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ABSTRACT

The asymptotic behaviour of parameter estimates and the identification
and modeling of dynamical systems are investigated. Measures of the
relevant information in a given sequence of observations are defined
and shown to possess useful properties, such as the metric property on
the parameter set. The convergence of maximum likelihood and related
Bayesian estimates for general observation sequences is investigated.
The siutation where the true parameter is not a member of a given para-
meter set is considered as well as the situation where the parameter
set includes the true model. The finite parameter set case is empha-
sized for simplicity in the convergence analysis, but the results are
extended in general terms to the infinite parameter case. It is shown
that under uniqueness conditions on the output statistics of lineur
dynamical systems identification procedures converge to the true model
if it is a member of a given model set. If the true model is not a
member of the set, then the estimates converge to a model in the set,
closest to the actual system in the information metric sense. Sta-
tionary and non-stationary systems are considered. Rates of convergence
in the mean are obtained, and the separate contributions of the sto-
chastic and the deterministic parts of the input to the convergence
rates are shown. The analysis also suggests methods for approximating
a high order system by a low order model and for selecting a repre-
sentative model from a given model set, applicable to infinite and even
non-compact model sets.
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CHAPTER 1

INTRODUCTION

This thesis is concerned with some fundamental guestions associated
with the common problem of assigning a mathematical model tc¢ a physical
phenomenon, using a set of observations. The situation is complicated
by the fact that the relationship between the observations and the
sought mathematical model is uncertain and can only be speci”‘eda in a
probabilistic framework. For mathematical tractability the problem is
formulated as one of selecting via some criterion the "best" model
from a specified set of mod?ls. The formulation of the mathematical
problem requires, then, the choice of a model set on the one hand anc
the choice of a model selection criterion, on the other. The first
choice presents an cbvious tradeoff. The more str;cily the model set
is specified, the more tractable is the mathematical solution, but the
less probable is the case tha* a correct model is included in the speci-
fied model set. As an illustration, consider the two extreme situvations.
If the model set consists of a single model, then the selection is tri-

vial, but the model may not be an adequate representative of the obser-

vnd phenomenon. On the other hand, if the model set is the abistract

"set” of "all models", then it obviously contains the correct nodel,

but a mathematical solution (or formulation) of the model selection

problem is then not feasible.
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The model set can be naturally specified in terms of a parameter

set, such that to each parameter there corresponds a model and vice

versa. The terms model set and parameter set will be used interchange-
ably and precise relationships between them are defined in the thesis.
The model selection problem can then be naturally defined as a para-
meter estimation problem. Given a parameter set the problem formulaticon
requires the selection of a parameter estimation critericn. The true
parameter cannot, in general, be assumed to belong to the prespecified
parameter set, as asserted above. It turns out that the maximum like-
lihood estimate, defined in Chapter 2 is wost adequate for this situa-
tion. On the other hand, the Bayesian methods of maximum a posteriori
probability and least squares, also Jefined in Chapter 2, intrinsically
assume that the true parameter is a member of the model set.

One objective of this thesis is to provide in a very general
setting answers to the following questions: Under what conditions do
the maximum likelihoos and the Bayesian estimates converde to some para-
meter in the parameter set? What distinguishes the selected model from
the other models in the model set and what is its xelationship to the
true model? For the selection of an estimation procedure is it reason-~
able to assume that the true parameter is a member of the set when it
is not? 1Is the true model selected when it is a member of the model
set? A question that arises naturally in this setting is: what is the
best ar.-roximation of a complex model by a simple one?

I. particular problem of considerable practical significance is that
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of dynamic system identification. The situation described above, and
the questions raised, naturally apply to the system identification prob-
lem. 1In fact, this research has been motivated by the problem of iden-
tifying the dynamic equations of an aircraft during its operation
throughout the flight envelope for the purpose of adaptive control. We
analyze the asymptotic behaviour u. :zystem identification procedures in
the presence and in the absence of the true model in a given model set.
The analysis also suggests a systematic approach to certain system
modeling problems of practical significance.

A major part of the analysis in this thesis will be restricted to

the case where the model set is finite. This restriction serves several
purposes. We chose to emphasize the statistical properties of the ob-

servation sequences involved (such as their content of information) and

to avoid considerations of topological conditions on the parameter set,
which are unavoidable if results for e.g. infinite compact parameter sets
are desired. This makes the analysis considerably simpler, and enables
us to consider very general classes of cobservation sequences. It is
nevertheless demonstrated in Chapter 7 that the results obtained in

this thesis for finite parameter sets may be extended to compact sets

by additiounal requirerents on the topology of the set, such as uniform
continuity of the density functions involv2d. Further re-<arch in

this direction is recomsmended.
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In addition to the above consideration, the case of finite para-

meter sets has a considerable practical significance as a method of

approximation. Identification techniques for finite sets of models

are considerably faster than those for infinite sets, as the search

procedure for the parameter satisfying the estimation criterion is

practically trivial. 1In fact, this thesis makes a strong case for the

finite model set, taking the viewpoint that the trus model is in most

cases not included in any prespecified set of models. Identification

is thus a procedure of finding an approximate model whether a finite or

an infinite model set is considered. The approximation is nevertheless

“coarser" when fewer models are included in the model set.

It should, however, be emphasized that a substantial portion of the
thesis applies to parameter sets that may be infinite and even non-
compact. This is the case in the derivation of distance measures on
the parameter set and the consideration of system modeling problems.

For comparison with earlier results we note that the convergence of
the parameter estimates is considered in this thesis in the probabilis-
tic senses of convergence almost everywhere (a.e.) and convergence in
the mean square (m.s.), which will be defined in Chapter 2. Consistency

is traditionally defined as convergence a.e. of the estimates to the

true parameter when it 1s included in the parameter set.

1.1 Eistorical Review

Parameter estimation techniques have been studied ever since the
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introduction of the maximum a posteriori probability ‘YAF) and the
least squares (LS) criteria by Gauss [1809], and Laplace (1820) and
their later studies by Edgeworth [1908]. Fisher [1922] ;ropssedithe
maximum likelihood (ML) estimate, which has since gained considetabie'
popularity due to its intuitive appeal and its asymptotic properties
(e.g. LeCam [1953]}.

The conegistency of ML estimates for sequences of independent and
identically distributed (i.i.d.) observations was proved by Cramer [1946]
who assumed differentiability to 4'th order of the probability density
fur~tions involved. Differentiability assumptions were dispensed with
in proofs by Doob [1934] and Wald [1949]. The main tool in proving con-
sistency for i.i.d. observations, is, naturally, the strong law of large
numbers. Roussas [1965] proved the consistency of ML estimates £our the
case of ergodic Markov observiation sequences, employin§ the ergedic
theorem. The m.s. convergence of LS estimates given i.i.d. obserwvations
was considered by Liporace [1971], who showed, via the muiiijlication
rule for indepundent random variaples, that the mean sqgv.¢sc oryor oF
these estimates is exponentially diminishing. In the case where ihe
true parameter is not included in the parameter set, the gstimates were
shown to converge to a parameter in the set, which is mos* similar to
the true parameter. The measuve of similarity suggested by Liporace iu
related to the information measures introduced in this thesis. (aines
[1975a) proved and applied the submartingale property of sequences of

maximized likelihood ratios on finite parameter sets to prove the con-
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sistency of ML estimates on such sets for a general class of observation
sequences, satisfying a certain probabilistic condition. Baram and
Sandell [1976) extended Caines' results to Bayesién estimates, which
were shown to be consistent a.e. and in the mean square,Aand showed that
Caines' condition applies to stationaxyy Gaussian linear systems.

The identification of linear dynamical systems employing parameter
estimation techniques has been studied intensively for over a decade.
However, several consistency proofs that have appeared in the early lit-
erature have overiooked the fact that for consistent estimation ou con-
pact parameter sets, uniform convergence of the associated probability
densities on the parameter set is necessary, while pointwise convergence
only provides consistency for finite parameter sets. Correct consistency
proofs have appeared in the laterature in recent years. Caines and
Rissanen [1974] (see also Rissanen and Caines [1974]) proved the consis-
tency of ML estimates for autoregressive and moving average (ARMA) ob-~
servation sacquences. Ljung proved the consistency of a general class of
stochastic aprroximation techniques [1974a] and the consistency of a
class of prediction error techniques [1974b). (see also Ljung [19751)
Caines (1975b] proved consistency for stationary processes of a more
general class of prediction error technigues, which includes the maxi-
mur likelihccl techinique for the case of staticnary Gaussain observation
sequences. The topological requirements specified by Caines [1975b])
reduce in the finite parameter set case to a requirement that there

exist 4 1 to 1 correspondence between the parameter set and the set of

. T R R W
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system's impulse responses, corresponding to the system's innovations
representation. Similar conditions were suggested by Tse and Weinert
[1975] (see also Tse [1976]) and by Hawkes and Moore [1976] (see also
Moore and Hawkes [1974]), who consifered the convergence of Bayesian
estima'.es on finite sets of stationary Gaussian linear systems. The
condition suggested by Baram and Sandell [1976] is a uniqueness condi-
tion on the ocutput statistics associated with the different models in
the model set. Other statistical conditions are motivated and derived
in this thesis. We shall comment on the correspondence between parame-
tric and statistical conditions in Chapter 7 as we suggest further
study of this subject.

Information methods have been suggested by many authors for thz
solution of the related problems of hypothesis testing, signal selection
and model indentification. 1In recent years Kullback's information
measure (Kullback [1959]) has proved tu be useful in tr< analysis of
parameter estimalion and model identification techniques. Akaike
({1972}, [1974]) has related Kullback's information with certain ver-
sions of the ML cxiterion. Kullback's information measure was employed
by Liporace [1971], and, following Liporace, by Hawkes and Moore [1976]
in their studies of parameter estimates given i.i.d. and staticnary
Gaussian observations. In this thesisz we d=fine and employ information
mgasures, which prove Lo posses valuable properties lacked by Kulliback's
information measure, such as the metric property on the parameter

spacc. Other information measures defined and employed in the litera-

o N T Nl
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ture, will be mentioned in Chapter 3 az they are compared with the

informaticn measures defined in thirf thesis.

1.2 Organizaticn and Results

In.the first part of the thesis (Ch#pters 2, 3 and 4) we consider
general classes of observation sequences and parameter sets. The re-
sults are spéciaiized to linear dynamical systems in Chapters 5 and 6.
Familiarity with advanced concepts of probability theory is only re-
quired in Chapter 2 and parts of Chapter 4. The sequence of Chapter 3,
sections 4.1 and 4.4, Chapter 5 and section 6.3 provides a consistent
discussion of the informétion approach to system identification and
modeling, which is the gainstream of the chesis. ' The rest of Chapter 4

is believed to be of theoretical interest and also of practical value,

which is demonstrated in sections 6.1 and 6.2.

In Chapter 2 we present the underlying probabilistic set up for the
thesis and recall definiﬁions and results from probability and estimation
theory used in the thesis. Since parameter estimates ney be based on
the possibly incorrect assumption that the true parameter is a member of
a given parameter set, we define the different probability spaces in

which the estimates are defined and in which the analysis is performed.

In Chapter 3 we define two measures of the relevant information in

each observation favoring one parameter in the parameter set against

another. Both measures will prove useful in later analysis. The infor-

mation measures are shown to be metrics, or distance measures on the para-
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meter set and to provide a measure of closeness of each parameter in the
set to the true parameter which is not necessarily a member of the set.
The information measwr«:. defined in this chapter are compared with other
measures qf information common in statistics and information theory.

In Chapter 4 we investigate the convergence of maximum likelihood
and Bayesian parameter estimates for general classes of observation
sequences. Consistency conditions are derived in terms of the informa-
tion in the observations and extended to the case where the true para-
meter is not a member of the parameter set. Rates of convergence in the
mean for the ML and MAP procedures are also dcrived.

In Chapter 5 we analyze the identification and modeling of sta-
tionary Gaussian linear systems. Ve show that the identification pro-
ccedures under consideration converge under a certain uniqueness condi-
tion to the true model if it is included in the model set. If the true
model is not a member of the model set the identification procedures
converge to the model in the set whose output statistics are best
matched to those of the true model. The selected model is also shown
to be closest to the true model in the information metric ase. It ie
then shown that under the uniqueness condition likelihood ratios and
a postericri probability ratios converge in the mean at rates faster
than exponential. The analysis also suggests solutions to ccther modeling
problems, such as the approximation of a complex system by a simple
model and an optiral representation of a model set by a single model.

In Chapter 6 we consider general classes of time varying linear

systems. In particular, we interpret for such systems the information

L
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conditions derived in Chapter 4, and obtain consistency conditions in
terms of the output statistics associated with the different models
in the model set. The Ll' convergenc : of the likelihood and the

a posteriori probability ratios is iuvestigated and the separate coun-
tributions of the stochastic and the deterministic parts of the input

to the information and, consequently, to the L., convergence rates are

1
shown.

In Chapter 7 we suggest further research of possible extension and
application of the theory. 1In particular, we show how the convergence
results cbtained in this thesis fur finite sets of parameters may be
extended to compact parameter sets. We also suggest further investi-~
gation of the prablem of existence and unigueness of a soluticn to the
estimation, or identification problem. Then we suggest further study
of the identifiability of dynamic systems via application of determin-
istic input sequences. Finally, we suggest applications of the theory

to classes of problems, not directly addressed in this thesis, such as

the identifiability of non-~linear systems and periodically varying

linear systems.

IR Lo e SR o
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CHAPTER II Q

PRELIMINARIES: PROBABILITY SPACES, PARAMETER

ESTIMATES AND STOCHASTIC CONVERGENCE 4

The purpose of this chapter is to present the underlying mathemati- .
cal set yp for this thesis and to recall definitions and results from
probability and estimation theory that will be used in the following

chapters.

Since a major chbjective of this thesis is to analyze, using correct ;

assumptions, parameter estimates that may be based on incorrect assump- 1
tions, it is essential to define at the outset the different probabilis- l
tic frameworks in which the estimates are defined and in which the ana- %
lysis is performed. We first introduce the correct framework in which
the analysis is performed. It consists of an underlying probability j
space and a separate parameter space, of which the true parameter may ;
Or may not be a member. Likelihood ratios and maximum likelihood esti- %
i

mates are naturally defined in this framework. On the other hand,
Bayesian parameter estimates are defined in a different framework where

the parameter space is a part of the underlying sample space. Conse~

a0

quently, the existence of a probability measure defined on the parameter
space (i.e. assigning to each set in the parameter space the probability

that it includes the true parameter) is postulated. The Bayesian frame-

. .
~ ewT g

work then inherently includes the assumption that the true parameter

is a member of the given parameter space, and is inadequate for the ana-

~ll=-
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of the general case coneidered in this study. Thus, while the Bayesian

(w! oo T s T e e A N B . i
\
|
|
|

set up is assumed in the definition of Bayesian estimates, the analysis

sl

of these estimates, as well as the maximum likelihood estimete, is per-
formed using the underlying, non-Bayesian framework.
Readers unfamiliar with the notion of measure and probability

spaces may identify here, and in the following chapters, the functions

|

\

1

' : £(z2"), f(znlz“'l) and £(s|z") with the familiar probability density,

canditional probability density and a posteriori probability density

} functions on Euclidean cbservation and parameter spaces. Several sym-

bols and terms, mostly standaxd in probability and estimation theory,
are introduced in this chapter. For other temms and symbols, defined

‘ throughout the thesis where they are used, the reader is referred to

the symbol list.

| 2.1 Observations, Parameters and Likelihood Ratios

ok e il Ml kel areschtdiiad

Consider a measurable space ({i, U) where {! is some sample space and

‘ U is a g-algebra of subsets of {i. The cbservation sequence (zn) is a

stochastic process on a probability space (2, U, P,) with values in a

measurable space (D, 0), called the observation space. We shall be in-

- terested in the case (D, D) = (RE, BE) where RE is the f£-dimensional

ek el

Euclidean space and BE is the o-algebra of Borel sets in RE. We call

. P, the true measure and * the true parameter.

The parameter space S is a set such that for each s € S there

s

exists a probability measure P_ defined on (2, U). Let Tz (*y S).

R v

REL 8 et

[
ol




T TS TR Ty Ty e

A e

WA

»

TR

T TR T

-

T Y TR T 3

RO O

AT TR T O ey

R T

AT T

MG ERR T o SRe .

"’

HEPS L

P A RV

-]13~

Obviously, * € T, but * need not belong to the set S.
For each s € T we denote by E expectation taken with respect to
P . We use the notation a.e. (almost everywhere) to denote events of

s
P, measure one. Events of P measure one will be denoted a.e. P..

Recall that the conditional gigggtation of a random variable x on

(Q, U, P) given A € U is a U-measurable random varisble denoted EA(x)

such that

E E (x) = E(x) (2.0)

For each s € § we shall denote by Eg the conditional expectation given

A, taken with respect to Ps.

If ¥ and V are measures defined on (2, U) then U is said to be

absolutely continuous with respect to V if for any set A€ U V(A) = 0

. .
implies U(A) = 0. U is said to be singglaé )with respect to V if it is
not absolutely continuous with respect to V.

Let (Uh) H (Uh(zn)) be the increasing family of O~subalgebras of

U, generated by

zh = (29500002) (2.1)

For each s € T and for each n 2 0 let PS n dencte the restriction of Ps
?
{

to Un' Suppose that for each n > 0 the measures Ps n are absolutely
' i

continuous with respect to some measure An defined on (Q, Uh). Then

)

This is not a standard definition. For a definition of mutually singular
measures see Rudin (1966}, p. 121.

s R
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d Ps n
= 2
fs,n % An ;: seT7T (2.2)

are the Radon-Nikodym derivatives (or densities) between the respective
measures.

The likelihood ratic between two parameters s, t € T is de-

fined as
% d P- n s.n
= e Ly
ht, Y 11 . f {(2.3)
t/n t,n

provided that Ps'n is absolutely continuocus with respect to P

t,n" When
the time parameter n is included in the argument we shall use the some- _

vhat shorter rotation

- - -

faln)) = f‘m(l(n)) iseT; aln) € Un

in particular

n, - n T
fs(z ) = f“n(z ) 1 s€7 (2.4)
t ., n -.t n, .,

b, (2)-h"n %) ; s, teT (2.5)

Foxanycel/nmdbevn such that f’n(b) ¥ 0 for all s € S, the con-

L4
ditional densities of c given b are

£ {c, b)
£ (c|p) = =&
&,n s.n(b)
in particular
n
£ (2)
-1 S
£(z|2") = =Fe—— ; seT (2.6)
s n fs(Zn 1)
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The conditional likelihood ratios are then defined as

n-1
. nel fs(znlz )
Yy

n (z_ |z ) = —— s, teT (2.7)
f (z |2
t n

t n

for any Z" such that ft(znlz"'l) $0 forall t € T.

The following condition will be assumed throughout the thesis

(c2.1) PFor all s € S the probability measures Ps n are mutually abso-

lutely continuous.

2.2 Baxesian Probability Densities

Consider a measuratle space (§i, U), where Q is some sample space
and U is a O-algebra of subsets ofQ, and a measurable space (S, v,
where S is the parameter space and U® is a o-algebra of subsets of S.

Let (ﬂb, Ub) be a measurable space, where

QxS

Q
]

U x 1P

<
CH

are the cartesian products of the respective sample spaces and g-alge-

b
bras. Let P be a measure on (Qb, L'b) . We dencte by Eb expectation and

A
b - . .
by E° ; A € U conditional expectation given A, taken with respect to Pb.

We call the restriction P: of Pb to (S, I'¥) the a priori probability

- b
measure on (S, !7). Suppose that Po is absclutely continucus with re-~

e niiatl] o ol

aniidll oyt
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spect to some measurs V_ on (S, U%), then the density

aPp
£

o dv

oD o

(2.8)

(o]

ig well defined. 1In particular, we call

f: (s) ; seS {2.9)

the a pricri probability density on S with respect to the measure \30.

let (zn) be a stochastic process on the prcobability space (Qb.
n
aF &™)

1

Ub, Pbl with values in a measurable space (D, D), and let (l);)

be the increasing sequence of O-subalgebras of Uh ¢+ generated by
z? = (zgre0002). Let Pz i n > 1 be the regtriction of P w U: and for
each n 2> 1 let Pz be absolutely continuous with respect to some measuare

vV, defined on (Qb, U®). Then the density

oo
= {2.10)
n d Vn

is well defined. We shall be particularly interested in the a pogteriort

probability density of s, given 2"

fb (s, z)
£ (s]zM =z P (s|2?) 2R n 5 (2.11)
n £ (2™ =
n
agsuming fi z™ # o.
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Let the parameter set S be finite, i.e.
S= {sj i J€xX = (0,....p)} (2.12)

For each j € K let

1 S = sj
13.“) E{

3

0 1
sfuj
Then
i
AV 1 (s)
() §=0 aj :

is a measure (“the counting measure”) on {3, L'm} . Let A be a measure on
(&, U) then Qn »=VvA in21 is the profuct measure on (ﬂb. v®).

Suppose that P? is absolutely continucus with xesqtct to vV " {i.e. the

iy i, ol W PR, i it

entire measure Pi is concentrateé on the set DQixis g ¢ i € K} for all

n > 0, then we have '

i=0

£ (s) = i £ (s) 3, @ (2.13) ;
i=0
and
£ (s, 2" = i £ (s, 2N 1 () (2.14)
n n i s, 1
!
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Hence

F. b
- :E: £ (s) £ (z“lsi) (2.15)
im0
vhere we have applied Bayeas rule

£ (s, 2 = £ (s £ sy (2.16)

Sgbmtituting (2.15) and (2.16) into (2.11) yields for each j € k

n
‘, S P e - £ (o) £ @"ls)
o 3

iif £ (s,) £ (2"
w

(2.17)

" Note that

¢ fﬁ (ansj) = £ (™

(2.18)
3

-

.vf,
4
3
3t
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where the right hand side is defined by {2.4) . Thus, finally, for the

finite parameter set S

£
£ (sjlz“) - (2.19)
f L sy £ @
6 ° i s

2.3 Parameter Estimates and Stochastic Convergence

An estimate ;n on Sis a Un—measurable mapping from & onto S.

A maximum likelihood (ML) estimate on S is an estimate sn € S such

that

n a foB
{fs(z) :s€$}_<_fs (2™)

n

2 maximum q posteriori probability (MAP) estimate on S is an esti-

mate gn € S such that

{fb(slzn) i s € S} < fb(;n[zn)

Let S be linear. Then a least-squares (LS) estimate on S is an

s
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-~
estimate s, € S such that

e _{:s,;- 97T (s - *)} > gP {(3n -n7 (u - *)}

for any estimate 'x; on S, X' denotes x transposed and * denotes the
true parametsr, assumed to have the same dimensiaon as s.

Let the true pavameter be assumed to belong to a finite set
{sj e R%; j € k). ‘Then the LS estimate on R™ at instant n is the con-

ditional expectation

U
2 n. - /3 sz av,
S

- ﬁ s r"(sjlz“) (2.20)
=0

A stochastic sequence (xn) on (2, U, P) is said to converge almost

everywhere (a.e.) to a random variable x on R, U, P) it

lim xn = x a.e.
n-m

A stochastic sequence (xn) on (R, U, P) is said to converge in the

mean (or in L,) to a random varisble x cn R, U, P) if

lim Elx_ - x| =0
n

ne i

i
3
E \
¥
!
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* A vector-valued stochastic sequence (x n) on Q. U, P) is said to

converge in the mean square (in m.s. or in L,) to a random vector x
o

on (8, U, P} if

lim E|x - x| =0
et

where |x| = (xTx)k. o ‘

‘ N seguence oOf parameter nsdﬁte&# (\%) is. gaid to be consistent a.e.

or in the muan sguare if it convergas f.e. Or in the mean sguare to the

true parameter.

We now prexent witlout proofs three well known results from the

probability theory, which are used in this thesis.

Theorem 2.1 (Jensen's inequality, e.g. Bauer [1972], p. 322).
Let x be a real inteyrable random variable on a probability space

(2, U, P} with valuas in Rl, and let g(x) be a convex integrable function

on Rl, then
g(Ex) < E g(x)

Theorem 2.2 (Fatou's lemma, e.g. Bauer {1972], p. 71)

let (xn) be an integralb:le stochastic sequence on (2, U, P) such

that x > 0 a.e. for all n, then

E lim inf x < lim inf E x
n- n e n

|
|
'-*f;
* !
J

e e T WA P~ e

C e A
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Theorem 2.3 (lLebesgue's dominated convergence thzorem, e.g. Chung
[1974), p. 42)

Let (xn) be an integrable stochastic sequence on ({I, U, P). Then
if

where x is an integrable random variable on (R, U, P) and if there

exists some integrable randor variable y on (R, U, ?) such that

Ey <=

lxnl £y a.e. foralln

lim E xn-Ex.
e

2.4 Harting_ales and Martingale Difference Sequences

Let (3, U, P) be a probability space and let (Un) be an increasing
family of o-subalgebras inU. A U n-measurable stochastic sequence (xn)

on (&, U, P) is called a Un-martingale if for each n

(a) Elxnl <o
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If the equality in (b) is replaced by < then (x ) is called a U -super-

martingale.
It can be shown (Doob [1953], p. 23) that the likelihood ratio se-

arp
quences (a-I;'-‘-E-). s € §, defined in section 2.2 are Un-martingales
t'n

according to the measure P,. Hence

. Upp @ Pg,n/@Pgny 8P . Uy 4B o
* %
ar, 7a¥, T CadF_ T aPp,

34

a P*.n-l d Psm_1

=
d Ps,n"'l a P..n-l

=1
Consequently, we have by (2.7), (2.6) and (2.2)

-1

U U £z |7

g, "It (zn]z"l)-.v:,"l 2rfo——— = 1 for each s €S
NENE I

(2.21)

Theorem 2.4 (The martingale convergence theorem, e.g. Chung [1974],
p. 334, Bauer ({1972], pp. 341-343)

Let (xn) be a Un-martingale on (§i, U, P) and let

+
sup E x <@
n>0

where

+
x = sup (xn. 0)

. - YT "
G- R 2k AR A 2 it Pttt o e T AU

S . I M
kb wab i R L
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Then (xn) converges a.e. to a finite limit.
Let (2, U, P) be a probability»ébace and let (Uh) be an increasing
family of O-subalgebras in U, A Uh-naasurabla stochastic sequence (xn)

on (R, U, P) is called a Un-martingale difference sequence if it is

integrable and if

U
E n-lxn = 0 a.e.

Let ¥ be a stochastic sequence on (2, U, P) and let (Uh) be a sequence
of C-subalgebras of U, generated by (yl,...,yn). Then, clearly

U
n--ly )

(yn-E n

is a Un—mti.ngale difference sequence. Also note that if (xn) is a

Uh—martingale difference sequence then
n
xn = 2 xm
m=l

is a martingale. Indeed

Un-l n Un-l
E X = ZE x
=]l

n-1 U1
-Zx +Enx

m n
=]

n-1

- Z xm = xn-l

m=1
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2.5 Stationarity and Ergodicity

The purpose of this section is to provide definitions and con-
vergence results for ergodic sequences, which will be used in the the-
sis. It is not intended to provide an elatorate presentatior of the
concept of ergodicity. For a thorough develcpment of ergodic theory
the reader is referred to, e.g., Doob [1953], Halmos [1956] and
Chacon and Ornstein [1959].

Consider a probability space (Q, U, P). A transformation T from

0 to U is said to be measure preserving if

2(T 1a) = P(A)

for all a € U.

Given a mears .ce preserving transformation T, a U-measurable event

A is said to be invariant if

7 ia = a

Let (xn) be a stochastic sequence on (§, U, P) with values in
L L, . . .
(Rl, B”), where R” is the f£-dimensional Euclidean space and BE is the
2
U algebra of Borel sets of R, Let Bi be the 0-algebra of Borel sets

_ L
of Ri where Ri = Rng X... Then {xn) is said to be gtationarvy if for

each k Z 1
P [(xl,...,xn) € C]=- P [(xk+1, xk+2,...) e C]

L
for every c € E_.
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A stationary sequence (xn) on (Q, U, P) is said to be ergodic if

s

every invariant event in U has probability zero or one. It can be shown
(e.g. Stout (1974], p. 168) that (xn) is generated by a measure pre-

serving transformation T (the shift operator), i.e.

xn(w) - xn_l(T w) (2.22)

Let (xn) be a vector valued stochastic sequence from (2, U, P) into
(RE. Bz) such that the probability density with respect to the Lebesgue

aeasure on (RE. 82) of (xh) is Gaussian on RR, with

1
{
q
i
|
i
4

E X, =m, constant for all n

x
and 4
T
E {(xn - mx)(xn+k - mk) } depends only on k.
S Then (xn) is a stationary Gaussian sequence.
Proposition 2.1 (Grenander [1959], pp. 257-260 and Doab [1953, p. 494) :
i
A zero mean stationary Gaussian process is ergodic is and only is
i ! n |
. 1 2
lim — [R(x)[€ = 0
S oo n+l E;; 3

where

A M AR e A
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and where IR(k)l denotes the determinant of R(k).

Theorem 2.5 (The erxrgodic theorem, e.g. Doob [1953], p. 464, Halmos

[1956], p. 22, Weiner [1949], p. 16)
Let (xn) be an ergodic sequence on (2, U, P) and let f(xn) be a
U-measurable function such that Elf(xo)l is finite, then
1 &
lim —- f(x.,) = E f(x)).
oo n+l 22% j [+]
J=

The following version of the central limit theorem of probability

theory will prove useful in later chapters.

Theorem 2.6 (Billingsley [1961])
Let (xn) be an ergodic stochastic process on (f2, U, P) such that

E xi is finite and

{i.e. (xn) is an ergodic martingale difference sequence). Then the

n
=)z -

distribution of n *° }i‘xk approaches the Gaussian distribution with
k=1

. 2
mean zerc and variance E xl.

e R Y AR ERE — Roe " “hw
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2.6 Metric Spaces and Stochastic Metrics

Consider a gset S and a real-valued functidn e on SxS which satisfied

(i) e(s;s) = 0 for any s € S
(ii) e(s;t) = e(t;s) for any s, t € §
(iii) e(s:t) < e(s;r) + e(r;t) for any s, t, reS.

Then e is called a pseudo metric on S. If in addition to (i), (ii) and

(iii) e satisfies

(iv) e(s;t) =0 ; s, t € S implies s=t
then e is called a metric on S. The pair (S, e) is called a metric
Space.

Now consider a probability space (£, U, P) and an increasing family
(Un) of O-subalgebras of U. Let (en) be a (Uh)—measurable sequence of

functions on SX8 such that each e satisfies (i) - (iii) above. Then

(*)

we shall call (en) a stochastic pseudo metric sequence onS. 1If

each e, satisfies (i) - (iv) above, we shall call (en) a stochastic

(*)

metric sequence onS.

(*)These definitions do not seem to have appeared in the literature
before.

TR gt T T R Y T T
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CHAPTER 1II

R A T T
1)

INFORMATION

In this chapter we develop the notion of the information in a

ST ST L

sequence of observations favoring one parameter in a given parameter set

e against another. We do not make the assumption, commion in the deriva-

tion of other information measures in information theory, that the true

OSE LT nim b sy

parameter is included in a known set, or, equivalently, that the true

measure belongs to a known set of measures. The mean and the conditional

. mean values of the discriminating information in a single observation
are shown to possess properties that will prove useful in the following

chapters. In particular, their absolute values are metrics, or dis-

%
tance measures, on the parameter space.

measure of the relative closeness of parameters to the true parameter.

This provides a meaningful

L{"
The new information measures are then compared with other measures com-

P mon in information theory. '
L CL A f“.rz

oy pRage

3.1 The Information in a Single Observation

S TN e

Let S be a parameter space and let T = (*{J S), where * is the truc i

parameter. If for some pair of psvameiers s, t € T

Ny

n n
fs(z ) > ft(z ) ]

:
{
L‘;’
E

or, eguivalently,

R

n, . n
log fs(z ) log ft(z )

-29.-
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we say that the parameter s is favored over the parameter t by the

observations z“. Then log fs(zn) may be regarded as a measure of the

_information in z® for selecting a parameter from the set 7. The differ-

ence

n n s ,,n
log fs(z ) - log ft(z ) = log hy (z™) (3.1)

is then a measure of the information in Z° for selecting between s and
t. If (3.1) is positive then s is favored and if it is negative then t

is favored. The difference
s n 8 n-1 s n~1
log hy (2") - log h. (2" ) = log h/ (znlz ) (3.2)

is then a measurs of the difference between the information favoring 5
against t at instant n and the information favoring s against t at in-
stant n-1. It can then be regarded as a measure of the information

favoring s against t in the observation Z, We define

= o =l s -1
I(sit) ES log by (z |27 ) (3.3)

as the conditional mean information in z, favoring s against t and

- _ s n-1
I (sit) = E, log b (z |2 %) (3.4)

as the mean information in z, favoring s against t. (A more general

E," ! 109 hi (znlzn_l) for some sequence

form of (3.3) would be fn(s;t)

(An) such that An € Un. However, for the purposes of this thesis we

" i ke sl A

|
‘%
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use the information defined by (3.4).)

3.2 Properties of Information

We now show some properties of the information measures defined

above that will prove to be useful in the following chapters.

Theorem 3.1
Let S be a parameter space. Then for any s € S and for each n 20
we have
In(.;s) Z_O a.e.
and

T (*8) >0
with equality if and only if fs(znlz"'l) = f,(znlz“'l) a.e.

Proof

1

Vs~ -
I (*:8) = -E.n log h: (znlzn 1)

Using the inequality

i
%
1,
$
1
i

log a £ a-1; loga = a-1 if and only if a = 1 (3.5)
We get
bh-1 s n-1 :
I (*s8) >1-E; " h, (zn]z ) =0 a.e. (3.6)

where the second equality follows from (2.21). To show that equality

holds only if fs(znlzn-l) = f*(znlzn-l) a.e., (sufficiency is trivial)
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suppose that

U
-1 .8 -1
I (*8) =1-E, 74 h (znlzn )

- a.e.

i.e.

gnd{ﬁ(%h”5-1wh2quq)q}-oa@.
By (2.Q) we then have
fn:f (2, 12°1) - 1og nf (z,]2°"h - 1jep, = 0 (3.7)
(3.7) and (3.5) together give
B (2 |2%h =1 ace.
or

n-1 -1
£,z 127770 = £,(2 |27 ase. (3.8)

Hence, equality in (3.6) holds if and only if (3.8) holds. Similarly,

since I (*;8) > 0, we have

BT )

i;(*:s) = EJX (*;8) 20

with equality if and only if In(*:s) =0 a.e., which, as shown above,

) ) n~1 n-1 :g
occurs if and only if fs(znlz ) = f*(znlz ) a.e. o fAi
N Corollary 3.1 ‘

. Suppose that r € S is the true parameter. Then for any t € S i
Ay
b 4

!
;
i
4

In(s;t) and 3;(s:t) are maximized oen S at s = r. This maximum is
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unique unless for scme s € S fs(znlzn_l) = fr(znlzn-l) a.e.

Proof

By theorem 3.1 we have

P - N 3 >
In(r,t) In(s,t) I (xris) 20 a.e.

and

i;(r:t) - E;(s;t) E;(r;s) >0

n-1

with equality'if and only if fs(znlzn—l) = fr(z 'Z ) a.e. The asser-

n

tion follows. @

Theorem 3,2

The sequence (lig(s;t)l); s, t € S is a sequence of pseudo metrics
on S. It is a sequence of metrics on S if an only if E;(s;t) = 0 implies
s = t, The sequence (lIn(s;t)l); s, t € S is a stochastic sequence of
pseudo metrics on S. It is a stochastic sequence of metrics if and only

if I (s;t) =0 implies s = t.

Proof
To prove that Ii;(sxt)l is a pseudo metric on S for each n we have

to show (see section 2.6) that for each n it satisfies the following

conditions. :
(1) IT;(s;s)] =0 foranysesS %

(i) li;(s;t)i = lf;(t;s)l for any s, t € S  §
(iii) T (si0)] < [T _(sin)| + |T_(xst)| for any s, t, r €. | }

|
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We have
8 n-1l
h, (znlz ) =1
Hence
8 n-i
log h (znlz ) =0
Then also

8 n-1, _
E log he (zn!z )y =0
and (i) follows. Also
T(sit) = ~I(t;s)

and (ii) follows.

Condition (iii) is proved as follows

!.fn(s;r)l + I-I-n(r:t)l

= |, 109 b2 (z 12" + |E, 109 B} (2 |2"™H]
= |E, log fs(znlz“'l) - E, log fr(zniz“'l)l

-1 -1
+ |E, log fr(znlz“ ) - E, log ft(znlz“ )|

N -1 _n=1

__lE* log fs(znlzn ) - E, log ft(zn|un )I
-1 -

= |E, log b (z_ 2" = [T (s:0)]

oaihgnes ) ~ARRERNAI G AT L el L R A Al AT D e
Rt 2 Xl A BT bt o vt it i s i et s 1 i 2,

At il s
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If in addition to (i), (ii) and (iii) Ii;(s:t)l satisfies

(iv) lfn(l:t)l =0;8, t€S implies s = ¢

then I-I-n(s:t)l is & wetric on S. The assertion follows for l'fn(s:t)l.
The result for IIn(s;t)I is obtained by showing that conditions (i)-(iv)
U
above hold a.e., replacing E, by E_ n-l and following the same steps. -
Theorem 3.3
Por any t, r € S and for each n > 0 the saequences (Ifn('n:) |} and

(|In("zt) |) satisfy the properties (i) - (iii) above. They satisfy

(iv) if and only if ft(zn‘zn—l) = £.(zn|zn-1) a.e. implies t = »,

Proof
The proof of prope-ties (i)-(iii) is obtained precisely as in the

proof of theorem 3.2. (iv} is satisfied if and only if ft(znlzn°1)

= t,,(zuizu-l) a.e. implies ¢t = * by theorem 3.1.'

The variables lfn(":t){ and IIn(*:t) |} t € S are then distance
measures from the true parameter * to points in the parameter set S.

They can be regarded as extensions of the metrics Ifn(szt)l and |In(33t)l

PPgere S SR

onS totheset T = (* Y.

Corollary 3.2

Let s, t € S be any pair of parameters in the parameter space S.
Then s iscloser to the true parameter * than t in the wetric !In(s:t)l

if and only if I_(s;t) > 0 a.e. and in the metric lf;(s;t)l if and

. P
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only if Yn(s:t) > 0.

Proof
s is closer to the true paramster than t in the metric IIn(s;t)l if
and only if
[ 3 »
lln( sy < IIn( i) a.e.

But by theores 3.1
IIn('n)l =1 (*8) a.e. foranyses$
Hence, 8 is closer to the trues parametar than t if and only if

. < ..
In( :8) In( :t) a.e.
or
* - | = - >
In( it) In( :18) In(s.t) 0 a.e.
To show that s is closer to the parameter than t in the metric

I'I-n(ast)l an identical procedure can be followed using 'fn(s:t) instead

of In(s:t) .

[
Exasple 3.1
Let x be a random variable, whose probability density is known to
beiong to the set x2
2012
fi(x) = e : i=0,1,2 (3.9)
v2n g.?
i

et ath

LT OGN P AT R :
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Suppose that i=s0 is the true parameter, i.e., that x is actually dis-

tributed according to fo(x) . The mean information in a single observa-

tion x favoring one parameter against the other is found to be

1 02 N 02
T(1;0) = I(1:0) = 5»1og—’-;+5( - _.L.)

g g ?
1 1
_ 1 g 2 N g 2
I(2;0) = I(2:0) = 5 log R e
g2 2 g 2
2 2
2 2
o] o
I(132)=I(1:2)'%log—z—+ : (1 - 1)
o3 g ¢t
1 ' 2 3
Note that I(i;j) ~ 0 as Ui g Oj
Theorem 3.1 is verified as follows
1 a 2 g 2
1(1;0) < 5 [log — + log -1-]. o
0-12 002

where we have ured the inequality 1 - a < -log a.

Similarly
I(2;0) <0

To verify corollary 3.1 we check whether

1(2;1) > I(2:0)

but

I(2;1) - I(2;0) = x(0;1) = ~I(1;0) > ©

PR
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Similarly

I(1;2) > 1(1;0).
Next, we check the conditions under which the parameter 1 is closer
to the parameter O than the parameter 2, in the metric senses defined by

thecrem 3.2. By corollary 3.2 it suffices to have

I(1;2) >0
i.e.
0.2
1 1
0.2 0 02 02
1 2 1

(3.10) relates the relative closensss of the parameters 1 and 2 to the
true parameter O (see corollary 3.2) with the covariances agsociated
with the parameters. It is interesting to check, then, whether the
closeness of the covariances implies closeness of the parameters in

the information metric sense, i.e. whether

lol2 - 0,21 < Iazz - a°1| (3.11)

implies that the parameter 1 is closer than the parameter 2 to the true

parameter 0, i.e. that
I(1;2) >o0.

In general, (3.11) does not imply (3.10), which depends on the numerical

values of OO' dl and 02. However, (3.11) does imply (3.10) in two

~ases, namely:
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N i e

H < <
Case 1 00 01 o‘2

Clearly, (3.11) is satisfied. Using the inegquality log a< a -1

(1)

for a # 1 we have

E g% ¢?

; log == < =~ -3 (3.12)
. c?2 gt

2 2

3
il i 0.2 0,2
! 1og-3—>1-—1-—>0 (3.13)
0»2 0.2
1 2

o? -

]
) and since —’-2- < 1 we further have
y

g
1

g% gt g?
g2 o2 ag?
1 1 2

Hence

: I(l:2)c1°g_£_+°»2(_l_.._l_)>o
g? ¢

]

;

‘i.

| . : 9
;

. < <
Casel. 02 01 OO

. (3.11) is again satisfied. By (3.12) we have
022 ciz
— - onn— &
log 52 1 52 o
1 2

-
»

0.2

and since —02- > 1 we further have

g
1

bW .

-
X3

s e i e g et vaamG e See e SRR
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However, if we have

Case 3: (Jl<<21’0<0‘2

ox

: < <
Case 4: 62 00 01

Then |o; -~ aol < loj - 0gls is 3 =1, 2; i ¥ j does not necessarily imply

I(i;j) > 0 or I(i;j) > 0. Por instance, let

oi=2
0
and
g2=1
2
Then if
0232,
1

we have

2 _ .2 2 _
lol % | < lcz %

73

2
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Then

T(1;2) = I(1;2) = % [-1 + 2 (1 - -2-1-.5)] = 0.134 > 0

But if

g?=4
1

then we have

g2-g 2| > l° 2 _g52

1 Q 2 0
But

= 1 1

I(2;1) = 1(2;1) = 3 1.386 + 2 i 1}|= =-0.057 < 0.
Hence closeness of the covariances to the true covariance does not imply
closeness of the parameters to the true parameter in the metrics |I(‘;')|
and l-f(°;')| in general, except for cases 1 and 2 above. A

We shall use the notation

§o(sit) = [T (sit)]
and
d (sit) = [I (s:t)|

Then we have sequences of metric spaces

(Ss 8,) i+ (S, &)

where S is the parameter set. Note that while In(s;t) and Sn(s;t) are

U

n-1 Measurable random variables, T;(s;t) and 4 (s;t) are not random var-

iables. We shall see that In(s;t) and Gn(s;t) are useful for purposes of

T T L T T “:\*“‘ﬂ
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analysis. The metric dn(s;t) will prove particularly useful when it is
constant in time, as will prove to be the case for ergodic observation

sequences. The parameter metric space can then be denoted (S, 4.

e T

-2

3.3 Comparison with Other Information Measures

Attempts by statisticians and engineers to assign quantitative
measures to the intuitive notion of information have resulted over the
years in many different definitions of information. Information measures
can, in essence, be classified in two different categories. One is
charackerized by the Shannon entropy, which has proved useful in communi-
cation and source-coding theory, sometimes termed information theory.
The other is characterized by Fisher's and Kullback's information measures,
which have been more popular in statistical circles. Our information
measures fall in the second category. It seems that different permuta-
tions of Fisher's or Kullback's information measures result from differ-
ent interpretations of a given set of data, which in turn reflect the
intended application. Our version of information seems to be the most
general, since, unlike other definitions, it does not assume that the
true parameter belongs to the parameter set under consideration. However,
special care must be taken in evaluating the advantages of one definition
of information over another.

The information measures defined in this chapter prove very useful
in the analysis of the asymptotic behavior of parameter estimates. They
provide insight into the convergence of the estimates in the presence and

in the absence of the true parameter. However, they can only be computed

e e e 0 S R N S S S A e R LA el

ey

e
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if the true parameter is known. Nevertheless their application is not

limited to analysis, as will be evident in Chapter 5 where we consider

o

several model selection problems. On the cother hand, several other in-

;
b
&
b
2
Ll
?
I
Y
,

formation measures which are useful in given applications, such as

signal detection, do not possess properties which are usefui for analy-

tical purposes, such as the metric property. In the rest of this section
1 we briefly discuss a few information measures, common in the information

theoretic and the statistical literature and relate them to the informa-

tion measures defined in section 3.1.

3.3.1 Kullback's Information, the Divergence, the Bhattacharyya
4 ' Distance and the Ambiguity Punction

otk 2 i "

.

Kullback [1959] defined the mean information for discriminating in

favor of one hypothesis l-Il against another, H2, given an cobservation x as

L T

" fl(x)
I7(1;2) -/109 -f-z-m- dul(x)
where ul is a prcbability measure corresponding to Hl. fl is the density

of ul with respect to some measure A and f2 is the density with respect

to A of le. a probability measure corresponding to Hz. The divergence

between Hl and Hz, first introduced by Jeffreys [1946] and employed by

Kullback [ 1959) is defined as:

TR T T T TN T SO S

3 J(L:2) = 15(112) + 15(2:1)

X fl(x)

: =/[fl(x) - £,(01 log £y A i'
- / £, (x) £, (x) 4
& ﬁ = log ?;F)- dul(x) 'floq ?;m duz(x) p

R e S T
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In contrast, I(1l;2), defined by (3.3) would be written as

4

/ fl (x) (
I(1;2) = J log 7= du(x)
fz(x)

where U(x), the correct probability measure may be different from both

‘ The Bhattacharyya distance (Bhattacharyya[1943]) between two den-

sities fl(x) and fz(x) of an observation x

B=- ""f[fl"" fz(x)lLE ar

where A is the Lebesgue measure on the space of x. Properties of the t

Bhattacharyya distance and the divergence were studied and compared by

Kailath [1967] , and they were found to be particularly suitable for
signal detection in communication. However, Kullback's information,
the divergence and the Bhattacharyya distance do not satisfy the triangle
inequality and thus fail as metrics on the parameter (or hypothesis)

space. In contrast, the metric property of the information measures

O — e DI T

introduced in section 3.1 follows from the consistent use of the true

probability measure throughout, whereas Kullback's information, the di-~

X vergence and the Bhattacharyya distance are defined using different mea-

sures.

A A,

The ambiguity in an observation x between a parameter s and the true

parameter * is defined as

EEEETY Ln

Y, = E, log £_(x)

‘f ]

- A CFCR R




~45-

The ambiguity function Ys has been found useful in the analys:s of

error in radar applications (Woodward [1953)). In fact

I(g;t) = Ye = 'Ys

Hence, the information between two parameters as defined in this thesis

is the difference between their ambiguities.

3.3.2 Fisher's Information

We shall now show that the information measures introduced in sec-
tion 3.1 are related to Fisher's information measure (Fishexr |1956],
Savage [1954)]). We follow a similar comparison between Kullback's and
Fisher's information measures (Kullback [1959]) . However, in crder to
relate measures of the same quantity, we define Fisher's information in
a single cbservation zZ,-

Let S e Rk be the parameter space. Suppose that for any = € S the

following regularity conditions (Cramexr [1946], Gurland [1954], hold for

all i, § = 3,....k

2 n-1
9” log fs(znlz )
o 3sj

-1
3 log £ _(z_|2"" )
2 3 < Fz Zﬂ) a.e.

1) n,
<
l Fi(z )i

s
where the partial derivatives are assumed to exist and Fl(z“) <ad Fz(zn)

are integrable random variables.

afs(znlz“'l) 2¢ (znlz“'l)
2) . ap, = 0; J/. — ap, = 0
9s> 98

as™

o
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We define Fisher's information in a single cbservation at a para-

meter point s as a matrix :fi(s) , whose elements are

-;1 n~1

-F - 1 afs(znlzn ) 1 st(zn [z~
1" (s) = Eyg n-1 i n-l 3
i,jen fa(zn 27 %) os t’(z:n 2" %) ds

”°

(3.38)

Consider a point s € S and a close point s + /8 € S. Using Taylor's

) expansion to second order we have

X dlog £ (2 !zn—l)
-1 n-1 ! i s “n
log £, (z:nlzn ) - log f.(zn]z ) = 2 : As

i=l Ssi
kK k 2 n-1 "
. 3“log £_(z (2" ) ?
+ '?2;2 Z As* s j.' ? ‘
. i=l =l o8~ 08
But
n-1 n~1 2 -1
dlog fs‘fnlz )- 1 A (z |27 . 9°1og £_(z |27 4
st fs(znlzn-l) st 8si' st ,1
2% (z_|2*°h at (z_|2°Y af_(z_|2°7h f
- 1 s n - i 2w s n ‘
n-1 i, 3 n-1 i 3
f'(znlz ) 3" 2 fi(znlz ) s o8

The information in z, favoring s against a close point s + As as

defined by (3.4) is

J _ f fs(znlzm.l) "
. 1 (8;8 + As) = [ log ar i
n =1 *

] £3+As(znlzn ! ]
3 k , Olog £ (z | P! (
: =':/r:Z:AS 1 ar, ‘
. ix) os %
r_

by

TR

)
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%—/ZZAs As alogf(zslz ar,

i=] ju=l 9 8

I _(z_ |z
- - d/r dP‘
1-1

k k n-1
af(zlz )
_%E;Z:ASAS/[ -
i=1 j=1

ast 3sd
n-1 n-1
i 1 3fs(zn|z ) afs(znlz )] =
- 3 3 *
£ (z |27 2s® 287
s n

-;-i zk: ast 2s? T(s)
i=] =1

1,J.,n

where the last equality is obtained by the regqularity condition 2) above.
Hence, the information in a single abservation is related to Fisher's

information in a single observation by
I {s;s + As) =-As I (s) As

Defining similarly the conditional Fisher Information in a single obser-

vation as a matrix I:(s) whose elements are

n-1 n-1
th(s) EUn-l {( 1 st(znlz ))( 1 st(znlz ) )}
i,j.n * n-1l i n-1 i
fs(zn|z ) s fs(zn|z ) 3s

Mo s %t it 0B e 3 S

3

!

. e e e e n-usrmw-n—i
it S s i e
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We get, using a similar procedure

1 T_F
In(s;s + Ag) = 3 As In(s) As

3.3.3 Self Information and Entropy

To complete this discussion, placing the information measures
motivated and defined in this chapter in perspective with respect to
other measures found in the literature, we mention two other measures
which are quite common in information theory, namely, the self infor-
mation and the entropy (e.g. Fano [1961] and Gallager [1968]). The defi-

nition of these measures is based on the Bayesian assumption (see Chip-

ter 2).

ot o il s .. i o) . i sl 1S

Consider a parameter set S. The self information in the measure-

ments 2~ about a parameter s € S is defined as
Ii(s) = - log £(s|2% (3.14)

A comparative measure of information can then be obtained by taking the

ot

difference of the self information correspcnding to two parameters

s, t€eS

n
15(s) - (t) = - log —f?-‘-‘il-z-nl
£ (¢ 2"

AIi(s;t)

The self information difference between s and t in a single cbservation

z, can be obtained, using (2.6) and (2.19) as
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£ _(z |zn-l,

s n s n-1

AIi(s:t) - Ali-l("t) = - log =N

tt(znlz

Taking expectation and conditional expectation of (3.15) with respect to

the true measure one gets

E‘{Als(s;t) - ArS (l:t)} = =T (s;t) (3.16)
n n-1 n

and

U
Et“'l{AIi(s:t) - Alf‘_l(s:t)} = -1 (s;t) (3.17)

Hence, the mean and the conditional mean values of the self information
difference in a single observation are the negative values of the infor-
mation measures defined in section 3.1. (The sign is, of course, of no
significance since the self information defined by (3.14) is in fact
lack of information, and would become positive information, in the sense
meant in this chapter, by inverting the sign.)

Note that in (3.17) the expectation is taken with respect to the
correct probability measure F,, independently of whether the correct
parameter even belongs to the set S. If, on the other hand one makes
the assumption that the true parameter belongs to a finite set, say
{sj:j €K = (0,...,p)}, and takes a conditional expectation given 2" of

(3.14), then one gets

v P
n
(s} = - T 1.2 log £s,]2" = u(z™ (3.18)
jo 3 3

Bb
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(3.18) is the entropy in 7%, Note that the entropy differs from the

information measures considered in this section in the sense that

‘It does provide

othex
it is not a comparative measure between parametexs.

some measure of the average information gained from the observations,

ions (Bexger [1971}).

with respect to the g priori assuspt

i
s
f%;

© ain




CHAPTER IV

CONVERGENCE OF MAXIMUM LIKELIHOOD AND BAYESIAN

ESTIMATES ON FINITE SETS OF PARAMETERS

In this chapter we study the convergence of maximum likelihood and
Bayesian parameter estimates for gereral classes of observation se-
quences. The convergence of the estimates follows from the convergence
of the likelihood ratios over the parameter set. cConsis*=2ncy conditions
are derived in terms of the information in the observations. The case
where the true parameter is not necessarily a member of the parameter
set is also considered. Rates of convergence in the wmran for the ML and

th: MAP procedures are derived.

4.1 Convergence of Parameter Estimates

Let (zn) be a stochastic process on a probability space (Q, U, Pk)
and let S = K = {0,...,p} be a parameter set such that {Pj; j € K} is a
family of probability measures on (8, U). Let (Un) be an increasing
sequence of O-subalgebras of U generated by (Zn) and let Pj,n be the

restriction of Pj to Uh for each j € K., Consider the following con-

dition:

(c4d.l) For some k € K and for each j € K; j # k

lim h}J‘ ™ =0 a.e. (4.1)

-
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in the sequel we show that the convergence a.e. of the ML and the MAP
parameter estimation procedures and the convergence a.e. and in m.s, of

the LS prccedure foliow from condition (c4.l). Of course, the major

difficulty in proving convergence of the parameter estimates is to
verify condition (¢4.lj. In the following sections we give conditions
for general classes of abservation sequences under which condition (c4.1)
is satisfied when k is the true parameter and extend the results to the
case where the true parameter is not necessarily a member of the para-
wmeter set. The latter case is treated specifically in the following

chapter where the following theorems will prove very useful.

Theorem 4.1

Suppose that (c4.l) is satisfied, then ML estimates on X converge

a.e. to k as n*»,

Proof

Since the set j e K ; j»¥ k is finite, (c4.l) implies

limsup{ha(zn);jex;j#k}-o a.e.

n+wo j
Hence
. ) A k
lim sup {hi (Zn): j e K}- hk (Zn) =1 a.e.
nsoc  j
or

lim ﬁ(zn) =k a.e.
n+o -
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23

Under condition (c4.l) MAP estimates on K converdge a.e. to k.

Proof

By (2.19) we have for each j € K

N n .
£(3) £, (2" f:;(:))

n

“ | . j
- fb(nlz“)ifb el n (2"
} c>(k) fk(Z ) °(k)
%_ By (c4.1) for each j €@ X ; j # k we have
f’ o
! () .
;i lin £GlzM < 2 1imnd (@™ =0  a.e. )
; n-+oe fb(k) n>»
j 4 (o]
; implying
s lim fb(jlzn) =0 a.e. foreach je€X; j#k (4.2a)
- e
; But since
!
) P
: 3 £ileh =2
j=o
we have
) lin £k|z%) =1 a.e. (4.2b)
I_V' nr®

{ yielding the assertion. -

Theorem 4.3

R L

Suppose that a parameter vector s is assummed to belong to a finite

W T Y

R T AN A -
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set sj € Rm; j € K in the calculation of the estimates (but is not

necessarily a member of the set). Suppose further that for some k € K

condition (c4.l) is satisfied. Then LS estimates of s on Rm converge

a.e. to sk.

Proof
By (2.20) and (4.2) we have

lim ; - & s, lim fb(jlzn) = g a.e
n Z 3 k I
e =0 e

Theorem 4.4

Por the situation given in theorem 4.3 LS estimatrs converge to s

k
in the mean-square.

Proof

We follow in part Liporace [1971) who treated the case of independent

and identically distributed observations. Consider the norm

= s - TA -
N E*{(Sn 5, (s sk)}

P p
= - T n - n
E*{Z(sj 5,) fb(sjlz ) 3 0s; - sy s,z )}

j=o i=o

P p
- _ T _ n n
Z Z (Sj Sk) (Si Sk) E*{fb(sj|z ) fb(silz )}

j=o i=o

2 b
<P R2 E, (sj[z“) for some j € K ; j # k

ek e et
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where

since obviously

E,{fb(sjlz“)} 3_E*{f(sj|z“) f(si]z“)}

(becausef(silzn) <1).

By (2.19) we have for each j € K

b n b

£ (s,) £.(2") £ (s,) .
fb(sjlzn) 5f§ — =f§ “n] (2"

° (Sk) fk(Z ) ° (sk)

By (c4.l) we have for each jexK; j#k
£ (s.)

lim fb(s Iz") f_—EL—-l— lim hi z" =0 a.e.
n-+oo fb (sk) n-+o

Hence

Lim fb(sjlz“) =0 a.e.

Now since
n\
fb(Sj!Z 7 i 1
we have by the dominated convergence theorem (theorem 2.3)
that for each j € K ; Jj#k

lin B,£(s,]2") = B, lim £2s, ]2 = 0
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and thus

lim N < p°R% lim B, f2(s, [2%)) = 0
preo n-eo J

yielding finally

lim N = 0.
n

a8
o

4.2 Consistency of the Estimates

In Chapter 3 we defined for each pair k, j € X

oy = n-1
In(k:J) ZE,

k n-1
log hj (anlz )
Let us also define

- k n-1, _ s
3 (k;3) 2 log hy (zn|Z ) = I (k:3)

Jn(k;j) is the error in the incremental information In(k;j), or the

information residual. Denote

n
Y3 = Y01 (k)
m=l
and
n
v (kij) = z 3 (k;3)
m=1l

Note that for each j, k € K (Jn(k;j)) is a Un-martingale difference

sequence according to the true measure P,, and conseguently (Vn(k;j))

L

.

e

e

T
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|

is a Un-martingale sequence according to P,. i

Suppose that * € K, i.e. that the true parameter is a member of the

PR -

«l

parameter set and consider the following conditions:

{(c4.2) For some k € X and for each j €K ; j ¥ k

lim sup vn(k;j) > = a.e.

s

(c4.3) For some k € K and for each j € K ; j ¥ k

lim ¥ (k;j) = o a.e.
nwe O

4 Lemma 4.1

Suppose that conditions (c4.2) and (c4.3) hold for k = ¥, Then

for each j € K ; j ¥ * one has

limh) (") =0 a.e.
n-e

Proof

1
OV eSS P T

We have noted (see section 2.4) that for each j € K the sequence

it e

(ha (Zn)) is a Uh-martingale according to the measure P,. Furthermore

e

E, n) (2" =1

A

3 It follows from the martingale convergence theorem (thecrem 2.4) that
i
j 1
the sequence (hz (Zn)) converges to a finite limit. Thus, the sequence

(I

- 1

(log ha (z")) converges to some a < ®. We have

L0 S Yk N

0
Yo
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log he (2% = Y_(*:3) + V_(*;3) (4.3)
og 3 nl*id (%3 .
Suppose that
lim log ha (zn) w g > =o a.e.
n-oo
or
. * n
lim log hj (Z27) <= a.e.
e

Then by condition (c4.3) and by (4.3) we have

lim vn(*;j) = -0 a.e.
nree

contradicting condition (c4.2). Hence, we have

R * n
lim log h, (2) = a.e,
e J i
or
lim log hz (z") = = a.e.
nee
yielding

lim hz (zn) = 0 a.e. g
n-m
Theorem 4.5
Suppose that some k € K is the true parameter. Then under condi-~
tions (c4.2) and (c4.3) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.
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Proof
The assertion follows directly from lemma 4.1 and from theorems

4.1 through 4.4..

Consider the following conditicn

(c4.4) For some Kk € K and for each j € K ; j # k there exists some

ej > 0 and a subsegquence (ni ) of n such that
J

I :3) > €. a.e. .
n; (k;3) 2€5 a.e for all a,

J

Theorem 4.6
Suppose that some k € K is the true parameter. Then under condi-
tion (c4.2) and {(c4.4) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.

Proof

By theorem 3.1 we have
In(k;j) >0 a.e. for alln >0

Thus, condition (c4.4) implies condition (c4.3). The assertion follows

from theorem 4.5..

In the following chapters we shall see certain important cases to
which the information condition (c4.3) applies. We now examine condi-

tion (c4.2). We have noted that for each pair j, k € K the sequence

R e I PR P e T
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(.‘In(k:j)) is a martingale difference sequence according to the true mea-

sure P,. The following special case is of particular interest.

Lemma 4.2

For any pair j, k € K let (Jn(k:j)) be an ergodic sequence. Then

lim sup Vn(k;j) = oo a.e.

Proof

We have by (2.21) for each w € §
vn(kij'(&)) L Jl(kij.w) + Vn_l(k:j, T 0))

where T is a measure preserving transformation. It follows that the

event

{ 'lri: sup V_(k;j) < °°}

is invariant. Thus, either

P <1im sup Vn(k;j) < w} = Q
or

P {h’.m sup Vn(k;j) < °°}= 1
Obviously, we have that if

lim sup Vn(k;j) <

then
vV (k;3J)
lin syp ———— < @
vn

. . b, . ol

[ap——

i R B i 2 i
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But by theorem 2.6

Vn(k:j)
P {1im sup < oo} <1
y /n

Hence

P {lim sup Vn(k;j) < °°}< 1
yielding

P {lim sup vn(k;j) < “}- 0
Thus

lim sup vn(k;;)) = o a.e..

o

Example 4.1
Let (xn) be a sequence of independent identically distributed ob-

servations. Suppose that each X, is distributed according to the den-

sity

[
~N
Q
»
T

Let the covariance g% be given on a set {Oi, i=1,2}, and suppose that

0% = 012, i.e. that 1 is the true parameter. As in example 3.1 we have

for all n 20

1
In(l,z) =3 log " >

Q Q
[
+
)
NN
Q
—
[ M
]
Q
[
~
N
S

e e N T - T ™ T
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and
2

(o]
gy =Ll (Ao L) (L2
n 2 'n g2 o 2 2 o? g ?
2 1 2 1

Since (xn) is an ergodic sequence, so is (Jn(l;z). Thus, by lemma 4.2
condition (c4.2) is satisfied. It follows from (3.5) that if U1 o oz

then In(l;Z) # 0 and then, by theorem 3.1 we have
In(1:2) = I1(1;2) >0 for all n >0

Thus, condition (c4.3) is satisfied for k = 1. Hence, by theorems 4.1
through 4.4, the ML and the MAP estinates of 0 will converge a.e. and
the LS estimates will converge a.e. and in the mean-square to 01 ‘A

The following general result provides a sufficient condition satis-
fying condition (c4.2). Although it will not be used directly in the
following chapters, it seems to have useful implications (see example

4.2).

Lemma 4.3

Suppose that for any j, k € K we have for any positive scalar a

E,{vna(k;j) - a}< o (4.4)

where

n = inf { n : Vn(k;j) > a} (4.5)

oot I e T i




then for each w € {¢ either

lim Vh(k;j,w) exists and is finite

n+o
oxr
lim sup Vn(k;j,w) =
Proof
Let
Ra(k;J) = Vh (k;3) ~ a
a
and
a = .
Vn (k;3) = v(k;j)
min(n,n_)
a
Note that
v® (k;9) < a + R (k;3)
n ’ - a ’
Since Yn(k;j) is a Un-martingale, s0 is (Yi (k;j)). Obviously, we
have

+
a . .
E*{Vn (k;g)} < a+ E.R (k;i3)

Hence, under (4.4)

a+

It follows from theorem 2.4 that the sequence (V: (k;j)) converges to a
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finite limit. Let
Aa = {w € : sy Vn(kij:w) < a}
and
(- -]

Az U A
a=] 2

If W E€ A then w € Aa for some a, say, ao. Then,
a
v (kij,w) = Vho(k;j,w) for all n

and then

a
lim v_(k;j,w) = 1im v %(k;j,w) is finite.
n n
n-m n-o

1

IR
I
e

Ifow ¢ A, then

lim sup Vn(k;j,w) = .

Examp le 4.2

Let (xn) be a sequence of real valued random variables taking
values in the interval [0, 3]. Suppose that the sequence (xn) is not
necassarily independent or identically distributed. Consider two hypo-
theses (or two parameters) 1 and 2, according to which (xn) is i.i.d.

with probability densities

1
= < <
5 O_xn__l
f (x) = 1 1<x <3
1 4 - "n —

0 elsewhere
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‘
4
B
b
J

and ¥
1 0<x <2

4 - n - l!

f(x)=w{ ~ 2<x <3

2'°n 2 - n — %

1

0 elsewhere ‘

-

It is easy to see that

Jn(l;Z) £21log 2 for alln

independently of the actual values the segquence (xn) might take in the

interval [0, 3]. Now since for any a > O

. = . < "
vV, (L) =v,  _, +J (1;2) Sa+ g (1:2) :
a a a a ),

we have

( .
E*lvna(l;Z) - a} <E, Jna(l;Z) £ 2 1og 2

for all n. Hence (4.4) holds. It follows from lemma 4.2 that condition
(c4.2) is satisfied for this case independently of the actual probability

measure generating the sequence (xn).

4.3 Convergence in the Absence of the True Parameter

Consider the probability and parameter spaces given in section 4.1.

While the absolute continuity of the restrictions P1 n and P2 n of two
14 14

measures Pl and P2 to the O-subalgebra Un of U is possible to verify in

practical situations (it follows e.g. from the absolute continuity of
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the correspounding conditional densities f. (z Izn-l) and £, (z [z“'l)
l,nn 2, n

for each n), the absolute continuity of Pl and P2 does not follow and

is, in general, more difficult to verify. The following results are

nevertheless interesting from a theoretical viewpoint.

Theorenm 4.8

Let conditions (c4.2) and (c4.3) hold for some parameter k € K.
Furthermore, suppose that the true measure P, is absolutely continuous
with respect to the measure P, . Then for each j € K ; jJ ¥ k one has

lim hi (z") =0

noyo

and, consequently, the parameter estimates will conrerge to the para-

meter k in the senses specified in theorems 4.1 through 4.4.

Proof

Since the sequence (hi (Zn)) is a (Un' Pk)-martingale and since
o0y o
Ekhk (z7) 1

it follows from theorem 2.4 that (hi (z™M) convergence a.e. Pk to a
finite random variable. Since P, is absolutely continuous with respect
to P, then (hi (z™) converges to a finite random variable a.e. P_.
The remainder of the proof is identical to the proof of lemma 4.1, and
the convergence of the estimates follows from the convergence of the

likelir.ood ratios by theorems 4.1 through 4.4..

=
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In the following chapter we shall treat the case where the true
parameter is not necessarily a member of the parameter set for a case
of practical interest, namely, linear dynamical system. We shall not,
however, investigate the absolute continuity of the probability measures
P, and Pk' but rather use simpler argquments, enabled by the particular
problem under consideration.

Condition (¢2.l1) requires that for any parameter k € K, the re-
strictions Pj n Of the measures Pj' J €K ; j ¥ k be absolutely contin-

’

uous with respect to the restriction Pk n of the measure Pk. An inter-
'

esting observation is given in the following theorem.

‘Theorem 4.9

Suppose that condition (c4.1) holdn for the parameter k € K. Then

the measures Pj' j €K ; j# k are singular with respect to the measure

P*.
Proof n
fk(z )
For each j € K the likelihoud ratio sequence( o )is a martin-
£.(z")
]
gale accordéing teo the measure Pj (Doob [1953], p. 93). 1In addition, we
have
£ (2")
E, o = 1 (4.6)
J £,(2"
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By the martingale convergence theorem we then have

fk(z“)
lim i finite r.v. a.e, Pj
ne fj(z )

(where r.v. denotes random variable).

But under condition (c4.1l)

fkcz“)
lim = a.e. P
e fj(z )
So we have
fk(z")
Pj lim e finite r.v.} = 1
ne fj (Zz) )
and also
fk(z“)
P 1im v finite r.v.) = 0
n¥® fj(z }

Hence, under condition (c4.l) the measures P j; j €K :; j¢¥ k are singu-

lar with respect to the measure P*.'

4.4 Ll Convergence

The L1 convergence of the likelihood and a posteriori probability
ratios follows directly if condition (c4.l) holds.
a certain condition on the information in the observaticns the conver-
gence rates are bounded by exponentials of the number of samples.

true parameter is not assumed to belong to the parameter set.

results provide performance measures for the ML and MAP estimation

We show that under
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methods. In the following chapters we show that bounds of the Ll con-
vergence rates can be computed in common situations for linear sys-

tems.

Theorem 4.10

Suppose that condition (c4.l) holds for some k € K.

Then for each j € K ; j ¥ k we have

lim E.h;.‘ (z%) =

N

and

n

lim &, 2oz’
oo £2(5]2

Proof

We have by (c4.l) for each j €K : j # k

lim bX (Z" =® a.e.
o )

and by (4.2)

n
Jin E0ZD _ a.e.
e £0(5]2%)
Since both sequences are non-negative, we have by Fatou's lemma

(theorem 2.2)
k

lim E,0% (2> 1im inf E,0° (2") > E, lim inf BX (Z%) = =
neo J n-o 3 n+w J

n b n n
1.mE f—bllg-) > lim inf E u{-lz-—)-z E* lim inf fb(klz ) = 0

e (5[ T ase " PG)ZY e £ (512"
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i) 0
f Now consider the following condition
¢ (c4.5) There exists a parameter k € K such that for each 3 € K ; j ¥ k
there exists a positive scalar aj and a positive integer Nj such that
I ;3) > >
I, (kiJ) __aj for all n -—Nj (4.7)
i
Theorem 4.11
Under condition (c4.5) there exists some positive integer N such
; that for each j € K ; j # k the seqguence (h? 2")) ang
£ (x| 2% N ..
o diverge in I‘l at rates no slower than exponential for all
,J. £ (5|2
i n 2> N.
» Proof
- _ £ iz IZn‘l)
I-n(k?J) = E, log £ (2 {zn-l)
j a
£, (") £, "1
= Belog —E - Bylog -
£.(2) £.(z° )
- 3 3
-
yo By (c4.5) we then have
- £, (2" £ 2"
P E, log — - E,log ————— > q,
» £,z £ (2" ~ 3
v J J
I
N ."' .
A yielding
e n
v £ (2)
s E lo > a, + (n - Nya, £ 21 > N, .
- X M "TNey fereiln 2N e
:
1
&
8
.
3
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where Nj‘l
fk(zujlz )
a, = E, log Nj-l - INj (k:3) > oy (4.9)
fj (zNj iz )

Since log (*) is a concave function, we have by Jensen's inequality

(theorem 2.1)

£, (z") fk(z“)
log E, o _>_E* log o {(4.10)
£.(2") £.(27)
J J
(4.8), (4.9) and (4.10) give
X n fk(z“) a, (n-N‘)aj
B,y (27) mE—~——2>c7e J
£.(2)
J

for allnlN,,for each j € X ; j#k
J

Hence for each j € K ; j # k the like.ihood ratio h? (z") tends in the
mean to infinity faster then an expcnential with a rate of q..

By (2.19) we have for each j € K

n
£z _ Lo K%
£Glzh L) £, (2")

Thus, by (4.11) for each j € K ; j # k

n £ (2"
p Btz _ £00 K

*Pilz2h L) *fj(zn)

3
i
3
.ﬁi
1
i

RSPV IV R [ Wa W
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(n-N_ +1)0,
i(k’ e I 7 foralnzu, (4.12)
(3)

>

Hence, for each j € K ; j # k the a posteriori probability ratio

£ (x| 2"

._JEl__) tends in the mean to infinity faster than an exponential with

£(3]2%
a rate of aj.

Finally, takingN=max{Nj; je€K; j#k}anda = min {aj; i €K;

n
j # k} we have that the sequences (h); (z™)) and ( fb klz ))converge in

£¢5]2%

Ll to infinity faster than an exponential with a rate of O for all

n_>_N..

At instant n the ML estimation method will select the parameter k

if
n

£.(27)

n

£.(z

J( )

21 forall jeK; j#k (4.13)

The MAP method will select k if

n

2wl , for all j €K ; j ¥ k (4.14)
n —

£7(3|2"

Hence, the L. convergence bounds established in thecrem 4.11 provide a

1
qualitative measure of performance for th¢ ML and the MAP estimates in
texrms of rates at which (4.13) and (4.14) are attained in the mean.

Of course, the bounds cannot be computed unless the true measure i
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known. Yet, if the true parameter can be assumed to belong to a finite
set, then bounds can be computed over the set. This will be demonstrated

in the following chapters, where we consider linear systems.
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CHAPTER V

STATIONARY LINEAR SYSTEMS

In this chapter we restrict our attention to linear systems driven
by white Gaussian inputs having time-invariant statistics. We make the
assumption that the system has attained steady state, i.e. that all sig-
nals of interest are stationary. We first study the convergence of iden-
tification procedures. The convergence conditions are obtained in terms
of the second order statistics associated with the models in the model
set. If the true model is included in the set, it will be identified
under a verifiable uniqueness condition. If the true model is not in-
cluded in the model set, then the identification procedures converge to
a model in the set which is closest to the true model in the information
metric sense, introduced in Chapter 3, and in the sense of the second-
order statistics associated with the models. Then we treat the Ll con~
vergence of the likelihood ratios and the ratios of a posteriori proba-
bilities. We show that under a simple uniqueness condition the sequences
of likelihood and a posteriori probability ratios are bounded in Ll by
simple exponentials. If the true system belongs to the given model set,
then the bounds can be easily computed using the a priori{ data. The Ly
convergence results provide performance measures for the ML and the MAP

identification methods. Finally, the analysis is extended to other

modeling problems. Methods are suggested for selecting a reduced order

-74-
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model to represent a high order system and for selecting a representa-
tive model from a set from which the true system, or an appropriate
model of it, are known to take their values.

The convergence of the identification procedures is proved by
direct application of the ergodic theorem. This chapter then depends
only on the results of Chapter 3 and secticn 4.1 and the more advanced
probabilistic arguments used in Chapter 4 are omitted. (Note that
since we consider here a very specific class of observation sequences,
we are, in fact, able to treat a more interesting class of problems
than that considered in section 4.2, as the true pérameter ig not

assumed to belong to the parameter set.)

5.1 Models and Densities

Consider the system

+
*ne1 © F*xn G*vn

zZ = H*xn + vn (5.1a)

n

initialized at n = n, with

T
E x, = 0 E x X == Y,
0 o o s

where (wh) and (vn) are uncorrelated and mutually uncorrelated Gaussian
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‘ sequences with
E w, = E A 0
§ E{whw;r} =Q, i E{angr} = R, | (5.1b)
|

The model set is a finite set of models for (5.1) denoted by

{(Fj' Gj' Hj' Q., Rj) ;i JeK = (o,...,p)} 5.2)

| . ;

1

"

K' 2 (*UK)

(As in Chapter 4, the restriction to a finite set is done for the

analysis of convergence and consistency. In section 5.4 we consider
other modeling problems and there the model set is allowed to be infin-
ite. 2Also note that the results of this chapter can easily be extended
to the case where the system (5.la) is driven by an additional deter-
ministic inputs sequence.)

Let

~ - " . '
zj,n = Ej zn ; J €K

‘ denote the one-step least squares prediction of Z given the past ob-
servations Zn-l, assuming that the j'th model is the true one. For

each i, j € K' let

31

-2 T -2
Ej{(zn zj,n) (zn zj,n)} (5.3)

Zj'n = Zj (n' no)




and

o=
j.n

i
Pj (n, no)

«77-

"N

T ”
Ei{(zn - zj,n) (zn - zj.n)} (5.4)

denote the prediction error covariance matrices according to the respec-

tive measures. (For each

jex, gj,n and zj,n are computed, in ess-

ence, by a Kalman-Bucy filter corresponding to the j‘'th model.) Denote

Z, ¥ lim
3 poaww
)

X.(n. no) {5.5)

provided that the limit exists.

We shall use the following condition:

(¢5.1) Fcr each j € K' Zj exists and has a finite positive definite

value.

A sufficient condition for (c5.1) is that each model corresponding to

jex

is detectable and controllable. For each j € K' Zj is ob-

tained by running a Riccati egquation, or equivalently, a Kalman-Bucy

filter corresponding to (F., G., H. .v R.).
P g ( J' J' Jl QJ” J)

Also denote

i_ ..

'V 2 1lim
n > =
o]

i
Pj (n, no) (5.6)

provided that the limit exists. P; is obtained by the following pro-

cedure.

First, assuming no

= ~®, take L, 0= Zj for each j € K' and

’

s b

a7 R

. . . o L b TIL S TaaY
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for all ngpl, wherxe n, is any fixed integer. Then the dynamic equation

generating simultaneously, according to the measure Pi' the state xn

and its' one step prediction by the j'th Kalman-Bucy filter ﬁj

\

l,n"’l 1 xi,n 11
= i +
2. BERE:) 7. (I-K B .
X5,ne1 Ffy FEKEPL R, 0
where
K, = L. BT (i, I, u¥ +.r)"2
3 i3 3 3 3 3
Let
I r -
. F, 0 . 6,
Fj = ; Gj =
F.K.H F,(I-K.H.) 0
33 I
-
Q 0
, i .
i i, .l
@ = By ‘[“i
0 R,
Then the matrix
i xi,n+l] . )
wj,n = E [xi,n+l ’ xj,n+#] s
J“j,,n-ﬁ*l

is generated by the Lyapunov equation

yl e
Jvn+l 3 3. ]

i i i
+ G, G,
J € J

is
[4
] w
n
FjKj vn
O
F,K,
33
)
J
(5.7}
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Initialized at nl'by any initial value. We can write

i i
¥ = Wj (n, nl)

jrn
Then let
¥ = 1im ¥ (n, n,)  (5.8)
3 o> =0 v
1
Finally
i i ogi 4T -
I* = 5 ¥ Y + R, (5.9)
j i 373 i } .

It is well known that the limit (5.8) of (5.7) exists and is finite if

the matrix F§ has all its' eigenvalues inside the unit circ¢le. This is
the case if for each j € K Fj‘has all its' eigenvalues inside the unit
circle and (Fj, Hj) is observable. Note, however, that thgsétcondiéicns
are only sufficient, not necessary, for F; to be finite, since (S.Qf

may be finite even if W;, obtained as the limit value of (5.7) is not

finite. - _ \

Theorem 5.1

For each j € K' let the corresponding model be stable and observabie
and let n_ = -®. Then the residuals sequences (z_ - gj,n) ; jJ eK';
n 2 0 are ergodic according tc toe true probability measure.

Proof

We have by (5.5) Zj n = Zj for all n > 0. Since both (zn) and
L4




od

(z. n) are linear operators on 2 zerc mean Gaussian sequence (xn), they
’

are zero mean Gaussian, and so is the sequence (zn - En j) for each
’

j € K'. Hence, (z - ﬁj o) is a zero mean stationary Gaussian sequence
’

for each j € K'. By propositicn 2.1 we have that (z - ﬁj n) is ergedic
?
if (and only if)

2
limx—;-l- Z |r(x) | (5.10)

-where |R(k)| denotes the determinant of the matrix
T

ut vt gt + R k=0
3 3 3 i

A T
R(k) = E{(zn- zj.n)(zn+k° %j,n+k) } - Ly {r Lk {5.11)
l H, ¥ B, (F)) k>0
J 3 3 J

wWe have for any k > 0
, . T . sk 3
R | = u;oal || e
R e B VAN A |
Since all eigenvalues of F§ are inside the unit circle, then
i
ol <
le5l <2
Hence
e 2 ioiT)2 1 yig2 L. B gig2k
lim $~R(K) | -lnj H: | l\l‘jl l:unz:h".l

j j
L aa ey e =l
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Yielding

1 2
,l,::ﬁﬁ'jgo [R(k)|“ = 0

The assertion follows..

Note that the stability and observability of the models, assumed in
theorem 5.1 are only sufficient, not necessary. In fact, we have

proved ergodicity of the state residuals (x = Qj )¢+ which is not
’

necessary, to show the ergodicity of (zn - £j n). In the sequel we shall
’

directly use the following condition.

(c5.2) For each j € K' the residuals sequence (z, - ij ) is ergodic.
’

5.2 Information, Convergence and Consistency

Consider the system (5.1) and the model set {5.2). Let condition
{c5.1) hold. Then the conditional probability density of z, given the

past observations zn-l' corresponding to each model is

>

n-1 - '3 -’/2 - _1_ -5 To=-1 - .
£z, |2 [m) lzjl] exp{ 3 (2, - 8, 0T G zj'n)}.

j €K’ (5.13)

where £ is the dimension of z,.

In Chapter 3 we have defined for each pair j, k € K'

n=-1
fk(znlz )

i n-1
fj(znlz )

In(k:j) Z E, log

! G ol i el
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a_ (k;3) lxn(k:j)l

We have for each jex

n=1 L 1 1 -1 %
E,log fj(znlz ) = - 3 log 2m 5 log lzjl 3 tr zj I‘j (5.14)
and for each pair j, k e R
- - . 1 1 -1 . * 1
I (k;3) = T(k;3) 5 log lel +5tr zj 1"j - 5 log lzkl
1 ~1 %
Let
i -1 i
L, 21 .| + tr . I i, 5 @ X* 5.16
5 oqul HRTERE (5.16)
Then we have
~ ] 1 * * .
In(k.J) -3 [Lj - Lk] j,» k €K (5.17)

Also, by theorem 3.1

I (*:3) 20  for each jex

Hence

d(*33) = a_(%;4) = x_n(*;j) for each j e K

Thus, for any j, k € K




2 = In(k:J) 'i
1 . . . ' 1
E'ILj - Lk] %.18) 4 25
Hence
i dt*;3) > d(*;k)

if any only if

t
[Whay
iv
e

Lemma 5.1

Let (zn) ke generated by (5.1) and let condition (c¢5.1) hold.

Then, undcr condition (c¢5.2), for any j, k € X

lim hi z") =0 a.e. (5.19)
- -0
if
* *
L < Lj (5.,20)

PG S
Al

and only if

N .
2
P A

S
o

(5.21)
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Proof
— n j m-1
log hi (2) = :E: log hy (zm|z ) (5.22)
m=l
We have
, iz, |
-1 k
log hﬁ (znlzn ) = S log
T-EJ:T i
1 A T -1 A
-5z, - zJ'n) Ej (z - zj'n) :
l A T 'l ~
+ -i--(zn - zk,n) Ek (zn - zk,n) (5.23)

Since for each j € K the residuals (zn - 2j ,) are ergodic, it
’

follows from the ergodic theorem (theorem 2.5) that

1 j m-1 j -1
lim = log hk (zmlz ) =E, log hk (zmlz ) a.e.
w el
TR

= Im(j:k)
1 * *
- 3‘(Lk - Lj) (5.24)

Now if

]

*
L < Lj (5.25)

Then obviously

p
k

\27) = - a.e.

Iy] .
lim Z log hf( (zmlz""l) -

lim log h
nwo 00

=]l n
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yielding
. 3 n
lim (z7) =0
n-'mhk
To prove that (5.19) implies (5.21), suppose that (5.19) hoids, but

(5.21) does not, then

Lk > Lj (5.26)
and by (5.24)
2 j m-1 3, n
lim log hi (z_|z" ") = lim log hi (27) =
n"m m n-roo
m=1
irmplying
1im hi (zh = (5.27)

which contradicts (5.19). Thus, (5.19) implies (5.21)..

Consider the following condition

(c5.3) There exists scme parameter k € K such that

* *
Lk < Lj for all jeE€K ; jJ#k (5.28)

Theorem 5.2
Consider the system (5.1) and the model set Ml’ and let (c¢5.1) hold.
Undez conditions (c¢5.2) and (¢5.3) the ML, the MAP and the LS identifica-

tion methods will converge a.e. and the LS method will also converge in

m.s. to the model (ch K’ Hk’ Qk' Rk)'

e — e e g R T, e T
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Proof
By lemma 5.1 condition (c4.l) is satisfied for the parameter k.

e —

The assertion then follows from theorems 4.1 through 4.4..

Note that by (5.18) the identified model is the closest to the true

model in the metric d.

Corollary 5.1

The convergence specified in theorem 5.2 will be to a model in

Ml, such that
* * * * .
lz.k -v,| = min{lx.j -r,|:3je x} | (5.29)

Proof‘

By thecrem 3.1 we have

I (%3 20 for each j € K

Hence
* *
Lj-L*>0
if
* *
LJ.;‘L*

So the assertion follows from lemma S.1 and theorem 5.2.-

il i R o A . o

The identification methods will then converge to a parameter in K, clos-

=T

est to _he true parameter in the scalar L, which in turn implies close-

ness of the corresponding models in terms of their output statistics.
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Corollary 5.2
Suppose that the trv.: system belongs to the set Ml‘ i.e. let (F, G,

H, Q/ R) = (F, G, H, Q., R) for some 1 € K. Let conditions (c5.1)

X

and (¢5.2) hold and suppose that for each j € K ; j ¥ r we have

r

* r ] .
Ly =Ly L1, (5.30)

Then the identification procedures will converge to the true model in

the senses specified in theorem 5.2.

Proof

The result follows immediately from coroll.ry 5.1..

To compute the scalars L;, j € K one must compute the matrices Zj
and P;. While the matrix Zj can be computed by‘running a Riccati equa-
tion corresponding to the j'th model to <teady-state, the matrix P;
cannot be computesd unless the trus measure or, equivalently, the true

system is known. If r € K is the true parameter, then

and conseguently
L =L = log |I| + & (5.31)
r x °9 1% *

In the identification problem the true parameter is unknown. If the
true parameter can be assumed to belong to the pzrameter set, then (5.30)

will have to be checked for all pairs of parameters ir the set, namely




(c5.4) For all pairs i, J €K ; i ¢ j

i i
Ly # L; = log 2,1 + 2 (5.32)

Theoxrem 5.3

Let the system (5.1) belong to the set Ml' and let conditions
(c5.1) and (c5.2) hold. Then under conditions (¢5.4) the true model is
identifiable a.e. by the ML and the MAP estimates and identifiable a.e.

and in m.s. by the LS estimate.

Proof

Undex condition (c¢5.4) we have (5.30). The assertion then follows

directly from corollary 5.2..

5.3 L1 Convergence

We have shown in section 4.4 the Ll convergence of the likelihood
ratics and the a posteriori probability ratios under condition (c4.l).
Furthermore, it was shown that under condition {(c4.5) bounds on the Ly
convergence rates can be established, thus providing a measure of per-
| formance of the ML and the MAD estimation methods. We now show Ll con-
z vergence and derive L1 convergence bounds for the identification of
stationary linear systems treated in this chapter.

) Consider the system (5.1) and the model set Ml and let condition

(c5.1) hold. We have shown {(5.17)) that under condition (c5.2)

=iy L Typaay L Lo
In(k:J) = I(K;j) = 5 [Lj - Lk] for all n

VNIRRT ER D, -

4

ety A b




* k
for each pair k, j € K where Lj ;i J € K are constants. o

Theorem 5.4
Consider the system (5.1) and the model set Ml given by (5.2).

Under conditions (c5.1) and (c5.3) for each j € K ; j #¥ k the sequences

.n
(hl:; z™) and(fb(k = )) converge in L, to infinity. Furthermore,

£(5]2Y 1 ;

the sequences converge at rates no slower than exponential.

Proof

By lemma 5.1 condition (¢5.3) implies condition (c4.l). The L,

convergence of both sequences follows from theorem 4.10,

Now let
N R A B hje '
aj = -5-[1.j Lk] or each j €K ; j #k
then following the proof of theorem 4.11, we get by (4.11l) and (4.12)

for each j €K ; j #k

(n+l)0Lj

E h]; (z") > e (5.33)
and
o Bula | Py DY (5.34)
£3]2™ T L) n

The rates o, = T (k;j) ; J €K ; j #k can only be computed, as

discussed in section 5.2, if the true model is known. If the true model




D S e 2 s bt e oD ey W T T
' N v

=90~

is only known to belong to the set M , then the rates can be bounded as

1'
follows. We have seen that if k € K is the true parameter, then ((5.31))

L; =log L | +4

Now since

1 * * . .
aj--z-[Lj-Lk] for each j €K ; j ¥ k

where k is now the true parameter, we have
1 »
a; =3 [L; - log lzkl - 8]

Then

k

a, >a = min{min {';'- [L]j‘ - log lzkl -2 ;L log Izkl - =0

5 -
for all j € K ; j#k}kex} ‘ (5.35)
(5.35) reads as follows: For each k € K suppose that k is the true

parameter. If

L? ~log T | -220 foralljex; jsk (5.36)

thfen take the min over j of (5.36). Continue the procedure over all
k @ K, discarding such k for which (5.36) does not hold (since then k
cannot be the true parameter, for which (5.36) always hclds). Then take
the least of all the minimum value; of (5.36) found above. Note that

this procedure does not identify the true parameter, but rather finds

a lower bound for aj over j € K,




The above discussion is summarized in the fellowing theorem.

Theorem 5.5
Consider the system (5.1) and suppose that its' true model belongys

to thw set Ml given by (5.2). Then under condition (c5.3) we have
£] (2 > etntlla (5.37)

n
g Ltz | 2 (mela

£z T Lo

(5.38)

for each J € X ; j # r where r is the true parameter and where a is
'given by (5.35).

As discussed in section 4.4 the bounds (5.37) and (5.38) provide
performance measures for the ML and the MAP estimation methods. We |
have shown that bounds on tiie L. convergence rates of the indicated

1
ratios can actually be computed for stationary Gaussian lineay systems.

5.4 Nodel Selection

In practice, when a mathematical model of a dynamical syétem is
required for purposes of estimation and control, one often knows, to
certain approximation, what th: model should be. However, because of
implementation constraint one has to select a different model. Such is
the case when the actual system is of high order, but the available
computation and storage capabilities are such that only a low order

model can be handled. Another modeling problem arises when the actual
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system's model is known to take its' values, which may be time-varying,

from a given set, but only a single model can be considered. An example

of practical significance is the dynamical model of an aircraft, whose
parameters vary considerably over its' flight envelope. However, the
airborne computation and storage capabilities are limited and a single !
model of the aircraft dynamics must be used throughout its operation.
These are not identification problems in the strict sense. Never-
theless the analysis in Chapter 3 and sections 5.1 and 5.2 suggests a
natural extension of the results into the model selection problems in-
troducad above. Tt should be emphasized that unlike the investigation of
convergence and consistency of parameter estimate the results of this

section apply to infine and even non-compact paraweter sets.

S5.4.1 The Selection of a Rzduced Order Model

Suppose that the true system or an approximate model of it are
known, but their dimensions are too high for implementation of estima-
tion and céntrol prodecures. A model of lower dimunsion is then desired.
Let the true system, or an approximate model of it be given by (5.1) anq
let

M o= {(Fs. Ggr Hoy Qs R) 1 8 € S} {5.39)

be a model set of dimension lower than that of (5.1). The system co-

efficients in M depend on a parameter vector s belonging to a parameter
set S. It is desired to find the model in the set M which is closest

to the true system (F_, Gyr Hoo Q.0 R,) is come meaningful distance

I e ik i
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sense.

For each s € S let

* -1 *
= r .
L, = log lZsI +er IO T (5.40)
where
* - o o T
Fs ZE, {(zn 2o, (Zn - %) }
Qs n is the one-step least-square prediction of z, given the past c¢b-
’
servations Zn-l assuming that s is the true parameter value, and Zs is

the correspinding prediction error covariance matrix. Es is cobtained
by running a Riccati equation correspondihg to the model (Fs. Gs' Hs'
Qs' Rb) to steady-state. The computation of F; was discussed in the
previous section. Let 8° € S be a parameter which satisfies the follow-
ing criterion

1, < {1, iseS s¥5°)

o

Then, following the reasoning of section 5.2 the model (Fs°‘ Gs,. Hs,,

Qgor Rs.) satisfies the following equivalent criteria:

1) The model which is closer to the true model than any
other model in M in the sense d(*;s°) < {d(*;s); s e S}.
2) The model which would be favored over any other model
in M by the incoming information.
3) The model which would identified as the true model among

any finite set of models from the set M by the maximum
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likelihood and Bayesian estimation techniques.
The model selection problem reduces then to the minimization prob-
lem
*

min {L i s € S} (5.41)
8 s ,

We do not addreiss the algorithmic problem of solving (5.41) or the exis-
*
tence of a unigue minimum of L_‘ on 8. These problems are sugygested for

further research.

5.4.2 Thae Salsction of & Rggresantative Model
Suppose that the model of a linsar system whose parameters may be

time-varying is known to take its values from a set

M = {(Ps, Ggs Bys Qv R) ;8 es}
Two different casss may be considered.
1) The model takes a certain constant value in the set M
and there is no prior knowledge even in a probabil-
istic sense on what value it might be.
2) During the system's operation its' mathematical model
varies over the model set M . However, it is not
possible to consider the model's time program.
In either case it is desired to select a single model from the set M
tn represent the system throughout its' operation. One criterion for
the selection of such a model is that the maximum possible distance d

between the representing model and the true model {(whatever it might be)
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will be minimal.

The procedure for selecting the representative modsl from M will
theu be a= follows. First, for each parameter s € S find the parameter
t whose distance from s is maximal, and the corresponding maximum dis-
tance. Then find the parameter s for which the maximal distance found
is the first step is minimal.

The distance between a parameter s and the parameters t of the set

S is waximized over ¢ by maximizing with respect to t

t ' -1 ot
L =log || +trZ " T, (5.42)

' where, as befora

[
i

a A T
E {(zu - zs'n) (zn - zs'n) }

ts

» 15 obtained by running a Kalman-Bucy filter to steady-state, and

t - s _s 4T
Tg 5B {(zn zs,n) (2, zs,n) }

is obtained by running a Lyapunov equation to steady-state, as shown in
the previous section.

The representative model is then found by solving the minimax prab-
lem

min max {Lt ; 8, t € S} (5.43)
8
s t

The uniquenes: of the solution of (5.43) is suggested for further re-

search.
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Remarks

1) The procedures described in this chapter find, in general, a model

(£

in the model set, whose output (or ocbservatiaons) statistics are best
matched with thoge of the true system. However, for the modeling prob-
lems considered above, the rxole of the ontput can be played by any lin-
ear function of the state variables. If, for instance, it is desirxed to
emphasize certain variables that affect the system's performance more
than the others, or that can can be measured better than the others,

then these variaivles can be selected as outputs for the model selection

procedures dascribed above.

4 2) The problem of selecting a single model from a model set, considered
in sections 5.4.1 and 5.4.2 can be generalized to a problem of selecting
a number of mcdels from the set. so that the model set is approximately
represented by « finite set of models. An identification procedure can
then be employed "on-line" to find the model in the finite set which is
closest to the true system. The selection of a finite model set would
require, as a first step, the division of the infinite parameter set
into a finite number of subsets. The way in which the parameter space
should be divided would depend on considerations of the physical prob-
lem involved, but it seems cbvious that the division could employ the
% metric topology of the parameter space introduced in Chapter 3. (Just
as interval lengths are used in Rn, say, to divide a rectangle into

K}
% equal parts.) The selection of a representative model for each subset

AT et B it il A il LR B e ina RS sl
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is then performed as described in sections 5.4.1 and 5.4.2 above. Fur~

ther research of this aeemingly promising apprcach to system modeling

and identification problems is recommended.




CHAPTER V1

NON-STATIONARY IINEAR SYSTEMS

The assumption of stationarity made in ihe previous chapter is now
removed, as we consider the general case of non-stationary, time-
varying linear systems. We first derive expressions for the information
in the cbgervations, discriminating one model in the model set against
another., The information conditions for the consistency of the esti-
mates are interpreted in terms of the second-order statistics associated
with the differaut models amd computed by solving the corresponding
Riccati equations (or, equivalently, running Kaiman-Bucy filters) . The
consistency result for time varying systems is not, however, as ex-
plicit as in the stationary case. The L, coavergence ol the likelihood
and the a posteriori probability ratios is investigated. The separate
contributions of the stochastic and the deterministic parts of the in-

put to the information and, consequently, to the L, convergence rates

1
are shown.
6.1 Models
Consider the system
el F*.nxn * G*,nwn
+ é.1a
zn = H',nxn Vi ¢ )
~98~
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initialized at n = n with

Ex =0 ; Ex x T Yo

*n n
() o o

where (wn) and (vn) are uncorrelated and mutually uncorrelated Gaussian

sequences with

Ewn-Evn-O

T T
E{wnwn } = Q*,n : E{vnvn }s R*,n (6.1b)

Consider a finite set of families of models

M2 E{(F. ’ G. ’ H. nl wj' Q.

R. H
jem! Tim’ Ty, ’ )

Je.n Jen

jexKs= (o,l,...,p)} (6.2)

. Ok s (ol

Let -(zn) be an £ dimensional observation sequence. The conditional

probability "\iensity of z given the past observations Zn"1 and corres-
ponding to eich model is .given by

n-l L -"‘é - i - Tl -2 }
f.j(zn|z ) = [(2'") lzj,nl] exp{ 5 (zn zj,n) zj,n(zn zj,n)

i €K {6.3)

= TS R

§
:A.
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i is the corresponding error covariance matrix. Both Z

where, as beforxe, is the one-step prediction of z, given the past

z
jsn

cbgervations zn—l’ assuming that the j'th model is the true one (i.e.

assuning that the observations are generated by the j'th model), and
jen Jon and zjln
arze generated by a Kalman-Bucy filter corresponding to the j'th model.

€.2 Information, Convergence and Consistency

The information in a single cbservation z . favoring the k'th

mscdel againet the j'th model will now be derived.

-1
U £ (z lz“ )
In\k;j) - l_:‘.n 1 log Kk n

n~-1
£ (znlz )

-m (- daeels f e 5 07T -5 )
+gleals, 1+ 3 -2 0T @ -8 0

TS R T N PE L

* %Q'Tn I:l::‘n g‘k.n - % i"’?n z;fn i".n * %’tr z;.n E['jn-l {znznT}

- %ijfn z;:n ﬁ'.n - %ﬁ*'fn Z;fn Aj,n + % 2:“ ;fn A‘an a.e.
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Hence

I, 09 =
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(L, .
1 x:3)

e
n

(k;3)

Hence

(

PTRR & § Rty §2) o .
In(k.J) In. (kij) + In (k:3)

Suppose that condition {z4.2) is satisfied.

and by theorems 4.1 through 4.4 conditions (c4.3) or (ca.4) are suffinient

(6. &1

(6.7)

Then, oy lemmna 4.2




for convergance of the estimates to the k'th wodel ip Ml' However, it
is not difficult to see thut the verification of conditions (c4.3) or

(c4.4) is not possible for the general case considered here under any

conditions imposed on the Jeterministic paxt Ién (k;3), dux %0 the ran-
dom part 1(2) (k:4). In rection 6.3 we shall show that 1(2) {k:;j) can be

n n

further separated ianto deterministic anrd stochastic parts. We now show
that undexr the assumption th~t the true modrl balongs to the given set
Hy, the information expression for the time varying system under con-

sideration is simplifisd and consequently some axplicit conditions for

identification can be htained. *

Suppose that some X € X is the true parameter, then by (6.4)

I(kid) = I¢(kid) + I (ki) (6.8)
vhere
I (ki3) = 3 log ]I-E-f:- ‘3 o z;fn - 1) (6.9)
and
MUY IEE ST HEE R LE AN - RS (6.10)
¢ jen j,n " “k,n jon

Consider the following condition

(c6.l) For some % € K and for each j € K ; j ¥ k there exists some

scalar aj > 0 and 2 subsequence (n’) of (n) such that

[z ;- F 3“ >a, for all n’ (6.11)
kan j‘n 3
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Lemma 6.1

Let some k € K be the true parameter, i.e. let

(Ft,n'ct'n'uten'\y*'Q#,n'a',n) = (Pk,n'Gk,n'ﬂk,n'\yk'gk,n'nk,n)

Then conditiom (c6.l) implies condition (cd.4) for k.

Proof
Clearly
1,"(k;j) 20 for all n for each j € K
Thus

In(k:j) > In'(k:j) for all n for each j € K.

It will suffice then to show that condition (c¢6.l) implies the sxistence

of a subsequence (n:_& of {njb and some Ej > 0 such that

T (k;j3) 2 %,  all o)
3“‘ j) 2 % for all a (6.12)

L+ 3
b

Congsidey the following equation

!zkem - Anzjmi =0 (6.13)
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TFor positive dafinite 2 n and z 3,1 there exists a nonsingular matrix A
’

such that (Anderson, [1958], pe341):

- o
" and
A:zj AT | (6.15)
[ : )

where An"mis a chagmal matrix whose elements are An,i’ i-l‘,...,l. ﬁhe
roots of (6.13). In addition, we have )‘n,i 2 1 for all i=1,...,% and
n>o0. |

It is easy to wverify that In' (k;j) rémius invariant under the

transformations (6.14) and (€.15). Hence

Csd) = - X L -1
I ' (ki3) 2 log [A ] +5 & -‘% 1)

Z[n.i-log/\ .-] ' (6.16)

im]

Suppose that for some subsequence (nj) of (n)

Iz, a 3“ >a, >0 forall nd (6.17)

Then there exists some cj >0 and a subsequence (‘ni) of (n’) such that

A5 -1l 25 for all n] for each imi,...,% {6.18)
n_,i
r

since if such Cj and such (ni) do not exist, then
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PRI ! as n +® (6.19)
n n
where SR
A i su‘m{x g b 1-1,...,1}
nJ n n
and then
It .-2 _[|~+|z -A.,i.T [l=o0
koni j,ni k,nz n:_ ni j'nr

as ng + m, contradicting (6.17). Hence, (6.17) implies (6.18).

Now conaider (6.16). Since
a-loga-12>0 (6.20)

with eguality if and only if a = 1, and since the function on the left
hand side of (6.20)} is convex in a, it follows that given { > 0 there

exists some o > O such that
a~-~loga-1>aq
whenever |a - 1| > ¢

Thus, finally,(6.18) implies that there exists some Ej > 0 such that

’ L4y > 3
Ty (k;3) 2 &y for all n - (6.21)

n
'

The assertion follows..
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We have shown in Chapter 4 that consistency of the parameter
estimates {or, equivalently, identifiability of the dynamical system)
follows from conditions (c4.2) and (c4.4). Condition {(cd.4) (or, nmore

generally, (c4.3)) seems to be, for cbvious reasons, the “crucial"

condition for the strong consistency of the estimates. We show below
that condition (c4.2) holds for the case of time invarisnt stationary
linear systems. It seems, however, that condition (c4.2) would hold

for very general classes of cbservation sequences. For the general

case of time varying systems we condition the consistency result on
condition {c4.2) which has to be checked for each case under consid~
eration. It seems, in particular, that condition (c4.2) would not be
difficult to verify for the class of periodically varying linear systems
and for systems driven by bounded deterministic inputs. This, however,

is left for future research.

Theorem 6.1

Suppose that the system (6.1) belongs to the set M2 specified by
(6.2). Furthermore, suppose that condition (c4.2) holds. Then the
system is identifiable a.e. by the ML ana the MAP estimates and identi-
fiable a.e. and in m.s. by the LS estimate on the set if condition (c6.l)

is satisfied.

Proof

The asgsertion follows from lemma 5.1 and theoremn: 4.6..

BT T Y YR g o Tl g
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Now consider the case, treated in Chapter 5, where the true sys-
tem, given by (5.1), is assumed to belong to the set Ml’ given by (5.2).
Under conditions (c5.1) and (c5.2) condition (c6.l) simplifies to the
the following condition:
(c6.2) Foreach jeK ; jrk
|2::i -I]l¥o
Suppose that k € K is the true parameter, ‘le have for each j € K ;

1K

.U
- - - l 1 -1 -1 A A
T3 = - 3 log 5] - Fer Tt g2 e - 20 (2, - & n)T}

U
i 1 -1l _“n-1
+ 3 log IZkl tstr Zk E, {(z

- 5 - 2 T
zk,n)(zn zk,n) }

(€.22)

n

where, for each j € K

*,n %5,n %5,n %x,n i, %j,n
=I,+(3, -2, )¢, -2 ' (6.23)
N jmn . j,n :
and, since k = *, 3
:}
Jn(k:j) = log h? (znlz“ 1) - In(k;j)
]
.%trzk (251-1) |

 uaan
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!._ ~ -l - - 2 T %
*2 2:k [‘zn zk,n)(zn zk,n) ]
. 1 -1 ~ 2 A A ~ ~ T i
Tawly [(zn "3 B T 50 T BonT 25,0 Giont 2y 0] ] ;

(6.24)

A

Since the sequences (zn - zj,n) and (zk,n

d j,» kX € K, so are the sequences (In(k;j)) and (Jn(k;j)). It follows

- Z, ) are ergodic for all
Jen

from lemma 4.2 that condition (c4.2) is satisifed. Condition (c4.3) is
satisfied if condition (c5.4) is satisfied, by theorem 3.1 and the
ergodicty of (In(k;j)). The identifiability of the system under con-

dition (c5.4) thus foilows from theorem 4.5.

f 6.3 L, Convergence

1

We have shown in section 4.4 that by bounding the information in the
observations away from zero, bounds on the Ll convergence rates of the
likelihood and the a posteriori probability ratios can be established,
which in turn provides performance measures for the ML and the MAP es-

timation procedures. in this section we consider the identification of

a general class of time-varying systems driven by stochastic and deter-
ministic inputs. The fact that only convergence in Ll and not in the
stronger senses of a.e. and m.s. is sought enables us to obtain rather
explicit results., The stochastic and the deterministic parts of the

input are shown to contribute separately to the convergence rates of the

identification procedures.

ey S B A Y € . T O g R Y TR % 75 =T 2 T o gy
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Considexr the system

z, = H*,n X, + v, (6.25)
where (un) is a deterministic (known) input sequence and the other ele-

ments are as specified in section 6.1. Alsc consider a model set

M. =

3 {(Fj'n'Gj,n'Jj,n'Hj,n'wj'Qj,n'Rj,n) ;i je K)} (6.26)

where Q. and R, are the covariance matrices of (u ) and (v4 respec-
J.n J,n n n

tively, corresponding to each model.

The incremental information for favoring a parameter k over a

parameter j in the set K, is given by (6.8). For each j € K we have

1l A
I (*;5) =% (2 -z, \ 2 -z
n (*i3) =5 *,n j,n) zj,n (z*'n zj,n) (6.27)
Let
& = 2 5 ) * *
jen *n zj,n N Hj,n xj,n (6.28)
where
H* =
jon = (H*’n ’ Hj,n) (6.29)
and
a* - T AoT.T
X0 = B nr X)) (6.30)
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g For each j € K*' we have

? 2j.n+1 =Ty -k H )‘ij +

G u
Jen j'n J.,n o j,n n
+F K H X +F X v 6.31
: jon "§n "*,n"n jn " j,n n ( )
‘ where _
4 - T T -1 i
K. £ H, #. I, H.” +R. ) o
jen jm 3 ¢ jem jon " ien jen §
B
Let .
4 z = R4, =F, (I-K. H, )% _+6G, u
i jontl *7jntl jon jmn " jm" " 3in jen n
' + 5'j,n j,n l'1"',11 x*,n
. where
A ) Un-l ) ) .
. X*'n = E*Xn = E*E* xn E, *,n = x*'
»_“‘ Also let
5 ~ - _= _ ~
I‘ R T P R S R R e
3
‘ thn Kjln *'n(xn - x*rn) "
g’ P
4
i - . + F K.
; - . jemn "3,n n
; i
% and ‘
X
¢ X = -x = %
-4 Xu n+l ~ Xn+l X+, n+l F*,n X% n + J*,n Y ;
é
E

S T




wt

v
.

@™ s

R W I < TR A

SR EC S

L S = o
-111-
ow let
§;m z n;’n :;'n (6.32)
where
;Ej'n z (a::.'fn . :::an)T (6.33)
and let
’5;,,, = H;,n 'i;'n (6.34)
where
' EE RS AR (6.35)

Then we can write

, 1 A% xt T =1 % o
I (*;5) == (2,  + Z, I, 2
n( 3 2 ( jen J,n) jon "3.n J.n)
1T -1 g TR L g pC I
=%, It 2 +=z, LTz, o +2z .z,
2 °Jm 3j,n J.n 2 "j,mn J.nJen J«nn JeR JeB

Let
~y  ~,T
* * *
. =2 z. 6.36
j.n jomn "j.m ( )
T
* =%
V. =z, -’ze* (6.37)
J.n J. J.n
and
~ T
* ok
J., Z 2z, "z‘* (6.38)
J.n J.,n J,n

sty e

i

ke
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Then we have
1 -1 * * »
L] * P

In (*;3) 3 tr Zj,n (oj,n + vj'n + ej,n)

Vie shall use
= 0.
T E- jon

which is obtained via the following procedure.

Define
AR
jen *,n’ “*.n’ jn
~* . v 3
Then xj n 18 generated by the following equation
’
ot F* " + G*
x = F, X w
jun¥¢l  “im 3m T3 n
where "
F*,n 0
F* = <
jeon ~ F*,nx*,nu*,n F*,n(I - 1\“',nﬁ"',n)
. K. H, 0
Jenn J,n ®,0
- -
e n 0
w
* - - n
GJIn - 0 F*an*tn wn =
v
n
0 . .
L J.n J.n J

(6.39)

(6.40)

(6.41)

(6.43)




' Also let
* —
Qn‘ =
Then
g ©, o, I, O, b5 T (6.45)
an o .
j.n —' T3 'Jln‘-“ jon
where . - _ '
T 6.46
sn 2B ) | (6.4
A - '\‘
is generated by the equation : . ,
* F* n* FQ"’[‘ G* .,:v.\ *® GY*T" (6 47’
. = F, . ‘ + 0 .
‘ \ J,n+l Jm Jn "3.m - Ti,n .Qn Jin
) B initialized at ' l | _ o
_ .\ |
1Y, \ ‘
I, = vy, 0
0 ¥,
J
. .
Next consider V 3,m° We have
" v
% F* x + 6* oy 0 6.48
. = " N R H . = .
J'z;],n-i»l j.n xj,n j.n un xJ +© ( )
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where

P*.n 0 ' L G

t'n

e |

n

-
-

-
)

i, &
H F, (I

lx. Fj lnlen *,n jm ! ¢

- xj,nﬂj...‘n‘” | §,n
B (6.49)
(6.48) can be writton as

X — n-1 —
; BT hh e G (.50

: ' : . \'.:I\\\\-_:\\'\ .v\" - \\ ‘ | N ot “n-m.--i_. o
'\.‘ E A Vo &j \(”’w gl Fj i ‘ ' (6.51)

‘a\-_,' oo e Y B e, =0

o "\ Shus, for ko * and each j €K ; j f k
\“ .' ‘.

W T (ked) » I I

) . . ™Y ke %
N S Tl =T Gad) ¢ T GGy

i

—

1ol

_ \ | fz, !
. = = ] e l
'i&. °9 le'nr+ 2 & (zk,n j.n

|8
[ g

y 1 T~
. + > tr I, .+
‘.4. 2 J.n ( J.n V)jcrn)
'y
]
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Note that while I and Zk n lor In'(k;j)) depend only on the sto-
’

e

chastic part of the input the term V? n represent; its' deterministic
L4

part. In the sequel we examine the separate contributions of these

elements to the Ll convergence rates of the likelihood ratios and the

a posteriori probability ratios on the set K.

Theorem 6.2

Suppose that the true system (6.25) belongs to the set Ma‘quen
by (6.26). Let k € K be the true paxametef. Syppose that foE'each )
j € K'; j # k there exist a positive scalar aﬁ and a positive,integgx

Nj such that

[1z [l > o, for all n 2 N, (6.52)

k,n zj,n
Then we have for each j € K ; j #k

X . n (n-N_+1)a,
E“,hj (27) 2 e J J for alln > Nj

and
n (n-N.+1)o,
E, beklZn) = £2() e 7 7 foralln>nN,
Lz L) ?
Proof

The proof follows from arguments similar to those made in the proof
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of lesma 6.1. We first show that (6.52) implies that there exists

some ¢ > 0 such that
P - 1| > e for each i=1,...,%, for all n > N {6.53)
n,i - =%y

where )\ i i=l,...,4 are the solutions of (6.13). Suppose that. (6.53)
. ’

does not hold, “hen for any £ > 0 there exists some ne -?-“j such that
- 6.54
Iln i 1 <e ( )
€ n€

where
)
n.i = min A ; i=1,...,8

i
€ Nes

and then, by continuity of the left hwnd side of (6.13) in An' given

aj > 0 one can take € such that

”r‘k,nc - An,in zj,nl - lzk.n - Zj,nll < aj
€

yielding

llzk,n - zj'nll < aj

contradicting (6.52). Hence (6.52) implies (6.53). Now by (6.16) and

by the convexity of (6.20) we have that (6.53) implies that for each

j €K ; j# k there exists some oy > 0 such that




It (kid) 2 o

for all o 2 N

3

Since -f; (k;j) 2> O we then have .
\\‘. \

I (k:j) > 1a >N,
In(k.:n)__ct.j f_qrallxln‘:__u]

\\‘ ,\‘\}.‘ \\‘ :\ L .
Condition (¢4.5) is then satisfied and the 'aigeition follows from equa-
tions (4.11) 808 (4.12) in the proqf of thearem 4,il.g

A
Corxollary 6.1 :

Let the .sa;t\ M‘z. be “ime invariant and let the true system belong
to AS. Suppose tmat_\'-f‘or\\.;each jex Ej given by (6.23) is finite and
N

non-singulayr. Then :p&\.\'nl%-convergence bounds asserted in theorxrem

(6.2) holds undex c.gndiﬁg\?ﬁ;.(qe.Z), where k is the true parameter.

A

Proof

Condition (c6.2) impl .es that for each j € K ; j ¥ k there exists

sope Cj > 0 such that

HZJ 'zkH _>_.4;j

T
|

lim sz'n - zk'nl = sz - zkll >z, i

nHe

clearly,

e, T TV VNG P g
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Hence, for any positive scalar aj such that 0 < u.:i < Cj there exists
some positive integer NJ. such that

5,m nll:a for all n 2 N
’

b 3

’

The assertion then follows from theorem 6.2..

Theoren 6.3
Suppose that the true system (6.25) belongs to the set “3 given by
(6.26). Let k € K be the true parameter. Suppose that for each j € K ;

j # k there exists a positive scalar o, and a positive integer Nj such

that

tr Z;Tn v’;'n 20, foralln2W, (6.55)
Then the L, convergence rates asserted in theorem 6.2 hold.
Proof

For each j € K ; j ¥ k we have
I'(ki3) 20 foralln2>0
(It follows from (3.5). Also see the proof of lemma 6.1l) and

.1 * >0 foralln>o

“jn 3 -
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ij) > 5 . . 2a. & > N,
In(k,J) 2yt x],n j,n =% or all n > j

Condition (c4.5) is then satisfied and the assertion follows from equa-

tions (4.11) and (4.12) ;n the proof of theoram 4.11..

Theorem 6.2 guarantees a certain Ll convergence rate of the likeli-
hood ratios and the a posteriori probability ratios under a certain con-
dition involving the stochastic characteristics of the inputs to the
systems.‘ Theorem 6. 3 means that the convergence rates can be iméroved

by application of certain deterministic inputs, satisfying (6.55).
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CHAPTER VII

SUGGESTIONS FOR FURTHER RESEARCH

et

7.1 Extension to Compact Parameter Sets

As mentioned in Chapter 1, the extension of parameter estimation
‘ convergence results from finite to infinite sets can, in general, be
( obtained via the addition of topological conditions on the parameter
set. Let S be @ compact metric space with metric 6. 1In the previous

sections we have studied conditions under which one has for some r € S.

(¢7.1) lim hi (z') =0 a.e. foreach s € S; s ¥ ¢ (7.1)

n+ve

We have seen in Chapter 4 that if the true parameter is a member of the

parameter set, say, * = r € 8, then (¢7.1) is implied by the following

NS A L i, S it RS niotichali . oM i T R oy eV

conditions
n
(c7.2) 1lim I (r;s) =« a.e. foreach s € 8; s # r
m
n-m
m=1
and
= 1
i .g) > e . . 1
lim sup :E:Jm(r,s) a.e. foreach s € S; s # r
m=1

o

The pointwise convergence in (7.1) is not sufficient for convergence

A
M a.e. of, say, the ML estimates on $ to r (although mistakenly consid-

ered to be by several authors).

.
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To obtain convergence a.e. of the estimates to r it must be shown that

for any open neighborhood V(r) of r one has

lim sup c e (z™) =0 a.e. (7.2)
n¥** s € V'(r)

where Vc(r) is the complement of V(r) in S. Consider the following
condition.
(c7.3) At each s € S the ratios hi (Zn) are continuous in s uniformly

in n., This means that for any realization of the sequence (zn; given

€ > 0 there exists for each s € S a neighborhood
v(s) = {t )t - s| < Gs} (7.3)
for some Gs > 0,such that

sup lh; z" - hi M| <e for alln > 0O (7.4)
t € V(s)

T..eorem 7.1
Suppose that conditions (c7.l) and (c7.3) hold, then ML estimates

on S converge a.e. to the parameter r.

Proof
Choose € < 1. Then for each s € V°(r) there exists an open neigh-
borhood V(s) satisfying (7.3) and (7.4). Since V(r) is open, vii(r) is

a closed subset of a compact set, hence, compact. Thus, there exists a

el PR A vt Nt v BTN _ o Sl o A il JRREAD
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A

A
<
o

finite number of points 8+ iel=(1,...,9) such that

ve(x) CUi{V(si) ; ie I}

Now
lim sup B (2 < lim max {sup e (2h s ie 1}
n*® g € v (r) ndo i t ev(si)
< lim max {hs (zM + e ieI}
n*e i i
=max{lim[hs (z™ +e]; ieI}
i nhw i
= € <1 a.e.
But since

lim sup h° (2" > lim b’ (2") =1
e sgelS ¥ e T

the ML estimates on S converge a.e. to r'll

The proof of convergence a.e. of MAP estimates on S to r is simi-

lar, as by (2.11) we have

fb(S[Zn) _ fb(s) B (2P
Pl P x
(rlzh (x)

Condition (c7,3) and its applicability to cases of interest are

suggested for further research. Two quiding questions seem to be:
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1) When can (c7.3) be replaced by continuity conditions on
the conditional ratios hi (znlz“—l)?
2) How can (c7.3) be relaxed and still provide the transition

from (7.1 to (7.4)7?

7.2 Existence and Uniqueness

Astrom and soderstrom [1974], considering the identification of the
parameters of stationary Gaussian ARMA processes, presented the problem
of consistency of the ML estimate as a problem of existence of a unique
maximum over s € § of the scalar function lim fs(Zn). An equivalent
problem for state space models was posed i:+:ection 5.3.1 as the exis-~
tence of a unique minimum cf the scalar function L;, defined by (5.40),
on S. A related problem is the‘existence of a unique minmax point of
the scalar function L:, defined by (5.42), for the solution of the
modeling problem proposed in section 5.3.2.

The existence and uniqueness problem has also been treated in the
literature in terms of the parameters of certain realizations of the
system to be identified. Caines [1975b] has proposed the condition

that there exist & homeomorphism between the parameter set and the set t

of impulse responses of the oystem's innovations representations for

1

3

the identifiability of stationary linear systems. Similar conditions {1

7

¥

were suggested by Tse and Weinert [1975] and, for the finite parameter
set case, by Moore and Hawkes [1974]. The advantages of statistical

uniqueness conditions such as the one suggested by Baram and Sandell

[1976] and in this thesis is that they apply to any given set of state
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space models and not to certain canonical representations of the systenm,
and they are verifiable by standard computations (such as the steady-
state solutions of Riccati and Lyapunov equations). Their disadvantage
is that the actual parametrization of the system gets lost in the statis-
tical conditions. The homeomorphism condition presented above seems to
correspond to conditions (c¢7.2), which requires uniqueness, and (c7.3)
which requires continuity, put together. More elaborate investigation
of the correspondence between these conditions is suggested for future

research. The finite parameter set case should ke addressed first.

7.3 1Identifiability by Deterministic Inputs

The application of deterministic inputs to dynamic systems for the
purpose of identification and their optimal selection have been addressed
by several authors (Levadi [1966], Gagliardi [1967], Nahi and Wallis
[1969]1, Aoki and Staley [1970], Mehra [1972], Goodwin, et al [1973],
Lopez~Toledo and Athans [1975]). The analysis of section 6.3 suggests
a new approach to the problem. It follows from theorem 6.3 that any
input sequence that satisfies (6.3) will provide convergence in the
mean of the identification procedures at a certain rate. The condition
in '(6.3) also involves the system's coefficients and thus, the selected
deterministic input sequence will obviously depend on the nature of the
system under consideration. The problem can then be presented as follows.
Under what conditions on the true system gengrating the observations

and on the model set will the identification procedures converge to a

-

- P
gt~ I e~ ORI

et L




/,

o

-

PR g i

FTNEL e R TR

k. -11.1._-"'(,:‘

F T e T T T

-125-

model in the set using some input sequence, and what class of input

sequences will then provide identifiability?

7.4 Other Application Areas

In Chapters 5 and 6 we have applied thc¢ general theory derived in
Chapters 3 and 4 to certain aspects of linear system identification and
modeling., Further investigation of modeling aspects has been suggested
in remarks 1 and 2 in section 5.4. Other general areas of application
which have not been specifically addressed in this thesis are:

1) Application to certain classes of time varying systems,

such as periodically varying liﬁear systems.
2) Application to non-linear system identification
problems.
3) Application to signal detection problems in communication

systems.
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