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CHAPTER 1

DATA COMPRESSION AND MAXIMIZATION OF INFORMATION CONTENT

1.1 INTRODUCTION

Although this document primarily addresses problems at the various

test ranges, it should provide applications for use throughout the scientific

community. Much of the reference material used was derived from publications

by other government agencies, contractors, universities, and private industry.

Within the past several years nearly all test ranges have experienced

an exponential growth in the quantity of data being recorded and processed.

Almost concurrently, large-scale, real-time data processing systems have

been developed. It is reasonable to expect this trend to continue in the

years to follow. Consequently, there is an increasing demand for minimizing

redundancy and compressing the masses of data into forms which may be more

quickly and easily assimilated.

Much effort has been expended at various locations in the development

of reliable means for transmitting and retaining only significant changes

in data instead of processing all that is generated. Considerable attention

has also been given to presenting this data in forms conducive to early

decision making. All this effort has produced a number of techniques which

make up the field of data compression and maxiaization of infcrmation

content.

1.2 SCOPE

"his publication is intended as a single source document describing

available techniques for reducing the quantity of data processed and for

providing meaningful presentation. It includes mathematical, statistical:

and graphical techniques which have been used successfully.



1.3 DATA COMPRESSION DEFINITION

The expression "data compression" has broad meaning and may encompass

any or all of the following: data compaction, bandwidth compression,

redundancy removal, redundancy reduction, adaptive sampling, parameter

extraction, opttmal estimation, and possibly a few other techniques. In

general, data compression denotes operations which are performed to reduce

thf quantity of data prior to transmission, but which still preserve the

minimum data elements of a measurement continuum such that the original

inforDbation may be reconstructed within established limits of error.
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CHAPTER 2

REDUNDANT DATA REMOVAL/USEFUL DATA SELECTION

2.1 INTRODUCTION

Data redundancy has been defined as "that fraction of a message or

datum which is unnecessary and hence repetitive in the sense that if it

were missing the message would still be essentially complete, or at least

could be completed. Redundancy exists whenever the sampling rate... exceeds

the requency required to describe the input function in accordance wlth

the accuracy requirements of the user." [2-6J The methods for retaining

data which provide essentially all the information contained in the original

message range from some simple visual and manual techniques to complex

computer driven algorithms. However, the basis of all removal/selection

techniques is the examination of each data aample and performing a compari-

son t1c preceding or succeeding samples in the context of some arbitrary[2-6]
reference pattern. The choice of methods is extensive and may be

adapted to virtually gny set of circumstances or data.

2.2 EDIT16C

The editing processes Involve the identification and subsequent removai

of data estimates which are considered either erroneous or non-essential to

the information content. Additionally, if erroneous data during "critical"

intervals are edited those samples must sometimes be replaced by prediction/

interpolation techniques. The implementation of these processes depends on

the purposes and uses of the data, especially in the context that raw data

are generally comprised of both expected and abnormal, or unexpected, input

samples. The flight engineer will consider useful chat data which shows

missile performance characteristics only, whereas the instrumentation

engineering will be interested in data showing instrumentation failures.

In eazh case data compression may be accomplished through the reduction

methods of editing.

3



2.2.1 MANUAL TECIMIqJES

Although generally more laborious and vulnerable to a

certain amount of subjective judgement, manuzl editing is often employed to

reduce the data volume and select useful data, especially during preliminary

data processing stages. Two comon data fo:mats are lists and plots, and

in each case techniques may be employed to facilitate the reduction process.

A simple method of editing printed data is to arrange it in

zClumnar format and sort it with respect to some key parameter, usually,

but not necessarily, time. The reorganization of data in this way improves

-he capability to show data discontlnuities and duplicated samples, which

ne identified for removal, When samples are arranged in vertical

:taposition with respect to previous and subsequent samples of the same

~:c ion, simple trend analyses ray be accomplished. These include such

non-paraserric tests as determination of zero crossings and the relative

--es (value' of the data estimates. In order to facilitate the editing of

'a lists the data parameters may be reconfigured by computing simple

irst or second differences between sanples which will detrend the data and

.-Piiry data anomalies:

Axj xi - xi.

x = - x. xi - 2xi 1 +X 2

(2.2-I)

xi-l

4



The data may be reconfigured into estimates of variances over short intervals

which may be reviewed to dctermine quickly where data samples may be edited.

These methods of reconfiguration may be combined to provide dettended

variances in data which are changing in a polynomial fashion; the variances

may be estimated from the differenced data, 
[2-2]

m
E (Ax)2 (2.2-2)

(m-n)W.nF

where a = random error in the x coordinate
x

Anx = the nth successive difference in x

m = the number of points used in each sample

When using this technique, n > 3 in order to at least eliminate quadratic

trends.

The same general methods are used in analyzing and editing

data in plotted formatm. Trend analyses may be accomplished more readily

because of the ability to review the data in a more condensed form.

Sampling rates may be determined and useful data spans identified. Discon-

tinuities in the data trend and spurious samples may be discerned, and in

reviewing data in plotted form it is possible to determine patterns of

abnormal data occurances. A drawback in editing the data from the graphical

representation is the loss of a certain amount of data resolution, depending

upon presentation scale factors.

2.2.2 BOUNDARY LIMIT EDITING

The simplest computer editing methods employ a selection
process which compares the present data value to preset upper and lower

limits:

k I < Xi k 2 , (2.2-3)

5



where the k's may be constant or even some function of (x). Under one

option, acceptance occurs when the condition above is true; under the

other if the statement is false. in either case the boundary limit test is[2-10]
designed to eliminate data which is considered unimortant. Because

the values of the k's must be predetermined, a priori knowledge of the

nature of the data must be considered in planning for :his type of editing.

Depending on the environmental, instrumentation, or processing

characteristics which affect the nature of the data, the following factors

may be utilized. 
[2-81

a. Time Constraints. Data may be recorded only when it
.s within the time period covering a specified maneuver for a particular

-est- The most common procedure is simply to turn off the recorders, or

.dit recorded data using times found on operational notes to avoid processing

daLa considered meaningless. Additionally, data sampling or compression

may be initiated or discontinued on the basis of other events, which are
[2-1]

measured or recorded.
4

b. Physical Bounds. Variable which exceed known physical

limitations, e.g., velocities of Mach 10, aircraft altitudes over a million

feet, etc., need not 'e accepted or processed.

c. Calibration Limits. Telemetry functions, especially,

rinse which exceed calibration limits will probably be outside the desired

testing range.

I
d. Computer Table Limits. Editing criteria may be based

on the amount of available computer core or tape siorage whenever the data

samples retained will meet conditions sufficiently to describe the entire

population. This method of editing is usually employed if further data

compression methods, viz, regression analysis or analysis of variance, will

be used.

6



e. Detection Threshold Limits. The signal-to-noise level

of all functions may be monitored to determine if any data are in fact

being received.

f. Historical Limits. Based on the results of previous

similar tests, expectation bounds may be determined to edit subsequent

tests. The historical limits will usually be finer than the physical

bounds.

g. Statistical Limits. Estimates of variance may be

computed over short intervals and used to remove erroneous or meaningless

data, or to sense signficant changes. The variation of the general test in

this case would be

-s x < x i f ksx ,  (2.2-4)

where s is the estimate of the Adard deviation in x.x

h. Trend Limits. jed on the change in the trend of the

data, a data sample, x,, may be eliminated if

- xiz > k (2.2-5)

where the boundary k is known a priori.

2.2.3 SOURCE SELECTION

When there are simultaneous measurements of a parameter by

more than one instrumentation system, redundancy exists and a best estimate
of that parameter may be made and all other meaLurements discarded. 12-121

Source selection may be accomplished in two ways.

a. Determination of the best source. A preliminary step

here is to eliminate all data showing apparent malfunctions. This may be

7



accomplished by using the various methods of limit checking. Variance

estimates may then be computed from each set of data and utilized as weight-

ing criteria to determine the beat data set,

w m .L (2.2-6)j 2

In practical application, changes in source selection should be made only

when the weights change significantly.

b. Computation of a combined best source. The relative

weights previously calculated in the determination of the best source may

be used to compute a set of data which is a combination of all sources r.d

.-cih provides more confidence than use of any one set alone. This best

s timate may be used as the data source during further processing. The

-.oled estimate may be computed:

n

I1 Xi (2.2-7)W..

2.3 S~MPLING

Redundancy removal through sampling is a direct data compression

-1*hod which operates on the data in such a way that the output values are

The actual sample values of the input data, or the actual sample values
(2-13

Aithin a tolerance. These data compression techniques can be divided

into two classes; those which essentially destroy the time reference and

transmit the significant samples at a constant rate, and those which transmit

only significant samples as they occur in time. [2-51 The first method is

termed fixed rate compression, the other, variable rate compression.

When using fixed rate sampling it is assumed that the data character-

istics are constant and some optimum rate may be determined a priori. This

is generally based on the highest frequency expected in the data. Since

8



the data sampling rate is known, the time tag need not be carried along but

way be reconstructed after the essential processing is complete.

Variable rate compressors, on the other hand, have greater potential

for redundancy reduction because the output sampling rates are keyed to

variations in the data characteristics. However, because of this flexi-

bility, each data sample requires a time tag, and in some cases, when

combined with other compressed data, may result in more data bits being

transmitted than were in the original data. [2-11

2.3.1 FIXED RATE COMPRESSION

The technique most commonly used is simply to sample the

data at a rate close to the Nyquist or folding frequency, (fN), which is

the maximum frequency which can be resolved for a given sampling rate, At.

Generally most sensors are sampled at more than the theoretical minimu of

twice the highest frequency component:

fN-I
N TT (2.3-1)

and frequencies (f) which could be resolved are:

0 (2.3-2)

If fca.t frequencies whie -re higher than 2 Hertz
1

exist in the data they will appear as lower frequencies between 0 ad

Hz. This is called aliasing, and must be considered in the determination

of the sampling rate for data compression. (2 - 12 1 Figure 2-1 shows a spectral

representation of typical data, where the sampling rate (At - 0.1 sec) was

far greater than required to represent the highest signficiant frequency,

in this case, f5 a 0.5 Hz. Spectral estimates over the frequency range f >

0.5 Hz are relatively 1.ow amplitude noise. If the data were sampled at a

reduqed rate, for example At < 1 second, that noise would be aliased into

:o9
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the. region f < 0.5 Hz with some adverse effect on the compressed data. To

avoid aliasing, prefiltering the original data is necessary. This may be
accomplished by using a low pass filter with a frequency cutoff equal to
the highest significant frequency, or the highest desired !Iyquist frequency.

2.3.2 VARIABLE RATE COMPRESSION

With this type of redundancy reduction the waveform is
initially sampled at a constant rate and the nonessential samples ace
eliminated when the data change exceeds a predetermined tolerance with

respect to a refer6nce pattern. The choice of reference patterns used to

detect redendancy is virtually unlimited. Examples are: polynomials, expon-

entials, and sine waves. !2-71 Of the many techniques the most widely used
and discussed are the oolynomial predictors and interpolators, since most

data can be expressed or approximated in that form, especially over the
data spans to be tested. A general description of these is as follows: [2-91

v A tolerance window is placed about the data starting at

the first data point.

* Succeeding points which fall vithin the tolerance window

are considered redundant and are discarded.

* When a succeeding point falls outside the window, an

appropriate point Is savd and a new tolerar-- window is placed about the

succeeding daza.

* Each tfme a point falls outsile the window, a new window

is used for the succeeding data.

2.3.2.1 PREOICTORS

A predictor is an algorithm that estimates the

value of each new data sample based on _- ptormance of the d-ta. If the

11



new data value falls within the tolerance range about the estimated new

value, it is rejected as redundant since it is known that the data value

can be constructed within that tolerance range. [2-71 A class of redundancy

reduction techniques using predictors asrumes t'. sample will follow

an n-th order polynomial of the form12- 1 1"

xi W x-I + xA-I + A2xi-! + ... + Aux I (2.3-3)

where x is the predicted sample,

xi_1 is the previous sample,

Anx 1 1 are the successive differences as defined in subparagraph

2.2.1. A tolerance of x t k can then be established about xi.

2.3.2. 1. I ZERO-ORDER PREDICTORS

Coemonly known as the "Step Method," the zero-

order predictor is the simplest. For the zero-order predictor, n - 0, and
'L2-311et;uation (2.3-3) reduces to'

x. = (2_.3-4)
x i-i•'

and the redureidicx test is

X_ - k x, < x k (2.3-5)

Each x$ fatling the test is saved as non-redundant

and is used as th. rLew refer~aze for subsequent tests. This method is also

known as "he -- 'Loat-ig point aperature, simply becau.e the tolerances follow

th.-e voi-Nzs. An example is shown in Figure 2-2.

U2
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PREDICTORS INTERPOLATORS

00-

hi -
00

(STEP) (ZERO-ORDER)

0 *0

e (TWO POINTI--

TOLERANCE z (
REDUNOANT SAMPLES

4ON-PEOUNOANT SAMPLES 0

FIGURE 2-2. Variable rate compression methods.
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2.3.2.1.2 FIRST-ORDER PREDICTOR

Setting n - I in equation (2.3-3), the first-order

predictor

x t - Xil_ + Ax _

- 2xi-I - X1-2 (2.3-6)

is obtained. [2-] The extrapolation equation is a straight line drawn

between the last two data points. Since Ax _1 represents te ct-ange

between the previous two samples, the predicted sample is the previous

sample plus the change chat occurred between the previous two samples. [2-5]

L.e redundancy test is the same as that shown in expression (2.3-5). When

a s.Mple falls outside the tolerance, the preceding sample is considered

:n-nedundant. [2-1l]

It follows that higher order predictors can be

UU!t by considering more past data. Although the higher order predictors

1-1 tend to provide high compression efficiency on highly active data,

Oexn ience has show. that a Icw order predictor wil provide equal cr

greater compression efficiency for most telemetry data. [2-71

The compression efficiency is basically the fidelity

f reconstructing the original waveform with respect to the amount of

redundancy reduction. Although there are certain trade-offs with respect

to the variance in the data and the type of predictor to be used, general

rules have been established. The zero-order predictor is prefectly matched

to data which vary as step functions, such as data calibrations or discrete

events. Because of horizontal tolerance limits the zero-order predictor is

at a disadvantage where data activity is high with many vertical series of

adjacert points. However, in the presence of noise only the zero-order

predictor tends to set up strictly horizontal limit lines which are automa-

tically parallel to the noisy, actionless data. In the presence of noise

spikes, or willd points, the zero-order predictor works well since it

14



automatically keeps those points and does not have to keep a point

for every vertical increment of one tolerance magnitude. The noise

can then be effectively compressed if the tolerance limits are suf-

ficiently wide. 12-91

Because the first-order predictor is responsive to

changes in the data it generally works best on data exhibiting a high level

of vertical activity and relatively low noise. A disadvantage of the

first-order predictor is the possibility of getting hung up on heavy noise,

and while the zero-order predictor is handicapped by vertical variations of

the data, noise tends to reduce the efficiency of the first-order to an

even greater extent. When these conditions are mixed, i.e., high noise-

high vertical activity, or low noise-little vertical activity, the two

methods generally perform with equal efficiency.

2.3.2.2 7 11 POLAXOIS

Prediction techniques are based on the assumption

that the data will remain relatively constant from one time interval to the

next. If the data vary contimpos ly or are corrupted sporadically by

noise, the redundanzy reduction efficiency of the predictor generally will

be reduced. (2-71  In such cases the compression efficiencies could be

increased if both past and future data samples could be uced. This process

of determining redundancy after the sample has been examined is called

interpolation. (2-5] Interpolators differ from predictors in that all

•ample valueos between the last transmitted valu: *nd the present value

affect the interpolation. 12-11 Interpolation uses present samples to

determine where past samples should have been and compares this prediction

to the actual position of the past sample. [2-51

2.3.2.2.1 ZU-MER IRlMPOLATOIL

The zero-order interpolator, like the zero-

order predictor, is a horizontal aperture device with "step-wise" tolerance

Is



limits. However, whereas the predictor utilizes only knowledge of the

initial sample value in locatiug the aperture, the zero-order interpolator

operates by aximizing the length of time the original waveform stays

within the aperture. 12-31 One method of Implementing this is to place one

of the tolerance boundc at the first point and consider this to be the

maximum or minimu value in the redundant data set, depending on the slope

of the curve. The aperture is initially centered at x° ± k and the entire

soace is 2k. Whenever a sample exceeds the 2k limits, that sample is used

to initiate the next tolerance band and the transmitted sample is the

r.zerage of the mawzinm and minimum sample values in the tolerance band. (2-51

xmin max
xt 2 (2.3-7)

era x_ transmitted sample,

x s m allest sample value in the redundant set,m-in

x/ * 'ages sample value in the redundant set.

The rel t.. - can be- tolerated in the zero-order interpolator is strictly

depndent ,., - the predefined error. The value transmitted is approximately

rhe centccjd o. that redundant data set.

2_-:3.2.2.2 FIRST-ORDER IlMMEPOLATOR

The implemeatation of the first-order inter-

polator may take several forms; however, the most common is the "Fan Method"

F.-c.posed by Gardenhire. T.his involves computing two slopes, both originating

at the last transaitted sample, directed to the upper and lower tolerance

liuits of the next sample. These slopes are used to test the subsequent

sample, and if ir falls within the tolerance limits, a new, more restrictive

fan, defined by the new tolerance limits, is used to test the subsequent

point. As slopes are drawn from one sample around future samples, only

the most restrictive slope above and the most restrictive one below are

stored. The implementation of this is relatively simple and involves

16



little data storage since only five words of memory are necessary - the

two slopes, the original sample, the last sample and the selection tolerance
[2-4]

- regardless of Iow many samples are between the end points. Whenever

a sample -xceeds the tolerance of the fan, the preceding sample is used

as the origin of the next set of tolerance fans.

Since future samples must be examined to

determine redundancy, the transmission of the non-redundant sample will be

delayed. Thus there may be a major disadvantage in attempting to use
12-51

interpolators for real-time processing.

The predictors use only past, tr.msmitted

samples as a basis for future prediction to determine redundancy. However,

since they use the set of future data to determine if a particular sample

should be transmitted, they have a distinct advantage over the predictors.

if the sample contains noise, the noise will be predicted to occur in the

next sample. Therefore, that sample will probably fail the redundancy

test. This pattern., could continue at each succeeding sample making it

difficult for the predictor to provide stable, non-redundant data. By

using knowledge of future variations in the data, interpolators tend to

reduce the effects of noise in transmitting non-redundant samples, and

require a lower signal-to-noise ratio than the predictors. [2-51

In making visual comparisons of the effi-

ciency of the various redundancy reduction techniques on telemetry data,

Lunsford observed that the first-order predictor tends to retain data peaks

better than either the zero-order predictor or the first-order interpolator.

The advantage of the first-order predictor over the zero-order algorithm is

that the first-order limits generally have slope when approaching a data

peak so that the upward or downward trend of points after the peak is

picked up sooner than if the lines were horizontal. While the first-order

interpolator has the same advantage as the first-order predictor, it does

not define peaks as well for identical tolerances, because the limits for

redundancy are wider. [2-9)
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On the basis of examining sixteen telemetry

functions with both predictors and the first-order interpolator, along with

variations of these methods, Lunsford concludes that the zero-order inter-

polator should compress as efficiently, if not more, than any of the other

three methods. 12-9] However, a major factor affecting th efficiency of

each compression algorithm is the tolerance selected. Although Figure 2-2

Sliustrates each redundancy reducing method with essentially the same

31-Lance, the optimum tolerance is dependent upon the technique and data

-Mrac-eristics.

2.3.2.3 TOLERANCE

Once the decision concerning the type of copres-

MEbed to be used is made, the size of the tolerance limits cmst be

Sie nose is essentially random redundant data, the tolerance

n Y should be set large enough to enable the algorithm to suppress

Seondl the coleran:e should provide a relatively high compression
12-9J0, wthout significantly distorting the active data. A priori

-- i~ge of the data characteristics is uecessary in choosing the optimum

rant. The compression ratio which is an important factor in determining

efectiveness of the co. pressicn algorithm and tolerance Is defined

Tt nrz-ber of samples (2.3-8)
Number of sienificant samples

Figure 2-3 shows the increase its compression ratio
A ferent redundancy reduc-on methods over a tolerance ranae. t2-93 The

tolerance limits are expressed in percentoge of amplitude bandwidth, and

the ertial scale shows the average ctn~ression ratio for 16 telemetry

functions tested. These curves are intended to show approximate relative

increase.s in compression ratios vs tolerances for each predictor.
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2.3.2.4 ERRORS

Because of the various uncertainties in choosing

the method and tolerance, information will be lost and fidelity of the

original data will be affected. Gardenhire considers the tolerance to be

an estimate of the maximum guaranteed error, and within this range provides

typical error distribution curves for the redundancy reduction methods. [2-4]

The results for 401 samples and a tolerance of .5% are shown in Figure

f for the three methods. The curves show that the associated error

distributions are far different from normal distribution curves. For the

first-order interpolator the errors are more evenly distributed over the

entire tolerance band while for the first-order predictor they peak at a

ver- low error. The zero-order interpolator peaks at a higher error, but

because of the relative distributions its mean error is lower than that of

the first-order interpolator.

2.3.2.5 RECONSTRUCTION

Restoration of the data to its original form

Swiin the tolerances already determined may be necessary uhnever further

processing requires that the data be input at a fixed rate. Thiz; may be

necessary at the receiving end when the data is compressed for transmission.

e ause of the differences in the algorithms used to compress the data,

h are some considerations which affect the decompression, or reconstruc-

problem. Basically the reconstruction method is determined by the

reducion.[2-6]merhod of redundancy reduction. Zero-order reconstruction fills in

redundant samples which are equal to the last sample transmitted until a

new sample is received. The first-order reconstruction process basically

consists of connecting non-redundant values with straight lines through

linear extrapolation.

In the real-time sense, the predictors, which were

described herein, are relatively easy to decompress. With the zero-order

case, all redundant samples, which must be reconstructed, will be within

the original tolerance bounds but may not follow the original waveform,
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a-sp-!cIa1y gia- the toieec bOW164 -were lara.. The reconsV.ucti-. -

o.f the i.edundE*l data& removed by the F rat-order predic, or u-cs rsje

fact tbat after the ftirSt two sawles -are- trazismjLtted a.x, the change zn x

VhIch uef in- s the a lope of the tlrceboluncs, I a knov id-n call va- uzed

to vr onsu,: the re-durAat samples until the next non-reduneant sample Is
zranm~ted.(2-41-

The -interpolator- as aecribed heireini presen t:-,t

P~roblem for reconstruction, -especially -when data are sampled _for tranq_-

'2ssion. Whenh-using these algorithms, the now-redundant data values afnJ-

33 opus are not Ikrzown n-r transzsitted un t the angest possible-~ip

; Smv:u -has been fitted to th'e data. This makt- it topbasible to-reo-~
t~'uct he or5inal d t wrcut im~posing some-delay. The delay may be

bz-)j problem, espeC..ally If Ole data-values remain within tolerahnce

the eat-4re teSt2( 2 63 however, beause-all the data variations on

risk- compiesgsion- end Are: knotwni the reconstructed samples tend to provide
-'rcater f idelitv with the orig~a da1

The zero-crler interpolator transmits average

estimare-S of the data Lzn the tolerance bands. Therefore, the reconstructed

data tend to follow the moat lixtely estimate of the original redu Adatt

d-ata. The first-order interp~olator has a similar ddvantage. SInce all

-5a:%pe points fall within the aperture Apacet here is no excesi over Lhe
Oolayas Miay e'Xist With the .r :edictors. [-,24
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CHAPTER 3

TRANSFORM HKThODS/UYPED PARAMETER 7-1HMI'H1%S

3. 1 INTRODUCTION

Although the techniques described in this chapter are often thought

of as analysis rather than data compression reciniquez, they can be used

not only to compress data output from a computer, but also data stored

internal to it. They also allow the user to make more intelligent

conclusions than could be attained by simply inspecting the raw data.

In real-time data reduction it is imperative that the test conductor

be presented with information he can assimilate in as short a time as

possible. For example, is it desirable to redice a long time histor

into a small numter of ccmputed paraters which characterize the complete

time history, or to combine several parameters into one result upon

which a decision might be based? The nethods given here cannot only

save considerable time, money, and paper when used judiciously in assess-

ing the results of an experiment, but alse will give more incisive

pinpointing of what actually happened in the experiment. When properly

utilized in =eal time, the test conductor or flight controller can leave

the display r,-tm with full knowledge of his results rather thb-, waiting

several days for stacks of computer listings shich are elfficult to

nasimilate.

The Fourier Transform and Power Spectrum allow display of informa-

tion related to the frequency content in the data. The Walsh Transform

allows computation and display of inforkation related to the nuater of

zero crossings in the data. Th transfer function allows representation

of large quantities of data collected from a compllcared system by a

relatively small number of coe.ficients. Non-dimensionalized parametar;

allow combining of several parameters into one; both for reducing the

output required, and for ease of assimilating information.
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3.2 FOURIER TECHNIQUES

Fourier Analysis has been a rich area in applied mathematics for

over 150 years. However, only in recent years, with the growth of

digital computers and the introduction of the Fast Fourier Transform, is

the full potential of this subject being realized. The ability to

readily calculate the discrete Fourier Transform provides a very appeal-

Ing data compression technique.

The definition of the Fourier Transform of a function, f(t), is

given by the well-known integral

-7- f f(t) e-itt (3.2-1)

vich the reciprocal formula for the inverse.

1(t) Z f-/ - M-, e( e i~ t  (3.2-2)

iVhen t is time then 14 is the frequency in radians/sec.

For digital data the Discrete Fourier Transform nust be used and is

defined as

h N eitakhF(M) = f (kh) (3.2-3)

k=0

where h is the sampling interval.

2
"ihe highest freq-s-=y dicernable in descrete data equals G and the

1 1finest resolution between frequencies equals p. Since w27rf, where f

is the frequency in cycles/sec, then the above definition becomes

F M = F (2. F (J) h N f(kh) e -ikj ,

nh ~~72-w K1

j = 0, 1, 2 ... N (3.2-4)
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by appropriately rewriting equation (3.2-4) advantage may be taken

of redundant calculations to sigaificantly reduce the amount of computing

required in calculating F(w). Using this approach in the early 19608,

Blackmun and Tukey developed the Fast Fourier Transform (FT). Today

most computing organizations have software or hardware iumplementations

of the FFT. Hence, it is possible to compute the Fourier Transform

routinely on discrete sequences which would have been impossible before

the FFT was developed. Not only is it possible to perform this computa-

tion in the batch mode, but it is also possible in many cases to perform

it in near realtime.

A quantity closely related to the Fourier Transform is the Power

Spectrum. This function is defined as the Fourier Transform of the

autocorrelation function; however, it can be shown that this definition

reduces to just the square of the absolute value of the Fourier

Transform. That is

Gf(W) - Re {f(w)} (3.2-5)

This function gives an indication of the distribution of the power as a

function of frequency in the data being analyzed.

The Fourier Transform and Power Spectrum can be used for certain

categories of experiments to greatly compress the amount of data input

required to assess the results of the experiment. The most extreme

example of this compression can be seen by considering the case of a

pure sine wave, f(t)-sin w t. The Power Spectrum for this case will be

the delta function, 6(w- 0o); that is, all the power in the function is

concentrated at w 0" For the realistic case of finite dat* length, the

Power Spectrum will be represented by a spIke es shown in Figure 3-1.

W8

Figure 3-1
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Hence, for this particular case, what could have been a sequence of

thousands of points in the time domain is reduced to one pertinent point

in the frequency domain.

Although it is very rare that a pure sign wave is encountered in

practice, it is often true that most of the enrgy in a parameter is

concentrated in a few narrow frequency ranges and that a good approxima-

tion of the parameter is given by a sum of sign waves in these ranges.

With some a priori knowledge of the outcome of a test, a test controller

can limit his output to cover the frequency range of interest and then

not only significantly reduce the quantity of data output, but also have

the results in a form from which conclusions can be drawn.

The Fourier Transform can also be used for saving computer storage

requirements and for reducing the bit rate required In tranmitting

data. In many cases, the Fourier Transform of a signal or a curve is

dominated by relatively faw of the F(J) given in equation (3.2-4). In

such cases only the F(J) which contribute significantly to the curve

mu1st be stored or transmitted. By storing or transmitting only those

significant F(J) rather than the complete signal in the time domain,

-mass memory requirements or channel bandwidth requirements can be signi-

ficantly reduced.

3.3 TRA4SFER FJNCT ONS

The transfer function is defined as the ratio of the system input

to the system output in the Laplace domain. It is usually used to

characterize the frequency response of a syitem.

A constant coefficient linear system can be reprerenred by the

folloving vector differential equation.

dX

d- AX + EV (3.3-1)
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Here X is the state or output vector, U is the control or input vector,

A is the state trnsformation matrix and A is the control or input

matrix. For a mltiple-input multiple-output system the vectors U and

contain all pertinent input and output parameters, respectively.

In practice it is desirable to know the transfer function of one of

the output parameters with respect to one of the input parameters. For

such a case, it can be shown that the relationship between the input and

output can be derived from equation (3.3-I) in the following form.

a ALX + a. + a X b- u
dt n  dtn-1 n 0 dt m

+ b u + b u (3.3-2)
dtJ- .

here, x and u are particular components of X an4 U.

The transfer function H(s) is obtained by taking the Laplace Trans-

form of both sides of (3.3-2) and obtaining the ratio of X to U, to give

the following:
.~)=XS boS= + b s U-1 + "" + b n

U(s) aosn + a sn-I + + (3.3-3)

Pence, the set of coefficients denoted by the a 's and b I's characterize

the relationship between x and u-r. If I s substituted for s, then H

becomes the system frequency response function.

The transfer function can be calculated in several ways, amng

them: Fourier Transform, Z-transform, and parameter identification. In

the Fourier Transform technique, the discrete Fourier Transform of both

the input and output is taken and substituted into the left hand side of

(3.3-3). Then a rational fumction numerical fit is made to the trans-

formed data to give the ai's and b i's.
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In the Z transform technique, the transformation Z-e is used to

convert the differential equation (3.3-2) to a difference equation.

Data values in the time doinain are then substituted into the difference

equation, usually giving an overdetermined system of linear equations

with the a1 's and bi's being the only unknowns. The ai 's and bi's are

then solved for by the method of least squares.

In the parameter identification method, the matrices A and B are

usually determined by finding those respective values which will give

the solution i(t) of (3.3-1) which most closely matches a set of measure-

ments of X, given, also, measurements for U. There are several techniques

used in parameter identification; among them are maximum likelihood,

Newton-Rapheson, and Quasilinearization. The coefficients ai and bi can

be easily determined fron the matrices A and B. The details of parameter

identification techriques are beyond the scope of this document. Hwever,

•urther detail may bhe found in references 13-31 and [3-4)

For systems which are approximately linear, the transfer function

can be used to reduce a long time history of data for system output and

input to a small set of coefficients which rel- e the two. Also, by

looking at the roots of the numerator and denominator of the transfer

function- we can determined the stability characteristics of the system.

Hence, a test conductor who is analyzing his data in a near real-time
=ode will i~edlately have all the information needed to make decisions

on the test. In this case, cot only would a large stock of tabulated

data be awkward to work with, it would also not provide him with the

information needed to assess the results of the test. Hence, using the

transfer function not only reduces the quantity of d..ta output, but also

provides the user with information in a form conducive to decision

making.

3.4 WALSH TRANSFORMS

The Waish Transform is analagous to the Fourier Transform in that a

function or signal is represented by a series of orthogonal functions.
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Just as the Fourier Transform is useful for representing signals composed

of oscillatory components, the Walsh Transform is extremely useful in

representing signals composed of a number of discrete level changes. The

analog to the frequency for the Fourier Transform is the "sequency" or

number of zero crossings for the Walsh Transform.

The orthagonal functions used in performing the Walsh Transform are

known as Walsh Functions. The first 16 Walsh Functions are showrn in

Figure 3-2.

If f is a data vector of length N; then the one-dimensional Walsh

Transform F of f is defined as

F Nr Wnf (3.4-1)

where W is an N-l matrix, the rows of which are the sampled Walsh

Functions W. The inverse transform is given by

= ) w )
WNnF

Hence, the forward and inverse transforms can be implemented by the same

hardware and software.

The Walsh Transform can be used for data compression in a similar

manner to the Fourier Transform. In certain cases only a relatively

small number of the elements of F are significant. In such cases only

these significant components need be retained for a large savings in

memory or channel bandwidth to be achieved. The signal can be reconstructed

using equation (3.4-2) with the insignificant components set to zero.

This technique has been especially useful in reducing bandwidth

requirements for transmittIng digitized video signals. i this case the

screen image is composed of a relatively few discrete shades. The Walsh

Transform is highly suited for representing the signal which generates

these shades. References (3-51 and (3-91 give further details on the
use of this technique.
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3.5 NON-DIMENSIONALIZED PARAMETERS

Non-dimensionalized parameters have been used for many years by

aerodynamicists for characterizing aerodynamic forces and moments in

fluid flows. These non-dimensionalized parameters can be viewed as .' a

compressors in that they lump together several parameters into one

parameter. As in cases discussed previously, this reduction also usually

means that the lumped parameter can be more easily interpreted than the

several quantities could be separately.

For example, in incompressible viscous fluid flow through pipes,

the Reynold's number, which is a non-dimensioned parameter made up of

Cour physical quantities: density, viscosity, pipe diameter, and flow

velocity; uniquely determines the value of the resistance coefficient

for a given surface geometry of the pipe. Hence, there 13 no need to

obtain data at all possible densities, pipe diameter, and flow velocities,

but only to run experiments at varying values of the Reynoid's number.

The extent to which a group of related quantities can be reduced to

dimensionless parameters is governed by the Buckingham r theorem. This

theorem states that, given a physical equation f X1 ,X2 ,X3, ... X)=0,

where the X,'s are dimensional physical quantities related to thei

physical phenomenon of interest, that there can be N-M dimensionless

quantities aescribing the same phenomenon, given, as follows:

f(Xl, X2, X3, ... XN) = 0 IT2,T ... rNM ) = 0 (3.5-1)

where M is the numbpr of fundamental physical dimensions in the

problem. In pure mechanics problems, the fundamental units are mass,

length, and time. Hence, by non-dimensionalizing, the number of quanti-

ties to be considered can be reduced by three.

As for the previous cases discussed, not only is a reduccion in

quantity of data achieved, but also it is easier to 
assimilate the

-esults of a test by considering the reduced set of dimensionless
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parameters instead of the complete set of physical quantities. Thus,

for example, a test conductor should be able to gain considerably more

information from viewing a force coefficient than from viewing separately

the force, density, and velocity which constitute the force coefficient.

Tn conclusion, before any new data analysis is set up, careful considera-

tion should be given to using appropriate non-dimensionalized parameters

for reducing the quantity of data to be output.

3.6 PITFALLS

The methods described in this chapter can be extremely useful in

.-ompressing data or increasing the information content of data to be

tesented. However, as is true with any mathemntical technique, extre.e

%ire should be taken in using these methods. The user should be as

flnmiiiar as possible with the physical phenomenon which is being repre-

vnted and should make a careful assessment of whether the technicv -s

here are applicable to his problem.

The Fourier Transform can give erroneous results when improperly

used. When a truncated Fourier series is used on non-periodic data,

purious oscillations can be induced when the inverse is taken. This

--roperty, known as the Gibbs Phenomenon, is described in detail in any

.,ood reference on Fourier Transforms. Analogous errors are also intro-

',iced because of the finite data length in the time domain. If the

"ourier Transform is blindly applied, the user may find that a signifi-

ca:nt compression ratio has been achieved at the expense of losing all

the reievant information in the data. Similar pitfalls can occur in the

use of the Walsh Transform.

The transfer function can also be abused as a data compression

device. The most common pitfall occurs when the system from which the

data is taken is not adequately described by a set of constant coefficient

differential equations. For example, the system may contain significant

non-linearities or time varying coefficients. In such cases, the coeffi-

cients in the transfer function will not give faithful reconstruction of
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the original data and will give an erroneous picture of the process

under test.

The only pitfall which can occur from use of non-dimensionalized

parameters is incorrect modeling of the system under test. However,

careful modeling should always be done, regardless of the data collection

or data analysis technique to be used.

Avoidance of the pitfalls listed here is accomplished through

careful study of a technique and how it applies to the physical process

being tested. If possible, the system should be modeled and a simulation

developed. The data compression technique being considered should then

be tested on the simulated data. After the compression has been achieved,

the data should be reconstructed to determine how much information was

lost during the compression. The user should then choose the technique

which gives the best compromise between compression ratio and fidelity

of the reconstructed data to the original data.
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CHAPTER 4
STATISTICAL REPRESMTATION

4. 1 INTRODUCTION

Various statistical parameters are used to describe largc groups of

data. After the parameters are computed, the basic data say be stored

or discarded. Other statistical techniques ay be used to discard some

individual pieces of data. The subjects in this chapter are discussed

briefly. For details the reader is referred to the references.

4.2 PARAMETER ESTIMATION

In this paragraph, a group of data will be referred to as a sample.

In order to summarize the information in a sample, certain representative

values must be calculated. These representative values fall into two

groups. One group measures the central tendency of the sample and the

other measures the dispersion of the sample. Usually values from both

groups are needed to smmarize the sample.

4.3 MEASURES OF CENTRAL TENDENCY

The most common measure of central tendency is the arithmetic mean.

If these are n values, X1, X2*.X~ nin a sample the arithmetic mean, i,

is calculated by the formula

1. X (4.3-1)

ni~i Xi

Two properties of the arithmetic mean are (1) the sun of the deviations

from the mean are zero and (2) the sum of squares of the deviations from

the m.an is less than the sum of squares of the deviations from any

other value. The arithmetic mean has the following advantages: (1) it

is easily calculated, (2) it is easily understood, (3) it is comonly

used, and (4) it lends itself to algebraic manipulation. On the other
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hand, it has the disadvantage of being quite sensitive to extreme values

and may be far from representative of the sample.

The midrange is a representative value which may be used to approxi-

mate the arithmetic mean. The midrange, MR , is calculated by the formula

MR (XMIN + X)

it is simply the arithmetic mean of the largest and smallest values in

-.e sample.

It has the advantage of being easily and quickly calculated. Since

ignores the intermediate values, midrange has the disadvantage of

n unrepresentative if either the maximum or minimum value is atypical

the values in the sample.

Vie median is often used to describe a sample. The median is that

aue for which half the values in the samp~p are less than the median

_alue and half greater. When the sample values are arrayed in order of

magnitude from lowest to highest, the median, M, is the (n+I)12 value.

H there are an even number of obsevvations, the median is the arithmetic

=can of the two middic .alues; i.e., for n values, Xi, where n is even,

the median is

M (Xn/ + Xn l  (43-3)

if there are an odd number of values, the median is the middle value;

i.e., for n values, XV, where n is odd, the median is

M = n (4.3-4)"n+ I

2

The median is easy to calculate and is often more typical of the data

than the arithmetic mean since it is not affected by extreme values.

Some disadvantages are (1) that the values must be sorted and arrayed
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before the median is computed, (2) it does not lend icself to algebraic

manipulation, and (3) if the data fall into two distinct groups it could
be misleading. Theoretically the probability is one half that an observation

selected at random will be less than the median. The aum of the absolute

values of the deviations from the median is less than the sum of absolute

values from any other value. When there are several sample values which
are identical, the median my not have half the smples below and above

that theory indicates.

The data may be described by retaining only points which divide the

sample into convenient groups. One such eivision is the division inato
percentiles. A percentile, Pp, is that value for which p% of the values

are less than Pp and (100-p)2 of the values are greater than P p. When

the values are arrayed in order of magnitude, then Pp is the p(n*+)/OOth

value if p(n+l)/100 contains a fraction; then the value Lu a linear
interpolation between the two values on either side. If the value

p(n+l)/lO0 falls outside the data, use the first or last value, whichever

is appropriate.

As a simple example, consider the following set of data: 1. 2, 2,

3, 4, 5, 5, 5, 9, 11. The 95th percentile is the 95(11)/100- 10.45

value or 11. The 80th percentile is the 80(11)/100 - 8.8 value or 5 +

0.8(4) - 8.2. The 20th and 25th percentiles are both 2. The median is

the 50th percentile and in this example is 4.5. The 10 percentile

numbers are referred to as deciles and the 25, 50, 15, and 100 percentile

numbers are referred to as quartiles.

The mode is the most frequent value that appears in the sample. In

the example in the previous subparagraph, the mode is 5. There can be

several modes in a given sample. If all values in a sample are different,

then there is no mode. When any value occurs more frequently than its

neighbors, it is referred to as a relative mode. The moat frequent

value is called the absolute mode. There can be several absolute -)des.
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4.4 MEASURES OF b. -".S ON

The measures of central tendency do not describe the spread of

values. Three coinon values of dispersion are discussed here.

The Range, R, is the difference between the maxiuam and uinimm

values. It is calculated by the formula

R = XMA - \ (4.4-1)

The range is easy to calculate but has the disadvantage that it ignores

intermed'ae 4alues.

The varianCe and standard deviation may be considered togetmer.

• . z.... deviation ia the positive square r&-t of the variance. For

his r t varance is referred tv by the svmbon, s and the standard

. -- Tre are two ways- to co"ute- - Oe uses n, the

nur f vales t ihe ample. in th W- e -rr To e other uses n-a.

Bot iays r-y be ah.Mvn using the same fr-u-'A. ..he ethod which uses n

orot.*es a b-ased estimator of the populatxio variance while that with

P-i provides an unbiased estimator. An estimator Is unbiased if its

expecced value is equal to the population parameter. The expected value
2o1 5 * whe- n is used in the denominator, is a± " o where 2 is the

nopulation variance. The formulas given beiwr are equivalent and selec-

io-n othe sne te use should bc Pmade by de-t-ermining which one is the

easiest to calculate. The first one given is usually the easiest for

•machine calcuiationc. If the sample has n values, X , X2,.X n then

n n 2
(1) s 2 2 Xr x.4.-2

(1) =S i1 , - i=il/n v = n for biased estimator (4.4-2)

n 2 n 2

(2 2 z Xi)/n
= 1 l " ,v = n-i for unbiased estimator

V

n 2
(3) s :(X -Y) (4.4-)

= i ,* X = arithmetic mean of the sample.
V
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The coefficient of variation, , is a smeasure of relative variation.

It is computed from the formula C - s/! (4.4-5), vhare s is tbe sample

standard deviation and I is the arithmetic mean of the saple. It has

been observed that samples with numrically large values tend to vary

widely and those with numerically mall valm teed to vary nal rovly.
In order to make a comparison of the varistom among two groups of data
with different inogitudes, the coefficient of variation may be used. It

can be use4 to compare the variation in two samples which are measured

in two different units; e.g., a comparison of variatici in height with

variation in weight.

4.5 COEFICIKETS IN A 1AMI MODEL

A math modal is simply an equation which relates an observed value,

Y, to one or more known values, XI . In practical cases most math models

are linear. The reason is that linear equations are easy to manipuate

and calculate. A math model is then of the form

n
Y , bj, where there are n+l knova vslues(4.5-l)

1-0
The linear form can be used to deal with very general sitaations. In

the case of a trajectory, position is represented by a second degree

equatio-, in time, viz,

y a b0 + bIt + b 2 t 2  (4-5-2)

If we let Xo - 1, xI - t, ard X2 - t2 , the second degree equation

in one variable can be transforsed into a first degree equation in three

variables.

An equation of the form y - ax b can be transformed into a linear

equation by taking logarithms. Specifically,

log y - log a + b log (4.5-3)
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|I

Here, Y 1 log y, bo log a, bI M b, Xo  1, X, - log 4.

A common method of determining the coefficients is to apply the

method of least squares. To use the method, several observations of Y

must be taken for various known values of the X 's. Let

0 1  X1 ... b0
Y 2 X 2  X12 ... Xk2  bI

x B

v X Xin ...

"!n L on i,

1

-e matriz of n observed values.

S matrix of che n Kn xwn points of the k 1., X 1 's.

S-e - of the k + t coefficients of the Xi 's.

the matrx of observational errors.

' = : + (4.5-4)

;s the -atrix equati'n of observations. The method of least squares

assumes the errors to be independent, with mean zero, and a common

var ance,0 (i.e., they are hoacscedastic). Thh method of least squares

fInds the values of the coefficients which minimize the sum of the

squares of the residuals. The symbol ' , above a variable, wili indicate

taat it is an estimate of that parameter. The sun to be minimized is

S = -(y - X) '(Y - XB) (45-5)



A symbol, -, indicates the transpose of the matrix.

When the partial derivatives are taken, set equal to zero and

manipulated a bit, the following result is obtained:

rxS - xCT (4.5-6)

This is the matrix form of what are termed normal equations.

a (a X)- (xW) (4.5-7)

The estimate s2 of v is given by
2 1 ^X

n-(k+I) (YY - W 0T) (4.5-8)

The matrix (XX)- I is the variance-covariance matrix of the variances of

the b's.

Let 2 be the estimate of the variance of b1 and 5 bibj be the

covariance of bI and b . Then the diagonal elements of

S2 (XX)
- I

are the values of the 2

2 r 21
If -SSO ,then

22

2 2  d (XX)-1  (4..-9)

; s diag (xt
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The values of the variances may be used to determine confidence intervals

for the estimates of the coefficients.

4.6 CORRELATION AND REGRESSION ANALYSIS

Correlation means the degree of association among variables. The

quantities used to measure the correlation are termed correlation coeffi-

clents. Regression is a term for the methods used to determine the best

runctional relationship among variables. In statistics, when a dependent

variable is expressed as a function of one or more independent variables,

h un--ion is termed a regression function. In other areas it is

som-tLmes termed a response function. The statistical analysis of a

-egression function and the determination of the coefficients may not

meo tMat a casual relationship must be made by a person well trained in

the subject ma-tter field in which the test was made.

A regression function is a math model. The discussion of least

sq.ar which appears in paragraph 4.5 also applies here. Polynomials

sf Aegree a may be considered as linear functions with the u+l variables
th

X where X = 1, and Xi is the i pover of the variable. Non-
- "0

.-near functions can often be linearized by a proper transformation.

:er the coefficients are computed they must be converted to the original
b

-els. Ine example y = a shown in paragraph 4.5 (equation 4.5-3) would

Xav= a = O1 and b b where b and b1 are obtained from the linearhav a - l , nd = I whreb

expression.

It is possible to determine the goodness of fit by examining the

variance and sueA of squares of the variables. Such an examination is

called an Analysis of Variance. In the case of polynomials it is possible

to decide whether the last term added has any significance. In general,
Ct it is possible to determine if several coefficients are significantly

different from zero. The case of deciding whether a number of coeffi-

cients are different from zero is discussed here. An illustrative

example is shown in the next paragraph. All the symbols and their
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definitions are the sa as those used in paragraph 4.5 concerning the

coefficients of math models. Assume that it is desired to know if the

last p< l of the coefficients are significantly different from zero.

Tc do this create two new matrices, X and B w, where I is the matrix

formed by removing from I the p columns that correspond to the suspect

coefficients and Bv is the matrix formed by removing from B the appropri-

ate p coefficients. Solve the reduced set of equations. This solution

is:

S(x )-I(xY) (4.6-1)
A 

Y

2 1 (YY - 8-XY)with variance S v -(v-V (4.6-2)

The following table should then be computed. This is called an

analysis of variance table. The mean square column is the sun of squares

divided by the degrees of freedom. The table is adapted from reference

[4-91 as is the explanation following.

TABLE 4-I MALYSIS OF VARIANCE TABLE

Source of Variation Degrees of Freedom Sum of Squares Hean Squares

Total n Yy - y-y
nA

Due to h+l constants k+1 BX'Y K

Residual (from large soluticn) n-(k+l) AY--Xoy s

De to 1+l-p constants k+l-p B'XY A
V V

Residual (from reduced solution) n-(k+]-p) YY-XY 2
V VA A

Due to additional p constants p BXy--yoX-y P

V V
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F =-is distributed as F with degrees of freedom
2

k+I, n-(k+l) and serves as a test of whether
all k+I constants account for a significant

reduction in the error variance.

P

F - ) is distributed as F with degrees of freedom
S p. n-(k+l) and serves as a test of whether the

addition of the p coefficients accounts for a

significant reduction in the error variance
over that accounted for by the first k+I-p

-istants.

The following iliustrative example was adapted from reference

A-l]. The notation has been changed to conform to that used in this
:apter. The numbers and computations are taken directly from the
c :erence. The data are r-epreseded in tabular form below.

TABLE 4-2

X X

8 1

4 8 7

£ 6 0

4 1 2

3 2 7

4 5 1

This corresponds to the situation

b bx 1 + b2 x2  (1. 6-3)

4 8
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definitions are the same as those used in paragraph 4.5 concerning the

coefficients of math models. Assume that it is desired to know if the

last p<k+l of the coefficients are significantly different from zero.

To do this create two new matrices, XV and BV, where X, is the matrix

formed by removing F-im X the p columns that correspond to the suspect

coefficients and B 3 the matrix formed by removing from B the appropri-

ate p coefficients. Solve the reduced set of equations. This solution

is:

Bv = (X X ) 1 (XY) (4.6-1)
V VV V(461

with variance S2 1 (YY - BXY) (4.6-2)v m n-( +l-p)

The following table should then be computed. This is called an

analysis of variance table. The mean square column is the sum of squares

divided by the degrees of freedom. The table is adapted from reference

(4-91 as is the explanation following.

TABLE 4-1 ANALYSIS OF VARIANCE TABLE

Sour, ic Variation Degrees of Freedom Sum of Squares Mean Squares

Total . Y ± Y-Yn
A

Due to kfl constants k+1 B*XY K
A 2

Residual (from large solution) n-(k+i) YIY-B'X'Y s
A

Due to k+l-p constants k+1-p B'X Y A
A

Residual (from reduced solution) n-(k+l-p) y-y-BX-y2
A A

Due to additional p constants p BOX'Y-BXY P
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12 81 .
4 2 8 7 b

Y 4 2 6 0 b1

4 X 3 1 2 L'

3 4 2 7
451L3 j4 5 1

Fo 67 534
X'X= 67 194 85 X'Y 97

53 85 104 L621

1951 -2463 -4587' 54~
B 1(XX) X'Y -2463 2391 - 699 97

-4587 699 5211 62J

r 0.735 320 652-

0 0.232 175 5261
L0.031 664 286
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n-(k+1)Y' - -XY (5.808 473 038)

= 1.936 151 679

s = 1.391 4588

Sbo 0.323 627

S 0.139 054bl

S b2 =0.205 283

To test the significance of b "the last column is dropped from X.

i50 6<:
Then Vx'=

67 194~

(x~- ~ 211 194 -501

54

L
AFO.763 193 245

8 (V-X (x (Y)
v 0.236 422 951

A
p = 1 ~ _ B X. 1 64 .191 527-64.145 461)

P = 0.046066

F= P - 0.046066 -0.024

21.9361B8

-0



The numerator has 1 and the denominator 3 degrees of freedom. At the

952 confidence level,

F0. 9 5 (1,3) - 10.13

Since F<10.13, b2 is not regarded ae being significantly different,

statistically, from zero. Therefore, it my be disregarded.

The preceeding discussion about least squares has been limited to

the case where the variances of the observations were independent and

equal. For a discussion of the cases where the observation errors are

not equal and/or not independent the reader is referred to references

4-21 c 14-91.

Correlation only tells how well variables are related. The correla-

tion coefficient, r, between two sets of data, each having n values, is

computed by the following:

n
z (x1-T)(Y 1-T)

r -- n ( 4 . -4

[tI (Xi-x) E(Y1 -Y)j
1=1 isi

where the XI's and yi's are the values in the two sets of data, R is the
arithmetic mean of the X 's and V is the arithmetic mean of the Y 's.

i i.

The range of r is -1<r~l. If the data ar perfectly correlated

jrj-1. If the data are uncorrelated r-O. Perfectly ccrrelated means

there is an exact linear relationship. If r>q the slope of the fitted
line will be positive. If r<O, the slope of the fitted line will be

negative.

.4Of sore importance in data compression is serial correlation. For

a set of data which is not random there will be dependencies between
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successive terms. Serial correlation is used to measure these dependen-

cies. The coefficient of serial correlation of log k is the correlation

coefficient between pairs of terms k units apart. Suppose a set of data

contains n points X1, X2.. .Xn . The serial correlation coefficient

of log k is given by

n- -k I n-k
I: (Xi-n k  Xi ) Xi)(Xi+k-- =

Fk n-k 2 n-k n-k 1 .
Sx- xi) 2:(Xi+k 1 ]

X: i - -n-T i~x+k

Reference (4-6] shows how to use the correlogram of serial correla-

n coefficients to define envelopes of data. The reference shows that

---*a' correlation preserves periodicity. The reference states that

correlogram 'peaks out' on the positive side of zero whenever the

:put data completes a recognizable period of information." Tests may

applied to see if the various envelopes are statisticaliy different.

they are not, the user has the option of discarding some. For details,

reader is referred to reference [4-61. For other uses of the serial

-- relation see Chapter 2.

- STATISTICAL SAMPLINU

At times it is desirable to retain only a portion of the data

available. The retained portion is called a sample. From the sample,

nferences can be made about the collective properties of all the data.

it is important to choose a sample that is large enough for valid

inferences to be made and yet be small enough to meet coasiderations of

time, computer storage limitations, ease of computation, cost, etc.

Reference (4-91, pp 1-3, states, "Statistical inferences are basically

pr.dictions of what would be found to be the case if the parent popula-

tions could be and were fully analyzed with respect to the relevant

characteristic or characteristics."
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In order to draw correct inferences, the method by whicb a sample

was chosen must be known. There are two general types of sampling:

judgemental and chance. Samples selected by a chance method are called

probability samples. If all the elements of a population have an equal

chance of being selected, the sample is called a random sample. This is

a necessary condition but is not sufficient for a sample to be a random

sample. A sufficient condition for a sample to be random is that each

possible sample must have an equal chance of being selected. Reference

[4-9] notes, "experience teaches that it is not safe to assume that a

sample selected haphazardly, without any conscious plan, can be regarded

as if it had been obtained by simple random sampling. Nor does it seem

possible to consciously draw a sample at random." The statistical

techniques in this chapter are applicable to random samples and may or

may not be applicable to other types of sampling. f
One example of random sampling occurs when there is a block of data

consisting of N points. A random sample may be obtained by assigning a

number to each of the N values; then by using a random number generator, or j
random number table, to list a number, equal to the sample size, of

different random numbers less than N. Select from the list of points

only those whose position on the list corresponds to the random numbers. S
A

Another example is the case when the data may be known to have 4
occurred at different times. Suppose it is desired to estimate the I
turnaround time for jobs sent to a computer. Jobs sent to the computer

are given a number which corresponds to the day, hour, and minute at

which they are received. The same information is recorded when the job

is finished. A random sample may be chosen by cousidering two digit

random numbers in blocks of three. The first group will correspond to

the day of the month, the next to the hour of the day, and the final to

the minute. The job selected would be the job received closest to the

random number and not previously selected.

Reference (4-9] gives two methods of determining the size of the

sample to be drawn to estimate the mean of a population. It also lists,
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one method of determining the size of sample needed to estimate the

standard deviation of a population to within a certain per!-nt of its

true value. One method is outlined below. For more details the reader

is referred to the reference.

Assume it is desired to know the mean, a, of a population and that

one is wlling to take a risk, a, that the estimate is off by d or more.

What size sampY.e is needed? There is available an estimate, s, of the

population ;ta'iddrd deviation oased on v degrees of freedom.

From tables of the Student-t distribution, locate tt 1_Q V for V

degrees of freedom. the sample size is ten computed f:oa the formulat

dS (4.7-I)

i
I

The valie to use should be the smallest integer la-ger than or equal to

n. If the meani, X, of a sample of size, n, is computed, then with 100(1-

c )Z confidence, it can be said the interval from X-d to X+d includes

the popuJation mean, m.

-4.8 ANALYSIS OF VARIANCE

Analysis of Variance is a technique used to separate variation in

data into source components. The sources of variation considered in the

Analysis of Variance are called variables or factors. The analysis of

the variation depends on the particular grouping of the data or test

design. An example of an analysis of variance procedure was shown in

paragraph 4.6 of this chapter. That paragraph discussed the nr:-cedure

to use to determine whether certain coefficients of a regression line

Iwere significant. Because of the large number of different applications,
the reader is referred to the references for the particular technique to

use in his application. References (4-9] and [4-10] give examples and

work sheets to describe the various processes. Many of the books listed

as references also describe work sheets and give examples.
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4.9 SU M*ARY

This chapter provided some statistical techniques which will allow

a user to eliminate amounts of data. Everything described has been

available for some time. The techniques may be termed merely classical

statistics. Paragraph 4.2, which describes parametric estimation,

mentions individual values which may be used to replace large groups of

data. Paragraph 4.6, Correlation and Regression Analysis, gives techniques

which enable the user to replace a large group of data with coefficients

of a function or to eliminate one of rwo groups of data and replace it

with a linear function which relates the remaining group to the one

eliminated. Paragraph 4.7, Statistical Sampling, is presented because a

smaller random sample may be taken from a larger group and allow infer-

ences to be drawn about the collective properties of the larger group.

Equation (4.7-1) shows how to compute the size sample to select if ine

desires to know the mean to within a given amount of uncertainty. Para-

graph 4.8, Analysis of Variance, merely gives a definition and refers

the reader to source documents.
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CHAPTER 5

OPTIMAL ESTIMATION TECHNIQUES

5.1 INTRODUCTION

It is the intent of this chapter to consider data compression in

relation to applied optimal estimation. In particular, this chapter

will look at the implications of the use of such techniques in conjunc-

tion with liscrete Kalman Filters. Starting with a statement of the

discrete filtering problem, the compression problem will be set up and

the objectives of its utilization discussed. For the most part, this

chapter represents a survey of the use of data compression techniques in

the area of applied recursive optimal estimation. It is not intended to

be a theoretical treatise but rather a more practical approach oriented

to problem solving. Both optimal and suboptimal compression techniques

will be introduced along with a discussion of techniques for evaluating

the suboptimal types.

"Optial" data compression means that the data compression and

corresponding estimation are performed in such a way as to minimize some 3
selected measure of error and to utilize all information concerning the

system dynamics, noise statistics and initial conditions. The optimal

algorithms presented here calculate unbiased, minimum variance estimates

and may, under certain conditions such as Gaussian error probability

density functions, be optimal in several other senses such as least-

squares, maximum likelihood, Bayesian et al.

An atcempt has been made to include guideline.; on such matters as

compression design and recommended filtering and sampling rates. General-

ized matrix forms and algorithms will be presented to the extent possible

and a simple but illustrative scalar example will be carried throughout

the section.
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First consider the basic linear discrete model for which a multi-

stage recursive data compression and estimation algorithm is to be

constructed. The system is governed by the following equations:

x(k+l) = *(k+l,k)x(k) + w_(k) (.

Etj(k)1 = 0 (5.1-2)

E[v(j)vT(k)] - Q(k) 6, (5.1-3)

where x, the state vector, is propagated linearly by a transitition

matrix 4, and the state is corrupted by a zero-mean white process noise

w, with covariance Q. The observation equations are:

Z(k) - l(k)x(k) + v(k) (5. 1-4)

Erv(k)) - 0 (5.1-5)

E[v_(j)v (k)' - R(k) 6  (5.1-6)

The observations z are linearly related to the state vector by the

observation matrix H and are corrupted by zero-mean white noise with

covariance R. In addition, the plant and observation errors are uncorre-

tared; i.e.,

E[v(j)' (k)1 - 0 (5. -7)

The various assumptions, such as linearity and independent errors, can

be (and have been) removed by investigators ovcr the years but will be

retained for purposes of simplicity and clarity in this treatment.

Serial correlation of observation error will be considered later.

The optimal recursive estimation algorithm for this problem is well

known as the Kalman Filter and was first published by Kalman [5-1,2

The estimation error at time t(j), given observations through time t(k).

is:
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E01k) - (Jk) - x(j) (5.1-8)

where ^ is the estimate of the true state x. The state error covariance

matrix is then defined as:

?(j jk) - E[t(j ik) (jk)] (5.1I-9)

The Kalman Filter is then the linear, recursive minimum variance estimator

for the above problem. It is, in fact, a set of rules for optimally

combining the observations with a priori estimates of the state-given

statistics of the relevant processes. The resulting algorithm - not

derived here - is usually presented as a two-stage calculation.

Extrapolation Stage

State j(kik-d) - A(kk-l)i(k-ljk-1) (5.1-10)

Covariance P(kjk-l) - $(k,k-l)F(k-lik-1)#T(k,1-i 4;-

Q(k-1) (.-I

Update Stage

Gain G(k) - Ptkk-1)H (k)7H(k)P(kjk-l)HT (k) +

R(k)f (5.1-12)

State i(kjk) j (kjk-l) + G(k)[z(k) - H(k)t

(kjk-l)j (5 1-13)

Covariance P(klk) - [I - G(k)H(k)]P(kjk-1) (5.1-14)

The implications and application of this algorithm are beyond the scope

of this treatment, but the author highly recommends Gelb [5-3] as an

excellent reference on the practical aspects of Kalman Filter design.
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Example

A scalar e~ .eof such a filtering problem is the estimatIon

of a first order Markov Process with exponential correlation, i.e.,

~ exp(-~T)(5-1-15)

The state model is simiply

x(k+l) =vx(k) + w(k) (5.1-16)

with: observations

Z(k) x'k) v(k) (5.1-17)

whiere At -k- '

Y exp (-w~t) (5-1-19)

v N(o,r) (.-1

q (1-y')(5.1-22)

? (5.1-23)

The corresponding Kalman Filter for this problem is then:

p(klY-1) _V 2 p(k-Ijk..l) + q (5-1-25)

-g(V) =p~kik.-l) ~r~~-4- U2k] (5.1-26)
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*(klk) - i(klk-1) + g(k)[z(k) - i(klk-i)] (5.1-27)

P(klk) [ - g(k)]p(kJk-1) - g(k)a2(k) (5.1-28)

Figure 5-1, a computer generated Gaussian white noise sequence, was

utilized to drive equation (5.1-16) and thus simulate a typical Harkov
2Process of this type using values of y . 0-9 and m - 10. The same

Gaussian random number generator was utilized to generate white observa-

tion errors with o v 0.5 resulting in the simulated observations of x -~v

the z's. In Figure 5-2 these observations were introduced to the Kalman

Filter. The resulting estimation errors, c (after update), are plotted

along with the associated error standard derivation O%, calculated by

the Kalman Filter. Notice the saw-tooth pattern of cr caused by the

time extrapolation which increases oE followed by the update which

decreases a because of the .ddition of measurement information.

Reformulate the basic recursive estimation problem into a multi-

stage data compression and estimation pr-blem. Suppose, as shown in

Figure 5-3, that the filter ie cycled once every NAt seconds but that it

is desirable to process data at a rate N times the filter cycling rate.

The integer N is often referred to as the compression ratio. Therefore

at time t(k) there are N measurements, equally -paced At apart, that

have been made since the last filter cycle at time t(k-N) which are to

be processed at time t(k). This problem might be expected when the

observation data are available at a rate higher than that rate which can

computationally cycle the full filter or that rate which is necessary to

recover the desired signal frequency. If the additional data is ignored,

as is the case when using the conventional Yalman Filter since it accepts

only a single observation, much useful information concerning the

signal that would improve the accuracy of our estimation procedure is

discarded.

The objective of optimal data compression techniques is to combine

the N measurements in some manner into a single parameter (or set of
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FIGURE 5-1

EXAMPLEL: TRUE STATE AND OBSERVATIONS
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FIGURE 5-2

EXAMPLE: KALMAN FILTER ERROR
STANDARD DEVIATION AND ERRORS
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parameters) in such a way as to minimize loss of accuracy while maintain-

ing computational efficiency. The procedure which operates directly on

the measurement is referred to as the "data compressor" or "prefilter"

and that which operates more slowly on the compressed observation is

referred to as simply the "filter" or "estimator." A Kalman Filter, =

such as described previously, operating directly on the measurements at

the high-data rate and which contains all the correct model information

and statistics will be "optimal." This filter represents t'-s best

available and thus is chosen as the standard for purposes r 1 performance

comparisons. The primary goal is to design a "suboptimal" data compress-

ion technique that degrades only slightly (or within acceptable limits)

from the optimal. Besides the obvious ad "ntage of computational effi-

ciency, data compression can also be quite useful when dealing with

multiple data rates and unevenly spaced data if an acceptable common

estimation cycle time to which the data might be reflected (and compressed)

can be determined.

Undoubtedly the best overall treatment of data compression and

optimal estimation is that of Joglekar [5-41. This work is comprehensive,

covering optimal batch-weighting as well as various averaging algorithms,

covariance evaluation techniques and practical guidelines for design of

multi-stage compression/estimation schemes. This work was conducted at

the Stanford University Guidance and Control Laboratory and was sponsored

by the Air Force Avionics Laboratory. Womble (5-5, 61 at Georgia Insti-

tute of Technology derived an optimal recursive prefiltering version of

the Kalman Filter by determining a single discrete measurement that is

equivalent to a set of discrete measurements.

Applications of various data compression techniques to estimation

type problems are, of courae, quite numerous and we will list only a

select few here. Bar-Shalom 15-7] der's with the tompression of data in

real-time nonlinear estimation problem such as tb- linearized tracking

filter for a re-entry vehicle. Clark 15-81 applied data compression

techniques in the design of a real-time, dual-bandvidth, adaptive Kalman
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tracking filter for high-speed maneuvering missiles and aircraft in a

weapons control environment. Warren [5-91 derived a filter which provides

optimal compensation for time lag and plant observation noise correlation.

He applied the algorithm to position and velocity estimation for aircraft

navigation. Kizner [5-101 utilized Chebyshev polynomial fits to derive

an optimal data compression which he claims has better accuracy than the

minimum variance estimate without data compression.

5.2 OPTIMAL DATA COMPRESSION TECHNIQUES

In a sense,the title of this paragraph might appear self-contradic-

tory because, in application, data compression is never implemented

optimally. If it is desirable to optimally process all the data,

merely use the Kalman Filter. Optimal data compression is simply a

restructuring of the Kalman Filter into the multi-stage problem of

Figure 5-3. The restructuring is constrained such that the error covar-

iance at the end of each multistage is equal to that of the optimal.

The reason for doing this is to see the optimal data compressor and thus

determine exactly what terms are neglected and test the validity of

these simplifying assumptions.

Optimal data compression is a very important tool for designing

such a system. Both Womble's optimal recursive prefilter and Joglekar's

batch optimal compression algorithm will be presented, since, for any

particular application and computer, one form may be preferable over the

other. Both algorithms are optimal in the minimum variance sense and

are exactly equivalent in covariance at the end of the compression

intervals to the fast cycling conventional Kalman Filter.

The recursive prefiltering algorithm of Womble [5-5, 61 is presented

in Table 5-1. It consists of a set of recursive matrix equations for

the prefilter which must be cycled N times before the state and error

covariance are updated by the estimator at the end of the interval. The

prefilter can be cycled either as the measurements occur or delayed

until the end of the interval and processed as a batch.
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TABLE 5-1 OPTIMAL RECRSIVE DATA COKPRESION ALGORITHM

Comrssion For i =1, N z k-N,k

m(i) = HT(i)R1"(i)H(i)(2

A* (i) ( I i- )At- )$(j ,i=) + Q(i) 040)

C(i) I + A' (i),T(-) (3c)

A(i) A'(i)81 (i) (3d)

0, *(ti-19(1) (4a)

S(i) =(I -A(i)J(i)]'(f) + A(i)m(i) (4b)

Z~) (i) + # W(;)3 ) - J10)6;(01](7

A(O) = !(0) 0

i(o) =I -Initializati~n

'1(o) = (o) oj

Efti'atiOn

P'(k-J) (1+ P(Jc-Nk-)PjN1)I- P(k-Nj k-lV) (

r (k-) [ I - PI (k-N)3 (Ii)]*(k-j k-N) + PI (k-N)S(N) (9a)

l(kI Q) l(Kni'l (sc-N) + 0(n) (9b)

P(kf k) g(N)P' (k-N)I(N) +. A(M) (8b)
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Joglekar's [5-4J algorithm for optimal weighting of batch measure-
ments is shown in Table 5-2. This algorithm is "cleaner" than the
recursive algorithm in that the matrix algebra equations are not partic-
ularly more complicated than the original Kalman Filter. In fact, it is
rather easy to see that the Kalman Filter for the trivial case of N-1 is
recovered. This appearance of simplicity is misleading if the dimensions
of the matrices used in the calculations are examined closely. The R*
matrix, in particular, can get quite large - (MQ x MN) where M is the
dimension of the single observation. Unfortunately, it is necessary to

invert this matrix.

In Tables 5-3 and 5-4, the recursive and batch eptimal data compres-
sion algorithms were applied to the selected example problem presented
previously. The substitution is rather straightforward. The resultant
algorithms were applied with exactly the same set of parameters and
observations used previously. The results, using a data compression
ratio of N-5, are presented in Figures 5-4 and 5-5. Although each of the
algorithms have different processing and covariance histories, it is
important to emphasize that at the end of each compression interval;
that is k=5 and 10, the error variances (or standard deviations) and
actual estimates are identical to the original Kalman Filter presented
in Figure 5-2. The optimal data compression algorithms are, in fact,
merely the optimal Kalman Filter rearranged to account for the time
delays and lumping, etc., occurring with the data compression approach.
The principal difference in the error standard deviation histories of
Figure 5-4 and 5-5 are caused merely by the order in which the extrapola-
tion and update steps are taken. The recursive compresior reverses the
more conventional order and updates before extrapolating.

Examination of either algorithm reveals a very significant problem
that has not been discussed yet but which, in certain circumstances, can
render data compression Implementations either computationally impractical
or seriously degraded in terms of performance. Since it is necessary to
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TABLE 5-2 OPTIMAL BATCH DATA COMPRESSION4 ALGORITHM

1(kf k-9) #(k~,k-W)A(k-Xjk-*)()

=(4kN #(k,k-X)P(k-XjkN)*?(k,k-X) + (4)

ft(kjk) = (kcjk-N) - e(S - H'(kk)] a,

P(kfk) =P(kik-NI - r[F.Pfkjk-X) + (*]5)

Batch Definitions

EE-*T (7)

whtere

;01)

'I'= (i)#(,) H(2)#(2,N) .. H(N)4QwNw)] T  (9)

(io)
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Table 5-2 Optimal Batch Data Compression Algorithm (continued)

where

v - [_(1) y(2) ... Z(fl)]T

H(I) 
o

. N-

0

) )- (12b)

A. K-U, k(4

lt~L

7 2T



TABLE 5-3 EXAMLE:. RECURSIVE CiMPRSQK

Compressor - For i = k-N to k

aQ) = (i)/r (i)Pt (-) (4a)

3~i h r (2) *i lAi/]'i

a'i Mat'A(i -i) t q (59) 4A(iWU(i)

I(i) z I * A(i)/r (3b) (i ;. /(i) (5)

CQi) = B(i) (30)£)aJi1 4 TC(I)/r (6)

Ai) = A(i)fB(i) (3d) 1") T(i-)+tlm(i) -O(i)/rj (7

A(o) =(o 1(c) a (c) i (o)

t~4)=p(k-N)/t + p(k-N) J(N)1 %sil)

1' ~ ~ Vk)(J~~(k-N) ft-p'(-)3nl (k-z1 *p'()nf(uI)(

Extn~olatiol

t(k) =$rl kI).ex 9
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TABLE 5-4 EWM(LE: BAMC CW(RESSOR

i(21

Ti-1)(z

2 i 4  + a h(-)

r k Y (9)

f 714
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Table 5-4 Example: Batch Compressor (continued)

Gain
d = h + Ah* i, , )

Z= D-I (2)

.j:NX, L! p' (k) + tj e..=1N (

j=1

Update

N(k) 21 (k) + K* x- h v0].

i=N

POO-) P W - ' . (k) + t(]

p'(k I p'( (15)
i:i
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FIGURE 5-4

EXAMPLE: RECURSIVE COMPR~ESSOR ERROR
STANDARD DEVIATION Al!D ERROR
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FIGURE- 5-5
EXMPLE: BATCHI COM"PRESSOR ERROR
STANDARD OEYIA-TIOU AND ERROR
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refer all observations to a comon time and this novement in time obeys

the state dynamics equation, additional error is introduced due to the

presence of plant process noise. In fact, the compressed observation

error becomes correlated with the plant noise even though the original

problem contained no such correlation. We see this correlation, for

example, in the expression f~r v*, equation (12) in Table 5-2, and in

the resulting equations in both algorithms. Consideration of this

correlation was taken in the derivation of both optimal compression

schemes. The presence of this effect results in the major addition of

complexity to the data compression algorithms over that of the original

Kalman Filter. The condition for neglecting this effect and the tremen-

dous simpliciation that results is presented in paragraph 5.3.

There is another rather obvious approach to the optimal data compres-

sion problem that is somewhat simpler and should not be overlooked.

This approach is to simply let the data compressor be a Kalman Filter

with i=l the first point and i-N the last. If the output state is

e,-aluated at a time other than inN, simply utilize optimal Kolman smooth-

ing such as discussed by Gelb [5-3]. The output state vector from the

compressor then becomes the input compressed observation for the slow

Kalman Filter. Te corditions are such (no process noise) to insure that

the compressor estimate is totally independent of the slow filter and

thus represents a new uncorrelated observation, the resulting combination

of Kalman FIters will be equivalent to a single fast filter and will

thus be optimal. This approach is favoured under these circumstances

since it lends itself to analyais, implementation and evaluation easier

than the other two approaches. If process noise is present, a conven-

tional Kalman Filter which accounts for observation and plan correlation

can be utilized. An example of such an algorithm can be found in Sage

and Melsa [5-11].

5.3 SUBOPTIMAL DATA COMPRESSION

I s paragraph will show how practical suboptimal data compression
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algorithms can be derived from the optimal algorithms contained in the

previous paragraphs. Essentially the arguments of Womble [5-5] will be

reproduced and the problem progressively simplified by adding particular

constraints to the original problem definition.

5.3.1 NEGLIGIBLE PROCESS NOISE

The greatest simplification that can be made to the data

compression problem occurs when there is no process noise; i.e., Q"O.

If the recursive algorithm of Table 5-1 is considered first, it is found

that, using the initial conditions and letting Q - 0; A 0 and 0 - 0.

As Wr.mble points out, the prefilter transition matrix becomes the usual

value

' (1)-- (, I)(5.3-1)

ar.4 the prefilter equations reduce to

i=S

(5.3-2)

,1

and

i,,N

(N) E- Z T (i, 1)(i) (5.3-3)
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This approach essentially results in the compressed observation being a

rather simple uoighted average which shows considerable computational

advantage over the original Kalman FilP-r. Similarly, the batch algorithm

simplifies since, for Q 0 0, Q* = 0, T* - 0 and R* reduces to a much

simpler matrix involving only the original R matrices. It begins to

become obvious that, in fact, the two algorithms actually end up process-

ing the observations identically as stated previously. Joglekar points

out that, rather than having Q vanish, Q should be negligible relative

to the observation error; i.e.,

[In(i)4(i,i+l)Q(i)e'(i~i+l)HT(i)lI << fiR(L){[ (5.3-4)

where the double brackets denote the matrlx norm.

Example: For the simple 4arkov example, equation (5.3-4) reduces to

S2¢ <(5.3-5)

2
Therefore, it is reasorable to expect to invoke this assumption if a

2 X
<< a 2when the process noise shows little variance relative to the

V
observation noise. (The process begins to look like a constant zero.)

Also for the limiting cases y-l and "fO, the process looks like a

constant bias or simply white noise like the observations. Of course,

this last case makes the entire attempt of estimation ridiculous.

Numerically, this particular example corresponds to (0"09) << 1.

5.3.2 NEGLIGIBLE SYSTEM DYNAMICS

If over the compression intezval, the system dynamics

appear to be 4 i,additional simplification of the algoritbmws

result. This condition means that it looks like the measurements o.,cur

at the same time or that no "reasonably accurate" dynamics can be resolved
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over the interval due to observation error. In the recursive algorithm

we find

ism

J(N) (5.3-6)
i-I

i-N

. - j(i) (5.3-7)

In the batch algorithm, the H* matriv simplifies considerably.

5.3.3 STATIONARY OBSERVATION STATISTICS

Also, if over the compression interval, the observation

statistics do not change; i.e., R(i) - R for all i, the recursive algo-

rithm looks like the following:

i

J(N) HT~i~]I (5.3-8)

(N)in R] R1 ( ) Z~i)
E (5.3-9)
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Joglekar [5-4] was motivated by the appearance of the

weighted average measurement compression to construct "exact averaging"

algoritha which are designed to give the best estimate of the state

given that ionly equally weighted averaged measurements are available.

He obtalne-; an expression for the information loss due to "exact averag-

ing." Hi- -.-ct averaging algorithms included consideration of process

noise aad *'esociated correlations. The development is quite lengthy and

will not be repeated here.

5.4 SE-SITIVj'Ir ANALYSIS

|t A particularly significant advantage for developing optimal data

compression algorithms is that they provide a performance standard forfcomarison and evaluation of suboptimal realizeable approaches. As

shown in paragraph 5.3, it is possible to determine exactly those terms

that were chosen to be neglected and check the validity of the assumption.

Unfortunately, whe- suboptimal, the associated error covariance calcula-

-;ions are incorrect since they are based upon simp!'.fying assumptions.

Frfore, the calculated suboptimal error covariance can no longer be

jused as a true measure of estimation performance. Fortunately, however,

optimal estimation theory comes to the rescue by providing a means to

calculate the actual error covariance of a suboptimal implementation and

-hus compare it with the optimal to determine the level of performance

I ckzradation. Again, Gelb's book [5-3] provides an excellent discussion

of suboptimal filter design and 3ensitivity analysis.

i In order to calculate the actual covariance of a s-iboptimal design,

it is necessary to build a sensitivity algorithm tailored to fit the

original Cempression approach. Therefore each A the three optimal

algorithms in paragraph 5.2 must have their own associated sensitivity

algorithm. in his report, Joglekar [5-4) derives equatio:is for the

act-l covariance w!en using the averaging type compression algorithms

he derived. The author does not, however, provide a sensitivity algorithm

for the general batch compressor. Womble [5-5, 6] also fails to provide



a sensitivity algoritlm for the prefilter. Sensitivity is therefore

clearly an area of data compression requiring additional work if designers

are to have a complete set of tools with which to develop practical data

compression algorithms.

5.5 GUIDELINES FOR OPTIUM DATA COHXESSION DESIGN

5.5.1 ESTDIITION RATE AND SHANNO'S THEOEM

The first question to be considered involves how frequently

to estimate the state of the system to specify accurately the state at

all times. Shannon's Theorem - found in Monroe [5-12) - says that if a

signal is bandlimited and contains no frequency greater than signal

(radians/ second) then it is possible, in principle, to recover completely

the original signal from the sampled signal if sampled at a minimum rate

of

% Wsignal /T per second (5.5-1)

This is to say in theory, no information is lost if the signal is

perfectly sampled at that rate or faster. Since it is desirable to

reconstruct the signal as accurately as possible and with a minimum loss

of information, cycle the signal estimator (or slow filter) no slower

than Ql . In fact, since there are no perfect samples or perfect estima-s

tors, estimate even faster than S - perhaps by a factor of two to ten.

Another problem is that real-world signals are not often truly bandlimited

but often only an accurate estimate of the lower frequency components is

of interest. Shannon can still be used as a guideline to select the

estimation rate but consideration must also be given to the affects of

the higher frequency.

5.5.2 SAMPLING RATE AND THE NYQUIST FREQUENCY

The Nyquist Frequency or folding frequency is defined by

Bendat and Piersol [5-131 as
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r sm tn1 (rads/second) (5.5-2)

The similarity to equation (5.5-1) is undoubtedly not coincidental. If

there is any frequency component in the signal - be it due to observation

error or plant noise - there will be confusion between the higher freq-

uency components and the lower frequency components that are presumably

or interest. This problem is well known as rliasing or the "folding" of

high frequency components into the low frequency. This is inherent in

all analog-to-digital sampling systems. There are two practical methods

of handling the aliasing problem. The first is to simply raise N by

raising the sampling frequency until there is no frequency component

ve ."This technique is not always practical however. The second

-nd more efficient method is to simply analog filter the data pr-or to

SaWling or digitally prefilter the data by simply averaging it in

catches as in data compression. The analog and digital prefilters are

in ract complimentary; the analog being preferi 3d to remove very high

*requency noise (rilative to the signal) and the digital to remove noise

which is not so high compared to the signal. Joglekar [5-41 discusses

t..s in greater detail in his paper.

5.5.3 SERIALLY CORRELATED OBSERVATION ERROR

If the observation error has a bandlimited serial correla-

tion, either naturally or due to the prefiltering, the effects on the

information content of the observations as a function of the data rate

and correlation should be considered. As an example, follow the arguments

of Clark [5-81 and consider exponentially correlated observation error

where the ,-orrelation coefficient of the original data if given as

o(T) E(v(t)v(t+T)lh/gv(t)] (5.5-3)

e¢ -ITI/-v

where -V is the correlation time constant. The discrete noise propaga-
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tion equation for this stationary case is then

v(k) - p(,t)v(k-l) + car(At) ((k-) (5.5-4)

which is a simple linear system driven by white noise of variance a

related to the ouput variance a by the relation• V

a C(t) - f ) *5.5-5)

Now assume that N measurements are again to be compressed utilizing an

averaging technique to yield a single compressed observation. The

variance and correlation time of the compressed measurement as a function

of the original statistics and the compression ratio should now be

determined. The compressed observation error vc is given simply as the

average

LaN

v (k) v(k-+i)
C (5.5-6)

By substituting this into the appropriate definitions and taking expected

values, it is easy to show.

where

1 sl. , jD l.(5.5-8)

iwi c-f

which can be simplified to



itut

N +2 (N- ) (55-9)S1 S2P

The effective correlation time of the compressed observation t isc

related to the original T by

-e a

'V in (Io) (5.5-10)

where

;)c  $2/$

i -(5.5-12)

1 ..1ii~

In Figures 5-6 and 5-7 the ratios are plotted as a function of the

compression ratio for various levels of relative correlation. Large

values of At/Tv imply less correlation than small values. in Figure 5-6

we find (as we might expect) that for essentially uncorrelated error

(AtIr = 10) the error reduction behaves ideally as 1it t l. As the correla-

tion increases, the less independent information is received and improve-

aent diminishes.
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In fact, for high correlation (Ot/Tv 0"1), little improvement Is observed
even after 20 samples. Figure 5-7, shows that for conditions of highcorrelation, the data compression process does not significantly increase
the basic correlation time. However, a dramatic increase of correlation
time is realized by compressing observations that originally contained
little correlation. Joglekar (5-4] recommends a sampling rate such that

0-25 g At/r 1.0
v

in order to efficiently recover most of the information.
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CHAPTER 6

MAXIMIZATION OF INFORKATION CONTENT

6.1 INTRODUCTION

Sometimes it is necessary to restore, in total, exceedingly large

amounts of data that have been collected. This is especially trl s of

projects where data is collected by one responsible agency, stored and

retrieved by another agency, and used by several different agencies for

different purposes.

For example, live aircraft test data collected under varing environ-

ments may be desired by agencies interested in missile simulations,

others interested in aircraft performance, still others interested in

instrumentation accuracies, etc. Often the storage of such data ir

referred to as a "Data Base" or a "Data Bank." The designer of such a

system encounters problems that do not normally arise when smaller

,-mounts of data are involved.

It is not unusual for such data bases to contain several million to

a billion or more words of data. The cost involved in the storage and

retrieval of such data can be prohibitive if careful planning is not

made in the design phases.

The purpose of this chapter Is .c zz:igst p---tical vwys; by which

the sheer volume of the data can be reduced Lf trade&ffs in accuracy ai

retrieval costs can be accepted. Hopefully, this will give the desgerer

a starting point when faced with a large volume of data to be stored and

retrieved. Additionally, suggested ways for presenting the large amounts

of data to the user will be discussed with a few general purpose graphic

routines presented in paragraph 6.4.
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6.2 VOLUM4E REDUCTION

For the purpose of discusion, consider the following example.

A particular project expects to fly 500 air - air combat training

missions. It is desired to retain from each aircraft, in time-history

form, the following parameters for future investigation.

Description No. Parameters

Time 1

Position 3

Velocity 3

Acceleration 3

Attitude 3

Angle of Attitude/

Angle of Side Slip 2

Aiming Parameters 3

Aspect Parameters 3

Target ID 1

Power Setting I

Fire Signal I

Relative Winds 3
i

Total 27 j

If t-r aLrcraft iarticipate for an average of 30 minutes par

mission and the collection scheme ia 10 samples/sec, the total number of

date wor 'A colleLted wou.d be 27 X 4 X 10 X 60 X 30 N 500 % 972 X 106

words. Whcn prseac storage devices, the cost of storage and retrieval

would b rrohihitive unless the volume could be rediced.

A fir&t step in ap~roachin& the problem should be to investigate

other metncs U 'Ls i ii- ;'evious chapters of this document for reducing

the number of uovds that t&ist be sored. For example, it may not be
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necessary to retain 10 samples/sec for every parameter. Using the sampling

techniques discussed in Chapter 2, alternate samp)ing rates can be

derived which may reduce the total number of words by a factor of to

or more.

Parameters such as fire signals, power settings and target identifi-

cation change relatively few times during a given mission. These can be

retained on a separate file, recording only the change and time of

charge.

6.2.! RECOMPUTING

Investigation should be made into the need for retaining

every parameter. Could some parameters be computed from others at

retrieval time with acceptable computer costs?

In the example giveh, velocity and acceleration can be

computed from position. Aiming and aspect angles can be derived from

position and attitude. Inertial angle of attack/angle of side slip

can be computed from relative wi'd4, velocity, and attitude data.

Relative winds can be derived from wind tables stored in a different

file. Assuming that target iD, power set. ing, fire signals, and wind

tables are stored on separate files (th% magnitude of these files woUd

$ be relatively small in comparison) and the paameters mentioned above

can be recomputed, the number of words/sample becomes 6 instead of 27.

The reduction factor 4.8:1.

6.2.2 SCALING ND PACKING

Scaling a parameter simply means determining the absolute

resolution that must be maiiiained when the data is retrieved. It is

important because the resolution determines the minimum number of bits

necessa-y to retain the parameter.
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Assume, in the example given, that a stored position

resolution of I foot with angular resolution of .1 degree is sufficient

to retain the necessary accuracy when the data is reproduced. If the

missions are to be flown in an airspace with a diameter of 50 miles,

then the dynamic range of a position word is ±264000 ft. The number of

bits necessary to represent a positional parameter to I foot resolution

is 20 bits. The compression ratio for a CDC 6600 computer word is 3:1.

For the 32-bit word machines the ratio is only 1.6:1.

Additional compression may be realized by making use of

the fact that the dynamic range of the first difference in position is

usually within ±2000x!t where 6t is the sampling interval in seconds.

". = .2, the first difference lies between ±40C which can L-e retained

n0 bits. If only the magnitude of the first differences were retained,

9 iite would suffice.

In order to retain I foot resolution, it is necessary to

periodically record the full position word with intermediate updating af

position from the first difference. If the first differences are retained

to .1 ft reantution with rounding, the maximum error contributed by a

tngle sample is .05 ft. Assuming that uniform distribution of error is

aetwe2n 0 - .05, the average error contributed would be .025 ft/sample.

:: the retained sample rate is 5/sec and the full position is recorded

vvery 4 seconds, average cumulative error would be approximately .5 ft-

(the 20th periodic samples would be the updated position). The addition4l

compression realized by this scheme would be (20X20:20+20X1O) - 400:22012:1.

6.2.2.1 EXPONEW.IAL PACKING

Sometimes, as in the case of radiometric data,

the dynamic range of a variable is extremely large. Additionally the

rate of change can be of such magnituce as to preclude using the

first-difference tecimique described previously. Usually in such cases,

absolute accuracy is not required. Instead a given tiumber of significant

digits of accuracy would be sufficient. Using tis criteria, an expontn-
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tial packing scheme could be devised such that the exponent of a variable

could be retained in a few bits with the normalized (leading zeroes

suppressed) variables presented to the desired number of significant

digits.

This scheme can be very useful if the word size

on the computer is relatively large and the computer contains floating

point arithmetic. Consider the CDC 6600 computer word for example. The

characteristic and sign are in 13 bits whereas 47 oits are used to

represent the mantissa.

Makivg use of the CDC normalized floating

arithmetic with shift and mask instructions, two words with six signifi-

cant digits of accuracy may be pa~cked ipto 4 single word. The compres-

sion ratio is 2:1.

Word 1 W.'Ird 2

Char Mantissa ar

30 bits 1 0 bits

Packed Vord

An advantage of this scheme is that the da.a is alread', In acceptable

floa Ing point representation and does not need . - rarate table to

retain scale factors.

te2.2.2 FIXED-LFNGTH hINI1HM SIT

A simple example if a fixed-length minimum bit

scheme w&,,Id be the use of a single bit to represent fire signal; zero

no fire, one - fire. For a CDC 6600 computer word the savings is 60:1.

Generally, however, -he data cannoc be represented

by a sing.e bit but in aiany cases thefe- is a minimus number of bits
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which can be used to represent the full dynamic range of data. (If the

dynamic range is relatively large, an alternate s:heme such as exponential

packing, variable length minimum or a table of external scale factcrs

would be desirable.)

Consider attitude, for example, with a full dy-

namic range 0-360 degrees. If .1 degree resolution with .05 degree accu-

racy is sufficient the dynamic range would be 0-3600 with a scale factor of

10 which could be retained in 12 bits. The storage savings wou.d be 5:1

:or a CDC 6600 computer word. The technique to pack words is simply to

multiply the original word by 10, round, integerize and pack using shift

d mask instruction. To unpack, simply mask, shift, and divide by 10.

The technique does nct make full use of the

: oragi capability of 12 bits. If the scaling factor were change to

$3951360, an accuracy of .0A3 instead of .05 could be realized.

An alternate version of a fixed-length, minimum-

-iSheme would be to r tain a table of scal, factors with sufficient

Sadd:!IonaI bits allocatecd to each word for pointing to the correct entry
,n the. table. This schem allows for a broad dynamic range of a given

,n .ab e.

6.2 -2.3 VAR AB.E-.ENG-H -1M I N I TT

An aLternate form oi the minImu.a bit scheme is

to use a variable number of bits to represent a parameter with a broad

dynamic range. A truly variable scheme would require an external table

-ith entries pointing to the number of bits used to represent a parameter

at a given rime. There is the additional need for a pointer to point to

the correct entry that must be retained with each sample.

-iodified version cf the variable bit scheme

would be to divide the dynamic range into bands uith a given number of

bita allocated Jor each band. A pointer is retained wfth eacn word that

would point to the correct band with an inherent number of bits.



Consider a variable with a dynamic range of 0-

50000 with unity accuracy and resolution requirements. The data fell

between 0-200 ninety percent of the time and was greater than 200 only

ten percent of the time. If two bands were allocated containing 8 bits

and 16 bits respectively with a single bit to point to the correct band,

the savings over a fixed length minimum bit scheme would be

16:(.9X(8)+.Ix16+l) - 16:9.8

For a CDC 6600 computer word, the compression ratio is

60:9.8 6:1

Additional computer cost is involved to obtain the correct number of

bits foL shifting.

6.3 PRESENTATION

One of the most important and sometimes least emphasized areas of

data reduction is data presentation. Often a simple change of an

output format can mean saving many manhours in data analysis. Appropriate

selection of numerical and graphical presentations can sometimes mean

the difference between an accurate analysis or one that is biased by the

analyst simply because he was not able to observe unexpected relationships

or detect system errors.

6.3.1 NUMERICAL PRESENTATION

Numerical presentation implies presenting the data in a

numerical format whether it be a simple printout of data or more sophis-

ticated schemes of using numerics (or symbols) to represent various

conditions or levels. Examples of such are digital pictures or number

graphs.
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6.3.1.1 THE TIME-HISTORY LIST

When presenting data in a time sequential

format, a column presentation is usually preferred. Every effort should

be made to output only a single parameter for a given field. This

allows the user to scan a column and observe trends without having to

search for the parameters in a maze of printouts.

Often the number of available print columns for

a given listing is not sufficient for presenting all the desired parameters.

In these instances, additional listings should be generated, usually

with time on each listing for easy correlation. The simplest method

involves generating the additional listings on separate files with

disposition to a printing device.

If additional files are not available due to

program limitations, the data can be written to a single file with

appropriate code numbers to indicate separate listing. Before printing,

the file can be sorted and printed by code number.

6.3.1.2 REDUCING PRINTOUT

As a general rule, a printout of every sample

is neither desired nor needed. Selected samples that show significant

levels, changes or samples at significant events are favored.

When the requirement is for data only during

and after significant changes, the programing is easy to implement.

When data prior to significant events is desired, the implementation is

not as easy. If sufficient core storage is available, a rotary buffer

could be maintained with sufficient past history retained to print the

required data prior to events. The modular function available on most

compilers is an excellent tool for retaining the current address in the

rotary buffer. (Similar rotary schemes are often used when doing mid-

point smoothing and editing of data.)
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6.3.1.3 FIELD REDUCTION

Often the nu.:ber of columns needed to represent

a given parameter can be reduced by scaling techniques discussed previously.

Other methods include printing tha data in integer format with implied

decimal. If a parameter, such as rime, has columns that change infre-

quently (e.g., hours, minutes), these can be written at the top of each

listing with less print columns assigned to the parameter itself. 1n

any case, the coltams assigned to a given parameter should remain constant

to avoid confusion. It is not unu.ual for thirty or more parameters to

be listed on a single page in column format with proper scaling and

techniques.

6.3.1.:. XATRIX PRESE!TATION

When data is of a matrix nature such as pictures,

cell s-ructures, etc.. effort should be made to present the data in a

matrix format. IT all required colms (or ros) of the data cannot be

,Jisplayed on a single line, additional listings should be generated such

that the listings could be virwed together to observe the data in matrix

format. If irrelevant data is contained in the matrix, these values

should be set to -Aiaok for printoot purposes.

6.3. GRAPHICA. PRESENTATiCIS

Graphical presentations have advantages over numerical

presentations in that mucii mure data can be presented in an easily

assitilated =anner. A disadvantage is that more computer time is needed

and additional and sometimes complex mathecatics must be programmed to

construct visual pi1cturUes.

There are nume.ous texts, papers, and articles devoted to

all phases of computer graphics; from simple graphs to complex 3-D color

movies and holograms. Thi discussion will mention the advantages of a

few basic types of graphic presentations with simplified algorithms for
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producing more complex plots such as 3-D and surface plots with hidden

line removal.

6.3.2.1 RECTANGULAR PLOT

The rectangular plot is probably the simplest

and most used of all types of plots. It simply involves plotting a

dependent variable or variable on a vertical scale as a function of an

independent variable on a horizontal scale. Uses include quick-look

editing, observing trends and functional relationships.

6.3.2.2 POLAR PLOT

The polar plot is useful for pictorially repre-

senting the function g = f(O). To plot, the function should be mapped

into rectangular plot coordinates (U,V) by the following:

U = g sin (0)

V = g cos (0) (6.3-1)

Useful examples of polar plots include vulnerability envelopes, antenna

patterns, and radiation patterns.

6.3.2.3 HISTOGRJM

Histogram plots are used in determining the

distribution of a given set of data. They are often used in conjunction

with and in lieu of statistical measurements. A goodness of fit can

often be inferred by a simple histogram.

6.3.2.4 TIME-HISTORY PLOT

The time-history plot is used for observing

data trends or drifts, noise, biases, anamolies, timing problems and

Interrelationships between variables. The most uncomplicated time
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history is a simple rectangular plot with time the independent variable

and the test item the dependent variable.

As a general rule, however, the time of interst

is of such magnitude as to preclude putting it on a single frame (plot).

To achieve the continuous format, several frames must be abutted, some-

times requiring complex programming.
7

6.3.2.5 THE 3-D PLOT

The 3-D type plot is a plot whereby relationships

in width, aepth, and height may be observed in a single picture. An

extension to this concept may be a family of functions displayed in some

increment of a changing dependent variable.

There are many methods of constructing a 3-D

picture using various gray-scale techniques, color schemes, and geometrics.

This discussion will present three geometric methods for determining a

given point represented by three coordinates (X,Y,Z) on a plotting plane

in a 3-dimensional framework. A line can be drawn by determining the

location of its two end points.

6.3.2.5.1 OBLIQUE METHOD

The oblique picture is one in which two of

the axes are always at right angles to each other, being in a plane

parallel to the image plane with the third or "depth" axis being at any

angle (except 90 degrees) to the vertical (60 degrees or 45 degrees

being generally used). The location of the point (X,Y,Z) can be found

by going along one axis at a distance equal to the corresponding

coordinate and then parallel to each of the other axes at distances

equal to the corresponding coordinates. This can also be done mathemat-

ically by finding the horizontal and vertical distances from the point

of the origin in the image plane to the point in question in the image

plane.
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As an example, consider the coordinate
system drawn as indicated in Figure 6-1.

v Z

, (x,Y,z)

a

X''Vsin c,i ¢oi

/ 0 -

I C, 
I /

Picture Plane Axis
I._....-.....-...-.-.-...-..-.....-...-.-..................

Figure 6-1

if Ci is taken as the positive angle between the positive X axis and the

positive Z axis and (u,v) are the horizontal and vertical coordinates of

the point (X,Y,Z) in the image plane relative to the picture origin,

u = XSin(a)-Y
(6. 3-2)

v XCos(CX)+Z

Although the oblique method is a relatively simple means of dipicting

3-D, a certain amount of distortion may exist if angle I% is not - 'ly

chosen.
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6.3.2.5.2 ROTATION MATRIX

The following matrix is useful for rotating

the point (XY,Z) through angles 4, 6, * (attitude angles of a viewer)

for projection to a plane normal to a line of sight. The angles are

defined in reference to the coordinate system depicted in Figure 6-2.

Positive rotation is clockwise looking out the axis of rotation.

C5C C -SO

C'SS$S C$ STSOS0+CTC$ COSO (6.3-3)

CySoCo+STS0 S'SOCO-COS CoSo

C indicates Cosine function

S indicates Sine function

++X

Figure 6-2
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6.3.2.5.3 AXONOIETRIC METHO)

The axonometric method is theoretically an

orthographic projection (parallel projection to the view plane) of an

object to the image plane; the object being rotated such that three

faces show. If I, $, 0 are the attitude angles of the viewer, the

coordinates (u,v) in the picture plane of a given point (X,Y,Z) can be

found as follows:

= rjY (6.3-4)

Where A is a 2x3 matrix defined as follows:

r -=lt i = 1,2 J = 1,2,3 (6.3-5)
i ,J i+l,J

in the axonometric method, the picture plane does not need to be fixed

but can be located anywhere along the line of sight (LOS). (See Figure 6-3.)

.- iew-int /Picture Plane

Line in
Picture

LOS Plane S

.%/Line to be Drawn

Figure 6-3
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6.3.2.5.4 PERSPECTIVE METHOD

The perspective withod is mucii 1i~e the

axonometric method in that a viewpoint is specified and the~ obje.:t is

rotated through the aspect angles of the viewer. Instead of orthographic

projection, the rotated point is projected to a fixed image plane along

a line from the poin. in question to the viewpoint (see Figure 6-4).

Line in p cture plane

LOS Line in question

11-0-U11 11FRugug a .if it Ii f W51.IUg IIUUW465wrpIWm 11g

Figure 6-4~

If ~p ,0 are attitude angles of che

viewer as defined previously, then the coordinate (u,v) in the picture

plane can be found as follows:
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I

u-- (Y )(R /x ) v-= (z )(R IX ) (6.-7)
R V R 

R RV R

RV is the normal distance from the picture frame to the viewpoint.

In equation (6.3-6) above, the coordinates

(X YR9 ZR) represent a point defined in a system where the origin is

at the vieupoint with the positive X axis along the LOS, the positive Y

axis t.o the Lett and the positive Z axis up. The equations for (u,v) in

equation (6.3-7) resilt from a similar triangle relationship developed

it. basic projective geometry. To illustrate, let A be the plane normal

to the LOS and DassL..g through the point (X, Y, Z) and let B be the

image plane (see Figure 6-5).

-
I

, PlaneeA

R V
0 iepo Fire -5
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From Figure 6-5 u

or 
u

tuu
U -= 1tn

V "

and *1 Y ( /x )
v v R

v -"V taneg

COSB

z .4 tana

Coso

H tana

CosB

v -R

vR y v

ae hRv/XR can be imagined as a variable scaling factfr which~scales the object image as a function of distance from the viewer. The

iai-pective method, though wore complex, provides a picture In which itis easier to visualize relative distances.

1
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6.3.3 CO(MPtr GENERATED MOVIES

An area of computer graphics worthy of mentioning is the

use of the computer for generation of a series of pictures on film

suitable for showing with a movie projector. The effect is an animated

sequence approximating the dynamic actions of the objects in the r.ctures.

The steps for constructing a simplified movie of an

object described by line emueture is as follows:

1. Advance frame

2. Scale frame

3. kotate all objects through view angles

4. Construct object on frame as per one of the previously

described methods.

5. Advance frame

The steps are deceptively simp.Le. The most difficult is usually the

scaiing of the frame and objects such that a realistic picture is achieved.

For further information, the reader is referred to the

papfer "Constructing 2-D Pictures of 3-D Objects With A Digital Cor.puter"

(ref 6..), and Program P1932, "Generalized Movie Making Program" developed

bv the Directorate of Computer Sciences, ADTC, Eglin AFB, FL.

6.3.-4 HIDDEN LINE ELIMINATOR

Numerous techniques have been developed for the removal

of hidden lines (lines that are not seen when viewing an object or

surface) in a picture by a computer. As a general rule, each technique

has peculiar applications. The reader is referred to the bibliography

for references on the various techniques.
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One technique that is fairly easy to implement and has

application when attempting to plot a surface, a matrix, or family of

functions makes use of the following well known principle: If a surface

can be described Sy a family of curves and the curves are ordered from

the foreground to the background, a curve becomes Invisible at points of

intersection with curves that are further in the foreground. These

-oints of Intersection may be easily found if a "visibility" curve is

established in the 2-dimensional plotting system consisting of the

maximum (positive up) vertical plotting unic eucouattred for each hori-

zontal plotting unit. The new curve to be plotted becomes invisible at

all points where the vertical units of the new curve are below the

corresponding vertical units on the visibility curve. A new visibility

curve is established each time a new curve Is plotted.

NOTE

The above assumes the surface does not become

visible from the underside. If the surface

is visible from the underside, a "rinimum"

visibility line may also be established

consisting of the minimum 4ertical plotting

unit encountered for each horizontal plotting

unit. The curve in question is invisible at

all points 1-here the corresponding vertical

units are below the maximum and above the

minimum visibility curves.

Ill4
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The subroutine PLT3D1 included in paragraph 6.4 makes useof the above principle !or making an oblique plot of a family of curves.
PLTIX may be used in conjunction with PLT3DI for plotting a matrix.

6.4 USEFL' GRAPHIC SUBROUTINES

The following FORTRAN subroutines may be used to construct time-history plots and oblique 3-D surface plots. Use is made of an SC4020
Plotting Package which contains routines for constructing lines, scaling,and labeling. If the user does not have access to the SC4020 Plotting
Package, apprcpriate routines will need to be substituted. The
algorithm, however, will remain the aame. Coments within each routine
define the routine function and interaction with other routines.
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SJOROUTINE PLOTIT(TIMEvNPGRqISMBvDXOY tOZI
DIMENSION DX(NPGR)1OY(NPGR),OZ(NPGRI tISHBNPGR)

DIMENSION CENT(3)
DIMENSION SCAL(3)
DIMENSION IBLINE (IO),ITLINE(I01

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCC
C
C THIS IS A GENERAL PURPOSE ROUTINE FOR PLOTTING 1-3 GRAPHS ON
C A CONTINUCUS ABUTTED FRAME OUTPUT.
C IT USES AN SC-402Z PLOTTING PACKAGE TO CONSTRUCT LIKES AND LABEL
C
Cf** CONTR*L VARIABLES

TI4E =HORIZONTAL VARIABLE
C NPGI= NO* OF POINTS TO BE PLOTTED ON A SINGLE GRAPH.
C ISWM= ARRAY CONTAINING INTEGERS TO SELECT PLOTTING SYMBOLS
C DX=VERTICAL VARIAOLE ARRAY FOR TOP GRAPH
n DY= VERTICAL VARIABLE ARkAY FOR MIDDLE GRAPH. (IF REQUESTED.
C DZ=VERTICAL VARIABLE ARRAY FOR BOTTOM GRAPH.( IF REQUESTEO)
C NOTE- IF VARIABLE =-999999. THEN IT IS CCNSIDERS9J
C AND IS NOT PLOTTED OR ANNOTATED.
C
C NGRAPH= NO OF GRAPHS TO BE CONSTRUCTEO. (MAX 3)

DELT=TlE RATE. (THIS IS USEr' FOR DETERMINING SCALE)
ICALL =1 IF BEGINNING OF NEW PLOT, (NEW FRAME IS STARTED AND

C LABELING IS PERFORMED.)
C - 0 IF NOT BEGINNING OF NEW PLOT
C NPI= NO OF POINTS PER INCH TO BE PLOTTED. THI , IS USED WITH
C DELT TO DETERMINE SCALE.)
C RAt4GE ARRAY CONTAINING UPPE; AND LOWER LIMITS OF DX,3YOZ.
U Gt Ni AKRAT UUNIAIr4IhN 1fLEiaN VALUt Ur Kah;ES
C VERT= BCO ARRAY CONTAINING VERTICAL LABELS.
C HOR = BCO ARRAY CONTAININT 3 HORIZONTAL LABELS. (1 AT TOP, 2 AT

BOTTOM)
TLA.= RATE AT WHICH TIME LABELING AND ANNOTATION OF CXO CY, CZ,

, IS TO BE DONE.
THHZK= RATE AT WHICH TIME HACK MARKS ARE TO BE INSERTED*

":' LOCAL VARIABLES

NEWFRM=,TRUE, INDICATES TIPD. FOR NEW FRAME,
il LABEL=,TRUE. ItDICATES TIME FOR AKNOTATICN CF TIME, CX, CY, CZ.

TLEFT= LEFT STARTING 'ASTOR POSITION. (90 FOR FIRST FRAMWE, ZERO
OTHERWISE)

G XRAST= GRAPH HEIGHT IN RASTOR UNITS.
C FMTIM = TOTAL TIME FOCI A SINGLE FRAME*
C TIMSCL = TIM.E SCALE FACTOR,
C SCAL = ARRAY CONTAINING SCALE FACTORS FOR OX, DY, DZ.
C TI.L - TIME CORRESPONDING TO LEFT OF FRAME<
C TIMR= TIME CORRESPONDING TO RIGHT OF FRAPE.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C CCCCCCCCCCCCCCCCCCCCCCCCCc

COMMON/LABEL/VERT(3) ,HORK6,31
CO-MON/PLOT/NGRAPH* DEL T 9 ICALL, NPI, RANGE (2 3) 9 TLABTMHCK

EXTERNAL TABL1V
LOGICAL NEWFRMttL.BEL



MFICALL *EO.0)GO TO 5
XRAST=(850- (NGR'APt'1) '50.)/NGRAP4
ILY=915*-(XRAST/2.) .70.
hLEFT = 100

c FMr XH (NPI*6,85)'OELT
TI'9SCL= 1023*/r-mTTN
CALL 31GV

CALL FRA'IEV(3)
CALL CI4SIZV(2,2)

CALL qrTSTV(13,19,TABL IVI
CALL RITE2VI0,100O*0,1o99,0,I569!,NOR(I.), TERI)
CALL RITE2V (1,47*102 3990 9195691 v-OR (1 92) 9IERZ)
CALL RITE2V(10,20,1023,90,1,56, 1,IORi,3).IEq3I
CALL TN!1S(TIME9IHvtI1,SEC)
ISEC = SEC/30.
ISECX ISEC 30
YTiME = IH *10000 * IM1 * 100 +' ISEC
IXX = ILEFT
CALL LABLV(XT~tPE IXX,73#6,1 6)
UTT = IM 43600058 + IH 66300 + ISEC 1000

TT? = TIM1E
ZF(ICALL.EQ.I) TIME = TTI
NEWFRM.TRUE*

TT'IR =0.
5 CONTINUE

IFE TIE.GT*TIMRINHE WFQM=. TRUE.
lV(.*.!OT.NEWFRMIGO TC 100
ZF('AlL.EO.0) XLEFT=0~
IF(TCALL*EG*G)CALL FRAMEV(31

TF(ICALL.EC.ANO.TIMEG-l.(TI1R.FMTTtM))ILEFT 200
IYBGNI=935*
DO 20 I:I,NRAPH
IYsGNZ=IY6GhX-X0ASr/2.
lYBGN3=IY!RGNI-XRAST
IF'(ICALL*EQ*G)G0 TO 113

SC&L (1) =XRA!T/ (RANGE (191 )-RANGE (2,I)l
CENTCT) = (RANGEII,tl + RANGE(2 Z)/ze
CALL APRNTV(0,-11.,10,VERT(1),6,ILYI
ILY=lL Y-lXRAST-50*
CALL LA8LV(PANGE(I),18,TYq3GN1,7,1,6)

FVALUr = PANGE(I,I) - !'RANGE(II) RAf4GE(29I#)IZ)
CALL LA13LV(FVALUE*I8,IYtdGN2 7,16
CALL LAflLV(RANGE(?,T)*,I,Y3.N3 .?gig')
CALL LINEV(ILEFTIYB'GNIILEFTTYBGN3I

10 CO4TINUE
CALL LINEV(ILEFT,IYBGNM1023,IY~grN1)
CALL LTtEVUILEFT,IYRGN2,1023,IVBGN2)
CALL LINEV(ILEFTtIyBGN3,104-3.IYBGN3)
YOEL:'X'AST/10

I3L ItlEtJK) :IYjCN?-YDEL'JK
ITLINE(JX) = YE!N2 4 YOEL*JK
CALL LINEV (TLEFT,TBLTNE(JK),1023,!3LlNE(JK)I

15 CALL Ll!NEV (t~LEFTITLINE(JK),1023,ITLINE(JK))
TY3Gh: :IY8GNl-XRAST-50.
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20 CONTINUE
TIMR:TIPE.FMTIM. (1-TLEFT/i023.J
TTML:TIME
P4EWFRM= .FALSE.

C""O COMPUJTE NEXT LABEL TIME
TIMHCK=TIw4E +TlMHCK-AMOOtilI4E,TIHCK)

XX =TINHKK
IL = 11EV!
IF(ICALL.EO.*I) IL=1O0

25 IX =IL . IXY-TIMI) 4 IIMSCL
TF(T(c.EO1a23,Ov.lX.EO*xozz) IX =1021
j~t [X.GT.1024) GO-TO Zs
lvif = 85 + XRAST
CALL UUNEV (IX,85,IXIYHI
IF(NCRAPn.EO.I) GO TO 30
TYTF4 IYH 4 50

=N TYTN + XRAST
CALL -LINElV 1*XoIYf$,IX,IYfl
IF(NGRAPme.EO.;Z) GO TO 30
1Y114 lvi + 50
T'"l IYTli + XAST

,to CO'i4t
y/ Xi * T"HC-K

35 tITo f
945 TT'4t At-c-TT%4F.ILA--or( TT'4F.TLAR)

LZL= F-l-E
145 Crf% NTT V

!FTEITYLAR iLT tYVI;)Cfl !-C
CAL I lHFWclIT'14L 'w- T EC

S' t '! * I+ T* :3 + SEC
tyy = tT L T 3 T )T.bS CL +I LEF T

IF( (Tx.L B1 3) 3UX=9?5

CALL L.AI Vl1Xr-zJ EX,73,6,t,v6b
LAOIEL z Tt!D.E.
T!iiAtT"L UIn&TL.A3a

GO~T TV53-

:t(T~t.L.TMz)G~ TO 153

CALL Df1YA-tI ,8,51)
It Y4I H * YQo' sT

- 1CCTO 151

ITY TH IYl X YRAST + 5 0



CALL POINTV(IX,TYTH,5,II
IYH=TYTH+XRAST

151 CONTIrNUE
TIMHCK=TIMHCK+ TMHCK
GO TO £50

£53 CONTINUE
IX=(TIME-TIML) 'TI?4SCL4ILEFT
IYO=935.-XRAST/29
00 155 11I,NPGR
IF(OX(I).GT.RANGE(1,).OR.OX(I).LT.RANGE(2,i)) GO TO 1531
ly= (OX(IF - CENTf1)j*SCAL(1i+ IY0
CALL POINTV(IX,fYqIS4.8fI),1OUM)
CALL P0INTV(TXIYISI',3(I)IOU4J

153£ IF(NGRAPH.LT.2) GO TC 155
IF:(DY(I).GT.PANGE(l,2).OR.OYfI).LT.RANGE(2,2)) GO TO 1532
IY (OY(T)-CENT(2))'SCAL(2)'(IYO-XRAST-50.)
CALL POINTV(IXIY*ISp9(I)IoUm)
CALL P0INTV(IXvIYtISmQ(I,.IDUM)

1532 IF(NGRAPH*LT*3) GO TC 155
IF(OZ(!).GTRANGE(lv3).OR*0Z (I)*LT*RANGEt293)) GO TO 155
IY = tOZ(I) - CENT(3))*SCAL(3)+IYO-2o*XRAST -100.

CALL POTNTV(Mt iY, TSM8(1),U4)
CALL P~lNTV(IXIYISMECI),10UM)

155 CONTINUE
IY0=935

l;iO.L;4EL;GO TO 2q35
TXX=IX-20
1Ff IXX.LT.8) IXX=8
Ir(IXX+48*GT. 1023) TXX=975
CALL POINTV(IXIY0,-24,2)
D0 160 1=1,NPGR
II I=I12
IF(OX(I),NE.-999999.)CALL LABLV(OX(I'eIXXIY0+IIT,6,1,3)

160 CONTINUE
IF(NGRAPH*LT.2)GO TO 205
IYl=IY0-XR4ST-5O.

CALI POINTV(TXTYI,-24,2)
00 170 I1,NPGR
ITI=T'12

1Ff DYf 1 .NE.-999999*)CALL LA3LVfOY(I),IXX9TY4II,6,193)
170 CONTINUE

lF(NGPAPH.LT.3)GO 10T 205
IY2=IYI-XRAST-50.
CALL POiNTV(IX,1Y2,-P1.,2)
DO 180 1=1,NPGR
ITIT=T 12
IF(D7(I)oNEs-99c3999.)CALL LABLV(OZ(I),IXXo1Y2.IIT,69i*3)

180 CON T INIJE
205 CON TITNU E

RETURN
E ND
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PAGSE SUBROUTINE PLTMTX(ANRAiNCAIVIEW,IOPTICROSS.X1,X2.Y 1,Y2)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-uccccccccccccccccccccccccccc cccccccccccccccccc
C
C
C THIS IS A GENERAL PURPOSE ROUTINE FOR MAKING AN OeLIQUE PLCT OF
C A MATRIX OF VALUES* IT USES PLT3OI TO ACTUALLY PLOT THE DATA,
C
C A = INPUT APRAY TO BE PLOTTED,
C NRA=NUMBER OF ROWS IN A
C NCA= NUMBER CF COLUJMNS IN A

IVIEW INDICATES VIEWING ANGLE
C =1I INDICATES VIEW FROM ROTTO'I TO TOP
C =2, INDICATES VIEW FROM RIGHT TO LEFT
C= 3, INDICATES VIEW FROM TOP To eOTTOM
C = 4, INDICATES VIEW FROP' LEFT TO RIGHT
C IOPT =0, INDICATES USE DEFAULT SCALING FOR VERTICAL SCALE
C OPT =1, INDILCATES VERTICAL SCALE WILL BE SET BY PROGRA!'MEP tWTOP)

C INTERVAL AT WHICH PCItNTS BETWEEN CURVES WILL BE CONP4ECTEC (USUALLY 11
C XI =VARIA9LE ASSIGbEC TO LAST ROW
C X2= VARIABLE ASSIGNED TC FIRST ROW

Yl= VARIARLE ASSTGNEC TO FIRST CCLUMN
- Y2= VARIABLE ASSIGNEC TO LAST COLUMN

c NOTE- IF 00 NCT WISH TO ASSIGN VARIABLES, THEN
SET X1=NRA, X2=4-9 YlI1, Y2NCA9

CCCC CCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCC-CCCCC CCCCCC CCCCCCCCCCCCC CCC CCCCCCC
DIMENSION AtNRA9N0CA)
COMMCN/MAXVAL/UFQR,UPACKVLEFT,VP!GHI ,WBOTWTOP,
*THETA,UAXIS*VAXIS,UVIrLhEIU(2,2)91%f(22)91W(292),JLAS
DI4ENSION V(150),W(i 3)

PRINT 900],N:PA,NCAIVIEW,TOPTICR()SS.Y., X2,YIY2
9000 FORMAT (1Xv515,4Fi3o 4)

PRINT 9001,1 (A (I,J) J=1vNCA)vI=1,NRA)
31001 FORMAT(iX913F'3*4)

ZMIN =9999999.
DX=(X2-X1)/INRA-1)

JLAB80
ZMAX =-999999.
DO 15 1=1,NRA
DO 15 J=i,NCA

7M4X=AMAX.( Z"4X ,A CI, J) )
Z'IN=AMINl(ZMIhqA (I,J) )

15 CO1TINUE
IF(IVIEW.GT.4.OR.IVIEht.LT.1)IVIEW=I

IF(IOPT.EO.l)G0 TO
WTOP2. *ZHAX

THETA: *785'.
3 CONTINUE

UVPLN[-.W8OT
IF(ZMIN.LE.0.AND.ZMAX.GE.0)UVPLNE0
CLI PU= 99999999.
CLI PD: -999999999.
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XNO ISE=0.0
GOT Il.2114),!VIEI

11 UFOR eTx?1 1 2
UBACK= X1
OE L U - X

OEL V=OY
vRrIG HT V 2
GO TO 5

t2 UFnR=Y2
USACK=Yt
DELU=-Oy

DEL V=-DX
VIE FT:X2
VR~IGHT~ Xi
GO TO 5

13 UFOR=Xl
USACK=X2
OELU=oX
OELV=-O)Y
VLEFT=Y2
VR IGHr~yl

GO TO 514 tJFOR=y I
URACK=Y2
DEL u= Dy
DELV= ox
VLEFT=yj
VV~IGHTz:XZ

5 CON4I'jut
UA XIS=VLC'FT

VAX 1S=UBAC 1<
Do 10 1=1,150

tCURV=At3S f UFCR.U9AcK /DELU) +2.,5NPTSZAOS I VRIGHr-VLEFr,,oELV),,S
00 700 !=It NCURVU='JFOP+ 1.S.,* #'ELUIF( I.Eo. 1) U=UFOR
00 590 J=1.NPTS
V(JI=VLEFT.(J.

1#)*O)t~VIF(J.EQ).NPTS)Vfj)zViJ,
IF'I6Eo.l.op:J.E04.NTS) GO To 590

21 GO TO (25,229 9V~

22 GO TO 25

JJ=t4CA- (J-1)
GO TO 25

24 JJIl-i
It ~j



PRINT 1004:NCURV- NPT~,Ij,~Ijj 1,IE1.

580 cflNTIH'JE

IF (Wfj) GV.CLIPU)W(J)z:CLIPU

590 CONTINUE
IPASS=ICROSS

CALL PLT3OI(UqVW,IPASSNPTS)
700 CONTINUE

(91) CONTTNUE

CAI L PLT30M1UBACK, QELW oil ciftr)

CALL PLT3OI(U8ACKOELU,0*0,-8,NLU)
RETUIZ
ENDB
SU8ROUT~TUE PLT3DltUA,VAWA,IPASSoNPT)
COMMON/CLASF/TCLASS, IITLE(7)

C*** THIS ',U83ROUTTNE WILL 14AKIE 09LIQUE PLOT OF V VS W FUNCTION FCR.
C A GIVEN~ U.

C U= VALUE OF iNDE.'ENOENT VARIA3LE U FOR A GIVEN V VS W VUNCTIBMO
c v =M 0-1c' OTEN'NAL ARRAY CCNTAINING INDEPENDENT VARIAELE V,

WA=3NE DIMENS!uNAL ARFAY CONTAINING DEPFN" NT VARIABLE W.
C WA(I)= FfUVA(I))
C NPTS= NO* OV PTS IN VA9 WA ARRAYS.
C

C IF(NPTLTO) THEN 1AI)=F(UA(I)tVAtI)'
C TEZNPTS4.IFISN -SFRS W FOR NEWFRME

TPAS =-6 RAWLINS FR WSCALE AOLBLV CL

VA(z) IS DEL TA V FOR LABELINCG
C ~~NP!S = LAPEL VRNPSLE

C IPASS =-7 LAELIE U O SCALEAD P43E SA-
vA(I) IS DELTA FOR LABELING

C NPTS =LABEL EVERY NPTI LINE
c IPASS =-2 HIDDEN 1 IIES AR17 "qT FLI~i4ATEO,

CNOT CONNECTED T- EVIOU'S LINE
C .JllAB IS ALPHA LA13EL FOR U , -r
C JIAB =0 NTUSEL FOR~ THIS CALL
C IPASS=N INDICATES EVERY NTH PI)INT UjN THIS CURVE TO NTH1 POINT OF
C PREVIOUS CURVE BE COtINECTED.
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CUAXISJAXI-atu~v'PLNC WcIIV

MAVAL 014"0.N IS US'E POR DEPR"INGr SCALESc
U;:*C' ::XTREME VALUE OF U FOR FOREGROUNI.

C £w1AK= EXTPE-mE VhLUc fF U FOP BACKGROUN~?j
C VLEF:T= LEFT .9051 VALUE OF f*

Vkl;HT= RfGHT~ '1C!T VALUE r- V

T;;ETA=AN6LE IF f3LIC!, AXITS WCTH VERTICAL tRAOrfl4SJ. NCTE- TF THIS
1S Z;7O. TMEN -L~ ILL BE TWO DIMENSIONAL WITH lU AND W AXES CO-
~NC T 6 EN

Ut) !S VALUE rV AT WSICH UAX(!S IS TO BE OPWN
tvAPXTsz vA ! OF U AT %H!C?. V AXIS 15 TO BE DRAWN.
'.',0uPjF (E ALUE OF W AT WHICH UAXIS AN ! VAXS INTEkeaECT*

DIMENSION IXSZAVt&01),TYSAV(601)
OI MENTSON U4tNFTltl VA(N 0 'T)cWA(NPT)

COIM mON MINY (102,4) ,MAXY(1OZ41
LOGICAL !_-21T

PRINT 8bQUFORUR,'11ILEFTVRIG8TWBOTKTOPIPASSNPTS
'.'6 FORMAT(IX 6F049215)

PRINT t90.3,F U,(VA(JJ)tWA(JJ),JJ~jNPTS)
FORMAT (IX,PIC9 3/( 11y 9 1OF 10 &3))
IF(IPPASS.GEr.CIGC TO 100

IffIPASS.EOQ.-2)GO TC iOQ
IF!U0 t1SeLEo-6) Go TO 305
IF FTPST PASSt ADVANCE FRAME, SET SCALES, ANO INIlTIAtI7E MAY 4N

41N FUNCTIONS. THE FIRS! CURVE 70 BE PLOTTED WILL 8E TWE FARTHEST
T.N THE FOREGROUND* SUCCEEDING VALUES OF U MUST BE EITHER

4' NDING OF CESCENOING.
CALL FRAMEVIf3) T AEVRALSPOOTOA

C 'FI1ND SCALE VALUES T AEVRALSPOOTOA
ULNTi= ABS (UFO R-_U6ACK)
VLNTH=" AIS (VFP vHT-VL'EFTN
WLNTH=AB8S ( WTC'P-WE3OT)
S-M IN=AMT41 (ULNTHVLNTHWLNTH)

SCA LV=SC TN/VL NTH
SCILW=SCMTN/WLNTtH

IFUrPASSVFE.-3)G0 TO 19
SCALU~1.
SCALV~I..
SCALW= 1.

19 CONTINUE
ULNTH= ULNTH*SCALU
01 FX=ULNTH*SIN(THETA)
IF (VRIGHTL T.VL-FrTI IFX=-DIF),.

IF(THETAGE.OrO TO 20
XRI GHT:VRIGHT'SCAlLV
XLEFt=VLEFT*SCALVtOvIFX



6O TO 30
20 CONTrNUF

)(LEFT=VLEFT*SCALV
XRIGHT=VRIGHT*SCALV+t3IFX

30 CONTINE
YTZDPWTOP-W8OT)'SCALWULNT4'COStT)ETA) .WBOT'SCALW
YBO T=WSO T*SCAt W
YSCALEzYTlOD-YSOT
'15C ALE =ASS IXPIGHT-XLEFT)
CALL XSCALV(XLEFT,XRlGHTv749501
-ALL YSCALV(YBOT*YTOP,5G,74l
00 60 1=191OZ4
-MINY(I)=1000
MAr y I)=0
IF(T.GT.500)GQ TO 60
IXSAV(11=0

61 CONTINUE
C~,* CONSTRUCT TH4E AXES,

l(ELX=li YfXSC-*LE) '900.

ITLY=(OY/y ALEi '900.
I = NX V (VL EF t -AL V) *IOELX

I Yl =NY V (61VPL NE*S-* PL W I I D0ELY
1X2=NN(V(VRIGMT'SCALV! e*tli-ELX
IYI=IYI
CAL!.. LIIIEV(TiI,IYIIx2,1fZ.)

C (W AXIS)
IX =NIX V(UAXIS* SCALV) #ICELX
IX?=IXI
IYt=NYV(WDCT*SCALW) sTOELY
IY2=NYV(WTOP*SCALW) +IOELY
CALL LIIEV(IXi,IYi,1X2,IYZl

IWfZvl)z1Y1
IW(i, = 1X2
lW (2921Y2

C (U AXIS)
C

aXJ NXV(UAXTS*SCALV)
IYl:NYV fUVPLNE*SCALW)
Y2=ULNTHi'COS ( HETA) +UVPLNE*S(4,ALW
X2=OIFX.UAXjTSCALV

IY2=NYV(CYZ)
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CALL I !NEV(IXIojYITX2,!y2)

!U(29£)=IY2

C
100 CONTINUE

IOU T. TRUE.
ICOUNT=I COUNT41
J=NPTS~t
O £80 JJ-1 NPTS
IF ( THET A) Ii. 120. 120

GO TO 125
120 J:J-1
1253 CONTINUE

IF £NPT.LT.0.)U=UA(J1
IF(NPT*GT.0.ANCw,ojJGT.i)GO TO £26

DEL U'A3S(U-UFflR)*'CCALU
DX= OELU*S'I(THETA)
THELX= (jX/XSCALE) '930
QYUYLL*tCUS Tt1I

CONTINUE
IX2=IXV(Vt(J)*SCALV1 .ICELX
IY2=1YV!WAfJ)SCAL4) 4ICELY'
IF(IPASS*LE*O)GO TO 1780

IF(4CDtJ-I,IPASS)*NEq0) GO TO 170

IF (NX.EO0)NXil
INCX:1
IF 'IXSAV(J) .GT.1X2) INCX=-i.

DO=!Y2-IYSAVIJ)
RAT IO:uY lOX
TY TITYSAV( J1
IX:IXSAV(J)
IN=0
DU a5S T=LNX
IXIX .lNCX
IY=*YST4I*RATTO
IF(IY.LE.I4AXY(IX)oAr'O.?Y.s~EMINY(IX))GO T0 130

1N=:0
1GO TO 160

130 1F(INoEO*l.OR*I.EGoI)CO TO 13S
!XCK=IXSAV W)
1FhIYJGTvMAXY'TX) *ANCO.IYSAV() L.9AXY(IXCXKl 1YSAVtJ=:MAXv(3:XCK)

CALL LI"'EV(IXSAV(J, YA iJ) iXY.35 IXSbAJ(J3=Iy
IYSAV(J)=1Y

CONTINUE
MAXYI IX) :MAX0( IYMAXYf!X3)
tiINY(IIx)=M'INO(YNINYI!X))
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165 CONTINUE
IF(MNEQ00CALL LINEV(IXSAVtJ),!YSAVtJ) .!X24Y2I

170 CONTINUE
IF(IPASS.NE. -2)GO TO 178*
IF(JJ.EOs1lGO Tn 175
CALL. LINEV(IXI,IY1,1X2,,1Y2)

175 CONTINUE
I=TX2
fyisly?
IF(JJ.NE*NPTS)GO TO 180
RETURN

178 CAONTINUE
IXSAV(J)=1X2

IYSAV(J) =IY2
180 CONTINUE

IXiIYV(VA(i)'SCALV) .ICELX
!Yi=IYV(WAM1)SCALW) 4ICELY

t IF(IYI.LT.MAXY(!X11.ANC.TIGT.NTNY(IXIbI TOU *FALSE*
00 300 J=2,NPTS
IK2=IXSAVIJ)f 1Y2=TYSAV(J)

IFt NXo.tEO.0)NW=i
INCX~l

lIt 1X2.LT.IX11 INCX=-l
OX=NX
DY= 1Y2-TYI
RAT I0OYIOX

* IYST=TI
00 230 K=19NX
1X=1X+INCX

* TY: IYST+K*RDTIO
INDX=IX
MXY=?1A)Y (!I40Y)
M NY =HITNY ( T'No xI

IF (!YvLTo'VsY.ANO. !Y.GTMNY)GO TO 200
IOUT:.TRUE.
GO TO 220

200 CONTPIUE
l'F(,t.0T.r0UT) GO TO 210

CALL LINFEV('IXLIYIlIXYl
210 C3tJTTNUE

* IOUT=*FALSE.
I i 1= I x

220 CONTINUE
MIAXY ( I NDXI = A X8(I Y , OX Y

fMl"Y(TiloX) ='IN(IYNy
Z30 Cfl04TItJUE

iF '. NOT.IOUT)GC TO 23'.
CALL LINEV(IX1,IylvtX?,TY24.

234 CONTINUE
IND1:IXI
'AXY( 1N01V'IAXO(IYlIAXYtINOlI)
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it~

PflNY (IND1)=MIN0fTY1,P wy TNOI))
IXITX2
IY1=lY2

300 CONTINUE
IF(JLA8.E0.O)GO TO 301

C**'* PRINT HOLERYTT4 JLAB
IXL=IXV(VRIGHT*SCALV) ,!OELX#S
ILvu IDELY + IYV(W8CT*SCALWI
CALL P'RINTV(8,JLA8qlXL*IYLl
CALL LINE2V(IXL-12:TfL-195,O)
CALL LINE2V(IXL-12 IYL-1,5,p0)

301 CONTINUE
PErIUQN

305 C04TINUE
ILAB
IF(IPASS.EO.-$3 GO TC 350
DELU = ABSI'JPACI(-UFCOP) 4 SCALU
OX =OELU v SIN (THETA)
IDE LX =(OX/X(SCALE) * 900.
ny= DELU 4ClIS (THETA)
ltnE!. - fuWlve,'-qC vs
IFtIPASS.EO.-7) GO TC -230
DEL W =VA ()
XD=AMAXi(ASS(WTOP) ,ABS(wBOTli
NOL=N0MAX (XO)
NOIG=MA XC(5 ,NOL)
W: = BOT
lXI = NXV(VLEFT *SCALy). !O1ELX
1X2 =NXV(VRIGHT * SCALV)+ IOELX

310 IVI. = NYV(W * SCALWi. IDELY
1Y2 = YI
CALL LINEV(IYIi,IXZ.2)
IFfMOO(ILA9,NPTSl.NE.0) GO TO 315
CALL LAI3LV(W,lXi-52,TYl NOIG ,iNOL)
CALL LA8LV(HIXI-Q2,tv1,tJIG ,19IDLIt

315 CONTINUE
ILAB= ILAB + 1
W = W* DEIW
IF(W.QT*WTOP) GO TO 301
GO TO 310
XO)=A"AYi(ARS(VLEFT) ,AeS(VRTGHT)I
N0L:N0tIAX (KO)
NOIG=MAXO (5,NOL)

330 C04TINUE
OELV =VAtI.
V =VEFT

VR=VRIGHT4.0i '(VR!GI4T-VLEFTl
340 MX= NXV(V 4 SCALVI+ IOELX

IY2 NYV(WTCP * SCALIRIG TOVLY
IVi. = YV(WROT V SCALW)+ ICEL(
IX? Txi
XX3 =lxi - IDEIX

YS=YLi - TOELY
CALL LItJEV(IX1pIvliXZTYI
IF(MOO(ILABNP TS )*NE*0) GO TO 34S
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CALL LA8LV(V,1X2-28,1Y2+69NOIG ,l1t10L)
CALL LABLVCV..IX2-28,IY2+69NOIG vlWL
CALL LA8LV(V9IX3-28,TY3-6,pNOTG *19NOL)
CALL LA8LV(VvIX3-28,IY3-6,NOIG 9,,NOL)

345 CONTINUE
ILAB ILAS + 1
V= V D ELV
IF(VRIGHT.GT*VLEFT)GO TO 346
IF(V.LT.VR )GO TO 301
GO TO 340

346 IF(V*GT.VR )GO TO 301
GO TO 340

350 CONTINUE
UB=U8ACK(4 01' (UBACK-UFOR)

ULAB = UFOR
351 CONINUE

DELAB = ABS(ULAB-UFOP) 6 SCALU
DX DrLAa SIN (THETA)

Dy &EL~a Cu' torL#Pop

IDELX = DX/XSCALE) * 900.
IDELY =(DY/YSCALE) *900.
lXi = NYV(VLEFT * SCALV) + IOELX
IX2 = NXV(VRIGMT*SCALV) IDELX
TYI = NYV(WBOT * SCALW) + TOELY

355 CONT14UE '~l~Il6A~CALL P"IjIN~Xri~'r
C CALL POINTV( IX2,1TY1*69 ANY)

IF(M09(TLA39NPTS ).NF,3) GO TO 358
C CALL LACBLVfULAf?,Yl-45,IY1,5,1941

CALL LA9LV(ULA8,IXi-45,1Y1S.1, 4 )
1C4 = 4
IF(A!'RS(UL-")*GT*9.) ICH =5
TFfA'lS(ULAR3).GT.99.) ICH =6
CALL LAB4LV(tL9 ,X?4,IYICH,1,OIC4 ?)
CALL LA8LV(ULSI,IX24,Y1CIK1ICH-Z)

358 IAR =TLt.1 + I.
ULn ULA9 + VAMl

lftdR-A%-rK.LT.UFOR)GC 10 3441
IAF(ULA9R *U I GO TO 301
60 TO 351

1441 IF(UIAP-*LT*UQ )GC TO 301
GO TO 351
E NO0

F UN' IT ON NO'4AX(X)
Cfff T41It ~r.TlO,.l RETU~tS THE MAXIMUM OCCIMAL SCALE NEEDED
C FOR Ut-E WITH LAIL'I

AX=AR. Y) l**o.0
01 G=AL0G 1,!AX I
NrnsMAY=IG
!Ff(ICL T.0)?40O4AX=0

IF t NO'A X GT6) NOMAX=6
W' T UP."
E40 ,

SU3RUUTjf'F CLASS(TTI)
C#*** THIS SUBROUTINE WRITES CLASSIFICATtON AT TOP OF PICTtRE AND TITLE
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C IF REQUESTED.
COMMON /CLASIF/ ICLASSTITLE(81

EXTERNAL TABLiV
CALL CHSTZV(414)-
CALL RITSTV(2 23,TMA.V)
IV( ICLASS-10,20,38
CALL QlTE2V(4i 2,1OO,lO2399,212:1912HCCWIOENTIAL 

NWEI

CALL RITE2V(4i29 2 0 ,10 2 3 ,9 092,12, lo12MCCWFIEN4TIAL :WE)

GO TO 80
30 CALL RITE2 V(4 4 0,i000 i23,90,2,6,I,96HSECRET 

,WEI
CALL RTTE2Vt44O, 2 0-,1 0 2 3,909296, ltbHSECRET *NE)

80 CONTINUE
CALL C4SI7V(2,2)
CALL QITSTV(139189TABLIV)
TF(ITI.EQ*3) GO TO 90
CALL RITE2V(iOO,989.1023,90,Z,

7 0 ,ITITLENER)
CONTINUE

END

12-6



THERMOVIS!ON SAMPLE (PLOY ROTATED)

Saw No. Is

.Il .. f !

pi"?I .. r

in o 0 --- CEO

cep m.---- CE
go CC0

StLcMt U

1tw 1-- cc*C

PASS ITIC

@V4* 

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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CHAPTER 7

SUMMARY

Data compression and maximization of information contenc has become

a technology which can reduce: (1) computing costs, (2) datL. storage

costs, (3) transfer time/costs, (4) hardware costs, and (5) response

(decision-making) time. It is realistic to expect compression ratios in

the range of 3:1 to 10:1 using techniques discussed in this document.

Since any large data base problem may be amenable to more than one

compression/maximization of information content technique, this document

categorizes and describes individual techniques to aid the user in a

choice for his application. In summarizing techniques, we may classify

thLtm as in the diagram, Figure 7-1.

7.1 REDUNDANT DATA REMOVAL TECHNIQUES

These techniques are successful if sampling rates are fixed and

generally greater than the usual data information rates. They eliminate

data samples that can be implied by examination of preceding or succeeding

samples; or by comparison with arbitrary reference patterns.

7.2 TRANSFORM METHODS/LUMPED PARAMETER TECHNIQUES

This family uf techniques operates on data samples via mathematical

transformations whereby all the original data samples are irretrievably

lost, but arp represented by parameters In a domain other than time

(such as frequency or sequency). The original data may be reconstructed

within some error tolerance by the inverse transformations.

Preceding page blank
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Figure 7-1
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Figure T-1 (Continued)

OPTIA ETMION

-OPTIMAL CMPRESSION TECHNIQUES

SB-OPTIMAL COMPRESSION TECHNIQUES

EVALUATION TECHNIQUES

MAX. OF INFO. CONTENT

Re-computation
-- VOLUME REDUCTION--Pc

-Scaling & Packing

N Nerical

-- PRESENTATION tGa
Graph1cal

.... 133



7.3 STATISTICAL REPRESENTATION TECHNIQUES

As in the case of transform methods, the original data is lost and

from there on is represented by other parameters such as statistical

parameters, coefficients in a math model, or a smaller sampling. The

original data may not be reconstructed.

7.4 OPTIMAL ESTIMATION TECHNIQUES

The cjective of optimal techniques is to minimize some selected

measure of e.:ror and to utilize all inforuarion concerning system dynamics,

noise statistics, and initial conditions. An optimal technique provides

a performance standard for comparison and evaluation of suboptimal

aoproacheS.

7.5 MAXIMIZATION OF INFORMATION CONTENT

Provides suggested practical techniques for reducing the sheer

volume of data when trade-offs in accuracy and storage/retrieval costs

can ne accepted. Also, included are suggestions for presenting large

amounts of data to the user via a few general purpose graphics routines.
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