of the posftive x-axis and are
distributed over the plate half-thickness. This mesh arrangement 1is
pictured in Figure 30 for a hole diameter to plate thickness ratio,

d/t, of 1.0 and in Figure 31 for d/t=0.5.
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4.3 Solution Results

A 1ist of calculations performed for numerous embedded cracks
emanating from an open fastener hole is shown in Appendix A. Compara-
tive plots of magnification factor versus parametric angle from the
crack minor axis are presented in Figures 32 through 36. The
magnification factor is defined as

ki

MF = (4.3.1)
ovra

or for ease of comparison in some of the plots,

Kt
MF = — (4.3.2)
[0

where KI’ o and a are as defined earlier.

The six effects assumed to alter the stress intensity factor around
the crack periphery for single and double corner cracks emanating from
a fastener hole, in general, also apply to the embedded crack. These
effects are Tisted in Section II. Two important differences must be
noted, however. The ends of the crack major axis approach the front and
back surfaces of the plate equally. The effect here is the same as the
back surface effect for corner cracks and will be referred to simply as
the surface effect. Also, since the crack never intersects the plate
surfaces in the results presented here, the front surface effect does
not apply to the embedded crack configuration.

In all results shown, the effect of the hole stress concentration
is of great importance and accounts for a large share of the variation
in magnification factor along the crack front. Thus, portions of the
crack nearest the hole would be expected to have elevated stress inten-

sities while those removed from the hole would have smaller values.
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The following discussion deals more with deviations from this behavior

caused by other effects than with this effect directly.

Figures 32 and 33 show comparative é1ots for five crack shape
and two crack depth ratios. Since the crack depth to hole radius ratio,
a/r, is constant in each figure, the hole surface effect is deemed not
a factor in comparisons between results on the same figure. Figure 32
shows the dominant character of the crack shape effect. The surface
and hole stress concentration effects expected to occur at the hole in-
tersections are overshadowed by the strong shape effect which tends to
reduce stress intensity at the ends of the crack major axis. Addition-
ally, the magnification factor changes only slightly at this location
with rather large changes in crack shape. This is the result of a
balance as a/c increases between:

1. Decreasing surface effect (KI decreases)

2. Increasing shape effect (KI increases)

3. Increasing through-thickness stress concentration

(KI increases)

Figure 33 shows trends similar to those noted in Figure 32
except that shape effects are now smaller due to higher a/c values.
Here the surface effect is more important as seen by the decrease in
magnification factor at the hole intersection as the crack major axis
moves away from the surfaces (increasing a/c). Again, a balance between
the same effects noted in the previous paragraph maintains identical
magnification factor values at the hole intersection as a/c increases
from 0.67 to 0.75.

Figures 34 and 35 show comparative plots for two a/c and four

a/t ratios. Since the crack shape is constant in each figure, the crack
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shape effect is not a factor when comparisons are between cases on the
same figure. The choice of KI/o as a magnification factor more clearly
shows the effect of crack proximity to the surfaces. As cracks become
larger in both figures, magnification factors at ©=0 are increased no
more than 15%. In Figure 34 for cracks with a/c=0.5, a/t=0.125 and
0.1875, the crack shape effect dominates resulting in a maximum stress
intensity at about 50 degrees of parametric angle from the minor axis.
However, when a/t reaches 0.25, the surface effect takes over, shifting
the point of maximum stress intensity to the hole intersection. The
results shown in Figure 35 are similar with respect to the strong sur-
face effect but due to the larger a/c ratios, the shape effect is of
lesser importance.

Figure 36 shows magnification factor versus parametric angle for
the same crack with hole diameter to plate thickness ratios of 1.0 and
0.5. As with similar single and double corner crack results, the re-
duction in d/t involved only the hole diameter while all other plate
and crack dimensions remained unchanged. The hole stress concentration
effect again dominates the results by Towering magnification factors
everywhere since the crack for the d/t=0.5 case extends intb regions of

Tower stress.

4.4 Comparisons with Estimates and Solutions of Other Authors

Kobayashi (7) considered the problem of an embedded crack emanating
from an open fastener hole in a very thick plate. He used a super-
position method based upon removing residual crack surface tractions
predicted by the stress distribution in an uncracked plate. The stress

intensity factor for a throughacrack is calculated using
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0

a+X a+
K /}r—a_[-c{ oyny dx+fcyyx0)\f dx] (4.4.1)

where oyy(x,O) is the plane strain stress distribution in an uncracked

plate with a hole, o;y(x,O) is the mirror image of oyy(x,o) and a is

the crack length. Oy is approximated by the linear distribution

= 3nX
Ty 3-n2 (4.4.2)

where r is the hole radius and n is the slope of the straight line
distribution which minimizes differences from the true distribution.
Correction is made to the through-crack stress intensity to produce
corresponding values for semi-elliptical embedded cracks.

Figure 37 shows a comparison of magnification factor versus
parametric angle from the hole intersection for an embedded crack with
a/c=0.5 as considered by Kobayashi (7) and from the finite element-
alternating method. Since Kobayashi's estimate is for a very thick
plate, no surface correction is made. Also, the plane strain stress
distribution obviously does not account for through-thickness stress
variations and Kobayashi does not include fhe hole surface effect in
his analysis. He estimates a * 5% accuracy with his procedure due to
compensating errors, The maximum deviation in Figure 37 is only slightly

greater than this.
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Figure 37. Comparison of Present Results with Another Author's
Estimate
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Figure 38 is a parametric plot of magnification factor at the
hole intersection versus 2c/t for a series of results from the finite
element-alternating method solution for a/r=0.25 and Kobayashi's esti-
mate for a/r=0.25. The results agree well at low 2c/t where the effect
of the plate surfaces is small. Of interest is the increasing difference,
due essentially to the surface effect, as 2c¢c/t approaches 1.0 and the
nearly constant magnification factor predicted by the finite element-
alternating method as 2c/t increases from 0.75 to 1.0.

Browning (3) applied the finite element-alternating method to find
magnification factors for embedded circular cracks emanating from
fastener holes in finite-thickness plates. While the current version
of this method is not suited to solution of the circular crack problem
as mentioned in Section II, parametric plots show agreement with
Browning's results. Figure 39 is a plot of magnification factor
versus 2c/t for a/r=0.5. As 2c/t decreases, the current study predicts
a reduction in magnification factor at the hole intersection due to re-
duced surface effects. As the crack approaches a circular shape, how-
ever, the surface effect becomes small and the shape effect dominates,
increasing the magnification factor at this Tocation. At 0=0, the
reduction in magnification factor is seen throughout the range of

2c/t as expected for cracks over which the average stress has decreased.
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SECTION V
CRACKS EMANATING FROM LOADED FASTENER HOLES

5.1 Problem Statement

Previous sections presented stress intensity factor'resu1ts for
three classes of crack location relative to an open hole in a finite-
thickness plate. The plate was loaded in uniaxial tension perpendicular
to the plane of the crack. In the problems to follow, the hole is
filled with a pin or fastener to which all or a portion of the remote

Toad is transferred (Figure 5b).

5.2 Theoretical Approach

The finite element-alternating method as applied to the open
fastener hole problem assumed symmetry about the plane z=0, thus only
the upper portion of the full plate was modeled (Figure 9). |
Necessarily, the upper portion of the hole was treated as a free sur-
face. If it can be shown that these two requirements can be approxi-
mately met for the loaded fastener hole case, the solution method need
not be changed and the finite element stiffness matrices from the open
hole cases can be used at a great savings in computer time. Crack plane
stress distributions for the open hole case (Step a, Figure 7) can
then be replaced by distributions for partial or total transfer of load

toc the filled fastener hole.

5.3 Problem Modeling and Assumptions

To approximately meet the requirements of the preceding section

and also to form a realistic problem the following assumptions are made:
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Fastener Stiffness and Loading Conditions. The fastener is
taken to be rigid and is loaded in double shear (Figure 5b).

A rigid fastener cannot bend and double shear Toading requires
the pin to remain perpendicular to the plate surfaces. Thus,
bearing stresses on the hole boundary are constant through the
plate thickness. Resulting normal stresses on the plane per-
pendicular to the loading direction at the minimum section are
also assumed constant through the thickness. These assumptions
are thought to be realistic since in practice any through-
thickness variations are small for double shear loading.
Fastener rigidity is reflected in fastener to plate stiffness
ratios. For steel fasteners in aluminum plates this ratio is

3 to 1 while for the same fastener in Plexiglas, it is 7 to 1.
For the 7 to 1 ratio, Harris, Ojalvo, and Hooson (33) suggest

a through-thickness correction of 6% to the bearing stress
exerted on the hole by a rigid fastener in double shear. The
resulting through-thickness variation in normal stresses on the
crack plane due to pin bending surely is much smaller.

Hole Boundary Conditions. The fastener is assumed to be smooth
and thus transmits only radial loads to the hole. Shear at the
interface is assumed to have little effect on the crack plane
normal stress field. Support for these assumptions can be
found in the results of Frocht and Hi11 (30) who noted only a
4% decrease in hole stress concentration factors when loaded
steel and aluminum fasteners in aluminum plates were lubricated.
Additionally, shear on the interface does not affect the normal

stress distribution at other locations on the crack plane to
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any great degree. Finite element results of this section for
loaded smooth pins are cohpared to the analytic solution of
Theocaris (28) which included shear between the fastener and
the hole. Differences in the stresses on the

crack plane in the vicinity of the hole predicted by the
present method and the Theocaris solution are small.
Fastener-to-Hole Contact. The fastener load is assumed to be
transferred over the Tower half of the hole, 0<g<w (Figure
5b). Harris, et al., (33) showed that this contact condition
realistically simulates fastener clearances from a net fit (no
clearance or interference) at low loads to a neat fit (0.4%
clearance) at high Toad levels. Greater fastener clearance

or interference shifts the location and magnitude of the maxi-
mum tensile stress yet Frocht and Hill (30) noted for neat fit
fasteners that this maximum always occurred on the hole edge
at the minimum section. |

Stress Intensity Factor. Mode-one stress intensity factors
are assumed to dominate over mode-two effects. Fastener load-
ing produces non-zero shearing stresses along the Tine g=0
(Figure 5b). For the same fastener loading considered here
but for double through-cracks (Figure 2), Cartwright and
Ratcliffe (47) reasoned that the mode-two stress intensity
factor was no more than 1/10 the magnitudé of the mode-one
stress intensity factor for pin loading. Sih (44) studied the
relative jmportance of mode-one and mode-two stress intensity
factors for a through-crack oriented at different angles to

the axis of remote tensile loading. For cracks nearly
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perpendicular to the loading axis, the mode-two influence on

the stress intensity factor is perhaps at the most 2% for the
ratio suggested by Cartwright and Ratcliffe. Therefore, al-

though mode-two effects are present, they are small and will

be neglected in this work.

5. Displacement Symmetry. Displacements in the x direction along
the Tine g=0 are assumed to be zero (Figure 5b). This is
obviously not precisely correct. The asymmetry in Toading and
asymptotic behavior of the normal stresses about the y-axis
near the hole cause a displacement and rotation of this line.
Results of the two-dimensional finite element study of this
chapter show these displacements and rotations small enough

in all load transfer cases to neglect.

5.4 Calculation of Crack Plane Stress Distributions

The assumptions of the previous section are realistic and at the
same time allow the finite element stiffness matrices formed and de-
composed for the open hole cases to be used without change to find
stress intensity factors for loaded hole problems. It is necessary,
however, to describe the crack plane normal stress distribution due to
the loaded fastener. This information will be substituted for the open
hole distribution due to Sternberg and Sadowsky (23) which is shown as
Step a in the finite element-alternating method diagram of Figure 7.

Crack plane normal stress distributions for the loaded fastener
hole cases were generated using established two-dimensional finite
element procedures for linear elasticity. This was necessary for the

following reasons. Current literature contains distributions for
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specialized cases, none of which match the hole boundary conditions,
plate dimensions, and load transfer ratios of the problems considered
here. In the loaded hole problem as plate width changes under condi-
tions of constant hole diameter and remote stresses, the stress distri-
bution on the crack plane varies widely. Thus, it is imperative that
plate hole diameter to width ratios in the present work be carefully
matched when generating crack plane stress distributions for the cases
of load transfer to a fastener.

The finite element mesh for generation of crack plane stresses is
shown in Figure 40 for d/t=1.0 where the hole diameter to plate width
ratio, A, is 0.0833. For d/t=0.5 and A=0.04167, the plate width in
Figure 40 is simply doubled. The 96 elements are of the eight node
isoparametric type. Since precise values for stress concentration
factors at the hole were not an issue, extremely fine divisions in this
region were unnecessary. Rather, sufficient divisions across the mini-
mum section to accurately approximate the gradient was deemed more
important.

As a test of accuracy, the plate was loaded in uniaxial tension
with the hole unloaded. A mesh of 72 elements having six divisions
across the minimum section rather than the eight shown in Figure 40
was formed for a hole diameter to plate width ratio of 0.2. Figure 4]
shows tangential (normal) stress across the minimum section versus
distance from the hole edge. Results shown on Figure 41 compare well
with those from the analytic solution reported by Savin (48) for the
same problem.

For the loaded fastener hole case, equations 1.3.1 and.1.3.2

describe the surface tractions applied to the hole boundary. These
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Figure 41, Tangential Stress Along the Minimum Section in a Plate
Under Uniaxial Loading, Open Hole, 1=0.2
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were integrated using Gaussian quadrature to produce nodal forces.
Loading conditions were scaled to produce the desired load transfer
ratios. Crack plane normal stress distributions for both values of
hole diameter to plate width and three load transfer cases are shown
in Figures 42 and 43. Results were calculated for a plate modulus
of elasticity of 30x10° psi and a Poisson's ratio of 0.25. For in-
clusion in the finite element-alternating method, these distributions
were expressed as polynomials,

5

!

P(x) = A +
°© 1

n
A X (5.4.1)

over a range of x measured from the hole edge which encompassed the
largest crack to be considered. A Teast square fit procedure produced
the necessary coefficients and good accuracy with a fifth-order poly-
nomial. The coefficients and Timits of the polynomial expressions are
listed in Table 3  for all three load transfer cases and the two hole
diameter to plate width ratios.

To illustrate the convergent behavior of this method, the case of
all the remote load transferred to the fastener was solved with meshes
of 32, 72, and 96 elements. The increase from 32 to 72 elements
changed the crack plane normal stress a maximum of 2% except at the far
edge of the plate where the difference was 10%. A further increase to
96 elements altered 72 element results less than 1% everywhere. Exact
division of the element arrangement was not possible here, thus this is
not a strict convergence study.

Figure 44 shows results due to the present work for 72 finite
elements compared to the analytic solution reported by Theocaris (28)

where 2=0.2 and Poisson's ratio is 0.365 in both methods. The results
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Table 3, Polynomial Coefficients Describing Crack Plane
Pressure for Load Transfer to a Fastener
Polynomial Q/P :

d/t d/w Coefficients 1.0 0.5 0.1

0.5 0.04167 Ag 18.17 10.45 4,272
Ay -95.29 -52.44 -18.31
A, 202.10 111.2 39,11
A3 -203.90 ~-112.0 -39.55
Ay 97.64 53.55 18.95
As -17.81 -9.76 -3.46

(0 <% <1.80)

1.0 0.0833 Ao 10.88 6.96 3.826
A; -46.43 -28.17 -13.56
A 93.95 57.25 27.89
As -95,15 -58.07 -28.40
A, 46.70 28.52 13.97
As ~-8.816 -5.38 -2.638

(0 < %<1.72)
] n
P(X) = AO + Z AnX
n=1
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Figure Lh, Tangential Stress Along the Minimum Section in a Plate
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of Theocaris are expected to be somewhat different due to boundary
conditions at the hole which permit shear in addition to radial loading
yet great differences are not noted near the hole where the crack is to
be Tocated.

Cox and Brown (32) reported experimental photoelastic stress con-
centration factors at the minimum section found by Jessop, Snell and
Hollister for neat fit loaded fasteners. For the cases of A=0.04167
and 0.0833, the finite element solution agrees to within 7% of these

experimental results,

5.5 Theoretical Stress Intensity Factor Results for Cracks Emanating

from Loaded Fastener Holes

Figures 45 through 52 present finite element-alternating method
stress intensity factor results for cracks emanating from loaded
fastener holes in finite-thickness plates. Results are shown for numer-
ous crack locations with respect to the fastener hole, many crack
shapes, and two hole diameter to plate thickness ratios. The magnifi-
cation factor and parametric angle are as defined for the open hole
problems. With the exception of Figure 45, each figure shows results
for open holes (Q/P=0.0) and 100% transfer of load to the fastener
(Q/P=1.0) only. This is to facilitate linear superposition to find
stress intensity factors for cases of partial load transfer to the
fastener. This linear superposition technique will be discussed in the
next section.

A1l results for Q/P=1.0 show the expected large increases in
magnification factor, especially near the hole, due to the elevated

stresses. This same steep stress gradient tends to magnify subtle
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differences in stress intensity factor along the crack periphery seen
in the open hole results for the same crack.

Figures 51 and 52 show magnification factors for the same em-
bedded crack and two hole diameter to plate thickness ratios. The open
hole case was discussed in Section IV where the decrease in magnifica-
tion factor with decreasing d/t was noted. When this same situation
occurs in the loaded hole case, the asymptotic behavior of the normal
stress field near the hole causes the average stress in the region of
the crack to increase for the d/t=0.5 situation with respect to the
d/t=1.0 case. Thus magnification factors are now increased with de-
creasing d/t.

Figures 47 and 48 show results for single and double cracks of
the same shape. The comments of Section III regarding magnification
factor differences for single and double cracks emanating from an open
hole are also true for the case of 100% load transfer to a fastener
filled hole. Again, the maximum difference of about 8% occurs in the
vicinity of a parametric angle of 30 degrees with smaller differences

occurring at the hole and front surface intersections.

5.6 Stress Intensity Factors for Partial Load Transfer to the Fastener

Stress intensity factors for partial transfer loads, 0.0<Q/P<1.0,
(Figure 5b) can be found by linear superposition of results for the
open hole (Q/P=0.0) and 100% Toad transfer (Q/P=1.0) cases. As an
example, suppose stress intensity factors are to be found for a single
quarter-elliptical crack emanating from a fastener hole with a/c=0.5,
a/t=0.25, d/t=1.0, and a 10% transfer of load to the fastener (Q/P=0.1).

Figure 53 shows how linear superposition of the open hole and 100%
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load transfer results forms this partial load transfer and Figure 45
shows the magnification factors for the Q/P=0.0 and 1.0 cases. From
Figure 45 a stress intensity factor is calculated for these two cases
using magnification factors at some location along the crack periphery
and the adjusted remote stress suggested in Figure 53. Addition of
these stress intensity factors produces the desired partial Toad trans-
fer stress intensity factor at the same location on the crack front.

Figure 45 includes results for Q/P=0.1 and 0.5 which are not
Tinear superposition results but rather are from direct calculations
using the finite element-alternating method and the appropriate stress
distributjons for these load transfer cases. This provides a check on
the accuracy of partial Toad transfer stress intensity factors found
with Tinear superposition. For Q/P=0.5, linear superposition results
agree to within 2% of results from direct finite element-alternating
method calculations and within 4% for Q/P=0.1. Thus, Figures 46
through 52  present only open hole and 100% load transfer results
since Tinear superposition is capable of producing accurate stress in-
tensity factors for any intermediate partial lToad transfer to the
fastener.

The fact that linear superposition is accurate raises another
interesting point. Solution 2 of the finite element-alternating method
requires that pressure over the crack be expressed as a ten-term poly-
nomial (Equation 2.3.1). For cases of load transfer to the fastener,
this is accomplished by a least-square-fit to the crack pressure pre-
dicted by the two-dimensional finite element results of this section.
As the amount of Toad transferred to the fastener increases, the normal

stress gradient at the hole becomes steeper (Figure 42) and, one would
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think, subject to greater errors when approximated by the polynomial.

On the contrary, the fact that linear superposition agrees closely with
direct calculatijons for partial load transfer to the fastener indicates
that errors in the load transfer results are no worse than for the open
hole case where the mean deviation in the crack pressure averages about
8% of the maximum value.

It should be noted that this superposition applies only to the
hole diameter to plate width ratios used in this work. For d/t=1,
this ratio was 1/12, for d/t=0.5 the ratio was 1/24. Theoretical
results were calculated based ubon crack plane stress distributions for
two specific plate sizes. The 100% load transfer case is very sensitive
to the hole diameter to plate width ratio with crack plane normal
stresses varying greatly with the changing plate dimensions. While it
is possible to use linear superposition to extend results to other plate
widths, it should be recognized that errors can be induced and in no case
should these results be extended to hole diameter to plate width ratios

greater than 0.2,

5.7 Comparison with Results of Other Authors

Stress intensity factor results for cracks emanating from loaded
fastener holes to compare with the present work are rather limited.
Cartwright and Ratcliffe (47) used experimental compliance methods to
produce stress intensity factors for double through-cracks at a loaded
fastener hole (Figure 2), but hole diameter to plate width ratios
are so different as to prevent comparison with the present work.

Shah (12) applied his Green's function approach to estimate stress
intensity factors for the loaded hole case. He presents two-dimensional

stress intensity factors for single (Figure 1) and double (Figure 2)
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through-cracks and three-dimensional results for circular cracks
emanating from loaded fastener holes. For a comparison by the finite
element-alternating method, the two-dimensional through-cracks were
approximated by slender part-elliptical cracks as described in Sections
IT and III and stress 1ntehsity factors for loaded hole cases where
L/R=1.5 were calculated. The finite element-alternating method pre-
dicted the stress intensity factor for the single through-crack to be
17% below Shah's result and for double through-cracks to be 10% low.
The differing plate dimensions and resulting expressions for crack
plane stresses account for the majority of these differences. Figure
50 shows a typical three dimensional Shah estimate and the corres-
ponding finite element-alternating method result. The predictions differ
by about 16% near the hole intersection with the crack front and by
about 25% near the parametric angle from the front surface equal to
about 20 degrees.

Grandt (14) also presents stress intensity factors for the single
through-crack at a loaded fastener hole (Figure 1). A stress dis-
tribution due to Harris, et al., (33) for a plane inclined at g=8°
(Figure 5b) is sufficiently different from the results of the present
work that the stress intensity factor calculated by the finite element-
alternating method is now 10% higher than Grandt's result for L/R=1.5.

Comparisons of the present theory with a large number of static
fracture tests performed by the author are presented in Section VI.
Agreement is more consistent over a wider variety of three-dimensional
crack shapes and locations relative to the fastener hole than the

comparisons shown above.
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SECTION VI

STATIC FRACTURE TESTS

6.1 Introduction

A series of static fracture tests on polymethylmethacrylate
(PMMA) specimens was performed to verify the theoretical solution
method presented in this work. These tests included numerous crack
shapes and locations relative to both open and loaded fastener holes
in plates with two hole diameter to plate thickness ratios (Figures
5 and 6). Comparisons with experiments are made at Tocations on
the crack periphery where the stress intensity factors are maximum as

determined by the theory.

6.2 Modeling of the Fracture Process with PMMA

Many researchers have used polymers such as epoxy, polycarbonates
and PMMA to model the fracture process (21, 46, 49, 50, 51). Trans-
parency of these materials allows viewing of the crack front which 1is
hidden in engineering metals. Additionally, the fatigue properties and
fractured surface characteristics of polymers are similar to those of
metals.

PMMA is ideally suited to the large number of tests performed in
the present experiment due to its commercial availability in bulk under
the trade name Plexiglas. PMMA is also relatively jsotropic and
brittle. Under normal testing conditions, it has a tensile strength
of about 7 x 103 psi, a modulus of elasticity of 4.5 x 10° psi and an

elongation at fracture of about 5%.
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6.3 Specimen Preparation

Specimen blanks were cut from two 4 x 8 foot sheets of commercial
Plexiglas having a nominal thickness of 1/2 inch. Each blank was
oriented in the same direction with respect to the sheet from which it
was cut. Specimens were approximately 7 inches long and 3 inches wide
where the length was limited by the maximum grip spacing of the testing
machine. The width was chosen to approximate that of an infinite plate
for the open hole case while at the same time providing economy in the
number of specimens fashioned from a Plexiglas sheet. Additionally,
all plate and crack dimensions were far greater than the parameter B,
where

B =25 (ch/oys)z (6.2.1)

Jones and Brown (52) suggest that this should be the case for a valid
plane strain fracture toughness test where plasticity effects must be
small and Tocalized.

To grow single corner cracks with a/c<1.0 (Figure 6a), the
specimen was placed in bending using the cracking jig shown in Figure
54, A razor blade was touched to the tension side of the blank pro-
ducing a semi-elliptical surface crack whose center is offset the
length of a hole radius from the specimen centerline. The fastener
hole and remote loading holes were then carefully drilled and reamed.

Preparation of double crack specimens with a/c<1.0 (Figure 6b)
was similar with one important exception. Here, the dual cracks were
grown in the same cracking jig using a specially fashioned razor blade
which simultaneously produced separate surface cracks on opposite

sides of the hole location. As before, the fastener hole was then
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Figure 54. Cracking Jig for Growing Shallow Single
and Double Corner Cracks
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drilled and reamed such that the major axis of each surface crack was
bisected by the hole.

A new device was designed and procedures developed to grow single
and double cracks with a/c>1.0 (Figures 6a and 6b) and embedded
cracks (Figure 6¢c) emanating from fastener holes. First, the fastener
holes and appropriate loading holes were drified and reamed. The speci-
men was then loaded at remote holes offset from the specimen centerline
to produce combined axial loading and bending. The crack was introduced
on the side of the fastener hole where the tensile stresses due to the
axial loading were reduced by the compression due to bending. This
allowed for better control and prevented unstable growth during place-
ment of the crack.

The cracking jig is shown in place on a specimen in Figure 55c.
A small razor blade is afixed to a rod which is a]igned parallel to
the hole centerline. With load on the specimen, the jig is tightened
which presses the blade against the edge of the hole. Centering the
jig at the center of the plate through-the-thickness produces an em-
bedded crack while offset of the jig toward a plate surface produces a
single corner crack at the hole. DoubTe corner cracks were grown in a
similar manner. First one crack was placed as explained above for the
single deep corner crack. The Toad was then reduced and the cracking
Jig rotated to the opposite side of the plate where the second crack
was grown.

In all cases, crack sizes and shapes could be controlled with
razor blade length and loading conditions. Exact duplication of crack
geometries was, however, not possible yet the growth of cracks with

similar geometries was deemed important due to the inherent scatter
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in fracture tests of this type. Thus, comparisons with the present

theory are always made with more than one experimental result.

6.4 Slow Growth in PMMA

Fracture in PMMA frequently includes slow growth preceding rapid
crack extension. The region of slow growth on the fractured surface
is rippled while the region of rapid crack extension is identified by
a mirrored surface. This is clearly seen on all the fractured sur-
faces pictured in Figure 56. In tests performed here, slow growth
began at specific points on the crack front which could be identified
visually. The Tocation of initial slow growth depended upon the crack
shape and orientation with respect to the hole and can be assumed to
coincide with the location of maximum stress intensity. The benefit
here is that experimental and theoretical comparisons can be done at
a specific location on the crack periphery rather than the gross com-
parison necessary if the experiment does not show where the maximum
stress intensity occurs.

A series of load versus crack opening displacement curves was
obtained for surface flawed PMMA specimens with and without fastener
holes. This was done in order to assess the relative importance of
the slow growth and the accuracy of the visual procedure in predicting
its onset. A small Tinear differential transformer was mounted over
the cracks and connected to an x-y plotter. A typical curve is shown
in Figure 57 for double surface cracks emanating from a fastener hole.
In a1l cases, the onset of slow growth could be visually seen to begin
at loads no more than 3% above those predicted by the load-displacement

records. The load at the onset of slow growth, determined visually, *
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Figure 56. Typical Fractured Surfaces in PMMA
Specimens with Cracks Emanating
from Fastener Holes
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Figure 57, Load-Displacement Record, Double Corner Cracks
at an Open Fastener Hole.
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was taken as the critical load for calculation of an experimental mag-
nification factor to be compared with the theoretical predictions. The
location of the initial growth was assumed to be the Tocation of
maximum stress intensity.

A series of experiments was recorded on high-speed 16 mm movie
film. Analysis of this film qualitatively supports the observations
noted above. Additionally, when these films are used in conjunction
with inspection of the fractured surfaces and parametric plots of
stress intensity factors from the present theory, interesting conclu-
sions regarding crack growth can be formed. The fractured surfaces
from some of the movie tests are pictured in Figure 56 and remarks on

the slow growth seen will be made Tater in this chapter.

6.5 Specimen Testing

Prior to testing, specimen widths and thicknesses were recorded.
A1l specimens were loaded to failure in an Instron Testing Machine
at a loading rate of 0.02 inches per minute to avoid strain rate
effects. For each specimen, the location on the crack periphery at
which slow growth began and the corresponding load were noted. Crack
dimensions were measured with a dial gage following failure.

The Toading arrangements for open holes and 100% load transfer to
a fastener are shown in Figures 55a and 55b. A1l loading fixtures
were carefully machined and aligned to eliminate plate bending effects.
The fastener was machined to 0.4% clearance to simulate a neat fit and
Tubrication was applied to approximate the smoothness condition at the

hole-fastener interface.
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The laboratory atmosphere was not controlled specifically during
testing. Minor changes in temperature and humidity which did occur

are deemed not significant.

6.6 Data Reduction

A data reduction method referred to as the baseline method is used
in this work. This method has been applied in a number of earlier
studies (46, 50, 53) and will be used here as follows. For a semi-
elliptical surface crack in a finite thickness plate, the stress

intensity factor can be defined as
Kp = My My ov/1a/Q (6.6.1)

where M; and M, are the front surface and back surface correction
factors respectively, and Q is the usual crack shape parameter. The
front surface correction factor, M;, is a function of a/2c while the
back surface correction factor, M,, is a function of both a/2c and a/t.
As a/t approaches zero, the back surface effect disappears and M,
approaches a value of unity. Smith and Alavi (37) solved for stress
intensity factors around the periphery of a semi-elliptical crack in
the surface of a semi-infinite solid. For small a/2c values, the
deepest position on the crack front is most critical and the above
authors approximated the front surface correction factor at this loca-

tion by
M =1.12 - .0476 (a/2c) - .227 (a/2c)?, (a/2c < 0.42) . (6.6.2)

More recent investigations by Smith and Sorensen (39) and Shah and

Kobayashi (13) predict front surface effects which are about 2% Tower
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over the range of crack shapes considered here. Nevertheless, Equatibn
6.6.2 provides a useful functional relationship for the purposes of
this study. Thus for Tow values of a/2c and small a/t, the front sur-
face correction is known and the back surface correction can be taken
as unity. If the remote failure stress and crack dimensions can be
measured using suitable surface cracked baseline specimens, the
critical value of KI’ ér the fracture toughness, can be determined for
the material. This value will be defined as the apparent fracture
toughness,

S T (6.6.3)

Separate baseline tests were conducted for each of the two PMMA
sheets. Baseline specimens were approximately 1.5 inches wide versus
3 inches for the fastener hole specimens. Al11 other dimensions were
the same as for the fastener hole tests. Smith (46) showed that for
surface flaws, specimen width effects were unimportant for a/2c < 0.3
if w/2c is larger than 3 where w is the specimen width. Several base-
line specimens fell slightly outside this range yet no evidence of
width effects could be seen. |

The results of the two baseline studies are shown in Figures 58
and 59, The values of AKIC were taken as the average of values for
all specimens tested from each plate. The maximum data scatter in each
test was + 7%. Fracture toughness results obtained here agree well
with those of other experiments (55).

The slow growth phenomena in PMMA raises questions about the
validity of the apparent fracture toughness values obtained from the

baseline tests performed here. Brown and Srawley (56) commented to
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great lengths on the original concept of Irwin (57) regarding resist-
ance to crack extension during a fracture toughness test. Irwin pro-
posed that the crack extension force, G, was balanced by increasing
resistance to crack extension, R. A condition of equilibrium between
G and R is maintained to the point of crack instability. Should large
amounts of crack slow growth occur, it is possible that the instability
point could be located incorrectly, resulting in values for fracture
toughness which are in error. Crack opening displacement plots made on
surface flawed baseline specimens in this work showed slow growth to
occur within no more than 3% of the maximum load. Additionally, this
growth was very rapid and nearly impossible to view, being detected
primarily on the fractured surfaces after failure. Therefore, the
author feels slow growth in the PMMA baseline tests performed here to
have Tittle effect on the resulting fracture toughness values presented.
Also, since the Toad at the onset of slow growth and the load at which
specimen separation occurs are so close, the separation load 15 used to
calculate the apparent fracture toughness values.

The apparent fracture toughness found from the baseline tests is
used in the reduction of experimental data from the fastener hole tests

as follows. The magnification factor is defined as

MF = 1C (6.6.4)
ov/1b

where o is the remote stress at the onset of slow growth in an open
hole test and b is the crack minor axis regardless of crack orientation.
For cases of 100% load transfer to the fastener, the stress is express-

ed as a bearing stress,
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op = 3 (6.6.5)
where P is the remote load at the onset of slow growth, d is the hole
diameter, and t is the plate thickness. This is necessary in compar-
isons with the theory due to differing theoretical and experimental
plate widths. The definition of magnification factor shown above does
not separate the various effects on the stress intensity factor men-
tioned in Section II butdescribes a combined effect for each problem.
This is entirely suitable for the purpose of verification of the

present theory since the theoretical magnification factors predicted

in this work also do not distinguish between these effects.

6.7 Comparison of Theory with Experiments

Figures 60 through 75 present comparisons of experimental and
theoretical magnification factors. Each figure shows results for a
particular crack location with respect to open and loaded fastener
holes. Experimental magnification factors as defined in the previous
section are plotted versus the non-dimensional crack depth, a/t, and
the range of crack shapes in each figure is small. Theoretical calcu~
lations were made for crack shapes and depths which are close to the
average experimental crack shape and depth values for the experiments

plotted. The theoretical magnification factor is defined as

K1
MF = (6.7.1)
oV
for open hole cases or
K1
MF = (6.7.2)
ob/?r'b_
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for 100% transfer of load to a fastener where op, and b are as defined
for the experimental magnification factor. Problem dimensions are as
depicted in Figure 6.

Magnification factor comparisons are made at points on the crack
periphery corresponding to the Tocation of onset of slow growth in the
experiments. In most cases this also corresponded to the location of
maximum theoretical magnification factor. One exception is the series
of tests for hole diameter to plate width ratios, d/t, of 0.5. These
specimens exhibited 1ittle or no slow growth so it was impossible to
determine from the experiment at what position along the crack border
to make comparison with the theory. Therefore, comparisons are made at
Tocations on the crack periphery where the theory predicts the magnifi-
cation factor to be maximum. Another exception is the embedded crack
where the slow growth region was very small, but it covered a range of
the crack border encompassing the location of the maximum theoretical
magnification factor.

Experimental data scatter in 11 of the 15 comparative plots is
Tess than = 9%. The remaining four figures (62, 66, 69, and 73)
show larger data scatter. This is generally the result of one data
point being separated from an otherwise close grouping of experimental
results. Scatter in these four figures is reduced to less than = 10%
if the separated data points are not considered. However, if all
points are used, experimental data scatter ranges from + 11% to + 18%
in these four cases.

Theoretical calculations are for a material with a Poisson's ratio
of 0.25 while for PMMA this value is about 0.35. Smith (46) noted a

3% increase in theoretical back surface correction factors with an
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increase in Poisson's ratio from 0.25 to 0.39 in studies of semi-
elliptical surface cracks. Assuming this increase would also apply in
the present work, all theoretical magnification factors should be
raised 3%. However, it was noted in an earlier section that the visual
procedure used to predict loads at the onset of slow growth in PMMA was
about 3% high. If such a correction was .applied to all experimental
points, magnification factors would increase 3%. Since the Poisson's
ratio effect and the correction to the visual procedure both predict
adjustment in the same direction, all experimental and theoretical
points on the figures would simply be higher by about 3%. The off-
setting nature of these éorrections is rather unimportant in the present
comparison and thus is not shown on the figures to follow.

For purposes of explaining the differences between theoretical and
experimental results shown in Figure 60 through 75 a percent differ-

ence will be defined as:

MF . - MF .
% Difference = Theoretical Experimental x 100 (6.7.3)

MFTheoretica]

Figure 60 through 63 show comparisons of experimental and
theoretical magnification factors for single corner cracks adjacent to
both open and loaded fastener holes where the hole diameter to plate
width ratio, d/t, is 1.0. The open hole comparisons are within 8%
while the two cases of 100% load transfer to the fastener show differ-
ences of 13% and 17%.

Double crack comparisons for d/t=1.0 and both open and loaded
holes are shown in Figures 64  through 67. The open hole comparison
in Figure 64 is very close while in Figure 65 the average experi-

mental value is about 6% below the theoretical prediction. Figures
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66 and 67 show 100% load transfer comparisons and have the experi-
mental results about 16% and 5% lower, respectively, than the theory.

Comparisons of theoretical and experimental magnification factors
for embedded cracks are shown in Figures 68 and 69 for d/t=1.0.
The open hole case of Figure 68 has the experimental results about
9% low while the 100% load transfer case comparison in Figure 69 is
very good.

Figures 70 through 75 show comparisons for cases of d/t=0.5.
A11 three crack locations with respect to the hole are represented.
With the exception of Figure 75 which is for 100% load transfer to
a fastener, comparisons shown are for open holes. The embedded crack
cases of Figures 74 and 75 show very good agreement with the
present theory. Single and double crack comparisons in Figures 70
through 73 have the experimental results from 19% to 31% lower than
the theory.

| Although the agreement between theoretical and experimental mag-
nification factors in most cases presented here is good, the differences
which do occur can perhaps be at least qualitatively explained. The
existence of a small yield zone around the periphery of a crack has
been well established. The size of this crack-tip yield zone increases
with increasing local stresses in the neighborhood of the crack. All
cracks in this study are Tocated in a region of high stress concentra-
tion near a hole in a plate. Additionally, comparisons between experi-
ments and theory are generally made at points of intersection of the
crack with a plate surface. Crack-tip plastic zones at these locations
are expected to be larger than at other locations along the crack
periphery.
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Using experimental failure loads, estimates of stresses in the
vicinity of cracks emanating from fastener holes in the PMMA tests
performed here can be made. It is then possible to obtain a quali-
tative judgment of the importance of plastic deformation in the experi-
ment. A plot of percent deviation between theory and experiment versus
the ratio Gmax/oys is shown in Figure 76 for all cases except embedded
cracks which will be discussed later. A strong trend in this plot in-
dicates deviations from the theory of from 12% to 31% for experiments
in which cmax/cys exceeded 0.75. However, when cmax/cys
0.75, agreement was good and the deviation never exceeded 8%. It is

was less than

thus not possible to ignore plasticity effects in the experiments for
high ratios of omax/oyS which probably accounts for much of the devia-
tion from the theory for the d/t=0.5 and 100% load transfer cases.

The closest theoretical to experimental agreement for a particular
crack location with respect to a fastener hole occurred for cases of
embedded cracks regardless of loading conditions or hole diameter to
plate thickness ratios. Although local stresses were also high in
these tests, magnification factors are compared at a location well re-
moved from the hole surface and plate lateral surfaces. Yield zones

are most probably smaller at this Tocation than at surface intersections

where comparisons are made for most other cases.

6.8 Some Observations on Crack Growth in the Present Experiments

The experiments conducted in this work were for the expressed
purpose of verification of the present theory. In the course of the
experimentation, however, interesting slow growth near cracks emanating

from fastener holes in PMMA was noted. For certain cases, this
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phenomena was recorded on movie film and for all tests the fractured
surfaces were carefully inspected. An analysis of the growth behavior
using the present theory is of sufficient interest to be included here.

Figure 56 shows photographs of six specimens following fracture.
High speed 16 mm movies were also taken of these same specimens during
loading. The upper four photographs in the figure are open hole cases
and have the initial crack shape outlined for better definition. The
bottom two pictures are for 100% transfer of load to the fastener.
Here, the initial crack shape is more easily seen and is not outlined.
The fractured surfaces on the six specimens are representative of sur-
faces seen in all experiments.

In the photographs of Figure 56, the regions of slow growth are
the rippled surfaces while rapid crack extension is typified by the
mirrored surfaces. Theocaris (59) explained that the wavy surface of
the slow growth region is caused by a similarly wavy elastic area out-
side a circular highly strained zone around the crack tip. As the
. crack grows through this rippled elastic region, the fractured surface
Tikewise becomes wavy.

Figures 56a and 56b show fractured surfaces for single and
double corner cracks of Tow a/c. Slow growth initiates at the hole
intersection in both cases and growth patterns are similar. Rarely is
any growth seen at the front surface intersection. Figure 77 s a
plot of KI/o versus a/c using the present theoretical results in an
attempt to explain this growth pattern where slow growth is depicted
from left to right on the figure. As slow growth proceeds from regions
near the hole, stress intensity factors increase at both the hole and

surface intersections but more so at the front surface. The crack
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grows in such a fashion as to attempt to equalize stress intensity
factors all along the crack periphery.

Figure 56c shows a photograph of double cracks which are longer
in the hole direction than along the front surface. Here and in similar
single crack cases, slow growth begins at the front surface inter-
section but soon occurs everywhere along the crack periphery. Figure
78 is a parametric plot of theoretical results for this observed
growth pattern where slow growth is depicted from left to right on the
figure. At step 1 on this figure (a/c=3.0, a/t=0.5) the stress inten-
sity factor at the front surface intersection is largest so growth
begins there. Between Steps 1 and 2 (a/c=2.0, a/t=0.5), the Tocation
of maximum stress intensity shifts to the hole intersection and growth
begins at this point also. Steps 3 and 4 (a/c=1.5, a/t=0.75, 0.9) show
increases everywhere as growth continues all along the crack border.

The fractured surface shown in Figure 56d is typical for an
embedded crack emanating from an open hole in PMMA. A small slow
growth area is seen between the initial crack and one plate lateral sur-
face. The remaining fractured surface is mirrored. Figure 79 1is a
parametric plot of theoretical results approximating this case where
slow growth is depicted from right to Teft on the figure. Growth is
assumed to initiate at the Tocation of maximum stress intensity, in this
case at a parametric angle of about 40 degrees from the crack minor
axis. The crack shape changes in such a manner that stress intensities
rapidly increase at this location but decrease at the hole intersection
and rapid fracture follows.

Figures 56e and 56f are photographs of typical fractured sur-

faces for two cases in which 100% of the remote load is transferred to
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the fastener-filled hole. Here, either rapid crack extension or siow
growth followed by rapid crack extension begins at the hole intersec-
tion. Crack arrest occurs when the crack shape approximates that of a
through-crack for which stress intensity factors are Tower. This is
followed by more sTow growth of the new through-crack shape over rather

large distances across the plate half-width.
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SECTION VII

CRACK OPENING DISPLACEMENTS

7.1 Problem Statement

Unlike the method presented in this work, some stress intensity
factor solutions use prior knowledge of crack opening displacements.
The calculation of these displacements, while not a primary objective
of this work since stress intensity factors are calculated independent-
1y, is sometimes useful in extending solutions to cracks of other
geometries. Therefore, a simple relationship for opening displacements
of surface cracks emanating from fastener holes is presented in this

section.

7.2 Solution Method

One of the solutions used in the finite element-alternating method
is that of an embedded elliptical crack in an infinite solid. Shah and
Kobayashi (13) extended the solution by Green and Sneddon (41) for this
problem to allow arbitrary normal loading on the crack where this
Toading is expressible as a ten-term polynomial in x and y. The details
of their work are widely known and will not be presented here. However,
a brief description of the problem and their solution method is neces-
sary to provide background for the present work.

Navier's displacement equations of elasticity are identically

satisfied by a harmonic function, ¢, if ¢ satisfies Laplace's equation,
V2 = 0 , (7.2.1)

provided shear is zero on the plane z = 0. The z displacement com-

ponent of interest here is
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2
T 2—2-2- - 2(1-7) -;C;—j_i . (7.2.2)

On the crack plane, z = 0, this equation reduces to

W= - 2(1-n) %gi (7.2.3)

where n is Poisson's ratio.

Ellipsoidal coordinates A, u, and v are introduced to solve the
boundary value problem, where these coordinates are roots of the

equation in s,

2 2 2
>2( + )2_ + - 1 =20 . (7.2.4)
ats b+s s
and the ellipsoidal and cartesian coordinates are related by
a2(a2-b2)x2 = (a2+r)(a2+yu)(a2+v) (7.2.5)
b2(b%2-a2)y? = (b2+A)(b%+u)(b2+v) , (7.2.6)
asb?z? = apv (7.2.7)

subject to the standard restriction,

—a? <v<-bZ<p<0<r<o

In the ellipsoidal coordinate system, A = 0 represents the region
in the z = 0 plane, interior to the crack, while u = 0 represents the

region outside the crack in this same plane.

Segedin (60) suggested the use of a harmonic potential function

v =7 Wl(s)ds (7.2.8)
A
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where

2 2 2
W(S) =1 - —a—)z(—_*_—s— - E%'_S- - —2—— (7.2.9)

and
Q(s) = s(a2+s)(b2+s) . (7.2.10)

The general stress function, ¢, is formed as a polynomial in V(n),
3 3 c..81+jv(i+j+])

6= ) 1 (i+j<3) (7.2.11)
i=0 j=0 ax ' 3y

or ¢ itself can be expressed as the double series,

3 3

o= 1 I o (i+j<3) . (7.2.12)

i=0 j=0 |
From equation (7.2.3), the calculation of crack opening displacements
involves only the first derivative of ¢ and each term in the series
(7.2.12) can be differentiated separately. In the interest of brevity,

30

only 522- will be presented in detail to illustrate the procedure.

From equation (7.2.8),

és)ds (7.2.13)
AT _

where Coo differs from cooby an integral constant. Using the Leibnitz

9Z 00

1l

()
@l

Nl
>— 8
=

rule for differentiating integrals,

8<I>°° 0 d
== = - 220 f S (7.2.14)
x sYQ(s)
The integral in equation (7.2.14) can be expressed in terms of elliptic
90

integrals and Jacobian elliptic functions and the limiting form of 5;3
can be found by setting u = 0 and approaching the crack tip from
outside. While this seems straightforward, the work necessary to

obtain the ten first derivatives needed for crack opening displacements
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is excessive and tedious. Nevertheless, several derivatives were cal-
culated in this fashion resulting in answers identical to those obtained
by the easier approach which follows.

If a Timiting process in z is applied directly to the integral in
equation (7.2.14), the amount of tedious calculation and bookkeeping is

considerably reduced. Approaching the crack plane from above,

o
R . f(z)
=7 - 2C00 Tim 177 | (7.2.15)
z~0
where
f(z) = [ —9s : (7.2.16)
A svYQ(s)

Since equation (7.2.15) is an indeterminate form, applying L'Hospitals

rule yields

od !
2 = i f (Z)
= 2C l1m 2 - (7.2.17)

Again, using the Leibnitz rule,

£'(z) = = — g—i (7.2.18)
AWQN)

Calculating %%—from (7.2.7), substituting Q(») from (7.2.10), and

performing the necessary algebra leads to

80 4C, Yuv
o - =2 (7.2.19)
where wuv = a?b? - b2x2 - a2y2 , The calculation of the remaining

nine derivatives proceeds in a similar fashion. The final crack open-

ing displacement equation is shown in Appendix B.
To check the Timiting process used in obtaining the ten derivatives

along with the algebra involved, crack opening displacements were
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calculated for a circular crack under constant and linearly varying
normal pressure. The circular crack was approximated by a near-circular
elliptical crack with a/b = 0.99. Since this analysis is being done
algebraically, there is no concern about the ratio a/b causing
numerical difficulties such as those mentioned in Section II. Shah and
Kobayashi (22) provide the necessary stress function coefficients for
the two Toading cases. Smith (45) solved this same problem for Toading
expressed in the form of a Fourier series. Crack opening displacements
calculated by the present method compare with Smith's values to within
0.50% for both loading cases. This small difference is probably due to
the approximation of a circular crack with a near-circular elliptical

crack.

7.3 Solution Results

A necessary prerequisite to the calculation of crack opening dis-
placements using the method of this section is a knowledge of the
stress function coefficients, Cij’ for a given problem geometry. For
each iteration of the finite element-alternating method, stress in-
tensity factors and stress function coefficients are calculated based
upon the freeing of normal stress on the crack plane.

A final set of stress function coefficients for a particular case
is formed by summing like coefficients for each iteration. Appendix A
lists the final stress function coefficients for all problems solved.
Crack opening displacements are found by using the equation in
Appendix B together with a set of stress function coefficients from

Appendix A. Figure 80 shows a typical result in the form of a three-

dimensional plot of crack opening displacements for the case of a
single corner crack emanating from an open hole in an infinite plate.
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SECTION VIII

CONCLUSION

8.1 Discussion

A new method developed by Browning (3), Ganong (4) and the author
was used to predict stress intensity factors for three-dimensional
Tinear fracture mechanics problems not previously solved. This tech-
nique, called the finite element-alternating method, produced stress
intensity factors around the periphery of surface cracks emanating
from fastener holes in finite-thickness plates. Problems solved included
three crack locations with respect to the hole and numerous crack shapes.
Two hole diameter to plate thickness ratios were considered and results
were presented for both open and fastener-filled holes to which a portion
of the remote load is transferred.

The solution method presented is accurate, economical and capable
of modeling complex three-dimensional geometries. Comparisons of present
results with estimates of other authors showed similar trends but better
capability to account for all effects in the problems consfdered. Agree-
ment with independent fatigue experiments by Snow (20) is good for the
several crack shapes and depths considered. Comparisons of the present
theory with stress freezing photoelastic experiments by McGowan and
Smith (19) show very good agreement with two of the three cases for
which comparisons were made at both the hole and surface intersections.
In one test out of the three with which comparisons were made, agreement
at both Tocations was poor.

Static fracture tests in PMMA were conducted to provide additional
verification of the theoretical calculations performed. New experimental

procedures allowed for testing of specimens having three crack
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orientations with respect to the hole and many different crack shapes.
Two hole diameter to plate thickness ratios were duplicated and speci-
mens with Toad transfer to a fastener were tested. Agreement between

these experiments and the present theory at specific locations on the

crack periphery was good in most cases. This provided verification of
the theory for crack locations with respect to the hole and plate

loading conditions not considered in previous experiments.

8.2 Recommendations

The finite element-alternating method presented in this work uses

as one solution that of stresses in an infinite body due to pressure on
an embedded elliptical crack where this pressure is described by a ten-
term polynomial. In the present solution, a least-square fit to the
actual pressure produces the required polynomial coefficients. This
polynomial approximation accurately predicts the total force applied to
the crackrénd correctly reflects trends in the stress gradients yet
subtleties in the pressure are not precisely reproduced. A more accurate
representation of this portion of the finite element-alternating method,

such as a Green's function solution, would be an improvement.
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APPENDIX A

FINITE ELEMENT-ALTERNATING METHOD CALCULATIONS MADE
AND CORRESPONDING STRESS FUNCTION COEFFICIENTS

Case Crack Configuration d/t Q/P a/t a/c
1 Single corner 1.0 0.0 0.5 2.0
2 0.5 1.5
3 0.5 0.75
4 0.5 0.5
5 0.5 3.0
6 0.376 0.446
7 0.9 3.0
8 0.9 2.0
9 0.9 1.5

10 - 0.75 2.0
11 0.75 1.5
12 0.25 0.25
13 0.125 0.25
14 0.2 2.0
15 0.45 0.9
16 0.55 1.1
17 0.3 1.4
18 0.4 1.4
19 0.5 1.4
20 0.6 1.4
21 0.7 1.4
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Case Crack Configuration d/t Q/P a/t a/c
22 Single corner 1.0 0.0 0.8 1.4
23 0.85 2.5
24 0.25 0.5
25 0.1 0.25 0.5
26 0.5 0.25 0.5
27 1.0 0.25 0.5
28 1.0 0.85 2.5
29 1.0 0.2 0.5
30 1.0 0.2 2.0
31 1.0 - 0.3 0.5
32 0.5 0.0 0.75 3.0
33 0.5 0.0 0.25 0.5
34 0.5 1.0 0.25 0.5
35 Double corner 1.0 0.0 0.85 2.5
36 0.125 0.25
37 0.25 0.5
38 0.5 .75
39 0.9 2.0
40 0.75 2.0
41 0.5 2.0
42 0.5 1.5
43 0.75 1.5
44 0.9 1.5
45 0.15 0.5
46 0.2 0.5
47 0.1 0.23 0.6
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Case Crack Configuration d/t Q/P a/t ajc
48 Double corner 1.0 1.0 0.25 0.6
49 1.0 0.85 . 2.5
50 1.0 0.125 0.25
51 1.0 0.25 0.5
52 0.5 0.0 0.21 0.75
53 0.5 0.0 0.75 3.4
54 0.5 1.0 0.25 0.5
55 Embedded 1.0 0.0 0.125 0.5
56 0.125 0.25
57 0.125  0.33
58 0.1875 0.5
59 0.25 0.67
60 0.25 0.75
61 0.375 0.75
62 0.25 0.5
63 1.0 0.125 0.5
64 0.5 0.0 0.125 0.5
65 0.5 1.0 0.125 0.5
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APPENDIX B
CRACK OPENING DISPLACEMENT EQUATION

W= - 2(1-n)g - C004§E 7 o %(i:v_)“
a

C [8@\) \)) ] [ y(uv) 3/2 16y%(uv) 2 ]
02 4
ab a’b®

L
Co MG aw)® o ex(w)®?

10 y, 2 11 12
a'b ath a®p®

Jﬂ_ o MJ - Cy, [8)/(11\))3/2_ 16x2y(uv)l/2J

- Cap
a®p" a®p? a®p® asbu

~ L
s | o2ax(uw) /7 16x2§uv)2]

30 L
— a8b a®p?

where: v = a2b2 - b2x2 - a2y?
a = crack semi-major axis
b = crack semi-minor axis
X = crack coordinate in major axis direction, origin at crack
center
y = crack coordinate in minor axis direction, origin at crack

center

n = Poission's ratio (Stress function coefficients in

Appendix A generated with n = 0.25)
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APPENDIX C
BENCHMARK PROBLEM

As three-dimensional fracture mechanics becomes more sophisticated
and capable of producing usable solutions, the need arises for a
standard problem configuration, or a so-called “"benchmark problem,"
which can be used by all investigators in the field. Such a problem
statement is necessary so that solutions obtained by the many varied
methods can be compared, one against another, without the uncertainties
of interpolation or extrapolation of results.

The Workshop on Three-Dimensional Fracture Analysis held in
Columbus, Ohio, April 26-28, 1976, and attended by most of the leading
three-dimensional fracture mechanics investigators in the United States,
defined several of these "benchmark problems." For the case of a flaw
adjacent to a fastener hole in an infinite plate, the following config-
uration was agreed upon:

Single corner flaw

a/c = 2.0
a/t = 0.2
d/t =1.0

The method described earlier in this paper was applied to the above
stated "benchmark problem" and results are shown in the figures that
follow.

For the open fastener hole case, with remote uniaxial plate Toad-
ing, Figure C-1 shows plotted values of magnification factor versus
parametric angle from the front surface of the plate while Table C-1]

lists these same values in tabular form for each ten degrees of
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parametric angle. Similarly, Figure C-2 and Table C-1 show results for
the case of all the remote load transferred to the fastener.

Several interesting observations can be made regarding the
"benchmark problem” solutions presented in this section. The open
fastener hole case displays a higher stress intensity factor at the
front surface and intermediate locations than at the hole. This same
trend was also noted earlier in this work with other flaws having
high a/c and low a/t ratios. Figure C-3 is a parametric plot of KI/o
versus a/t for a/c = 2.0 and reversal in the location of maximum stress
intensity is clearly seen to occur at an a/t ratio very close to that
of the "benchmark problem." Of perhaps more significance is a similar
trend seen in the problem of all the remote load transferred to the
fastener. Since the crack dimension is so small along the front sur-
face and the crack shape is slim, the entire crack lies in an area of
elevated stress. Thus, the crack does not extend out into an area
where the steep stress gradient would cause a dramatic reduction in the
stress intensity factor in the vicinity of the front surface. With
respect to the "benchmark problem" solutions presented in this section,
should a/c be slightly decreased (holding a/t constant) or a/t slightly
increased (holding a/c constant), it seems apparent that the location

of maximum stress intensity would shift to the hole intersection.
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TABLE C-1

BENCHMARK PROBLEM RESULTS

Open Fastener Hole

K1
ovra
1.2684

1.3223
1.3450
1.3468
1.3353
1.3133
1.2799
1.2357
1.1897
1.1574
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100% Load Transfer
to Fastener Hole

K1
O'b/T_Ta'
0.4073
0.4211
0.4244

.4210
.4138
.4043
.3923
.3780
.3638
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Figure C-1  Magnification Factor Versus Angle from Front Surface
Single Corner Crack, Benchmark Problem
a/c=2.0, a/t=0.2, d/t=1.0, Q/P=0.0
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