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ABSTRACT 

Many algorithms have been developed for synthesizing shaded 

images of three dimensional objects modeled by computer. In spite of 

widely differing approaches the current state of the art algorithms 

are surprisingly similar with respect to the richness of the scenes 

they can process. 

One attribute these algorithms nave in common is the use of a 

conventional passive data base to represent the objects being modeled. 

This paper postulates and explores the use of an alternative modeling 

technique which uses procedures to represent the objects being 

modeled. The properties and structure of such "procedure models" are 

investigated and an algorithm based on them is presented. 

-"'"■•^'; ---•-■■' ■*-;..--.■.——i^—^-.— —L-a'-^^-m—^""—--- •- -  —  —'«' 



wmmmmmm^mmmm^ pppmpmMilpqnmmMii luiiuw^am^^w 

CHAPTER I 

INTRODUCTION 

For over a decade considerable effort has been expended in 

devaloping techniques for synthesizing visual images of scenes modeled 

by computer. This effort has advanced the state of the art from the 

generation of simple line drawings of two dimensional objects to the 

production of systems capable of synthesizing full color, real time, 

perspective, shaded, visible surface images of three dimensional 

objects with a startling degree of realism. 

This paper is concerned with the synthesis of shaded pictures of 

three dimensional objects. Several algorithms have been developed for 

this task, the techniques used being many and varied. However, 

certain similarities can be drawn between the various algorithms. The 

scene to be rendered is modeled in the computer. The nodel is then 

processed by the algorithm, sometimes into another intermediate model, 

and is ultimately transformed into a picture. The types of models 

used vary, but they may all be described as "data base" models 

characterized by coordinate and structure information. 

In the interest of limiting the scope of the algorithms, the data 

base is always constructed from a single primitive form, e.g. planar 

polygons, quadric surfaces, bivariate surface patches etc.,  planar 

  kiHMilMliMikl_^M -^-_»>-^MMMUMaiM*^M^*l«»-^~^ , ■——,      . .■■,_.   
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polygons being the most commonly used. In their paper which compares 

ten hidden surface algorithms all of which use a polygonal primitive 

representation, Sutherland et al (1) point out that all the algorithms 

studied have a similar capacity in terms of scene complexity and 

processing time. 

In view of the widely differing techniques used, one is led to 

ask whether there is some common factor inherently limiting all these 

algorithms. This paper proposes that there is such a factor, and that 

it is in the form of the model used by all these algorithms, and 

indeed by the algorithms which use other passive primitive forms of 

representation. This proposal is based on the belief that the loss of 

information inherent in requiring that everything be represented in a 

common primitive form is a major factor limiting the capability of 

present approaches. 

This paper ^.vestigates the use of an alternative technique for 

modeling, namely the use of active procedures for the representation 

of objects for the purposes of synthesizing shaded pictures. Models 

of this form will be called Procedure Models. Through the use of 

procedure models images of scenes one hundred times more complex than 

the previous practical limit have been generated. 

Structure of the Paper 

This paper may be divided into three main parts.  Chapters II and 

III describe existing techniques for image synthesis, and are not 

'—   -"—'■■ --"-  inirtmiMüiil—ü 



ll^    i ^.ilWUiPI«^liPWBPi*WW^™l,,pi   '      '-IM*'     ""   ^"^^PPWPWPPWPPBPW"« Pipi   HLHIipnili.iM. 

3 

essential reading for an understanding of the other chapters by 

persons familiar with the field. Chapters IV through VII deal with 

procedure models and their relevance to three dimensional analyses. 

This part is of a general descriptive nature, and presents ideas of 

general applicability. Chapters VIII and IX describe a visible 

surface algorithm based on procedure models, and may be ignored if 

only the general ideas are of interest. Chapter X attempts a 

categorization of procedure models as used in digital image synthesis. 

—     ■   ~ —^^-.1Mi|t      .   
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CHAPTER II 

EXISTING VISIBLE SURFACE ALGORITHMS 

There are many ways to categorize the existing published visible 

surface algorithms. This chapter does not attempt a complete 

categorization, or even a complete list of published algorithms, but 

is intended to provide some introduction and background to the 

techniques and terminology referred to in later chapters. 

The process of generating a visible surface image of a scene  can 

be divided into five tasks: 

a) transformation of individual objects into correct positions in 

the scene 

b) application of a perspective transformation to simplify many 

of the subsequent visible surface computations 

c) clipping to remove parts of the scene whose images would  lie 

outside the bounds of the display device 

d) determination of the visible surfaces 

e) rendering an image of the visible surfaces. 

By using a homogeneous coordinate representafon tasks a) and b)  can 

both be implemented as matrix multiplications. Tasks a), b) and c) 

can be regarded collectively as sr me preparation, and are discussed 

further below. 

Task d). the determination of visible surfaces, is what largely 

  ■ ■   ■ ■ ■ - ■     mm 
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distinguishes between the various visible surface algorithms. 

Task e) actually generates the image, a process which proves to 

be far more difficult tian at first might b- expected. 

In some algorithms tasks d) and e) occur concurrently. They are 

separated here to assist in explanation. Likewise, task c) is 

sometimes not explicitly done, its effect being a part of tasks d) or 

e). 

I 
.. 

Scene Preparation 

Excellent descriptions of the process of scene preparation for 

algorithms which operate on polygons are given by Sutherland et al (1) 

and so only a brief review is given here. Many of the techniques 

ap^ly equally to other algorithms. 

Transformations of objects, for the purposes of defining 

position, orientation, scale, and perspective, can all be implemented 

as matrix operations in homogeneous coordinates. The transformation 

of a point (x y z), in "ob.iect" coordinates can be effected by forming 

the product of the extended homogeneous vector (x y z 1) with the 4x4 

compount' transformation matrix: 

(x y z 1)  r r r p = (x' v' »' W) 
r r r p 
r r r p 
t t t 1 

(1) 

where the partition indicated with  'r'  may be  interpreted  as  the 

rotation and  scaling,  V the translation, and V the perspective. 

„j-^1^^—^^^^^^ 
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The resulting 4-vector must be divided through by w' to reduce  It  to 

three-dimensional "screen coordinates", (X Y Z). That Is: 

X = x'/w'    Y = v'/w'    Z = z'/w' 

It  Is  remarkable  that  the  perspective  transformation  and 

subsequent division,  an overall non-linear transformation, has the 

properties of preserving straight lines, preserving flat planes and 

preserving depth ordering.  These properties permit the determination 

of visible surfaces to be carried out on the transformed and clipped 

objects  as  if  only  an orthographic projection were involved.  The 

objects will have been distorted  so  that  their  orthographic 

projections  are  the same as the perspective projections of the feiven 

objects.  This distortion is illustrated for a cube in Figure 1.   The 

effect is to actually make distant objects smaller. 

The division by w' to generate sc-een coordinates is susceptible 

to overflow,  and in physical terms projects points which are both in 

front of and behind the eye.  It  is desirable no^ only to avoid 

overflow but also to remove those objects, or parts of objects, whose 

images would lie outside the limits  of  the  display device.   These 

problems can be  avoided by  clipping the transformed objects while 

represented in homogeneous  form so that after division only the 

required  parts will  remain.  For example, suppose the limits of the 

display device were -1 to +1 in X and Y, and the limits of interest in 

Z are 0 to 1, a convenient normalized range.  Then the only parts of 

the objects which are of Interest are those which satisfy: 

■— - -^__ 
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-1 < x'/w' < 1 

-1 < y'/w' < 1 

0 < z'/w' < 1 

which for w' 0 gives: 

-w* < x' < w' 

-w' < y' < w' 

(3) 

(4) 

0 < z1 < w' 

These inequalities  exclude all  points  for which w'-.O.  which  is 

normally the required effect.  A suitable algorithm for clipping 

polygons to the above limits is given by Sutherland and Hodgmau (2). 

For algorithms which represent objects as constrained quadric 

surfaces  the clipping and perspective division need not be explicitly 

CUBE, DISTORTED CUBE 

SCREEN 

a  Perspective projection 
b Orthographic projection 

ih^. 

Figure 1 Distortion of cube by perspective transformation 

. .  . - _  _ _ . Wltmr^--^^'i^^~^^^ mtmm 



1 ' wmmmmmmm^^^^f^ ■piWJiHi'iiJ     wwwr" 

carried out.  Quadrlc surfaces can be represented in the form 

P.A.P* = 0 (5) 

and 

P.Ci.P*  >  0 (6) 

where A is the 4x4 matrix of coefficients of the surface, Ci are the 

matrices of coefficients of the constraining surfaces, P denotes a 

point,   (x y  z  1),  on  the  surface,   and P*   its  transpose.     From equation 

(5): 

P.(T.TI).A.(TI*.T*).P*  = 0 (7) 

where T is  any 4 x 4 non-singular matrix and TI its inverse. 

Regrouping: 

(P.T).(TI.A.TI*).(P.T)* = 0 (8) 

If T is interpreted as a 4 x 4 homogeneous transformation then 

P' = P.T 

represents points on the transformed surface.  Therefore the matrix: 

A' = TI.A.TI* 

must represent the matrix of coefficients of the transformed surface, 

which is  simply another 4 x 4 matrix.  This indicates that not only 

are lines and planes preserved by the perspective transformation, but 

also quadric surfaces. 

Clipping of quadric surfaces can be effected by adding the 

relevant constraining plane, written in the form of equation (6). 

Notice that this procedure avoids any explicit division to achieve 

screen coordinates, although generation of images of these surfaces 

implicitly involves division. Algorithms using quadric surf^s as 

their primitive form have been developed by  Mahl (3) and MAGI (4). 

" • ■• "• ■—'- -''"'■  -■—^  ■-• - ■' ^ '- 
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Visible Surface Determination 

An excellent review and characterization of ten hidden surface 

algorithms may be found in Sutherland et al (1). (The terms "hidden 

surface algorithm" and "visible surface algorithm" are often used 

interchangeably). The paper includes some hidden line algorithms, but 

restricts itself to algorithms which operate on objects represented by 

groups of planar, or nearly planar, polygons. 

Sutherland et al divided the hidden surface algorithms considered 

into three classes: object space, image space, and list priority. The 

object space algorithms happen to be hidden line algorithms, which are 

not of primary interest in the present paper. The image space 

algorithms are further divided into area-sampling and point sampling, 

typified by the algorithms of Warnock (5) and Watkins (6) 

respectively. The list priority algorithms are subdivided into a 

priori and dynamic, examples being the algorithms of Schumaker et al 

(?) and Newell et al (8).   A brief  description of  each of  these 

algorithms will be given. 

One of the earliest hidden surface algorithms was that of 

Warnock, which is classified as area sampling, image space. This 

algorithm may be described in terms of the technique of breaking down 

a large problem into several smalle- problems whose solutions may be 

readily determined. In Warnock's algorithm the large problem is that 

of generating an image of the entire scene, or at least that part of 

it which lies on the screen. The smaller problems whose solutions may 

be readily determined are the generation of images of simple scenes. 

. ^^^t*^ i iiMiitii">^im*ihMli g^ygn^^^^ng 



mmm-m^mmmmmmm'mm^mm m mm*-". ....w...,,. iqiqpHfniiuiuiijii m ■ «fn 

i 

10 

The breaking down of the  large problem into  the  smaller ones  is 

achieved by subdividing the scene with planes through the eye, so that 

the resulting sub-scenes will not overlap and can therefore be treated 

independently.   Variations  on the algorithm may be achieved by using 

various  definitions  of  a simple  scene,  and by  using  various 

subdividing schemes.   One well known combination of these variables 

defines a simple scene as either being one containing no polygons  or 

being a  single  polygon which  fills  ^e viewing area.  The basic 

subdividing scheme simply quarters the screen into four  equal  parts. 

Subdivision  is  terminated whe. either a simple scene is achieved or 

the viewing area is the size  of a single resolvable  picture  element. 

The two main problems with Warnock's algorithm are the comparatively 

expensive subdivision of the scene, and the fact that output  is not 

generated in a convenient order for display on a raster scan device. 

The point sampling image space algorithms are t>pified by that of 

Wa-kins,  which  is  a development of two earlier algorithms, those of 

Romney et  al  (9)  and  Bouknight  (10).   All  these are  scan-line 

algorithms, a term which refers to the fact that 'hey all generate the 

image one scan-line at a  time.   This  is  extremely  convenient  for 

display  using a  raster scan device.  The generation of the image on 

each scan-line is achieved by considering the  intersection of  the 

scene with a horizontal plane through the eye and containing the 

scan-line.  This reduces the problem to a two dimensional "hidden 

line" problem on the plane, the "lines" being the intersections of 

polygons with the plane.  It is convenient to solve this problem in a 

left to right fashion tc generate the individual picture elements in 

 —'-^-—^ ^»^>- ^^^^m^mt^m^^mmmtimim 
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an order suitable for display. The techniques used to solve this 

problem constitute the major differences between the three scan-line 

algorithms. Bouknight and Watkins made use of the observation that 

the ordering of edge crossing usually changes very little from one 

scan-line to the next and so the solution on one scan-line can be 

computed incrementally from the solution on the previous scan-line. 

Romney observed that this should be possible but failed to capitalize 

on  it.   This  technique  is  referred  to as scan-line coherence and 

permits significant savings of computation time.   Watkins  algorithm. 

and the associated scene preparation has been implemented in special 

purpose hardware which can generate images of 2000 edge scenes at  30 

images per second. 

The list priority algorithms, which are partially image space and 

partially object space, operate by establishing a priority list of 

polygons. One polygon has a higher priority than another if it 

obscures the other. In a loose sense high priority polygons are near 

the eye. The priority algorithms of Schumaker et al and Newell et al 

differ in the ways in which the priority ordering is computed, and in 

the way it is used. 

By putting certain restrictions on the scenes which could be 

processed, Schumaker was able to generate the priority list for a 

sequence of views very simply, although a considerable amount of view 

independent work had to be done before any images were generated. 

This fitted in with Schumaker's aim to develop a simulation system for 

producing a real time sequence of views of a largely unchanging scene. 

mmmm   _ ^^t. MUMi ■ ■   
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Priority determination uses two ideas which Schumaker refers to as 

clusters -nd linear  separability.  Clusters are groups of polygons 

which, after the removal of  back  facing,  and  therefore  invisible, 

polygons   (assuming  solid  objects).  have a priority ordering 

independent of the view point.  A simple example of  this remarkable 

phenomenon  is  any  closed convex polyhedron, since the front facing 

polygons cannot overlap and so the priority order  is arbitrary. 

Linear separation involves dividing the scene into convex cells with a 

collection of planes such that each cell contains  only  one cluster. 

Inter-cluster  priority  is  then determined bv  finding which cell 

contains the eye, a process which grows linearly with  the number  of 

dividing planes.  To generate an image, each polygon is represented by 

its edges.  For each edge it is determined wVether the  scanning spot 

on the television display is on the Inside or outside of the edge. 

When the spot is found to be on the inside of all  edges of a given 

polygon,  that polygon is considered to be potentially visible at that 

spot.  The polygon chosen for display at the spot is the potentially 

visible one having highest priority.  This algorithm was the first one 

implemented in hardware to produce pictures at 30 frames  per  second. 

The number of  polygons  it  can process is largely dependent on the 

number of edge processors that can be  afforded  since all  the  edge 

calculations must be carried out in parallel.  As a software algorithm 

it is rather slow. 

The priority algorithm of Newell et al imposes no special 

conditions on the scenes it can process. The priority list is newly 

constructed for each  image,  as follows.  The polygons are first 

m M^iiiiiMtiM^JM^^IM^^»-   -- -- - 
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ordered by  the distance  from their farthest point to the eye.  The 

polygon having the greatest distance is probably of  lowest priority. 

Tto%    ordered list  is  then checked and modified, by reordering and 

pol'gon splitting, to transform it into a true priority list.  In 

order to generate an image Newell's algorithm uses a frame buffer, a 

device capable of digitally storing one frame of picture. Zy    writing 

images of polygons into the frame buffer in reverse priority order the 

correct image of the scene is created.  Removal of hidden surfaces is 

achieved by overwriting in the frame buffer by higher priority 

polygons.  The main problems with this algorithm are the computational 

expense of establishing the correct priority list, and the need for a 

frame buffer. 

Visible Surface Rendering 

Once it has been established which surfaces, or surface 

iragraents, are visible it is necessary to generate images of those 

surfaces. For the scan-line algorithms this rendering occurs one 

picture element at a time, simultaneously with the determination of 

the visible surfaces, w:ereas Id Newell's algorithm it is required to 

render whole surfaces one at a tim.. This distinction can have an 

effect on the techniques used to render an image of a surface. 

The simplest form of rendering, or "shading" as it is often 

called, involves assigning a fixed shade, or color, to each surface. 

All picture elements representing that surface are then given the same 

.. _ ..     . _. . ._   — __ ._J 
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shade. This approach, while simple, does not take into account the 

position of any light sources and can make objects appear to be 

illuminated internally since the shade of a surface is independent of 

its orientation. 

An improvement over the fixed  shading can be achieved using 

Lambert's  cosine  law of  illumination.   According  to this law the 

density of illumination of a surface is proportional to the cosine of 

the  angle between  the  normal  to  the surface and the direction of 

illumination.  This simply states that -.he illumination of  a  surface 

is  greater the more nearly  it directly faces the light.  If it is 

assumed that  the perceived  intensity is  proportional  to  the 

illumination density,  a pl.^nomenon known as pure diffusion, then a 

more realistic shading rule  is realized.  Objects take on the 

appearance of paper or a similar matte surface.  The illusion of a 

shiny surface can be achieved by using the cosine of the angle of 

incidence  to some  powe-.   This has  the  effect  of making tho 

orientation required to give a surface maximum illumination much more 

critical, and hence gives the appearance of highlights. 

For curved surfaces approximated by an array of planar polygons 

_he above techniques do not yield acceptable results. This is because 

even though the approximating surface is continuous in value, being 

discontinuous in fust derivative, the resulting intensity 

distribution is discontinuous in value, Figure 2, ani is therefore a 

very poor approximation to the correct continuous distribution. This 

situation  is  aggravated  by  the  fact  that  the  eye  accentuates 

. . - - —^ 
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discontinuities  in intensity, known as the Mach band effect.  Gouraud 

(11) sought to remedy this problem by using a linear interpolation of 

intensity rather than the step function implied above.  The aim was to 

achieve an intensity distribution which was continuous at least  in 

value.  Instead of using nornals to the polygons to compute intensity 

Gouraud uses normals at the vertices of polygons.  These normals are 

either  known from the original curved surface or can be approximated. 

The vertex intensities are then interpolated using a simple linear 

interpolation illustrated in Figure 3. 

Gouraud shading, while realizing startling improvements in the 

images of approximated curved surfaces, does suffer some problems. If 

the number of vertices in a polygon is greater than three then in 

L  I  G K T 

I I 1 1 1 
r^ 

//s // 

a    Surface 

J L 

b    Intensity 

Figure 2 C oss section through approximated curved surface 
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general the resulting shading is axis dependent, though in practice 

this has not proved to be a major problem. A more serious problem, 

illustrated in Figure 4. can give rise to areas of constant shading on 

a curved surface. This occurs if the intensities at the vertices of a 

polygon are all the same, even though the normals are not parallel. 

The situation is aggravated if an attempt is made to simulate 

highlights.  This is because the level of detail allowed  in the 

intensity distribution is restricted to be no greater than the 

geometric level of detail. 

The above problems have been largely eliminated by Bui-Tuong 

(12), who,  instead of interpolatinp, intensity, interpolates surface 

normals.  Each of the three normal components is linearly interpolated 

using the same rule as that used by Gouraud.  Having thus established 

a normal for each point on the surface, the intensity is calculated. 

Computationally this  is a much more expensive process involving 

normalization of the interpolated normals and computation of intensity 

at ev-^.ry displayed noint.  However, the process does lend itself to 

special purpose hardware implementation.  Bui Tuong also investigated 

Mr« realistic methods for computing perceived intensity at a point. 

By considering the physics of the situation h« was able to  develop  a 

realistic model incorporating the reflective and dispersive components 

of the perceived illumination. 

-—-  ■ - - ■- — -' ■-■       ■■■-■■   ■ - -  
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I  = a.Ic + (1-a).1 
p     f        g 

If = b.I1 + (l-b).I4 

I = c.I_ + (1-c).1, 
g      2 J 

Figure 3  Gouraud interpolation of intensities 
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Figure 4 Constant intensity on approximated curved surface 
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CHAPTER III 

LIMITATIONS OF CURRENT TECHNIQUES 

Limitations on the complexity, or richness, of scenes that can be 

processed by existing techniques are due to several causes. These can 

be categorized three ways: storage requirements, processing 

requirements, and restrictions on the scene. 

I 

Storage Requirements 

In the case of algorithms which represent objects as collections 

of polygons, a serious limitation is simply the volume of data which 

must be handled. For example, a scene consisting of 1000 

quadrilate-a polygons defined in terms of a set of 1000 points 

requires 7000 words of storage. The task of storing scenes 10 or 100 

times this size in fast memory exceeds the capacity of many computers 

in use today. 

However, it is not always meaningful to separate storage and 

processing requirements, in that given sufficient magnetic tapes, for 

example, any amount of information can be processed, albeit in an 

unacceptable amount of time. It is perhaps more meaningful to 

consider the pattern of accesses to the data,  and to determine how 
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much of the data needs to be held in fast storage if the use of fast 

storage is to have a significant impact on the processing time. 

In this regard. Warnock's algorithm has problems in that the 

parallel nature  of the algorithm requires all the data to be held in 

fast memory.  Watkin's algorithm is much better in that only the  list 

of currently active edges need be held in fast memory for substantial 

gains in speed to be realized. Accesses to the bulky y-sorted edge 

list are serial and occur once per scan line.  The algorithm of Newell 

et al, like that of Warnock, requires access to  all  the data in a 

random order.  including accesses to the frame buffer.  Therefore the 

addition of a small amount of fast memory gives no great advantage. 

It seems that the storage requirement problem can be handled in 

two ways. One way is to find some means for serializing accesses to 

the data so that the bulk of the computations can be performed in the 

restricted amount of fast memory available. Recent work by Sutherland 

has yielded significant advances in this direction. Another way is to 

develop techniques for representing the necessary information in a 

more compact form. 

Processing Requirements 

The second major factor limiting the capabilities of current 

techniques is computation time. For nearly all known visible surface 

and visible line algorithms the time taken to generate an image grows 

faster than linear with the complexity of the scene. This fact makes 
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some algorithms unreasonable for even relatively modest scenes. 

Roberts'  (13)  algorithm, for example, becomes prohibitive for scenes 

containing more than a few hundred polygons.  The current state of the 

art algorithms have succeeded in reducing the impact of the nonlinear 

effects enough to allow  the handling of scenes of  sufficient 

complexity to be of use in other than academic applications.  However, 

for those algorithms which represent scenes as collections of polygons 

the current practical upper limit on complexity is in the region of 

2500 polygons. 

For those algorithms which use forms of representation other than 

polygons, for example quadric surfaces, the equivalent useful 

complexity seems to be no better, although individual objects may 

appear more pleasing. These other algorithms benefit from requiring 

fewer primitive forms to describe any given scene, but the escalated 

difficulty of dealing with each primitive often outweighs the 

potential gain. 

Restrictions on the Scene 

The third major limitation found with existing techniques is 

concerned with restrictions on the scene. This has several aspects, 

the first of which involves constraints on the scene resulting from 

assumptions or simplifications in the algorithm. Examples of such 

constraints include non-intersecting objects, convex polygons, and a 

limit on the number  of edges allowed per polygon.  The constraints 
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imposed by Schumaker's algorithm are unusually severe, although they 

are acceptable in simulation applications involving fairly static 

scenes. 

The second aspect involving restrictions on the scene stems from 

the observation that all existing algorithms require that the scene be 

represented as a collection of instances of the same primitive form, 

e.g. polygons, quadric surfaces, bivariate patches, etc.  This brings 

about a certain simplification of implementation and allows each 

algorithm  to  exploit  the convenient properties of  its chosen 

primitive.  However, no one  form is  optimal  for  representing all 

scenes.  Polygons can be used to approximate virtually any shape, but 

questions such as how many should be used to represent any given 

curved surface have no satisfactory general answer.  This is because 

the minimum number  of  polygons needed to give  an  acceptable 

approximation to a curved surface is dependent, among other factors, 

on the view of that surface. Near objects need  to be approximated 

more accurately than distant ones.  Similar comments apply to the 

inclusion of fine detail which may only require a crude representation 

when in the distance.   In practice sufficient polygons are used to 

give adequate representation for the worst case expected, which 

implies a wastefully detailed representation of objects in the 

distance. 

Quadric surfaces are ideal for objects having conic generators, 

and can be used in a piecewise manner to approximate more general 

surfaces.  However this task is quite difficult, and can generate many 
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fragments. Experience indicates that scenes modeled with quadric 

surfaces tend to look somewhat stylized, being made from spheres, 

cones, cylinders, etc. 

Bivariate patches are extremely versatile and can be used to 

represent a wide class of curved surfaces.  As with quadric surfaces, 

techniques for representing any given shape are not  straightforward, 

a.though recent  research  in this area by Riesenfeld (1A) and others 

has made significant advances.  This has led to  formulations of 

piecewise polynomial and rational polynomial patches which have been 

designed specifically to facilitate the representation of arbitrary 

curved surfaces.  It would seem desinble to have a visible surface 

algorithm which could make direct use of  these new formulations. 

Catmull's  (15)  recent work provides an example of one possibility in 

this direction.  Perhaps more to the point  is the  fact that these 

forms are only suited to representing smooth surfaces and their use in 

representing planar faced objects can be extremely inefficient. 

A further disadvantage of representing all objects by a common 

form is chat much useful information regarding the coherence of 

objects is often lost. Indeed, most algorithms which use a polygonal 

representation treat each polygon as a separate, independent entity. 

All information regarding grouping or connectivity is either destroyed 

or ignored. This can be likened to doing a jigsaw puzzle with all the 

pieces kept face down. Failure to use such information is not a 

necessary consequence of using polygons, but the difficulties involved 

in making beneficial use of this information are severe enough to have 
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discouraged most investigators. A noteworthy exception is the use 

made by several algorithms of silhouette edges as distinguished from 

interior edges. 

The third aspect of the question of restrictions on the scene  is 

concerned with generality of representation.  Mam systems dictate a 

data format based on their particular primitive  form.  As these 

systems are developed,  the need for more and more generality in the 

facilities provided results in escalations in the  complexity of  the 

data  format  until  it begins to resemble a programming language.  At 

this point the arguments for and against special  purpose  programming 

languages become relevant.  The principal argument for such languages 

seems to be that specialization allows a user  to specify what is 

wanted more directly and  concisely.  However, except in extremely 

specialized applications  the  special  facilities  tend  to  be 

overshadowed by  facilities found in most general purpose programming 

languages. 

An alternative approach is to provide a general purpose language, 

with specialized primitives imbedded either in the form of extensions 

to the language or by subroutine calls.  If  the  language  chosen is 

compatible with that used to implement the visible surface algorithm 

then the data description routines can be loaded  together with the 

visible surface program to form a special  purpose program for 

generating images.  Several systems providing this facility have been 

implemented, but  they still  suffer from the requirement that the 

interface to the visible surface routines be strongly oriented towards 
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the primitive form used by the chosen visible surface algorithm. 

These considerations point to the need for a system structure 

which allows the combined use of a variety of primitive forms in a way 

which is sufficiently flexible to allow the peculiarities of each form 

to be fully exploited. It should not impose unnecessary constraints 

on the range of facilities provided, and should provide for all the 

primitive forms currently found to be useful. 

L 
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CHAPTER IV 

PROCEDURE MODELS 

Most data processing systems can be described in terms of a set 

of data, whicb  represents  the items to be processed, and a program 

which has encoded into it all of the processes to be applied to the 

set  of  data.   In the particular case oi digital image synthesis the 

term 'set of data'  might  be  replaced by  'scene  description'  and 

'program'  by 'visible surface algorithm'.  If one has several sets of 

data to be similarly processed then one need only generate the program 

once and apply it  separately to the several sets of data.  Such an 

organization is conceptually simple, the idea of representing an  item 

by a collection of numbers being readily acceptable.  For example, the 

representation of an object by a set of points each one represented by 

its x,y, and z coordinates, and a set of polygons each one represented 

by a list of points, is a widely used structure. 

Passive Data Bases 

Cases arise where the simple division of a system into a. tive 

processor and passive data is inadequate. Typical shortcomi...s of 

such an organization arise from the need for parameterized instances 

of a - ototype, the need for specifying a repetition of some data 

rather than actually repeating the data, the need for performing some 
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arithmetic  to efficiently specify an item, and the need to specify 

conditional circumstances where the determining factors  are  external 

to the data.  These shortcomings can be rectified by escalating the 

facilities provided by the data format which describes the items to be 

processed.   When this  is  done the input data format is transformed 

from a list of numbers to a command language, or even to a resemblance 

of a general purpose  programming language with subroutines, repeat 

loops, expressions, conditional operators, rtc.  The  input data may 

then be viewed as a program which will be executed interpretively by 

the data input routines, the result of that execution being data to be 

processed by the main body of the processing algorithm. 

There is, however, a more fundamental shortcoming to this 

segreg... M of processor and data. This arises when it becomes 

desirable to use widely differing processing techniques depending on 

„hat the data represents. This implies that the processor must cater 

for all possible types of data. Even in cases where the range of 

types is known in advance this can generate an unwieldy organization. 

As a simple example consider a system for finding the geometric 

extrema of objects. Suppose the objects of interest are: groups of 

polygons, spheres, and bicubic patches. The input data format might 

have a herald for each object announcing its type, followed by a list 

of parameters. The 'interpreted language' approach might 'execute' 

such an input and produce a list of objects each one represented in a 

common format, for example, polygons. The processor would then 

operate by searching all the points on each converted object in order 
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to find its extrema. This approach gives a simple main processor 

which has to handle only one type of representation. 

Definition of a Procedure Model 

A more efficient approach to the previous problem using the idea 

of type-dependent processing might employ three algorithms, one for 

each type of object. The first, for polygonal representations, would 

search as above. The second, for spheres, would take the center of 

each sphere and simply add and subtract the radius to find the 

extrema. The third, for bicubic patches, might operate bv repeated 

parametric subdivision of the patch to find the extrema within some 

given tolerance. 

It might be argued that the only difference between this approach 

and the previous one is that the type-dependent processing has been 

moved from the data input  routines  into the main process.  The 

difference, however,  is rather more profound than this, in that each 

object may now be considered to be modeled by a procedure with which 

another procedure may interact.  As an example suppose the goal in the 

previous  example had  been  to  find  the volume of  the  minimum 

rectangular box containing each  object.   The main process would 

compute the product of the differences of the extrema of  each object 

in each of the three coordinate directions.  The way in which the main 

process finds these extrema may now be viewed as a question to each of 

ehe models ther.selves, rather than as an analysis of each object.  The 
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method used by each model to answer that question is of no interest to 

the main process, so each model mj use whatever technique it prefers 

to answer the question. Such representations of objects are examples 

of procedure models. 

More formally, a procedure model is a model which represents its 

subject as a procedure with which other procedures can interact. The 

procedure model may be with or without parameters.  Interactions with 

such a model are in the form of messages and include commands (e.g. 

•output yourself), and questions (e.g.  'what are your extrema?'). 

Responses can be confirmation of completion of some requested action. 

return of requested data, or an indication of failure to do one of 

these. 

Properties of Procedure Models 

The advantages of using procedure models  stem from the higher 

level of representation they afford.  A simple interpretation of this 

allows access  functions to be built  in with the  conventional 

structure.  Access  to such  a model is then carried out at a higher 

level than the manipulation of addresses, pointers etc.   The  access 

functions need not. indeed should not. know anything of the technique 

used by the model to derive  requested  information.   If  it becomes 

necessary to replace one form of the model with another then, provided 

that the interface to the model is  sufficiently independent of tt.e 

representation used,  such a change can be made without requiring any 
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change outside the model itself. 

Designers of data bases  sometimes refer  to the distinction 

between what  is  internal to the model and the external interface by 

refering to the physical data  structure and the logical  data 

structure.  The physical data structure is the actual structure used 

to store information and is concerned with the words, pages,  disk 

accesses etc.   actually used.  The logical data structure is some 

pseudo structure simulated by the model, and manipulated by the access 

functions.   The mapping of logical data structure onto physical data 

structure is the function of the access functions which, together with 

the data, make up the model. 

Although procedure models can be described in similar terms, such 

a data-oriented view obscures some of their most important attributes. 

One of these attributes is  the  freedom to partially,  or  totally, 

replace data with procedure.  The case given in the previous chapter 

of finding the extrema of an object exemplifies the use of this 

freedom.  If the model represents a sphere then given the position and 

radius as parameters the extrema can be generated by a simple 

arithmetic computation.  The applicability of this technique is more 

widespread than may at first  seem apparent.   Several examples are 

given in Chapter IX.  Even in cases where data is empirical and obeys 

no known law,  the replacement of data by procedure can  give 

significant  savings.   This  can  range  from  the provision of  an 

interpolation rule for supplying intermediate values, to the  fitting 

of a parameterized mathematical formula to the data and then storing 
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only the fitted parameters and a procedure for evaluating the formula. 

This is a well known and widely used technique, but the grouping of 

parameters with evaluation procedure into an entity whose structure 

cannot be seen from outside is not so widespread, and is the key to 

generality and modularity. 

Another important attribute of procedure models is generality of 

parameterization.   In addition to variables  such as size, color, 

orientation etc.  procedure models allow parameters which may have a 

drastic  effect  on  the  form of  the  item being represented.  For 

example, a highway design  system might  use  a  procedure model  to 

represent bridges.   An  important parameter to such a model would be 

the length of the bridge, not only to determine size but also as a 

type parameter to determine whether a suspension, beam, cantilever or 

arch bridge is required.  A question to such a model might request a 

cost estimate,  in which case  the interrogating process may not be 

interested in what type of bridge is involved. 

Since procedure models are executed u> procedures they may embody 

any known data representation scheme. This means that conventional 

data structures form a subset of the class of representations allowed 

by procedure models. An important consequence of the higher level of 

representation is the ability to use several different models in one 

program. This allows each model to exploit whatever properties it 

chooses in order to carry out its function most efficiently, whether 

in terms of space, speed, or generality. However, if more than one 

type is used then it becomes necessary to define the interface to each 
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model in a model-independent way. This is very similar to the 

requirement in some systems that all data be represented the same way 

but here the requirement is, or can be, at a more abstract level. The 

interface need be concerned only with the information required by the 

access routines, not with the form of the models involved. 

The choice of this interface can have a marked effect on the 

success of the resulting system. If the interface is chosen to be too 

low level then a strongly procedural model may need to generate 

unnecessarily detailed information. On the other hand, if the level 

is too high the possibility arises of requiring the model to do more 

than is necessary. As an extreme example of this an entire system 

could be considered to be a procedure model representing all the items 

to be processed, and responding to the one command: 'yolve the 

problem'. The choice of the right interface depends on the types of 

items being processed and on the type of processing to be done. 

The argument has been made that there is really no difference 

between passive data structures and procedure models, in that they are 

both stored as strings of bits in the memory of a computer. 

Furthermore, they are both interpreted, albeit by hardware in the case 

of procedure models, and so in practice they are effectively the same. 

Arguments such as these miss the concept of procedure models in that 

although they can indeed be viewed as a difference in degree, that 

difference is so great as to be 'transactionally different', a phrase 

which refers to a sufficiently great change of degree to imply a 

difference of type. 
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Relation to Other Work 

It is relevant to see how the idea of procedure models relates to 

the more general description of representing entities by computer as 

studied in computer  science.  The implementation of  structured 

programs  involves building a hierarchy of virtual machines, each one 

using the primitives presented by lower  levels,  right down to the 

basic hardware machine.  The data manipulated by such programs ma/ be 

viewed at various levels,  the higher  level interpretations being 

derived from lower level ones via the relevant access functions.  In 

some sense it is an arbitrary decision as to where the line is drawn 

between what is considered to be the process and what is the model 

being processed. 

One of the principal virtues of structuring a program in this way 

is that the implementation of the access functions defining any given 

level can be changed without requiring any change to the higher level 

processes.  Equivalently, an access function providing an interface to 

multiple lower level data types can be implemented,  thereby allowing 

the use of several independent representations of the data type chosrn 

by the implemented process.  This consideration implies a preference 

for making the conceptual interface between process and model at as 

high a level as  possible to permit  maximum  flexibility  for 

modification of the model representation.  Conversely, the higher the 

level of model representation then the  more  specialized  the 

implemented process tends to become. 
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It would seem that a reasonable criterion for the choice of level 

of access function to the model is that it should reflect the level of 

item considered to be the basic data type accessed by the process. 

Relating this criterion back to the interests of digital image 

synthesis, it is proposed that the process be described in terms of 

synthesizing an image of a scene which consists of a collection of 

individual objects. Therefore, the interface between general purpose 

process and model should be in terms of objects, rather than in terms 

of some lower level primitive. The resulting system will be 

specialized in the sense that it will only be capable of synthesizing 

images of collections of objects. But this is precisely the goal 

originally set, and thus is entirely appropriate. 

The ideas and motivations leading to procedure models are not 

new. Examples of related work in other sreas may be found in Hewitt 

et al (16), Winograd (17), Birtwistle et al (18), and Smith (19). 
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CHAPTER V 

RELEVANCE TO IMAGE SYNTHESIS 

The ideas behind procedure models are not new in digital 

computing. The notion that information may be procedurally generated 

when needed, as opposed to simply being retrieved, is widely used. 

The syntactic similarity between subscripted variable references and 

function invokations in many high level languages exemplifies the 

interchangibility of data and procedure. 

Some of the notions of procedure models are not new to computer 

graphics.  Newman's display procedures are an example.  Their function 

is to replace a conventional numerical data base with a procedure  for 

the purposes of generating line drawings.  In some cases the ability 

to determine when an image would be entirely outside the viewing area 

is used to completely avoid execution of the procedure. However, 

display procedures do not normally interact with the calling process 

in order to generate an image,  but  tend to be passive  image 

generators.  This passive role is possible because display procedures 

are concerned with generating line drawings, an essentially serial 

process.   In contrast,  the present work is concerned with the 

generation of visible surface images of complex scenes, and in the use 

of procedures to represent the objects in a way which facilitates this 

non-serial process.  In the area of digital image synthesis procedure 

models  give several advantages over conventional data structure 
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models. These advantages are concerned with facilitating processing 

and with view dependence. 

Object Coherence 

Sutherland et al (1) note that all known visible surface 

algorithms capitalize on some form of coherence. The term coherence 

refers to the interrelation between certain processes or groups of 

operations. Such interrelations can allow considerable computational 

savings either by using the results of an analysis of one situation in 

another similar situation, or by replacing a group of operations by a 

single operation. 

An example of the first type of coherence is the scan-line 

coherence used in Watkins' algorithm. The fact that, in general, the 

list of visible segments on one scan line is very similar to the list 

on an adjacent ^can line is exploited. The list for any one scan line 

is computed as a pertubation of the list for the previous scan line. 

An example of the second type of coherence is object coherence. 

If, for example, it can be determined that two objects are disjoint, 

then all parts of one object will be disjoint from all parts of the 

other, and no tests on individual parts need be performed. This 

observation can lead to significant savings. Of course, it will 

generally be more difficult to determine whether two objects are 

disjoint as compared with, for example, two polygons. However, if 

there are N polygons per object then there will be roughly N**2 times 
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as many polygon pairs as object pairs, end so even with a substantial 

escalation of difficulty overall savings can be made. 

The use of object coherence can be extended to cover a range of 

analyses encountered in image synthesis. The potential gains arise 

from the handling of only a relatively small number of objects which 

can give savings in both computation time and space requirements. 

This implies that some compict representation for whole objects be 

used. The logical grouping of polygons into objects is not 

satisfactory since this does net alleviate the storage requirement 

problem. 

The representation proposed here is the procedure model which 

allows objects to be modeled in whatever form is deemed most 

efficient. This does not, of course, exclude groups of polygons, and 

it allows alternative representations some of which may be highly 

procedural.  The example already given of a sphere is a case in point. 

Generality of Representation 

The generality of representation afforded by procedure models is 

limited only by the level of interface chosen. Examples of 

representations relevant to image synthesis include: groups of 

polygons, potential surfaces, and various surface patch schemes 

including bicubic Coons patches and B-spline surfaces. 

Higher level but more specialized representations are also 
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relevant such as groups of the above items and procedurally generated 

whole objects, such as ships or buildings. These higher level forms 

may resort to patches or polygons for the detailed representation of 

their subjects, but may be able to yield requested information or 

carry out certain operations at a much higher level. 

\ 

Generality of Parameterization 

In image synthesis typical parameters to models represented by 

passive data structures are such things as surface properties like 

color and reflectivity, and affine transformations to specify size, 

orientation and position. Procedure models permit a much more 

extensive parameterization of models simply by virtue of their 

procedural nature. Any variable that influences the represented 

object can be used as a parameter. Examples include non-affine 

transformations, angles, and key dimensions. 

More general parameters can influence the actual form of the 

represented object. Office buildings can be characterized by the 

number of floors, the type of windows, and the type of roof. Level of 

detail can also be parameterized, although such a variable would 

probably be view dependent. 

The generality of parameterization allowed by procedure models 

enables extensive use of instancing, since one model can represent a 

wide range of extensively differing objects. In the extreme this 

implies  that one model could represent all objects in a scene using. 
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for example, polygons. This would be equivalent to the single 

representation schemes currently in use. In practice a compromise 

between this extreme and that of using a separate model for each 

object should be sought. 

. 

View Dependence 

The representation of objects for the purposes of imaga synthesis 

is often done by approximation. For economy of computation, storage, 

and effort objects are frequently represented with only sufficient 

accuracy to appear acceptable in the anticipated views. This applies 

both to the level of fine detail represented and to the accuracy of 

approximation to curved surfaces by polygons. 

In systems where objects are represented by passive data 

structures the level of approximation has to be chosen at the time the 

data structure is created. Thla leads to an inflexible relationship 

between object representation and viewing parameters which does give a 

degree of simplification and modularity. However, this approach 

requires that the level of approximation be chosen to be sufficient 

for the most critical view expected. The implication is that for most 

views objects will be defined in more detail than is necessary for an 

acceptable image. 

Procedure models allow the representation of an object to be 

influenced by the view. Distant or small objects can be approximated 

more coarsely  than near or large objects.  Stated another way. 

—^^^^^i^j^y^   
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procedure models allow the degree of approximation for all objects to 

be equal in terms of image space coo/dinates. 

Another aspect of view dependence relates to the silhouette edges 

of curved surfaces. Gouraud (11) and Bui-Tuong (12) have demonstrated 

techniques for generating images of curved surfaces from comparatively 

coarse polygonal approximations. These techniques can glv« an 

extremely good impression for the interior of curved surfaces but do 

nothing to improve the polygonal silhouette. View dependent procedure 

models allow a more accurate approximation to silhouette edges while 

retaining the economy of a coarser approximation for the remainder of 

the surface. 

A further facility afforded by view dependence is the ability to 

remove an entire object  from consideration if it is known to be 

invisible in the present view.  This can occur in two ways - by the 

object being completely outs ide  the viewing area, and by an object 

being entirely obscured from view in an easily determined wav.  The 

former has wide application whereas the  latter is rather more 

specialized.  An example of the latter is the case of a closed object 

either containing another object  and having the eye outside, or 

containing the eye and having another object outside.  In either case 

the other object is invisible. 
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CHAPTER VI 

THE MODEL INTERFACE 

It was stated in Chapter IV that the more abstract level of 

representation afforded by procedure models facilitates the use of 

several different types of model in one program. If types are to be 

mixed it becomes necessary to establish an interface to each model 

which is independent of internal model structure and to which all 

models can conform. The central procedures can then communicate with 

each model via this interface without concern for the internal details 

of each model. 

Requirements 

The factors which influence the choice of model interface are 

concerned with the type of processing to be carried out, and with the 

types of models anticipated. As was mentioned earlier, an interface 

which is too low level may result in much duplication of processing 

within the models, whereas too high a level may be unnecessarily 

restrictive or difficult to conform with. 

For the purposes of digital image synthesis the model  interface 

requirements are based on the considerations presented in Chapter V, 

^^g^MlMMM^M«^^^ 
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namely: object coherence, generality of representation, generality of 

parameterization, and view dependence. 

The exploitation of object  coherence  requirps  that  the 

relationships between whole objects can be analyzed without regard for 

the details of any one object.  The technique proposed here to 

facilitate  such  an analysis  is  to  replace  each  object with an 

enclosing convex polyhedron.  The analysis will then be carried out on 

a set of convex polyhedra,  and will exploit all the convenient 

properties of  such simpler forms.  For example,  the  task  of 

discovering whether two objects are disjoint is implemented by 

searching for a plane having the two convex polyhedra wholly on 

opposite sides.  Clearly,  this coarse representation of objects may 

result in Interfering convex polyhedra which represent non-interfering 

objects.  This problem will be discussed in Chapter VII1. 

For some analyses an even simpler representation of objects can 

be used, namely an enclosing convex polygon in two dimensional screen 

space. For the purpose of drawing hidden surface pictures the 

determination of whether the images of two objects of interest overlap 

is of interest. Given enclosing convex polygons to represent two 

objects, the determination of overlap ir. reduced to finding whether 

two convex polygons have any area in common. Again, the coa-sness of 

such a representation can lead to apparent overlap where none exists. 

The above considerations lead to the first requirement of the 

model interface. Each model should be capable of generating an 

enclosing convex polyhedron and an enclosing convex polygon in screen 
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space. Techniques for generating such polygons and polyhedra arp 

given in Appendices A and B. 

The second consideration relevant  to digital image synthesis 

concerning the model interface is generality of representation.  It is 

desirable that an object be represented by an appropriate form.  This 

form is influenced by the need to be able to generate an image of each 

object in a compatible form if a picture of the whole scene is  to be 

synthesized.  Since the techniques required for generation of an image 

from any given model representation are model dependent,  it is 

necessary for the model to be capable of generating an image of the 

object it represents.  This is the second requirement of the model 

interface.  The actual fo-i* of this image is dependent on details of 

the main processing algorithm and will be more closelv defined in 

Chapter VIII. 

The third consideration concerning the model interface is 

generality of parameterization. This simply implies that it must be 

possible to pass parameters to models which may be used in any way 

desired. 

The fourth consideration dealt with in Chapter V was view 

dependence. This has largely been covered here by the requirement 

that each model should be capable of generating an image of its 

subject. This enables a variable degree of approximation to be used, 

and indeed, allows nothing to be generated if it can be established 

that the entire object is invisible. 

^MUMUMMH  • - ■■  
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The only other demands made on the model interface are that  it 

must be capable of specifying the reading and writing of model 

parameters from and to secondary storage.  This is necessary in order 

to define the scene being analyzed as well as to enable swapping onto 

secondary storage to be used if space restrictions dictate the need. 

The information actually transfered to and from secondary storage need 

not necessarily be in the form of program overlays.  If use is being 

made  of instances,  then only  the instance parameters need be 

transfered, the model procedure staying in main memory.  This leads to 

the question of what structure is needed in which to embed the 

procedure models. 

Structure 

The operation of a simple data processing system might be 

described as follows. At initialization, the program is loaded into 

main memory and the data base is considered empty. During processing, 

external influences and internal computations cause data to be added 

to and taken from the data base. The notion of reading some data, 

which might represent an object, and adding it to the data base is 

quite straightforward. 

However, if objects are represented by procedures, the direct 

analogy is that procedures should be read and added to a procedural 

data base. While such a system is quite feasible, and can be 

considered  a use of program overlays,  it  is not a necessary 

--■— ■■■■■-   
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consequence of  using  procedure models.   The  high  degree  of 

parameterization  allowed by procedure models implies that it is often 

not necessary to have a great number of  different  model  procedures. 

For example,  a city scene might use three types of procedure model - 

one for parameterized buildings, one  for  automobiles  using  surface 

patches,  and one using polygon definitions for all the other items. 

Each object is then an instance of its procedural master and manifests 

itself as some data in a passive data base.  This may sound remarkably 

like the conventional architecture mentioned earlier, but this is  due 

only  to an  implementation detail.   The  idea  that each object is 

procedurally described, in this  case by  a  logical  combination of 

instance parameters and corresponding procedure is still very much in 

evidence. 

The use of instances can be carried a stage further. For 

example, given a procedure for dealing with objects defined using 

bicubic patches, a particular use of such a procedure could involve 

the parameters necessary to define an automobile. Another use could 

involve the parameters necessary to define a boat. If it were desired 

to generate a scene including several similar automobiles and several 

similar boats, then it would be desirable to use instances of the 

automobile and instances of the boat, the parameters of these 

instances being such things as position and color. 

This implies two levels of instancing - the automobile and boat 

parameters can be considered instances of the bicubic patch model 

procedure, and the several automobiles and boats are instances of 
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these instances.  This structure is illustrated in Figure 5. 

It is relevant to ask where the idea that an object be 

represented by a procedure, called a procedure model, fits into this 

structure. In this case the procedure model for any one automobile is 

a logical combination of the bicubic patcb procedure, the automobile 

parameters, and the instance of the automobile. Such a logical 

grouping is shown on Figure 5. For descriptive purposes these two 

levels of instances will be refered to as the model instance and 

object instance. Conceptually this still uses one procedure model per 

object, the apparent difference heivr due to the use of instancing as 

an efficient implementation device. 

MODEL 
PROCEDURE 

MODEL 
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PATCH 

PROCEDURE 

1 
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BOAT 
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BOAT 
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PARAMS 

BOAT 
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Figure 5  Procedure model structure 
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CHAPTER VII 

ANALYSIS OF RELATIONSHIPS BETWEEN OBJECTS 

The synthesis of images of modele 1 objects requires the 

determination of which objects, or part-, of objecis, are visible, and 

the generation of images of those visible parts. The former 

requirement necessitates the ability to determine which objects hide 

which others. This in turn implies the ability, given two objects, to 

determine whether one hides the other, either partially or wholly, and 

if so, which hides which. As was indicated in the previous chapter, 

the tests used in the analysis are carried out not on the objects 

themselves but on their enclosing convex polygons and polyhedra. 

The tests are carried out in screen space in two groups: two 

dimensional and three dimensional. The two dimension?! tests are 

carried out first in order to determine whether the two objects 

overlap on the screen, or rather, whether their enclosing convex 

polygons overlap. If it is determined that they do not overlap then 

there is no need to further analyze the relationship between them. 

If the two dimensional tests indicate, to the accuracy afforded 

by the use of enclosing convex polygons, that the objects overlap it 

is necessary to resort to three dimensional tests The goal of these 

tests is to find a plane which separates the two objects. If such a 

plane is found then the object which is on the same side of the plane 

is the eye is the obscuring object. 
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Two Dimensional  Overlap 

The    two    dimensional    overlap    tests    are    carried    out    on    the 

enclosing      convex      polygons       generated      by    the     procedure    models 

representing  the objects.     The  first  test used  is  called    boxing.       It 

involves    conceptually     constructing    a    minimum    enclosing    rectangle 

around each  object    polygon    and    then    testing    for     overlap    of    tht 

rectangles,     see    Figure     6.     This takes  the level  of  approximation to 

the original objects  one  stage  further but has  the  advantage of    being 

extremely    simple,  and   if  it  indicates  separation  then  the  two object? 

are guaranteed  to be   separate.       However,     if     it     does    not    indicate 

separation    then    further  tests  are required  to resolve  the situation. 

The test  actually  involves  four  tests:   if  the minimum x of either    box 

is    greater    than the  maximum x of  the other,  and  similarly in y,   then 

the boxes are separate. 

Of course, cases exist where the boxes overlap but the object 

polygons do not, see Figure 7. This necessitates a more thorough test 

to investigate separation. For this test appeal is made to the 

following theorem. 

If two convex polygons in the plane have no area in common then 

at least one edge of at least one of the polygons is a segment of a 

line which  separates   the   two  polygons. 

A proof of this theorem is given in Appendix C. An example is 

shown    in    Figure     7.       To make use of  this  theorem it  is necessary  to 
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ENCLOSING  BOXES 

ENCLOSING CONVEX 
POLYGONS 

FipufH  6    Enclosing convex  polygons and   boxes 

SEPARATING  LINE 

Figure   7     Non-overlapping polygons  but   overlapping boxes 
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consider each edge of each polygon and to test whether all vertices of 

the other polygon lie on the outside side of the implied line. If no 

edge is found satisfying the above condition then the two polygons 

overlap. 

Simple Three Dimensional Separator Test 

If the two dimensional tests indicate that the object polygons 

overlap then three dimensional tests are used to determine which 

object apparently overlaps the other. These tests involve searching 

for a plane having the two object polyhedra on opposite sides. 

If the two dimensional polygons were derived directly from the 

polyhedra then there is no point in carrying out boxing tests in x and 

y. However a simple boxing test in z is worthwhile and operates in a 

manner similar to the x and y tests. 

If boxing tests fail to establish separation then more  stringent 

tests are needed.  At first glance it might be thought that the three 

dimensional analog of the polygon separator theorem would state that: 

if  two convex polyhedra have no volume in common then at least one 

face of at least one of the polyhedra is a region of a plane which 

separates the two polyhedra.  However, although true in irany commonly 

found cases this theorem does not always hold.  A contradicting case 

is  shown in Figure 8.  Nevertheless, the fact that this theorem holds 

for many cases, and can be directly applied, is a motive to use it in 

an attempt to  find a separating plane.  The fact that it does not 
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always hold means that if its use fails to find a separating plane 

then it is not a consequence that no separating plane exists. 

Use of this theorem is a direct extension of the two dimensional 

case. If, however, it is required to determine only whether object A 

obscures object B then it is only necessary to consider backward 

facing faces of A and forward facing faces of B. If no face is found 

satisfying the above conditions then further tests are needed to 

investigate the separation of the twc .jjects. 

Figure 8 Separating plane not a polyhedron face 

■ _ .-■-.—- ■■■-^—■ -■ ■■■-  ■—   ___      ,   _ _, a,,  



" k " ' 
ll,l,p" PPmPHPqp«L)R>l|U niPl.i IP?"» iiiup.1^«" |i i 

51 

Comprehensive Three Dimensional Separator Test 

The search for a plane which separates two convex polyhedra can 

be stated as follows.  Determine a plane vector P = (a, b, c, d) such 

that its dot product with each vertex Ai =  (Aix, Aiy, Aiz, 1)  is 

positive, and its dot product with each vertex Bj = (Bjx, Bjy, Bjz, 1) 

is negative, where A is the set of vertices of one object and B is the 

set of vertices of the other.  Symbolically: 

P.Ai > 0       1 < i < m 

P.Bj < 0       1 < j < n 

These two inequalities can be combined by defining a new set of 

vectors C made up of A together with negated members of B.  Then the 

requirement on P is that: 

P.Ck > 0 1 < k < m+n 

This inequality may now be interpreted in a dual manner as follows. 

Fir.d a point P which lies on the positive sides of all members of the 

set of planes C. The dimensionality is now one higher in that P is a 

4-vector, and Ck can be considered to be 4 components of a 5 component 

plane equation in 4-space, the fifth component being zero. Hence, the 

search for P is equivalent to the search for a point in the solution 

region of a set of linear inequalities. 

Various solutions to this problem have been proposed. The one 

used here is iterative and proceeds as follows. Set P to some initial 

vector. At each step of the iteration, for each vector, Ck, compute: 

Lk := P.Ck 

If Lk is positive proceed to the next member of C, otherwise adjust P 

- - -- - -           



■"  mmmm mmm-mmmiit^   u   uwmimmmmmm'i'm 

i 

52 

to a new vector: 

P := P + f.Ck 

where f is chosen to ensure convergence, 

Lk are found to be positive. 

The iteration stops when all 

A reasonable initial setting of P is the plane which is half way 

along, and perpendicular to, the line joining the centroids of the 

given sets of vertices A and B, and having the centroid of A on its 

positive side. 

The factor f is chosen as follows. The updating of P can be 

interpreted as moving the solution point P in a direction 

perpendicular to the plane Ck until it is moved onto the positive side 

of that plane. Indeed, the components of Ck may be considered to 

represent the normal to the plane in 4-space. To determine the 

required distance it is necessary to normalize Ck, such that Ck.Ck=l; 

then Lk represents the actual distance to the plane.  In practice, 

f = 1.05 Lk 

has been found to give good convergence,  although any value of f 

greater than Lk will ultimately lead to convergence. 

There is a problem with the iterative scheme described above. If 

a plane P which separates A and B exists then it will be found. 

However, if no such plane exists then the iteration will proceed 

indefinitely, and such a condition is difficult to detect. To 

overcome this difficulty a second iteration is run in parallel with 

that proposed. This second iteration seeks a point M which lies 

inside both convex polyhedra.  The method used is essentially the same 
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as that described above, and is also carried out in a homogeneous 

space. In practice, each iteration takes steps in turn, and one of 

them is guaranteed to yield a decision, at which time both iterations 

stop. 

There is an additional requirement on the search for the point M. 

This is that its homogeneous term must be positive. This is because a 

point M which satisfies all inequalities and having a negative 

homogeneous component is, in fact, outside all planes of both convex 

polyhedra, not inside. This may appear to be not possible but it must 

be remembered that the convex polyhedra may have been clipped and so 

they are not necessarily closed. A simple remedy is to add the plane 

vector (0, 0, 0, 1) to the set of polyhedron planes. 

It has been found in practice that in cases where the simple 

three dimensional separator test failed and yet the polyhedra were 

separate, it can take several hundred iterations to find a separating 

plane. For this reason an upper limit (currently 100) is imposed on 

the number of iterations allowed. If no solution is found within this 

limit then it is assumed that the two convex polyhedra intersect. 
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CHAPTER VIII 

A PRIORITY ALGORITHM USING PROCEDURE MODELS 

The previous chapters have discussed procedure models, their 

relevance to digital image synthesis, and so.ne techniques for their 

spatial analysis. This chapter describes a visible surface algorithm 

wbich uses procedure models, and which brings together all of the 

ideas and developments that have been described. 

The algorithm to be described is a direct development of the 

priority algorithm of Newell, Newell and Sancha. The main 

developments concern the use of procedure models for the description 

of the scene and as the basic working elements, and the techniques 

used to determine priority. The advantages of this algorithm over 

existing ones stem directly from the use of procedure models, the main 

benefit being the ability to process scenes of comple;'itv two decimal 

orders of magnitude greater than previously feasible. 

li Outline 

The algorithm is a priority algorithm based in concept on that of 

Newell et al. A frame buffer is used to assemble tbp picture and to 

play an active role in the hidden surface elimination.  The scene to 
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be portrayed is described as a collection of objects, each one 

represented by a procedure model. 

The first phase of the algorithm reads descriptions of the 

objects making up the scene. The descriptions are in the form of 

instances of procedure models. Any modification to the positions or 

orientations of the objects are then carried out, and the viewing 

parameters are specified, e.g.  eye position, field ot view, etc. 

The next function is the establishment of a priority ordering of 

whole objecti. The generation of the enclosing convex polygons and 

polyhedra used in determining priority is not done all at once but 

takes place as each object comes into consideration. 

The Dicture is assembled by writing images of the priority 

ordered objects into a digital frame buffer in reverse priority order, 

i.e. "farthest" object first. The generation of the correct image 

for each individual object is the responsibility of the model 

procedure generating that image. The removal of parts of the image of 

one object -hat are hidden by another is accomplished by the overwrite 

capability of the frame buffer, and is dependent on the establishment 

of a correct priority ordering. 

When the entire picture has been assembled it is scanned out onto 

the display device. If the framP buffer is capable of distinguishing 

areas that have never been written then the background can be added at 

display time. Techniques of this type are more fully discussed in the 

section on frame buffers. 
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Establishment of Priority 

A slightly abstract view of the task of  generating a priority 

list of objects can be described as follows.  Each object can be 

represented as a node in a directed graph, which will be called the 

priority graph.  An arc exists between two nodes representing two 

objects if one object obscures the other, the direction of  the arc 

being from the obscuring object node to the obscured. The problem of 

generating a priority list can be cast as the topological problem of 

mapping the nodes of the priority graph onto distinct points of a 

straight line such that all the arcs point in the positive direction 

along the line.  Clearly,  one necessary condition for this to be 

possible is that the priority graph contains no cycles.  An example of 

a configuration of objects leading to a cycle in the priority graph is 

shown in Figure 9. 

The priority graph, while useful as a representation for talking 

about priority, has not proved directly useful in creating an 

algorithm for generating priority lists. The technique used here is a 

development of that presented by Newell et al, the modifications being 

necessary to handle three dimensional objects rather than polygons. 

The technique attempts to minimize the number of detailed analyses of 

pairs of objects, and never actually generates the whole of the 

priority graph. 

The method starts by asking each procedure model for its 

enclosing convex polyhedron, clipped to the viewing boundaries. This 

is used to find the extrema of each polyhedron in the z direction 
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(i.e. the viewing direction) and to set up various pointers used in 

space allocation. The polyhedron itself is than discarded. During 

this process a list of all objects not entirely off screen or 

otherwise invisible is generated. This list will be transformed into 

the priority list. 

When the list of objects being -rnsidered is established it is 

sorted based on the furthest ■ value, Zfar. of each enclosing 

polyhedron. The direction of the list is such that the member having 

the nearest Zfar appears at the front of the list, and the one having 

the furthest Zfar appears at the end. 

For scenes having well separated compact objects, the Zfar sorted 

a Objects b Priority graph 

Figure 9 Object yielding cvcle in priority graph 
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list is often the priority list being sought. However, this is not 

always the case, as the example in Figure 10 illustrates. The sort 

would order the objects BA, whereas the correct priority ordering is 

AB. 

The next phase of the algorithm checks out and, if necessary, 

modifies the list to transform it into a correct priority list. This 

can be done by working from either end of the list, but since the 

present purpose is to render objects into a frame buffer in reverse 

priority order, the processing is done by working from the end of the 

list corresponding to the farthest Zfar, thereby generating the 

priority list in order of increasing priority. At any stage the 

element at the end of the list is potentially the lowest priority 

element. This postulation is examined and if found to be true then 

the element is removed from the list and added to the priority list. 

The examination proceeds as follows. 

1 e last element of the list P is compared with the set of 

elements Q whose Zfar is farther than the nearest z value of P. The 

set Q therefore contains all elements that could possibly be obscured 

by P.  Figure 11 shows an example of P and the set Q. 

In order to determine whether or not P obscures any member of Q 

the analyses described in Chapter VII are used until a decision is 

established.  These tests are: 

1. Two dimensional boxing 

2. Two dimensional polygon overlap 
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Figure   lO    Zfar   sorted   list   not  correct priority   list 

Znear(P) 

Figure 11  Element P and the set Q it overlaps 
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3. Simple three dimensional separator using back faces of Q and 

front faces of P 

4. Comprehensive three dimensional separator 

If these tests fail to establish that P cannot obscure a 

particular element of Q. Qi, then the possibility that P and Qi are in 

the wrong order is investigated. This only involves repeating test 3 

using back faces of P and front faces of Q. Such a case was 

illustrated in Figure 10. In such a case Qi is moved to the end of 

the list and is treated ar a new P. 

Should it transpire that a reordered element belongs to a cycle 

in the priority graph, then the above procedure would, after a few 

more steps, attempt to reorder the same element again. To guard 

against this non-terminating possibility an element is marked when it 

is moved. If an attempt is made to reorder a marked element then it 

is concluded that a cycle exists, and a different course nust be 

taken. This involves splitting the offending element into two or more 

pieces in an attempt to break the cycle. Such a procedure is 

discussed more fully in the section on Subdivision. 

In the implemented version of this algorithm the fact that test 4 

is much more costly than test 3 prompted investigation of reordering 

after test 3. If this failed then test 4 was entered, which actually 

tests for both possible orderings. To summarize, the complete list of 

tests carried out to determine whether P obscures any member of Q is: 

1. Overlap in z (this defines a member of Q) 

2. Overlap in x (2-D boxing) 
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3. Overlap in y (2-D boxing) 

4. Overlap of polygons (2-D separator test) 

5. P Behind back face of Qi (simple 3-D separator test) 

6. Qi in front of front face of P (simple 3-D separator test) 

7. Qi behind back face of P (re-order test) 

8. P In front of front face of Qi (re-order test) 

9. Comprehensive separator test 

I 

Clippinp 

Since the end goal of this algorithm is to synthesize an image of 

the scene it  is necessary to remove from consideration all parts of 

the scene lying outside the viewing cone,  see Figure 12.  This  is 

necessary  for two types of reasons.  The first is that the projection 

of points outside the viewcone can cause arithmetic overflow,  and 

points behind the eye are erroneously projected.  The second reason is 

not strictly necessary but is a matter of efficiency.  It  is clearly 

wasteful to analyze the relationship between two objects whose images 

will be entirely off the screen, or even to consider those parts of 

objects whose  images will be off the screen.  The question arises as 

to how, and at what stage, this clipping should be carried out. 

The first obvious stage at which clipping could be done is before 

the enclosing convex polvhedr.i are generated. I.e. clipping the 

objects themselves. This is not desirable for the reason that it is 

not always convenient to split an object with an arbitrary plane.  For 

' i 
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objects represented by groups of polygons the procedure is fairly 

straightforward, but for bicubic patches such a splitting is quite 

difficult and could yield several fragments none of which could be 

expressed in the same form as the original patches. One possibility 

is to transform the existing representation into a group of polygons 

and subsequently treat the object as a polygon object, for clipping as 

well as everything else. 

The second stage at which clipping can be done is on the 

enclosing convex polyhedra. The polyhedra can be clipped in the 

coordinate system of the objects and then transformed into screen 

space. This is a well-conditioned operation, but has the disadvantage 

that  th«. resulting polyhedra fragments may be larger than  is 

I 

i 

Figure 12 The viewing cone 
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necessary. Indeed, in an extreme case it is possible that al^ough 

none of the object lies in the viewing cone, a part of the enclosing 

polyhedron might. In spUe of this drawback the clipping of the 

enclosing convex polyhedra is considered preferable because it is 

independent of the representations used by the procedure models and 

therefore needs to be implemented only once. 

The techniques for clipping a convex polyhedron will now be 

discussed.   It  is desirable to represent each polyhedron as a set of 

vertex vectors and a set of plane vectors, since both of  these  sets 

are used  in the separation tests.  The mathematics used here is very 

similar to that used by Sutherland and Hodgman (2).  Indeed, a method 

for clipping a convex polyhedron is to consider the polyhedron as a 

set of polygons and to clip each polygon separately as described by 

Sutherland and Hodgman.  Th-j drawback with this technique is that it 

is difficult to avoid clipping every edge twice (since every edge is 

shared by two polygons)  and to avoid storing every vertex as many 

times as it is used by a polygon, especially the generated vertices. 

The key to avoiding this duplication of effort and storage is the 

edges of the polyhedron. This suggests that the convex polyhedron 

should be defined in terms of edges of the polyhedron, which in turn 

are defined in terms of vertices. Figure 13. This would facilitate 

keeping track of which edges have already been clipped though there is 

still a problem of whether interpolated or original vertices should be 

referenced by the edges. In view of these difficulties an alternative 

method  for clipping polyhedra was developed, called the polyhedron 
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clipper, 

The polyhedron clipper takes a more general view of the clipping 

process and expresses the end goal in terms of finding the 

intersection of two convex polyhedra, namely, the given polyhedron and 

the viewcone, which in screen space is a rectangular hox, see Figure 

14. 

This symmetric view of the clipping process leads to certain 

simplifications but carries with it  its own set of problems.  The 

basic idea is that the polyhedron should be clipped by the viewbox, 

then the viewbox should be clipped by the polyhedron, and the results 

combined to form the intersection.  The reason for clipping each 

volume against the other is that if the clipping of the polyhedron by 

the viewbox only actually clips its edges then newly formed vertices 

in the corners of the viewbox will be missed.  Examples of these are 

indicated in Figure 14.  This is precisely the problem addressed by 

Sutherland and Hodgman's polygon clipper.  The solution proposed here, 

namely that of also clipping the edges of the viewbox bv the planes of 

the polyhedron,  is  conceptually  simple  and yields the information 

required by the current algorithm.  If it were necessary to build the 

actual polygons making up the clipped polyhedron then this method 

would require considerable extension.  However,  as was mentioned 

earlier,  all that is required is a set of vertex vectors and a set of 

plane vectors.  No new planes are generated and so plane vectors 

included in the clipped polyhedron are a subset of those in the given 
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Figure 13 Polyhedron structure 

' 

TETRAHEDRON 

y 
VIEWBOX 

Figure   14    Intersection of  tetrahedron with viewbox 
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polyhedron. A plane vector is included in the clipped polyhedron if 

either a part of an edge of its defining polygon is within the 

viewbox, or if it is the last plane to clip an edge of the viewbox. 

The latter condition is necessary in order to handle the case shown in 

Figure 15 where the clipped polyhedron contains no edge of the given 

polyhedron. 

It may be illuminating to compare the proposed method for 

polyhedron clipping with the method mentioned earlier, namely, the use 

of the polygon clipper modified to avoid duplication of effort and 

vertices. The present method is not recursive, but will only handle 

convex polyhedra, and is not convenient if definitions of polygons in 

the clipped polyhedron  are  required.  The polygon clipper approach 

POLYHEDRON VIEWBOX 

Figure 15 Polyhedron having no edge inside viewbox 
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benefits from a recursive implementation, would handle non-convex 

polyhedra, and would directly yield polygons in the clipped 

polyhedron. If either of these latter two facilities were needed then 

the polygon clipper should be used. However, the restricted 

requirements of the present application, togetl er with avoidance of a 

recursive implementation (which is relevant when using FORTRAN), led 

to its choice in the implemented algorithm. 

Subdivision 

Much of the foregoing has assumed that objects, or rather their 

enclosing polyhedra, are disjoint. For many scenes the choice of 

objects can be made to ensure that this is the case. However, this is 

not always possible (e.g. an automobile entering a tunnel), and even 

where it is, the priority graph can contain cycles which thwart any 

attempts to construct a priority list. For completeness it would also 

be desirable to be able to handle intersecting objects. The proposed 

solution to all these problems is subdivision of the objects involved. 

Subdivision can be done in many ways, depending on the object 

representation used by the model procedure. In the case .if objects 

represented by groups of polygons, subdivision can be realized by 

bisecting the object into two pieces with a plane. The two objects so 

formed have the convenient property that they are separable by the 

plane which split them apart. 

I 
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For objects which are simple collections of other objects 

subdivision is a logical process which rearranges the group of objects 

into two groups.  The two groups so formed may not be separable by a 

plane. 

Objects represented by bivariate parametric patches can be 

subdivided  parametrir.ally,  any other type of subdivision being 

considerably more difficult. Again, the two fragments formed will 

not, in general, be separable by a plane. 

In view of the many techniques for subdivision, it is necessary 

that subdivison be one of the functions carried out by the procedure 

models. In subdividing, an object may be transformed from one type 

into another. For example, a sphere cannot be subdivided into two 

spheres. In this case the sphere must either be replaced with two 

hemisphere objects, or else turn itself into polygons and be split bv 

a polygon splitting algorithm, and from there after always be treated 

as polygon objects. 

This latter method is the universal solution to the subdivision 

problem. If a procedure model is capable of representing its subject 

as a collection of polygons then it can always be subdivided. The 

requirement that an object can ultimately be represented by polygons 

is not necessarily an extra constraint in that it is expected that 

most procedure models will use a polygon based algorithm for the 

purpose of generating images of their subjects. 

The following examples show how subdivision can solve the various 
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problems mentioned above, namely non-separable polyhedra and 

intersecting objects. 

Figure 16a shows two non-intersecting objects whose enclosing 

polyhedra intersect. If the arch is subdivided as ahown in Figure 

16b, the three resulting fragments are separable. 

An example of non-orderable polyhedra, due to a cycle in the 

priority graph, was illustrated in Figure 9. A suitable subdivision 

of any of the three objects can break the cycle. Such a subdivision 

is shown in Figure 17, which generates the priority order Al,B,C,A2. 

The problem of intersecting objects, which may be of different 

types, is treated next. The enclosing polyhedra of two intersecting 

objects will, of necessity, intersect, a fact that will be discovered 

when an attempt is made to find a plane which separaces them. 

Consequently one, or both, of the objects will be subdivided, and the 

fragments treated as individual objects. However, since the objects 

themselves intersect, this process will repeat indefinitely. 

Consequently, the following action is proposed. 

When two conflicting object fragments have been subdivided a 

sufficient number of times, they will both be transformed into polygon 

objects and treated as a single object. The intersection will then be 

treated by the polygon object model procedure when it generates an 

image of the compound object. The "sufficient number of times" will 

be determined either by fragment size, the size of the image of the 

^ai^^^^MMMM^^^^M^^M^^^^^^^^^ timjlmmumiljm. 
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Figure 16 Resolution of intersecting polyhedra 

• 

FiRure 17  Removal oC cycle in priority graph 

70 
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fragment, or by the number of times the original object has be-n 

subdivided. 

This approach is in keeping with the philosophy of the algorithm 

in that the mainstream of the algorithm seeks to solve the visible 

surface problem at a macro level, and is not concerned with the 

details of any one object. The mechanism puts the task of handling 

the intersection onto the model procedures, where, it is felt, it 

belongs. 

Frame Buffer 

The frame buffer used in the implementation of the priority 

algorithm assembles the image in terms of individual picture elements. 

Two versions were used, one giving 512 x 512 picture elements and the 

other giving 1024 x 1024 picture elements. Even with only 8 bits per 

picture element to store intensity the amount of memory this 

represents is larger than can be accommodated in the main memory of 

the computer being used, a 64K PDP-10. Consequently, the frame buffer 

was implemented on disk and is paged into main memory for use. 

The pages used are thin horizontal stripes the full width of the 

picture. By using an intelligent, but simple, paging algorithm the 

disk latency time is reduced to acceptable limits. It was expected 

that procedure models would generate their images using a scan line 

algorithm, so the paging strategy simply ensures that the page next to 

the one beinp used is set up in memory, using double buffers. 

 ^ -n ■ ,., | „i _ 
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The choice of a picture element frame buffer is probably the 

lowest level attainable,  and all procedure models should be able to 

generate images in the form of individual picture elements.  A segment 

frame buffer was implemented to handle visible segments such as those 

generated by Watkins« algorithm.  Such a frame buffer was also used by 

Newell et al (8).  It was found that alth-ugh the segment buffer was 

less demanding on memory space it was comparatively slow,  and did 

impose an upper limit on image complexity.  Also it could not handle 

images such as are generated by Catmull's  (15) patch rendering 

algorithm. 

The existence of a picture element frame buffer allows several 

rather nice features to be added to the system.  The intensity value 

of zero is used to indicate that a picture element has never been 

written,  care being taken never to generate this value as part of an 

image.  Such a feature allows the generated image to be combined with 

various different backgrounds, ranging from a uniform intensity to a 

scanned-in photograph.  This is done by putting the background  into 

another frame buffer and then overwriting it with the generated image, 

taking care not to overwrite with zero.  This facility can also be 

used to save much time  in an animated sequence of images.  If the 

background is static but the foreground is moving then a sequence of 

images can be generated by saving the background, whether computer 

generated or not, and then for each frame taking a new copy of  the 

background and overwriting it with the newly generated foreground 

image. 
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This technique can be extended to several layers provided that 

the priority ordering of whole  layers can be established.  One 

possibility for determining this priority, and the contents of each 

layer,  is to examine the priority lists of several frames for 

occurences of common groups of objects known to be static relative to 

the picture.  Such an exercise is perhaps not so unreasonable if one 

notes that frame-to-frame coherence can be achieved by using the 

priority list from one frame as the initial list for the subsequent 

frame. As the priority ordering for the new frame is checked,  any 

unchanged groups of .static objects can be detected and separated out 

as potential static layers for subsequent frames.  The development and 

implementation of these ideas is considered outside the scope of this 

paper. 

Implementation Notes 

This section presents some of the techniques used in the 

implementation of the algorithm. The implementation was written 

mainly in FORTRAN, with some assembly language routines where 

necessary. This choice was made mainly for reasons of portability, at 

the cost of some convenience. It was. thought that the lack of 

recursion, list processing facilities, and clumsy overlay facilities 

would be a major problem, though this has proved not to be the case, 

and the system is capable of demonstrating most of the features 

described. 
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The procedure models are implemented using the structure 

described in Chapter VI and Figure 6-1. namely model procedure, model 

instance and object instance. In the absenc of a convenient overlay 

facilit> the model procedures are loaded permanently into the system. 

If a new type of procedure is needed the system has to be reloaded. 

This restriction could be removed given a simple, one level overlay 

facility since the only routines to be overlayed are the model 

procedures. 

The model and object instances are implemented using a stack in 

which each instance is represented by a contiguous block of words .a 

the stack.  Each model instance has a logical pointer to its model 

procedure, and each object instant has an actual pointer to its model 

instance.  The term "stack" is not Ftrictly correct, although space is 

allocated in sequential order.  Many intermediate computations are 

carried out in true stack form using free space beyond t\m    last 

allocated block.  When a block is deleted it is simply marked as such. 

The structure is such that a simple garbage collection procedure can 

compress out the deleted block« when necessary. 

Each model instance holds its enclosing convex polyhedron in ».he 

polygons, edges and vertices format illustrated in Figure 13. The 

transformed, clipped polyhedra are not held with the associated object 

instances, but are built on top of the stack when needed, and are 

referenced by the object instances. Tne format of the transformed, 

clipped polyhedra is a list of plane vectors, a list of vertex 

vectors, and a list of pointers to the vertex vectors to denote the 
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two dimensional enclosing polygon, which is derived directly from the 

transformed, clipped polyhedron, not from the object itself. When an 

object has been established as having the next highest priority, the 

transformed, clipped polyhedron and polygon are marked as deleted, to 

conserve space. 

The method used by all procedure models to generate images of 

their subjects is Watkins' algorithm. This implies that each 

procedure model must be capable of representing its subject as a group 

of polygons, although the whole group need never all exist at the same 

time. 

The hardware Watkir.^ processor and display devices used are 

connected to a single-user PDP-10 computer and therefore actual image 

generation is carried out on that machine, using private disk packs 

for the frame buffer.  However, the generation of the priority ordered 

list of objects does not use any special hardware and so is normally 

carried out on a time-shared PDP-10, although it can also run en the 

single user machine.  This has meant segmenting the  system i:.co two 

phases,  the first one to generate the priority ordered list, and the 

second to generate the image.  This subdivision has proved fairly 

convenient,  although it necessitates saving the priority list between 

phases. 

Li 
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CHAPTER IX 

EXAMPLES OF US: OF THE PRIORITY ALGORITHM 

This chapter is included both to illustrate the types of scenes 

that can be processed by the priority algorithm described, and to give 

some examples of ways in which objects can be represented as procedure 

models.  Classes of representations which have been implemented as 

procedure models include:  collections of polygons;  axisymmetric 

objects where the  profile is represented as a list of vertices; 

spheres; collections of Bezier bicubic patches;  parameterized office 

buildings;  groups of objects each one being represented by any of the 

previous models;  and automobiles represented as a special group 

defining half  the body and two wheels.  The use of FORTRAN prohibits 

groups from being defined as collections of groups. 

Figure 18 s. ws an automobile body represented as a collection of 

polygons. This representation was generated by taking measurements 

from an actual automobile. It would be difficult to generate a higher 

level representation, bivariate patches for example, since much 

information has been lost in the polygonal representation. However, 

the fact that the automobile body is symmetric about a vertical plane 

may be exploited, since only half of the body need be stored. 
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It was desirec to put wheels on the automobile. By using a 

simplified representation, an automobile wheel was modeled as an 

axisymmetric object, Figure i9. The procedure model repesentation of 

axisymmetric objects has the capability for generating the number of 

sectors used to approximate the circular cross section, based on the 

size of the image of the object. This achieves economies in image 

generation of such objects. 

In order  to  define  an automobile with  wheelp,   a  group 

representation is used.  The model includes a set of three references 

to the component parts of half an automobile, namely, half  the body, 

the front wheel, and the rear wheel.  Such a collection of components 

is shown in Figure 20.  The generation of an enclosing convex 

polyhedron  exploits  the  fact  that automobiles are generally 

approximately box shaped, and do not normally get very close to other 

objects.  Consequently, a minimum volume enclosing rectangular box is 

used, being generated from the maxima of the extrema of  the three 

component parts, and accounting for both halves of the automobile. 

Image generation of the whole automobile is carried out 

separately on the two halves. Knowing the equation of the symmetry 

plane, it is a simple matter to determine which naif of the automobile 

is farthest from the eye. An Image of this half is first generated 

and written into the frame buffer. Then an image of the nearer half 

is generated and written into the frame buffer, correctly overwriting 

any parts of the image of the first half. This process may be thought 

of as a special purpose priority algorithm tailored to this particular 
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class of objects.  The whole automobile is shown in Figure 21. 

The above two part image generation process could be applied to 

any object exhibiting mirror  symmetry.  However,  even the simple 

representation of an automobile used here is not  strictly symmetric, 

in that if the front wheels are turned then they should both turn in 

the same direction. Figure 22.  5iv«n the procedural representation of 

the automobile  it is a relatively simple matter to include the angle 

of turn as a parameter, and to negate this parameter when generating 

the image of one of the halves.  The inclusion of such a constraint in 

a more general purpose model of  symmetric objects would be quite 

difficult. 

As an example of a class of objects which can be described by a 

relatively small nu^er of  parameters.  Figure 23 shows a row of 

buildings.  Each building is described by  12  parameters  to  specify 

such things as number of floors, number of windows per floor on front 

and side, window dimensions, material properties, etc.  The enclosing 

convex polyhedra are always rectangular boxes, and are generated by a 

simple arithmetic computation involving window dimensions,  number of 

floors etc.   Image generation exploits the fact that in any view at 

least two, possibly three,  walls will not  be  visible.   The 

determination of  such invisible walls is determined by examining the 

plane equations of the individual walls.  For any wall  found  to be 

invisible,  no  part  of  that  wall  is  considered  during the image 

generation process.  This elimmation of whole walls by  a single 
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Figure  22    Wheels   turned 

Figure  23     Row of  buildings 

■ ■    .1      ■    -  ,,.:■.     .1^...^^.      - 
  ■      - - —  -  - ■■- -—  -~. J 



81 

operation makes possible considerable economies during image 

generation. 

An important class of object representations which, it is  felt, 

should be  included in any three dimensional object processing system 

is the bivariate patch description of arbitrary curved surfaces.  Such 

representations have been developed  specifically to facilitate the 

description and modification of arbitrary shapes.   It would  seem 

desirable,  therefore,  to  process such forms directly, as opposed to 

transforming them into some other representation.  It transpires  that 

the  formulation of polynomial bivariate patches introduced by Bezier 

(20), ind later generalized by Riesenfeld (14), lends itself directly 

to the requirements of the hidden surface algorithm presented. 

Tn Bezier's formulation, a patch is specified in terms of a mesh 

of control points. An example of such a mesh is shown in Figure 24, 

for a bicubic patch. The mesh may be thought of as an approximation 

to the patch, the- precise definition of the relationship being given 

by Bezier's formulation. Some lines in the patch corresponding to the 

mesh shown in Figure 24 are shown in Figure 25. 

Details of Bezier's formulation are not given here. However, one 

important property of the relationship between the mesh and 

correponding patch will be given. This is that the patch is always 

entirely contained within the convex hull of the control points. 

Hence, if a convex polyhedron containing all the control points can be 

found,  it can be used as the charaterizing polyhedron enclosing the 
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Figure 24 Mesh for Bezier patch      Figure 25 Mesh with patch 

j 

Figure 26  Meshes defining jug Figure 27  Parametric lines on jug 
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patch.  Moreover, if the convex hull of the control points  is  used, 

its  shape will resemble that of the convex hull of the patch itself. 

A simple extension of this result is  that  the convex hull  of the 

control points of a collection of patches contains all the patches, 

and may therefore be used as the enclosing con-ex polyhedron for the 

collection of  patches.  This  extended  result  solves an otherwise 

difficult problem, that of constructing an enclosing cor.vex polyhedron 

which is a reasonable approximation to the convex hull of the curved 

shape. An example of a collection of meshes and the corresponding 

patches defining a small jug is shown in Figures 26 and 27. 

As was mentioned earlier, the technique used to generate  images 

in  the currently implemented algorithm is  to derive a polygonal 

approximation to the object  then  to use Watkins'  algorithm.  For 

bivariate patches the polygonal approximation is derived by splitting 

up each patch into a rectangular array in parametric space,  then 

approximating  each  parametrically  rectangular fragment with a 

quadrilateral constructed on the corners of the fragment.  Examples of 

images generated using this technique are shown in Figure 28.  As in 

the case of axisymmetrix objects, it is possible to vary the degree of 

approximation depending on the image size of each patch, although this 

has not been implemented.  Another possibility for generating images 

of  bivariate  patches would be to use an algorithm developed 

specifically for the task.  Catmull's (15) algorithm is an example. 

Figure 29 shows an image of a scene involving multiple objects. 

 ''---—"- -■        in iiixüüiiilitiniiiiiwiMIll—l i iiiinnn-   -  -■■'-■ 





i 

i 

85 

The various pieces of crockery, the spoons, and the drapes are modeled 

using bicubic Bezier patches. The teapot stand is modeled as an 

axisymmetric object, and the table top and mat are modeled using 

polygons. The bodies of the teapot and cups, and the saucers, could 

have been modeled as axisymmetric objects, but were not due to the 

absence of a design system capable of using these two forms tog jher. 

A design system based on procedure models could, of course, have 

fulfilled this need. 

Figure 30 shows an array of pawns on a large checkerboard. Each 

pawn is modeled as an ixisymmetrix solid, and the checkerboard is 

modeled using polygons, though a more strongly procedural model may 

have been more appropriate for such a simply generated object. The 

fact that all the pawns are identical was not explicitly used by the 

algorithm, except that only one profile had to be stored. The number 

of polygons generated during the creation of this image is in excess 

of 180,000. 
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CHAPTER X 

A CATEGORIZATTON OF PROCEDURE MODELS 

The types of procedure models found to be convenient in digital 

image synthesis form a highly varied class. At one extreme the 

procedure model can be rich in stored data, and the model procedure is 

essentially a data manipulator. At the other extreme the only stored 

data might be a few constants embedded in the model procedure, and the 

object, its image and properties, are all generated when required. 

Another attribute which affects ehe classification of procedure 

models is fhe degree of parameterization used, and indeed, the range 

of objects which can be represented by the model procedure. The 

technique used to generate an image of the object is another factor bv 

which procedure models may be distinguished. 

In an attempt to define these various attributes  the following 

list is given, together with a brief explanation and some examples. 

Strongly Procedural - the model procedure generates properties  and 

images of the object by computation rather than by access to a 

voluminous data base.  Examples  include regular geometric 

shapes  such as spheres, cylinders etc.  Objects defined using 

surface patcher can be included in this category. 

Data Rich - in some senses this is the opposite of Strongly Procedural 

though  the use of non-trivial processing by the model 

procedure is not prohibited.  This category is  intended  for 
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procedure models which represent their subjects by a fairly 

conventional numerical data base. An example of this type is 

the use of polygons to represent objects. 

Generator - The model procedure does not represent any one object but 

provides the processing capability to generate an object from 

suitable parameters. A B-spline patch interpreter falls into 

this category in that given the control points for a 

collection of patches the model procedure can generate 

properties and images independent of what object the patches 

represent. 

Strongly Parameterized - The form of the represented object can vary 

widely depending on the parameters, but the class of objects 

is known. An example in this category is a building generator 

which might have as parameters the type of building (office 

block, motel, home) and the number of floors. 

In conjunction with the visible surface priority algorithm 

presented,   two  further categories of  procedure models may be 

identified, based on the technique used to generate images. 

Priority Image Generation - The technique used to generate images is a 

priority technique which can therefore use the frame buffer as 

an active element in generating the image.  Image generators 

which use the algorithms of Srhumaker et al, or Newell et al, 

come into this category. 

Independent Image Generation - Effectively the opposite of Priority 

Image Generation.  This category covers image generators which 

produce  their  images  independently of the frame buffer. 

-  -- __ mM - -- -- •-' ■ - mk^mM 
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Watkins' algorithm provides an example, 

It is clear that any one procedure model might fall into several 

of these categories. However, such a categorization can be useful in 

describing a given or proposed procedure model, and can be used to 

generate guidelines as to just how a required procedure model should 

be structured. 
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— —■ mfvrWf**'!*'!***'***'***^**™'   IU"<1 

CHAPTER XI 

CONCLUSIONS 

The properties of procedure models as applied to the 

representation of three dimensional objects, for the purpose of 

synthesizing images in the form of shaded pictures, have been 

invesuigated. It has been shown that procedure models facilitate the 

processing of scenes of far greater complexity than has pro/ed 

practicable using data base modeling techniques. The generality and 

flexibility of procedure models has enabled a system to he implemented 

which can be, and has been, incrementally exp&nde-l to accomodate new 

model formulations. 

It is believed that the benefits of procedure models are not 

confined to the field of image synthesis, but have considerable 

relevance in many uraas where modeling of three dimensional objects is 

of conce.n, such as computer aided design, computer aided manufacture, 

stress analysis, dynamics simulation, etc. The investigation of this 

hypothesis, while outside the scope of this paper, should provide a 

stimulating, and hopefully fruitful, research project. 

. 
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APPENDIX A 

ENCLOSING CONVEX POLYGON 

Given a set of points, P, in two dimensions the problem is to 

find the minimum area convex polygon enclosing all the points, i.e. 

the convex hull.  An algorithm, suggested by Rudolph Krutar, is given. 

The points, P, are considered one at a time in a serial manner. 

Suppose, at some stage of the algorithm, that the convex hull of the 

first i-1 points 3 i P has been found. Let this polygon be represented 

in terms of its vertices and the line equations of its edges, defined 

such that all line normals point inside the polygon. Point Pi is next 

considered. 

Pi is checked against each line equation to determine on which 

side of each line it lies. If Pi lies on the inside of every line 

then it is inside the current polygon and is not considered further. 

However, if Pi lies outside at least one line, then the current 

polygon must be extended to embrace Pi. 

Consider the situation shown in Figure 31. Pi is found to lie 

outside the lines corresponding to edges E2, E3, and E4. Due to the 

convexity of the polygon the set of edges for which Pi is outside will 

always be consecutive edges of the polygon, in a cyclic sense. The 

extension of the polygon to embrace Pi involves replacing the set of 
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edges having Pi outside with two new edges, formed from Pi and the 

polygon vertices at the ends of the set. In Figure 31 this involves 

replacing edges E2, E3 and E4 with edges V2-Pi and Pi-V5. 

The aHove process is repeated until all vertices of P have been 

considered, at which time the current polygon is the convex hull of 

the set P. 

To start the algorithm an initial two sided polygon, constructed 

on any two non-coincident points, is created, k better starting 

polygon can be achieved by using the two points having maximum 

separation in one of the coordinate directions. 

% Pi 

Figure 31 Current polygon and test point Pi 
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APPENDIX  B 

ENCLOSING CONVEX POLYHEDRON 

Given a set of points, P, in three dimensions, the problem is to 

find the minimum volume convex polyhedron enclosing all the points, 

i.e.  the convex hull. 

The method used is a direct extension of that given for enclosing 

convex polygons in Appendix A.  The current polyhedron is represented 

by its vertices and plane equations of its faces.   Each  test  point. 

Pi,  is checked against each plane equation to determine the set of 

faces for which Pi is outside.  The replacement of this set of faces, 

in order to embrace Pi,  is not so straightforward as in the two 

dimensional case, since there is no simple ordering of the faces.   It 

is necessary  to pair adjoining edges of faces of the set to find the 

boundary edges, which are the non-paired edges.  The new faces are 

then generated using Pi and each edge of the boundary in turn. 

To start  the  algorithm  an  initial  two-sided  polyhedron 

constructed on any three non-colinear points is created. 
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APPENDIX C 

TWO DIMENSIONAL SEPARATOR THEOREM 

The theorem states that if two convex polygons in the plan^ have 

no area in common then at least one edge of at least one of the 

polygons is a segment of a line which separates the two polygons. 

In spite of the apparent obviousness of the correctness of this 

theorem, no correspondingly simply proof has yet come to the attention 

of the author.  Proof is essentially by construction. 

Consider a line joining two points, one inside each of the given 

polygons, A and B. The centroids of the vertices of each polygon 

provide one such pair of points. Now consider moving the two polygons 

towards each other along this line. The two polygons will toucri in 

one of three types of configurations, illustrated in Figure 32. A key 

edge will be defined for each these cases. 

Consider cases a and b. In case a the key edge is the edge of A 

making contact with a vertex of B. In case B, the key edge is either 

of the edges in contact. It is proposed that the key edge, as defined 

above for cases a and b, is the sought after edge whose extension 

separates the two polygons in their original positions. Clearly, the 

key edge has the effect of separating the two polygons in their 

touching positions. If the two polygons are moved back to their 

original positions, the polygon not containing the key edge must move 

away from the key edge, thereby maintaining the separation of the two 

■ - ■ ■ ■ ■ -■■ — 
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polygons by the key edge extended to a line. 

Case c is considered separately. Four edges meet at the point of 

contact. Consider either pair of opposite edges, e.g. E1,E3 or E2,E4 

in Figure 32. One polygon i? inside the angle formed by the two 

edges, and the other polygon is outside. The key edge is the edge 

belonging to the polygon outside the angle. If the edges are colinear 

then either edge may be used as the key edge. The argument that the 

key edge is the sought after edge whose extension separates the two 

polygons is the same as for cases a and b. 

Figure 32 Contact between two polygons 

'' -■ -  .—..  _._ _ 
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