The Goal Structure of a Socratic Tutor

Albert L. Stevens, Allan Collins

March 1977

Sponsored by:
Office of Naval Research and the
Advanced Research Projects Agency

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
The Goal Structure of a Socratic Tutor

Albert L. Stevens
Allan Collins

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts 02138

Expiration Date, September 30, 1977
Total Amount of Contract - $337,000
Principal Investigator, Allan M. Collins (617) 491-1850

Sponsored by:
Office of Naval Research
Contract Authority No. NR 154-379
Scientific Officers: Dr. Marshall Farr and Dr. Henry Halff

and

Advanced Research Projects Agency
ARPA Order No. 2284, Amendment 5
Program Code No. 61101E

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the Office of Naval Research, or the U.S. Government.

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
We describe the current version of the Why System, a script-based socratic tutor which uses tutoring strategies formulated as production rules. The current system is capable of carrying on a dialogue about the factors influencing rainfall by presenting different cases to the student, asking for predictions, probing for relevant factors, entrapping the student when he has not identified all necessary factors, and
presenting counterexamples. The current system is incomplete because it lacks a goal structure to guide the tutorial sessions. We outline a more complete theory of the goal structure of Socratic tutors based on analysis of human tutorial dialogues. There are two top level goals: (1) refinement of the student's causal model and (2) refinement of the student's predictive abilities. The subgoals are diagnosis of bugs in the student's knowledge and correction of the bugs. This goal-driven control mechanism governs the selection of examples and teaching strategies used by the tutor.
The Goal Structure of a Socratic Tutor

Albert L. Stevens
Allan Collins

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-76-C-0083, Contract Authority Identification Number, NR 154-379. We thank Lauren Resnick and Ira Goldstein for helpful discussions about tutors and goals, and Nelleke Aiello, Geoffrey Brown, Bertram Bruce and Madeleine Bates who implemented the current version of the Why System.
Abstract

We describe the current version of the Why System, a script-based socratic tutor which uses tutoring strategies formulated as production rules. The current system is capable of carrying on a dialogue about the factors influencing rainfall by presenting different cases to the student, asking for predictions, probing for relevant factors, entrapping the student when he has not identified all necessary factors, and presenting counterexamples. The current system is incomplete because it lacks a goal structure to guide the tutorial sessions. We outline a more complete theory of the goal structure of Socratic tutors based on analysis of human tutorial dialogues. There are two top level goals: (1) refinement of the student’s causal model and (2) refinement of the student’s predictive abilities. The subgoals are diagnosis of bugs in the student’s knowledge and correction of the bugs. This goal-driven control mechanism governs the selection of examples and teaching strategies used by the tutor.
The Goal Structure of a Socratic Tutor
Albert L. Stevens and Allan Collins

INTRODUCTION

The technology for building intelligent CAI systems that can tutor students individually is advancing rapidly because of an accumulation of tools and techniques for representing knowledge and understanding language (Brown & Burton, 1975; Burton, 1976; Norman & Rumelhart, 1975; Schank & Abelson, in press). We are using these tools to build the why System, a Socratic tutor which teaches causal knowledge and reasoning about the factors influencing rainfall in different regions.

The Socratic or case method (Collins, 1977; Plato, 1924; Swets & Feurzeig, 1965) is one of the most effective methods of teaching. By posing problems for the student to solve, the student learns the way different facts are causally interrelated as well as strategies for using this knowledge to reason in a generative way (Collins, Warnock, Aiello & Miller, 1975). This is the kind of knowledge and skill that a person cannot learn passively by reading a book or by having the causal interdependencies explained. He must actively try to deal with problems and cases, and make mistakes that reveal his misunderstandings.

In order to develop the Why System, we examined a variety of dialogues involving the Socratic method and tried to formalize the tutoring strategy used in these dialogues as production rules (Newell & Simon, 1972). Production rules take the form "If in situation X,
do Y. The purpose of writing the rules as productions was to express the theory in a procedural formalism, independent of the particular content.

Based on our analysis, we developed a theory of Socratic tutoring (Collins, 1977) in the form of twenty-four production rules which account for the specific strategies used in the dialogues analyzed. Examples of these rules are shown in the dialogue in Table 1. The strategies themselves teach students: (1) information about different cases, (2) the causal dependencies that underlie these cases, and (3) a variety of reasoning skills. These latter include such abilities as forming hypotheses, testing hypotheses, distinguishing between necessary and sufficient conditions, making uncertain predictions, determining the reliability or limitation of these predictions, and asking the right questions when there is not enough information to make a prediction.

Table 1 shows segments of an actual dialogue with the Why System which illustrate some of its capabilities. The student's responses are typed between asterisks. The Socratic rules that generated the system's questions are shown in parentheses, but these are not seen by the student.

The system's knowledge about rainfall is stored in scripts and subscripts (Schank and Abelson, in press). The scripts represent the different temporal steps and causal factors in structures that affect rainfall. The language comprehension module is implemented as a semantic grammar (Burton, 1976) and matching procedure which attempts to identify which of the steps and factors the student refers to in
Table 1

Dialogue with why System

DO YOU THINK THE AMAZON JUNGLE HAS HEAVY RAINFALL OR LITTLE RAINFALL? (Rule 1: Ask for a prediction about a particular case)

HEAVY RAINFALL

WHY DOES THE AMAZON JUNGLE HAVE HEAVY RAINFALL? (Rule 2: Ask for prior causes)

BECAUSE IT'S NEAR THE ATLANTIC

YES, THE AMAZON JUNGLE IS NEAR THE EQUATORIAL ATLANTIC. HOW DOES THAT AFFECT THE RAINFALL IN THE AMAZON JUNGLE? (Rule 3: Ask for intermediate causes)

THE WATER IN CURRENT IS WARM

WHAT HAPPENS AFTER THE MOISTURE FILLED AIR REACHES THE LAND? (Rule 4: Ask for subsequent causes)

I DON'T KNOW

DO YOU THINK THE ANDES MOUNTAIN RANGE HAS ANY EFFECT ON THE RAINFALL IN THE AMAZON JUNGLE? (Rule 5: Suggest a factor and ask if it is a cause)

YES

HOW? (Rule 3: Ask for intermediate causes)

THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

HOW DOES THE FACT THAT PREVAILING WIND HITS THE ANDES, LEAD TO AIR COOLING? (Rule 3 again)

(Section omitted)

DO YOU THINK THAT ANY PLACE WITH MOUNTAINS HAS HEAVY RAINFALL? (Rule 6: Form a general rule for an insufficient cause)

YES

SOUTHERN CALIFORNIA HAS MOUNTAINS. WHY DOESN'T SOUTHERN CALIFORNIA HAVE HEAVY RAINFALL? (Rule 7: Pick a counter-example for an insufficient cause, and Rule 2: Ask for prior causes)
his responses. The language comprehension module uses very general
techniques for parsing and representing English, but in its current
form it deals with only a limited set of natural inputs. It does not
deal well with anaphora or conjunction and fails to understand many
sentences typed by the students.

The first segment of Table 1 shows the start of a dialogue about
rainfall in the Amazon, a case which students typically have some
information about. The first strategy in taking up a new case is to
ask for a prediction. When the correct answer is given, the system
asks for any of the prior causes that lead to rainfall in the Amazon.
Because the student mentions the Atlantic, the system follows up on
this to see if the student knows how the Atlantic is involved in the
process leading to rainfall. To do this, it asks for any
intermediate steps in the causal structure between the Atlantic and
the rainfall in the Amazon.

The next segment follows an omitted discussion with the student
about how water evaporates from the Atlantic and is carried by the
prevailing winds over the Amazon. Having discussed these two basic
steps in the process, the system asks what happens next. When the
student doesn’t know the answer, one of the strategies the system
uses is to suggest a factor, such as the Andes, which is involved in
the process, and ask if that is a cause of rainfall. When the
student agrees that it is, the system probes for intermediate steps
in the process by asking “How?” The student’s answer “The prevailing
winds hit the Andes and the air cools,” refers to two separate steps
in the process. Because there is an intervening step between these
two steps, the system probes the student for that intervening step.

In the last segment, the first question involves one kind of entrapment Socratic tutors use. The strategy is to pick a factor, such as mountains, that is involved in the process of rainfall, but is not sufficient in and of itself. Then a question is posed as to whether the factor is sufficient to cause heavy rainfall. In this case, when the student is trapped into saying yes, the system asks about a counterexample, Southern California, which has mountains but not heavy rainfall. The dialogue would continue from this point, on the topic of why Southern California has little rainfall. This kind of use of entrapment and counterexample are characteristic of the Socratic method.

As has been pointed out (Collins, 1977; Resnick, 1977) the Socratic theory on which the current system is based does not characterize the goals of Socratic tutors. The different rules are triggered by specific situations, but there is no explicit control structure that specifies when tutors use particular strategies, select particular cases, or discuss particular parts of the causal structure. It is clear that tutors are in fact driven by some higher-order goals and a complete tutorial system must be goal directed. The remainder of this paper specifies a theory of that higher-level goal structure which we intend to implement as part of the why System.

Our earlier analysis of dialogues was based solely on the transcripts of Socratic dialogues. In order to investigate the goals of the tutors, we conducted new dialogues, where the questions and
responses were typed, and where the tutors commented on two aspects of the dialogue as they proceeded. The two aspects were: (1) what they thought the student knew or didn't know, based on the student's response, and (2) why they responded to the student in the way they did. Our theory of the Socratic tutor's goal structure is based on these comments.

OUTLINE OF THE THEORY

The theory we have derived is summarized in Table 2. The specific rules are shown in Table 3. Note that a specific rule often serves several purposes. A tutor's top level goals are (1) refine the student's causal model and (2) refine the student's procedures for applying the model. These directly govern the selection of cases. As the student's knowledge becomes more refined, moving from an understanding of first-order factors to higher-order factors, cases are selected which are exemplary of the factors the tutor is trying to teach. As the student's predictive ability becomes refined, cases are selected which are progressively more novel and complex, thus taxing predictive ability more and more.

This implies that goal specifications depend on the structure of the knowledge being taught. Although the theory is relatively independent of the exact form in which information is represented, we will assume that knowledge is organized in terms of embedded scripts or schemata which can be decomposed into progressively more detailed subscripts (Schank & Abelson, in press; Rumelhart and Ortony, 1977). The why System uses a script-subscript structure. It is this
<table>
<thead>
<tr>
<th>Goals</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refine the student’s causal model moving from 1st to nth order factors.</td>
<td>Case selection rules: Select cases that are exemplary of the relevant factor.</td>
</tr>
<tr>
<td>Refine the student’s procedures for applying the causal model to novel cases.</td>
<td>Case selection rules: Select less familiar cases, exemplary of new factors.</td>
</tr>
</tbody>
</table>

Subgoals

Diagnose the student’s “bugs”, (i.e. the difference between the student’s knowledge and the tutor’s knowledge.)

Correct the diagnosed bugs:

a) facts
b) outside-domain models
c) over generalization
d) over differentiation
e) reasoning strategy

Ask-for-factor rules.
Prediction rules.
Entrapment rules.
Probe-reasoning-strategy rules.

Inform-student rule
Inform-student rule
Insufficient-factor rules
Unnecessary-factor rules
Forming hypothesis rules
Testing hypothesis rules
Information-collection rules
Table 3

Basic Strategies of Socratic Tutors

(Detailed descriptions of most of these rules are in Collins 1977)

Case selection
- Ask about a particular case.
- Pick a counterexample for an insufficient factor.
- Pick a counterexample for an unnecessary factor.
- Pick an example with the same factors.

Ask for factors
- Ask for prior factors.
- Ask for intermediate factors.
- Ask for subsequent factors.
- Ask how the variable depends on a given factor.

Prediction
- Ask for a prediction about a particular case.

Entrapment
- Pose a misleading question.
- Form a general rule for an insufficient factor.
- Form a general rule for an unnecessary factor.

Probe Reasoning Strategy and Hypothesis Testing
- Request a test of a hypothesis about a factor.
- Ask what are the relevant factors to consider.
- Test for consistency with a given hypothesis.

Inform student
- Inform student of the correct fact or relationship.
- Point out a necessary factor.
- Point out a sufficient factor.

Insufficient factors
- Form a general rule for an insufficient factor.
- Pick a counterexample for an insufficient factor.
- Probe for a necessary factor.
- Point out a necessary factor.
- Probe for similarities between two cases.

Unnecessary factors
- Form a general rule for an unnecessary factor.
- Pick a counterexample for an unnecessary factor.
- Probe for a sufficient factor.
- Point out a sufficient factor.
- Probe for differences between two cases.
Information Collection
 Question prediction made without enough information.
 Point out inconsistent prediction.
 Ask for consideration of a possible value.
 Ask for consideration of relevant factors.

Forming Hypotheses
 Ask for prior factors.
 Ask for intermediate factors.
 Ask for subsequent factors.
 Form a general rule for an insufficient factor.
 Form a general rule for an unnecessary factor.
 Pick a counterexample for an insufficient factor.
 Pick a counterexample for an unnecessary factor.
 Probe for a necessary factor.
 Probe for a sufficient factor.
 Probe for similarities between two cases.
 Probe for differences between two cases.
embedded structure which represents the different levels or orders of
the causal model the tutor is trying to teach. The top-level script
represents prototypical cases, but more detailed subscripts are
necessary to deal with higher-order factors. In our formulation of
tutors' goal structures, the top-level goal of refining the student's
causal model serves primarily to determine successively more detailed
cutoff levels in the script structure. This is similar to the notion
of web teaching (Norman, 1973), resulting in a breadth-first rather
than a depth-first presentation of the information.

The process of achieving these top-level goals involves two
types of subgoals: diagnosis and correction. Both of these subgoals
govern the selection of basic strategies.

The purpose of diagnosis is to discover differences (either
errors or omissions) between the student’s knowledge and the tutor's
knowledge. This generally requires that the tutor probe the student
by asking for relevant factors, by requiring the student to make
predictions about carefully selected cases, and by trying to entrap
the student into making incorrect predictions. It is clear from our
analysis of human dialogues that diagnosis cannot be characterized in
terms of a simple mapping between student’s errors and conceptual
bugs. Rather the process involves sophisticated use of a student
model and knowledge about common bugs in order to simulate the
student's reasoning processes and pinpoint the underlying conceptual
errors or missing information. In some cases, a single answer may
reveal a whole set of bugs, while in other cases, the tutor must
carefully probe the student, testing alternative hypothesized bugs to
reveal the misconception.

-10-
Typically, when a conceptual bug is diagnosed, the tutor attempts to correct it. This may require a single statement for simple factual errors or an extended dialogue to correct problems in the student’s causal model. We have classified the bugs into five different types, based on the strategies and priorities which are used to deal with them.

1) Factual bugs, like "it doesn’t rain a lot in Oregon" are typically dealt with by simply correcting the student. This is because teaching facts is not part of the tutor’s overall goal structure.

2) Outside-domain bugs are misconceptions the student has about causal structures but which the tutor has decided are outside of the domain he is currently teaching. These are also typically corrected by telling the student. For example, the relationship between the temperature of air and its moisture-holding capacity is often stated without any further explanation as to why the relationship holds.

3) Overgeneralization bugs involve the causal structures the tutor is trying to teach, and are dealt with using a richer set of basic strategies. These bugs result when a student has identified only a set of insufficient factors. The tutor attempts to force the student to see his overgeneralization by using counterexamples for the insufficient factors, probing the student for necessary factors not considered, formulating general hypotheses based on insufficient factors and pointing out necessary factors the student has not considered.
4) Overdifferntiation bugs result when a student identifies unnecessary factors. These bugs are dealt with using a rich set of strategies which parallel those used to deal with overgeneralization. The tutor uses counterexamples for the unnecessary factors, probes the student for the sufficient factors, formulates general hypotheses based on unnecessary factors and points out the unnecessary factors.

5) Reasoning strategy bugs result when a student incorrectly applies or attempts to extend his causal model. Examples of reasoning strategies we have seen tutors try to teach are: (1) forming hypotheses, (2) testing hypotheses and (3) collecting enough information before drawing a firm conclusion. For example, in teaching how to test a hypothesis a subgoal was to teach how to control relevent factors. These bugs are dealt with in a variety of ways. The tutor asks the student to consider relevent factors, possible values of the dependent variable, points out inconsistent predictions and questions predictions based on incomplete evidence. (Extensions of our current theory would probably reveal a more complete structure of these bugs and the strategies that are used to deal with them.)

Anytime several conceptual bugs have been isolated, the tutor must decide which of them to pursue. There are several heuristics that appear to determine the priorities assigned to correcting different bugs:

1. Errors before omissions.
2. Prior steps before later steps.
3. Shorter fixes before longer fixes.
4. Lower-order bugs before higher-order bugs.

Errors take priority over omissions because they have more devastating consequences. Prior steps take priority because the tutor wants to take things up in a rational order, to the degree the order is not determined by the student's responses. Shorter fixes, like telling the student the right answer, take priority because they are easier to complete. Lower-order bugs take priority because of the order implied by the overall goals. These constraints imply that the five types of bugs are given priority in the order in which they are listed above.

When more than one bug has been diagnosed, the tutor holds all but the one pursued on a goal stack, in the order of their priority. When he has fixed one bug, he pops up the next highest priority bug, and attempts to fix that. Sometimes when he is trying to fix one bug, he diagnoses another bug. If the new bug is of higher priority, he sometimes interrupts the goal he is pursuing to fix the higher priority bug. Thus in the dialogues there is a pattern of diagnosing bugs at different times and holding them until there is time to correct them.

We will illustrate the application of this theory by analyzing a particular dialogue within the framework of the theory. We used both the dialogue and the tutor's protocol to do this analysis. The dialogue is the second between this tutor and student. The first dealt with rainfall in the Amazon. The dialogue and annotations are shown in Table 4.
Table 4
Annotated Dialogue Between Human Tutor and Student

1 T: Do you think it rains much in Oregon?
 (Case selection: Oregon is a paradigm case of a first order
 causal model of rainfall.
 Diagnosis: ask for a prediction about a particular case.)

2 S: No
 (S's prediction is wrong)

3 T: Why do you think it doesn't rain much in Oregon?
 (Diagnosis: ask for any factors.)

4 S: I'm not exactly sure - just hypothesizing - it seems to me that
 the surrounding states have rather dry climate, but I really don't
 know anything about the geography of Oregon.
 (S's error is due to a proximity inference; S has no
 knowledge of relevant factors)

5 T: It does in fact rain a lot in Oregon. Can you guess what
 causes the rain there?
 (Correction: inform student.
 Diagnosis: ask for prior factors.)

6 S: Well, let me see - I have a feeling that there is a mountain
 range nearby and the ocean i.e. Pacific, I think probably borders
 Oregon somewhat?
 (S names 2 factors, but does not mention their relationship
 to rainfall.)

7 T: Yes the Pacific borders Oregon how do you think it is involved
 in the heavy rainfall there?
 (Diagnosis: T selects prior factor; holds other factor;
 Rule: ask for intermediate factors.)

8 S: I haven't really got any idea - well not quite true; I would
 only be guessing. Does the air (moist air) from the ocean somehow get
 blown over Oregon and encounter a block of some sort which causes it
 to rise and cool?
 (S is missing three steps that are in T's model: 1. why the
 air is moist, 2. why it is blown over Oregon, 3. why
 cooling results in rain)
9 T: That's right. Why do you think the air is so moist?
 (T picks first missing factor and holds others. Diagnosis: ask for prior factors.)

10 S: I don't know

11 T: Where does the moisture in the air come from?
 (Diagnosis: T believes the student does know some of the factors, so he uses the rule, asks for prior factors, to query more specifically)

12 S: Help!
 (S does not know.)

13 T: The moisture evaporates from the ocean. Why do you think a lot of moisture evaporates?
 (Correction: point out a necessary factor. Diagnosis: ask for prior factors.)

14 S: Something to do with the air wind blowing which meets the air rising from the ocean and the combination of the two produce the conditions which cause the moisture to evaporate. What are those conditions?
 (T concludes student has incorrect model.)

15 T: A lot of moisture evaporates because the water is relatively warm as is the air above it. Why do you think that is so?
 (Correction: point out two necessary factors. Diagnosis: ask for prior factors, T holds on stack how warmth of air and water affect evaporation).

16 S: Because of its location?
 (Student names one factor.)

17 T: Yes and the direction. What is it about these that produces a lot of evaporation?
 (Correction: T presents another factor; Rule: point out a necessary factor. Diagnosis: ask for intermediate factors.)
18 S: I just had a thought about an answer or lack of one a bit back that I thought you'd be interested in. Seeing as how I don't really know that much about the geography of this area, however, I failed to make a good analogy based on common sense reasoning with respect to questions 9 and 11 which essentially asked the same question. I could have drawn a comparison to an everyday living experience about water, moisture and air for example, the boiling of a kettle, or other in order to derive an appropriate response; despite the differences of situation - the similarity does exist quite clearly. Now, to answer your most recent question - I don't have any information to indicate direction of the current; but if it's flow were southern would that make it warmer? I'm not sure that this makes much sense?

(S understands how warmth of water affects evaporation based on kettle analogy; remove from hold list.)

(S has an outside domain bug which says: Currents which flow south are warm.)

19 T: No the current comes from the south and that is why it's warm. Can you guess how it gets to Oregon, i.e. the route?

(Correction: inform student. Diagnosis: ask for intermediate factors.)

20 S: The origin of the current, if south, where one normally tends to associate south with warm climate - equatorial current- would provide the reason for it being warm it being the water; as for how it gets to Oregon - I don't know.

(S acknowledges fix of bug, but doesn't know intermediate factors.)

21 T: The current is called the Japanese current and it comes from the Equator along the coast of Japan and across to Canada and Oregon. Is there another current you know about with the same pattern?

(Correction: inform student of the correct fact. Case selection rule: Pick an example with the same factors; T attempts to introduce the Gulf Stream.)

22 S: I don't know what you mean - the equatorial current?

(S doesn't see generalization)

23 T: I meant the Gulf Stream. I wanted you to see the general pattern of currents in the world. OK. Why do you think the fact that the air over the current is warm affects the amount of evaporation?
(T presents the case and assumes S knows about Gulf Stream and can see the analogy which completes the first-order coverage of current flow. Diagnosis: Pops back to how warm air affects evaporation, skipping how warm water does because of kettle analogy; Rule: ask for intermediate factors.)

24 S: I don’t know

25 T: warm air holds more moisture so the fact that the air current is warm permits more evaporation. How does the air over the ocean get over Oregon or alternatively why there rather than elsewhere?

(Correction: point out a necessary factor. T completes warm air script for first-order theory; Diagnosis: pops back to how moist air gets over Oregon; Rule: ask for intermediate factors.)

26 S: I would assume it gets carried there by the wind i.e. or some such force.

(S identifies force but not direction; T assumes S can deduce direction from Japanese current)

27 T: Yes and the winds are blowing toward the land there. You mentioned the mountains in Oregon. How do you think they affect the rainfall there?

(T mentions wind direction, completing first-order script for getting over land; Diagnosis: pops back to mountains; Rule: ask for prior factors.)

28 S: when the moisture laden air reaches the mountains it is forced to rise and consequently the air cools? causing rainfall no?

(S understands role of mountains, but still fails to mention why cooling causes rainfall.)

29 T: why does cooling cause rainfall?

(Diagnosis: ask for intermediate factors.)

30 S: It forces the air to release its moisture, I think. p.s. I have two questions: how am I supposed to know that the winds are blowing toward the land - and what causes this? and what is the scientific background which explains why warm air holds more moisture?

(S does not supply missing step. The first question reveals S did not understand wind direction. The second question asks for underlying script in a second-order theory.)
31 T: Cooling causes rainfall because cool air holds less moisture. Winds are blowing toward land because they come across from Japan rather than from some other direction. Warm air holding more moisture is tied up with the fact that the molecules are moving around more and hence are less densely packed together, that's all.

(Correction: T points out necessary factor, which is the same step as the one the S asked to have explained in 2nd question.
Correction: T gives relation between Japanese current and wind direction at Oregon in answer to first question. T gives physical process in answer to second question.)
The dialogue can be simply characterized as a consideration of a single paradigm case: Oregon. It begins with a long diagnostic section (line 1-8) in which the tutor corrects only one factual error, but isolates two factors the student knows about, the ocean and the mountains, and three major bugs: incorrect or missing scripts for 1) why the air is moist, 2) why it is blown over Oregon and 3) why cooling results in rain. The remainder of the dialogue follows from more detailed sequences of diagnoses and corrections aimed at correcting these problems. The tutor pursues the temporally prior subscript about moist air and tries to diagnose the problem more specifically (lines 9-12). The tutor corrects bugs about the source of the evaporation, mentions the factors of air and water temperature (lines 13-15), and then pursues the ocean-current subscript (lines 15-23). During the ocean-current interchange the student interrupts and informs the tutor that she understands how water temperature affects evaporation, allowing the tutor to remove that factor from his hold stack. The tutor then completes the air temperature subscript (lines 23-25) and returns to the problem of winds identified in the initial diagnosistic part of the dialogue. The wind subscript is completed (lines 25-27). The tutor returns to the mountains factor (originally mentioned in line 6) and diagnoses that the student does understand their role (lines 27-28). In the final segment, the tutor returns to the remaining bug, why cooling leads to rain, and completes the tutorial of the first-order causal script for the case of Oregon.
There are obviously several difficult problems to be solved before dialogues of this sort can be carried on between a computer and a student. No existing system can support the level of language comprehension necessary to understand all of the student's responses. Diagnosis of students' conceptual bugs is not well enough understood to build a system which performs adequately. Neither is any existing system goal driven in a way that allows it to carry on good Socratic dialogues. The goals and rules we have outlined provide an initial characterization of the goal structure of Socratic dialogues. We believe that the refinements of the rules, and more specification of the diagnostic and case-selection processes will result in a complete and concise theory of tutors' goal structure which can be implemented as part of the Why System.
REFERENCES

Dr. Marshall J. Farr, Director
Personnel & Training Research Programs
Office of Navy Research (Code 458)
Arlington, VA 22217

ONR Branch Office
495 Summer Street
Boston, MA 02210
Attn: Dr. James Lester

ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
Attn: Dr. Eugene Gloye

ONR Branch Office
536 S. Clark Street
Chicago, IL 60605
Attn: Dr. Charles E. Davis

Dr. M.A. Bertin, Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco, CA 96503

Office of Naval Research
Code 200
Arlington, VA 22217

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20190

Director, Human Resource Management
Naval Amphibious School
Naval Amphibious Base, Little Creek
Norfolk, VA 23521

LCDR Charles J. Theisen, Jr., MSC, USN
4024
Naval Air Development Center
Warminster, PA 18974

Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155
Commanding Officer
Naval Health Research Center
San Diego, CA 92152
Attn: Library

Chairman, Leadership & Law Dept.
Div. of Professional Development
U.S. Naval Academy
Annapolis, MD 21402

Scientific Advisor to the Chief
of Naval Personnel (Pers Or)
Naval Bureau of Personnel
Room 4410, Arlington Annex
Washington, DC 20370

Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940

Mr. Maurice Callahan
NODAC (Code 2)
Dept. of the Navy
Bldg. 2, Washington Navy Yard
(Anacostia)
Washington, DC 20374

Office of Civilian Personnel
Code 342/02 WAP
Washington, DC 20390
Attn: Dr. Richard J. Niehaus

Mr. George N. Graine
Naval Sea Systems Command
SEA 047C12
Washington, DC 20362

Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
Attn: Dr. Norman J. Kerr
Principal Civilian Advisor
 for Education and Training
Naval Training Command, Code OOA
Pensacola, FL 32508
Attn: Dr. William L. Maloy

Dr. Alfred F. Smode, Director
Training Analysis & Evaluation Group
Department of the Navy
Orlando, FL 32813

Chief of Naval Education and
 Training Support (01A)
Pensacola, FL 32509

Capt. H.J. Connery, USN
Navy Medical R&D Command
NNMC, Bethesda, MD 20014

Navy Personnel R&D Center
Code 01
San Diego, CA 92152

Navy Personnel R&D Center
Code 306
San Diego, CA 92152
Attn: Dr. James McGrath

A.A. Sjoholm, Head, Technical Support
Navy Personnel R&D Center
Code 201
San Diego, CA 92152

Navy Personnel R&D Center
San Diego, CA 92152
Attn: Library

Navy Personnel R&D Center
San Diego, CA 92152
Attn: Dr. J.D. Fletcher

Capt. D.M. Gragg, MC, USN
Head, Section on Medical Education
Uniformed Services Univ. of
the Health Sciences
6917 Arlington Road
Bethesda, MD 20014
Officer-in-Charge
Navy Occupational Development &
Analysis Center (NODAC)
Building 150, Washington Navy Yard
(Anacostia)
Washington, DC 20374

LCDR J.W. Snyder, Jr.
F-14 Training Model Manager
VF-124
San Diego, CA 92025

Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Worth Scanland
Chief of Naval Education & Training
NAS, Pensacola, FL 32508

Technical Director
U.S. Army Research Institute for the
Behavioral & Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

Armed Forces Staff College
Norfolk, VA 23511
Attn: Library

Commandant
U.S. Army Infantry School
Fort Benning, GA 31905
Attn: ATSH-I-V-IT

Commandant
U.S. Army Institute of Administration
Fort Benjamin Harrison, IN 46216
Attn: EA

Dr. Beatrice Farr
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Dr. Frank J. Harris
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209
Dr. Ralph Dusek
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Dr. Leon Nawrocki
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Dr. Joseph Ward
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Dr. Milton S. Katz, Chief
Individual Training & Performance Evaluation Technical Area
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Col. G.B. Howard
U.S. Army
Training Support Activity
Fort Eustis, VA 23604

Col. Frank Hart, Director
Training Management Institute
U.S. Army, Bldg. 1725
Fort Eustis, VA 23604

HQ USAREUE & 7th Army
ODCSOPS
USAREUR Director of GED
APO New York 09403

ARI Field Unit - Leavenworth
P.O. Box 3122
Ft. Leavenworth, KS 66027

DCDR, USAADMINCEN
Bldg. #1, A310
Ft. Benjamin Harrison, IN 46216
Attn: AT21-OED Library

Dr. Edgar Johnson
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

-26-
Dr. James Baker
U.S. Army Research Institute
1300 Wilson Blvd.
Arlington, VA 22209

Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

AFHRL/AS (Dr. G.A. Eckstrand)
Wright-Patterson AFB
Ohio 45433

Dr. Ross L. Morgan (AFHRL/ASR)
Wright-Patterson AFB
Ohio 45433

Dr. Marty Rockway (AFHRL/ASR)
Lowry AFB
Colorado 80230

Instructional Technology Branch
AFHRL
Lowry AFB, CO 80230

Dr. Alfred R. Fregly
AFOSR/NL, Building 410
Bolling AFB, DC 20332

Dr. Sylvia R. Mayer (MCIT)
HQ Electronic Systems Division
LG Hanscom Field
Bedford, MA 01730

Capt. Jack Thorpe, USAF
AFHRL/FTS
Williams AFB, AZ 85224

Air University Library
AUL/LSE 76-443
Maxwell AFB, AL 36112

Dr. T.E. Cotterman
AFHRL/ASR
Wright Patterson AFB
Ohio 45433

Dr. Donald E. Meyer
U.S. Air Force
ATC/XPTD
Randolph AFB, TX 78148
Dr. Wilson A. Judd
McDonnell-Douglas Astronautics Co. East
Lowry AFB
Denver, CO 80230

Dr. William Strobie
McDonnell Douglas Astronautics Co. East
Lowry AFB
Denver, CO 80230

Director, Office of Manpower Utilization
HQ, Marine Corps (Code MPU)
BCB, Building 2009
Quantico, VA 22134

Dr. A.L. Slafkosky
Scientific Advisor (Code RD-1)
HQ, U.S. Marine Corps
Washington, DC 20380

AC/S, Education Programs
Education Center, MCDEC
Quantico, VA 22134

Mr. Joseph J. Cowan, Chief
Psychological Research Branch (G-P-1/62)
U.S. Coast Guard Headquarters
Washington, DC 20590

Advanced Research Projects Agency
Administrative Services
1400 Wilson Blvd.
Arlington, VA 22209
Attn: Ardella Holloway

Dr. Harold F. O'Neil, Jr.
Advanced Research Projects Agency
Cybernetics Technology, Room 623
1400 Wilson Blvd.
Arlington, VA 22209

Dr. Robert Young
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Military Assistant for Human Resources
Office of the Director of Defense
Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

Director, Management Information
Systems Office
OSD, M&RA
Room 3B917, The Pentagon
Washington, DC 20301

Dr. Vern Urry
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street NW
Washington, DC 20415

Dr. Andrew R. Molnar
Science Education Dev. & Res.
National Science Foundation
Washington, DC 20550

Dr. Marshall S. Smith
Associate Director
NIE/OPEPA
National Institute of Education
Washington, DC 20208

Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Dr. H. Wallace Sinaiko, Director
Manpower Research & Advisory Services
Smithsonian Institution
801 N. Pitt Street
Alexandria, VA 22314

Dr. James M. Ferstl
Employee Development: Training
Technologist
Bureau of Training
U.S. Civil Service Commission
Washington, DC 20415

William J. McLaurin
Room 301
Internal Revenue Service
2221 Jefferson Davis Hwy.
Arlington, VA 22202
Dr. John K. Anderson
Dept. of Psychology
Yale University
New Haven, CT 06520

Dr. Scarvia B. Anderson
Educational Testing Service
Suite 1040
3445 Peachtree Road NE
Atlanta, GA 30326

Professor Earl A. Alluisi
Code 287
Dept. of Psychology
Old Dominion University
Norfolk, VA 23508

Dr. Daniel Alpert
Computer-Based Education Research Laboratory
University of Illinois
Urbana, IL 61801

Ms. Carole A. Bagley
Applications Analyst
Minnesota Educational Computing Consortium
1925 Sather Ave.
Lauderdale, MN 55113

Dr. John Brackett
SofTech
460 Totten Pond Road
Waltham, MA 02154

Dr. Robert K. Branson
1A Tully Bldg.
Florida State University
Tallahassee, FL 32306

Dr. John Seeley Brown
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Victor Bunderson
Institute for Computer Uses in Education
355 EDLC
Brigham Young University
Provo, UT 84601

-30-
Dr. Ronald P. Carver
School of Education
University of Missouri-Kansas City
5100 Rockhill Road
Kansas City, MO 64110

Jacklyn Caselli
ERIC Clearinghouse on Information Resources
Stanford University
School of Education – SCRDT
Stanford, CA 94305

Century Research Corporation
4113 Lee Highway
Arlington, VA 22207

Dr. A. Charnes
BEB 203E
University of Texas
Austin, TX 78712

Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. John J. Collins
Essex Corporation
6305 Caminito Estrellado
San Diego, CA 92120

Dr. Ruth Day
Dept. of Psychology
Yale University
2 Hillhouse Avenue
New Haven, CT 06520

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. John Eschenbrenner
McDonnell Douglas Astronautics Company-East
P.O. Box 30204
St. Louis, MO 80230
Major I.N. Evonic
Canadian Forces Personnel
Applied Research Unit
1107 Avenue Road
Toronto, Ontario, CANADA

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Dr. Edwin A. Fleishman
Advanced Research Resources Organization
8555 Sixteenth Street
Silver Spring, MD 20910

Dr. Larry Francis
University of Illinois
Computer-Based Educational Research Lab
Champaign, IL 61801

Dr. Frederick C. Frick
MIT Lincoln Laboratory
Room D 268
P.O. Box 73
Lexington, MA 02173

Dr. John R. Frederiksen
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Vernon S. Gerlach
College of Education
146 Payne Bldg. B
Arizona State University
Tempe, AZ 85281

Dr. Robert Glaser, Co-Director
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. M.D. Havron
Human Sciences Research, Inc.
7710 Old Spring House Road
West Gate Industrial Park
McLean, VA 22101
Dr. David Klahr
Dept. of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Mr. W.E. Lassiter
Data Solutions Corp.
Suite 211, 6849 Old Dominion Drive
McLean, VA 22101

Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Corton Drive
Santa Barbara Research Park
Goleta, CA 93017

Dr. William C. Mann
University of So. California
Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, CA 90291

Dr. Eric McWilliams
Program Manager
Technology and Systems, TIE
National Science Foundation
Washington, DC 20550

Dr. Leo Munday
Houghton Mifflin Co.
P.O. Box 1970
Iowa City, IA 52240

Dr. Donald A. Norman
Dept. of Psychology C-009
University of California, San Diego
La Jolla, CA 92093

Mr. A.J. Pesch, President
Eclectech Associates, Inc.
P.O. Box 178
N. Stonington, CT 06359

Dr. Kenneth A. Polycyn
PCR Information Science Co.
Communication Satellite Applications
7600 Old Springhouse Rd.
McLean, VA 22101

Dr. Steven M. Pine
N 660 Elliott Hall
University of Minnesota
75 East River Road
Minneapolis, MN 55455

-34-
K. Dir. M. Rauch
P II 4
Bundesministerium der Verteidigung
Postfach 161
53 Bonn 1, GERMANY

Dr. Joseph W. Rigney
University of So. California
Behavioral Technology Laboratories
3717 South Grand
Los Angeles, CA 90007

Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Dr. Leonard L. Rosenbaum, Chairman
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

Dr. Robert J. Seidel
Instructional Technology Group,
HumRRO
300 N. Washington St.
Alexandria, VA 22314

Dr. Richard Snow
Stanford University
School of Education
Stanford, CA 94305

Dr. Persis Sturgis
Dept. of Psychology
California State University-Chico
Chico, CA 95926

Mr. Dennis J. Sullivan
c/o Canyon Research Group, Inc.
32107 Lindero Canyon Road
Westlake Village, CA 91360