
m—m ■-

00
o
o
Oi
CO
o
<

1/

The Utilization of Procedure Models in
Digital Image Synthesis

MARTIN EDWARD NEWELL

UNIVERSITY OF UTAH

O <?\

CL.
o o

\

C^uja^0 FTJMMER 1975
^^ UTEC-CSc-76-218

COMPUTER SCIENCE, UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

lüiiüiiiiiiiifirwiiMii fim ■-^-

mmmmmm—mm

i

Ki

■

The /iews and conclusions contained in
this document are those of the author(s)
and should not be interpreted as
necessarily representing the official
policies, either expressed or implied,
of the Advanced Research Projects Agency
of the U. S. Government.

This dc-'tnent has been approved for public
release i.id !K1?C; its distribution is unlimited.

mm*** MttiMiMHMML

pww— ^n^mnminimnmwmfWK^mti-.iiiM^wm^n^^t^fggi^m

TABLE OF CONTENTS

": a

1 1

i •-:
> -

..^ 'H

-. ♦

ACKNOW.EDGEMENTS

LIST OF ILLUSTRATIONS

ABSTRACT

CHAPTER I INTRODUCTION

Structure of the Paper

CHAPTER II EXISTING VISIBLE SURFACE ALGORITHMS

Scene Preparation

Visible Surface Determination

Visible Surface Rendering

CHAPTER III LIMITATIONS OF CURRENT TECHNIQUES

Storage Requirements

Processing Requirements

Restrictions on the Scene

CHAPTER IV PROCEDURE MODELS

Passive Data Bases

Definition of a Procedure Model

Properties of Procedure Models

Relation to Other Work

CHAPTER V RELEVANCE TO IMAGE SYNTHESIS

Object Coherence

Generality of Representation

Page

iv

vii

ix

1

2

4

5

9

13

18

18

19

20

25

25

27

28

32

34

35

36

, . j^ft ff, ^^^ a^ ■^U^iL^^-

»r

Generality of Parameterization

View Dependence

CHAPTER VI THE MODEL INTERFACE

Requirements

Structure

CHAPTER VII ANALYSIS OF RELATIONSHIPS BETWEEN OBJECTS

Two Dimensional Overlap

Simple Three Dimensional Separator Test

Comprehensive Three Dimensional Separator Test

CHAPTER VIII A PRIORITY ALGORITHM USING PROCEDURE MODELS

Outline

Establishment of Priority

Clipping

Subdivision

Frame Buffer

Implementation Notes

CHAPTER IX EXAMPLES OF USE OF THE PRIORITY ALGORITHM

CHAPTER X A CATEGORIZATION OF PROCEDURE MODELS

CHAPTER XI CONCLUSIONS

APPENDIX A ENCLOSING CONVEX POLYGON

APPENDIX B ENCLOSING CONVEX POLYHEDRON

APPENDIX C TWO DIMENSIONAL SEPARATOR THEOREM

LIST OF REFERENCES

ACKNOWLEDGEMENTS

FORM DD 1473

37

38

40

40

43

46

47

49

51

54

54

56

61

67

71

73

76

88

91

93

94

95

97

100

101

vi

ito'i mum iilÜlÜMiilähätiiMIMiH^itMliI iiiimlUiiliiliiiiilHiiiMimii iilii ^ ^^m^.*^^^^^. ..— „ „^

"' ' ' " "I "■•■ ■

LIST OF ILLUSTRATIONS

Figure

1 Distortion of cube by perspective transformation

2 Cross section through approximated curved surface

3 Gouraud interpolation of intensities

4 Constant intensity on approximated curved surface

5 Procedure model structure

6 Enclosing convex polygons and boxes

7 Non-overlapping polygons but overlapping boxes

8 Separating plane not a polyhedron face

9 Object yielding cycle in priority graph

10 Zfar sorted list not correct priority list

11 Element P and the set Q it overlaps

12 The viewing cone

13 Polyhedron structure

14 Intersection of tetrahedron with viewbox

15 Polyhedron having no edge inside viewbox

16 Resolution of intersecting polyhedra

17 Removal of cycle in priority graph

18 Automobile body

19 Wheel

20 Half body with wheel

21 Whole body with wheels

Page

7

15

17

17

45

48

48

50

57

59

59

62

65

65

66

70

70

77

77

77

77

—■ -- • -"—'"-•—■ -■ -■- — - .-.. ~ . . .-^

mmm^mmmm •mm* -.L WMJipiHWilfii

:

22 Wheels turned

23 Row of buildings

24 Mesh for Bezier patch

25 Mesh with patch

26 Meshes defining jug

27 Parametric lines on jug

28 Various objects defined using Bezier patches

29 Tabla setting

30 361 Pawns

31 Current polygon and test point Pi

32 Contact between two polygons

80

80

82

82

82

82

84

86

87

93

96

i

Vlll

k ■—-^- ■ w

WPIP— mmif^mm^mnmimmßmmmmm

'
ABSTRACT

Many algorithms have been developed for synthesizing shaded

images of three dimensional objects modeled by computer. In spite of

widely differing approaches the current state of the art algorithms

are surprisingly similar with respect to the richness of the scenes

they can process.

One attribute these algorithms nave in common is the use of a

conventional passive data base to represent the objects being modeled.

This paper postulates and explores the use of an alternative modeling

technique which uses procedures to represent the objects being

modeled. The properties and structure of such "procedure models" are

investigated and an algorithm based on them is presented.

-"'"■•^'; ---•-■■' ■*-;..--.■.——i^—^-.— —L-a'-^^-m—^""—--- •- - — —'«'

wmmmmmm^mmmm^ pppmpmMilpqnmmMii luiiuw^am^^w

CHAPTER I

INTRODUCTION

For over a decade considerable effort has been expended in

devaloping techniques for synthesizing visual images of scenes modeled

by computer. This effort has advanced the state of the art from the

generation of simple line drawings of two dimensional objects to the

production of systems capable of synthesizing full color, real time,

perspective, shaded, visible surface images of three dimensional

objects with a startling degree of realism.

This paper is concerned with the synthesis of shaded pictures of

three dimensional objects. Several algorithms have been developed for

this task, the techniques used being many and varied. However,

certain similarities can be drawn between the various algorithms. The

scene to be rendered is modeled in the computer. The nodel is then

processed by the algorithm, sometimes into another intermediate model,

and is ultimately transformed into a picture. The types of models

used vary, but they may all be described as "data base" models

characterized by coordinate and structure information.

In the interest of limiting the scope of the algorithms, the data

base is always constructed from a single primitive form, e.g. planar

polygons, quadric surfaces, bivariate surface patches etc., planar

 kiHMilMliMikl_^M -^-_»>-^MMMUMaiM*^M^*l«»-^~^ , ■——, . .■■,_.

mmmmmmm ^Mpnapni^ippniiinimu iiniifwii nnn

polygons being the most commonly used. In their paper which compares

ten hidden surface algorithms all of which use a polygonal primitive

representation, Sutherland et al (1) point out that all the algorithms

studied have a similar capacity in terms of scene complexity and

processing time.

In view of the widely differing techniques used, one is led to

ask whether there is some common factor inherently limiting all these

algorithms. This paper proposes that there is such a factor, and that

it is in the form of the model used by all these algorithms, and

indeed by the algorithms which use other passive primitive forms of

representation. This proposal is based on the belief that the loss of

information inherent in requiring that everything be represented in a

common primitive form is a major factor limiting the capability of

present approaches.

This paper ^.vestigates the use of an alternative technique for

modeling, namely the use of active procedures for the representation

of objects for the purposes of synthesizing shaded pictures. Models

of this form will be called Procedure Models. Through the use of

procedure models images of scenes one hundred times more complex than

the previous practical limit have been generated.

Structure of the Paper

This paper may be divided into three main parts. Chapters II and

III describe existing techniques for image synthesis, and are not

'— -"—'■■ --"- inirtmiMüiil—ü

ll^ i ^.ilWUiPI«^liPWBPi*WW^™l,,pi ' '-IM*' "" ^"^^PPWPWPPWPPBPW"« Pipi HLHIipnili.iM.

3

essential reading for an understanding of the other chapters by

persons familiar with the field. Chapters IV through VII deal with

procedure models and their relevance to three dimensional analyses.

This part is of a general descriptive nature, and presents ideas of

general applicability. Chapters VIII and IX describe a visible

surface algorithm based on procedure models, and may be ignored if

only the general ideas are of interest. Chapter X attempts a

categorization of procedure models as used in digital image synthesis.

— ■ ~ —^^-.1Mi|t .

nm^mmmmmmmmmmmm'mmJiimmmmm'mmmm ■"■ " 'tw**~mmmmmi*t*m

•

•

CHAPTER II

EXISTING VISIBLE SURFACE ALGORITHMS

There are many ways to categorize the existing published visible

surface algorithms. This chapter does not attempt a complete

categorization, or even a complete list of published algorithms, but

is intended to provide some introduction and background to the

techniques and terminology referred to in later chapters.

The process of generating a visible surface image of a scene can

be divided into five tasks:

a) transformation of individual objects into correct positions in

the scene

b) application of a perspective transformation to simplify many

of the subsequent visible surface computations

c) clipping to remove parts of the scene whose images would lie

outside the bounds of the display device

d) determination of the visible surfaces

e) rendering an image of the visible surfaces.

By using a homogeneous coordinate representafon tasks a) and b) can

both be implemented as matrix multiplications. Tasks a), b) and c)

can be regarded collectively as sr me preparation, and are discussed

further below.

Task d). the determination of visible surfaces, is what largely

 ■ ■ ■ ■ ■ - ■ mm

"■ """I"" 11 I I I 1—^-^i ■Mim. IHN . III.III mi. i w&mm^~ ■

distinguishes between the various visible surface algorithms.

Task e) actually generates the image, a process which proves to

be far more difficult tian at first might b- expected.

In some algorithms tasks d) and e) occur concurrently. They are

separated here to assist in explanation. Likewise, task c) is

sometimes not explicitly done, its effect being a part of tasks d) or

e).

I
..

Scene Preparation

Excellent descriptions of the process of scene preparation for

algorithms which operate on polygons are given by Sutherland et al (1)

and so only a brief review is given here. Many of the techniques

ap^ly equally to other algorithms.

Transformations of objects, for the purposes of defining

position, orientation, scale, and perspective, can all be implemented

as matrix operations in homogeneous coordinates. The transformation

of a point (x y z), in "ob.iect" coordinates can be effected by forming

the product of the extended homogeneous vector (x y z 1) with the 4x4

compount' transformation matrix:

(x y z 1) r r r p = (x' v' »' W)
r r r p
r r r p
t t t 1

(1)

where the partition indicated with 'r' may be interpreted as the

rotation and scaling, V the translation, and V the perspective.

„j-^1^^—^^^^^^

^

W"" w ^mmmmmt i \m M \ u i u ui i iqaniiiK ijlt^iH m.ii. - *m^i<mw...m

The resulting 4-vector must be divided through by w' to reduce It to

three-dimensional "screen coordinates", (X Y Z). That Is:

X = x'/w' Y = v'/w' Z = z'/w'

It Is remarkable that the perspective transformation and

subsequent division, an overall non-linear transformation, has the

properties of preserving straight lines, preserving flat planes and

preserving depth ordering. These properties permit the determination

of visible surfaces to be carried out on the transformed and clipped

objects as if only an orthographic projection were involved. The

objects will have been distorted so that their orthographic

projections are the same as the perspective projections of the feiven

objects. This distortion is illustrated for a cube in Figure 1. The

effect is to actually make distant objects smaller.

The division by w' to generate sc-een coordinates is susceptible

to overflow, and in physical terms projects points which are both in

front of and behind the eye. It is desirable no^ only to avoid

overflow but also to remove those objects, or parts of objects, whose

images would lie outside the limits of the display device. These

problems can be avoided by clipping the transformed objects while

represented in homogeneous form so that after division only the

required parts will remain. For example, suppose the limits of the

display device were -1 to +1 in X and Y, and the limits of interest in

Z are 0 to 1, a convenient normalized range. Then the only parts of

the objects which are of Interest are those which satisfy:

■— - -^__

 wwjpwww w 11) «.wuiini ID ■■ .nimmi^mi*'*miminmmmjr**m*m

-1 < x'/w' < 1

-1 < y'/w' < 1

0 < z'/w' < 1

which for w' 0 gives:

-w* < x' < w'

-w' < y' < w'

(3)

(4)

0 < z1 < w'

These inequalities exclude all points for which w'-.O. which is

normally the required effect. A suitable algorithm for clipping

polygons to the above limits is given by Sutherland and Hodgmau (2).

For algorithms which represent objects as constrained quadric

surfaces the clipping and perspective division need not be explicitly

CUBE, DISTORTED CUBE

SCREEN

a Perspective projection
b Orthographic projection

ih^.

Figure 1 Distortion of cube by perspective transformation

. . . - _ _ _ . Wltmr^--^^'i^^~^^^ mtmm

1 ' wmmmmmmm^^^^f^ ■piWJiHi'iiJ wwwr"

carried out. Quadrlc surfaces can be represented in the form

P.A.P* = 0 (5)

and

P.Ci.P* > 0 (6)

where A is the 4x4 matrix of coefficients of the surface, Ci are the

matrices of coefficients of the constraining surfaces, P denotes a

point, (x y z 1), on the surface, and P* its transpose. From equation

(5):

P.(T.TI).A.(TI*.T*).P* = 0 (7)

where T is any 4 x 4 non-singular matrix and TI its inverse.

Regrouping:

(P.T).(TI.A.TI*).(P.T)* = 0 (8)

If T is interpreted as a 4 x 4 homogeneous transformation then

P' = P.T

represents points on the transformed surface. Therefore the matrix:

A' = TI.A.TI*

must represent the matrix of coefficients of the transformed surface,

which is simply another 4 x 4 matrix. This indicates that not only

are lines and planes preserved by the perspective transformation, but

also quadric surfaces.

Clipping of quadric surfaces can be effected by adding the

relevant constraining plane, written in the form of equation (6).

Notice that this procedure avoids any explicit division to achieve

screen coordinates, although generation of images of these surfaces

implicitly involves division. Algorithms using quadric surf^s as

their primitive form have been developed by Mahl (3) and MAGI (4).

" • ■• "• ■—'- -''"'■ -■—^ ■-• - ■' ^ '-
■ ■ • - ■ .. .-. ^

■ WUIII. I. «»"' '*-■' >"" -■ '•"■ ■' ■■ " ' "'W I"" pgnyvgi^pLHLHiijjuii wi -^"

Visible Surface Determination

An excellent review and characterization of ten hidden surface

algorithms may be found in Sutherland et al (1). (The terms "hidden

surface algorithm" and "visible surface algorithm" are often used

interchangeably). The paper includes some hidden line algorithms, but

restricts itself to algorithms which operate on objects represented by

groups of planar, or nearly planar, polygons.

Sutherland et al divided the hidden surface algorithms considered

into three classes: object space, image space, and list priority. The

object space algorithms happen to be hidden line algorithms, which are

not of primary interest in the present paper. The image space

algorithms are further divided into area-sampling and point sampling,

typified by the algorithms of Warnock (5) and Watkins (6)

respectively. The list priority algorithms are subdivided into a

priori and dynamic, examples being the algorithms of Schumaker et al

(?) and Newell et al (8). A brief description of each of these

algorithms will be given.

One of the earliest hidden surface algorithms was that of

Warnock, which is classified as area sampling, image space. This

algorithm may be described in terms of the technique of breaking down

a large problem into several smalle- problems whose solutions may be

readily determined. In Warnock's algorithm the large problem is that

of generating an image of the entire scene, or at least that part of

it which lies on the screen. The smaller problems whose solutions may

be readily determined are the generation of images of simple scenes.

. ^^^t*^ i iiMiitii">^im*ihMli g^ygn^^^^ng

mmm-m^mmmmmmm'mm^mm m mm*-".w...,,. iqiqpHfniiuiuiijii m ■ «fn

i

10

The breaking down of the large problem into the smaller ones is

achieved by subdividing the scene with planes through the eye, so that

the resulting sub-scenes will not overlap and can therefore be treated

independently. Variations on the algorithm may be achieved by using

various definitions of a simple scene, and by using various

subdividing schemes. One well known combination of these variables

defines a simple scene as either being one containing no polygons or

being a single polygon which fills ^e viewing area. The basic

subdividing scheme simply quarters the screen into four equal parts.

Subdivision is terminated whe. either a simple scene is achieved or

the viewing area is the size of a single resolvable picture element.

The two main problems with Warnock's algorithm are the comparatively

expensive subdivision of the scene, and the fact that output is not

generated in a convenient order for display on a raster scan device.

The point sampling image space algorithms are t>pified by that of

Wa-kins, which is a development of two earlier algorithms, those of

Romney et al (9) and Bouknight (10). All these are scan-line

algorithms, a term which refers to the fact that 'hey all generate the

image one scan-line at a time. This is extremely convenient for

display using a raster scan device. The generation of the image on

each scan-line is achieved by considering the intersection of the

scene with a horizontal plane through the eye and containing the

scan-line. This reduces the problem to a two dimensional "hidden

line" problem on the plane, the "lines" being the intersections of

polygons with the plane. It is convenient to solve this problem in a

left to right fashion tc generate the individual picture elements in

 —'-^-—^ ^»^>- ^^^^m^mt^m^^mmmtimim

~
I"«. .™"<llll ■! 11 ■ "Ml -^^^» WinwwiUtmw^ilM iH.MDii

■

11

an order suitable for display. The techniques used to solve this

problem constitute the major differences between the three scan-line

algorithms. Bouknight and Watkins made use of the observation that

the ordering of edge crossing usually changes very little from one

scan-line to the next and so the solution on one scan-line can be

computed incrementally from the solution on the previous scan-line.

Romney observed that this should be possible but failed to capitalize

on it. This technique is referred to as scan-line coherence and

permits significant savings of computation time. Watkins algorithm.

and the associated scene preparation has been implemented in special

purpose hardware which can generate images of 2000 edge scenes at 30

images per second.

The list priority algorithms, which are partially image space and

partially object space, operate by establishing a priority list of

polygons. One polygon has a higher priority than another if it

obscures the other. In a loose sense high priority polygons are near

the eye. The priority algorithms of Schumaker et al and Newell et al

differ in the ways in which the priority ordering is computed, and in

the way it is used.

By putting certain restrictions on the scenes which could be

processed, Schumaker was able to generate the priority list for a

sequence of views very simply, although a considerable amount of view

independent work had to be done before any images were generated.

This fitted in with Schumaker's aim to develop a simulation system for

producing a real time sequence of views of a largely unchanging scene.

mmmm _ ^^t. MUMi ■ ■

w,l■l-l" IJ ,,l ,l- " mmmmmmmw" i" ' * •"i"" "*imiimmmi'

I

12

Priority determination uses two ideas which Schumaker refers to as

clusters -nd linear separability. Clusters are groups of polygons

which, after the removal of back facing, and therefore invisible,

polygons (assuming solid objects). have a priority ordering

independent of the view point. A simple example of this remarkable

phenomenon is any closed convex polyhedron, since the front facing

polygons cannot overlap and so the priority order is arbitrary.

Linear separation involves dividing the scene into convex cells with a

collection of planes such that each cell contains only one cluster.

Inter-cluster priority is then determined bv finding which cell

contains the eye, a process which grows linearly with the number of

dividing planes. To generate an image, each polygon is represented by

its edges. For each edge it is determined wVether the scanning spot

on the television display is on the Inside or outside of the edge.

When the spot is found to be on the inside of all edges of a given

polygon, that polygon is considered to be potentially visible at that

spot. The polygon chosen for display at the spot is the potentially

visible one having highest priority. This algorithm was the first one

implemented in hardware to produce pictures at 30 frames per second.

The number of polygons it can process is largely dependent on the

number of edge processors that can be afforded since all the edge

calculations must be carried out in parallel. As a software algorithm

it is rather slow.

The priority algorithm of Newell et al imposes no special

conditions on the scenes it can process. The priority list is newly

constructed for each image, as follows. The polygons are first

m M^iiiiiMtiM^JM^^IM^^»- -- -- -

mmmmmmmm^mmwmmimmmmmm""m" ">•>< IIVW"'•■-••■'••"""• wnoifipHnpini

13

ordered by the distance from their farthest point to the eye. The

polygon having the greatest distance is probably of lowest priority.

Tto% ordered list is then checked and modified, by reordering and

pol'gon splitting, to transform it into a true priority list. In

order to generate an image Newell's algorithm uses a frame buffer, a

device capable of digitally storing one frame of picture. Zy writing

images of polygons into the frame buffer in reverse priority order the

correct image of the scene is created. Removal of hidden surfaces is

achieved by overwriting in the frame buffer by higher priority

polygons. The main problems with this algorithm are the computational

expense of establishing the correct priority list, and the need for a

frame buffer.

Visible Surface Rendering

Once it has been established which surfaces, or surface

iragraents, are visible it is necessary to generate images of those

surfaces. For the scan-line algorithms this rendering occurs one

picture element at a time, simultaneously with the determination of

the visible surfaces, w:ereas Id Newell's algorithm it is required to

render whole surfaces one at a tim.. This distinction can have an

effect on the techniques used to render an image of a surface.

The simplest form of rendering, or "shading" as it is often

called, involves assigning a fixed shade, or color, to each surface.

All picture elements representing that surface are then given the same

.. _ .. . _. . ._ — __ ._J

wm^mmmm I»I»»WIMI Mmw~~m^^mmmrmnmimmsmmr*mi*9^^miittmiwmimmm

14

shade. This approach, while simple, does not take into account the

position of any light sources and can make objects appear to be

illuminated internally since the shade of a surface is independent of

its orientation.

An improvement over the fixed shading can be achieved using

Lambert's cosine law of illumination. According to this law the

density of illumination of a surface is proportional to the cosine of

the angle between the normal to the surface and the direction of

illumination. This simply states that -.he illumination of a surface

is greater the more nearly it directly faces the light. If it is

assumed that the perceived intensity is proportional to the

illumination density, a pl.^nomenon known as pure diffusion, then a

more realistic shading rule is realized. Objects take on the

appearance of paper or a similar matte surface. The illusion of a

shiny surface can be achieved by using the cosine of the angle of

incidence to some powe-. This has the effect of making tho

orientation required to give a surface maximum illumination much more

critical, and hence gives the appearance of highlights.

For curved surfaces approximated by an array of planar polygons

_he above techniques do not yield acceptable results. This is because

even though the approximating surface is continuous in value, being

discontinuous in fust derivative, the resulting intensity

distribution is discontinuous in value, Figure 2, ani is therefore a

very poor approximation to the correct continuous distribution. This

situation is aggravated by the fact that the eye accentuates

. . - - —^

■^■■I Jl "I 111 . II HIHI HHWi^lfPH^IWWifWIW I ■ "r*

15

discontinuities in intensity, known as the Mach band effect. Gouraud

(11) sought to remedy this problem by using a linear interpolation of

intensity rather than the step function implied above. The aim was to

achieve an intensity distribution which was continuous at least in

value. Instead of using nornals to the polygons to compute intensity

Gouraud uses normals at the vertices of polygons. These normals are

either known from the original curved surface or can be approximated.

The vertex intensities are then interpolated using a simple linear

interpolation illustrated in Figure 3.

Gouraud shading, while realizing startling improvements in the

images of approximated curved surfaces, does suffer some problems. If

the number of vertices in a polygon is greater than three then in

L I G K T

I I 1 1 1
r^

//s //

a Surface

J L

b Intensity

Figure 2 C oss section through approximated curved surface

 —_ —

—— 1 "I" »II 1.I-«1II]!II„1HII^|HB^W— I.PIIIW«!

16

general the resulting shading is axis dependent, though in practice

this has not proved to be a major problem. A more serious problem,

illustrated in Figure 4. can give rise to areas of constant shading on

a curved surface. This occurs if the intensities at the vertices of a

polygon are all the same, even though the normals are not parallel.

The situation is aggravated if an attempt is made to simulate

highlights. This is because the level of detail allowed in the

intensity distribution is restricted to be no greater than the

geometric level of detail.

The above problems have been largely eliminated by Bui-Tuong

(12), who, instead of interpolatinp, intensity, interpolates surface

normals. Each of the three normal components is linearly interpolated

using the same rule as that used by Gouraud. Having thus established

a normal for each point on the surface, the intensity is calculated.

Computationally this is a much more expensive process involving

normalization of the interpolated normals and computation of intensity

at ev-^.ry displayed noint. However, the process does lend itself to

special purpose hardware implementation. Bui Tuong also investigated

Mr« realistic methods for computing perceived intensity at a point.

By considering the physics of the situation h« was able to develop a

realistic model incorporating the reflective and dispersive components

of the perceived illumination.

-—- ■ - - ■- — -' ■-■ ■■■-■■ ■ - -
tmam

..............,„1, _,, "'" '" ■' mmmm lUnaiV-U nw^aiWJii

17

I = a.Ic + (1-a).1
p f g

If = b.I1 + (l-b).I4

I = c.I_ + (1-c).1,
g 2 J

Figure 3 Gouraud interpolation of intensities

LIGHT

1 1 1 I I I I 1

7777V7V

UNIFORM
INTENSITY

Figure 4 Constant intensity on approximated curved surface

y^^H^MMMM^Mn^to^i^M. ■LMW^gMI^^^^^ ^Mi^a^|f;frUM^^^^j^^^M|j^|^(^ ._^iMlal^^tM^^^Mäia£mimmäji^^±

wmmmr^^^^-^^ < '.< IN nvmw

CHAPTER III

LIMITATIONS OF CURRENT TECHNIQUES

Limitations on the complexity, or richness, of scenes that can be

processed by existing techniques are due to several causes. These can

be categorized three ways: storage requirements, processing

requirements, and restrictions on the scene.

I

Storage Requirements

In the case of algorithms which represent objects as collections

of polygons, a serious limitation is simply the volume of data which

must be handled. For example, a scene consisting of 1000

quadrilate-a polygons defined in terms of a set of 1000 points

requires 7000 words of storage. The task of storing scenes 10 or 100

times this size in fast memory exceeds the capacity of many computers

in use today.

However, it is not always meaningful to separate storage and

processing requirements, in that given sufficient magnetic tapes, for

example, any amount of information can be processed, albeit in an

unacceptable amount of time. It is perhaps more meaningful to

consider the pattern of accesses to the data, and to determine how

.A||iM^MMMMggM| iliim I ■■^I^Mrtlll^im M^iti Uf^^f^^g -J

"-"
'^■»■■'■"""'"«^^■•^•»^""ITP—'-^^BW

19

much of the data needs to be held in fast storage if the use of fast

storage is to have a significant impact on the processing time.

In this regard. Warnock's algorithm has problems in that the

parallel nature of the algorithm requires all the data to be held in

fast memory. Watkin's algorithm is much better in that only the list

of currently active edges need be held in fast memory for substantial

gains in speed to be realized. Accesses to the bulky y-sorted edge

list are serial and occur once per scan line. The algorithm of Newell

et al, like that of Warnock, requires access to all the data in a

random order. including accesses to the frame buffer. Therefore the

addition of a small amount of fast memory gives no great advantage.

It seems that the storage requirement problem can be handled in

two ways. One way is to find some means for serializing accesses to

the data so that the bulk of the computations can be performed in the

restricted amount of fast memory available. Recent work by Sutherland

has yielded significant advances in this direction. Another way is to

develop techniques for representing the necessary information in a

more compact form.

Processing Requirements

The second major factor limiting the capabilities of current

techniques is computation time. For nearly all known visible surface

and visible line algorithms the time taken to generate an image grows

faster than linear with the complexity of the scene. This fact makes

iam^tuf*mA __-.* , -.. ^ ■■

■ ■ - • - -
 ■ _^ä^lut^lauätlää^m^M^m^

w '"■■"■"■"'» ii ii IHM.um mimmmi*

20

some algorithms unreasonable for even relatively modest scenes.

Roberts' (13) algorithm, for example, becomes prohibitive for scenes

containing more than a few hundred polygons. The current state of the

art algorithms have succeeded in reducing the impact of the nonlinear

effects enough to allow the handling of scenes of sufficient

complexity to be of use in other than academic applications. However,

for those algorithms which represent scenes as collections of polygons

the current practical upper limit on complexity is in the region of

2500 polygons.

For those algorithms which use forms of representation other than

polygons, for example quadric surfaces, the equivalent useful

complexity seems to be no better, although individual objects may

appear more pleasing. These other algorithms benefit from requiring

fewer primitive forms to describe any given scene, but the escalated

difficulty of dealing with each primitive often outweighs the

potential gain.

Restrictions on the Scene

The third major limitation found with existing techniques is

concerned with restrictions on the scene. This has several aspects,

the first of which involves constraints on the scene resulting from

assumptions or simplifications in the algorithm. Examples of such

constraints include non-intersecting objects, convex polygons, and a

limit on the number of edges allowed per polygon. The constraints

-* - •■ - ■•—

 . - , -. .^-^-„ _■——fc,.——^—.

m- m

21

imposed by Schumaker's algorithm are unusually severe, although they

are acceptable in simulation applications involving fairly static

scenes.

The second aspect involving restrictions on the scene stems from

the observation that all existing algorithms require that the scene be

represented as a collection of instances of the same primitive form,

e.g. polygons, quadric surfaces, bivariate patches, etc. This brings

about a certain simplification of implementation and allows each

algorithm to exploit the convenient properties of its chosen

primitive. However, no one form is optimal for representing all

scenes. Polygons can be used to approximate virtually any shape, but

questions such as how many should be used to represent any given

curved surface have no satisfactory general answer. This is because

the minimum number of polygons needed to give an acceptable

approximation to a curved surface is dependent, among other factors,

on the view of that surface. Near objects need to be approximated

more accurately than distant ones. Similar comments apply to the

inclusion of fine detail which may only require a crude representation

when in the distance. In practice sufficient polygons are used to

give adequate representation for the worst case expected, which

implies a wastefully detailed representation of objects in the

distance.

Quadric surfaces are ideal for objects having conic generators,

and can be used in a piecewise manner to approximate more general

surfaces. However this task is quite difficult, and can generate many

i—^—aaj^^-^—^..-^ _
■-- mum

Ml 111 I I.IUIIIW m^mmmmmi****'**

22

fragments. Experience indicates that scenes modeled with quadric

surfaces tend to look somewhat stylized, being made from spheres,

cones, cylinders, etc.

Bivariate patches are extremely versatile and can be used to

represent a wide class of curved surfaces. As with quadric surfaces,

techniques for representing any given shape are not straightforward,

a.though recent research in this area by Riesenfeld (1A) and others

has made significant advances. This has led to formulations of

piecewise polynomial and rational polynomial patches which have been

designed specifically to facilitate the representation of arbitrary

curved surfaces. It would seem desinble to have a visible surface

algorithm which could make direct use of these new formulations.

Catmull's (15) recent work provides an example of one possibility in

this direction. Perhaps more to the point is the fact that these

forms are only suited to representing smooth surfaces and their use in

representing planar faced objects can be extremely inefficient.

A further disadvantage of representing all objects by a common

form is chat much useful information regarding the coherence of

objects is often lost. Indeed, most algorithms which use a polygonal

representation treat each polygon as a separate, independent entity.

All information regarding grouping or connectivity is either destroyed

or ignored. This can be likened to doing a jigsaw puzzle with all the

pieces kept face down. Failure to use such information is not a

necessary consequence of using polygons, but the difficulties involved

in making beneficial use of this information are severe enough to have

__. __ ■ ■ — - - JJ^J»M,j^,^—»

wmmmmm I •" I»« I M I i« I»"-

23

discouraged most investigators. A noteworthy exception is the use

made by several algorithms of silhouette edges as distinguished from

interior edges.

The third aspect of the question of restrictions on the scene is

concerned with generality of representation. Mam systems dictate a

data format based on their particular primitive form. As these

systems are developed, the need for more and more generality in the

facilities provided results in escalations in the complexity of the

data format until it begins to resemble a programming language. At

this point the arguments for and against special purpose programming

languages become relevant. The principal argument for such languages

seems to be that specialization allows a user to specify what is

wanted more directly and concisely. However, except in extremely

specialized applications the special facilities tend to be

overshadowed by facilities found in most general purpose programming

languages.

An alternative approach is to provide a general purpose language,

with specialized primitives imbedded either in the form of extensions

to the language or by subroutine calls. If the language chosen is

compatible with that used to implement the visible surface algorithm

then the data description routines can be loaded together with the

visible surface program to form a special purpose program for

generating images. Several systems providing this facility have been

implemented, but they still suffer from the requirement that the

interface to the visible surface routines be strongly oriented towards

.. -~..,_
- — ■ - - - - ^^^^^^^^^Mli I lil^^ -HIIIHM^MMM^^M^^^^^^^^^I - - -- ^ . ■■ . ,- . . .

" -" ' '"-" ^niljm^^^llP^VRiiiii nj im*»

24

the primitive form used by the chosen visible surface algorithm.

These considerations point to the need for a system structure

which allows the combined use of a variety of primitive forms in a way

which is sufficiently flexible to allow the peculiarities of each form

to be fully exploited. It should not impose unnecessary constraints

on the range of facilities provided, and should provide for all the

primitive forms currently found to be useful.

L

M^—IMMn^^itffciii***»^. . - . M|| . . -

W"1"«"«"111 wm*wmmmmiimimmmmmm*mmim

CHAPTER IV

PROCEDURE MODELS

Most data processing systems can be described in terms of a set

of data, whicb represents the items to be processed, and a program

which has encoded into it all of the processes to be applied to the

set of data. In the particular case oi digital image synthesis the

term 'set of data' might be replaced by 'scene description' and

'program' by 'visible surface algorithm'. If one has several sets of

data to be similarly processed then one need only generate the program

once and apply it separately to the several sets of data. Such an

organization is conceptually simple, the idea of representing an item

by a collection of numbers being readily acceptable. For example, the

representation of an object by a set of points each one represented by

its x,y, and z coordinates, and a set of polygons each one represented

by a list of points, is a widely used structure.

Passive Data Bases

Cases arise where the simple division of a system into a. tive

processor and passive data is inadequate. Typical shortcomi...s of

such an organization arise from the need for parameterized instances

of a - ototype, the need for specifying a repetition of some data

rather than actually repeating the data, the need for performing some

tm- - _^mA^AM—m^mmkm^mml^^m MMMH^ai

«■llllllllllllllllliHIl 11 II "■■II I wfrnm^m»!»."' ""■■I' ',J "n1111 •"«' t1111

26

arithmetic to efficiently specify an item, and the need to specify

conditional circumstances where the determining factors are external

to the data. These shortcomings can be rectified by escalating the

facilities provided by the data format which describes the items to be

processed. When this is done the input data format is transformed

from a list of numbers to a command language, or even to a resemblance

of a general purpose programming language with subroutines, repeat

loops, expressions, conditional operators, rtc. The input data may

then be viewed as a program which will be executed interpretively by

the data input routines, the result of that execution being data to be

processed by the main body of the processing algorithm.

There is, however, a more fundamental shortcoming to this

segreg... M of processor and data. This arises when it becomes

desirable to use widely differing processing techniques depending on

„hat the data represents. This implies that the processor must cater

for all possible types of data. Even in cases where the range of

types is known in advance this can generate an unwieldy organization.

As a simple example consider a system for finding the geometric

extrema of objects. Suppose the objects of interest are: groups of

polygons, spheres, and bicubic patches. The input data format might

have a herald for each object announcing its type, followed by a list

of parameters. The 'interpreted language' approach might 'execute'

such an input and produce a list of objects each one represented in a

common format, for example, polygons. The processor would then

operate by searching all the points on each converted object in order

 - - —— ^ - . -
■ • ■ - - -■■■

.
--:--""—'—— - --.-■■ . ■•--- ^

11'
- •«•<«<■ 1 "' ,,""UI lammw > "m i i i i

27

to find its extrema. This approach gives a simple main processor

which has to handle only one type of representation.

Definition of a Procedure Model

A more efficient approach to the previous problem using the idea

of type-dependent processing might employ three algorithms, one for

each type of object. The first, for polygonal representations, would

search as above. The second, for spheres, would take the center of

each sphere and simply add and subtract the radius to find the

extrema. The third, for bicubic patches, might operate bv repeated

parametric subdivision of the patch to find the extrema within some

given tolerance.

It might be argued that the only difference between this approach

and the previous one is that the type-dependent processing has been

moved from the data input routines into the main process. The

difference, however, is rather more profound than this, in that each

object may now be considered to be modeled by a procedure with which

another procedure may interact. As an example suppose the goal in the

previous example had been to find the volume of the minimum

rectangular box containing each object. The main process would

compute the product of the differences of the extrema of each object

in each of the three coordinate directions. The way in which the main

process finds these extrema may now be viewed as a question to each of

ehe models ther.selves, rather than as an analysis of each object. The

i M nmm " '"- - ^ - — ^■,-..,. .-. -....

1' ' "Ul11 "• »i"W»^WP«^^"^^"M I ■■! LHHl.,IIPl Jll l fl.

28

method used by each model to answer that question is of no interest to

the main process, so each model mj use whatever technique it prefers

to answer the question. Such representations of objects are examples

of procedure models.

More formally, a procedure model is a model which represents its

subject as a procedure with which other procedures can interact. The

procedure model may be with or without parameters. Interactions with

such a model are in the form of messages and include commands (e.g.

•output yourself), and questions (e.g. 'what are your extrema?').

Responses can be confirmation of completion of some requested action.

return of requested data, or an indication of failure to do one of

these.

Properties of Procedure Models

The advantages of using procedure models stem from the higher

level of representation they afford. A simple interpretation of this

allows access functions to be built in with the conventional

structure. Access to such a model is then carried out at a higher

level than the manipulation of addresses, pointers etc. The access

functions need not. indeed should not. know anything of the technique

used by the model to derive requested information. If it becomes

necessary to replace one form of the model with another then, provided

that the interface to the model is sufficiently independent of tt.e

representation used, such a change can be made without requiring any

 - -■■

r _-~_^___ ^mmm^vuitwi _ ' '• ■■«

29

Ik..

change outside the model itself.

Designers of data bases sometimes refer to the distinction

between what is internal to the model and the external interface by

refering to the physical data structure and the logical data

structure. The physical data structure is the actual structure used

to store information and is concerned with the words, pages, disk

accesses etc. actually used. The logical data structure is some

pseudo structure simulated by the model, and manipulated by the access

functions. The mapping of logical data structure onto physical data

structure is the function of the access functions which, together with

the data, make up the model.

Although procedure models can be described in similar terms, such

a data-oriented view obscures some of their most important attributes.

One of these attributes is the freedom to partially, or totally,

replace data with procedure. The case given in the previous chapter

of finding the extrema of an object exemplifies the use of this

freedom. If the model represents a sphere then given the position and

radius as parameters the extrema can be generated by a simple

arithmetic computation. The applicability of this technique is more

widespread than may at first seem apparent. Several examples are

given in Chapter IX. Even in cases where data is empirical and obeys

no known law, the replacement of data by procedure can give

significant savings. This can range from the provision of an

interpolation rule for supplying intermediate values, to the fitting

of a parameterized mathematical formula to the data and then storing

iiigrMiiiiiiriiriiriiriii-

—— ,l1 lu "■ mmmmmm

30

only the fitted parameters and a procedure for evaluating the formula.

This is a well known and widely used technique, but the grouping of

parameters with evaluation procedure into an entity whose structure

cannot be seen from outside is not so widespread, and is the key to

generality and modularity.

Another important attribute of procedure models is generality of

parameterization. In addition to variables such as size, color,

orientation etc. procedure models allow parameters which may have a

drastic effect on the form of the item being represented. For

example, a highway design system might use a procedure model to

represent bridges. An important parameter to such a model would be

the length of the bridge, not only to determine size but also as a

type parameter to determine whether a suspension, beam, cantilever or

arch bridge is required. A question to such a model might request a

cost estimate, in which case the interrogating process may not be

interested in what type of bridge is involved.

Since procedure models are executed u> procedures they may embody

any known data representation scheme. This means that conventional

data structures form a subset of the class of representations allowed

by procedure models. An important consequence of the higher level of

representation is the ability to use several different models in one

program. This allows each model to exploit whatever properties it

chooses in order to carry out its function most efficiently, whether

in terms of space, speed, or generality. However, if more than one

type is used then it becomes necessary to define the interface to each

. MMUtaMM .»__
- ■ - "

rgmmimmimm w>—w^wi*w^'»» M't i- ^~~mmmm*w** u.ßmmiimmmmmmim

'

I

31

model in a model-independent way. This is very similar to the

requirement in some systems that all data be represented the same way

but here the requirement is, or can be, at a more abstract level. The

interface need be concerned only with the information required by the

access routines, not with the form of the models involved.

The choice of this interface can have a marked effect on the

success of the resulting system. If the interface is chosen to be too

low level then a strongly procedural model may need to generate

unnecessarily detailed information. On the other hand, if the level

is too high the possibility arises of requiring the model to do more

than is necessary. As an extreme example of this an entire system

could be considered to be a procedure model representing all the items

to be processed, and responding to the one command: 'yolve the

problem'. The choice of the right interface depends on the types of

items being processed and on the type of processing to be done.

The argument has been made that there is really no difference

between passive data structures and procedure models, in that they are

both stored as strings of bits in the memory of a computer.

Furthermore, they are both interpreted, albeit by hardware in the case

of procedure models, and so in practice they are effectively the same.

Arguments such as these miss the concept of procedure models in that

although they can indeed be viewed as a difference in degree, that

difference is so great as to be 'transactionally different', a phrase

which refers to a sufficiently great change of degree to imply a

difference of type.

^ „__ aMgHMflMaHM

■ w - Jil-ü,PHlÄl« !li|i

32

Relation to Other Work

It is relevant to see how the idea of procedure models relates to

the more general description of representing entities by computer as

studied in computer science. The implementation of structured

programs involves building a hierarchy of virtual machines, each one

using the primitives presented by lower levels, right down to the

basic hardware machine. The data manipulated by such programs ma/ be

viewed at various levels, the higher level interpretations being

derived from lower level ones via the relevant access functions. In

some sense it is an arbitrary decision as to where the line is drawn

between what is considered to be the process and what is the model

being processed.

One of the principal virtues of structuring a program in this way

is that the implementation of the access functions defining any given

level can be changed without requiring any change to the higher level

processes. Equivalently, an access function providing an interface to

multiple lower level data types can be implemented, thereby allowing

the use of several independent representations of the data type chosrn

by the implemented process. This consideration implies a preference

for making the conceptual interface between process and model at as

high a level as possible to permit maximum flexibility for

modification of the model representation. Conversely, the higher the

level of model representation then the more specialized the

implemented process tends to become.

^MJUHM^^M
 ■-■-"-—-—-"--tttlM IMtlUll ! ■! . .^ .*. -- Mltmiaammltmammammm

11 ' •' ■" "li'i-lHUPPBIiWWP^

33

It would seem that a reasonable criterion for the choice of level

of access function to the model is that it should reflect the level of

item considered to be the basic data type accessed by the process.

Relating this criterion back to the interests of digital image

synthesis, it is proposed that the process be described in terms of

synthesizing an image of a scene which consists of a collection of

individual objects. Therefore, the interface between general purpose

process and model should be in terms of objects, rather than in terms

of some lower level primitive. The resulting system will be

specialized in the sense that it will only be capable of synthesizing

images of collections of objects. But this is precisely the goal

originally set, and thus is entirely appropriate.

The ideas and motivations leading to procedure models are not

new. Examples of related work in other sreas may be found in Hewitt

et al (16), Winograd (17), Birtwistle et al (18), and Smith (19).

_^. i •-- --

w^mmm^mmmmmmmmmm*'* ' " H»"""'«J
|
'" ^—^ nimm*

CHAPTER V

RELEVANCE TO IMAGE SYNTHESIS

The ideas behind procedure models are not new in digital

computing. The notion that information may be procedurally generated

when needed, as opposed to simply being retrieved, is widely used.

The syntactic similarity between subscripted variable references and

function invokations in many high level languages exemplifies the

interchangibility of data and procedure.

Some of the notions of procedure models are not new to computer

graphics. Newman's display procedures are an example. Their function

is to replace a conventional numerical data base with a procedure for

the purposes of generating line drawings. In some cases the ability

to determine when an image would be entirely outside the viewing area

is used to completely avoid execution of the procedure. However,

display procedures do not normally interact with the calling process

in order to generate an image, but tend to be passive image

generators. This passive role is possible because display procedures

are concerned with generating line drawings, an essentially serial

process. In contrast, the present work is concerned with the

generation of visible surface images of complex scenes, and in the use

of procedures to represent the objects in a way which facilitates this

non-serial process. In the area of digital image synthesis procedure

models give several advantages over conventional data structure

. —— ■HittÜilliHIHMIil

r mmwm •^ —■ '■-—"

35

models. These advantages are concerned with facilitating processing

and with view dependence.

Object Coherence

Sutherland et al (1) note that all known visible surface

algorithms capitalize on some form of coherence. The term coherence

refers to the interrelation between certain processes or groups of

operations. Such interrelations can allow considerable computational

savings either by using the results of an analysis of one situation in

another similar situation, or by replacing a group of operations by a

single operation.

An example of the first type of coherence is the scan-line

coherence used in Watkins' algorithm. The fact that, in general, the

list of visible segments on one scan line is very similar to the list

on an adjacent ^can line is exploited. The list for any one scan line

is computed as a pertubation of the list for the previous scan line.

An example of the second type of coherence is object coherence.

If, for example, it can be determined that two objects are disjoint,

then all parts of one object will be disjoint from all parts of the

other, and no tests on individual parts need be performed. This

observation can lead to significant savings. Of course, it will

generally be more difficult to determine whether two objects are

disjoint as compared with, for example, two polygons. However, if

there are N polygons per object then there will be roughly N**2 times

 ...-...- - — - ■ ^^.„.........jM^ftyjiiiiiJart
ütai ^MM ^HMabaMMH

.•"—^-_"—_"—■_",
mmmmi~^*

36

as many polygon pairs as object pairs, end so even with a substantial

escalation of difficulty overall savings can be made.

The use of object coherence can be extended to cover a range of

analyses encountered in image synthesis. The potential gains arise

from the handling of only a relatively small number of objects which

can give savings in both computation time and space requirements.

This implies that some compict representation for whole objects be

used. The logical grouping of polygons into objects is not

satisfactory since this does net alleviate the storage requirement

problem.

The representation proposed here is the procedure model which

allows objects to be modeled in whatever form is deemed most

efficient. This does not, of course, exclude groups of polygons, and

it allows alternative representations some of which may be highly

procedural. The example already given of a sphere is a case in point.

Generality of Representation

The generality of representation afforded by procedure models is

limited only by the level of interface chosen. Examples of

representations relevant to image synthesis include: groups of

polygons, potential surfaces, and various surface patch schemes

including bicubic Coons patches and B-spline surfaces.

Higher level but more specialized representations are also

-A . -.. ,. ■--....^—. . ..i .
'-L ■ -;——' i i ■■■mi—^fimnii ii i ii i'i ii inn i HI JI —iiM—irtiiiiiMtiifcii—Miii

 1

mmimmmmfimimm «"•-«"'■■n iii-ij.il

37

relevant such as groups of the above items and procedurally generated

whole objects, such as ships or buildings. These higher level forms

may resort to patches or polygons for the detailed representation of

their subjects, but may be able to yield requested information or

carry out certain operations at a much higher level.

\

Generality of Parameterization

In image synthesis typical parameters to models represented by

passive data structures are such things as surface properties like

color and reflectivity, and affine transformations to specify size,

orientation and position. Procedure models permit a much more

extensive parameterization of models simply by virtue of their

procedural nature. Any variable that influences the represented

object can be used as a parameter. Examples include non-affine

transformations, angles, and key dimensions.

More general parameters can influence the actual form of the

represented object. Office buildings can be characterized by the

number of floors, the type of windows, and the type of roof. Level of

detail can also be parameterized, although such a variable would

probably be view dependent.

The generality of parameterization allowed by procedure models

enables extensive use of instancing, since one model can represent a

wide range of extensively differing objects. In the extreme this

implies that one model could represent all objects in a scene using.

,■, i ■■■IM» ■imn^^^^MI^^ ^M

1'"'-" "w nil]i\^n^i^mmmmmmmmmmmmfi'ii''mim '""'•-■ "•" ■■•"^mmmmmm

38

for example, polygons. This would be equivalent to the single

representation schemes currently in use. In practice a compromise

between this extreme and that of using a separate model for each

object should be sought.

.

View Dependence

The representation of objects for the purposes of imaga synthesis

is often done by approximation. For economy of computation, storage,

and effort objects are frequently represented with only sufficient

accuracy to appear acceptable in the anticipated views. This applies

both to the level of fine detail represented and to the accuracy of

approximation to curved surfaces by polygons.

In systems where objects are represented by passive data

structures the level of approximation has to be chosen at the time the

data structure is created. Thla leads to an inflexible relationship

between object representation and viewing parameters which does give a

degree of simplification and modularity. However, this approach

requires that the level of approximation be chosen to be sufficient

for the most critical view expected. The implication is that for most

views objects will be defined in more detail than is necessary for an

acceptable image.

Procedure models allow the representation of an object to be

influenced by the view. Distant or small objects can be approximated

more coarsely than near or large objects. Stated another way.

—^^^^^i^j^y^

■^PPHimWPWWWlwIPPIlWWwiiLiii im »w^i^ai^ni . ■«»iBWB^pii^iw^MipippiBgpE^ipipiiMilw^'ww '■ ' '

39

procedure models allow the degree of approximation for all objects to

be equal in terms of image space coo/dinates.

Another aspect of view dependence relates to the silhouette edges

of curved surfaces. Gouraud (11) and Bui-Tuong (12) have demonstrated

techniques for generating images of curved surfaces from comparatively

coarse polygonal approximations. These techniques can glv« an

extremely good impression for the interior of curved surfaces but do

nothing to improve the polygonal silhouette. View dependent procedure

models allow a more accurate approximation to silhouette edges while

retaining the economy of a coarser approximation for the remainder of

the surface.

A further facility afforded by view dependence is the ability to

remove an entire object from consideration if it is known to be

invisible in the present view. This can occur in two ways - by the

object being completely outs ide the viewing area, and by an object

being entirely obscured from view in an easily determined wav. The

former has wide application whereas the latter is rather more

specialized. An example of the latter is the case of a closed object

either containing another object and having the eye outside, or

containing the eye and having another object outside. In either case

the other object is invisible.

i - ~-.^ ~ ^ _ MwrtM^^M^^b^MA^^^^M^k^ MkuaaiaMMa - --

i»>'«yB»w!wipmwiip^,^—^»B^w^w»»T"wp|ii|i|i"i i IIIII»-»MI«. -i nmmw—i

CHAPTER VI

THE MODEL INTERFACE

It was stated in Chapter IV that the more abstract level of

representation afforded by procedure models facilitates the use of

several different types of model in one program. If types are to be

mixed it becomes necessary to establish an interface to each model

which is independent of internal model structure and to which all

models can conform. The central procedures can then communicate with

each model via this interface without concern for the internal details

of each model.

Requirements

The factors which influence the choice of model interface are

concerned with the type of processing to be carried out, and with the

types of models anticipated. As was mentioned earlier, an interface

which is too low level may result in much duplication of processing

within the models, whereas too high a level may be unnecessarily

restrictive or difficult to conform with.

For the purposes of digital image synthesis the model interface

requirements are based on the considerations presented in Chapter V,

^^g^MlMMM^M«^^^
■ —■ ■-

I". WMWIVIL i i|i | i ii.i uifmmim, MM» wmmmmmm wnwww^w ■ »mm^v^mmmw^ßim

i

41

namely: object coherence, generality of representation, generality of

parameterization, and view dependence.

The exploitation of object coherence requirps that the

relationships between whole objects can be analyzed without regard for

the details of any one object. The technique proposed here to

facilitate such an analysis is to replace each object with an

enclosing convex polyhedron. The analysis will then be carried out on

a set of convex polyhedra, and will exploit all the convenient

properties of such simpler forms. For example, the task of

discovering whether two objects are disjoint is implemented by

searching for a plane having the two convex polyhedra wholly on

opposite sides. Clearly, this coarse representation of objects may

result in Interfering convex polyhedra which represent non-interfering

objects. This problem will be discussed in Chapter VII1.

For some analyses an even simpler representation of objects can

be used, namely an enclosing convex polygon in two dimensional screen

space. For the purpose of drawing hidden surface pictures the

determination of whether the images of two objects of interest overlap

is of interest. Given enclosing convex polygons to represent two

objects, the determination of overlap ir. reduced to finding whether

two convex polygons have any area in common. Again, the coa-sness of

such a representation can lead to apparent overlap where none exists.

The above considerations lead to the first requirement of the

model interface. Each model should be capable of generating an

enclosing convex polyhedron and an enclosing convex polygon in screen

i MM ^taüflHaiMAftüfliüiaMHdikri ÜMgH ^^„.^ijifcMy^^^a^aMfcu. ^MMiatmtotMteBh^i^MJtoJt ^mämtamm^imamtmm

—' —n- fii^lijn II«!! IJIII^BJIV^

42

space. Techniques for generating such polygons and polyhedra arp

given in Appendices A and B.

The second consideration relevant to digital image synthesis

concerning the model interface is generality of representation. It is

desirable that an object be represented by an appropriate form. This

form is influenced by the need to be able to generate an image of each

object in a compatible form if a picture of the whole scene is to be

synthesized. Since the techniques required for generation of an image

from any given model representation are model dependent, it is

necessary for the model to be capable of generating an image of the

object it represents. This is the second requirement of the model

interface. The actual fo-i* of this image is dependent on details of

the main processing algorithm and will be more closelv defined in

Chapter VIII.

The third consideration concerning the model interface is

generality of parameterization. This simply implies that it must be

possible to pass parameters to models which may be used in any way

desired.

The fourth consideration dealt with in Chapter V was view

dependence. This has largely been covered here by the requirement

that each model should be capable of generating an image of its

subject. This enables a variable degree of approximation to be used,

and indeed, allows nothing to be generated if it can be established

that the entire object is invisible.

^MUMUMMH • - ■■

-.■■-...■■.,.

taiMMMwaaai

mmmmm — "m***v • i "■* wmmmmv'ww >"> •

43

The only other demands made on the model interface are that it

must be capable of specifying the reading and writing of model

parameters from and to secondary storage. This is necessary in order

to define the scene being analyzed as well as to enable swapping onto

secondary storage to be used if space restrictions dictate the need.

The information actually transfered to and from secondary storage need

not necessarily be in the form of program overlays. If use is being

made of instances, then only the instance parameters need be

transfered, the model procedure staying in main memory. This leads to

the question of what structure is needed in which to embed the

procedure models.

Structure

The operation of a simple data processing system might be

described as follows. At initialization, the program is loaded into

main memory and the data base is considered empty. During processing,

external influences and internal computations cause data to be added

to and taken from the data base. The notion of reading some data,

which might represent an object, and adding it to the data base is

quite straightforward.

However, if objects are represented by procedures, the direct

analogy is that procedures should be read and added to a procedural

data base. While such a system is quite feasible, and can be

considered a use of program overlays, it is not a necessary

--■— ■■■■■-

wrmmmmimmm -»■'—P-^. !m«niiipp«pw™wwpw!"m"n ■■11

44

consequence of using procedure models. The high degree of

parameterization allowed by procedure models implies that it is often

not necessary to have a great number of different model procedures.

For example, a city scene might use three types of procedure model -

one for parameterized buildings, one for automobiles using surface

patches, and one using polygon definitions for all the other items.

Each object is then an instance of its procedural master and manifests

itself as some data in a passive data base. This may sound remarkably

like the conventional architecture mentioned earlier, but this is due

only to an implementation detail. The idea that each object is

procedurally described, in this case by a logical combination of

instance parameters and corresponding procedure is still very much in

evidence.

The use of instances can be carried a stage further. For

example, given a procedure for dealing with objects defined using

bicubic patches, a particular use of such a procedure could involve

the parameters necessary to define an automobile. Another use could

involve the parameters necessary to define a boat. If it were desired

to generate a scene including several similar automobiles and several

similar boats, then it would be desirable to use instances of the

automobile and instances of the boat, the parameters of these

instances being such things as position and color.

This implies two levels of instancing - the automobile and boat

parameters can be considered instances of the bicubic patch model

procedure, and the several automobiles and boats are instances of

»aiiwmM^ivi^^if «i-iniii

ww _
■-'■— ■—'■ "^ ■ •

45

s I

these instances. This structure is illustrated in Figure 5.

It is relevant to ask where the idea that an object be

represented by a procedure, called a procedure model, fits into this

structure. In this case the procedure model for any one automobile is

a logical combination of the bicubic patcb procedure, the automobile

parameters, and the instance of the automobile. Such a logical

grouping is shown on Figure 5. For descriptive purposes these two

levels of instances will be refered to as the model instance and

object instance. Conceptually this still uses one procedure model per

object, the apparent difference heivr due to the use of instancing as

an efficient implementation device.

MODEL
PROCEDURE

MODEL
INSTANCE

OBJECT
INSTANCE

BICUBIC
PATCH

PROCEDURE

1
1
1

AUTOMOBILE
DEFINITION
PARAMETERS

1

S \

AUTO
1

PARAMS

I
I
1

AUTO

PARAMS '
1

PROCEDURE
MODEL

REPRESENTING

SECOND
AUTOMOBILE

BOAT
DEFINITION
PARAMETERS

BOAT
1

PARAMS

BOAT
2

PARAMS

Figure 5 Procedure model structure

_--— ^-.■J^- ^ . . _.„ UK^*J||MM|^|M

— i ■ "i iuiiumi. ., . •"wmrnqmummmm'

CHAPTER VII

ANALYSIS OF RELATIONSHIPS BETWEEN OBJECTS

The synthesis of images of modele 1 objects requires the

determination of which objects, or part-, of objecis, are visible, and

the generation of images of those visible parts. The former

requirement necessitates the ability to determine which objects hide

which others. This in turn implies the ability, given two objects, to

determine whether one hides the other, either partially or wholly, and

if so, which hides which. As was indicated in the previous chapter,

the tests used in the analysis are carried out not on the objects

themselves but on their enclosing convex polygons and polyhedra.

The tests are carried out in screen space in two groups: two

dimensional and three dimensional. The two dimension?! tests are

carried out first in order to determine whether the two objects

overlap on the screen, or rather, whether their enclosing convex

polygons overlap. If it is determined that they do not overlap then

there is no need to further analyze the relationship between them.

If the two dimensional tests indicate, to the accuracy afforded

by the use of enclosing convex polygons, that the objects overlap it

is necessary to resort to three dimensional tests The goal of these

tests is to find a plane which separates the two objects. If such a

plane is found then the object which is on the same side of the plane

is the eye is the obscuring object.

^^^^^^^^j^jH^gg I Ml* ^^l -■■

1 I"W.-«II

A7

Two Dimensional Overlap

The two dimensional overlap tests are carried out on the

enclosing convex polygons generated by the procedure models

representing the objects. The first test used is called boxing. It

involves conceptually constructing a minimum enclosing rectangle

around each object polygon and then testing for overlap of tht

rectangles, see Figure 6. This takes the level of approximation to

the original objects one stage further but has the advantage of being

extremely simple, and if it indicates separation then the two object?

are guaranteed to be separate. However, if it does not indicate

separation then further tests are required to resolve the situation.

The test actually involves four tests: if the minimum x of either box

is greater than the maximum x of the other, and similarly in y, then

the boxes are separate.

Of course, cases exist where the boxes overlap but the object

polygons do not, see Figure 7. This necessitates a more thorough test

to investigate separation. For this test appeal is made to the

following theorem.

If two convex polygons in the plane have no area in common then

at least one edge of at least one of the polygons is a segment of a

line which separates the two polygons.

A proof of this theorem is given in Appendix C. An example is

shown in Figure 7. To make use of this theorem it is necessary to

•uuHMtoMMMMAM^iMMiii yUMtfUMMteMM - ■- , , * -^

'^^^mmmmm mmnmrnmamMmmmmn«-""

48

ENCLOSING BOXES

ENCLOSING CONVEX
POLYGONS

FipufH 6 Enclosing convex polygons and boxes

SEPARATING LINE

Figure 7 Non-overlapping polygons but overlapping boxes

lirmtiii ii i i ■iiimiMimiiiniiiiiii

pqppilpnpiipiliMPBipiifPl^vniipQpqp^nwf^vnn^iiMii Li ..UIIIMII ■II J f »1J(P .. i HI..I-

49

consider each edge of each polygon and to test whether all vertices of

the other polygon lie on the outside side of the implied line. If no

edge is found satisfying the above condition then the two polygons

overlap.

Simple Three Dimensional Separator Test

If the two dimensional tests indicate that the object polygons

overlap then three dimensional tests are used to determine which

object apparently overlaps the other. These tests involve searching

for a plane having the two object polyhedra on opposite sides.

If the two dimensional polygons were derived directly from the

polyhedra then there is no point in carrying out boxing tests in x and

y. However a simple boxing test in z is worthwhile and operates in a

manner similar to the x and y tests.

If boxing tests fail to establish separation then more stringent

tests are needed. At first glance it might be thought that the three

dimensional analog of the polygon separator theorem would state that:

if two convex polyhedra have no volume in common then at least one

face of at least one of the polyhedra is a region of a plane which

separates the two polyhedra. However, although true in irany commonly

found cases this theorem does not always hold. A contradicting case

is shown in Figure 8. Nevertheless, the fact that this theorem holds

for many cases, and can be directly applied, is a motive to use it in

an attempt to find a separating plane. The fact that it does not

UM||«jUA|M||^^^^^|^^^U|UM|H

1 ' — ■qppnwnapm^inF

50

always hold means that if its use fails to find a separating plane

then it is not a consequence that no separating plane exists.

Use of this theorem is a direct extension of the two dimensional

case. If, however, it is required to determine only whether object A

obscures object B then it is only necessary to consider backward

facing faces of A and forward facing faces of B. If no face is found

satisfying the above conditions then further tests are needed to

investigate the separation of the twc .jjects.

Figure 8 Separating plane not a polyhedron face

■ _ .-■-.—- ■■■-^—■ -■ ■■■- ■— ___ , _ _, a,,

" k " '
ll,l,p" PPmPHPqp«L)R>l|U niPl.i IP?"» iiiup.1^«" |i i

51

Comprehensive Three Dimensional Separator Test

The search for a plane which separates two convex polyhedra can

be stated as follows. Determine a plane vector P = (a, b, c, d) such

that its dot product with each vertex Ai = (Aix, Aiy, Aiz, 1) is

positive, and its dot product with each vertex Bj = (Bjx, Bjy, Bjz, 1)

is negative, where A is the set of vertices of one object and B is the

set of vertices of the other. Symbolically:

P.Ai > 0 1 < i < m

P.Bj < 0 1 < j < n

These two inequalities can be combined by defining a new set of

vectors C made up of A together with negated members of B. Then the

requirement on P is that:

P.Ck > 0 1 < k < m+n

This inequality may now be interpreted in a dual manner as follows.

Fir.d a point P which lies on the positive sides of all members of the

set of planes C. The dimensionality is now one higher in that P is a

4-vector, and Ck can be considered to be 4 components of a 5 component

plane equation in 4-space, the fifth component being zero. Hence, the

search for P is equivalent to the search for a point in the solution

region of a set of linear inequalities.

Various solutions to this problem have been proposed. The one

used here is iterative and proceeds as follows. Set P to some initial

vector. At each step of the iteration, for each vector, Ck, compute:

Lk := P.Ck

If Lk is positive proceed to the next member of C, otherwise adjust P

- - -- - -

■" mmmm mmm-mmmiit^ u uwmimmmmmm'i'm

i

52

to a new vector:

P := P + f.Ck

where f is chosen to ensure convergence,

Lk are found to be positive.

The iteration stops when all

A reasonable initial setting of P is the plane which is half way

along, and perpendicular to, the line joining the centroids of the

given sets of vertices A and B, and having the centroid of A on its

positive side.

The factor f is chosen as follows. The updating of P can be

interpreted as moving the solution point P in a direction

perpendicular to the plane Ck until it is moved onto the positive side

of that plane. Indeed, the components of Ck may be considered to

represent the normal to the plane in 4-space. To determine the

required distance it is necessary to normalize Ck, such that Ck.Ck=l;

then Lk represents the actual distance to the plane. In practice,

f = 1.05 Lk

has been found to give good convergence, although any value of f

greater than Lk will ultimately lead to convergence.

There is a problem with the iterative scheme described above. If

a plane P which separates A and B exists then it will be found.

However, if no such plane exists then the iteration will proceed

indefinitely, and such a condition is difficult to detect. To

overcome this difficulty a second iteration is run in parallel with

that proposed. This second iteration seeks a point M which lies

inside both convex polyhedra. The method used is essentially the same

' - --^~^- - -'■--- ■ ■ -- -- - - — M^M^^ - - mmmm

-""■—"" 'w^- ■»»»"■«BIBBPTOIPBP"»»««»«"!!1»' i ' i

as that described above, and is also carried out in a homogeneous

space. In practice, each iteration takes steps in turn, and one of

them is guaranteed to yield a decision, at which time both iterations

stop.

There is an additional requirement on the search for the point M.

This is that its homogeneous term must be positive. This is because a

point M which satisfies all inequalities and having a negative

homogeneous component is, in fact, outside all planes of both convex

polyhedra, not inside. This may appear to be not possible but it must

be remembered that the convex polyhedra may have been clipped and so

they are not necessarily closed. A simple remedy is to add the plane

vector (0, 0, 0, 1) to the set of polyhedron planes.

It has been found in practice that in cases where the simple

three dimensional separator test failed and yet the polyhedra were

separate, it can take several hundred iterations to find a separating

plane. For this reason an upper limit (currently 100) is imposed on

the number of iterations allowed. If no solution is found within this

limit then it is assumed that the two convex polyhedra intersect.

■ ■-■-■ - ■"■ - - Mdk^MifeM ■ — - --

i^^M.^^M^A^^i^^tiM^^aiM»,^... „ . .^. ■ -- --.■
 "■ ■—"-——~—^—-—-— --"—"^ mmmm

mmm^^m „_^__— M ■>>"■' 'l'"> • ""■

CHAPTER VIII

A PRIORITY ALGORITHM USING PROCEDURE MODELS

The previous chapters have discussed procedure models, their

relevance to digital image synthesis, and so.ne techniques for their

spatial analysis. This chapter describes a visible surface algorithm

wbich uses procedure models, and which brings together all of the

ideas and developments that have been described.

The algorithm to be described is a direct development of the

priority algorithm of Newell, Newell and Sancha. The main

developments concern the use of procedure models for the description

of the scene and as the basic working elements, and the techniques

used to determine priority. The advantages of this algorithm over

existing ones stem directly from the use of procedure models, the main

benefit being the ability to process scenes of comple;'itv two decimal

orders of magnitude greater than previously feasible.

li Outline

The algorithm is a priority algorithm based in concept on that of

Newell et al. A frame buffer is used to assemble tbp picture and to

play an active role in the hidden surface elimination. The scene to

1^ .

"■■'' i mm m r^^^^^^miKm wmiBi^w^-i »? ii im» umnfamm^mmm

55

be portrayed is described as a collection of objects, each one

represented by a procedure model.

The first phase of the algorithm reads descriptions of the

objects making up the scene. The descriptions are in the form of

instances of procedure models. Any modification to the positions or

orientations of the objects are then carried out, and the viewing

parameters are specified, e.g. eye position, field ot view, etc.

The next function is the establishment of a priority ordering of

whole objecti. The generation of the enclosing convex polygons and

polyhedra used in determining priority is not done all at once but

takes place as each object comes into consideration.

The Dicture is assembled by writing images of the priority

ordered objects into a digital frame buffer in reverse priority order,

i.e. "farthest" object first. The generation of the correct image

for each individual object is the responsibility of the model

procedure generating that image. The removal of parts of the image of

one object -hat are hidden by another is accomplished by the overwrite

capability of the frame buffer, and is dependent on the establishment

of a correct priority ordering.

When the entire picture has been assembled it is scanned out onto

the display device. If the framP buffer is capable of distinguishing

areas that have never been written then the background can be added at

display time. Techniques of this type are more fully discussed in the

section on frame buffers.

^^_^-^^^1^^—^^^^^^^^^^^^^-^^^^^^^^^^j^^ig^^^^^^^ii^g

 pjLIW||LJ>l..ll*IOTWmMM npi^p^niiMiiiiw .■||pvi^^|i«i9i'<«|pi|"«v).

56

•

h

Establishment of Priority

A slightly abstract view of the task of generating a priority

list of objects can be described as follows. Each object can be

represented as a node in a directed graph, which will be called the

priority graph. An arc exists between two nodes representing two

objects if one object obscures the other, the direction of the arc

being from the obscuring object node to the obscured. The problem of

generating a priority list can be cast as the topological problem of

mapping the nodes of the priority graph onto distinct points of a

straight line such that all the arcs point in the positive direction

along the line. Clearly, one necessary condition for this to be

possible is that the priority graph contains no cycles. An example of

a configuration of objects leading to a cycle in the priority graph is

shown in Figure 9.

The priority graph, while useful as a representation for talking

about priority, has not proved directly useful in creating an

algorithm for generating priority lists. The technique used here is a

development of that presented by Newell et al, the modifications being

necessary to handle three dimensional objects rather than polygons.

The technique attempts to minimize the number of detailed analyses of

pairs of objects, and never actually generates the whole of the

priority graph.

The method starts by asking each procedure model for its

enclosing convex polyhedron, clipped to the viewing boundaries. This

is used to find the extrema of each polyhedron in the z direction

MMÜM^rt II - - . ^ -^- ^-^ ■flMfe j^^^i^-^-^^gg^ifl - - - - ' — -

mm~m " i_MMmf*m'w?mm'*'* iww» wmn»

57

(i.e. the viewing direction) and to set up various pointers used in

space allocation. The polyhedron itself is than discarded. During

this process a list of all objects not entirely off screen or

otherwise invisible is generated. This list will be transformed into

the priority list.

When the list of objects being -rnsidered is established it is

sorted based on the furthest ■ value, Zfar. of each enclosing

polyhedron. The direction of the list is such that the member having

the nearest Zfar appears at the front of the list, and the one having

the furthest Zfar appears at the end.

For scenes having well separated compact objects, the Zfar sorted

a Objects b Priority graph

Figure 9 Object yielding cvcle in priority graph

— — ■•■

m—mmmm**~~* " '" ' ' ,^" ' » ~- ' — '^r.-'^—Wn'—'■■,.,-»■--.■•?■

\ I

I

58

list is often the priority list being sought. However, this is not

always the case, as the example in Figure 10 illustrates. The sort

would order the objects BA, whereas the correct priority ordering is

AB.

The next phase of the algorithm checks out and, if necessary,

modifies the list to transform it into a correct priority list. This

can be done by working from either end of the list, but since the

present purpose is to render objects into a frame buffer in reverse

priority order, the processing is done by working from the end of the

list corresponding to the farthest Zfar, thereby generating the

priority list in order of increasing priority. At any stage the

element at the end of the list is potentially the lowest priority

element. This postulation is examined and if found to be true then

the element is removed from the list and added to the priority list.

The examination proceeds as follows.

1 e last element of the list P is compared with the set of

elements Q whose Zfar is farther than the nearest z value of P. The

set Q therefore contains all elements that could possibly be obscured

by P. Figure 11 shows an example of P and the set Q.

In order to determine whether or not P obscures any member of Q

the analyses described in Chapter VII are used until a decision is

established. These tests are:

1. Two dimensional boxing

2. Two dimensional polygon overlap

i „^ IM i M

^

jWW—iiMgwmmiiiniMinijiiKiiiM ii.iniwiiiiiij. tiimiiMmmmmm*mm**mmm«mmmm'mimm *m l*.l,.l .!..■....,,. --T™-T-~„T-— —

59

Figure lO Zfar sorted list not correct priority list

Znear(P)

Figure 11 Element P and the set Q it overlaps

W^d ... ,-. _ . „. ^... ii, , ^a^^gm^ammmm^m^i^^^^^^^t^^m^^m^^^^^^^im g

,LIMIL l,ul1 ■' ■ llll^^^^ ■"«■■■ "
—-—™-w-— mm<m**~*m

60

3. Simple three dimensional separator using back faces of Q and

front faces of P

4. Comprehensive three dimensional separator

If these tests fail to establish that P cannot obscure a

particular element of Q. Qi, then the possibility that P and Qi are in

the wrong order is investigated. This only involves repeating test 3

using back faces of P and front faces of Q. Such a case was

illustrated in Figure 10. In such a case Qi is moved to the end of

the list and is treated ar a new P.

Should it transpire that a reordered element belongs to a cycle

in the priority graph, then the above procedure would, after a few

more steps, attempt to reorder the same element again. To guard

against this non-terminating possibility an element is marked when it

is moved. If an attempt is made to reorder a marked element then it

is concluded that a cycle exists, and a different course nust be

taken. This involves splitting the offending element into two or more

pieces in an attempt to break the cycle. Such a procedure is

discussed more fully in the section on Subdivision.

In the implemented version of this algorithm the fact that test 4

is much more costly than test 3 prompted investigation of reordering

after test 3. If this failed then test 4 was entered, which actually

tests for both possible orderings. To summarize, the complete list of

tests carried out to determine whether P obscures any member of Q is:

1. Overlap in z (this defines a member of Q)

2. Overlap in x (2-D boxing)

M^MI^^M^ii^^Md |gUk|^MdjMUH|^^^w^MiU^Miu|i^gM|||MyHi^

I I' ■ "■" ■ ■'■
mm mi ii ■ ■■ in

61

3. Overlap in y (2-D boxing)

4. Overlap of polygons (2-D separator test)

5. P Behind back face of Qi (simple 3-D separator test)

6. Qi in front of front face of P (simple 3-D separator test)

7. Qi behind back face of P (re-order test)

8. P In front of front face of Qi (re-order test)

9. Comprehensive separator test

I

Clippinp

Since the end goal of this algorithm is to synthesize an image of

the scene it is necessary to remove from consideration all parts of

the scene lying outside the viewing cone, see Figure 12. This is

necessary for two types of reasons. The first is that the projection

of points outside the viewcone can cause arithmetic overflow, and

points behind the eye are erroneously projected. The second reason is

not strictly necessary but is a matter of efficiency. It is clearly

wasteful to analyze the relationship between two objects whose images

will be entirely off the screen, or even to consider those parts of

objects whose images will be off the screen. The question arises as

to how, and at what stage, this clipping should be carried out.

The first obvious stage at which clipping could be done is before

the enclosing convex polvhedr.i are generated. I.e. clipping the

objects themselves. This is not desirable for the reason that it is

not always convenient to split an object with an arbitrary plane. For

' i

- -- . . - _ - - - — - -. .- .■■. -- —.^- - .. -- — nr ^i ■(i AMBII Mi

UM 111 MIIHIMMMMMI ^^«■»fP«PliPil«|W™»w^--™^W"l'«IV«P»P«PWiPW

!

62

objects represented by groups of polygons the procedure is fairly

straightforward, but for bicubic patches such a splitting is quite

difficult and could yield several fragments none of which could be

expressed in the same form as the original patches. One possibility

is to transform the existing representation into a group of polygons

and subsequently treat the object as a polygon object, for clipping as

well as everything else.

The second stage at which clipping can be done is on the

enclosing convex polyhedra. The polyhedra can be clipped in the

coordinate system of the objects and then transformed into screen

space. This is a well-conditioned operation, but has the disadvantage

that th«. resulting polyhedra fragments may be larger than is

I

i

Figure 12 The viewing cone

M^äMii^A^MMw^WUiill^MdMiMMiMlMlIiUHMüiiMllllilltflMMtti^^^**^ ^^.^^^^.^^^^^^-.

wim^^******» "'"" i umvi^.m^mmmm***1 «Hi •"■' •' "Tw^m^i^m

63

necessary. Indeed, in an extreme case it is possible that al^ough

none of the object lies in the viewing cone, a part of the enclosing

polyhedron might. In spUe of this drawback the clipping of the

enclosing convex polyhedra is considered preferable because it is

independent of the representations used by the procedure models and

therefore needs to be implemented only once.

The techniques for clipping a convex polyhedron will now be

discussed. It is desirable to represent each polyhedron as a set of

vertex vectors and a set of plane vectors, since both of these sets

are used in the separation tests. The mathematics used here is very

similar to that used by Sutherland and Hodgman (2). Indeed, a method

for clipping a convex polyhedron is to consider the polyhedron as a

set of polygons and to clip each polygon separately as described by

Sutherland and Hodgman. Th-j drawback with this technique is that it

is difficult to avoid clipping every edge twice (since every edge is

shared by two polygons) and to avoid storing every vertex as many

times as it is used by a polygon, especially the generated vertices.

The key to avoiding this duplication of effort and storage is the

edges of the polyhedron. This suggests that the convex polyhedron

should be defined in terms of edges of the polyhedron, which in turn

are defined in terms of vertices. Figure 13. This would facilitate

keeping track of which edges have already been clipped though there is

still a problem of whether interpolated or original vertices should be

referenced by the edges. In view of these difficulties an alternative

method for clipping polyhedra was developed, called the polyhedron

± MtMHAMMIMA^MkM^MMI^tfHMfllttMUlM^^^ ■*■>-—atM^M^*^. -... ^ -- - ^- -. ■ - ■■ ■
__ mmmm

mim m^**mmm*mimmmmimi! m^mmmmmmm »»—w—wmwuM^i

64

clipper,

The polyhedron clipper takes a more general view of the clipping

process and expresses the end goal in terms of finding the

intersection of two convex polyhedra, namely, the given polyhedron and

the viewcone, which in screen space is a rectangular hox, see Figure

14.

This symmetric view of the clipping process leads to certain

simplifications but carries with it its own set of problems. The

basic idea is that the polyhedron should be clipped by the viewbox,

then the viewbox should be clipped by the polyhedron, and the results

combined to form the intersection. The reason for clipping each

volume against the other is that if the clipping of the polyhedron by

the viewbox only actually clips its edges then newly formed vertices

in the corners of the viewbox will be missed. Examples of these are

indicated in Figure 14. This is precisely the problem addressed by

Sutherland and Hodgman's polygon clipper. The solution proposed here,

namely that of also clipping the edges of the viewbox bv the planes of

the polyhedron, is conceptually simple and yields the information

required by the current algorithm. If it were necessary to build the

actual polygons making up the clipped polyhedron then this method

would require considerable extension. However, as was mentioned

earlier, all that is required is a set of vertex vectors and a set of

plane vectors. No new planes are generated and so plane vectors

included in the clipped polyhedron are a subset of those in the given

.....-—^.. ^^jUia.^^mMäkmm^ÄäättiuJ.^^L^iiä^iM^k^^.-^ . . dte^wwiMlM^MMHritflMI^^^Hfe ■ ■--- ■—■ - ■—-■

 '' lipW^IBn^ipjP^PWB'lWW.-WWi^'JWVi^'illl'Wllilil.i ■IllJlfipi^BWt^-W^

65

Figure 13 Polyhedron structure

'

TETRAHEDRON

y
VIEWBOX

Figure 14 Intersection of tetrahedron with viewbox

<^^^^^^ i tmmmmm n

i ii n|i^iiiiiii.iui , 11 im 11. in nil i »^■WWIP^I-P^—«ww!»"!—■WIWW-T-- II a j.i . iiimm^mwwmm

66

polyhedron. A plane vector is included in the clipped polyhedron if

either a part of an edge of its defining polygon is within the

viewbox, or if it is the last plane to clip an edge of the viewbox.

The latter condition is necessary in order to handle the case shown in

Figure 15 where the clipped polyhedron contains no edge of the given

polyhedron.

It may be illuminating to compare the proposed method for

polyhedron clipping with the method mentioned earlier, namely, the use

of the polygon clipper modified to avoid duplication of effort and

vertices. The present method is not recursive, but will only handle

convex polyhedra, and is not convenient if definitions of polygons in

the clipped polyhedron are required. The polygon clipper approach

POLYHEDRON VIEWBOX

Figure 15 Polyhedron having no edge inside viewbox

, ^^^^^^^ggigiW^j^^y^gliilyigjgiilij^JIglliMiil^l^M
■ ■■ -_—_ - i

■^«pn^Hnn•>•,«• "'.'i'" .JliuiuW'.wimiTOli" .i«iii"llimi»i.li>.-u 'n^*nTCnill>in«>IIRIP*mWPn« «wnawwwiwpwpwwp—

67

benefits from a recursive implementation, would handle non-convex

polyhedra, and would directly yield polygons in the clipped

polyhedron. If either of these latter two facilities were needed then

the polygon clipper should be used. However, the restricted

requirements of the present application, togetl er with avoidance of a

recursive implementation (which is relevant when using FORTRAN), led

to its choice in the implemented algorithm.

Subdivision

Much of the foregoing has assumed that objects, or rather their

enclosing polyhedra, are disjoint. For many scenes the choice of

objects can be made to ensure that this is the case. However, this is

not always possible (e.g. an automobile entering a tunnel), and even

where it is, the priority graph can contain cycles which thwart any

attempts to construct a priority list. For completeness it would also

be desirable to be able to handle intersecting objects. The proposed

solution to all these problems is subdivision of the objects involved.

Subdivision can be done in many ways, depending on the object

representation used by the model procedure. In the case .if objects

represented by groups of polygons, subdivision can be realized by

bisecting the object into two pieces with a plane. The two objects so

formed have the convenient property that they are separable by the

plane which split them apart.

I

ammiiamalllmmä^^ ■■■■■. ^ — ■

Willl.WpiLIU,ll» im^m—^mmm rmmmmnmm

68

For objects which are simple collections of other objects

subdivision is a logical process which rearranges the group of objects

into two groups. The two groups so formed may not be separable by a

plane.

Objects represented by bivariate parametric patches can be

subdivided parametrir.ally, any other type of subdivision being

considerably more difficult. Again, the two fragments formed will

not, in general, be separable by a plane.

In view of the many techniques for subdivision, it is necessary

that subdivison be one of the functions carried out by the procedure

models. In subdividing, an object may be transformed from one type

into another. For example, a sphere cannot be subdivided into two

spheres. In this case the sphere must either be replaced with two

hemisphere objects, or else turn itself into polygons and be split bv

a polygon splitting algorithm, and from there after always be treated

as polygon objects.

This latter method is the universal solution to the subdivision

problem. If a procedure model is capable of representing its subject

as a collection of polygons then it can always be subdivided. The

requirement that an object can ultimately be represented by polygons

is not necessarily an extra constraint in that it is expected that

most procedure models will use a polygon based algorithm for the

purpose of generating images of their subjects.

The following examples show how subdivision can solve the various

- . - ._..»-. ^^^^^^^^^^ ._.^-

.mtmi^m^^^^^^m^^rmmmmmmmm wtwwmmnmmmmm

: .

69

problems mentioned above, namely non-separable polyhedra and

intersecting objects.

Figure 16a shows two non-intersecting objects whose enclosing

polyhedra intersect. If the arch is subdivided as ahown in Figure

16b, the three resulting fragments are separable.

An example of non-orderable polyhedra, due to a cycle in the

priority graph, was illustrated in Figure 9. A suitable subdivision

of any of the three objects can break the cycle. Such a subdivision

is shown in Figure 17, which generates the priority order Al,B,C,A2.

The problem of intersecting objects, which may be of different

types, is treated next. The enclosing polyhedra of two intersecting

objects will, of necessity, intersect, a fact that will be discovered

when an attempt is made to find a plane which separaces them.

Consequently one, or both, of the objects will be subdivided, and the

fragments treated as individual objects. However, since the objects

themselves intersect, this process will repeat indefinitely.

Consequently, the following action is proposed.

When two conflicting object fragments have been subdivided a

sufficient number of times, they will both be transformed into polygon

objects and treated as a single object. The intersection will then be

treated by the polygon object model procedure when it generates an

image of the compound object. The "sufficient number of times" will

be determined either by fragment size, the size of the image of the

^ai^^^^MMMM^^^^M^^M^^^^^^^^^ timjlmmumiljm.

■UM. ii..iijiji.iiiiN iiwuiiiii. IM iii i ii mi in mm*i^viBwwwp«MP«n ^W^^iWIHIIiii ii I

Figure 16 Resolution of intersecting polyhedra

•

FiRure 17 Removal oC cycle in priority graph

70

nM^^Wa'riiM^M^MMMlii illi i .,^^^^^^g^y^y^^^^ig^i - K^MUMMMMkMiiaAMiMJMiMMat^laltlllM

■^•^W^Bl^W» "" ■■"' " wmm*mm*m ^f II..^)IIJ *mm

71

fragment, or by the number of times the original object has be-n

subdivided.

This approach is in keeping with the philosophy of the algorithm

in that the mainstream of the algorithm seeks to solve the visible

surface problem at a macro level, and is not concerned with the

details of any one object. The mechanism puts the task of handling

the intersection onto the model procedures, where, it is felt, it

belongs.

Frame Buffer

The frame buffer used in the implementation of the priority

algorithm assembles the image in terms of individual picture elements.

Two versions were used, one giving 512 x 512 picture elements and the

other giving 1024 x 1024 picture elements. Even with only 8 bits per

picture element to store intensity the amount of memory this

represents is larger than can be accommodated in the main memory of

the computer being used, a 64K PDP-10. Consequently, the frame buffer

was implemented on disk and is paged into main memory for use.

The pages used are thin horizontal stripes the full width of the

picture. By using an intelligent, but simple, paging algorithm the

disk latency time is reduced to acceptable limits. It was expected

that procedure models would generate their images using a scan line

algorithm, so the paging strategy simply ensures that the page next to

the one beinp used is set up in memory, using double buffers.

 ^ -n ■ ,., | „i _

IIIWIMIII IIIIJMIIIIII iimi^ii.i ^:ip.iwwi<<igi>|i|'.wi?Pi. ■iiiAiaiif-^ivpwinHw««!

72

The choice of a picture element frame buffer is probably the

lowest level attainable, and all procedure models should be able to

generate images in the form of individual picture elements. A segment

frame buffer was implemented to handle visible segments such as those

generated by Watkins« algorithm. Such a frame buffer was also used by

Newell et al (8). It was found that alth-ugh the segment buffer was

less demanding on memory space it was comparatively slow, and did

impose an upper limit on image complexity. Also it could not handle

images such as are generated by Catmull's (15) patch rendering

algorithm.

The existence of a picture element frame buffer allows several

rather nice features to be added to the system. The intensity value

of zero is used to indicate that a picture element has never been

written, care being taken never to generate this value as part of an

image. Such a feature allows the generated image to be combined with

various different backgrounds, ranging from a uniform intensity to a

scanned-in photograph. This is done by putting the background into

another frame buffer and then overwriting it with the generated image,

taking care not to overwrite with zero. This facility can also be

used to save much time in an animated sequence of images. If the

background is static but the foreground is moving then a sequence of

images can be generated by saving the background, whether computer

generated or not, and then for each frame taking a new copy of the

background and overwriting it with the newly generated foreground

image.

^^^^u^^^.^^d^^^^^M^a^MM^ttlMlflMHMIMMHkiWMiMiM ___ -^

 ■"■"""■'" ""'I """""' ■inM«anaMwniuii n i i. -i IUI n. «w ■■•

73

This technique can be extended to several layers provided that

the priority ordering of whole layers can be established. One

possibility for determining this priority, and the contents of each

layer, is to examine the priority lists of several frames for

occurences of common groups of objects known to be static relative to

the picture. Such an exercise is perhaps not so unreasonable if one

notes that frame-to-frame coherence can be achieved by using the

priority list from one frame as the initial list for the subsequent

frame. As the priority ordering for the new frame is checked, any

unchanged groups of .static objects can be detected and separated out

as potential static layers for subsequent frames. The development and

implementation of these ideas is considered outside the scope of this

paper.

Implementation Notes

This section presents some of the techniques used in the

implementation of the algorithm. The implementation was written

mainly in FORTRAN, with some assembly language routines where

necessary. This choice was made mainly for reasons of portability, at

the cost of some convenience. It was. thought that the lack of

recursion, list processing facilities, and clumsy overlay facilities

would be a major problem, though this has proved not to be the case,

and the system is capable of demonstrating most of the features

described.

k^ y|H|gUMU*tatfHMMnMh^Hi^^^h'.^^^^^^^MM Mdi^MiliftJIlliiaillJMi

!

74

The procedure models are implemented using the structure

described in Chapter VI and Figure 6-1. namely model procedure, model

instance and object instance. In the absenc of a convenient overlay

facilit> the model procedures are loaded permanently into the system.

If a new type of procedure is needed the system has to be reloaded.

This restriction could be removed given a simple, one level overlay

facility since the only routines to be overlayed are the model

procedures.

The model and object instances are implemented using a stack in

which each instance is represented by a contiguous block of words .a

the stack. Each model instance has a logical pointer to its model

procedure, and each object instant has an actual pointer to its model

instance. The term "stack" is not Ftrictly correct, although space is

allocated in sequential order. Many intermediate computations are

carried out in true stack form using free space beyond t\m last

allocated block. When a block is deleted it is simply marked as such.

The structure is such that a simple garbage collection procedure can

compress out the deleted block« when necessary.

Each model instance holds its enclosing convex polyhedron in ».he

polygons, edges and vertices format illustrated in Figure 13. The

transformed, clipped polyhedra are not held with the associated object

instances, but are built on top of the stack when needed, and are

referenced by the object instances. Tne format of the transformed,

clipped polyhedra is a list of plane vectors, a list of vertex

vectors, and a list of pointers to the vertex vectors to denote the

, ■ ■ ■ ■ - ■mait - -' -

75

two dimensional enclosing polygon, which is derived directly from the

transformed, clipped polyhedron, not from the object itself. When an

object has been established as having the next highest priority, the

transformed, clipped polyhedron and polygon are marked as deleted, to

conserve space.

The method used by all procedure models to generate images of

their subjects is Watkins' algorithm. This implies that each

procedure model must be capable of representing its subject as a group

of polygons, although the whole group need never all exist at the same

time.

The hardware Watkir.^ processor and display devices used are

connected to a single-user PDP-10 computer and therefore actual image

generation is carried out on that machine, using private disk packs

for the frame buffer. However, the generation of the priority ordered

list of objects does not use any special hardware and so is normally

carried out on a time-shared PDP-10, although it can also run en the

single user machine. This has meant segmenting the system i:.co two

phases, the first one to generate the priority ordered list, and the

second to generate the image. This subdivision has proved fairly

convenient, although it necessitates saving the priority list between

phases.

Li
---•" k^M

B

CHAPTER IX

EXAMPLES OF US: OF THE PRIORITY ALGORITHM

This chapter is included both to illustrate the types of scenes

that can be processed by the priority algorithm described, and to give

some examples of ways in which objects can be represented as procedure

models. Classes of representations which have been implemented as

procedure models include: collections of polygons; axisymmetric

objects where the profile is represented as a list of vertices;

spheres; collections of Bezier bicubic patches; parameterized office

buildings; groups of objects each one being represented by any of the

previous models; and automobiles represented as a special group

defining half the body and two wheels. The use of FORTRAN prohibits

groups from being defined as collections of groups.

Figure 18 s. ws an automobile body represented as a collection of

polygons. This representation was generated by taking measurements

from an actual automobile. It would be difficult to generate a higher

level representation, bivariate patches for example, since much

information has been lost in the polygonal representation. However,

the fact that the automobile body is symmetric about a vertical plane

may be exploited, since only half of the body need be stored.

I J.. -. Mk. ■ ■-- - Himtimia&miMmthtmm laaiuMiMiüia&.

\

73

It was desirec to put wheels on the automobile. By using a

simplified representation, an automobile wheel was modeled as an

axisymmetric object, Figure i9. The procedure model repesentation of

axisymmetric objects has the capability for generating the number of

sectors used to approximate the circular cross section, based on the

size of the image of the object. This achieves economies in image

generation of such objects.

In order to define an automobile with wheelp, a group

representation is used. The model includes a set of three references

to the component parts of half an automobile, namely, half the body,

the front wheel, and the rear wheel. Such a collection of components

is shown in Figure 20. The generation of an enclosing convex

polyhedron exploits the fact that automobiles are generally

approximately box shaped, and do not normally get very close to other

objects. Consequently, a minimum volume enclosing rectangular box is

used, being generated from the maxima of the extrema of the three

component parts, and accounting for both halves of the automobile.

Image generation of the whole automobile is carried out

separately on the two halves. Knowing the equation of the symmetry

plane, it is a simple matter to determine which naif of the automobile

is farthest from the eye. An Image of this half is first generated

and written into the frame buffer. Then an image of the nearer half

is generated and written into the frame buffer, correctly overwriting

any parts of the image of the first half. This process may be thought

of as a special purpose priority algorithm tailored to this particular

 * - ~- —- '- "■^ ^^u^^^ut^j^t^t^^^^.^^,^
■■■-" ■■■ ■

79

class of objects. The whole automobile is shown in Figure 21.

The above two part image generation process could be applied to

any object exhibiting mirror symmetry. However, even the simple

representation of an automobile used here is not strictly symmetric,

in that if the front wheels are turned then they should both turn in

the same direction. Figure 22. 5iv«n the procedural representation of

the automobile it is a relatively simple matter to include the angle

of turn as a parameter, and to negate this parameter when generating

the image of one of the halves. The inclusion of such a constraint in

a more general purpose model of symmetric objects would be quite

difficult.

As an example of a class of objects which can be described by a

relatively small nu^er of parameters. Figure 23 shows a row of

buildings. Each building is described by 12 parameters to specify

such things as number of floors, number of windows per floor on front

and side, window dimensions, material properties, etc. The enclosing

convex polyhedra are always rectangular boxes, and are generated by a

simple arithmetic computation involving window dimensions, number of

floors etc. Image generation exploits the fact that in any view at

least two, possibly three, walls will not be visible. The

determination of such invisible walls is determined by examining the

plane equations of the individual walls. For any wall found to be

invisible, no part of that wall is considered during the image

generation process. This elimmation of whole walls by a single

^l

Figure 22 Wheels turned

Figure 23 Row of buildings

■ ■ .1 ■ - ,,.:■. .1^...^^. -
 ■ - - — - - ■■- -— -~. J

81

operation makes possible considerable economies during image

generation.

An important class of object representations which, it is felt,

should be included in any three dimensional object processing system

is the bivariate patch description of arbitrary curved surfaces. Such

representations have been developed specifically to facilitate the

description and modification of arbitrary shapes. It would seem

desirable, therefore, to process such forms directly, as opposed to

transforming them into some other representation. It transpires that

the formulation of polynomial bivariate patches introduced by Bezier

(20), ind later generalized by Riesenfeld (14), lends itself directly

to the requirements of the hidden surface algorithm presented.

Tn Bezier's formulation, a patch is specified in terms of a mesh

of control points. An example of such a mesh is shown in Figure 24,

for a bicubic patch. The mesh may be thought of as an approximation

to the patch, the- precise definition of the relationship being given

by Bezier's formulation. Some lines in the patch corresponding to the

mesh shown in Figure 24 are shown in Figure 25.

Details of Bezier's formulation are not given here. However, one

important property of the relationship between the mesh and

correponding patch will be given. This is that the patch is always

entirely contained within the convex hull of the control points.

Hence, if a convex polyhedron containing all the control points can be

found, it can be used as the charaterizing polyhedron enclosing the

. ■.*::.-i ,..:
- ■-

IIIMl—ÜMl—HilllltliiniMIMlI'H 1 ■■"'■ - --'■^-"•~~ ^-

B2

Figure 24 Mesh for Bezier patch Figure 25 Mesh with patch

j

Figure 26 Meshes defining jug Figure 27 Parametric lines on jug

-- - --iiiiiUmrttfuiliuilMMirtllir ■imiiHlllÜiiitMiiiiM—liifhi nimn timl maiitia

85

patch. Moreover, if the convex hull of the control points is used,

its shape will resemble that of the convex hull of the patch itself.

A simple extension of this result is that the convex hull of the

control points of a collection of patches contains all the patches,

and may therefore be used as the enclosing con-ex polyhedron for the

collection of patches. This extended result solves an otherwise

difficult problem, that of constructing an enclosing cor.vex polyhedron

which is a reasonable approximation to the convex hull of the curved

shape. An example of a collection of meshes and the corresponding

patches defining a small jug is shown in Figures 26 and 27.

As was mentioned earlier, the technique used to generate images

in the currently implemented algorithm is to derive a polygonal

approximation to the object then to use Watkins' algorithm. For

bivariate patches the polygonal approximation is derived by splitting

up each patch into a rectangular array in parametric space, then

approximating each parametrically rectangular fragment with a

quadrilateral constructed on the corners of the fragment. Examples of

images generated using this technique are shown in Figure 28. As in

the case of axisymmetrix objects, it is possible to vary the degree of

approximation depending on the image size of each patch, although this

has not been implemented. Another possibility for generating images

of bivariate patches would be to use an algorithm developed

specifically for the task. Catmull's (15) algorithm is an example.

Figure 29 shows an image of a scene involving multiple objects.

 ''---—"- -■ in iiixüüiiilitiniiiiiwiMIll—l i iiiinnn- - -■■'-■

i

i

85

The various pieces of crockery, the spoons, and the drapes are modeled

using bicubic Bezier patches. The teapot stand is modeled as an

axisymmetric object, and the table top and mat are modeled using

polygons. The bodies of the teapot and cups, and the saucers, could

have been modeled as axisymmetric objects, but were not due to the

absence of a design system capable of using these two forms tog jher.

A design system based on procedure models could, of course, have

fulfilled this need.

Figure 30 shows an array of pawns on a large checkerboard. Each

pawn is modeled as an ixisymmetrix solid, and the checkerboard is

modeled using polygons, though a more strongly procedural model may

have been more appropriate for such a simply generated object. The

fact that all the pawns are identical was not explicitly used by the

algorithm, except that only one profile had to be stored. The number

of polygons generated during the creation of this image is in excess

of 180,000.

i —— MMMliHilMMiilriMMU taaMMHHMMMft ._

I

0)
v.

J3
M
H

V
U

Eo
tu

 ■■■ - ■■■ - - ■—' '-'■ -
■..J.^-^^. -,. ..-^..,.

■»

c

fa
DM

CO

o
en

3
00

■irig—»I MM mi J^, "- "-

go
c

a-.

o
m

u
3

BL
' ■ ' - - —-—»—Ja»»!.

 " ■■■"" ■" ■
mppHHPpiMPHapiPHIHPM^^r-wiiiwiiuj.uMiuiiiiiiw.aMia

1

,

CHAPTER X

A CATEGORIZATTON OF PROCEDURE MODELS

The types of procedure models found to be convenient in digital

image synthesis form a highly varied class. At one extreme the

procedure model can be rich in stored data, and the model procedure is

essentially a data manipulator. At the other extreme the only stored

data might be a few constants embedded in the model procedure, and the

object, its image and properties, are all generated when required.

Another attribute which affects ehe classification of procedure

models is fhe degree of parameterization used, and indeed, the range

of objects which can be represented by the model procedure. The

technique used to generate an image of the object is another factor bv

which procedure models may be distinguished.

In an attempt to define these various attributes the following

list is given, together with a brief explanation and some examples.

Strongly Procedural - the model procedure generates properties and

images of the object by computation rather than by access to a

voluminous data base. Examples include regular geometric

shapes such as spheres, cylinders etc. Objects defined using

surface patcher can be included in this category.

Data Rich - in some senses this is the opposite of Strongly Procedural

though the use of non-trivial processing by the model

procedure is not prohibited. This category is intended for

AjU^A,^^^^ - - — ^ A,

—" ■"T mmmmm • ■ " ' - -"r—»■"■

!

89

procedure models which represent their subjects by a fairly

conventional numerical data base. An example of this type is

the use of polygons to represent objects.

Generator - The model procedure does not represent any one object but

provides the processing capability to generate an object from

suitable parameters. A B-spline patch interpreter falls into

this category in that given the control points for a

collection of patches the model procedure can generate

properties and images independent of what object the patches

represent.

Strongly Parameterized - The form of the represented object can vary

widely depending on the parameters, but the class of objects

is known. An example in this category is a building generator

which might have as parameters the type of building (office

block, motel, home) and the number of floors.

In conjunction with the visible surface priority algorithm

presented, two further categories of procedure models may be

identified, based on the technique used to generate images.

Priority Image Generation - The technique used to generate images is a

priority technique which can therefore use the frame buffer as

an active element in generating the image. Image generators

which use the algorithms of Srhumaker et al, or Newell et al,

come into this category.

Independent Image Generation - Effectively the opposite of Priority

Image Generation. This category covers image generators which

produce their images independently of the frame buffer.

- -- __ mM - -- -- •-' ■ - mk^mM

nwnrwupfwiwB ■ "ll1- u" _' .■■ mi.» ■nu •»■PI ,pw>i.rnf«ivir«MpfnMpanw^ 'l*W.<,H'IWI l-l Ml (pi ..^- .. .>ini.l

9Q

Watkins' algorithm provides an example,

It is clear that any one procedure model might fall into several

of these categories. However, such a categorization can be useful in

describing a given or proposed procedure model, and can be used to

generate guidelines as to just how a required procedure model should

be structured.

. - .. _. . - . .. i

— —■ mfvrWf**'!*'!***'***'***^**™' IU"<1

CHAPTER XI

CONCLUSIONS

The properties of procedure models as applied to the

representation of three dimensional objects, for the purpose of

synthesizing images in the form of shaded pictures, have been

invesuigated. It has been shown that procedure models facilitate the

processing of scenes of far greater complexity than has pro/ed

practicable using data base modeling techniques. The generality and

flexibility of procedure models has enabled a system to he implemented

which can be, and has been, incrementally exp&nde-l to accomodate new

model formulations.

It is believed that the benefits of procedure models are not

confined to the field of image synthesis, but have considerable

relevance in many uraas where modeling of three dimensional objects is

of conce.n, such as computer aided design, computer aided manufacture,

stress analysis, dynamics simulation, etc. The investigation of this

hypothesis, while outside the scope of this paper, should provide a

stimulating, and hopefully fruitful, research project.

.

._ _... .^ ^ - - - — ^ - UMMMUMAMHWiMMM^.MiMM^AMMMU IÜ

mmmmmm**1 mmmmmnmmnmw^'. > nnuntimmmißmtmmm

APPENDIX A

ENCLOSING CONVEX POLYGON

Given a set of points, P, in two dimensions the problem is to

find the minimum area convex polygon enclosing all the points, i.e.

the convex hull. An algorithm, suggested by Rudolph Krutar, is given.

The points, P, are considered one at a time in a serial manner.

Suppose, at some stage of the algorithm, that the convex hull of the

first i-1 points 3 i P has been found. Let this polygon be represented

in terms of its vertices and the line equations of its edges, defined

such that all line normals point inside the polygon. Point Pi is next

considered.

Pi is checked against each line equation to determine on which

side of each line it lies. If Pi lies on the inside of every line

then it is inside the current polygon and is not considered further.

However, if Pi lies outside at least one line, then the current

polygon must be extended to embrace Pi.

Consider the situation shown in Figure 31. Pi is found to lie

outside the lines corresponding to edges E2, E3, and E4. Due to the

convexity of the polygon the set of edges for which Pi is outside will

always be consecutive edges of the polygon, in a cyclic sense. The

extension of the polygon to embrace Pi involves replacing the set of

MMMgiiiii M|| -^^^—-^-._ - -- ■ iHiiMiiiliittitaiteäHiM - - -■ j mim

HIWMMJiail. I ■ I ,l„ «„■,,.,, ■,!,.■„ , ,i ., ,., „< «> 'I' ' <«"'ll 11 "111 H^««^m^9«pn9«ii|iiii Jin i "»" — . -. m ^,

93

edges having Pi outside with two new edges, formed from Pi and the

polygon vertices at the ends of the set. In Figure 31 this involves

replacing edges E2, E3 and E4 with edges V2-Pi and Pi-V5.

The aHove process is repeated until all vertices of P have been

considered, at which time the current polygon is the convex hull of

the set P.

To start the algorithm an initial two sided polygon, constructed

on any two non-coincident points, is created, k better starting

polygon can be achieved by using the two points having maximum

separation in one of the coordinate directions.

% Pi

Figure 31 Current polygon and test point Pi

i|||||ttHilMilWiaMkMltt ■ lir->—»-^j^^^jM—^^fca^a«.^^fc—^.-^^-^ ~,* ~— ■—-

.Iipnmill ■.■■IIMIIMH IIIWIJIIMII IIIUMIIIHipi HIIWI I ..■.........<. *.. ■ - -■——^r- <-..**. --T

APPENDIX B

ENCLOSING CONVEX POLYHEDRON

Given a set of points, P, in three dimensions, the problem is to

find the minimum volume convex polyhedron enclosing all the points,

i.e. the convex hull.

The method used is a direct extension of that given for enclosing

convex polygons in Appendix A. The current polyhedron is represented

by its vertices and plane equations of its faces. Each test point.

Pi, is checked against each plane equation to determine the set of

faces for which Pi is outside. The replacement of this set of faces,

in order to embrace Pi, is not so straightforward as in the two

dimensional case, since there is no simple ordering of the faces. It

is necessary to pair adjoining edges of faces of the set to find the

boundary edges, which are the non-paired edges. The new faces are

then generated using Pi and each edge of the boundary in turn.

To start the algorithm an initial two-sided polyhedron

constructed on any three non-colinear points is created.

. ^L -. J- - - - --■-'-.-- .„^^..„^„^ja^j^^. , . ^

mm—~^~^~^—^ mmm lupmawa 11 n in.n ■APIll^B^WMllllUil.! l«l|UUl

APPENDIX C

TWO DIMENSIONAL SEPARATOR THEOREM

The theorem states that if two convex polygons in the plan^ have

no area in common then at least one edge of at least one of the

polygons is a segment of a line which separates the two polygons.

In spite of the apparent obviousness of the correctness of this

theorem, no correspondingly simply proof has yet come to the attention

of the author. Proof is essentially by construction.

Consider a line joining two points, one inside each of the given

polygons, A and B. The centroids of the vertices of each polygon

provide one such pair of points. Now consider moving the two polygons

towards each other along this line. The two polygons will toucri in

one of three types of configurations, illustrated in Figure 32. A key

edge will be defined for each these cases.

Consider cases a and b. In case a the key edge is the edge of A

making contact with a vertex of B. In case B, the key edge is either

of the edges in contact. It is proposed that the key edge, as defined

above for cases a and b, is the sought after edge whose extension

separates the two polygons in their original positions. Clearly, the

key edge has the effect of separating the two polygons in their

touching positions. If the two polygons are moved back to their

original positions, the polygon not containing the key edge must move

away from the key edge, thereby maintaining the separation of the two

■ - ■ ■ ■ ■ -■■ —

.___.._,.__„

■PR UM, i jNiippiinu iiiiiiiMiiiiii»«iji]wwiiwppiwiipwjippawpiwHiBiiiwmii» .»i •^^— «mwjp*

96

•

polygons by the key edge extended to a line.

Case c is considered separately. Four edges meet at the point of

contact. Consider either pair of opposite edges, e.g. E1,E3 or E2,E4

in Figure 32. One polygon i? inside the angle formed by the two

edges, and the other polygon is outside. The key edge is the edge

belonging to the polygon outside the angle. If the edges are colinear

then either edge may be used as the key edge. The argument that the

key edge is the sought after edge whose extension separates the two

polygons is the same as for cases a and b.

Figure 32 Contact between two polygons

'' -■ - .—.. _._ _

imm**mmvmiwii i in " ■ - ■ - < >» ■ m n HI ■ mum'mmwmm «mm-m •»•m « mn>nm'm I m m i.im.w

LIST OF REFERENCES

1. Sutherland, I.E.; Sproull, R.F.; and Schumaker, R.A. "A

Characterization of Ten Hidden-Surface Algorithms." ACM Computing

Surveys 6 (March 197A).

2. Sutherland, I.E., and Hodgeman, G.W, "Reentrant Polygon

Clipping." Comm. ACM 17 (January 1974):32.

■■

: !

3. Mahl, R. "Visible Surface Algorithms for Quadric Patches." Dept.

Comp. Sei., Univ. of Utah, Salt Lake City, Tech. keport

UTEC-CSc-70-111, December 1970.

4. MAGI, Mathematical Applications Group Inc. "3 D Simulated

Graphics." Datamation 14 (February 19b8):69.

5. Warnock, J.E. "A Hidden-Line Algorithm for Halftone Picture

Representation." Dept. Comp. Sei., Univ. of Utah, Salt Lake

City, Tech. Report TR 4-15, 1969.

6. Watkins, G.S. "A Real-time Visible Surface Algorithm." Dept.

Comp. Scl., Univ. of Utah, Salt Lake City, Tech. Report

UTEC-CSc-70-101, June 1970.

\
7. Schumaker, R.A.; Brand, B.; Gilliland, M.; and Sharp, W. "Study

1 •ii*mAtt*ä*utiLi*M**ii**L. ■^^.- - .._ ^ . _ . MMMMMIMMlfllM ̂ ^ll^^^^^^^^^AMM^MUgj^^l^^^^^^^l^^^^^^^H

mm mi npi "I" HI" I ■JFP" J w < .'«^'^"^■inpir^ip

98

for Applying Computer-Generated Images to Visual Simulation." US

Airforce Human Resources Laboratory, Tech. Report AFHRL-TR-69-14,

September 1969.

8. Newell, M.E.; Newell, R.G.; and Sancha, T.L. "A Solution to the

Hidden Surface Problem." Proc. ACM National Conf. (August 1972):

443.

9. Romney, G.W.; Wylie, C; Evans, D.C.; and Erdahl, A. "Halftone

Perspective Drawings by Computer." Proc. AFIPS FJCC 31 (1967).

;

10. Bouknight, W.J. "A Procedure for Generation of Three-Dimensional

Half-Toned Computer Graphics Representations." Comm. ACM 13

(September 1970).

11. Gouraud, H. "Computer Display of Curved Surfaces." Dept. Comp.

Sei., Univ. of Utah, Salt Lake City, Tech. Report

UTEC-CSc-71-113, June 1971.

.

12. Bui-Tuong, P. "Illumination for Computer-Generated Images." Dept.

Comp. Sei., Univ. of Utah, Salt Lake City, Tech. Report

UTEC-CSc-73-129, July 1973.

13. Roberts, L.G. "Machine Perception of Three-Dimensional Solids."

MIT Lincoln Labor-^ory, Tech. Report TR 315, May 1963.

- - - - - .L..^.^L.,.. ,_.._ ■ ,.^ ^

w pp^iwwp wm^'i^^mmm^i^mifmmmmmmmmmmmmm'^fimiHim IIIPW^I" i, n i iii."^^«^ppnip«|LH

99

1A. Riesenfeld, R.F. "Applications of B-spline Approximation to

Geometric Problems of Computer-Aided Design." Dept. Comp. Sei.,

Univ. of Utah, Salt Lake City, Tech. Report UTEC-CSc-73-126,

March 1973.

15. Catmull, E. "A Subdivision Algorithm for Computer Display of

Curved Surfaces." Dept. Comp. Sei., Univ. of Utah, Salt Lake

City, Tech. Report UTEC-CSc-7A-133, December 1974.

16. Hewitt, C; Bishop, P.; and Steiger, R. "A Universal Modular

ACTOR Formalism for Artificial Intelligence." Proc. Third Int.

Joint Conf. on Artificial Intelligence (August 1973):235.

, 17. Winograd, T. Understanding Natural Language. New York: Academic

Press, 1973.

18. Birtwistle, G.M.; Dahl, O.J.; Myhrhaug, B.; and Nygaard K. SIMULA

BEGIN. Philadelphia, AUERBACH Publisher«? Inc., 1973.

19. Smith, J.M., and Chang, P.Y. "Optimizing the Performance of a

Relational Data Base Interface." Paper presented at SIGMOD

Workshop, San Francisco, May 1975.

20. Bezier, P. Numerical Contr 1-Mathematics and Applications,

Translated by R. Forrest. London: John Wiley and Sons, 1972.

 -< -■■ -.

^mmm*9^m '• '■•l ■"■"U
111 ' npsmapfjawi^ij. MINlUlil« I..Ml^

t

ACKNOWLEDGEMENTS

1 wish to express my deep appreciation to David Evans as a source

of continuous help and inspiration during the past two years.

I am also indebted to Ivan Sutherland for considerable help in

formulating the background and uiotivation for this work, and without

whom I would not have .ome to Utah in the first place; Steven Coons

for many stimulating conversations; Rich Riesenfeld for help in

preparation of the manuscript and for putting some of the key ideas on

a firmer basis; Tom Stockham who has helped me to appreciate the wider

relevance of this work; and Mike Milochik for photographic assistance

over and above the call of duty.

In addition I am grateful to all the students and colleages whose

interest and assistance have been an enormous help.

Last, but by no means least, I thank my wife, Sandy, for her

constant support and understanding.

i

b^^^^MggHHH| _. , ^. .

w " ' ' ' ' --—^ ■'. "- ' ' •W wmwm

.

imri.ASSTFTF.n
SECUBITY CLASSIFICATION OF THIS PAGE flWiwi Dal» Enl«r»d)

REPORT DOCUMENTATION PAGE
\. REPORT NUMBER

UTEC-CSc-76-218 *s 2. GOVT ACCESSION NO.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TIT LE fand Subtltl»)

The Utilization of Procedure Models in rlgital
Image Synthesis. ^^

7. AUTHORf«;

Martin Edward Newell

5. TYPE OF REPORT a PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERf»J

DAHC15-73-C-0363

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Department
University of Utah
Salt Lake City, Utah 84112

It. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 22209

1 I. MONITORING AGENCY'^AM1; 4 ADDRESSf« dlHttuM from Controlllnt Olflc»)

10. PROGRAM ELEMENT. PROJECT, TASK
ARE^ « WORK UNIT NUMBERS

ARPA Order //2477

12. REPORT DAT"-
Summer lfJ75

13. NUMBER OF PAGES

101
15. SECURITY CLASS, (ol M« ttport)

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol Ihle Raport)

This document has been approved for public
release and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (ol the abttract entered In Block 10, II dlllerenl from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS fConKnue on reverse tide II necessary md Henllly by block number;

3-D objects, passive data base, modeling technique, procedure models

ACT CConl.'nue on reverse aide II necessary and Identify by block number)

vMany algorithms have been developed for synthesizing shaded images of
three dimensional objects modeled by computer. In spite of widely differing
approaches the current state of the art algorithms are surprisingly similar
with respect to the richness of the scenes they can process.

One attribute these algorithms have in common is the use of a conventional
passive data base to represent the objects being modeled. This paper postu-
lates and explores the use of an alternative modeling technique which uses

 XP
DD , ^NRM

73 1473 EDITION OF 1 NO/ 65 IS OBSOLETE UNCLASSIFIED U-«!

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

^"'1
^-—, w'ii <>i jHvninppiMnpmpiaiiwvm

i

SECURITY CLASSIFICATION OF THIS PAOEfWn P«" Enfred)

TT (con't) 201 Abstract

procedures to represent the objects being modeled. The properties and
structure of such "procedure models" are investigated and an algorithm

based on them is presented.

m
\

—

SECURITY CLASSIFICATION OF THIS PAGEftWi«" Dml» Enltfd)

