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I. INTRODUCTION

There exist phenomena, such as solar proton events and nuclear
explosions, that can severely disturb the total charge content of the
atmosphere. In the altitude interval 30-80 km these disturbances can
affect systems over a wide range of the electromagnetic spectrum, e.g.,
disruption of radar and communications operations. The rate at which
the disturbed atmosphere returns to normal depends on the processes for
removing the excess charge. At the higher altitudes (70-80 km) electron-
ion recombination occurs faster than negative ion formation and so
charge neutralization is dominated by the electron-ion dissociation
recombination process. At lower altitudes (< ~ 60 km) negative
ion formation permits ion-ion mutual neutralization to compete with and
(still lower) to dominate electron-ion dissociative recombination.

(The precise times and altitudes at which this dominance occurs is a
function of the intensity of the disturbance as well as the rates of

the recombination processes. In this report we shall focus on the ion-
ion mutual neutralization process for fixed excitation conditions and so
reported times and altitudes would have to be adjusted for other disturb-
ing conditions.)

For ELF/VLF communications, Field and Dore1 have found that the
largest uncertainties in these attenuation rates (several dB per megameter)
can be attributed to uncertainties in the positive ion - negative ion
recombination rate coefficient, a..* They have also found that at VLF
uncertainties in the ion-neutral collision frequency, v., can cause
uncertainties in attenuation about equal to that found for uncertainties
in a..

i

These two parameters are indirectly related. v. is a function of
the ion distribution.** This distribution is determined in part by the
recombination coefficient. The question that arises is whether or not
the operational uncertainties due to v. and to a. can be treated as
separate, independent problems. To reState this problem: What is the
change in the ion species distribution for a given change in ui?

*
The subscript '"i" refers to '"ion'' as opposed to electron.

* % 2 ;i

For one ion species and one neutral species a. « A“y™ %, where A is

the sum of the molecular and ionic radii and y is the reduced mass of
the colliding ion and molecule. (Field, private communication quoting
Propagation of Electromagnetic Waves in a Plasma by Ginzberg, trans.
by Roger and Roger, Gorden and Breach Publishers, N.Y., p. 97.)

lE. C. Field and M. N. Dore, private communication, 1976.
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Though some information regarding a. has been determined from
analysis of natural and nuclear disturbances, Quch reliance has been
placed on model predictions. The AIRCHEM code” has been used at the BRL
to predict the response of the ionosphere to disturbed conditions and as
such it provides us with a convenient tool for examining the sensitivity
of ionic populations to variation in values of individual two body ion-ion
recombination rate coefficients, a.. We distinguish between an effective
ion-ion recombination coefficient,”o. and the coefficient foy the jth _
recombingtion, a.,. @, is a weighted sum of the a., a. = ZIn. n, a./In, n. ,
where n; and n.” are the positive and negative idn dénsitids of the 7 J
jth recOmbinatidn reaction.

This report describes: our current state of knowledge about the
values of a. (section II), the procedure used in those sensitivity tests
and the computed changes in the ion populations for changes in selected
values of “j’ under fixed disturbing conditions (section III).

II. VALUES FOR THE TWO BODY ION-ION RECOMBINATION COEFFICIENT, @,

This topic has been reviewed in 19723 and 1974,4 and will be dealt
with briefly here. Room temperature values of the recombination coeffi-
cient fog_faght pairs of ions of atmospheric interest are listed in
Table I. The salient feature to be gleaned from Table I is the wide
range of disagreement for all ion pairs except 0 * NO3 and O, + 0 .
Values differ by about a factor of ten in two caSes.

2

E. L. Lortie, M. D. Kregel and F. E. Niles, "AIRCHEM: A Computational
Technique for Modeling the Chemistry of the Atmosphere,'' BRL Report
No. 1913, 1976. (AD #A030157)

3B. H. Mahan, '"Recombination of Gaseous Ions," in Advances in Chemical
Physics 23, 1-40, 1973, Ed. by I. Prigogine and S. A. Rice.

4J. T. Moseley, R. E. Olson and J. R. Peterson, "“lon-Ion Neutralization,"
Case Studies in Atomic Physics §, 1-45, 1975.

M. N. Hirsh and P. N. Eisner, '"Laboratory Measurements of Ion Chemistry
in a Simulated Disturbed Ionosphere,'" Radio Sci. 7, 125-131, 1972.

5

6D. Smith and M. J. Church, '"Binary Ion-Ion Recombination Coefficients

Determined in a Flowing Afterglow Plasma,' International Journal of
Mass Spectrometry and Ion Physics, 19, 185-200, 1976.

78. H. Mahan and J. C. Person, '"Gaseous Ion Recombination Rates,'
J. Chem. Phys. 40, 392-401, 1964.

R. E. Olson, "Absorbing Sphere Model for Calculating Ion-Ion Recombination
Total Cross Sections," J. Chem. Phys. 56, 2979-2984, 1972.
9

M. N. Hirsh and P. N. Eisner, "Two-Body Recombination of O * and 02'
in Low-Pressure Oxygen,'" Bull. Am. Phys. Soc. 17, 395, 1972.

OM. N. Hirsh, "Ion Chemistry in Electron-Inactivated Air: Comparison
of Experiment with Theory," Bull. Am. Phys. Soc. 21, 165, 1976.

8

8
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TABLE 1. VALUES OF TWO-BODY RECOMBINATION COEFFICIENTS OF ATMOSPHERIC INTEREST

System a;(300°K) Ref Remarks
(x10"Tem3/s)
1. No* + MO, 5.1¢1.5 4 mb
1.75 £ 0.6 5 sa
3.5 A, average of Ref's 4 & 5
0.64 + 0.07 3 Lpfa
2.110.6 7 Sa, value refers to NO'(NO) & NO;/NO,”, Ref. 3
1.2 + 0.3 8 Cal
2. No' + NOy” 8.1+2.3 4 mb
0.34 £ 0.12 5 Value refers to NO* & NO;"/NO,” (H,0), Ref. 10
4.0 A, average of Ref.'s 4 & 5
0.57 + 0.6 6 Lpfa
1.1 £+ 0.3 8 Cal
3. N+ O 4.9+ 2.0 4 mb, A
1.9 £ 0.6 8 Cal
a. No'+ 0, 5.8 1.0 4 mb, A
2.4 £+ 0.8 8 Cal
5. 0," +NO,” 4.1 +1.3 4 mb, A
1.2 + 0.3 8 Cal
6. 0" + N0y 1.3+0.4 4 mb, A
1.0 £ 0.2 8 cal
3, Oy A0 1.0 + 0.4 4 mb, A
1.0 £ 0.2 8 Cal
8. 0, +0, 4.2 +1.3 4 mb, A
1.0 £ 0.1 9 sa
2.4 + 0.8 8 Cal

mb = merged beam

sa = stationary afterglow

A = values used in AIRCHEM code

Lpfa = Langmuir probe/flowing afterglow
Cal = calculation



The following illustra}fs the djfficulties involved ip these experi-
ments. Recent measurements = of H30 (HZO)S + NO3 and HSO (HZO)S +

N03°(HN03) yield recombination coefficients of (0.55 * 0.10) x 10-7 cm3/s
and (0.57 + 0.10) x 10~/

ion concentrations were mixed with unknown concentrations of:
N02-/N02-(H20)/N03-(H20) ions and NOS-(HZO)/NOS-(HNOS)2 ions, respectively.

The authors argue that because the lower earth's atmosphere ought to
contain mixtures of similar ions, these values of a. should be represen-
tative of the effective a; in the earth's stratosph@re. The work of
Goldberg et al. = tends to suppgrt Shis notion. They require an effec-
tive a, of the order of 5 x 10 ~ cm™/s at 60 km to explain ion-pair
produc%ion by the x-ray star Sco X-1.

cmsls, respectively. However, the negative

Appeal to more direct atmospheric measurementslgheds little light
on reducing the range of values. Ulwick's analysis = of the 1969 solar
proton event shows that the deriveg7effgctive recombination coefficient
can vary_from.a high of ~ 1.5 x 10 * cm”/s at 45 km to a low of
~4 x 10 " cm/s at 70 km. Moreover, he has estimated that each of his
data points is accurate to a factor of two, leading again to a total
spread of about a factor of ten.

An examination into the sources of these real or apparent discrep-
ancies is beyond the scope of this report. It is sufficient for our
purposes to note that a factor of 10 variation in a nominal value for
oy appears to be reasonable.

The values for a. used in the AIRCHEM code are designated py an,
A" in Table I. All dther a, were assigned a value of 2.0 x 10 " cm™/s
at 30 °K13nd all the ®; were assigned the weak temperature dependence
of T “.

11D. Smith, N. G. Adams and M. J. Church, 'Mutual Neutralization Rates

of Ionospherically Important Ions,'" Planet. Space Sci. 24, 697-703, 1976.

R. A. Goldberg, W. H. Jones, P. R. Williamson, J. R. Barcus and L. C.
Hale, "Equatorial X-Rays and Their Effect on the Lower Mesosphere,'
to be published J. Atmos. Terr. Phys.

12

13J. C. Ulwick, "Effective Recombination Coefficients and Lumped Parameters

in the D-Region During Solar Particle Events,'" Proceedings of COSPAR Sym-
posium on Solar Particle Event of November 1969, AFCRL Special Report
No. 144, 571-587, 1972. Ed. by J. C. Ulwick.

DNA Reaction Rate Handbook, 2nd Ed., March 72, Table 241, V.
(Revision No. 3, September 1973).
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ITI. RESULTS AND DISCUSSION

The AIRCHEM code,2 tailored for nuclear atmospheric disturbances,
was used for the sensitivity tests. This code consists of electrons,
15 negative ion species, 27 positive ion_species and 21 _neutral species.
Only the first hydrate of 0, , CO, , CO4 , NO, and NO, are considered.
The heaviest and ''terminal''"negative ion used in this Code is NO, (HNO,).
Nighttime mass spectrometer flights through the Di§§¥§°“ have inéicate
that other negative ions exist in the atmosphere. Such ions have
not been considered in this model.

A nominal set of 495 reactions is used to describe the ion and neutral
chemistry. Negative ion photodestruction h§§8b°°E included by considering
the cross section for the reaction to be 10 cm~ for wavelengths
shorter than the negative ion's electron affinity and zero elsewhere.

Our wavelength region of interest is 760.0 > A > 100.0 nm and the solar
flux used corresponded to midiatitude overhead sun conditions. (Recent
computations using measured cross sections have not revealed any sub-
stantial changes.) Positive ion photodestruction is not considered in
this set of reactions.

The excitation conditions chosen and fixed for these sensitivity
tests are thought to be typical rat?ir than extremg. To wit, we have
used for prompt ionization, N_ = 10 5 lectrons/cm™. The delayed ioni-
zation is given by Q(t) = Q 6 + t) 7, where t is the time in seconds
and we have selected =1 i? -pairs/cm™/s. Partitioning of the
charge closely follows Gilmore, = except that N,(A3I) is not considered,
and that production of 0,(!A) and O are taken aS 0.25 and 1.28 per ion-
pair per 5f§ond, respectively. Daytime ne,aral densities are taken from
CIRA 1972, " U.S. Standard Qimosphere 1962° " and other literature
sources and extrapolations.

15R. S. Narcisi, A. D. Bailey, L. Della Lucca, C. Sherman and D. M.
Thomas, '"Mass Spectrometric Measurements of Negative Ions in the
D- and lower E-Regions," J. Atmos. Terr. Phys. 33, 1147-1159, 1971.

F. Arnold, J. Kissel, D. Krankowsky, H. Weider and J. Z#hringer,
""Negative Ions in the Lower Ionosphere: A Mass-Spectrometric
Measurement,'" J. Atmos. Terr. Phys. 33, 1169-1175, 1971.

16

17F. Arnold and D. Krankowsky, '"Negative Ions in the Lower Ionosphere:

A Comparison of a Model Computation and a Mass-Spectrometer Measure-
ment," J. Atmos. Terr. Phys. 33, 1693-1702, 1971.

18F. Gilmore as quoted by B. F. Myers and M. R. Schoonover, '"Electron

Energy Degradation in the Atmosphere: Consequent Species and Energy
Densities, Electron Flux, and Radiation Spectra,'" DNA 3513T, 3 Jan 75, Table 6.

1gl(. S. W. Champion and R. A. Schweinfurth, '""A New Mean Reference

Atmosphere for 25 to 500 km,' AFCRL-72-0579, 2 Oct 72; The Mean

COSPAR International Reference Atmosphere 1972" in COSPAR Inter-

national Reference Atmospheres 1972, Akademie Verlag, Berlin, 1972.
20

‘United States Committee on Extension to the Standard Atmosphere,
U.S. Standard Atmosphere, 1962, U.S. Government Printing Office,
Washington, D.C., Dec 62.

21F. E. Niles, private communication.
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We caution that the AIRCHEM code has been validated only for quiet
or undisturbed daytime conditions and then only forzilectron, total
positive ion and total negative ion concentrations. This code has not
been validated either at the level of excitation or disturbing conditions
or at the scale of individual ion species concentrations used here.

In the code each of 15 positive ions is permitted to recombine with
14 different negative ions, leading to 210 recombination coefficients.
Resources did not permit the systematic variation of all possible combi-
nations, nor was this approach deemed necessary. Since almost all values
of a. are identical we can identify the dominant contributions to the
sum Aefining oy by noting the computed dominant ion species concentrations.

For a given altitude the AIRCHEM code computes ion concentrations
as a function of time after the¢ initiation of the disturbance. At each
decade of time (10  through 10 seconds, inclusive) the dominant positive
ion(s) and dominant negative ions are identified. Pairing of these
positive and negative ionic species then determines the ion-ion recombi-
nation reactions whose coefficients are to be varied. Table 2 shows
these recombination reactions as a function of altitude. The corre-
sponding rate coefficients were varied by multiplying a. by 10 and 1/10.
(The disgvssgon in section 11 indicates that for nominal values of
a. ~ 10 ‘cm™/s, decreasing the value is more realistic than increasing
the value. The increased value has been retained for completeness.)
The code was re-run for each of these two cases and the ion concentrations
again examined. These results are shown in Table 3.

The information content of this table is quite high and requires a
bit of explanation. The altitude is listed vertically to the extreme
left and the decades of time after the initiation of the disturbance are
listed horizontally across the top of the table. The area within
the table located by an altitude and a time coordinate is occupied by
two columns of ionic species, one positive, the other negative. To the
immediate right of each ion species is a number with a superscript and
a subscript. This number shows the percentage contribution of that ionic
species to the total ion population for nominal values of a.. The super-
script (subscript) when added to the physically larger numbér reveals
the percentage contribution of that ionic species to the total ion popu-
lation for the selected values of a. (see Table 2) multiplied by
10 (1/10). )

_ For example, at an altitude of 60 km and at 102 seconds, the species
NO, constitutes 34% of the total negative ion population for nominal
vafues of a.. For values of a, x 10 (x 1/10) NO3 constitutes 19%
(38%) of thd total negative ioh population.

22J. M. Heimerl and F. E. Niles, '"Modeling of Charged Particle Chemistry

in the Stratosphere and Mesosphere,'" Trans. Am. Geophys. Union 57, 303,
1976. Qe
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TABLE 2.

ALT (km)

80

70
60

y 50
40

|
|
} 30

DOMINANT RECOMBINATION REACTIONS TAKEN FROM BENCHMARK-76
RESULTS; NOMINAL VALUES OF aj HAV: BEEN USED.

Dominant Recombination Reactions

+ -
NO + 02

NO® + NO,”

+ -
NO+ + 02 ‘
No" + NO,
NO" (H,0) +

NO3

+ -
NO" (H,0), + NO,

NO' + g,
+ -
NO + CO3

+
N0+(H20)2 + NO
NO" (H,0), + NO

N0+(H20) +
+

H+(H20)3 +

H' (H,0) ; +

o
H+(H20)4 +
H (H20)4 +

+
H (H20)4 +

+
H+(H20)4 +
H' (H,0), +

13

3

3

CO3

C03_
NOS

CO3
NO3 (HN03)

NO,” (H,0)

NOS-(HZO)
NO,~ (HNO,)



ALT/TIME

80 km

=
5

TABLE 3.

10" s 10" s
= 6 3 2 9
0 72 NO+ 76 0 72 NO’ 76o
2 “14 3 2 =12 0
2 3 1 K 2 2
0 16 0,f 2 0 18 5 2
=3 1 -3 2
it e N,” 107
2 16 2 12
- | & 1 L 1 + 0
0 93 NO 78 0 89 NO 75
2 0 0 2 0 0
+ 0 + 0
02 180 02 200
s 2 - s _ 1 & 4
02 73 NO 7 02 56 NO 56
1 0 1 0
- <3 Y 1 = =2 + =1
C03 15l 02 110 C03 30° NO (HZO) 140
+ 1
02 90
- -l + =2 o 2 % <9
C03 42l NO (HZO) 29o C03 55‘ NO (HZO) 360
- 1 + 3 - - + - |
02 190 NO 270 N03 152 H (H20)3 18_l
% 2 + 2 + .
NO3 120 H (HZO)Z 110 NO (HZO)Z ]4l
g, 0 % 5
co,” 10, W (H0), M
NOT 9’
b
- - + .28 -~ =15 + 2l
C03 47-3 H (H20)4 587 C03 (H20) 319 H (H20)4 67“
- =15 + = - 4 + =3
C03 (HZO) 3]8 H (H20)3 18‘ C03 310 H (H20)3 ]90
. 9 + 19 = 18 " 9
NOyT(H0) 11 NOT(M0), 14__ N0y "(Hy0)  27_ NO*(H0), B
- a3l + 2 - =19 + 1
€0, (HZO) 69“ H (u20)4 71“ €04 (Nzo) 58S H'(Hy0) 4 752
% 28 + 0 - 19 + 0
N03 (HZO) 19_7 H (NZO)S 230 NOJ (HZO) 29_7 H (H20)5 230

. -5
NO4 (HN03) 102

PERCENTAGE CONTRIBUTION OF LISTED ION TO THE TOTAL ION POPULATION AS A FUNCTION
14




e

C0,4

NO5

o,

N03

10" s
15
52 Nt o9
~19
=20
24
27
6
22
8
3 0
68 no* 78
18" Nt (H,0) 10
- 2 0
1
5
12
0 =
o' Nt 32
0 "]
)8 + %
34 NO*(Hp0) 22
5 + P |
15 N* (H,0), 187
+ =%
H (H20)2 140
L + «13
a, H'(Hp0); 43"
210
37 N0 (H)0) 32"
-8

S

- 1
NO3”(H,0) 17_

& 6
NO; " (H,0) 67_,

- =8
C0”(H,0) 12

N03

)
12
=1

+ 2
NO*(H,0), 13

+ -
H™(H,0), o

+ -t
W' (H0); 217

- =16 + &3
N0y (HNO) 387" H'(Hy0), 7973

- 2
€05™ (H,0) n_,

. 12
NO3"(Hy0) 30_

+ 0
H (HZO)S 240

10° ¢ 8
" =29 0 = -26
N n' o NO,T 44 no'  ss’
13 0 6 0
PR LA o
2 11 2 ~7
- 12 o 10
0 15 N0, 18
- 3
- -? = 7
N0, 10 0 8
2
o 18 0 - 34 0
0, 42 n' 59 NO, 57 TN
17 0 10 0
- -28 + 0 - 14 + Q
NO, W, NOT(H)0) 25 0, 19_ NO"(Hp0), 25
- 5 & 11 + 0
co, 12, NO, 15, NOT(H)0) 23
8
C0, 6
et 26 + b4 L 24 + .
NO, 63 No"(Hy0), 38 NO, n: H' (H0)4 38
- 19 + n 10 + <
€0, 16_, NO*(Hy0) 18 N0, L H (H,0), 25
+ 1 & 7 + 0
H'(Hp0); 14 co, 5 NOT(H)0), 24_
< 3 + 1
H(H,0), L& N0 (H,0) '
& = + ) - 4 + .25
NO, a7 H(H)0)y 53] N0, 49 H'(H,0) 4 62
- 2 + 13 - 0 + ) {4
Noy™(H)0) 32 NO(H)0)  26_ No3™(H)0) 43 NO(H)0)  20_
™ 7 + 6 & 8
co, 15, NO"(Hy0), T1_ NO"(Hy0), 8_
M 8 + ol
NO3"(Hy0) 71_ H(H0), 76,
- 7 + 0
NO3™(HNO;) 147 H(H0)y 21

.

OF ALTITUDE, TIME AND CHANGES IN SELECTED VALUES OF aje (See text for discussion.)
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The values in Table 3 are given in percent of total ion population
to account for the fact that changing values of a. can alter the total
ion concentrations. Thus changes in the species distributions are more
easily read from this table. Code predicted absolute values can be
recovered for each entry in Tab}g 3 by multiplying by the appropriate
total ion concentrations (in cm ~) listed in Table 4. The key "MAX,"
"NOM,'" and "MIN" correspond to the cases a. x 10, 4. and &a. x 1/10,
respectively. J J )

This version of the AIRCHEM code computes a.' = a. + a,, x [M],
where a. is the two body ion-ion recombination cdefficlent {gf interest
in this”study), a,, is the three body ion-ion recombination coefficient
and [M] is the toégl neutral concentration at a given altitude. Since
only a. has been varieg3 the effect of “58 x [M] must be accounted for.
From Cdle and Pierce's“> "selected value" for the§§6io -ion recombina-
tion coefficient at ground level the value 8 x 10 ““cm /s can be derived
for Qgp- This value is such that a.' = a, except at 30 km where
a./10 2 a., X [M]. This case was rg-comp&ted with a, set equal to zero.
Thivial cggnges (0-3 percentage points) were found it the computed ion
distributions of Table 3 and small changes (12-15%) were found in the
total ion concentrations of Table 4. Thus, no corrections for the
inclusion of the three body ion-ion recombination have been made to the
values listed in Tables 3 and 4.

In Table 4 at 70 and 80 km altitudes, large differences exist
between the sum of the positive and sum of the negative ions. Since
charge is conserved in the AIRCHEM code, this difference defines the
electron density, and shows that electron-ion recombination does dominate
at the higher altitudes. As we progress lower in altitude (and/or later
in time) the sum of the negative ions approaches, then approximately
equals the sum of the positive ions. Thus for our choice of excitation
conditions, ion-ion recombination becomes important at 60 km and dominates
below 50 km,

Referring to Table 3 we find no case which shows more than a
factor of about two change in a dominant ion speciea. Specifically see
H (HZO)4 at 40 km and CO, (H,0) at 30 km both at 10 seconds. These
changes are for the less liké€ly increase in a.; the more likely decrease
indicates rather small changes in the ionic distributions for altitudes
60 km and below.

The AIRCHEM code has been used as a tool to study the sensitivity
of distributions to changes in selected values of individual two body ion-
ion recombination coefficients. We caution that the code has not been
validated for the conditions or in the detail used herein, and that the

23R. K. Cole, Jr. and E. T. Pierce, "Electrification in the Earth's

Atmosphere for Altitudes Between 0O and 100 Kilometers,'" J. Geophys.
Res. 70, 2735-2749, 1965.
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ion species used are a sub-set of those detected in the atmosphere.

With these points in mind we find the results of this limited study
indicate that for altitudes lower than ~ 60 km, one extreme value of the
ion-ion recombination coefficient, a. x 10, can change ionic populations
by as much as a factor of two, in is0lated cases. The other, more

probable extreme, a. x 1/10, causes much smaller changes in the computed
ion populations. J
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