St T T g el R e A e e

e

= -

Sy

(sl

I &

=
&

s
8 3

%
A
- -

- -
:
)
- a
I
}
- e

ADAO39528

3400 wampm

LT T T T S S SO A

e s e e by it e

o %

q N '| K .
| h9?‘\.‘:’)‘.\\\'\‘;)\ W 7.'“

-
v

DYNELL Electronics Corporation
Melville, New York 11746

e Hes 1‘1’““\ TR SR ¥

pn bt b oot —————— —

.3
-~
g«a/ o

It 0\ 2
}\\m\ "

e Y aihan. ..;.u‘. ,n, I VI

1n l.ll UIL\




THIS DOCUMENT

IS

QUALITY AVAILABLE. T
FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH

REPRODUCE LEG

DO
LY.

BEST

. COPY

NOT



.....

WAVE MOTION IN A THICK-WALLED
FLUID-FILLED HOSE p

The research documented in this Final Report was »v

aponsored under Contract N00014-75-C-0633 by: s

kS

Office of Naval Research B

Department of the Navy i

Washington, D.C, 22217

Contract Authority NR 386-905/1-8-75 (220) i

_—.—p—- B

Reproduction in whole or in part is permitted for 1

any purpose of the United States Government,

" '.z
'gjs, E Prepared by: Dynell Electronics Corporation
N Melville, New York 11746 i
]

A

¥l

i

¥

| |
DY -764R April 1977 ]

2




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Secarity cJassibication of iitle, bedy ol absthui Land tndexing annotatien -1 be antered when the averall regort In clussifled)

QHGINATING ACTIVITY (Corparate author) 3 AREFPORT SECURITY CLASSIFICATION
Dynell Electronica Corporation b~ UNCLASSIFIED

75 Maxess Road 2. CIouP

Melville, New York Not Applicable

B l
REi
|

2FRAOAT TiTLE

Wave Motion in a Thick-Walled Fluid-Filled Hoses

5% 4 ENEET
.

5:: 4. Rty e of reporl an nefunive dates e o
i R IYE HOTEE (TP ot T Y m) Hlep@t Y5 JAN 01 - 77 APR 30
8 W) (First name, middis [oiiiy. 1nal name) 1 T 75— 349 A w 77
A Oscar A,/Lindemann / an ( ~ [
|
i ::t M TOTAL NO. OF PFAGES th. NO OF REFS
b b 11 none
E' :, . 9. GRIGIN 'S REPORT T
5 ¥ ( /.-y P DY-764R| -
o 5
E: : vh, &Z.H'I.zu:l'g‘.ﬂonr NO(8) (Any other numbera that may be asaigned
E ! none
{ o™ TO DISTRIRUTION STATEMENT
j:.:\;.if" - Distribution of this document is unlimited,
I",‘. 4w
%‘”' :‘j 1Y SUPBLEMENTARY NOTEA 12 BPONSONING MILITARY ACTIVilyY
i i Office of Naval Research
Department of the Navy
i L Arlington, Virginla 22217
“;. ] Anorlut.\'
- The subject of this report is the analytical solution for wave motions,
L o in the fundamental mode, of an elastic tube fllled with fluid when the wall
§ ‘ thickness is not constrained to be small,
r %‘ % The results obtained show the existence of two waves which travel at
& different speeds. Each of the two waves causes both loagitudinal and radial
' : } displacements of both the tube wall and the fluid, but in different proportions.
4
f ! The slower wave, in the limiting case of the th.n-walled tube, is identi~
" g ; fled as the ulge wave. It is characterized by relatively large motions of the
by fluid, which contains most of the kinetic energy. Thicker walls produce a higher
';J‘ k bulge-wave speed, but the inclusion of longitudinal stiffening elements has very
"'j" t'i , little effect. _
: ' ., v
E : The faster wave ils what has been called the "wall wave.*” This is mostly
a a longitudinal vibration of the hose material, with a relatively small participation
# by the fluid, and is yreatly influenced by longitudinal reinforcement of the tube
wall,
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. j WAVE MOTION IN A THICK-WALLED FLUID-FILLED HOSE

]

E £ INTRODUC TION

EE f‘ Random pressures on the outside surface of a fluid-filled hose,

% originating from a turbulent boundary layer or other sources, excite waves which

‘ ],. i‘\ travel along the fluid-filled hose as in a wave guide. Consequently, inside the

1 ? hose there exist nolse pressures which are correlated over large distances,

! { An lmportant characteristic of this phenomenon is the speed of such waves,

:., ¢ . which is in general well below the acoustic tpeed because of the relatively soft

: 3 boundary which the hose presents to the inner column of fluid.

) Previous mathematical models of such flexible hoses have reduced

& bl them to membranes with circumferential stresses only. Longitudinal motions

and stresses in the wall were lgnored. This model proved very adequate for

: ,, hoses with thin walls, .
" . Recent interest in hoses of smaller size, where hose material occuples -
r‘ ' _ a considerable part of the total cross section, requires that the analysis he ,\
extended to include the wave motion in the wall as well as the fluid, k.
S Thus the subject of this report is the analytical solution for wave /
;,‘:- . motions, in the fundamental mode, of an elastic tube filled with fluid when the
::.-4 i ' wall thickness ls not constrained to be small (Fig, 1). A
g

_
i A
[ E L2 )

FIG. 1 MODEL OF THICK-WALLED HOSE
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The present model then includes as limiting cases the previous
thin-walled tube, where the rativ a, /az of the radii i{s almost one, and the solid
rod, where this ratio is zerp, It also serves as a baais for studies of more
complicated models where the inner fluid is replaced by a viscous or semisolid
material, '

In accordance with the results of previous Investigations the outer
fluid, the ocean in which the tube is submerged, is ignored, as wave propagation
in the hose is not appreciably Influenced by its presence.

The material of the tube is assumed to be homogeneous and isotropic
but in a subsequent modification longitudinal reinforcing elaments of an arbi-
trary elastic modulus have heen included. The compressibility of both the wall
material and the fluid is neglected only in the simplified final formulas which
are valld for waves of lengths much greater than the tube's transverse
dimensions; in these cases the effects of compressibility becorne negligible,

The outstanding result is the existence of two waves which travel
at different speeds. Each of the two waves cauases both longitudinal and radial
displacements of both the tube wall and the fluid, but in different proportions,

The slower wave, in the limiting case of the thin-walled tube, is
identifled as the bulge wave, It is characterized by relatively large motions

of the fluld, which containe most of the kinetic energy. Thicker walls produce

a higher bulge-wave speed, but the inclusion of longitudinal stiffening elements

has very little effect.
The faster wave i8 what has been called the "wall wave,' This is

moautly a longitudinal vibration of the hose material, with a relatively small

participation by the fluid, and ie greatly influenced by longitudinal reinforcement

of the tube wall,
The system functions as a wave=vector filter, that is, there is an

acceptance function defined as the ratio of inner-fluld pressure to outer forcing
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£ pressure as a function of wave number, with frequency as a parameter. The

L y8

i‘ %? acceptance function will show two peaks, or windows, at the wave numbers

-{'e . corresponding to the fast and slow waves, There is alio'a zero in the acceptance

E i% function, at the wave number corresponding to the speed of longitudinal plate
) waves In the hose material, and independent of the we!! thicknmes and the inner

iE fluid's density. 5

4 5{ METHOD OF SOL.UTION 4
, i R

i‘,‘e f . The very extended mathematical development of the problem will be

included in thie report. The method followed was completely orthodox.

bl The wave equation in the tube wall is that correaponding to an

isotroplic elastic material, Both longitudinal and transverse components (having

resvectively a scalar and a vector potential) are present, and each has two

tarms described by modified Bessel functionas, Thus four arbitrary conatants A
are necessary for the general solution. In the fluid there is only one component .'
and a fifth arbltrary conatant must be introduced, .

The determination of the flve constants follows {rom the setting up

of five equations describing boundary conditions, These boundary conditions

are:
0 The radial displacements of the fluld and tube wall must
coincide at the interface,
il 0 The tangential stress of the tube material must be zero at

the inner surface,

0 The tangential stress must also be zern at the outer surface,
i in the absence of reinforcing material; when there s reinforcing

material, this stress must be proportional to the longitudinal

——

strain,

o The normal (radial) stress in the tube material must balance

the pressure of the inner {luid at the interface,

n ) 3 y
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© Thenormal (radial) stress in the tube material muat balance

the outer forcing pressure at the outer surface. 1N

All these equations are transcendental because of the presence of
the Bessel functions, When, however, the assumption is made that the wave-
lengths involved are long compared with the tube's outer radius, the arguments

of the Besnel functions become small, and they can be approximated by their | .

dominant terms, Thuas the flve constants became relatively simple functions

5 [ of wavenumber, When there is no forcing pressure, the dystem of equations

L\'t_? ; [ becomes homogeneous, and there can be solutions only for the values of wave ’
F '- speed that negute the system determinant, This results in a second-degree
“ equation whose roots are the speeda of the slow and fast waves, \
IR
Y RESU LTS
“ ¥

In calculating and plotting the results, the wave speed (s shown to

depend on the tube's wall thickness, In addition, and as parameters, first the
ratio of wall to fluid densities and then the influence of wall reinforcement are 0
considered, i

In the tirst cane, when there is no wall reinforcement but the ratio

of wall to fluid densities is allowed to vary, the wave speed [or both waves is

e glven as the aolution of the following quadratic:

n?“[3+7-(7-1)az] n+n(l-pz)=0. (1)

!

I where the symbols have the followlng meaning: £

; m is 4 number proportional to the square of the wave apeed, “

' n = pued/p, where p is the density of the hose material, p ita sahear modulus ;]

; and ¢ tne save speed, The definition results in n being | for plane shear waves ’:

. b

i the material of the hose when it has no bounds, n = 3 for longitudinal waves

TR

g ﬁ in a free bar of the material, and » = 4 for those in a plate of the material,

PrET
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| L | A
' B Y= #/p , the ratio of the densities of the hose material and the
% i fluld, - Y
I
% i B, the ratin of the inner to the outer radius of the hose.
: as A plot of n as a function of A, with ¥ as parameter, is shown in ’
L Fig, 2.
G 5 The curves where 7€ 3 correspond to the slow wave, The slopes g
, 3'\ of the curves at =0 give as the limiting speed for a thin-walled tube f
\ ;) B « =W where h is wall thickness and a the outer radius. This
: i»: shows that, in the present case of incompressihle material, the ""circum-
' ferential modulus' E used previously in calculating the bulge-wave speed is
éi to be defined as the ordinary Young's modulus for a bar, E = 3u for incomprea-
B sible material,
4 l The fast wave has 7 ® 3, the lower value being that for a solid rod,
' and the higher values showing the remarkable influence of the fluid fill, For a -:
: j thin-walled tube, 7= 4, showing that the tube vibrates longitudinally over a fluld )
column that acts as a atiff core,
) }! The second case studied |8 where there ies an outer sheath of thin, _,:‘
' ' flexible but longitudinally stiff reinforcing material, The densities of the wall ‘
% ii and the fluld are supposed equal throughout, The wave speeds are now given by:
; 3
; ne 2014wy 4+ (2v+1)(1-8%) =0, (2) '
1 '
l where,
va=]+ h:b Zaé 2
|
M in the longitudinial elastic mondulus of the sheath, and b ita thickness (or the
' u equivalent thicknesn of the reinforcing fibers), Where there is no reinforcement,
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v = 1, which ls the case previously studied, when ihe reinforcement becomes

infinitely stiff, v =* o,
The slow wave is very insensitive to the value of v, #o there in

only a small difference between the values of #» when v=1 (as in Fig, 2) and

when ¥ = %; then 7 is given by
7 =y -,

For a thin-walled tube this gives

l,e., the reinforcement tends to increase the wave speed to the value calculated
with E = 4y, the plate modulus,

The fast wave is made faater by the reinforcement, the asymptotic
value of » ap v —® being2v+1 + ﬁ"‘. This means that the shape of the curve

of » versus 8 hardly changes shape as v increases. Fig., 3 shows the curves

for v =1 and v =100,

TRANSFER FUNCTION
The free-going waves given by the values of 7 in figs, 2 and 3

correspond to the condition where there is pressure in the fluid with no nutaide

forcing pressure. They are the poles of the tranafer function p/py defined as A

the ratio of inside pressure over outside pressure, ]
Thete is also a zero in the transfer function, at the value of 7

where an outside pressure produces no corresponding inner pressure. This

value of 7, called n,, is independent of 8 and ¥ , and is obtained in the

solution of the system of five equatinne as

"o ™ 2(1 +v),
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The transfer function is given in general by

o n(n-ng)
po (”" ﬂl)("“"

2)

where 7, and n, are the values of % for slow and fast waves respectively.

Then for the first case studied, where v = 1 and v is arbitrary,

we use Eq. (1) for the denominator and we have

p n( n- 4)
Po 22 [3+v-(v-182)n+3v(1-8

2) ’

in the second case studied, where ¥ =1 and v 1is arbitrary, we use Eq. (2):

(1 ~-2-2vV )
Py n2~2(1+v)»+(2v+1)(1- pz)

Fig. 4 graphs this last case for ¥ = 1 (no reinforcement) and v = 100 (heavy
reinforcement), against the nondimensional wavenumber l/ﬁ= (kz/w)m.
The figure shows that overa reglon of wavenumbers at and below 1/ﬁ= 1
the inner pressure ¢ is larger than the vuter pressure » ; this is the
"window'' of the system, the acceptance region of the wavenumber filter,
where noise pickup is enhanced.

The equations in this report make it possible to locate and define
this "window' for a wide range of hose configu.ations, and are expected to be

therefore useful in predicting noise levels.
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CONCLUSIONS [

, This lnvéatigation has clarified completely the role the mechanical
properties of the wall play in the determination of wave speeds in fluld-filled
hoses. | Previous models merely defined the wall as an elastic boundary for
the {luid, and assigned to it suitable propezrties,

'rl.:ue results for ¥ not equal to unity are of theoretical value «l:mly at
present, since the densities of the hose and the fluid are normally close to that
of water for present materials, but ald lh understanding wave progression in
the aystem.,

The ability to predict wave motion in thick-walled tubes is the main
outcome of this study. It will serve as a sound basis for more elaborate models
which are now being studied (viscous fluid fill, solld fill, etc.). Finally, the
effect of restricting the longitudinal motions of the wall by stiffening members,
necessary in any practical model, has been adequately taken care of and

assessed.
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