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fragility data was developed to facilitate calculating the probability
of failure when the cause of failure was not consistent or obvious.
The proposed specifications and guidelines were to be incorporated
into a more complete set of testing specifications to be finished at
a later date.
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FRAGILITY DATA ANALYSIS AND TESTING
GUIDELINES FOR ESSENTIAL EQUIPMENT
USED IN CRITICAL FACILITIES

1 INTRODUCTION

Background

The necessity for critical facilities to provide post-earthquake
recovery services requires survival not only of the building structures,
but also of the utility and lifeline systems which support the functions
most needed after an event. P:;suming the structure will survive, the
major problem is the isolation or hardening of all systems, subsystems,
equipment, and components needed to support the essential functions.

Before a decision is made to harden or isolate certain equipment,
it is necessary to determine the fragility properties of the equipment.
Some components may be so delicate that 0iey must be isolated, while
others may withstand the environment with no degradation. It is pre-
sently too costly and otherwise impractical to require that all essen-
tial equipment of critical facilities be tested for fragility. However,
testing of related off-the-shelf equipment has been done for the assess-
ment of hardness of tactical support equipment at missile sites. A
considerable amount of experience can be gained from the analysis of the
resulting hardness assessment reports. The major results of analyzing
these reports are recorded in this work, and form the basis for pro-
posing some preliminary specifications and guidelines for fragility
testing for essential equipment of critical facilities.

Purpose

The purpose of this report is to present preliminary guidelines and
test report specifications derived from analyzing fragility data test
results of the type of equipment used in essential systems of critical
Army facilities.

Outline of Report

Chapter 2 presents the primary results of this work in the form of
proposed testing and test report specifications. Other guidelines

*; , provided will enable the test engineer to categorize failures and
identify problems in time to reschedule testing when certain typical
test results are encountered.
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Chapter 3 analyzes many fragility reports from which the specifi-
cations in Chapter 2 were formed. Data were collected from pertinent
off-the-shelf equipment similar to the type of equipment found in
essential systcms of utilities and lifelines of critical facilities.
Appendix A describes the fundamental theoretical principles of fragility
testing in perspective with other forms of destructive testing more
familiar to engineers. Appendix B provides a method for analyzing
fragility test data to determine probability of failure. This method
was applied to hypothetical failure data to establish the guidelines.

H
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2 PROPOSED SPECIFICATIONS

The ipecifications proposed in this section are directed toward
improving fragility testing and test report procedures. They have been
assembled from an analysis of failure data contained in the Army Corps
of Engineers Huntsville Division's technical reports on SAFEGUARD sys- r
tems testing; however, they are not yet complete. Completion would
entail the generation of specifications for controlling the accuracy of
shock environments and instrumentation measurements, and for providing I
guidelines to selecting appropriate shock environments for various
classes of equipment. Ultimately, specifications will be completed for
testing, analysis, design, and procurement of essential systems and
components.

Definitions

U Test Unit: Lists of essential equipment are usually displayed
according to systems, subsystems, and components. However, for a
particular test setup or analysis, it is more convenient to refer to a
complete unit of equipment. A unit is defined as any system, subsystem,
component, or combination of these which may be treated independently,
either as an assembly or as a detailed part with a specific function.
For example, individual valves in a piping system may be sufficiently
rugged to avoid testing each one. Since the weakest points may be the
joints of the valves and the piping, it may be desirable to test or
analyze the entire piping system as a unit. The size of a test unit is
limited to its capability of being subjected to a single defined shock
environment; i.e., a piping system of a building would be too large to
test the entire unit.

Hardness: A unit's hardness is defined as its probability of
failure under expected environmental loading conditions.

Fragility: A unit's fragility is defined by stating the value of a
depende-nt varTable, such as acceleration, at which it will fail.

Fragilit Envelope: A fragility envelope is determined by ex-
pressing the dependent variable descriptive of failure as a function of
frequency.

Test Capability: Test capability is the capability to duplicate a
presc d shock environment fur a test unit and to provide instru- al
mentation for monitoring the shock environment and response of the unit
in accordance with MIL-C-45662, "Calibration System Requirements" for
instrumentation standards.

Test Analysis Capability: Test analysis capability is the capa-
bility to process and reduce failure data and to calculate the proba-
bility of failure of a test unit under prescribed loading conditions.
This operation usually requires a computer facility and personnel
knowledgable in statistical analysis.

9



Hardness Assessment: The assessment of a unit's hardness is
achieved by calculating the unit's probability of failure under (pos-
sibly numerous) specified shock loading conditions.

Hardness Assurance: The assurance of hardness is achieved by
reducing the probability of a unit's failure below an acceptable value.
This can be accomplished either by redesign to eliminate failures under
a prescribed shock environment, or by isolating the unit from the
prescribed shock environment.

Test Level: The shock environment for fragility testing is usually
defined asa shaped shock spectrum, referred tn as the 100 percent
level. Tests may be conducted with the same spectrum shape, but with a
uniform amplitude change in parameters. The level of the test refers to
the amplitude of a single parameter such as displacement, velocity, or
acceleration, which can be used for comparison with the 100 percent
level. The same terminology is used for application to any type of
shock environment.

Flaw: A flaw is a fault in a unit which is sensitive to one or
more variables such as acceleration, velocity, or displacement. The
flaw will cause the unit to fail if one of these variables exceeds a
certain limit.

Flaw Level: The lowest limit of the variable which will cause the
unit to fail is the flavw level; thus, if the test level exceeds the flaw
level, the test unit will fail.

Consistent Failure: When a failure occurs rMeatedly and can be
predicted at a well-defined test level value, the flaw or failure is
said to be consistent. A unit will exhibit 100 percent probability of
failure at test levels at or above this well-defined level, ard the
failure will be caused by the same (consistent) flaw. Numerous con-
sistent failures may occur simultaneously. A fragility envelope can be
formed from flaw levels if the flaws are consistent.

Independent Failure: When a failure occurs erratically, at dif-
ferent levels of the variables, the flaw is said to be independent. A
well-defined fragility envelope cannot be formed from flaw levels if the
flaws are independent. When this situation occurs, it is necessary to
consider the probability of failure of a unit at any test level.

Qualifyinq Failure: A qualifying failure is one which can be
.corrected almost immediately, or which has a degrading influence not

directly affecting the unit's function or that of any other interfacing
unit.

Lingering Failure: A lingering failure is one which requires an
intolerable time delay to correct. The failure may occur directly

10



within the test unit, or a faulty output of the unit may cause an
interfacing system to malfunction.

j

Applicability

These specifications should apply whenever testing is authorized
for components of essential systems and functions of critical facili-
ties. Equipment manufacturers who do not have the specified testing
capability should not be authorized to conduct such tests, Likewise, a
statement about the probability of a component's failure should not be
requested unless the test analysis capability exists.

Test Report Requirements

Care must be taken to insure that test data can be interpreted with
a minimum of subjectivity. If test capability exists and authority
has been granted to conduct fragility tests, a complete test report
should be required. The cost of such a report is expected to be rela-
tively small compared to the costs of equipment, time, and labor. A
typical report should include the following:

1. Purpose. Provide a detailed description of why the unit must
be tested and what results are considered important.

2. Authorization. Provide the authorizing agency, the funding,
and the time schedule restrictions.

3. Unit Description. Describe the unit to be tested in terms of
where or how it fits into a critical system or subsystem, and what
components are to be tested. Describe critical interfaces with other
systems, and define what structural or functional aspects constitute
failure.

4. Ambient Conditions. Describe the operating conditions under
which the unit must be tested, including such Information as pressures,
temperatures, flow rates, etc.

5. Loading Requirements. Loading requirements should be specified
by contract before testing is authorized. The required 100 percent test
level should be recorded as specified, usually in terms of shock spec-
trum. Variations of this loading for special conditions should be
stated in detail.

6. Test Machine Description. Describe the dynamic capabilities
of the testing machine in terms of maximum displacement, velocity,
acceleration, frequency range, table weight, test mass weight, or any
other pertinent specifications.

(A
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7. Method of Procedures. Describe all testing methods and all
detailed procedures for conducting the tests. The procedures should be
recorded as testing progresses. Each action should be listed on a
tabulated form so that events can be read in chronological order; in
particular, all anomalies, failures., and corrective actions should be
described.

8. Test Summary Tabulation. A standard tabulation format should
be used to summarize test results. This format, as described in the
next section, should include sufficient information to assess the
hardness of the unit without further reference to detailed methods and
procedures.

9. Appendix. All raw test data should be shown in a tabularformat.!

Test Summary Format

The purpose of the test summary format is to provide a standard

teaupresentation from which enough significant information can be extractedS~to facilitate the unit's hardness assessment. Figure I illustrates a

suitable format and typical entries. The following minimum information
should be provided.

1. Heading information should include a title,.description of the
unit, the test machine used, and the date or span of dates over which
testing was conducted.

2. The axis or axes of testing must be identified.

3. The tests should be identified by number in chronological IS~ order.

4. The loading information should he coded for reference to a time
history, shock spectrum, or other authorized loading requirement shown
elsewhere in the report; the percent of full-scale level should also be
shown.

"5. A brief description of every failure should be entered. Cor-
rective action need not be listed, since it should be provided else-
where in the report.

6. The test engineer should enter an opinion about whether the
unit's failure is qualifying (Q) or lingering (F). When there is suf-
ficient doubt, the engineer should consult an expert.

7. The test engineer should enter an opinion about whether the
failure is consistent (C) or independent (I). Again consultation with
an expert may be necessary. This information is not complete until the

12
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scheduled testing is finished and the types of failures are reviewed.
Further testing may be recommended if independent failures are recognizLd.

Hardness Assurance or Assessment

If testing will be conducted by the unit's manufacturer, achieving
hardness assurance may be possible, since in this case, all consistent
failures should be identified and eliminated by redesign, and the unit
retested for verification of hardness. The report should include the
results of the original design's test if the unit is already operational
at any critical facility. Authorization for the mass production and
purchasing of hardened units must not be automatically assumed by a
manufacturer, since further contract negotiations will be necessary
before hardening all production units.

If independent failures are identified, hardness assurance may be
difficult or impossible to achieve with available time and funds. In
this case the testing facility should request authority for more ex-
tensive testing than originally planned. The goal will then be to
collect enough test data to provide a reasonably accurate hardness
assessment, since hardness assurance may be beyond consideration. If
test analysis capability for hardness assessment does not exist and
independent failures occur, the hardness assessment and calculation of
the probability of failure may be accomplished later if a complete and
accurate report is provided.

Guidelines for Selection of Test Levels

It is never known before testing whether consistent or independent
failures (or both) will occur in a hardness test program. When a con-
sistent failure occurs at or below the expected environment level, the
probability of failure is 100 percent. Hence, the decision must be made
either to temporarily condone the existence of the flaw, to harden the
unit by eliminating the flaw, or to Isolate the unit to prevent damage.
When independent failures occur, attempts to harden may be fruitless,
and isolation of the unit impractical. In this case, the probability of
failure will be less than or equal to 100 percent, and it is usually
advisable to collect sufficient test data to enable a reasonably ac-
curate calculation of the probability of failure at appropriate test
levels.

In concept, the probability of failure of a unit can be plotted as
a function of test level, as shown in Figure 2. It is convenient (and
recommended) to select the exponential distribution as the estimated
shape of this curve for many units. In this case, the mathematical
relation is written as

F(x) = 1- e"x [Eq 1]

14



where F(x) probability of failure
x - test level

a - open parameter, to be determined from failure data

0.50

rLEVELLEVEL
LEVEL FO

x, TEST LEVEL

Figure 2. Probability of failure.

The expected environment level may be shown on this plot as a
vertical line at the appropriate value of x. By plotting a horizontal
line at the intersection of the environment level and the curve for
FWx, the probability of failure can be stated. In Figure 2, a 75
percent probability of failure is indicated at the environment level.
If an established criterion dictates that the probability of failure
shall not exceed 25 percent, this will be represented by a second
horizontal line at F(x) a 0.25, indicating that the unit has a hardness
level somewhat less than the expected environment level for this criterion.

Selection of Teat Levels

It should be obvious from Figure 2 that an improved value of ci can
be estimated if test levels are scheduled so that somewhat uniform
values of FWx are obtained throughout the range 0 < F(x) < 1. If Eq 1
is solved for test level in terms of F, the result is

x i 9n (I F). [Eq 2]

Hence, if a were known, Eq 2 could be used (for the exponential dis-I
tribution) to solve for optimum test levels by selecting equal incre-
ments of F between zero and unity. Of course, a must be taken from
the data and is never known in advance. However, it can be seen from
Eq 2 that a logarithmic increase in test levels would lead to a more

15
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efficient and accurate estimate of a than other methods. It is common,
for example, to increase test levels in equal Increments, which could be
much less efficient. If an investigator knows beforehand what dis-
tribution function he* would like to apply, an equation like Eq 2 could
be derived to show what variation in test levels he should use for best
efficiency. Such prior knowledge is rare, however, so the simple ex-ponential distribution and the logarithmic increase in test levels is -

.recommended.

A maJor concern is establishment of an upper test level bound. It

is never known beforehand whether the full-scale input shock environment
will exceed or fall below the unit's required probability of failure
level. The most accurate calculation of open parameters (a, for the
exponential distribution) is obtained in the undesirable case when there
is a high probability of failure at test levels less than or equal to
the full-scale environmental level. Because of time and funding limita-
tions, testing above the full environmental level may not be authorized.
Therefore, the least accurate calculation of parameters results when
there is a low probability of failure below the full required level.

Numerous hypothetical studies indicate that failure cannot be
predicted accurately, for independent failures, unless a unit is tested
throughout the full range for 0 < F < 1. If it is necessary to test
above the full environmental level to experience more failures for this
purpose, the authority must be granted individually. Thus, the upper
test level bound will be a function of the required environmental level,
the number of failures experienced in testing up to this level, and the
time and funds available to test above this level.

It has also been observed from many hypothetical tests that ac-
curacy in estimating the parameters is increased somewhat if testing is
not conducted repeatedly at the same level. That is, for a given number
of tests, accuracy is improved by testing at different levels, preferably
in the range where failures can occur at least 50 percent of the time.

Number of Test Levels

The accuracy with which the distribution parameters can be esti-
mated will also increase as the number of tests increases. Studying
the results of hypothetical failure tests through the entire proba-
bility range provides a good indication of the minimum number of
tests needed to obtain a given degree of accuracy. To accomplish
this, three candidate one-parameter distributions were studied in
which the number of tests in the range 0 < F < I was varied from
7 to 100. In each case, 100 trials were made; i.e., 100 trials were

*"He" Is used throughout this report to represent both masculine and
feminine genders.
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made for seven test levels optimally spaced between 0 < F < 1, and
likewise for 10, 15, 20, 30, 50, 75, and 100 test levels.

The distributions used were the exponential, the Pareto, and the
limitred types. These yield nonzero probability of failure only for
positive values of the test level; hence, the magnitude of the test
level is the independent variable. The corresponding density functions
are all skewed in the direction of increasing test level. The exponen-
tial-and Pareto types are unlimited in that the probability of failure
approaches (but never quite reaches) 100 percent as the test level is
increased. The limited distribution could be used if it were known that
100 percent failure was certain above a given level. The exponential
and limited types have all statistical moments (such as mean, variance,
skewness, kurtosis, and higher moments) defined, while those for a
Pareto distribution would not exist above a certain order. In this
respect, a Pareto distribution is a special case of a Cauchy distri-
bution being nonzero only for positive values of test levels. These
three distributions were used in this work because they are represen-
tative of numerous one-parameter distributions a statistician might
select from for application to fragility data.

The value of the single parameter oL to be estimated in each case
was normalized to unity. For simplicity, the measure of accuracy of the
estimate was taken as the coeffioient of vaz,,ation, which is the ratio
of the standard deviation of the estimate to the value of the estimate.
The standard deviation is a measure of absolute error of the estimate;
hence, this ratio is descriptive of the relative error of the estimate.
The results plotted in Figure 3 represent averages of results from the
three distributions.

In Figure 3a, a is predicted with some positive bias when the
number of test levels is less than approximately 20. The biased esti-
mation of parameters often occurs in statistical problems, and can be
accounted for by correcting the parameter by the indicated error. When
the number of test levels exceeds 20, however, the average estimation of
a approaches unity, as it should.

Figure 3b is a plot of the coefficient of variation of a, and shows
the manner in which the estimate of a improves as the number of tests in
the full probability range is increased. The interpretation of thismm• ~accuracy is demonstrated best by an example. For 20 test levels, c-.392. This implies that there is 68.4 percent chance that the actual

value of a will be within 39.2 percent of the estimated value. It can
be seen that this accuracy is rather poor. Again, for 100 test levels,
there is 68.4 percent chance that the actual value will be within
16.0 percent of the estimated value. Hence, the improvement of
accuracy is demonstrated and shown as a function of the number of
tests, optimally spaced between 0 < F < 1. 4
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The method of maximcn likelihood was used to obtain the above
results. Use of another estimation technique might possibly improve
accuracy; however, it is highly unlikely that the improvement would
be significant. The important conclusion is that, for independent
failures, a large number of tests must be conducted on a unit before
failure can be predicted with reasonable accuracy. In practice, it
will be difficult to select test levels spaced in an optimum manner,

* and time and funds may prohibit testing when the probability of
S .failure is high. Hence,-the results shown-in Figure 3 tend to be

optimistic, and additional tests will generally be required to achieve
the same accuracy in actual cases.

1
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3 OBSERVED FAILURE INFORMATION

Suimmary of SAFEGUARD Failure-Data

Two different procedures for hardness assurance testing were
identified in the SAFEGUARD program.' In this program many off-the-
shelf items of-support equipment were tested-which are.similar to those
used in essential systems of critical facilities. Even though the test
envelopes for SAFEGUARD were not what would be required for critical
facilities, the experience and qualitative results should be directly
applicable.

The method used for most units involved testing at 25 percent, 50
percent, 75 percent, and 100 percent of the expected shock environment.
The second method was used exclusively on five motor control centers,
each of which was submitted to more than four test levels at and below
the 100 percent level. The types of failures recorded in each group
were significantly different.

General Equipment Teset

Fifty-eight independent units were tested under the first method;
of these, 26 units passed all levels (45 percent), while two units
failed all levels (3 percent).

A total of 968 tests were held on all units, often in orthogonal
directions. Tests were held primarily at the four levels mentioned
above. A few tests were held below the 25 percent level, and others
were held as high as the 140 percent level. A total of 430 failures
were recorded. Of the failures, 84 percent could be repaired imme-
diately, or had a degrading effect which did not seriously impair the
unit's function. Such failures have been defined previously as quali-
fying--the unit's function might be interrupted momentarily, but normal
function can continue almost immediately. The remaining 16 percent of
the failures produced lingering effects and required a significant
amount of time to correct.

Table 1 lists the percentage of failures at each of the four pri-

mary test levels, together with the percentage of qualifying failures
(Q), and the percentage of lingering failures (F). At the 100 percent
level, for example, there were 411 tests yielding 225 failures (54.7
percent). Of the failures, 33.3 percent were qualifying, while the

S ,"remaining 21.4 percent produced lingering effects.

'Subsystems Hardness Aeeui.'noe Analysis, HNDSP-73-161-ED-R (U.S. .:
Army Corps of Engineers, Huntsville Division, December 1974).



Table 1

Failure Summary From General Equipment Tests

Full Test No. of Combined Qualifying Lingering

Failures Failures
Level Tests Falures(Q) (F)

26% 70 5.7% 5.7% 0.0%

50% 163 20.2% 14.1% 6.1%

75% 197 37.1% 31.5% 5.6%

100% 411 54.7% 33.3% 21.4%

Motor Control Center Teesta

Five independent motor control centers were tested, with failures
recorded for all units.

One hundred and seventy-two tests were held at numerous test levels
in three orthogonal axes; an average of 34 tests (11 in each axis) was
held for each unit. A total of 92 failures (53 percent) was recorded,
22 (13 percent) of which were qualifying, and 70 (40 percent) of which
produced lingering effects. The further breakdown of percentages for
qualifying and lingering failures does not appear to be meaningful,
since correlation with test levels is necessary. In this case, the
numerous and inconsistent variety of test levels rendered such a tabu-
lation impractical.

Types of Failures

Failures have already been classified as qualifying or lingering
according to ease of repair or time delay. It is desirable to report
alZ failures for future reference. However, in current procedures for
recording failures, the required time for repair is usually not indi-
cated. Therefore, it is often difficult to review test reports for the
purpose of identifying trivial or significant failures. This experience
led to the proposed specification that the test engineer record his
opinion about the amount of repair time required. The opinion can be t.
reviewed and corrected by more qualified personnel, if necessary. Even
knowledge that the time delay was unknown would be helpful.

Failures observed in the SAFEGUARD data could be classified fur-
ther according to consistency or independence. Often, more than one
consistent failure was observed to occur at a single test level. It

* 2
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is roughly estimated that more than 90 percent of the failures which
occurred during the general equipment tests were of this type. The
estimate is rough because the recorded results were not oriented so that
this type of failure could be clearly identified. When such a failure
occurs, there is no doubt that it must be eliminated by hardening or
isolating the unit to withstand the environment.

In contrast, the failures recorded from the motor control center
tests were very inconsistent; i.e., the same failure might or might not
occur more than once at the same level or at different levels. Usually,
repairing the failure after one test would have no significant influence
on whether or not the same failure would occur for any other test. In
general, the higher the test level, the greater the probability of
having one or more failures of this type. Statistically, such failures
are independent. Estimating the probability of failure is more diffi-
cult in this case, requiring the use of conventional methods of proba-
bility and statistics. When independent failures occur, it is espe-
cially important to conduct a sufficient number of tests at preferred
test levels to more accurately predict the probability of failure.

Appendix B provides a statistical method for estimating the prob-
ability of failure for independent failures and for calculating the
accuracy of the estimation. The results of this analysis provide
criteria for planning the number of tests and test levels when indepen-
dent failures occur (see summary in Chapter 2).

Typical Failure Modes

Eventually, it will be necessary to generate specifications for
designing, mounting, and procuring critical equipment; however, it is
not feasible to consider providing specifications for all such equipment
in the near future. A more reasonable approach would be to determine
what failures have occurred most often during testing or from direct
exposure to the hazardous environment. Priorities may then be establish-
ed for attacking the various modes of equipment failure in order of
importance ...

The most complete listing of equipment failure modes encountered
until now appears to be from SAFEGUARD test data. To complement this
information, a survey of earthquake damage reports is scheduled in the
near future to identify typical failure modes on the system level for
systems considered to be essential for critical facilities. On the
component level, failure modes observed in the SAFEGUARD data are:

1. Piping failures:
"Joint leakage
Joint shear
Joint separation
Pipe burst
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Braces bent
Brace bolt sheared
Valve failure (check)
Valve chatter

2. Indicator failures:
Pressure
Temperature
Liquid level
Flow rate

3. Sensing device failures:
Transducer shear-off
Wires cut
Inadvertent switch actuation

4. Machinery failures:
Pump cavitation
Pump leakage
Motor-pump coupling failures
Motor-generator coupling failures
Pump flow setting change
Pump seizure
Motor belt drive separation

5. Mounting failures:
Tank mounting failure
Pump mounting bolt shear
Motor mounts broken
Legs, brackets broken
Displacement interference

6. Electrical failures:
Switch contact chatter
Relay chatter
Relay trip
Circuit breaker trip
Lights broken.

2
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4 SUMMARY AND CONCLUSIONS

Summary

Chapter 2 proposed overall testing and test report specifications
that will contribute to a more complete listing of future test specifi-
cations. The definitions provided will facilitate the interpretation of
failure data.

Two major classifications of failure data have been identified from
the review of available fragility test results. First, a failure should
be classified according to its significance in preventing a critical
function. If a failure causes only a minor interruption of performance
or a degrading effect either within the unit or with an interfacing
unit, it should be classified as quaZlifying. If it causes an extended
interruption, or causes other interfacing units to fail, it should be
classified as lingering. Attempts to harden equipment should be di-
rected primarily to failures exhibiting lingering effects. Second, a
failure should be classified according to its predictability of occur-
rence. If the same failure occurs repeatedly at or above a given test
level, it should be identified as consietent. If the failure occurs
erratically such that it may or may not occur again at the same or a
different test level, it should be identified as independent.

Guidelines provided in Chapter 2 will help a test engineer plan for
an adequate number of tests at appropriate test levels. The results of
analyzing independent failure data from hypothetical tests showed that a
relatively large number of tests must be conducted to calculate the
probability of failure reasonably accurately. Figure 3 showed how the
number of tests was related to the accuracy of the prediction of fail-
ure.

Chapter 3 provided evidence of the existence of both consistent and
independent failures. When failures occurred consistently, it was clear
that the unit had to be hardened or isolated from the environment. On
the other hand, the occurrence of independent failures appeared to lead
to confusion, since such data were recorded for further subjective
assessment of the probability of failure. Also, the importance of
identifying a failure as qualifying or lingering was emphasized, since
this distinction was not always clear in existing reports.

Typical failure modes of off-the-shelf equipment were listed to
identify the most serious failure problems. This tabulation is probably
sufficient to set priorities for establishing future design, mounting,
and procurement specifications.

Since no basic theoretical reference could be found on fragility
testing, Appendix A was written to compare fatigue, strength, and
fragility test data in terms of fundamental meaning and treatment. It
was considered important for this work to show that fatigue and strength
data are formulated as probability density functions, while fragility
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data are cumulative and must be formulated as a distribution function.
It was significant that a fragility failure could not be identified
uniquely with the test level, since the failure might have occurred at
any other level below the test level.

Independent failures were common in certain units tested under the
SAFEGUARD hardness assurance program. To interpret independent failure
data, statistical methods must be used, as demonstrated in Appendix B.
The analysis of Appendix B was provided for two purposes: (1) it shows
the technical level required to interpret independent fragility failure
data, and (2) it provides guidelines for a test engineer to anticipate
testing requirements when independent failures are identified. The
significant results were reflected in the proposed specifications of
Chapter 2.

Conclusions

The hardness assurance of critical equipment involves a series of
expensive operations beginning with fragility testing. Therefore, when
testing is authorized, the results should be reported in considerable
detail. The cost of such reports should be small compared to the cost
of testing. Adequate hardness for a unit may never be achieved within
the framework of available time and funds, since many manufacturers have
only superficial capability of testing their products or interpreting
the failure data.

Failure data should be clarified originally by the test engineer
and reported, with help from a consultant expert if necessary. Failure
data can be used effectively for overall hardness assurance only if the
units to be tested are controlled and monitored, and the test data are
interpreted in an unbiased manner. Detailed and uniform report in-
formation should be required as described herein, since it may be
necessary for personnel unfamiliar with the test unit to interpret the
failure data at a later time. When independent failures are encounter-
ed, the test engineer should recommend continued testing If there is
adequate time and funds.

Review of available test data revealed that consistent failures are
likely to occur in most mechanical equipment used for internal utility
and lifeline systems in critical facilities. Independent failures are
likely to occur in electrical control equipment. If a unit exhibits
consistent failures, a fragility envelope can be determined. For-
independent failures, a precise definition of a fragility envelope is
not possible, and the prediction of failure becomes a statistical
problem.

Failure data analysis results have been recast in the form of
proposed specifications. These specifications should be combined with
future testing specifications from research that is not directly asso-
ciated with the objectives of this particular task.
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APPENDIX A:

OVERVIEW OF RELATED DESTRUCTIVE
TESTING METHODS

No fundamental and readily available texts or other references
could be found that address the statistical troatment of fragility data.
Since most civil and mechanical engineers are at least superficially
familiar with the treatment of fatigue and strength test data, a com-
parison with these methods is necessary, since there are important
differences that may not be immediately obvious to practicing engineers.

All statistical references denote the result of a test as an
otitcome. Input parameters may be fixed or otherwise deterministic, or
they may be random. However, the outcome is usually random, since it
cannot be predicted deterministically.

In a fatigue test, a unit is loaded in a cyclic (or random cyclic)
manner. The loading pattern and time history is controlled by the
of cycles (or time) to failure. Note that failure itself is not the

outcome, and the test will continue until failure occurs. The purpose
of a series o0 such experiments is to determine the statistical pro-
perties of the outcome data, so that time to failure for nominally
identical units can be predicted by probability within certain confi-
dence limits. The outcome data can be arranged in the form of a proba-
bility density function, such as the bell-shaped curve of the normal
density function. The condition is shown in Figure Al, where the peak
of the bell occurs at the average time to failure for nominally identi-
cal specimens for a specific dynamic loading condition. If the loading
condition is varied, the bell-shaped pattern of times to failure will
adjust to a new position. If enough loading conditions are tried, a
continuous line can be drawn connecting the peaks of the density curves,
describing the average time to failure under any of the considered
loading conditions.j.

A similar condition exists with strength testing in which the
load on the specimen is increased until failure occurs. The outcome
is not failure (which is expected to occur), but the stress or force
level at which failure occurred. For nominally identical specimens,
the outcome data can again be described by a probability density func-
tion in the form of 4 bell-shaped curve. The peak of the bell occurs
at the average force at which failure occurred,

Fragility data is markedly different than either of the above 4

types of data. In this case the test level is controlled and selected
by the investigator, and forms part of the input data. There are two
possible outcomes: survival and failure. A statistical test of this
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type is called a Bernoulli experiment. 2 The test level is not an out-
come, and a direct comparison of levels between a fragility test and a
strength (or fatigue) test is not appropriate. The major difference is
that when a failure occurs at a given test level in a fragility test, it
may have occurred at any other test level less than or equal to that
level. Hence the test level does not uniquely define the true flaw
level at which failure would have occurred. This is a cumulative
probability phenomenon and is depicted by a probability distribution
function, rather than by a density function as for fatigue and strength
testing data. (A distribution function is simply the integral of a
density function.)

LINE OF AVERAGE
OUTCOME DATA

'Ii A •OUTCOME JENSITYI FUNCTIONS

'r00

CYCLES (tim6) TO FAILURE - -•

Figure Al. Fatigue data presentation.

When a consistent flaw exists in a fragility specimen, its proba-
bility of failure is given by a step-like distribution function, asj shown in Figure A2a. That is, below a fairly precise test level, there
will be zero probability of failure, and above this level, there will be
100 percent probability of failure. The density function for such a
distribution may be depicted theoretically by a mathematical "delta"
function, and is formed as the derivative of the step function. This
delta function may be compared with the limit of the bell-shaped density
function obtained by fatigue or strength testing; the span of failure
levels in the delta function is very small.

'B. W. Lindgren, Statisica-t Theory (The MacMillan Company, 1962).
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a. Consistent failures. b. Independent failures.

Figure A2. Distribution and density functions for consistent
and independent failures.

When independent flaws occur in a fragility specimen, there is
no precise level at which failure will occur, as shown in Figure A2b.
The higher the test level, the greater the probability that failure
will occur. The deriva+ive of such a distribution function usually
appears as a skewed density function, as shown in the lower curve of
the figure. If negative test levels are considered (i.e., test shocks
in opposite directions), the density function will appear symmetric at
about the zero level. Hence, the density function derived from
fragility data (when independent flaws exist) may appear as a skewed
bell-shaped curve, and its peak value will usually be located close
to the zero level.

It is expected that most units will exhibit both consistent and
independent flaws to some extent. The distinction is often difficult
to make unless the test engineer recognizes the type of flaw at the
time of the test and records his observation for future reference.
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APPENDIX B:

STATISTICAL ANALYSIS OF FRAGILITY
DATA (INDEPENDENT FAILURES)

The Fundamental Fragility Problem

This appendix considers only problems occurring with independent .
failures. All references to an environmental test, flaw,, or fragility
level implies a shaped spectrum which can be defined by a single para-
meter, called the "level."

For the simplest fragility test, consider a unit which will either
survive (S) or fail (F) if it is subjected to one specified test level. 3

Assume that eight tests are held, with the following outcomes:

S, F, S, S, S, F, S, S.

If p denotes the probability of failure, then the probability of sur-
vival is (I - p). Note that failure has occurred twice at this level j
out of eight trials; hence,

p =0.25 [Eq B1]

Also note that the test level does not precisely define the level at.
which failure occurs, since the unit will often survive at this level
with (1 - p) = 0.75. The only conclusion is that when failure did
occur, the actual flaw level could have been any evel Zeses than or
equal to the actual test level.

For more complicated problems, this basic problem is cast as a
problem of maximum Zikelihood. A likelihood function, L(p), is formed
by the product of the p and (I - p) terms as the survivals and failures
occurred in the above experiment:

L(p) = (1 - p) p(l - p)..... (I - p)
= p2 p) [Eq B2]

Now p may be calculated by maximizing L(p) with respect to p:I5
L'(p) - 0 = p(l - p)5 (2 - 8p) [Eq B31*1 -'here L'(p) denotes partial differentiation of L with respect to p.

0 Note that L'(p) = 0 at p = 0 and at p = 1, and is positive for,
0 < 0 < 1. Hence, a maximum exists, and p can be calculated. The
third term in parentheses on the right of Eq B3 yields

7B. W. LiTdgren, st-tistical Theory (The MacMillan Company, 1962).
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P - o.25 [Eq 134)

as found previously. When p is calculated in this manner, it is called
a maximum likelihood (ML) estimator of the true value of p, which is
the desired quantity to be estimated from the experiment results.
Likewise, L(p) is referred to as the likelihood function (LF).

The fundamental fragility test can be generalized for one test
level, where there are n tests and k failures:

(Lp) - pk( 1 - p)n-k [Eq B5)

L'(p) - p (np - k) [Eq 86]
p a k (E,q B7]

The above relations follow immediately from Eqs B2, B3, and B4.

In the fragility tests performed on the motor control centers
discussed in Chapter 3, numerous cases occurred in which Eqs B5, B6, and
B7 could be applied at a single test level. However, more information
was always available because each unit was subjected to more than one
test level. The problem of calculating the probability of failure
thereby becomes more complicated, but accuracy improves because more
information can be used. The use of the ML estimation method is war-
ranted when various test levels are used,

Extension and Generalization of the
Fundamental Fragility Problem

When more than one test level appears in numerous trials of a
fragility test, the probability of failure will be a function of test
level. Generally more information about the governing probability
distribution function for failure must be known or assumed.

The use of the LF to include various test levels is possible if

p can be written as a continuous function of the test level, as
Sp = p(x) [Eq 8]:•

where x is the test level.(

Also, the LF given by Eq B5 as

" "L(p) pk( 1 - p)n-k [Eq B9]

must be an admissible probability density function. The required pro-
perties for the LF to be an admissible density function are



L(p) > 0 [Eq BIO0

crL(p) dp I c > 0 (Eq Bi)

where c is a positive constant.

.. -Inequality BlO was demonstrated to .be true, for practical pur-
poses, in the discussion following Eq B3. To prove that EqBll istalso
true, note that p is defined on [0,1] and is zero elsewhere. Then,
putting Eq B9 into Eq Bll gives

pk( 1 _ p)n-k dp l(k + lr(n - k + 1)[Eq B12
=p r(n + 2) "E B12

0
where I is the conventional gamma function.

Hence, Eq Bl1 is satisfied if
r(n Eq Bl+]

• (k '+ I I'ln - 'I)1 Eq B 3

It will be shown that c cancels out of subsequent calculations and can
be any positive bounded constant. The value of c given by Eq B13. is
therefore acceptable. With this value of c, the integral shown in Eq
Bll or B12 depicts the c~onventlonal beta function, and the LF for a
single-level fragility test has the shape of the beta density function.
Again, this condition Implies that L(p) is zero at p - 0 and p - 1, and
is positive for 0 < p < 1. For a single test level, it has a single
maximum value from which p can be calculated by the ML method.

The required extension of the LF for more test levels can be ob-
tained as the product of the beta density functions (the LF's for
single test levels). 5

L(p) = fn ci L(p1 ) = II ciII L(pi)
i=l i=l 1=

orII
(p)piki ( )niki n [Eq B14]L~)=CIil (0 -p)0< ki -< nI

'G. H. Hahn and S. S. Shapiro, Statistical Models in Engineering, (John Wiley and Sons, Inc., 1967)..B. W. Lindgren, StatieticaZ Theory (The MacMillan Company, 1962).

31



where C is the product of the ct, and I is the total number of test
levels.

In Eq B14, the Pi appear as discrete probabilities, but they are
not independent, since p is a function of x. It is recalledthat a
failure will occur if a flaw level in the specimen is less than or equal
to the test level. Since more than one flaw level may exist below a
*giventest-level, the probability of-failure is.

Pt = P (at least one flaw level < test level xt) [Eq B15]

This is a cumulative probability phenomenon, where xi denotes the I
test level, and P is any admissible probability distribution function.
Letting y denote a flaw level, x a test level, and F(x) the governing
distribution function for failure, Eq B15 may be written as

P1 = P(y I xi) - F(x1 ) - Fi [Eq B16]

The probabilities pi are still discrete but are now expressed as con-
tinuous functions of the test levels xi. So far, the only restriction
placed on F(x) is that it satisfy the requirements for an admissible
probability distribution function.

The problem of maximizing Eq 814 with respect to each pi is greatly
simplified by replacing pi with F(xi), so that F(xi) is a function ofone or more (possibly up to three) parameters OLJ, 3 1,2,.. ,O.

The maximum number of parameters, J, is usually much less than the
total number of tests, I. These parameters are now the unknowns,
rather than the pi, and the function F(xI) is assumed to be a known
function F(xi; a.) of the test level and the parameters. The task is
now to maximize the LF, Eq B14, with respect to the aj instead of the p,
which is much easier to accomplish.

Putting Eq B16 into Eq 514 gives

L(x; a) - C n Fk(xj; 3) {l - F(x1 ; i )}ni-k1

1=l

or in simplified form,

L(x; C) - Cn F k (I - Fi)[Eq 517

where E is a vector of the ia, J a 1,2,...9J.

In the usual treatment of a likelihood function, the logarithm of
Eq B17 is taken to obtain
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S~I

inL(x; -) = XnC +, [kCinnF + (ni ki)in(l - Fi)] [Eq BIB]
i i1

It is proven 6 that maximizing the logarithm of a likelihood function is
equivalent to maximizing the function itself. Thus, the problem is
further simplified by dealing with sums instead of products. Eq B18 is
maximized with respect to each xj as

*~-[i n, - Fi - -• J=l, 2,. .. ,j [Eq B19i

Note that the constant C has been eliminated, as previously stated,
and simplification of Eq B19 leads to J simultaneous equations of the
form

I1
0~ [Eq B20)

In practice, there appears to be no need for J to exceed unity, although
it may be as high as three if hundreds of test results are available for
a single unit. Independent failure data are not now readily available,
and applying sophisticated probability functions (i.e., with as many as
three parameters) does not appear to be warranted.

The solution of Eq B20 for ZZ may yield numerous roots, 7 in which
case the correct result is the set of a which yields to the largest
maximum. When this condition exists, there will also be minimum roots,
since one minimum will exist between every pair of maximum points. This
condition has not yet been observed.

It is noted in Eq B20 that F(x; 31 must be differentiable with
respect to each aj. Also, although it is not necessary to differentiate
L(x; •), a maximuM will exist, provided that

a n2 ( < 0 [Eq B21)

For further discussion, the roots of Eq B20 will be denoted by 6,
where it is implied that & is a vector if more than one parameter must
be estimated.

"3E. 0. Gumbel, Statitics of Extremes (Columbia University Press,
"1958).

"7M. J. Kendall and A. Stuart, The Advanced Theory of Statistics (Hafner
Publishing Company, 1969).
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Accuracy of the Estimator
The solution of Eq B20 yields a value 8 which etimatea the true

value-of a. Intuitively, it is expected that d will approach a a.s the
number of trials increases. Also, it should be expected that accuracy
will improve if the trial test levels are spaced such that increments
of F are uniformly distributed in the range 0 < F < 1.

The dependence of accuracy on the number of trials and test levels
is quantified by the calculation of the variance of 8, denoted as
var(8). Both & and var(d) can be calculated from a series of numerous
tests at various levels.

The general fragility problem for independent failures has been
shown to fall quite naturally into a problem of maximum likelihood. A
minimum variance bound (MVB) can be calculated if the problem is cast
in this manner, 6 but there may be many other techniques in addition to
the ML method to estimate at. However, the highest attainable accuracy
is reflected by the MVB, which is determined by the ML method. This
does not imply that the MVB is the actual var(Q) found, even if the ML
method is used. Instead, the MVB is a variance which is less than or
equal to the actual variance calculated by anyj estimation technique,
including the ML method. An estimator which attains such a lower bound
for var(d) is called an MVB estimator. If the condition for consistency
and sufficiency exists (see The Advarnced Th~eor'y of Statietiow') and if
there is an unbiased MVB estimator, the estimator is given by the ML
method.

The MVB, V, is generally found by taking the negative reciprocal of
the expected value of the second derivative of the log-likelihood func-
tion, written as

r( 1) /R2'(8) [Eq B22]

where

R() - E(-2 -2nL). [Eq B23]

The determination of the expected value, shown in Eq B23, is a standard
statistical operation, and can be found in any fundamental statistical
reference. In the particular case when L is composed of products of
a density function which admits a single sufficient statistic for the
parameter a, Eq B23 simplifies to

2a2

5M. G. Kendall and A. Stuart, The Advanced Theory of Statiatica
(Hafner Publishing Company, 1969).
SM. G. Kendall and A. Stuart.



The density function in this case is from the beta distribution, as
given by Eq B12 or Eq B14. Evidence that sufficiency is satisfied is
provided in The Advanced Theorj of Statieticoa for the binominal
distribution, which can be written in the form of a beta distribution. 1"
Although no further proof of sufficiency :is provided here, Eq 824 has
been used to calculate v in Eq 822. If the analysis of independent
failures from fragility testing becomes a comnon operation in the future,

.a more rigorous proof ofrsufficiency should be provided, and Eq B23 used
instead of Eq B24 if and when necessary. Also, it Would be informative
to calculate the actual variance, var(d), in addition to the MVB, V(a).

The first derivative of the logarithm of the LF is shown in Eq 819
or Eq 821 as

Iaa F

nL -Mnm [Eq B25]
1=1 6

where each term except a in the outside bracket expression is under-
stood to be subscripted with i. The second derivative is obtained for
one parameter and simplified as

a2  [(t)2 (1- 2F) k@2 1/+ nFEa 2 -X k (B-I ; + n 77[Eq B26]
k (I' - F )2  -~ -F (1- F)' -

However, Eq B26 is valid only if there is one parameter, a, to estimate.
For more than one parameter in the expression for F, a matrix of equa-
tions like Eq B26 is formed, such as

acta 2 2( 1 ) 1-F 1En~;) [FXFm(l - 2F) Ft Fm ]+ nF (qB7

where Z,m a 1, 2, . ., J,

FL =aF

F F
Fm = Fi

"".M. U. Kendall and X. Stuart, The Advanced Theory of Statistics
(Hafner Publishing Company, 1969).

11G. J. Hahn and S. S. Shapiro, Statistical Models in Engineering
(John Wiley and Sons, Inc., 1967).
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In this case, a matrix of V terms is formed from the negative inverse of
the matrix Eq B27: •2- OWL]J 1  [Eq B28]

where the brackets denote J x J square matrices.

The terms on the main diagonal of [7] are the MVB's for the
associated &j. The square roots of these terms will be the minimum stan-
dard deviation bound (14SDB) for each &j. Letting •j, j 1, J, denote
the MSDB's, the coefficient of variance, may be formed for each •
as

1 2

Fa

cj = , j - 1,2, . . .,J [Eq B29]
J j

This coefficient provides a relative measure of accuracy. For similar
tests of identical test levels, it implies that 58.4 percent of the time
the estimator &j will be within cj (converted to percent) of the calcula-
ted value of 6. Also 95.4 percent of the time &.j will be within 2cj
of the calculaled value, and 99.7 percent of the time it will be within
3c of that value.

Selection of a Distribution Function

For a general fragility problem, an assumption must be made about
the form of the distribution function for failure, F(x;c). Because of
the lack of large quantities of independent failure data, the restric-
tions on F should be minimized. First, F must be an admissible prob-
ability distribution function, satisfying standard requir'ements in
accordance with fundamental statistical theory.

It might be expected that the density function for F (its deriva-
tive with respect to x) should be limited at x = 0 ard possibly skewed
in the direction of increasing magnitude of x. This implies that
F(O;c) = 0 and that F will monotonically irncreaae to unity as test level
increases. It does not presently appear that the density function must
decrease monotonically with x, although this assumption may be con-
venient, simple, and warranted for lack of sufficient failure data.

The use of distribution functions which must be written in integral
form should be avoided, at least temporarily. For example, the normal,
gamma, and beta distributions are written in integral form. (The beta

12W. S. Peters and G. W. Summers, Statistical Anatyig for Buaineee

Deais;xna (Prentice-Hall, Inc., 1968).
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function for F should not be confused with the beta function for the
distribution of the LF. It is conceivable that F could also be repre-
sented as a beta function.) This restriction should be imposed because
it may take thousands of times longer to obtain a computer solution for
the parameter because of the requirement to integrate many times to
obtain F in the iterative solution process.

Typical admissible distribution functions are those presently being
used (by coincidence) in extremal analysis".1 3 The simplest and most
appropriate form for early studies is recommended as the exponential
distribution:

F(x;a) -eax [Eq B30]

This is a one-parameter function which has a monotonically decteasing
density function for x > 0 and a >0. It is bounded at x = 0, but is
unlimited for large values of x. All statistical moments exist. The
Pareto distribution is given as

,F(x;a) = 1 - (x - 0)" [Eq B31]

[4 where x may be multiplied by a positive constant if desired.

Here, B 1 0, and the lower bound for x is shown by x 2.1 + 8, while
a 1. The distribution is unlimited for large values of x, but statis- A
tical moments greater than or equal to a do not exist. An investigator
may have reason to believe that such a function may be applicable to a
particular fragility problem. In comparison to the exponential density
function, the derivative of Eq B31 has a peak value (mode) at some value
x > 0, and therefore does not decay monotonically with increasing x. If
x is multiplied by a constant, Eq B31 may be regarded as a three-para-
meter distribution, but it may be reduced to a two- or one-parameter
function by letting the constant equal unity and by setting B = 0. For
cases in which the investigator feels that bounds on x are necessary in
both directions, the limited distribution may be used:

F(x;--) = 1 -I (- x)Wt [Eq B32]

Again, x may be multiplied by a positive constant to form a three-
parameter distribution if desired. As Eq B32 is written, the bounds
on x are a-I< x i B, with 8 > 0 and a > 0. If the bounds are known
(i.e., if a is known), and the constant multiplier for x is assumed as
unity, Eq B32 reduces to a one-parameter distribution. Again, the mode
of the density function occurs at x > 0. '

There are more general asymptotic distributions associated witheach of the above distributions. For example, the first asymptotic

"LE. J. Gumbel, Statietice of Extremes (Columbia University Press,

1958).
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distribution is associated with the exponential type. It is a two-,
parameter function given as

F(x;--) - exp [-e'(x - B)] [Eq B33]

Restrictions or choices for a and a are discussed in detail in statistics
of xtrmes 1 1'The advantage of using such an asymptotic function is

that it will generally reflect the behavior of any-distribution function
of a class defined as the exponential type for sufficiently large values
of x. Hence, the investigator need only assume the type of distribution
function if he is willing to test at relatively high levels where failure
is likely to occur. Two other related asymptotic distributions are
available for more general Pareto and limited distributions.

For this work, only those functions presented above have been pro-
grammed and analyzed.

Solution

The solution of the fragility problem for the independent failures
consists of estimating the parameters U for the assumed distribution
function F(x;E). If the parameters are known, the probability of fail-
ure can be calculated easily for any test level, x. An adequate com-
puter program may be almost completely established from generally ac-
cepted and published subroutines. 1 51' The following steps are neces-
sary to obtain a solution:

1. Assume a suitable distribution function, such as one suggested
in Eqs B29 - B32. The exponential distribution is recommended until
more data become available to warrant using other distributions.

2. If J parameters must be estimated, set up J simultaneous equa-
tions, as given by Eq B20. There will be n tests and k failures at
each test level xt obtained from the experimental test data. Here,
0<k<n and n > 1 at each test level.

3. Use a conventional iteration method, such as the Newton-Rapson
technique, to calculate the estimators Qj, J a 1, 2. .. ,J,

4. Calculate the J x J matrix ['Yv- (the MVB's) given by Eq B28.
This matrix should be reasonably well-conditioned, implying that the

"•iE. J. GueTl, -Statistioe of Extremes (Columbia University Press,
1958).

"System/360 Scientific Subroutine Package (36OA- ,M, 03X) Version ITII, :9
Progranmer'e ManuaZ (IBM, 1968).

"16B. Carnahan, H. A. Luther, and J. 0. Wilkes, Applied Numerical Methods
(John Wiley and Sons, Inc., 1969).



terms on the main diagonal should be generally larger than the off-
diagonal terms. If this situation is not observed, it is evident that
the selection of F(x;3) was poor.

5. Take the square roots of the diagonal terms of [7v from Eq
B28 to obtain the MSDB's 1j, j = 1, J. Then calculate the coefficients
of variation cj given by Eq B29.

As suggested previously, it may be desirable in the future to
calculate the actual covariance matrix as an additional step. Present-
ly, however, completion of the above five steps constitutes the solution
of the independent failure fragility problem.

Hypothetical Failure Studies

Many computer runs were made to analyze hypothetical failure data
by the procedure outlined above to gain information about the relation
between the number of tests and the accuracy of the estimators.

The hypothetical data were generated as follows. The total number
of trials, I, for a test series was selected. Then I + 1 equal in-
crements were taken between 0.0 and 1.0 to establish ideal increments
in the function F(x;•--). Hence, Fi, I = j, 2. . .,I, was established
and distributed with equal increments over 0.0 < F < 1.0. Next, the
desired algebraic form for F(x;3) was chosen from any of Eqs B30-B33,
and values of xj were assumed, For each value of Fi, the corresponding
value of the test level xi was calculated as shown in Eq B2 for the
exponential distribution. This provided I ideal test levels to assure
the best accuracy in calculating the parameters. Only one test was run
for the fictitious unit at each level: a random number, selected from
numbers uniformly distributed between 0.0 and 1.0, was selected by
computer; if this number was less than or equal to Fi, the test out-
come was considered a failure; If the number was greater than Fi, the
outcome was survival.

The above technique provided I outcomes for each hypothetical test
series for a fictitious unit. As the computer programming was establish-
ed, the value of I and the algebraic expression for F(x;U) could be
varied at will. The input data to the solution program consisted of
the test levels xi, the function F(x;U), and ki j 0 or 1, depending on
whether survival or failure had occurred. The value of ni = I was
assumed in these hypothetical studies, since only one test was held
at each level. However, this was not a general restriction, since real
data could be used in the solution program for all acceptable values of
ki and ni at each xi.

For consistency in analyzing results, the number of trials for
each of the four distributions was taken as I = 7, 10, 15, 20, 30, 50,
75, and 100. For each of these values of 1, 100 distinct hypothetical
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fragility problems were solved. Solution of each problem consisted of
calculating the 3 vector to estimate the known values of aj which had
been assumed to generate the failure data. The MVB matrix, [v--, was
also calculated. After 100 problems had been run for each value of I,
the values of each &j were averaged. It is not an accepted statistical
practice to average the coefficients of variance directly, since the
are calculated by using the square roots of the diagonal terms of [v].
Hence, each diagonal term of [-] was averayad first; then the square
roots of these averages were taken to obtain the average 'j values.
Finally, the average aj's were divided by the average d•jos to obtain
the average coefficients of variance, ci, in accordance with Eq B29.

These results are shown in Figures Bl-B4 as plots of average
6- vs. I, and cj vs. I for each parameter in each of the four distribu-
tions. All four distributions in Figures Bl-B3 are shown as reduced to
one parameter (J = 1) distributions. Convergence of solutions was more
difficult for low values of I, but was always ottained for the one-
parameter distributions. Usually, convergence for two-parameter dis-
tributions was very difficult for I < 10 and for I < 30. Convergence
for three-parameter distributions has never been obtained for values of
I < 100; hence, no results for the three-parameter distributions were
obtained. Figure B4 shows the results for a two-parameter distribution
(the first asymptotic). Note that all assumed values of a. are shown
normalized to unity for simplicity of presentation. (The iesults for
the one-parameter distributions were averaged and are presented in
Chapter 4.)

It should be noted that some positive bias usually results for the
estimators when I < 20. However, the &j are usually close to unity, as
required, for I > 20. The bias can be corrected for low values of I
directly from the plots. The consistent positive error implies that the
ML method does not yield precisely unbiased estimators in this applica-
tion. This conclusion would be substantiated only if the programming
used was found to be faultless in this respect.

Motor Control Center Results
The ML solution technique was applied to all motor control center

data discussed in Chapter 3. (It will be recalled that no consistent
failures were identified in the five units tested.) Table Bi provides
the results of this technique where the probability-of-failure law was
assumed to follow the exponential distribution. Other distributions
were tried, but no significantly different results were obtained to
warrant additional tabulation. Only those test series have been tabu-
lated for which at least one failure occurred, since the parameter could
not be calculated if no failure occurred.

The poorest accuracy (i.e., the poorest coefficients of variation)
occurred in Table Bl when only one failure was recorded. Although
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Pareto distribution.
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FUNCTION: F (x) I-(I-x)@
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Figure B3. Parameter and accuracy for the one-parameter limited
distribution.
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Figure B4. ct-Parameter and accuracy for the two-parameter first
asymptotic distribution.
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Table Bi

Analysis of Motor Control Center Data Using
Exponential Distribution

SProbability Function: F(x) 1-e"

No. of Total Total
Unit Axis Levels Tests Failures c

E52MC Z 14_ 27 8 0.077 0.371

X 16 26 10 0.161 0.359

Y 14 26 10 0.104 0.328

E089MC X 8 13 1 0.028 1.004

Y 10 15 1 0.020 1.002

E87MC Z 1s 21 4 0.064 0.511

X 12 18 7 0.101 0.388

Y 16 18 5 0.064 0.451

EO6MCl Z 13 15 2 0.052 0.711

EO6MC2 Z 8 11 1 0.032 1.000

X 8 11 1 0.032 1.000

Y 8 14 3 0.078 0.657
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there is no direct relationship, accuracy tends to improve as the per-
centage of failures of total tests increases. The lack of a more ob-
vious direct relationship is probably the result of a clustered and
generally poor selection of test levels.
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