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CHAPTER 1
DATA COMPRESSION AND MAXIMIZATION OF INFORMATION CONTENT

1.1 INTRODUCTION

Although this document primarily addresses problems at the various
test ranges, it should provide applications for use throughout the scientific
community. Much of the reference material used was derived from publications

by other government agencies, contractors, universities, and private industry.

Within the past several years nearly all test ranges have experienced
an exponential growth in the quantity of data being recorded and processed.
Almost concurrently, large-scale, real-time data processing systens have
been developed. It is reasonable to expect this trend to continue in the
years to follow. Consequently, there is an increasing demand for minimizing
redundancy and compressing the masses of data into forms which may be more

quickly and easily assimilated.

Much effort has been expended at various locations in the development
of reliable means for transmitting and retaining only significant changes
in data instead of processing all that is generated. Considerable attention
has also beer given to presenting this data in forms conducive to early
decision making. All this effort has produced a number of techniques which

make up the field of data compression and maxiwization of infcrmation
contenc.

1.2 SCOPE

“his publication is intended as a single source document describing
available technigues for reducing the quantity of data processed and for
providing meaningful presencation. [f includes mathematical, statistical.

and graphical techniques which have been usad successfully.




1.3 DATA COMPRESSION DEFINITION

The expression "data compression" has broad meaning and may encompass
any or all of the following: data compaction, bandwidth compression,
redundancy removal, redundancy reduction, adaptive sampling, parameter
extraction, optimal estimation, and possibly a few other techniques. In
aeneral, data compression denotes operations which are performed to reduce
ih< quantity of data prior to transmission, but which still preserve the
minimum data elements of a measurement continuum such that the original

information may be reconstructed within established limits of error.




CHAPTER 2
REDUNDANT DATA REMOVAL/USEFUL DATA SELECTION

2.1 INTRODUCTIOR

Bata redundancy has been defined as "that fraction of a message or
datum which is unnecessary and hence repetirive in the sense that if it
were missing the message would still be essentially complete, or at ieast
could be completed. Redundancy exists whenever the sampling rate... excecds
the ‘requency required to describe the input function in accerdance with

w{2-6] The methods for retaining

the accuracy requirements of the usar.
data which provide essentially all the information contained in the original
message range from some simple visual and manusl techniques to complex
computer driven aigorithms. However, the basis of all removal/selection
techniques is the examination of each data sample and performing a compari-
son tc preceding or succeeding samples in the context of some arbitrary

[2-6]

reference paltern. The choice of methods is extensive and may be

adapted to virtually any set of circumstances or data.

2.2 EDITInG

The editing processes involve the identification and subseguent removail
of data estimates which are considered either arronecus or non-essential to
the information content. Additionally, if erroneous data during “ecritical™
intervals are edited those samples must sometimes be replaced by prediction/
jinterpolation techniques. The implementation of these processes depends on
the purposes and uses of the data, especilally in the context that raw data
are generally comprised of both eapected and ahnormal, or unexpected, input
samples. The flight engineer will consider useful chat data which shows
misgile performance characteristics only, whereas the instrumentation
engineering will be interested in data showing instrumentation failyres.

In each case data compression may be accomplished through the reduction
methods of editing.




ri

2.2.1 MARUAL TECHRIQUES

Although generalily m¢ve laborious and vuinerable to a
certain amount of subjective judgement, manuzl editing is »ften ewmployed to
reduce the data volume and select usecful data, especially during preliminary
data processing stages. Two common data fo-mats are lists and plots, and

in each case techniques may be employved to facilitate the reductior prsocess.

A simple method of editing printed data is to arrange it in
2 columnar formar and gort it with respect to some key parameter, usually,
but not necessarily, time. The reorganization of data in this way ‘mproves
the capability to show data discontinuities and duplicated samples, which
-an be identified for removal, When samples are arranged in vertical
.uxtaposition with respect to previous and subsequent samples of the same

tsnction, simple trend analyses cay be accomplished. These include such

son-parasetric tests as determination of zero crossings and the relative

izes {(value} of the dara estimates. In order to facilitate the editing of
iita lists the data parameters may be reconfigured by computing simple
first or second diffzrences between sanmples which will detrend the dsta and

amplify data anomalies:

L - -
KT X T %a
82x. = ax. -~ ax, , ®x, - 2%, . 4
i T e B I I P3P
. (2.2-1)
JJio _o.nel n-1
= xi & x’: a8 Xs_l
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The data may be reconfigured into estimates of variances over short intervals
which may be reviewed to dctermine quickly where data samples may be edited.
These methods of reconfiguration may be combined to provide detiended
variances in data which are changing in a polynomial fashion; the variances

9
may be estimated from the differenced data, [2-2]

mon
:zl(A X)z . (2‘2"2)
=

%" = wBE

m-n)n.n.

where ox = random error in the x coordinate
Anx = the nth successive difference in x
m = the number of points used in each éample

When using this technique, n > 3 in order to at least eliminate quadratic

trends.

The same general methods are used in analyzing and editing

data in plotted formats. Trend analyses may be accomplished more readily

because of the ability to review the data in a more condensed form.

Sampling rates may be determined and useful data spans identified. Discon-
tinuities in the data trend and spurious samples may be discerned, and in
reviewing data in plotted form it is possible to determine patterns of
abnormal data occurances. A drawback in editing the data from the graphical
representation is the loss of a certain amount of data resolution, depending

upon presentation scale factors.
2.2,2 BOUNDARY LIMIT EDITING
The simplest computer editing methods employ a selection
process which compares the present data value to preset upper and lower

limits:

(2.2-3)

N
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where the k's may be constant or even some function of (x). Under one
option, acceptance occura when the condition above is true; under the
other if the statement is false. In either case the boundary limit test is
designed to eliminate data which is considered uninportant.[z-lol Because
the values of the k's must be predetermined, a priori knowledge of the
nature of the data must be considered in planning for :his type of editing.

Depending on the environmental, instrumentation, or processing
characteristics which affect the nature of the data, the following factors

nay be utilized.[z_s}

a. Time Constraints. Data may be recorded only when it
is within the time period covering a specified maneuver for a particular
test. The most common procedure is simply to turn off the recorders, or
-dit recorded data using times found on operational notes to avoid processing
data considered meaningless. Additionally, data sampling or compression
may be initiated or d%scz?tinued on the basis of other events, which are
2—_

meagured or recorded.

b. Physical Bounds. Variable which exceed known physical
iimitations, e.g., velocities of Mach 10, aircraft altitudes over a million

feet, ete., need not e accepted or processed.

¢. Calibration Limits. Telemetry functions, especially,
tt 1se which exceed calibration limits will probably be outside the desired

testing range.

d. Computer Table Limits. Editing criteria may be based
on the amount of available computer core or tape sctorage whenever the data
samples retained will meet conditions sufficiently to describe the entire
population. This method of editing is usually employed if further data

compression methods, viz, regression analysis or analysis of variance, will
be used.

P e e sannndld
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e. Detection Threshold Limits. The signal-to-noise level

of all functions may be monitored to determine if any data are in fact
being received.

f. Historical Limits. Based on the results of previous
similar tests, expectation bounds way be determined to edit subsequent

tests. The historical limits will usually be finer than the physical
bounds.

g. Statistical Limits., Estimates of variance may be
computed over short intervals and used to remove erroneous or meaningless

data, or to sense signficant changes. The variation of the general test in
this case would be

L S % S ke, (2.2-4)

where 5, is the estimate of the sdard deviation in x.

h. Trend Limits. sed on the change in the trend of the
data, a data sample, Xy, may be eliminated if

Iy - %, ] >k (2.2-5)
where the boundary k is known a priori.

2.2.3 SOURCE SELECTION

When there are simultaneous measurements of a parameter by
more than one instrumentation system, redundancy exists and a best estimate
of that parameter may be made and all other meaturements discarded, 12712}
Source selection may be accomplished in two ways.

a. Determination of the best source. A preliminary step
here is to eliminate all data showing apparent malfunctions. This may be




accomplished by using the various methods of limit checking. Variance
estimates may then be computed from each set of data and utilized as weight-
ing criteria to determine the best data set,

W - —-1-2- (2.2-6)
s
h
Ia praétical application, changes in source selection should be made only

vhen the weights change significantly.

b. Computation of a combined best source. The relative
weights previously calculated in the determination of the best source may
be used to compute a set of data which is a combination of all sources rid
which provides more confidence than use of any one set alone. This best
ssrimate may be used as the data source during further processging. The

rooled estimate may be Coﬂgutedziz'll}

Py

. bt (2.2-7)
X, = -
1 n
1 W,
j=1 9

2.3 SAMPLING

Redundancy removal through sampling is a direct data compression
~2thed which operates on the data in such a way that the output values are
:he actual sample values of the input data, or the actual sample values

within a tolerance.{z-ll These data compression techniques can be divided

into two classes; those which essentially destroy the time reference and
transmit the significant samples at a constant rate, and those which transmit
only significant samples as they oceur in tiga.{z-sl The first method is

termed fixed rate compression, the other, variable rate compression.

When using fixed rate sampling it is assumed that the data character-
istics are constant and some optimum rate may be determined a priori. This
is generally based on the highest frequency expected in the data. Since

W %




Lo

Bt b

W

the data sampling rate is known, the time tag need not be carried along but
may be reconstructed after the essential processing is complete.

Variable rate compressors, on the other hand, have greater potential
for redundancy reduction because the output sampling rates are keyed to
variations in the data characteristics. However, because of this flexi-
bility, each data sample requires a time tag, and in some cases, when
combined with other compressed data, may result in more data bits being

transmitted than were in the original data.{z-ll

2.3.1 FIXED RATE COMPRESSION

The technique most commonly used is simply to sample the
data at a rate close to the Nyquist or folding frequency, (fN)’ which is
the maximum frequency which can be resolved for a given sampling rate, At.
Generally most sensors are sampled at more than the theoretical minimum of

twice the highest frequency component:

E 4
N2t (2.3-1)
and frequencizss (f) which could be resolved are:

] (2.3-2)

1t sizntficent frequencies which are higher than iﬁzaﬁertz

exist in the data they will appesdr as lower frequencies betwszn £ and 3%;

Hz. This is called aliasing, and must be considered in the determination
of the sampling rate for data compression.{z-IZI
representation of typical data, where the sampling rate (At = 0.1 sec) was
far greater than required to represent the highest signficiant frequency,
in this case, fs = 0.5 Hz. Spectral estimates over the frequency range f >
0.5 Hz are relatively ‘Yow amplitude noise, If the data were sampled at a

reduced rate, for example At < 1 second, that noise would be aliased into

9

Figure 2~ shows a spectral

apunpniiynin
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the region f < 0.5 Hz with some adverse effect on the compressed data. To
avoid aliasing, prefiltering the original data is necessary. This msy be
accomplished by using a low pass filter with a frequency cutoff equal %o
the highest signitficant frequency, or the highest desired Nyquist frequency.

2.3.2 VARIABLE RATE COMPRESSION

With this type of redundancy reduction the waveform is
initially sampled at a constant rate and the nonessential samples are
ejiminated when the data change exceeds a predetermined tolerance with
respect to a reference pattern. The choice of reference patterns used to
detect redendancy is virtually unlimited. Examples are: polynomials, expon-
entials, and sine waves.{2.7} Of the many techniques the most widely used
and discussed are the polynomial predictors and interpolators, since most
data can be expressed or approximated in that form, especially over the
data spans to be tested. A general description of these is as follows:{z.gl

* A tolerance window is placed about the data starting at
the first data point.

® Succeeding points which fall within the tolerance window
are considered redundant and are discarded.

¢ Wher a succeeding poiat falls outside the window, an

appropriare point is savid and a new tolerarn-< window is placed about the
succeading dada.

¢ Each time & point falls outsiie the window, a new window
is used for the succeadiag data.

2.3.2.1 PREJICTIORS

A predictor is sn algorithm thet estimstes the
value of each new data sample based on p=2: piiiormance of the dota. If the

—— - —c ey
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new data value falls within the tolerance ~ange about the estimated new
value, it is rejected as redundant since it is known that the data value
can be constructed within that tolerance range.{2‘7} A class of redundancy

reductinn techniques using predictors ascumes t'... .- sample will follow
an n-th order polynomial of the fornlz.ll

- 2 n
X, = x + Axi-l + A7x + ...+ 8%, (2.3-3)

where Xy is the predicted sample,

Xy is the previous sampie,

Anxi—l are the successive differences as defined in subparagraph
2.2.1. A tolerance of x, *+ k can then be established about Xy -

2.3.2.1.1 ZERO~ORDER PREDICTORS

Commonly known as the "Step Method," the zerc-
order predictor is the simplest. For the zerc-order predictse, n = §, and
{2-1}

equation (2.3-3) reduces to*

) 2.5~
PR 8 1 (2.3-4)

and the redunduiicy testg is

x, k<%, <x . *k (2.3-5)

Eack S failing the test is saved as non-redundant
and is used as the new referaznze for subsequent tests. This method is also
known as ¢he fioatiang point aperature, siasply becaurse the tolerances follow

the ingst veiues. An example is shown in Figure 2-2.

t
[ ™

.
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NON-REDUNDANT SAMPLES ©

FIGURE 2-2. Variable rate compression sethods.
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2.3.2.1.2 FIRST-ORDER PREDICTOR

Setting n = 1 in equation (2.3-3), the first-order
predictor

+ 4

X=X i-1

i

=2y g7 Xy 2.3-6)

(2-1]

is obtained. The extrapolation equation is a straight line drawn

between the last two data points. Since Ax represents t¢ change

between the previous two samples, the ptediizid sample is the previous
sample plus the change that occurred between the previous two sa:ples.(z-sl
The redundancy test is the same as that shown in expression (2.3-3). When
z sample fallizo;;;ide the telerance, the preceding sample is considered

zanredundant.

It follows that higher order predictors can be
built by considering more past data. Although the higher order predictors
will tend to provide high compression efficiency on highly active data,
sxperience has shown that a leow order predictor wiil provide equal or

. 2-7
sreater compression efficiency for most telemetry data.i ]

The compression efficiency is basically the fidelity
.--f£ reccnstructing the original waveform with respect to the amount of
redundancy reduction. Although there are certain trade-offs with respect
to the variance in the dats and the type of predictor to be used, general
rules have been established. The zero-order predicror is prefectly matched
to data which vary as step functicns, such as data calibrations ov discrete
events. Because of horizontal tolerance limits the zero-crder predictor is
at a disadvantage vhere data activity is high with many vartical series of
adjacert points. However, in the presence of noise only the zero-order
predictor tends to set up strictly horizonral limit lines which are autosba-
tically parallel to the noisy, actionless data. In the presence of nvise

spikes, or wild points, the zero-order predictor works well since it

i4

Bl 4




automatically keeps those points and does not have to keep a point
for every vertical increment of one tolerance magnitude. The noise
can then be effectively compressed if the tolerance limits are suf-
ficieatly “162.[2-9)

Because the first-order predictor is responsive to
changes in the data it generally works best on data exhibiting a high level
of vertical activity and relativeiy low noise. A disadvantage of the
first-order predictor is the possibility of getting hung up on heavy noise,
and wvhile the zero-order predictor is handicapped by vertical variations of
the data, noise tends to reduce the efficiency of the first-order to an
even greater extent. When these conditivns are mixed, f.e., high noise-
nigh vertical activity, or low noise-litile vertical activity, the two

methods generally perform with equal efficicncy.{z-gl

2.3.2.2 IRTERPOLATORS

Prediction techniques are basged on the assumption
that the data will remain relatively constant from one time interval to the
next. If the data vary continwously or are corrupted sporadically by
noise, the redundancy reduction sfficiency of the predictor gemerally will
be reduced. 2”7}
increased if both past and future data samples could be uced. This process

of determining redundancy after the sample has been examined is called
{2-5]

In such cases the compression efficiencies could be

interpoclation. Interpolators differ from predictors in that all
zample valves between the last transmitted valw: and the present value
affect the inter;olation,{z-ll Interpolation uses present ssmples to
determine where past samples should have been and compares this prediction

to the actual position of the past sa.;le.lz‘si

2.3.2.2.1 ZERO-ORDER INTERPOLATOR

The zero-order interpolator, like the zero-
order predictor, is a horizontal aperture device with "step-wise" tolerance

15
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limits. However, whereas the predictor utilizes only knowledge of the
initial sample value in locating the aperture, the zero-oxrder interpolator
operates by maximizing the Iength of time the original waveform stays
(2-3] One method of implementing this is to place one
of the tolerance bound:s at the firat point and consider this to be the
naximm or mininum value in the redundant data set, depending on the slope
of the curve. The aperture is initially centered at x, * k and the entire

within the aperture.

space is 2k, Whenever a sample exceeds the 2k limits, that sample is used
to initiate the next tolerance band ard the transmitted sawmple is the

sverage of the marious and minimum sample values in the tolerasce band.lz‘sl

ain "max
x, 3 (2.3-7)
<heres x, = transmitted sample,
X_. = smallest sample value in the redundant set,

=in

x_,, 7 "argest sample value ia the redundant set.

!

Ine Aprezd t. - can be tolerated in the zero-order imterpolator is strictly
dependent v, the predefined error. The value transaitted is approximately
the ceatsolid o that redundant data set.

2:3.2.2.2 FIRST-ORDER INTERPOLATOR

The implementation of the first-order inter-
polator may take several forms; however, the most common is the "Fan Method”
[-“cposed by Gardenhire. This involves computing two slopes, both originating
zt the last transmitted sample, directed to the upper snd lower tolerance
lioits of the next zample. These slopes are used to test the subsequent
sanple, and if icv falls within the tolerance limits, a new, more restrictive
fan, defined by the new tolerance limits, is used to test the subsequent
point. As slopes are drawn from one sample around future samples, only
the most restrictive slope above and the most restrictive one below are

stored. The implementation of this is relativeiy simple and involves
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little data storage since oniy five words of memory are necessary - the

two slopes, the original sample, the last sample and the selection tolerance
- regardless of how many samples are between the end points.tz“l Whenever
a sample .exceeds the toleraace of the fan, the preceding sample {s used

as the origin of the next set of tclerance fans.

Since future samples must be examined to
determine redundancy, the transmission of the non-redundant sample will be
delayed. Thus there may be a major disadvantage {n atteapting to use

interpolators for real-time processing.tz‘s]

The predictors use only past, trunsmitted
saaples as a basis for future prediction to determine redundancy. However,
since they use the set of future data to determine if a particular sample
should be transaitted, they have a distinct advantage over the predictors.
If the sample contains noise, the noise will be predicted to occur in the
next sample. Therefore, that sample will probatly fail the redundancy
test. This pattern could continue at each succeeding sample making it
difficult for the predictor to provide stable, non-redundant data. By
using knowledge of future variations in the d:ita, interpolators tend to
reduce the effects of noise in transaitting non-redundant samples, and

require a lower signal-to~noise ratio than the predictors.{z-S}

In making visual comparisons of the effi-
ciency of the various redundancy reduction techniques on telemetry data,
lunsford observed that the first-order predicter tends to retain data peaks
better than either the zero-order predictor or the first-order interpolator.
The advantage of the first-order predictor over the zero-order algoritha is
that the first-order limite generally have slope vhen approaching a data
peak so that the upward or downward trend of points after the peak is
picked up sooner than if the lines were horizontal. While the firsc~order
interpolator has the same advantage as the first-order predictor, it does
not define peaks ss well for identical tolerances, because the limits for

redundancy are wider. 1279
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On the basis of examining sixteen telemetry
functions with both predictors and the first-order interpolator, along with
variations of thesge mathods, Lunsford concludes that the zerc-order inter~-
polator should compréss as efficiently, if not more, than any of the other
three gethaés-iz.g} However, a major facter affecting th: efficiency of
each Compression algorithm is the tolerance selected. Although Figure 2-2
illustrates each redundancy reducing metbod with essentially the same
tolecance, the optimum tolerance is dependent upon the technique and data

-karacteristics.

Once the decision concerning the type of compres-

thod to ve used is made, the size of the tolerance limits oust be

Since noise is essentially random redundant dara, the toierance

I bz set large 2ncugh to enable the algorithm to suppress

the rolerap:e should provide a relatrively high compression
[2-9

{2-9] A priori

adge of the data characteristics is pecessary in choosing the optimus

cance.  The coppression ratio which is an important factor in determining

ctiveness of the compr2ssien algorithma and tolerance is defined

Figure 2-3 shows the increase in cospression raties

- ey . ) . i 2-3]}
for different redundancy reduction =methods over s rolerance range.{ 7 Tha

mits are expressed in percentage of amplirude bandwidth, and
=4

i
zal s e shows the average compression ratio for 16 telemetry

functions tested. These curves are intended to show approximate relative

increase: in compression ratios vs tolerances for each predictor.

s
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2.3.2.4 ERRORS

Because of the various uncertainties in choosing
the method and tolerance, information will be lost and fidelity of the
original data will be affected. Gardenhire considers the tolerance to be
an estimate of the maximum guaranteed error, and within this range provides
typical error distribution curves for the redundancy reduction methods.{2-4l
The results for 401 samples and a tolerance cf .5% are shown in Figure
2-4 for the three methods. The curves show that the associated error
distributions are far different from norwal distribution curves. For the
first~order interpolator the errors are more evenly distributed over the
entire tolerance band while for the first-order predictor they peak at a

very low error. The zero~-order interpolator peaks at a higher error, but

3

zuse of the relative distributions its mean error is lower than that of

first-order interpolator.

2.3.2.5 RECONSTRUCTION

Restoration of the data to its original form

nin the tolerances already determined may be necessary vheaever further

cessing requires that the data be input at a fixed rate. This may be

ause of the differences in the algorithms used to compress the data,

H

¢ are some considerations which affect the decompression, or reconstruc-
tion problem. Basically the reconstruction method is determined by the

[2-6)

method of redundancy reduction. Zero-order reconstruction fills in
redundant samples which are equal to the last sample transmitted until a
new sample is received. The first-order reconstruction process basically
consists of conrecting non-redundant values with straight lines through

linear extrapolation.

In the real-time sense, the predictors, which were
described berein, are relatively easy to decompress. With the zero-order
case, all redundant samples, which must be reconstructed, will be within

the original tolerance bounds but may not follow the original waveform,

20
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agpacially Af the tolergnce-béu5531wgra lavge. The reconst.uctiin

of the xedundaﬁtréa:a‘removeﬂ’ﬁ} the f.rst-order predicior Gies tue

fact that after the rirst two samples are. ttaﬂsﬁltced, nx, the change in x
vhich yefin~s the slope of the ‘tolerance bounds, is knowis and can ba uzed

to reconstvuct the rédnrdancAeamples until the next non-redundant semple Is
[2-4].
cransmeitted. -

The interpolator- as described herein present a -
problem for recomstruction, -especially when data are sanpled. for trans~

wission. When using thess. 3ig¢r1£hmh, the non—-redundant data values and

zlopes are net Known nrr transmizted uncil the ongest possible iine o

[}

-cgment has beéen fitted to t™é data. This makc. it impossible to recon-
struct the orizginal data without imposing some delay. The deiay may be a
wzlor problem, espec,allv if tiie dats values remain within tolerance
Juring the eatire tesn.igﬁsz Bo;eve:. because .all the data variations on
rha ccmpre«sion end ara- krcwn, the reconstructed samples tend to provide

graater fideliry with tha sg;g-nal~§§;a.

The zero-order interpolator transmits average
estinares of the data in the ﬁcié%anéé bands. Therefsre, the reconstructed
data tend to follow the most 1ike;y estimate of the original redundaut

¢ata. The first-order interpélator has a similar advantage. Since all

sample points fall within the aperture space, *here is no excess over ine

{2"‘3' 2"4}

osandary 05 may exist with the r_ .redictors.
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CHAPTER 3
TRANSFORM METHODS/LUMPED PARAMETER TZCHNINUES

3.1 INTRODUCTION

Although the techniques described in this chapter are often thought
of as analysis rather than data compression technigues, they can be used
not only to compress data output from a computer, but also data stored
internal te it. They also allow the user to make more intelligent

conclusions than could be attained by simply inspecting the raw data.

In real-time data reduction it is imperative that the test conductor
be presented with information he can assipilate in as short a time as
possible. For example, is it desirable to redusce a2 long time history
into a small number of ccmputed parameters which characterize the complete
time history, or to combine several paraseters into one result upon
which a decision might be based? The werhods given here cannot only
save considerable time, money, and paper when used judiciously in assess~
ing the results of an experiment, but alsc will give more incisive
pinpointing of what actually happened in the experiment., When properly
utilized in ~eal time, the test conductor or flizht controller can leave
the display reom with full knowledge of his results rather trhex waiting
several days for stacks of computer listings w#hich are ¢ fficult to

assimilate.

The Fourier Transform and Power Spectrua a2llovw display of informa-
tion related to the frequency content in the Jdata. The Walsh Transform
allows computation and display of information related tc the number of
zero crossings in the data. The transfer function allows representation
of large quantities of data collected from a complicared system by a
relatively small number of coeificients. Non-dimensionalized parameters
allow combining of several parameters into one; both for reducing the

output required, and for ease of assimilating information.

25
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3.2 FOURIER TECHNIQUES

Fourier Analysis has been a rich area in applied mathematics for

over 150 years. However, only in recent years, with the growth of

digital cowputers and the introduction of the Fast Fourier Transform, is
the full potential of this subject being realized. The ability to

readily calculate the discrete Fourier Trans‘orm provides & very appeal-
ing data compression technigue.

The definition of the Fourier Transform of a function, f(t), is
given by the well-known integral

o . ) )
Fla) = 7%-; [ £y e 0tge (3.2-1)
-
wi1th the reciprocal forsula for the inverse.
f(r) = -;%,—— 2. Ew) et ay (3.2-2)

When t is time then w is the frequency in radians/sec.

For digital data the Discrate Fourier Transform sus’ be used and is
defined as

Fre) = oD 3 ~iwkh
@ = gg— I Ekme (3.2-3)

where h is the sampling interval.

‘The highest fregquszcy discernable in descrete data equals % and the

finest resolution between frequencies equals éﬁ' Since we=2nf, vhere f{
is the frequency in cycles/sec, then the above definition becomes

[4

Fw =F (Fl)=r3 - A xgo £(kn) e TiEL

j = OI Il 2 » e N (3'2".‘)
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By appropriately rewriting equation (3.2-4) advantage may be tsken
of redundant calculations to sigaificantly reduce the amcunt of computing
required in calculating F(w). Using this approach in the early 1960s,
Blackmun and Tukey developed the Fast Fourier Transform (FFT). Today
most computing organizations have software or hardware implementations
of the FFT. Hence, it is possible ro compute the Fourier Transform
routinely on discrete sequences which would have been impossible before
the FFT vas deveioped. Not omly is it possible to perform this comsputa-
tion in the batch mode, but it is also possible in many cases to perform

it in near realtime.

A quantity closely related to the Fourier Transform is the Power
Spectrum. This function is defired as the Fourier Transform of the
autocorrelation function; however, it can be showm that this definition
reduces to just the square of the absclute value of the Fourier

Transfors. That is
Gelw) = B_ (£w)}? + 1, {£()}2 (3.2-5)

This function gives an indication of the distribution of the power as a
function of frequency in the data being analyzed.

The Fourier Transform and Power Spectrum can be used for certain
categories of experiments to greatly compress the amount of data input
required to assess the results of the experiment. The most extre=ze

examaple of this compressiun can be seen by considering the case of a

pure sine wave, f(t)=sin w t. The Fower Spectrun for this case will be

the deita function, §(w-w ); that is, all the power in the function 1is

concentrated at W For the realistic case of finite dats length, the

Power Spectrum will be represented by a splke 2s shown in Figure 3-1.

Figure 3-i
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Hence, for this particular case, vhat could have been a sequeace nf
thousands of points in the time domsin is reduced to one pertinent point
in the frequency domain.

Although it is very rare that a pure sign wave is encountered in
practice, it is often true that most of the energy in s parameter is
concentrated in a few narrow frequency ranges snd that s good approxima-
tion of the parameter is given by a sum of sign waves in these ranges.
With some a priori knowledge of the outcome of 2 test, a test coantroller
can limit his output to cover the frequency range of interest and then
not only significantly reduce the quantity of data output, but also have
the results in a form from which conclusions can be drawm.

The Fourier Trausform can slso be used for saving computer storage
requirements and for reducing the bit rate required in transmitting
data. In wmany cases, the Fourier Transform of 2 signsl or s curve is
dominated by reiatively few of the F(j) given in equstion {3.2-4). In
such cases only the F(j) which contribute significantly to the curve
must be stored or transmitted. By storing or tramsaitting only those
significant F(j) rather than the complete signal in the time domain,
233sS memory requirements or channel bandwidth requirements can be signi-

ficantly reduced.
3.3 TRANSFER FUNCTIONS

The transfer function is defined as the ratio of the systea input
to the system output in the Laplace domain. It is usuaily used to

characterize the frequency response of a system.

A constant coefficient lipear system can be reprosented by the
following veztor differential equation.

a-é- = AYX + BO {3.3-1)
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Here X is the state or output vector, U is the control or inmput vector,
A is the state transformation matrix and B is the control or imput
matrix. For a multiple-input multiple-output system the vectors U and X
contain all pertinent input and output parameters, respectively.

In practice it is desirable to know the transfer function of one of
the output parsmeters with respect to one of the imput paraseters. For
such a case, it can be shown that the relatioaship between the input and
output can be derived from equation (3.3-1) in the following form:

n n-}
d x a*x a*
a S + a. + u.. = u
° ge” 1o gl apX = by at™
a1,
+ .
b}. dt‘-l + ... b.J (3-3‘2}

tiere, x and u are particular components of X and iUf.

The transfer functiom H(s)} is obtained by taking the Laplace Trans-
form of both sides of (3.3-2) and obtaining the ratio of X to U, to give
the followinsg:

] n-1
bos + b.s + ... 4 bn

H(s) = X{s} _ 1
U(s) n n-1 (3.3-3)
a + +
os als * = 8 + an
Hence, the set of coefficients denoted by the ai‘s and bi's characterize

the relationship between x and u. 1If iw is substituted for s, then H

becomes the system frequency response function.

The transfer function can be calculated in several ways, among
them: Fourier Transform, Z-transform, and parameter identification. 1In
the Fourier Transfors technique, the discrete Fourier Transform of both
the input and output is taken and substituted into the left hand side of
{3.3~3). Then a rational function numerical fit is made to the trans-

formed data to give the ai’s and bi's.




oy

Wl

In the Z transform techaique, the transformation z-ek‘ is used to
convert the differential equation (3.3-2) teo a difference equation.
Data values in the time domzin are then substituted into the difference
equation, usually giving an overdetermined systema of linear equations
with the ai's and bi’s being the only unknowns. The ai's and b, 's are

i
then solved for by the method of least squares.

In the parameter identification method, the matrices A and B are
usually determined by finding those respective values which will give
the solution X(t) of (3.3-1) which most closely matches a set of measure-
ments of X, given, also, mseasurements for . There are several techniques
used in parameter identificarion; among them are maximum likelihood,
Hewton-Rapheson, and Quasilinearization. The coefficients a, and bi can
be easily determined froz the matrices A and B. The details of parameter
identification techniques are beyoud the scope of this document. However,

turther detail may be found in references [3-3] and [3-4]

For systems which are approximately linear, the transfer function
can be used to reduce a long time history of data for systea output and
input to 3 small set of ceoefficients which rel-t= the two. Alsoc, by
iooking at the roots of the numerator and denominator of the transfer
function. we can determined the stability characteristics of the systes.
Hence, a test conductor who is analyzing his data in 2 near real-time

mode will immediately have all the information needed to make decisions

[

a the rest. In this case, vot only would a large stock of tabulated
data be awkward to vork with, it would also not provide him with the
information needed to assess the results of the test. Hence, using the
transfer function not only reduces the quantity of duta output, but also
provides the user with informatiorn in a form conducive to decision

making.

3.4 WALSH TRANSFORMS

The Walsh Transforma is analagous to the Fourier Transform in that a

function or signal {s represented by a series cof orthogonal funcrions.

30
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Just as the Fourier Transform is useful for representing signals composed
of oscillatory comporents, the Walsh Transform is extremely useful in
representing signals composed of a number of discrete ievel changes. The
analeg to the frequency for the Fourier Transform is the “sequency” or

number of zero crossings for the Walsh Transfora.

The orthagonal functions used in performing the Walsh Transform are
known as Walsh Functions. The first 16 Walsh Functions are shown in
Figure 3-2,

1f f is a data vector of length N; then the cne-dimensional Walsh

Transfors F of f is defined as

= _ 1 o
F=on Wyt (3.4~1)

where W is an NXN matrix, the rows of which are the sampled Walsh

=

-E i — . .
.; ¥ I i S 2)

Hence, the forward and inverse transforms can be implemented by the same

hardware and software.

The Walsh Transform can be used for data compression in a2 similar
manner to the Fourier Transform. In certain cases only a reiatively
spall number of the clements of F are significant. In such cases only
these significant components need be retained for a large savings in
memory or channel bandwidth to be achieved. The signal can be reconstructed

using equation (3.4-2) with the insignificant components set to zero.

This technique has been especially useful in redueing bandwidth
requirements for transmitting digitized videc signals. Iu this case the
screen image is composed of a relatively few discrete shades. The Walsh
Transform is highly suited for representing the signal which generates
these shades. References [3-53] and (3-9] give further details on the
use of this technique.

(7]
-

s




3

L
(

i i L 1 i %t § % .3 X £ 3 1 1 i :

o
il o

14 38 12

wiry

o

LA
™
)
[
N
:‘.‘!
"y
o“
o]
h‘
Lo
13
"
-
ory
[Whe
"~
w
[l d

- o



3.5 NON~DIMENSIONALIZED PARAMETERS

Non-dimensionalized parameters have been used for many years by
aerodynamicists for characterizing aerodynamic forces and moments in
fluid flows. These non-dimensionalized parameters can be viewed as . -:a
compressors in that they lump together several parameters into one
parameter. As in cases discussed previously, this reduction also usually
means that the lumped parameter can be more easily interpreted than the

several quantities could be separately.

For example, in incompressible viscous fluid flow through pipes,
the Reynold's number, which is a non-dimensioned parameter made up of
‘our physical quantities: density, viscosity, pipe diameter, and flow
velocity; uniquely determines the value of the resistance coefficient

for a given surface geometry of the pipe. Hence, there i3 no need to

obtain data at all possible densities, pipe diameter, and flow veloccities,

but cnly to run experiments at varying values of the Reynoid's number.

The extent to which a group of related quantities can be reduced to
dimensionless parameters is governed by the Buckingham % theorem. This
theorem states that, given a physical equation f XI’XZ’XB’ .- XN)=O’
where the Xi's are dimensional physical quantities related to the
physical phenomenon of interest, that there can be N-M dimensionless
quantities aescribing the same phenomenon, given, as follows:

f(xl’ Xz, X3, ce XN) =9 (ﬂl,ﬂz,ﬂ v ) =10 (3.5-1)

TN-M
where M is the numher of fundamental physical dimensions in the

problem. In pure mechanics problems, the fundamental units are mass,

length, and time. Hence, by non-dimensionalizing, the number of quanti-

ties to be considered can be reduced by three.

As for the previous cases discussed, not only is a reduction in
quantity of data achieved, but also it 1is easier to assimilate the

~esults of a test by considering the reduced set of dimensionless
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parameters instead of the complete set of physical quantities. Thus,

for example, a test conductor should be able to gain considerably more
information from viewing a force coefficient than from viewing separately
the force, density, and velocity which constitute the force coefficient.

In conclusion, before any new data analysis is set up, careful considera-

tion should be given to using appropriate non-dimensionalized parameters
for reducing the quantity of data to Le output.

3.6 PITFALLS

: The methods described in this chapter can be extremely useful in

cmpressing data or increasing the information content of data to be

esented. However, as is true witn any matheme~ical technique, extrena

-are should be taken in using these methods. The user should be as

familiar as possible with the physical phenomenon which is being repre-
\ svnted and should make a careful assessment of whether the technin :s
here are applicable to his problem.

The Fourier Transform can give erroneous results when improperly

used. When a truncated Fourier series is used cn non-periodic data,

spurious oscillations can be induced when the inverse is taken. This

;roperty, known as the Gibbs Phenomenon, is described in detail in any

e —

"y

qood reference on Fourier Tramsforms. Analogous errors are also intro-
-

Juced because of the finite data length in the time domain., If the
|

Youyrier Transform is blindly applied, the user may find that a signifi-

cant compression ratio has been achieved at the expense of losing all

the relevant information in the data. Similar pitfalls can occur in the
use of the Walsh Transform.

The transfer function can also be abused as a data compression
L

device. The most common pitfall occurs when the system from which the

data is taken is not aderuately described by a set of constant coefficlent

differential equations. For example, the system may contain significant

non~linearities or time varying coefficients. 1In such cases, the coeffi-

cients in the transfer function will not give faithful reconstruction of

———
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the original data and will give an erroneous picture of the process

under test.

The only pitfall which can occur from use of non-dimensionalized
parameters 1is incorrect modeling of the system under test. However,
careful modeling should always be done, regardless of the data collection

or data analysis technique to be used.

Avoidance of the pitfalls listed here is accomplished through
careful study of a technique and how it applies to the physical process r
being tested. If possible, the system should be modeled and a simulation ,
developed. The data compression technique being considered should then ]
be tested on the simulated data. After the compression has been ackieved,
the data should be reconstructed to determine how much information was
lost during the compression. The user should then chcose the techmique
which gives the best compromise between compression ratio and fidelity

of the reconstructed data ro the original data.
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CHAPTER 4
STATISTICAL REPRESENTATION

4.1 INTRODUCTION

Various statistical parameters are used to describe largc groups of
data. Afier the parameters are computed, the basic data may be stored
or discarded. Other statistical techniques =may be used to discard some
individual pieces of data. The subjects in this chapter are discussed
briefly. For details the reader is referred to the references.

4.2 PARAMETER ESTIMATION

In this paragraph, a group of data will be referred to as a sample.
In order to summarize the information in a sample, certain representative
values must be calculated. These representative values fall into two
agroups. One group measures the central tendency of the sample and the
other measures the dispersion of the sample. Usually values from both
groups are needed to summarize the sample.

4.3 MEASURES OF CENTRAL TENDENCY

The most common measure of central tendency is the arithmetic mean.
If these are n values, xl, xz...xn in a sample the arithmetic mean, X,
is calculated by the formula

n
51 X (4.3-1)

- 1
X=n .
]

3
Two properties of the arithmetic mean are (1) the sum of the deviations
from the mean are zerc and (2) the sum of squares of the deviations from
the m:an is less than the sum of aquares of the deviations from any
other value, The arithmetic mean has the following advantages: (1) it
is easily calculated, (2) it is easily understood, (3) it is commonly
used, and {4) it lends itself to algebraic manipulation. On the other
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hand, it has the disadvantage of being quite sensitive to extreme values

and may be far from representative of the sample.

The midrange is a representative value which may be used to approxi-

mate the arithmetic mean. The midrange, HR’ is calculated by the formula

M= % Gyrn * Koax) (4-3-2)

It is simply the arithmetic mean of the largest and smallest values in

the sample.

It has the advantage of being easily and quickly calculated. Since

i1z ignores the intermediate values, midrange has the disadvantage of

=

ing unrepresentative if either the maximum or minimum value is atypical

[

¢i the values in the sample.

The median is often used to describe a sample. The median is that
alue for which half the values in the sample are less than the median
value and half greater. When the sample values are arrayed in order of
magnitude from lowest to highest, the median, M, is the (n+1)/2 value.

* 2

If there are an even number of observations, the median is the arithmetic

—maan

mean of the two middle values; i.e., for n values, xi, where n is even,

the median is

N |
M=z Gopa * Xy (4.3-3)

If there are an odd nugber of values, the median is the middle value;

i.e., for n values, Xi, where n is odd, the median is

M= %ﬁiﬁ (4.3-4)

2
The median is easy to calculate and is often more typical of the data
than the arithmetic mean since it is not affected by extreme values.

Some disadvantages are (1) that the values must be sorted and arrayed
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before the medisn is computed, (2) it does not lend icself to algebraic
manipulation, and (3) if the data fall into two distinct groups it could

be misleading. Theoretically the probabilicy is onme half that an observation
selected at random will be less than the median. The sum of the absolute
values of the deviations from the medisn is less than the sum of absolute
values from any other value. When there are several sample values which

are identical, the median may not have half the samples below and above

that theory indicates.

The dsta may be described by retaining only points which divide the
sample into convenient groups. One such civision is the division 1ato
percentiles. A percentile, Pp, is that value for which pX of the values
are less than Pp and (100-p)X of the values are greater than Pp. Waen
the values are arrayed in order of magnitude, then PP is the p(n+1)/100th
value if p(n+1)/100 contains a fraction; then the value is a linear
interpolation between the two values on either side. If the value

p(n+1)/100 falls outside the data, use the first or last value, whichever
is appropriate.

As a2 simple example, consider the following set of data: 1, 2, 2,
3, 4, 5, 5, 5, 9, 11. The 95th percentile is the 95(11)/100 = 10.45
vaive or 11. The 80th percentile is the 80(11)/100 = 8.8 value or 5 +
0.8(4) = 8.2. The 20th and 25th percentiles are both 2. The median is
the 50th percentile and in this example is 4.5. The :J percentile
numbers are referred to as deciles and the 25, 50, 75, and 100 percentile
numbers are referred to as quartiles.

The mode is the most frequent value that appears in the sample. In
the example in the previous subparsgraph, the mode is 5. There can be
several modes in a given sample. If all values in a sample are different,
then there is no mode. When any value occurs more frequently than its
neighbors, it is referred to as 2 relative mode. The most frequent
value is called the absolute mode. There can be several absolute =~des.
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4.4 MEASURES OF L. “°"BSTON

The measures of central tendency do not describe the spread of

values. Three common values of dispersion are discussed here.

The Range, R, is the difference between the maximur and minimum

values. It is calculated by the formula

= - X { -11
R = Xax ™ X t4.4-1)

The variasnce and standard deviation may be considered rogetner.

thi- standard deviation i8 the positive square root sf the variance. For
3
n the varisnce is referred te by the symbol 5 and the standard

One uses n, the

The other uses n~i.

sethod which uses n

sed estimator of the population variance while that with

s an unbiased estimator. An estimater is unbiased if {ts

iz equal to the population parameter. The expected valiye
k §

1 3 2
iz used in the denominator, is —— 0°, where o° is the

variance. Tne formulas piven below are equivalent and selec-

"

usze should be made by dertermining which ocne is the

lculate. The first one given is usually the easiest for

~elations. If the sample has a values, Xi, xz,...xn then
A n n 2 .
'§ £ = ‘E. -‘ﬁ? - ii: Y .} . ) A __2
(1) s i=1 XT }=}£1 /% v = n for biased estimator (4.4-2)
n o2 n 2 Lie
(2) 2= EX . (& X)/n , A
i=] ix] »v = n-1 for unbiased estimator
A4
n _2
(3} 52 = ’E (xi - ):) - . . ) {!‘.l’“:‘}
i=] » X = arithmetic mean of the sample.
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The coefficient of varfation, Cv. is s weasure of relative varistion.
It is computed from the formula ¢, " 8/X (4.4-5), where s is the sample
standard devistion and X is the arithmetic mean of the ssmple. It has
been observed that samples with numerically large values tend to vary
widely and those with numerically small values tend to vary asirowly.
In order to make a comparison of the varistios among two groups of dsta
with different maguitudes, the coefficient of variation may be used. It
can be used to compare the variation in two samples which are measured
in tvo different units; e.g., a comparison of variaticn in height with
variation in weight.

4.5 COEFFICIENIS IN A HATH MODEL

A math model is simply an equation which relates an observed value,
Y, te one or msore known values, xi. In practical cases most math =odels
are linear. The reason is that linear equations are easy to aanipulate

and calculate. A math model is then of the form

n
Y=L Bigi vhere there are o+l knova values(4.5-1)
i=0
The linear fora can be used to deal with very general situations. In
the case of a trajectory, position is represented by a second degree
equaticr. in time, viz,

t+b tz {4.5-2)

ytbaé-h; 2

If we let X, = 1, Il = t, ard x2 = tz, the second degree equation
in one variable can be transforsed into a first degree equation in thres

variables.

An equation of the formy = “b can be transformed into & linear

equation by taking logarithms. Specifically,

log y=lega+blogX (4.5-3)
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Beté,y‘losy;bo'lota, bl‘b,xo'l,xl.lo:‘.

A common wethod of determining the coefficients is to apply the
method of least squares. To use the method, several cobservations of Y
must be taken for various known values of the xi’s. Let

Y = : x = . B = .
; : :
¥  %on  %in ==+ ¥gn] Dy |
2
N1

Y ¢z *he matriz of n cbserved values.
¥ 15 thye =matrix of che n konown points of the B+i, xi's-
is the marcix of the £ + 1 coefficients of the Xi’s.

- ig the matrix of chservational errors.

Jow ¥ = KB + € (4.5-4)

is the marrix squaticn ot observations. The metiod of least squares
sssumes the errors to be independent, with mean zero, and a common
¥3fi3§§§,§2 {(i.e., they are homcscedastic). Thé method of least squares
finds the valucs of the coefficients which minimize the sum of the
squares of the residuals. The symbol " , above a variable, wili indicate
that it is an estimate of that parameter. The sum to be =minimized is

S=2"¢ = (Y - ¥XB} (Y - XB) (4.5-5)
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A symbol, *, indicates the transpose of the matrix.

When the partial derivatives are taken, set equal to zero and
manipulated a bit, the following result is obtained:

X°XB = X°Y (4.5~6)
This is the matrix form of what are termed normal equations.
8- 0 ey (%.5-7)

The estimate 32 of ;3‘ is given by

4

s Y’y - Q’:’t) (4.5-8)

-1
n-{k+1)

The matrix {x"x}'i is the variance-covarisnce marrix of the variances of
the b's.

2 . €
Let L be the estimate of the variance of bi and sbibj be the
covariance of b, and b,. Then the diagonal elements of

1 ]
s2ixxt
. 2
are the values of the sbi

- -

2
If s, = Sbo , then
2

i

%

d -l

) (4.5
s2 = 52 giag (xx)"
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The values of the variances may be used to determine confidence intervals
for the estimates of the coefficients.

4.6 CORKELATION AND REGRESSION AMALYSIS

Correlation seans the degree cf association among variables. The
quantities used ro mezsure the correlation are termed correlation coeffi-
cients. Regression is a term for the methods used to determine the best
functional relationskip among variables. In statistics, when a dependent
variable is expressed as a function of one or more independent variables,
the funciion is termed a regressfon function. In other areas it is

somatimes termed a response function. The statistical analysis of a

]

regression function and the determirnation of the coefficients may not

=ean that a casual relationship must be made by a person well trained in

A regression functior is a math model. The discussion of least
squares which appears in paragraph 4.5 also applies here. Polynomials
of degree m may be considered as linear functions with the mtl variables

aes ié whers XG =1, aad Xi is the ith power of the variable. BHNon-

iinear functions can often be linearized by a proper transformation.

afrer the coefficients are computed they must be converted ro the originail
e b s x E
terms. The example y = a shown in paragraph 4.5 (equation 4.5-3) would
i

where %ﬁ and b, are obtained from the linear

I i

It is possible to determine the goodness of fit by examining the
variance and sums of squares of the variables. Such an examinarion is
called an Analysis of Variance. In the case of polynomials it is possible
to decide whether the last term added has any significance. In general,
it is possible to deteraine if several coefficients are significantly
different from zero. The case of deciding whether a number of coeffi-
cientr are different from zero is discussed here. An illustrative
example is shown in the next paragraph. All the symbols and their
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definitions are the same as thosc used in paragraph 4.5 concerning the
coefficients of math wmodels. Assume that it is desired to know if the
last p<ktl of the coefficlents are significantly different from zero.

Tc do this create two new matrices, xv and 3\?’ vhere Xv is the satrix
formed by removing from ¥ the p columns that correspond to the suspect
coefficients and Bv is the matrix formed by removing from B the appropri-
ate p coefficients. Solve the reduced set of equations. This solution

ig:
§ = (xx ) xey (4.6-1)
Bv v v) (x’v ) v
with variance Sé = 1 5 vy - &;X;Y) (4.6~2)

The following table should then be computed. This is called an
analysis of variance table. The pean square column is the sum of squares
divided by the degrees of freedom. The table is adapted from reference
[4-9]) as is the explanation following.

TABLE 4-1  ANALYSIS OF VARIANCE TABLE

Source of Variation Degrees of Freedom Sum of Squares  Mean Squares
Total n Y-y 1yy

Due to k+1 constants b+l %’X*‘Y 2
Residual (from Targe soluticn)  n-(k*l)  Y-Y-B-X-Y s2

bue to k+l-p constants k*l-p §;I:Y A
Residual (from reduced solution) n-({k+1-p) v-vjﬁ;x;v sj

Due to additional p constants Boxv-B2x°Y p
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F = “§ is distributed as F with degrees of freedon
k+1, n-(k+1) and serves as a test of whether
all k+l constants account for a significant

reduction in the error variance.

F = —g is distributed as F with degrees of freedom

p. n-(k+1) and serves as a test of whether the
addition of the p coefficients accounts for a
significant reduction in the error variance
over that accounted for by the first h+l-p

Lwensiants.

The following ijlustrative example was adapted from reference

,.‘ -
wh
=3
=
[t
o)
C
rr
m
re
b
3]
o]
o
=
wn
o

een changed to conform to that used in this
rapter. The numbers and computations are taken directly from the
. Yerence. he data are represented in tabular form below.

TABLE 4-2

_ o X W
e 1 8 1
4 2 8 7
& z 6 n
4 3 1 2
3 4 2 7
3 4 5 1

This corresponds tc¢ the situarion

il
wr
-~
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definitions are the same as those used in paragraph 4.5 concerning the
coefficients of math models. Assume that it is desired to know if the
last p<kt+l of the coefficients are significantly different from zero.

To do this create two new matrices, xv and Bv’ where Xv is the matrix
formed by removing f--m X the p columns that correspond to the suspect
coefficients and B 3 the matrix formed by removing from B the appropri-

ate p coefficients. Solve the reduced set of equations. This solution

is:
B o= (xx ey (4.6-1)
k B, = A% v *
1
| with variance S2 = - ] (y=y - ﬁSXGY) (4.6-2)
v n-{k+1-p)
r The following table should then be computed. This is called an

analysis of variance table. The mean square column is the sum of squares
divided by the degrees of freedom. The table is adapted from reference

[4-9] as is the explanation following.

TABLE 4-1  ANALYSIS OF VARIANCE TABLE

] Sour.: <€ Variation Degrees of Freedom Sum of Squares __Mean Squares

| Total n v-y Lyey

1 Due to kt+1 constants k+1 B-x-y K

i Residual (from large soluticn) n-{k+1) Y-Y-B-X-Y 52
Due to k+1-p constants k+l-p a;x;\’ A |
Residual (from reduced solution) n-(ktl-p) v*vsﬁ;xgv sz

é Due to additional p constants ) ﬁ'x'v-ﬁgx;'f P

il
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[ 2 -
1 8 1 b
4 2 8 7
. B=|D
Y- x-|2 &0 )
4 31 2 -
3 4 2 7
[ 3 4 5 1
l’ 50 67 53 54
X*X = | 67 194 85 X‘Y=| 97
4
53 85 104 62 T
i | i
i 12951  -2463  -4587 %‘ 54 7] ]
AR R )  rac |
4587 -699 s |62 |

[0.735 320 652
B=|0.232 175 52
L 0.031 664 286

-
e o a
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To test

Then X

} . o -
—;EﬁﬁYY-Bxﬂ=%(&WBM3%&

1.936 157 679
1.391 4588
0.323 627
0.139 054
0.205 283

the significance of bZ’ the last column is dropped from X.

{SG 67
X’X = 1
_ 67 194 |
[ 194 -67
1 1 i
(XX 7V = 7 ! }
¥ - 52}1 .__5? so

A g r0.763 193 245
B = (xox )" (x°y) = ,
vV T a6 422 98
P = (BXY - B X:Y) = 1 (64.191 527 - 64.145 461)
I vy
P = 0.046066
_ P 0.036066 _
F =72 7 Tgsersg - 0-028




The numerator has 1 and the denominator 3 degrees of freedom. At the
952 confidence level,

F0i95(1,3) = 10.13

Since F<10.13, bz is not regarded as being significantly different,
statistically, from zero. Therefere, it may be disregarded.

The preceeding discussion about least squares has been limited to
the case where the variances of the observations were independent and
equal. For a discussion of the cases where the observation errors are

not equal and/or not independent the reader is referred to references
[4-2] or [4-9].

Correlation only tells how well variables are related. The correla-

tion coefficient, r, between two sets of data, each having n values, is
computed by the following:

n
L (X.-X)(Y,-Y
M(i )(¥;-Y)

n _ o N _ak (46.6-4)
[z (x,-%)% £(v,-N)23
j=1 ' ger 1

where the X 's and y,'s are the values in the two sets of data, X is the
arithmetic mean of the X,'s and Y is the arithmetic mean of the Y, 's.

The range of r is ~1<r<l. If the data ar. perfectly correlated
|ri=1. 1If the data are uncorrelated r=0. Perfectly ccrrelated means
there is an exact linear relationship. If r>Q, the slope of the fitted
line will be positive., If r<0, the slope of the fitted line will be
negative.

Of more importance in data compression is serial correlation. For
a set of data which is not random there will be dependencies between
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successive terms. Serial correlation is used to measure these dependen-—
cies. The ccefficient of serial correlation of log k is the correlation
coefficient between pairs of terms k units apart. Suppose a set of data

contains n points xl, XZ""n‘ The serial correlation coefficient

of log k 1s given by

Reference [4~6] shows how to use the correlogram of serial correla-

-.on coefficients to define envelopes of data. The reference shows that

e

erial correlation preserves periodicity. The reference states that p
=3

‘the correlogram 'peaks out' on the positive side of zero whenever the

.nput data completes a recognizable period of information.” Tests may

applied to see if the variocus envelopes are statisticaliy different.

¢ they are not, the user has the option of discarding some. For details,
4

-he reader is referred to reference [4-6]. For other uses of the serial ]

--rrelation see Chapter 2.

-.7  STATISTICAL SAMPLING 1

At times it is desirable to retain only a portion of the data

available. The retained portion is calied a sample. From the sample,

inferences can be made about the collective properties of all the data.

It is important to choose a sample that is large enough for valid 2
inferences to be made and yet be small enough to meet coasiderations of

time, computer storage limitations, ease of computation, cost, etc.

Reference (4-9], pp 1-3, states, "Statistical inferences are basically

pr .dictions of what would be found to be the case if the parent popula-

tions could be and were fully analyzed with respect to the relevant

characteristic or characteristics.”
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In order to draw correct inferences, the method by whicl a sample
was chosen must be known. There are two general types of sampling:
judgemental and chance. Samples selected dy a chance method are called
probability samples. If all the elements of a population have an equal
chance of being selected, the sample is called a random sample. This is
a necessary condition but is not sufficient for a sample to be a random
sample. A sufficient condition for a sample to be random is that each
possible sample must have an equal chance of being selected. Reference
[4-9] notes, "experience teaches that it is not safe to assume that 2
sample selected haphazardly, without any conscious plan, can be regarded
as if it had been obtained by simple random sampling. Nor does it secem
possible to consciously draw a sample at random.” The statistical
techniques in this chapter are applicable to randoas samples and may or
may not be applicable to other types of sampling.

One example of random sampling occurs when there is a block of data
consisting of N points. A random sample may be obtained by assigning a
number to each of the N values; then by using a random number generator,
random number table, to list a number, equal to the sample size, of
different random numbers less than N. Select from the list of points

only those whose position on the list corresponds to the random numbers.

Another example is the case when the data may be known to have
occurred at different times. Suppose it is desired to estimate the
turnaround time for jobs sent to a computer. Jobs sent to the computer
are given a number which corresponds to the day, hour, and minute at
which they are received. The same information is recorded when the job
is finished. A random sample may be chosen by counsidering two digit
randoem numbers in blocks of three. The first group will correspond to
the day of the month, the next to the hour of the day, and the final to
the minute. The job selected would be the job received closest to the

random numbter and not previously selected.

Reference [4-9] gives two methods of determining the size of the

sample to be drawn to estimate the mean of a population. It also lists
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one method of determining the size of sample needed to estimate the
standard deviation of a population to within a certain per-ant of its

true value. One method is outlined below. For more details the reader
is referred to the reference.

Agsume it is desired to know the mean, m, of a population and that
one is willing to take a risk, a, that the estimate is off by d or wore.
What size sample is needed? There is available an estimate, s, of the
population staiddard deviation oased on v degrees of freedom.

From tables of the Student-t distribution, locate t’tl-u v for v
3

degrees of freedom. 1he sample size is tuen computed foom the formula
t252

d2

The valie to use should be the smallest integer la~ger than or equal te
n. If the mean, i, of 9 sample of size, n, 1s computed, then with 100(i-
@)% confidence, it can be said the interval from X-d to X+d includes

the population mean, m.
4.8 ANALYSIS OF VARIANCE

Analysis of Variance is a technique used to separate variation in
data into source components. The sources of variation considered in the
Analysis of Variance are called variables or factors. The analysis of
the variation depends on the particular grouping of the data or test
design. An example of an analysis of variance procedure was shown in
paragraph 4.6 of this chapter. That paragraph discussed the orocedure
to use to determine whether certain coefficients of a regression line
were significant. Because of the large number of different applications,
the reader is referred to the references for the particular technique to
use in his application. References [4-9] and [4-10] give exampies and
work sheets to describe the various processes. Many of the books listed

as references also describe work sheets and give examples.
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4.9 SUMMARY

This chapter provided some statistical techniques which will allow
a user to eliminate amounts of data. Everything described has been
available for some time. The techniques may be termed merely classical
statistics. Paragraph 4.2, which describes parametric estimation,
mentions individual values which may be used to replace large groups of

data. Paragraph 4.6, Correlation and Regression Analysis, gives techniques

which enable the user to replace a large group of data with coefficients
of a function or to eliminate one of two groups of data and replace it
with a linear function which relates the remaining group to the one
eliminated. Paragraph 4.7, Statistical Sampling, is presented because a
smaller random sample may be taken from a larger group and allow infer-
ences to be drawn about the collective properties of the larger group.
Equation (4.7-1) shows how to compute the size sample to select if ~ne
desires to know the mean o within a given amount of uncertajnty. Para-
graph 4.8, Analysis of Variance, merely gives a definition and refers

the reader to source documents.
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CHAPTER 5
OPTIMAL ESTIMATION TECHNIQUES

5.1 INTRODUCTION

It is the intent of this chapter to consider data compression in
relation to applied optimal estimation. In particular, this chapter

will lock at the implications of the use of such techniques in conjunc-

tion with liscrete Kalman Filters. Starting with a statesent of the

discrete filzering problem, the cowpression problem will be set up and

the objectives of its utilization discussed. For the most part, this

chapter represents a survey of the use of data compression techniques in

the area of applied recursive optimal estimation. It is not intended to
be a theoretical treatise but rather a more practical approach oriented
to problem solving. Both optimal and subcptimal compression techniques

will be introduced aleng with a discussion of techniques for evaluating
the suboptimal types.

“Optimal" data compression means that the data compression and
corresponding estimation are perfcrmed in such a way as to minimize some
selected measure of errar and to utilize 3ll information concerning the
systenm dynamics, noise statistics and initial conditfons. The optimal
algorithms presented here calculate unbiased, miniesum variance estimates
and may, under certaia conditions such as Gzussian error probability
density functions, be optimal in several other senses such as least-

squares, maximum likelihood, Bayesian et al.

An atcempt has been made to Include guidelines on such matters as
conpression design and recommended filtering and sampling rates. General-
ized matrix forms and algorithms will be presented to the extent possible

and 2 simple but illustrative scalar example will be cavried throughout
the section.
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First consider the basic linear discrete model for which a multi-~
stage recursive data compression and estimation algoritha is to be

constructed. The system is governed by the following equations:

x(k+1) = §(k+1,k)x(k) + w(k) (5.1-1)
E{w(k)}] =0 (5.1-2)
Elw(ieT (k)] = (k) &, (5.1-3)

where X, the state vector, is propagated linearly by a transitition
matrix %, snd the state is corrupted by a zero-mean white process noise

w, with covariance (. The cbservation equations are:

z{k) = H(k)x(k) + y(k) (5.1-4)
E(v(k)] =0 (5.1-5)
E[v(i)y (k)] = r(k)3, (5.1-6)

The observations z are linearly related to the state vector by the
observation matrix H and are corrupted by zero-mean white noise with
covariance E. In addition, the plant and observation errors are uncorre-

tated; i.e.,

Elv(Dui(k)l =0 (5.1-7)
The various assumptions, such as linearity and independent errors, can
be (and have been) removed by investigators ovcr the years but will be
retained for purposes of simplicity and ciarity in this treatment.

Serial correlation of observation error will be considered later.

The optimal recursive estimation algorithm for this problem is well
known as the Kalman Filter and was first published by Kalman [5-1,2] . w
The estimation error at time t{j}, given observations through time t(k), 1
is:
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e(ifk) = x(j|k) - x(§) (5.1-8)

where X is the estimate of the true state x. The state error covariance

matrix is then defined as:

2(jl) = E[EG{RIE (3|K)] {5.1-9)

The Kalman Filter is then the linear, recursive mirimum varisnce estimator
for the above problem. It is, in fact, a set of rules for optimally
combining the observations with a priori estimares of the state-given
statistics of the relevant processes.- The resulting slgorichm - not

derived here - is usually presented as a two-stage calculation.

Extrapolation Stage

State X(kJik-1) = #(k,k-1)Z(k-1]k-1) {5.1-16)

Covariance P(k|k-1) = #(k,k-1)P(k-1]k-1)#7(k, k-1} +

Qk-1) (5.1-11)
Update Stage
Gain G(k) = P(kik-1)H (k3{H(k)P(k|k-1)H (k) +
R(k) ]} (5.1-12)
State X(kjk) = x(k|k-1) + 6(k}[z(k) - H(k)%
(k|k-1)] {5 1-13)
Covariance  P(klk) = [I - G(x)H(k)P(k|k-1) {5.1-14)

Tue implicstions and application of this algorithm are beyond the scope
of this treatment, but the author highly recommends Gelb {5-3] as an

excellent reference on the practical aspects of Kalman Filter design.




Example

A scalar exo .le of such a filtering problem is the estimation

of a first order Markov Process with exponential correlation, i.e.,

Wi

o H v = ,.2 &
ELx(e)n(t+T) ] = o2 exp (-uT) (5.1-15)
The state model is simply 3
]
x(k+l) = vx(k) + w(k) (5.1-16) t
with cbservations
z(k) = x(k) - v(k) (5.1-17)
|
where (5.1-18) }
saf = = -
& k+l ~ K -
¥ = exp (~gat) (5.1-19) i
w ~ H{o,q) (5.1-20) Y
]
v ~ Nlo,r) (5.1-21) )
a4 = 5% (1) (5.1-22)
= 2 ,
) (5.1-23)
The correspunding Kalman Filter for this problem is then:
3
%(k;k-l) = y&(k-1|v-1) (5.1-24)
p(k|k-1) = v'?p(k-;,{;,_d) +q (5.1-25)
gk) = pfl|k-1) / [p(kl-1) + S2(k)1  (5.1-26) <
A4
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R(k|k) = R(k|k-1) + g(k)[2(k) - &(k|k-1)] (5.1-27)
P(k|k) = [1 ~ g(k)Ip(k|k-1) = g(k)ga(k) (5-1-28)
b 4

Figure 5~1, a computer generated Gaussian white noise sequence, was
utilized to drive equation (5.1-16) and thus simulate a typical Markov
Process of this type using values of 72 = (-9 and o, = 1:0. The came
Gaussian random number generator was utilized to generate white observa-
tion errors with g, = 0+5 resulting in the simulated observations of x -
the z's. In Figure 5-2 these observations were introduced to the Kalman
Filter. The resulting estimation errors, € (after update), are plotted
along with the associated error standard derivation 68, calculated by
the Kalman Filter. Notice the saw-tooth pattern of Oc caused by the
time extrapolation which increases Oc followed by the update which

decreases UE because of the :ddition of measurement information.

Reformulate the basic recursive estimation problem into a multi-
stage data compression and estimation pr-.blem. Suppose, as shown in
Figure 5-3, that the filter ie= cycled once every NAt seconds but that it
is desirable to process data at a rate N times the filter cycling rate.
The integer N is often referred to as the compression ratioc. Therefore
at time t(k) there are N mezsurements, equally :paced At apart, that
have been made since the last filter cycle at time t(k-N) which are to
be processed at time t(k). This problem might be expected when the
observation data are available at a rate higher than that rate which can
computationally cycle the full filter or that rate which is necessary to
recover the desired signal frequency. If the additional data is ignored,
as is the case when using the conventiocaal Falman Filter since it accepts
only a single observation, much useful information concerning the

signal that would improve the accuracy of our estimation procedure is
discarded.

The objective of optimal data compression techniques is to combine

the N measurements in some manner into a single parameter (or set of
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FIGURE 5-1

EXAMPLC: TRUE STATE AND OBSERVATIONS
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FIGURE 5-2

EXAMPLE. KALMAH FILTER ERROR
STANDARD DEVIATION AND ERRORS
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parameters) in such a way as to minimize loss of accuracy while maintain-
ing computational efficiency. The procedure which operates directly on
the measurement is referred to as the "data compressor” or "prefilter”
and that which operates more slowly on the compressed observation is
referred to as simply the "filter" or "estimator." A Kalman Filter,

such as described previously, operating directly on the measurements at
the high-data rate and which contains all the correct model information
and statistice will be "optimal." This filter represents t*-=z best
available and thus is chosen as the standard for purposes 7 performance
comparisons. The primary goal is to design a "suboptimal” data compress-
ion technique that degrades only slightly (or within acceptable limits)
from the optimal. Besides the obvious ad -antage of computational effi-
ciency, data compression can also be quite useful when dealing with
multiple data rates and unevenly spaced data if an acceptable common
estimation cycle time to which the data might be refiected (and compressed)

. can be determined.

Undoubtedly the best overall treatment of data compression and
optimal estimation is that of Joglekar [5-4]. This work is cosprehensive,
covering optimal batch-weighting as well as various averaging algorithms,
covariance evaluation techniques and practical guidelines for design of
multi-stage compression/estimation schemes. This work was conducted at
the Stanford University Guidance and Control Laboratory and was sponsored
by the Air Force Avionics Laboratory. Womble ([5-5, Sl'at Georgia Insti-
tute of Technology derived an optimal recursive prefiltering version of
the Kalman Filter by determining a single discrete measurement that is

equivalent to a set of discrete mgasurements.

Applications of various data compression techniques to estimation
type problems are, of courade, quite numerous and we will list only a
select few here. Bar-Shalom [5-7] der’s with the ~ompression of data in
real-time nonlinear estimation problems such as th: linearized tracking
filter for a re-entry vehicle. Clark [5-8] appliad data rompression
techniques in the design of a real-time, dual-bandwidth, sdaptive Kalman
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tracking filter for high-speed maneuvering missiles and aircraft in a
weapons control environment. Warren [5~9] derived a filter which provides
optimal compensation for time lag and plant observation noise correlation.
He applied the algorithm to position and velocity estimation for aircraft
navigation. Kizner [5~10] utilized Chebyshev polynomial fits to derive
an optimal data compression which he claims has better accuracy than the
minimum variance estimate without data compression.

5.2 OPTIMAL DATA COMPRESSION TECHNIQUES

In a sense,the title of this paragraph might appear self-contradic-
tory because, in application, data compression is never implemented
optimally. If it is desirable to optimally process all che data,
merely use the Kalman Filter. Optimal data compression is simply a
restructuring of the Kalman Filter into the multi-stage problea of
Figure 5-3. The restructuring is constrained such that the error covar-
iance at the ead of each multistage is equal to that of the optimal.

The reason for doing this is to see the optimal data compressor and thus
determine exactly what terms are neglected and test the validity of

these simplifying assumptions.

Optimal data compression is a very important tool for designing
such a system. Both Womble's optimal recursive prefilter and Joglekar's
batch optimal compression algorithm will be presented, since, for any
particular application and computer, one form may be preferable over the
cther. Both algorithms are optimal in the minimum variance sense and
are exactly equivalent in covariance at the end of the compression

intervals to the fast cycling conventional Kalman Filter.

The recursive prefiltering algorithm of Womble [5~5, 6] is presented
in Table 5-1. It consists of a set of recursive matrix equations for
the prefilter wiich must be cycled N times before the state and error
covariance are updated by the estimator at the end of the interval. The
prefilter can be cycled either as the measurements occur or delayed
until the end of the interval) and processed as a batch.
68
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TABLE 5~1 OPTIMAL RECURSIVE DATA COMPRESSION ALGORITHM

Compression Por i = 1, N = k-H,k

n(i) = H ()R (i)z(i) ()
I() = KOG KRG (2)
M) = 8(i,i-1)A(i-1)8T(i ,i<1) + Q(i) (3)
B(i) = I+ 3(i)a (i) (3b)
C(i) = I + A (i)3(i) (3¢)
A(i) = &7 (1)B72(5) (34)
0 (i) = &(i,i-1)8(i-1) (4a)
6(i) = [I1 - A(i)3(i)10 (i) + a(i)a(i) (u8)
§(i) = CT2(:)8(i,i-1)¥ i-1) {s)
YG) = F(i-1) « #5330 36(0)8() (6)
(1) = 2(i-1) + F(i)ali) - 3(0)6 ()] (7)

A(O) = g{o) =90
#c)=1 Initialjzatisn
%(o) = 6{c) = o

Estimation
P (k%) = [I+ P{i-N|k=N)J(2)1"* P(i-N|k-¥) (8a)} -
¥ (k-K) = [T « P (keW)F()I2(kW] k-10) o+ P (k-B)E(N) (9a)
&(xjk) = F(N)% (%) + B(x) (9b)
P(k|x) = BOOF (x-2)8T(N) + A(N) (8v)
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Joglekar's [5-4] algorithm for optimal weighting of batch measvre-
ments is shown in Table 5-2. This algorithm is "cleaner" than the
recursive algorithm in that the matrix algebra equations are not partic-
ularly more complicated than the original Kalman Filter. Ia facr, it is
rather easy to see that the Kalman Filter for the trivial case of N=l is
recovered. This appearance of simplicity is misleading if the dimensions
of the matrices used in the calculations are examined closely. The R*
matrix, in particular, can get quite large - {MN x MN) where M is the
dimension of the single observation. Unfortunately, it is necessary to

invert this matrix.

In Tables 5-3 and 5-4, the recursive and batch cptimal data compres-
sion algorithms were applied to the selected example protlem presented
previously. The substitution is rather straightforward. The resultant
algorithms were applied with exactly the same set of parameters and
observations used previously. The results, using a data compressjion
ratio of N=5, are presented in Figures 5-4 and 5-5. Although each of the
algorithms have different processing and covariance histories, it is
important to emphasize that at the end of each compression interval;
that is k=5 and 10, the error variances (or standard deviations) and
actual estimates are identical to the original Kalman Filter presented
in Figure 5-2. The optimal data compression algorithms are, in fact,
merely the optimal Kalman Filter rearranged to account for the time
delays and lumping, etc., occurring with the data compression approach.
The principal difference in the error standard deviation histories of
Figure 5-4 and 5-5 are caused merely by the order in which the extrapola-
tion and update steps are taken. The recursive compreszor reverses the

more conventional order and updates before extrapolating.

Examination of either algorithm reveals a very significant problem
that has not been discussed yet but which, in certain circumstances, can
vrender data compression implementations either computationally impractical
or seriously degraded in terms of performance. Since it is necessary to




TABLE 5-2 OPTIMAL BATCH DATA COMPRESSION ALGORITHM

Extrapslation
&(x|k-¥) = #(x,k-N)&(k-N] k-¥) (1)
P(k| k-K) = #(k,k-N)P(k-K] k-M)#T(k,k-N) + Q° (2)
Tpdate

£ = (PR T o PO )ET o 2% 6 w0t . et ()
2(xlk) = 2(icfk-N) + K'[e* - H*&(k|k-¥)] : )
P{klk) = P(k|x-N) - X*[1*P{k|k-%) + T*] (s)

Batch Defipiticns

27 = [200) 2(2) .o 2017 (6)
Q¢° = Ev'w'T) &)
where ) J’
s (8(K,1) oo #(0,81) S D (o) T 1
u(1)
n(N-1)
=iﬁ ) B
- X #(K,5)%(5-1) (8)
=1
K = (ROA(1,0) B(2)#(2,8) ... H(W)e(x,x)]T (9
2 . Hvvh) (10)
* = Xu'vT) (1)
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Table 5-2 Optimal Batch Data Compression Algorithm (continued)

L&)

[x(1) 5(2) ... w07

- "y r - -
H(1) . o #(1,2) ... &(1,%)
H(2)_ o
0 . o . . (N1 %
E{h’j o o)
J=N
vii) - B Y #(i,50e{gm1)
=

==K
‘' , =
3 #(5,=2)Q(=~1387 (0,2}
F :
2=

ke
R(:) 8., . H(i)] )

35'-'-%33‘;2 :é)*‘

Y f 387, T 43
8(i,k)Q{k~1)2 é,,-{:fn )

(o)

(1)

=(K-1)

(122)

(120)

(13)

(14)




TABLE 5-3 EXAMPLE: RECURSIVE COMPRESSOR

Compressor ~ FPori = k-K to k

a(f) = =(i)/r (1) “# (i) = Y8(i-1)

i) =3=1/r @) o(i) = [1-A(i)/rler (i)
2 TR v g () Min2)

B(i) = 1+ A(i)/r () (i) = YE(i-1)/eli)

(i) = B(i) (3¢) FG) = 3i-1) « el

A(i) = A(i)/8(4) (3a) (i) = #(i-1) + Tn(i) - ¢ (i)/r]
Alo) = (o) = %o} = 6{c) =D ¥(o) =1

Update

¥ (x-K) = p(k-N)/L1 ¢ p(ic-¥) F(N)]

s (k-K) = [1 - ¢ (e B)S(0))x(5) & P (ie-B)Z(30)
Extrapolaticn

2(k) = ()% (K} + 6(%)

r{x) = ¥y (k-8) « Ax)
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TABLE 5-4 EXAMPLE: BATCH COMPRESSOR

*(‘- Jj}= Y‘-j

{=M

» = ZY‘-R wii-1}
“i=1

R L

3

N
v = (i) - i {h;fizg} w{j-1}

1
ottt
23'5
.
Cra) w7
=1
=X
tt - o hc % 3%"2
fxer)

e
) e ah B3 .2
rté 2'5‘.'% s_hg- "é ;__si;gi
s N
E=max{ii)et
. :
x; = 2(i)

Extrepoistion
¥(x) =T & {x-n
P = 1 p(iem) 4 Q°

i,j= 1,

(1)

(5)
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Table 5-4 Example: Batch Compressor (continued)

Gain .
d;. = h n}yp - W SPTIA - j
i3 ‘th(k)+1t.j+h‘.tj+tihj t,5= 1,0 (11)
E=p*
D (12)
J=N
K = B B (k) + |
4 }_'j p ttyles: i=1,8 (13}
=1
Update
T
(k) = & (x o P -nt R
) (k) + Z_; K|z h; & (k) (18)
i=1
{1=N
ple) = o (%) - 5- '(' {_h* p (k) + t? 15
AT i (35)
{21




FIGURE 5-4

EXAMPLE: RECURSIVE COMPRESSOR ERROR
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FIGURE. 5~5
EXAMPLE. BATCH COMPRESSOR ERROR
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refer all observations to a common time and this movement in time obeys
the state dynamics equation, additional error is introduced due to the
presence of plant process noise. In fact, the compressed observation
error becomes correlated with the plant noise even though the original
problem contained no such correlation. We see this correlation, for
example, in the expression fur v*, equation (12) in Table 5-2, and in
the resulting equations in both algorithms. Consideration of this
correlation was taken in the derivation of both optimal compression
schemes. The presence of this effect results ia the major addition of
complexity to the data compression algorithms over that of the original
Kglman Filter. The condition for neglecting this effect and the tremen-

dous simpliciation that results is presented in paragraph 5.3.

There is another rather obvious approach to the optimal data compres-
sicn problem that is somewhat simpler and should not be overlooked.
This approach is to simply let the dara compressor be a Kalman Filter
with i=1 the first point and i{=N the last. If the output state is
evaluated at a time other than i=N, simply utilize optimal Kolman smooth-~
ing such as discussed by Gelb [5-3]. The output state vector from the
compressor then becomes the input compressed observation for the slow
Kalman Filter. T: corditions are such {no process noise) to insure that
the compressor egtimate is totally independent of the slow filter and
rhus represents a new uncorrelated observation, the resulting combination
of Kalman Filters will be equivalent to a single fast filter and will
thus be optimal. This approach is favoured under these circumstances
since it lends {itself to analysis, implementation and evaluation easier
than the other two apprcaches. If process noise is present, a conven-
tional Kalman Filter which accounts for observation and plan correlation

can be utilized. An example of such an algorithm can be found in Sage
and Melsa [5-11].

5.3 SUBOPTIMAL DATA COMPRESSION

7 s paragraph will show how practical suboptimal data compression
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algorithms can be derived from the optimal algorithms contained in the
previous paragraphs. Essentially the arguments of Womble [5-5] will be
reproduced and the problem progressively simplified by adding particular
constraints to the original problem definition.

5.3.1 NEGLIGIBLE PROCESS NOISE

The greatest simplification that can be made to the data
compression problem occurs when there ic no process noise; i.e., Q=0.
If the recursive algorithm of Table 5-1 is considered first, it is found
that, using the initial conditions and letting Q = 0; K=0and @ =0.
As Wr.mble points out, the prefilter transition matrix becomes the usual

value

() = &4, 1) (5.3-1)

ar? the prefilter equations reduce to

i=N

~ T

J(N) = z § (i,1)3(1)%8(4,1)
- (5.3-2)
i=1

and

=N

’;(N) = { (i,)m(i) (5.3-3)
i=1
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This approach essentially results in the compressed observation being a
rather sisple woighted average which shows considerable computational
advantage over the original Ka'man Filrzr. Similarly, the batch algorithm
simplifies since, for Q = 0, Q* = O, T* = 0 and R* reduces to a much
simpler matrix involving only the original R matrices. It begins to
become obvious that, in fact, the two algorithms actually end up process-
ing the observations identically as stated previously. Joglekar points
cut that, rather than having Q vanish, Q should be negligible relative

to the observation error; i.e.,

[{HCL) 2(1,1+1)Q(L) &7 (L, H+DHT (D) || << |[R(D) || (5.3-4)
where the double brackets denote the matrix norm.

Example: For the simple Markov example, equation (5.3-4) reduces to

Yng(la‘f) << 5° (5.3-5)
x v

Therefore, it is reasonable to expect to invoke this assumption if Gi
<< oi when the process noise shows little variance relative to the
observation noise. (The process begins to look like a constant zero.)
Also for the limiting cases v+l and y+0, the process loocks like a
constant bias or simply white noise like the observations. Of course,
this last case makes the entire attempt of estimation ridiculous,

Numerically, this particulzr example corresponds to (0-09) << |,
5.3.2 NEGLIGIBLE SYSTEM DYNAMICS
If over the compression interval, the system dynamics
appear to be ¢ = I,additional simplification of the algorithms

result. This condition means that it looks like the measurements o.cur

at the same time or that no "reasonably accurate” dynamics can be resolved
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over the interval due to observation error. In the recursive algorithm

we find

1N

?(!i) = .25(1) (5.3-6)
i=1
iaN

;(ﬁ) = Zl(i} (5.3~7)
is]

In the batch algorithm, the H* matrix simplifies considerably.

5.3.3 STATIONARY OBSERVATION STATISTICS

Also, if over the compresszion interval, the observation
statistics do not change; i.e., R(i) = R for all 1, the recursive algo~
ritha looks like the following:

T - Hr[% i‘] H (5.3-8)
- 18
T =ulig] (L ' .
2 = u [ﬁ‘] (s) Z‘“’ (5.3-9)
1=1
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Joglekar [5-4] was motivated by the appearance of the
weighted 2verage measurement compression to construct “exact averaging"”
algorithxs which are designed to give the best estimate of the state
given that wnly equally weighted averaged measurements are available.

He obtaine-. an expregsion for the information loss due to "exact averag-
ing." Hi< ¢xact averaging algorithms included consideration of process
noise aud pssociated correlations. The development is quite lengthy and
will not be repeated here.

W
)
&

SENSITIVITY ANALYSIS

A particularly significant advantage for developing optimal data
compression algorithms is that they provide a performance standard for

n and evaluation of suboptimal realizeable approaches. As

shown in paragraph 3.3, it is possible to determine exactly those terms
that were chosen to be neglected and check the validity of the assumption.
Unfortunately, wher suboptimal, the associated error covariance calcula-
tions are incorrect since they are based upon simplifying assumptions.

herefore, the calculated suboptimal error covariance can no longer be

e

sed as a true measure of estimation performance. Fortunately, however,
oprimal estimation theory comes to the rescue by providing a means to
caiculate the actual error covariance of a suboptimal implementation and
thus compare it with the optimal to determine the level of performance
degradation. Again, Gelb's book [5-3] provides an excellent discussion

of suboptimal filter design and semsitivity analysis.

In order to calculate the actual covariance of a suboptimal design,
it is necessary to build a sensitivity algorithm tajilored to fit the
original compression approach. Therefore each f the three optimal
algorithams in parsgraph 5.2 must have their own associated sensitivity
algorithm. 1In his report, Joglekar [5-4] derives equatioas for the
acrral covariance when using the averaging type compression algorithas
he derived. The author does not, however, provide s sensitivity algorichm
for the general batch compressor. Womble [5-5, 6] also fails to provide

e
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a sensitivity algoritim for the prefilter. Sensitivity is therefore
clearly an area of data compression requiring additional work if designers
are to have a complete set of tools with which to develop practical data
compression algorithms.

5.5 GUIDELINES FOR OPTIMAL DATA COMPRESSION DESIGN
5.5.1 ESTIMATION RATE AND SHANNON'S THEOREM

The first question to be considered involves how frequently
to estimate the state of the system to specify accurately the state at
all times. Shannon's Theorem ~ found in Monroe [5-12] - says that if a
signal is bandlimited and contains no frequency greater than ﬁsignal
(radians/ second) then it is possible, in principle, to recover completely
the original signal from the sampled signal if sampled at a minimum rate
of

0, = Ws{gnal //g'per second ' (5.5-1)

This is to say in theory, no information is lost if the signal is
perfectly sampled at that rate or faster. Since it {s desirable to
reconstruct the signal as accurately as possible and with a minimum loss
of information, cycle the signal estimacor (or slow filter) no slower

than §s. In fact, since there are no perfect samples or perfect estima-
tors, estimate even faster than Qs - perhaps by a factor of two to ten.
Another problem is that real-world signals are not often truly bandlimited
but often only an accurate estimate of the lower frequency components is
of interest. Shannon can still be used as a guideline to select the
estimation rate but consideration must also be given to the affects of

the higher frequency.
5.5.2 SAMPLING RATE AND THE KYQUIST FREQUENCY

The Nyquist Frequency or folding frequency is defined by
Bendat and Piersol {5-13] as
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oy = ﬂrﬁsa.Piias(radianx/second) (5.5-2)

The similarity to equation (5.5-1) is undoubtedly not coincidental. If
there is any frequency component in the signal - be it due to observation
error or plant noise - there will be confusion between the higher freq-
uency comporents and the lower frequency components that are presumably
of interest. This problem is well known as ~liasing or the “"folding” of
high frequency components into the low frequency. This is inherent in
all analog-to-digital sampling systems. There are two practical methods
of handling the aliasing problem. The first is to simply raise Wy by

raising the sampling frequency until there is ne frequency component

ve w.. This technique is not always practical however. The second
more efficient method is to simply analog filter the data ptlor to
pling or digitally prefilter the data by simply averaging it in
natches as in data compression. The analog and digital prefilters are
in fact complimentary; the analeg being prefer: :d to remove very high
frequency noise {(r.lative to the signal) and the digital to remove noise
which is not so high compared to the signal. Joglekar [5~4] discusses

this in greater detail in his paper.
5.5.3 SERIALLY CORRELATED OBSERVATION ERROR

If the observation error has a bandlimited serial correla-
tion, either naturally or due to the prefiltering, the effects on rhe
iniormation content of the observations as a function of the data rate
and correlation should be considered. As an example, Yollow the arguments
of Clark [5-8] and consider exponentially correlated observation error

where the correlation coefficient of the original data is given as
oD = E[v(t)v(t+T) 1/ Elva(e) ] (5.5-3)
= exy (-!T]//§v

where T _ is the correlation time coanstant. The discrete noise propaga-
; v
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tion equation for this stationary case is then

v(k) = o(8¢t)v(k-1) + gg(ét) g(k-1) (5.5-4)

z
which is a simple linear system driven by white noise of variance og

related to the ouput variance 03 by the relation
sg(ét) =0y ,J 1 - 2(Ac) (5.5-5)

Now assume that R measurements are again to be compressed utilizing an
averaging technique to yield a single compressed observation. The
variance and correlation time of the compressed measurement as a function
of the original statistics and the compression ratio should now be
determined. The compressed observation error Ve is given simply as the

average

1
?,(k) E k
¢ N é;v( W) (5.5-6)

By substituting this into the appropriate definitions and taking expected

values, it is easy to show.

,c%,v x lsl' (5.5-7)

where
1 ol ey
s I Oy -
W y o 11=4] (5.5-8)
L
i=} j=1

which can be simplified to

Nk
W
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(5.5-9)

The sffective correlation time of the compressed observation T is
related to the original T, by

Je . Nl (/)

N in (1/,) (5.5-10)
whers
. * S, /3
¢ 2/ 1 (5.5-11)
i=N  jex
EREA N
=1 7o (5.5-12)
or
5 i=y
5 = 8 1 a;si . i =%
im]

In Figures 5-6 and 5-7 the ratics are plotited as a function of the
compression ratio for various levels of relative correlation. Large
values of étf?v imply less correlation than small values. In Figure 5~6
we find {as we might expect) that for essentially uncorrelated error
ié§§€? = 10) the error reduction behaves id=ally as 1A/H. As the correla- H
tion increases, the less independent information is received and improve- ‘

ment diminishes.
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FIGURE 56
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In fact, for high correlation (At/r\r 0-1),
even after 20 samples.

little improvement is observed
Figure 5-7, shows that for conditions of high

correlation, the datg conpression process does not significantly increase

the basic correlation time. However, a dramatic increase of correlation

time is realjzed by compressing observations that originally contained

little correlation. Joglekar [5-4] recommends a sampling rate such that

0-25 ¢ At/fv < 1.0

in order to efficiently recover most of the information.

— I U N P

S




REFERENCES

{5-1]

(5-2]

[5-€]

(5-7]

(5-8]

Kalman, R.E., "A New Approach to Linear Filtering
and Prediction Problems," Transactions of the ASME,
Journal of Basic Engineering 82D, 35-45 (1960)

Kalman, R.E., "New Results in Linear Filtering and

Prediction Theory," Transactions of the ASME, Journai

of Basic Engineering 83D, 95-108 (1961)

Gelb, A. (ed), Applied Optimai Estimaticn (Cambridge,
Mass: MIT Press, 1974%)

Joglekar A.N., "Data Compression in Recursive Estimation
with Applications to Navigation Systems,” SUDAAR
No. 458 (Stanford University Dept. of Aeronautics

and Astronautics, 1973)

Womble, M.E. and Potter J.E., "A Preflitering Version
of the Kalman Filter with New Numerical Integration

Formulas for Riccati Equations," Proceedings of the 1973

IEEE Conference on Decision and Control, (San Diego.
California, 1973)

Womble, M.E., "Data Compression Via Prefilters." (1974

Bar-Shalom, Y. "Application of Data Compression to Real-Time
Estimation,” Presented at the IEEE Decision and
Control Conference, Miami Beach, Florida (1971)

Clark, B.L., "Developuent of an Adaptive Digital Target
Tracking Filter and Predictor for Fire Control Applications,”
NSWC Technical Report TR-3445 (i976)

90




2

[5-9]

{5~-10]

[5-11]

(5-12]

{5-13]

Warren, A.W., A Continuous-Discrete Data Filter for

Pre-Filtered Observations (Seattle, Washington: Boeing

Computer Services, Iac., 1973)

Kizner, W., "The Eniancement of Data by Data Compression

Using Polynomial Fittin;,”" JPL Technical Report 32-1078
(1967)

Sage, A.P. and Melsa J.L., Estimation Theory with
Appiicatious to Comsunications and Control, (New York:
McGraw-Hill, 1971)

Monroe, A.J., Digital Processes for Sampled Data Systems,
(New York: John Wiley and Sons, 1962)

Bendat, J.S. and Piersol A.G., Random Data:Analysis

and Measurement Procedures,:(New Yovk: Wiley-Interscience,

1971)

91

ol o




CHAPTER 6 ‘
MAXIMIZATION OF INFORMATION CONTENT

6.1 INTRODUCTION i

Sometimes it is necessary to restore, in total, exceedingly large
amounts of data that have been collected. This is especially true of
projects where data i{s collected by one responsible agency, stored and
retrieved by another agency, and used by several different agencies for

different purposes.

For example, live aircraft test data collected under varing environ-
ments may be desired by agencies interested in missile simulatioms,
others interested in aireraft performance, still others interested in
instrumentation accuracies, etc. Often the storage of such data i
referred to as a "Data Base" or a "Data Bank."” The designer of such a
systea encounters problems that do not normally arise when smaller

«<mounts of data are involved.

It is not unusual for such data bases to contain several millien to
a billion or more words of data. The cost involved in the storage and
retrieval of such data can be prohibitive if careful planning is not

made in the design phases.

The purpose of this chapter js 1o 2ugwest pre-iical wa,s by which
the sheer volume of the data can be reduced if vradenffs in accuracy ari
retrieval costs can be accepted. Hopefully, this will give the des:guer
a starting point when faced with a large volume of data to be stored and
retrieved. Additionally, suggested ways for preseating the large amounts
of data to the user will be discussed with a few guneral purpose graphic

routines presented in paragraph 6.4.

Preceding page biank
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6.2 VOLUME REDUCTION

For the purpose of discusion, consider the follnwing example.

A particular project expects to fly 500 air ~ air combat training

missions.

form, the following parameters for future investigatio:z.

1€ tour alrcraft participate for an average of 30 minutes par

Description

Time

Position

Velocity

Acceleration
Attitude

Angle of Attitude/
Angle of Side Slip
Aiming Parameters
Aspect Parameters
Target 1D

Power Sétting
Fire Signal
Relative Winds

Total

No.

Parameters

W N wWooW W W e

[ )

27

It is desired to retain from each aircraft, in time-history

misgion and the collecticn scheme iz 10 samples/sec, the total number of
data wor'’s collected would be 27 X 4 X 10 X 60 Z 30 ¥ 500 =~ 972 X 10

words. Witn presenc storage devices, the cost of storage and retrizval

woula hs

ohihitive unless the veclume could be reduced.

6

A fixer step in approaching the problem should be to iavestigate

other metncds 4.z a21 in previous chapters of this document for reducing

the number of woids that et be stored.
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necessary to retain 10 samples/sec for every parameter.
techniques discussed in Chapter 2, alternate sampling rates can be

derived which may reduce the total number of words by a factor of two

or more.

Parameters such as fire signals, power settings and target identifi-

cation change relatively few times during a given mission. These can be

retained on a separate file, recording only the change and time of

change,
5.2.1 RECOMPUTING

Investigation should be made into the need for retaining

every parameter. Could some parameters be computed from others at

retrieval time with acceptable computer costs?

In the example given, velocity and acceleration can be

computed from position. Aiming and aspect angles can be derived from

position and attitude. Inertial angle of attack/angle of side slip

can be computed irom relative winds, velocity, and attitude data.
Relative winds can be derived from wind tables stored in a different

file. Assuming that target iD, power set. ing, fire signals, and wind

tables are stored on separate files (th: magnitude of these files would

be relatively small in comparison) and the paiameters mentioned above

can be recomputed, the number of words/sample becomes 6 instead of 27.

The reduction factor=4.8:1.

6.2.2 SCALING AND PACKING

Scaling a parameter simply means determining the absolute

resolution that must be mainiained when the data is retrieved. It is

important because the resolution determines the minimum number of bits

necessa-y to retain the parameter,

Using the sampling




Assume, in the example given, that a stored position
resolution of 1 foot with angular resolution of .1 degree is sufficient
to retain the necessary accuracy when the data is reproduced. If the
missions are to be flown in an airspace with a diameter of 50 miles,
then the dynamic range of a position word is $264000 ft. The number of
bits necessary to represent a positional parameter to 1 foot resolution
is 20 bits. The compression ratio for a CDC 6600 computer word is 3:1l.
For the 32-bit word machines the ratio is only 1.6:1.

Additional compression may be realized by making use of
the fact that the dynamic range of the first difference in positieon is

usually within 22000x5t where At is the sampling interval in seconds.

i: Tt = ,Z, the first difference lies between 240C which can te retained

-

in 10 bits. If only the magnitude of the first differences were retained,

9 nite would suffice.

In order to retain 1 foot resclution, it is necessary to
peviodically record the full position word wich intermediate updating of
position from the first difference. If the first differences are retained
to .1 ft recolution with rounding, the maximum error contributed by a
single sample 15 .05 ft. Assuming that uniform distribution of error is
setwexn 0 - .05, the average error contributed would be .025 ft/sample.
if the retained sample rate is 5/sec and the full position is recorded
vvery 4 seconds, average cumulative error would be approximately .5 ft.
{the 20th periodic samples would be the updated position). The additiongl

compression vealized by this scheme would be {20X20:20+20X10) = 400:220=2:1.
6.2.2.1 EXPONEKTIAL PACKING

Sometimes, as in the case of radiometric data,
the dynamic range of a varifable is extremely large. Acdditionally the
rate of change can be of such magnituge as to preclude using the
first-difference technique described previously. Usually in such cases,
absolute accuracy is not required. Instead a given uusber of significant

digita of accuracy would be sufficlent. Using tlis criteria, an exponsn-
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tial packing scheme could be devised such that the exponent of a variable
could be retained in a few bits with the normalized (leading zeroes

suppressed) variables presented to the desired number of significant
digits.

This scheme can be very useful if the word size
on the computer is relatively large and the computer contains floating
point arithmetic. Consider the CDC 6600 computer word for example. The
characteristic and sign are in 13 bits whereas 47 pits are used to

represent the mantissa.

Makivg use of the CDC normalized floating
arithmetic with shift and mas« instrucctions, two words with six signifi~
cant digits of accuracy may be packed into u singie word. The compres-

sion ratic is 2:1.

Hord 1 Ward 2
‘ % - : - : t E
Char Mantissa Shar - Mantisya i
i 1 - _>/t,- — it
\ ‘ -
30 bits | 30 bits

Packed Wnvd

An advantags of this scheme is that the ds.a is already in acceptable
floa ing point representation and does not need . c.psrate table to

retain scale factors.

£.2.2.2  FIXED-LENGTH M7INIMUM BIT

A simple example »f a fixed-leagth minimum bit
scheme wevld be the use of a single bit to represent fire signal; zero =

no fire, ane = fire. For a CDC 6600 computer wovdé tiw savings is 60:1.

Generally, however, the data cannot be represented

by a2 siang.e blt but in nany cases theve is a minimus number of bits




which can be used to represent the full dynamic range of data. (If the
dynamic range is relatively large, an alternate s-heme such as exponential
packing, variable length minimum or a table of external scale facters

would be desirable.)

Cousider attitude, for exzmple, with a full dy-
namic range 0-360 degrees. If .1 degree resolution with .05 degree accu-
racy is sufficient the dynamic range would be 0-3600 with a scale factor of
10 which could be retained in 12 bits. The storage savings wouid be 5:1
tor a CDC 6600 computer word. The technique to pack words is simply to
zultiply the original word by i0, round, integerize and pack using shift

2nd mask instruction. To unpack, simply mask, shift, and divide by 10.

The technique does nct make full use of the
-torage capability of 12 bits. 1If the scaling factor were change tn
23957360, an accuracv eof 0435 instead sf .05 could be realfzed.

An alternate version of a fixed-length, minimum-
hit scheme would be ts rotain a rable of scale factors with sufficient
add:zional bits allocated to each word for pointing to the correct eatry
v the table. This scheme zliows for a broad dvnamic range of a given

ariable.

An alternate forw of the minisua bit scheme is
to use a variable number of bits to represent i parameter with a broad

dv¥nam.c ramge. A truly variable scheme would require an external table

[ 4
ol
(3]
o

eatries pointing to the number of bits used Lo represeat a parameter
i

at a given time. There is the additional need for s pointer to poiat to
t

n 2o0dified version ctf the variable bit sacheme

L d

would be to divide the dynamic range into bands with a given number of
bits allocated for each band. A pointer {5 retained with eacn word that
would point to the correct band with an inherent number of bits.
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_ Consider a variable with a dynamic range of O-
50000 with unity accuracy and resolution requirements. The data fell
between 0-200 ninety percent of the time and was greater than 200 only
ten percent of the time. If two bands were allocated containing 8 bits
and 16 bits respectively with a single bit to point to the correct band,
the savings over a fixed length minimum bit scheme would be

16: (.9X(8)+.1x16+1) = 16:9.8
For a CDC 6600 computer word, the compression ratio is
60:9.8 6:1

Additional computer cost is involved to obtain the correct number of
bits foc shifting.

6.3 PRESENTATION

One of the most important and sometimes least emphasized areas of
data reduction is data presentation. Often a simple change of an
output format can mean saving many manhours in data analysis. Appropriate
selection of numerical and graphical presentations can sometimes mean
the difference between an accurate analysis or one that is biased by the
analyst simply because he was not able to observe unexpected relationships

or detect system errors.
6.3.1 NUMERICAL PRESENTATION

Numerical presentation implies presenting the data in a
numerical format whether it be a simple printout of data or more sophis-
ticated schemes of using numerics (or symbols) to represent various
conditions or levels. Examples of such are digital pictures or number

graphs.
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6.3.1.1 THE TIME-HISTORY LIST

When presenting data in a time sequential
format, a column presentation is usually preferred. Every effort should
be made to output only a single parameter for a given field. This
allows the user to scan a column and observe trends without having to

search for the parameters in a maze of printouts.

Often the number of available print columns for
a given listing is not sufficient for presenting all the desired parameters.
In these instances, additional listings should be generated, usually
with time on each listing for easy correlation. The simplest method
involves generating the additional listings on separate files with

disposition to a printing device.

1f additional files are not available due to
program limitations, the data can be written to a single file with
appropriate code numbers to indicate separate listing. Before printing,

the file can be sorted and printed by code number.
6.3.1.2 REDUCING PRINTOUT

As a general rule, a printout of every sample
is neither desired nor needed. Selected samples that show significant

levels, changes or samples at significant events are favored.

When the requirement is for data only during
and after significant changes, the programming is easy to implement.
When data prior to significant events is desired, the implementation is
not as easy. If sufficient core storage is available, a rotary buffer
could be maintained with sufficient past history retained to print the
required data prior to events. The modular function available on most
compilers is an excellent tool for retaining the current address in the
rotary buffer. (§imilar rotary schemes are often used when doing mid-

point smoothing and editing of data.)
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6.3.1.3 FIELD REDUCTION

Often the number of columas needed to represent
a given parameter can be reduced by scaling techniques discussed previously.
Other methods include printing tha data in integer format with implied
decimal. If a parameter, such as time, has coluans that change infre-
quently (e.g., hours, minutes), these can be written at the top of =zach
listing with less print columns assigned to the jarameter itself. In
any case, the columns assigned to a given paraseter should remain constant
to avoid cenfusion. It is not unusual for thirty or more parameters to
be listed on & single page in column format with proper scaling and

techniques.

6.3.1.%  MATRIY PRESENTATION

¥hen data is of a matrix aature such as pictures,
cell structures, =tc., eifort should be made to present the d3tsz in a

quired columns {or rows) of the data cannot be

34
)
r
a1
e
"
-
o
]
g
-
[
.
]
Ity
]
.-lv‘
o
]
13

additional liszings should be generated such

-wed together to observe the dara in matrix
is contained in the matrix, these vaiucs

should be set to Blaask for printout purposes.

Graphical presentations have advantages over numerical
presentations in that much =wre dats can be presented in an easily

assimilated menner. A disadvantage is that more computer time is needed

[+ 9
Lal
Lv]

and additicnal and sozetimes complex mathecatics must be programne

construct visual picturas.

There are nuse.sous texts, papers, and articles devoted to
all phases of computer graphics; from simple graphs to complex 3-D calor
aovies and holograms. This discussion will mention the advantages of a

few basic types of graphic presentations with simplified aigorithms for

101




T T T T

eroducing mure complex plots such as 3-D and surface plots with hidden
lire removal.

6.3.2.1 RECTANGULAR PLOT

The rectangular plot is probably the simplest
and most used of all types of plots. It simply involves plotting a
dependent variabie or variable on a vertical scale as a function of an
independent variable on a horizontal scale. Uses include quick-look

editing, observing trends and functional relationships.

6.3.2.2  POLAR PLOT

The polar plot is useful for pictorially repre-
senting the function g = f(0). To plot, the function should be mapped

into rectangular plot coordinates (U,V) by the following:

[ et
n

g sin (O)

<
1}

g cos (@) (6.3-1)

Useful examples of polar plots include vulnerability envelopes, antenna
patterns, and radiation patterns.

6.3.2.3  HISTOGRAM

Histogram plots are used in determining the
distribution of a given set of data. They are often used in conjunction
with and in lieu of statistical measurements. A goodness of fit can

often be inferred by a simple histogram.
6.3.2.4  TIME-HISTORY PLOT

The time-history plot is used for observing
data trends or drifts, noise, biases, anamolies, timing problems and

interrelationships between variables. The most uncomplicated time
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history is a simple rectangular plot with time the independent variable

and the test item the dependent variable.

4s a general rule, however, the time of interst
is of such magnitude as to preclude putting it on a single frame (plot).
To achieve the continuous format, several frames must be abutted, some-

times requiring complex programming.
6.3.2.5 THE 3-D PLOT

The 3-D type plot is a plot whereby relationships
in width, aepth, and height may be observed in a single picture. An
extension to this concept may be a family of functions displayed in some

increment of a changing dependent variable.

There are many methods of constructing a 3-D
picture using various gray-scale techniques, color schemes, and geometrics.
This discussion will present three geometric methods for determining a
given point represented by three coordinates (X,Y,Z) on a plotting plane
in a 3-dimensional framework. A line can be drawn by determining the

location of its two end points.

6.3.2.5.1 OBLIQUE METHOD

The oblique picture is one in which two of
the axes are always at right angles to each other, being in a plane
parallel to the image plane with the third or "depth" axis being at any
angle (except 90 degrees) to the vertical (60 degrees or 45 degrees
being generally used). The location of the point (X,Y,Z) can be found
by going along one axis at a distance equal to the corresponding
coordinate and then parallel to each of the other axes at distances
equal to the corresponding coordinates. This can also be done mathemat-
ically by finding the horizontal and vertical distances from the point
of the origin in the image plane to the point in question in the image

plane.
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As an example, consider the coordinate

system drawn as indicated in Figure 6-1.

v yA
]
t
1 (x,Y,2)
i 4
' !
[ U
e '
& e )
1@ ' .
. g y ' X sin o -y
| B - ' .
i ]
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' 2 AT
P o 9'3"
ot S
e Lo mmm e s’
1
1
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if a is taken as the positive angle between the positive X axis and the
positive Z axis and (u,v) are the horizontal and vertical coordinates of

the point (X,Y,Z) in the image plane relative to the picture origin,

u = XSin(a)-Y
(6.3-2)
v XCos(aw)+Z

Although the oblique method is a relatively simple means of dipicting

3-D, a certain amount of distortion may exist if angle a {s not - .. "ly

chosen.
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6.3.2.5.2 ROTATION MATRIX

The following matrix is useful for rotating : 1
the point (X,Y,2) through angles ¥, 6, ¢ (attitude angles of a viewer)

for projection to a plane normal to a line of sight. The angles are

defined in reference to the coordinate system depicted in Figure 6-2.

Positive rotation is clockwise looking out the axis of rotation.

C¥Co SY co -S0
{
1 Q = | CYS0S¢-SYCH SYSOS$+CYCH CoSé | (5.3-3)
t CYSOCH+SYSH S¥S0C$-CYSé cos¢

i, WAy

C indicates Cosine function !

t S indicates Sine function

[ P

+Y «% C

igure 6-2
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6.3.2.5.3 AXONOMETRIC METHOD

The axonometric method is theoretically an
orthographic projection (parallel projection to the view plane) of an

object to the image plane; the object being rotated such that three

faces show. 1If ¢, 9, 9 are the attitude angles of the viewer, the

coordinates (u,v) in the picture plane of a given point (X,Y,Z) can be
found as follows:

= T

x!
Y
Z‘ (6.3-4)

Where & is a 2x3 matrix defined as follows:

= ot .
! ro=a i=1,2 J=1,2,3 (6-3-5)
i,b i+,
1 in the axonometric method, the picture plane does not need to be fixed
J Sut can be located anywhere along the line of sight (LOS). (See Figure 6-3.)
)
j[ fz\fiEVPOint ///£:cture Plane
Line in
Picture
108 Plane ~

\\\
“.4//€:ne to be Drawn
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Figure 6~3
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6.3.2.5.4 PERSPECTIVE METHOD

The perspective m:thod {8 muci like the
axonowetric method in that a viewpoint is speciftied and the object is

rotated through the aspect angles of the viewer. Instead of orthographic
projection, the rotated point is projected to a fixed image plane along
a line from the poin: in question to the viewpoint (see Figure 6-4).

Viewpoint Fixed
Tmage Plane

Line in picture plane

Line in question

TSRS N a ;1o [ Y IH TP TITIANP T TR TSNP ORI NN IEA

Figure 6-l

If ¢, ¢, O are attitude angles of che

viewer as defined previously, then the coordinate (u,v) in the picture
plane can be found as follows:

X X
Y = 0 Y (6. 3"5}
. | . |
R
107
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u=(Y R /x) v= (2 )R /X) (6.5-7)
R V R R V R

Ry is the normal distance from the picture frame to the viewpoint.

In equation (6.3-6) above, the coordinates
(xg, YR’ ZR) represent a point defined in a system where the origin is
at the viewpoiat with the positive X axis along the LOS, the positive Y

axis to the left and the positive Z axis up. The equations for (u,v) in

2quation (5,3-7) resilt from a similar triangle relationship developed

it. basic projective geowetry. To illustrate, let A be the plane normal

to the LOS and passi.y through the point (X, Y, Z) and let B be the
image plane (see Figure 6-5).

Plane A

plLane

S‘giewpoint
Figure n-5
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i From Figure 6-5

u - -8
X SR
or u . -Aang
XR (tanB
u =
Yv ‘1
and 1a=Y (R /X )
v v R
i v = Rv tana
¢ cos8
4 < X
ZR R tana
Cosg
i -R
{ v tana
L Y_= _Coss
i % ,jéi__ tana
] 3085
! z "t
4 R 4
4 R
{
' - R I}. %
i v ngJv;.R;

Rv/XR can be imagined as a variable scaling factor which
scales the object image as a function of distance

n2espective method, though mc

from the viewer. The

re complex, provides a picture in which it
is easfer to visualize relstive distances.

il Rant JNEER " e Ml S h

Jo——
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6.3.3 COMPUTER GENERATED MOVIES

An area of computer graphics vorthy of mentioning is the
use of the computer for generation of a series of pictures on film
suitable fur showing with a movie prujector. The effect is an animated

sequence approximating the dynamic actions of the objects in the rictures.

The sceps for constructing a simplified movie of an

object described by line structure is as follows:

1. Advance frame

2. Scale frame

3. FKotate all objects through view angles

4. Construct object on frame as per one of the previously
described methods.

5. Advance frame

The steps are deceptively simp.e. The most difficult is usually the

scaling of the frame and objects such that a realistic picture is achieved.

For further information, the reader is referred to the
paper "Constructing 2-D Pictures of 3-D Objects With A Digital Corputer”
(ref 6..), and Program P1332, "Generalized Movie Making Program" developed

by the Directorate of Computer Sciences, ADTC, Eglin AFB, FL.

6.3.4 HIDDEN LINE ELIMINATOR

Numerous techniques have been developed for the removal
of hidden lines (lines that are not seer when viewing an object or
surface) in a picture by a computer. As a general rule, each technique
has peculiar applications. The reader is referred to the bibliography

for references on the various techniques.
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One technique that is fairly easy to implement and has
application when atteapting to plot a surface, a matrix, or family of
functions makes use of the following well known principle: If a surface
can be described by a family of curves and the curves are ordered froa
the foreground to the background, 2 curve becomes invisible at points of
intersection with curves that are further in the foreground. These
~oints of intersecticn may be easily found if a "vigibility” curve is
established in the 2-dimensional plotting system consisting of the
maximum (positive up) vertical plotting unit eucountered for each hori-
zontal plotting unit. The new curve tc be plotted becomes invisible at
all points where the vertical units of the new rurve are below the
corresponding vertical units on the visfbility curve. A new visibility

curve is established each time a new curve is plotted.

NOTE
The above assumes the surface docs not become
visible from the underside. If the surface
is visible from the underside, a "minimum"
visibility line may also be established
consisting of the minimum vserticai plotting
unit encountered for each horizontal plotting
unit. The curve in question is invisible at
all points there the corresponding vertical
units are below the maximum and above the

ainimum visibility curves.
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The subroutine FLTIDI included 1in paragraph 6.4 makes use
of the above principle for aaking an oblique plot of a family of curves.
PLTMTX may be used in conjunction with PLT3ID] for plotting a matrix.

6.4 USEFUL GRAPHIC SUBROUTINES

The following FORTRAN subroutines may be used to construct time-

history plots and obliique 3-D surface plots.
Plotting Package

and labeling. If

Use is made of an SC4020

which centains routines for constructing lines, scaling,

the user dees not have access ro the SC4020 Plotting
Package, appropriate routines will peed to be substituted.

The
aigorithm, however,

will remain the same. Comments within each routine

define the routine function and interaction

with other roucines.
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util PLOTIT(TIME NPGR,ISHMB,OX,0Y D2}
SION DX(NPGRY, SY(NPGRi DZ (NPGR) .iSHBtNPGn)
TON CENTI(3)

DIMENSION SCAL(3)

DIMENSION IBLINE {103,ITLINE(10)
gccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Cc THIS IS A GENERAL PURPOSE ROUTIME FOR PLOTTING 1-3 GRAPHS ON
Cc A CONTINUCUS ABUTTED FRAME OUTPUT.,

g IT USES AN SC-4020 PLOTTING PACKAGE VO CONSTRUCT LINKES AND LABEL
cessx CONTROL VARIABLES

C TIYE =HORIZONTAL VARIABLE

c NPGY= NO., OF POINTS YO BE PLOTYED ON A SINGLE GRA

C ISM3= AQRAY CONTAINING INTEGERS YO SELECY PLOTTING SYMBOLS

C GX=VERTICAL VARIABLE ARRAY FOR TGP GRAPH

c Dy= VERtICAL VARIABLE ARRAY FOR MIODOLE GRAPH, (IF REQUESTED:
c CZ=VERTICAL VARIABLE ARRAY FOR BSOTYOM GRAPH.( IF REQUESTED)

c NOTE- IF VAPIABLE =-999993, THEW IT IS CCNSIDER<?

g AND IS NOT PLOTYTED OR ANNOTAYED,

c NGRAPH= NO OF GRAPHS 10 BE CONSTRUCTED, (MAX 3)

c DELT=TIME RATE, (THIS IS USEN FOR DETERMINING SCALE)

c ICALL =1 IF BEGINNING OF NEw PLOT, (NEW FRAME IS STARTED ANO
C LABELING IS PEQFOR%ED.)

c 0 IF NOY BEGINNING OF NEW PLOY

c NPI= NO OF POINTS PER INCH TO SE PLOTTED. TYHIT IS USED HITH
c DELY TO DETERMINE SCALE,)

C RANGE = ARRAY CONTRAINING UPPER AND LOWER LIMITS OF DXx,3V,DZ.
c CENI = ARKRAY CUNIALNING  “EDiaN VALUE UF Knﬁth

G VERT= BC[l AQRAY CONTAINING VEITICAL LASELS

e HOR = BCD ARRAY CONTAININT 3 HORIZONTAL LABELS. (1 AY TaP, 2 AT

BOTYTOM)
'LA8=1§A§5 ag gﬁggﬂ TIME LABELING AND ANNOTVYATION OF CXy CY, C2,
THHIK= RATE AT WHICH TIME HACK MARKS ARE VO BE INSERTEOD.

Tess (0SAL VARIABLES
NEWFRM=,TRUE, INDICATES TVTIn. FOR KEW FRAME.

- RS

I

-y

M LAREL=,TRUE, INOICATES TYIME FOR AANNDTATICN CF TIMC, CXe CY, CZ.
< JLEF Y= LEFY STARTING “ASTOR POSIYION, (90 FOR FIRSY FRAME, ZERO
i OTHERKISEY
v XRAST= GRAPH KEIGHT IN QASYOR UN] 7S.
& FMTIM = TOTAL TIME FOR A SINGLE FRAME,
C TIMSCL = TIME SCALE FACTOR
C SCAL = ARRAY CONTAINIAG SCBLE FAGCTORS FOR OX, DY, DZ,
C TIvL= TIME CORRESPONDING TO LEFTY CF FRAMEC
g TIMR= YIME CORRESPONDING TO RIGHY OF FRAME,
CCCCCCCCCCCCCCCCCCCCCCSCCCCCCCCCCC cCgceceeeencecececceecececcceceeecceeeeeerce
COMMON/LAGEL/VERT (3), '3
coxHON/Paor/NSQAPH.BELI.ICALL.NPI.RANGE(2,3!' TLAB, TMHCX
EXTERNAL TABL1V ]
LOGICAL NEWFRM,LABFEL
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CHAPTER 7
SUMMARY

Data compression and maximization of information contenc has become
a technology which can reduce: (1) computing costs, (2) datz storage
costs, (3) transfer time/costs, (4) hardware costs, and (5) response
(decision-making) time. It is realistic to expect compression ratios in
the range of 3:1 to 10:1 using techniques discussed in this document.
Since any large data base problem may be amenable to more than one
compression/maximication of information content technique, this document
categorizes and describes individual techniques to aid the user in a
choice for his application. In summarizing techniques, we may classify

them as in the diagram, Figure 7-1.

7.1 REDUNDANT DATA REMOVAL TECHNIQUES

These techniques are successful if sampling rates are fixed and

generally greater than the usual data information rates. They eliminate

data samples that can be implied by examination of preceding or succeeding

samples; or by comparison with arbitrary reference patterns.
7.2 TRANSFORM METHODS/LUMPED PARAMETER TECHNIQUES

This family of techniques operates on data samples via mathematical
transformations whereby all the original data samples are irretrievably
lost, but are represented by parameters in a domain other than time
(such as frequency or sequency). The original data may be reconstructed

within some error tolerance by the inverse transformations.
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Figure T-1
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Figure T7-1 (Continued)
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7.3 STATISTICAL REPRESENTATION TECHNIQUES

As in the case of transform methods, the original data is lost and
from there on is represented by other parameters such as statistical
parameters, coefficients in a math model, or a smaller sawpling. The

original data may not be reconstructed.

7.4 OPTIMAL ESTIMATION TECHNIQUES

The cijective of optimal techniques is to minimize some selected
measure of esror and to utilize all informavicn concerning system dynamics,
noise statistics, and initial conditions. An optimal technique provides
a performance standard for comparison and evaluation of suboptimal

appruaches.
7.5 MAXIMIZATION OF INFOPMATION CONTENT

Provides suggested practical techniques for reducing the sheer
volume of data when trade-offs in accuracy and storage/retrieval costs

can be accepted. Also, included are suggestions for presenting large

amounts of data to the user via a few general purpose graphics routines.
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