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CHAPTER I

INTRODUCTIOIN

This thesis is concerned with some fundamental questions associatedI
w~ith the commn problem of assigning a mathematical model tL. a physical

phenomenon, using a set of observations. The situation is complicated

by the fact that the relationship between the observations and the

sought mathematical model is uncertain anid can only be speci'~ec in a

probabilistic framework. For mathematical tractability the problem is

formulated as one of selecting via some criterion the "best" model

from a specified set of models. The formulation of the mathematical

problem requires, then, the choice of a model set on the one hand and

the choice of a model selection criterion, on the other. The first

choic~ presents an obvious tradeoff. The more strictly the mod.el set

is specified, the more tractable is the mathematical solution, but the

less probable is the case that a correct model is included in the speci-i
fied model set. As an illustration, consider the two extreme situations.

If the model set consists of a single model, then Uie~ selection is tri-

vial, but the model may not be an adequate representative of the obser-

vid phenomenon. On the other hand, if the model set is the abstract

"set" of "all models", then it obviously contains the correct model,

but a mathematical solution (or formulation) of the model selectionI

problem is then not feasible.
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The model set can be naturally specified in terms of a parameter

set, such that to each parameter there corresponds a model and vice

versa. The terms model set and parameter set will be used interchange-

ably and precise relationships between them are defined in the thesis.

The model selection problem can then be naturally defined as a para-

meter estimation problem. Given a parameter set the problem formulation

requires the selection of a parameter estimation critericn. The true

parameter cannot, in general, be assumed to belong to the prespecified

parameter set, as asserted above. It turns out that the maximum like-

lihood estimate, defined in Chapter 2 is most adequate for this situa-

tion. On the other hand, the Bayesian methods of maximum a posteriori

probability and least squares, also •efined in Chapter 2, intrinsically

assume that the true parameter is a member of the model set.

One objective of this thesis is to provide in a very general

setting answers to the following questions: Under what conditions do

the maximum likelihoo& and the Bayesian estimates converge to some para-

meter in the parameter set? What distinguishes the selected model from

the other models in the model set and what is its relationship to the

true model? For the selection of an estimation procedure is it reason-

able to assume that the true parameter is a member of the set when it

is not? Is the true model selected when it is a member of the model

set? A question that arises naturally in this setting is: what i.s the

best ay- roximation of a complex model by a simple one?

1. particular problem of considerable practical significance is that
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of dynamic system identification. The situation described above, and

the questions raised, naturally apply to the system identification prob-

lem. In fact, this research has been motivated by the problem of iden-

tifying the dynamic equations of an aircraft during its operation

throughout the flight envelope for the purpose of adaptive control. We

analyze the asymptotic behaviour , 61stem identification procedures in

the presence and in the absence of the true model in a given model set.

The analysis also suggests a systematic approach to certain system

modeling problems of practical significance.

A major part of the analysis in this thesis will be restricted to

the case where the model set is finite. This restriction serves several

purposes. We chose to emphasize the statistical properties of the ob-

servation sequences involved (such as their content of information) and

to avoid considerations of topological conditions on the parameter set,

which are unavoidable if results for e.g. infinite compact parameter sets

are desired. This makes the analysis considerably simpler, and enables

us to consider very general classes of observation sequences. It is

nevertheless demonstrated iLn Chapter 7 that the results obtained in

this thesis for finite parameter sets may be extended to compact sets

by additional requirerents on the topology of the set, such as uniform

continuity of the density functions involvtd. Further r•-.arch in

this direction is recomwended.

I
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In addition to the above consideration, the case of finite para-

meter sets has a considerable practical significance as a method of

approximation. Identification techniques for finite sets of models

are considerably faster than those for infinite sets, as the search

procedure for the parameter satisfying the estimation criterion is

practically trivial. In fact, this thesis makes a strong case for the

finite model set, taking the viewpoint that the true model is in most

cases not included in any prespecified set of models. Identification

is thus a procedure of finding an approximate model whether a finite orA

an infinite model set is considered. The approximation is nevertheless

"coarser" when fever models are included in the model set.

It should, however, be emphasized that a substantial portion of the I
thesis applies to parameter sets that may be infinite and even non-

compact. This is the case in the derivation of distance measures on

the parameter set and the consideration of system modeling problems.

For comparison with earlier results we note that the convergence of

the parameter estimates is considered in this thesis in the probabilis-

tic senses of convergence almost everywhere (a.e.) and convergence in

the mean square (m.s.), which will be defined in Chapter 2. Consistency

is traditionally defined as convergence a.e. of the estimates to tha

true parameter when it i~s included in the parameter set.

1.1 Historical Review

Parameter estimation techniques have beeni studied ever since the
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introduction of the maximum a posteriori probability '".AP) and the

least squares (LS) criteria by Gauss [1809], and Laplace (18201 and

their later studies by Edgeworth [1908]. Fisher [1922] Droposed the

maximum likelihood (ML) estimate, which has since gained considerab.ie

popularity due to its intuitive appeal and its asymptotic pr•perties

(e.g. LeCam [1953]).

The consistency of ML estimates for sequences of indepenlent and

identically distributed (i.i.d.) observations was proved by Cramer [1946]

who assumed differentiability to 4'th order of the probability density

furctions involved. Differentiability assumptions were dispensed with

in proofs by Doob [1934] and Wald [1949]. The main tool in proving con-

sistency for i.i.d. observations, is, naturally, the strong law of large

numbers. Roussas r1965] proved the consistency of ML estimates for the

case of ergodic Markov observation sequences, employing the orgodic

theorem. The m.s. convergence of LS estimates given i.i.d. observations

was considered by Liporace [1971], who showed, via the mt .•lication

rule for indepLndent random variables, that the uean s -rrox -o

these estimates is exponentially diminishing. In the case %lere lts

true parameter is not included in the parameter set, the estimates were

shown to converge to a parameter in the set, which is avst sý.wilar to

the true parameter. The measure of similarity suggested by Liporace i,,i

related to the information measures int.-oduced in this thesis. Caines

[1975a] proved and applied the subrartingale property of sequences of

maximized likelihood ratios on finite parameter sets to prove the con-
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sistency of ML estimates on such sets for a general class of observation

sequences, satisfying a sertain probabilistic condition. Baram and

Sandell [1976] extendel Cainew' results to Bayesian estimates, which

were shown to be conpir:tent a.e. and in the mean square, and showed that

Caines' condition applies to stationary Gaussian linear systems.

The identification of linear dynamical systems employing parameter

estimation techniques has been studied intensively for over a decade.

However, several consistency proofs that have appeared in the early lit-

srature have overlooked the fact that for consistent estimation oii com-

pact parameter sets, uniform convergence of the associated probability

densities on the parameter set is necessary, while pointwise convergence

only provides consistency for finite parameter sets. Correct consistency

proofs have appeared in the laterature in recent years. Caines and

Rissanen 11974] (see also Rissanen and Caines [19741) proved the consis-

tency of ML estimates for autoregressive and moving average (ARMA) ob-

servation sequences. Ljung proved the consistency of a geaeral class of

stochastic apnr'oximation techniques [1974a] and the consistency of a

class of prediction error techniques [1974b]. (see also Ljung 11975])

Caines [1975b] proved consistency for stationary processes of a more

general class of prediction error techniques, which includes the maxi-

mum likelihccl technique for the case of stationary Gaussain observation

sequences. The topological requirements specified by Caines (1975b]

reduce in the finite parameter set case to a requiremnt that there

exist A 1 to I correspondence between the parameter set and the set of
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system's impulse responses, corresponding to the system's innovations

representation. Similar conditions were suggested by Tse and Weinert

[1975] (see also Tse [1976]) and by Hawkes and Moore [1976] (see also

Moore and Hawkes [1974]), who consiAered the convergence of Bayesian

estima!,es on finite sets of stationary Gaussian linear systems. The

condition suggested by Baram and Sandell [1976] is a uniqueness condi-

tion on the output statistics associated with the different models in

the model set. Other statistical conditions are motivated and derived

in this thesis. We shall cowment on the correspondence between parame-

tric and statistical conditions in Chapter 7 as we suggest further

study of this subject.

Information methods have been suggested by many authors for tbc

solution of the related problems of hypothesis testing, signal selection

and model indentification. In recent years Kullback's information

measure (Kullback [1959]) has proved to be useful in ti-t analysis of

parameter estimadion and model identification techniques. Akaike

([19721, [1974D) has related Kullback's information with certain ver-

sions of the ML criterion. Kullback's information measure was employed

by Lipoxace [19713, and, following Liporace, by Hawkes and Moore [1976]

in their studies of parameter estimates given i.i.d. and stationary

Gaussian observations. In this thesis we define and employ information

measures, which prove to posses valuable properties lacked by Kullback's

information measuie, such as the metric property on the parameter

space. other information measures defined and employed in the litera-
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ture, will be mentioned in Chapter 3 as they are compared with the

information measures defined in thi, tLiesis.

1.2 Organization and Results

In the first part of the thesis (Chapters 2, 3 and 4) we consider

general classes of observation sequences and parameter sets. The re-

sults are specialized to linear dynamical systems in Chapters 5 and 6.

Familiarity with advanced concepts of probability theory is only re-

quired in Chapter 2 and parts of Chapter 4. The sequence of Chapter 3,

sections 4.1 and 4.4, Chapter 5 and section 6.3 provides a consistent

discussion of the information approach to system identification and

modeling, which is the mainstream of the chesis. The rest of Chapter 4 4
is believed to be of theoretical interest and also of practical value,

I
which is demonstrated in sections 6.1 and 6.2. 4

In Chapter 2 we present the underlying probabilistic set up for the

thesis and recall definitions and results from probability and estimation

theory used in the thesis. Since parameter estimates nay be based on

the possibly incorrect assumption that the true parameter is a member of

a given parameter set, we define the different probability spaces in

which the estimates are defined and in which the analysis is performed.

In Chapter 3 we define two measures of the relevant information in t
each observation favoring one parameter in the parameter set against

another. Both measures will prove useful in later analysis. The infor-

mation measures are shown to be metrics, or distance measures on the para-
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meter set and to provide a measure of closeness of each parameter in the

set to the true parameter which is not necessarily a member of the set.

The information meast7,. defined in this chapter are compared with other

measures of information common in statistics and information theory.

In Chapter 4 we investigate the convergence of nwAximum likelihood

and Bayesian parameter estimates for general classes of observation

sequences. Consistency conditions are derived in terms of the informa-

tion in the observations and extended to the case where the true para-

meter is not a meber of the parameter set. Rates of convergence in the

mean for the ML and MAP procedures are also derived.

In Chapter 5 we analyze the identification and modeling of sta-

tionary Gaussian linear systems. We show that the identification pro-

cedures under consideration converge under a certain uniqueness condi-

tion to the true model if it is included in the model set. If the true

model is not a member of the model set the identification procedures

converge to the model in the set whose output statistics are best

matched to those of the true model. The selected model is also shown

to be closest to the true model in the information metric -tse. It i-

then shown that under the uniqueness condition likelihood ratios and

a posteruici probability ratios converge in the mean at rates faster

than exponential. The analysis also suggests solutions to c-her modeling

problems, such as the approximation of a complex system by a simple

model and an optiral representation of a model set by a single m.odcl.

In Chapter 6 we consider general classes of time varying linear

systems. In particular, we interpret for such systems the information
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conditions derived in Chapter 4, and obtain consistency conditions in

terms of the output statistics associated with the different models

in the model set. The L1 convergent 4 of the likelihood and the

a poaterori probability ratios is iAvestigated and the separate con-

tributions of the stochastic and the deterministic parts of the input

to the information and, consequently, to the L1 convergence rates are

shown.

In Chapter 7 we suggest further research of possible extension and

application of the theory. In particular, we show how the convergence

results obtained in this thesis fur finL.te sets of parameters may be

extended to copact parameter sets. We also suggest further investi-

gation of the problem of existence and uniqueness of a solution to the

estimation, or identification problem. Then we suggest further study

of the identifiability of dynamic systems via application of determin-

istic input sequences. Finally, we suggest applications of the theory

to classes of problems, not directly addressed in this thesis, such as

the identifiability of non-linear systems and periodically varying

linear systems.

4E.
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CHAPTER II

PJRELIM4DARIES: PROBABILITY SPACES, PARAMETER

ESTIMATES AND STOCHASTIC CONVERGENCE

The purpose of this chapter is to present the underlying mathemati-

cal set tW for this thesis and to recall definitions and results from I
probability and estimation theory that will be used in the following

chapters.

Since a major objective of this thesis is to analyze, using correct

assumptions, parameter estimates that may be based on incorrect assump-

tions, it is essential to define at the outset the different probabilis-

tic frameworks in which the estimates are defined and in which the ana- I

lysis is performed. We first introduce the correct framework in which

the analysis is performed. It consists of an underlying probability

space and a separate parameter space, of which the true parameter may

or may not be a member. Likelihood ratios and maximum likelihood esti-

mates are naturally defined in this framework. On the other hand,

Bayesian parameter estimates are defined in a different framework where

the parameter space is a part of the underlying sazple sI-ace. Conse-

quently, the existence of a probability measure defined on the parameter

"space (i.e. assigning to each set in the parameter space the probability

that it includes the true parameter) is postulated. The Bayesian rrame-

w•.ork then inherently includes the assumption that the true parameter

is a member of the given parameter space, and is inadequate for the ana-

4.
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of the general case considered in this study. Thus, while the Bayesian

set up is assumed in the definition of Bayesian estimates, the analysis

of these estimates, as well as the maxisim likelihood estimate, is per-

formed using the underlying, non-Bayesian framework.

Readers unfamiliar with the notion of measure and probability

spaces may identify here, and in the following chapters, the functions

f(Zn) , f(zn Zn- 1 ) and f(sjZn) with the familiar probability density,

conditional probability density and a poeter0.oi'i probability density

functions on Euclidean observation and parameter spaces. Several sym-

bols and terms, mostly standard in probability and estimation theory,

are introduced in this chapter. For other terms and symbols, defined

throughout the thesis where they are used, the reader is referred to

the symbol list.

2.1 Observations, Parameters and Likelihood Ratios

Consider a measurable space (P., U) where 1 is some sample space and

U is a 0-algebra of subsets of fi. The observation sequence (z n) is a

stochastic process on a probability space (0, U, P*) with values in a

measurable space (D, V), called the observation space. We shall be in-

terested in the case (D, V) - (B, 5t) where R is the i-dimensional

Euclidean space and 8 is the a-algebra of Borel sets in R . We call

P. the true measure and * the true parameter.

The parameter space S is a set such that for each s e S there

exists a probability measure P defined on (Q, U). Let T - (*U S).

sI

W! ", b
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Obviously, * e T, but * need not belong to the set S.

For each s e T we denote by Es expectation taken with respect to
V" P . We use the notation a.e. (almost everywhere) to denote events of

P: measure one. Events of P5 measure one will be denoted a.e. P .

Recall that the conditional expectation of a random variable x on

(S, U, P) given A e U is a U-measurable random variable denoted EA (x)

such that

E EA x) - E(x) (2.0)

For each s G S we shall denote by EA the conditional expectation given
S

A, taken with respect to P .

If V and V are measures defined on (0, U then 11 is said to be

absolutely continuous with respect to V if for any set A e U V(A) - 0

implies P(A) - 0. V is said to be singular with respect to V if it isI

not absolutely continuous with respect to V.

Let (U B (U (Zn)) be the increasing family of C-subalgebras of
nI

U, generated by

i lZn (z1,.... zn) (2.1)

For each s e T and for each n > 0 let P denote the restriction of P•' •s,n s

to Un. Suppose that for each n > 0 the measures P are absolutelyn s,n

"continuous with respect to some measure X defined on (0, Un). Thenn' n

This is not a standard definition. For a definition of mutually singular
measures see Rudin [1966], p. 121.

i!i
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d P
d a ; a e T (2.2)

S~n

are the Radon-Nikodym derivatives (or densitLes) between the respective

measures. The likelihood ratic between two parameters s, t e T is de-

fined as

St,n d P ft,n (2.3)

provided that Pson is absolutely continuous with repect to P tn. When

the time parameter n is included in the argumnt we *hall use the some-

what shorter wtoation

f (a(n)) B %,n(a(n)) ;o e T j a(n) e

in particular

fa(Zn) =f n(Zn) , e T (2.4)

ht (Zn) B-ht (Zn) a, t e T (2.5)

8 I~I
For any c e V. and b e tn such that f;,n(b) f 0 for all s e S, the con-

ditional densities of c given b are

sn ,(c, b)

in particular
", ~f (Zn

"'f a(z ni Zn-1) = S nIs e (2.6)
.• a nf (znl

: 1
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The conditional likelihood ratios are then defined as

h = ( z nzlZn n) n s, t e T (2.7)

f t(z Ini

for an zn such that f (z Iz n-1) 10 0 for all t e T.
t n

The foll wing condition will be assumed throughout the thesis

(:' c2.1) For all s e S the probability measures P s,n aemtal bo

lutely continuous.

2.2 Bayesian Probability Densities

Consider a measuratle space (fl, [A, where 9 is some samle space

and U is a 0-algebra of subsets of Q, and a measurable space (S, Us),

"where S is the parameter space and U is a 0-algebra of subsets of S. I
Let (S, U b be a measurable space, where

i b E-0X S

and

are the cartesian products of the respective sample spaces and o-alge..
b b4

bras. Let Pb be a measure on (nb, ub. We denote by E expectation and

b A bby EA; A e 11 conditional expectation given A, taken with respect to P

b b
" ~We call the restriction Pb of Pb to CS, V;s the a priori probability

0

measure on (S, s). Suppose that P is absclutely continuous with re-

0I

-.W~ ' - -- - ": - - n



spect to some measure V on (S, Us), then the density

d pb
0

is well defined. In particular, we call

( s) ; s e S (2.9)

the a pricri probability density an S with respect to the measure VC,

Let (z g be a stochastic process on the prcbability space (n b

b bU ,P ) with values in a measurable space (D, D), anid let Q6 B (Lý(Z"))
n

be the increasing sequence of cr-subalgebras of ?, generated by
Zn =-(z1 ,...,z). Let pb'  b "'

=n ; n > 1 be the rettriction of Pb toV and for

each n > 1 let P be absolutely continuous with respect to soie measar-,"n b

V defined on (IQ, Ub). Then the density

fbn d vn (2.10)

is well defined. We shall be particularly interested in the a posteriori

probability density of s, given Zn

fb (s, zn)
f, (sIZn) fb (s;n) n n > 1 (2.11)

n fb (Zn)
n

assuming f (Zn) j 0.

!n
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Let the parameter set S be finite, i.e.

S .- j e Iz (o,...,p)} (2.12)

For each j e K let

l* (s) •1 s=8

30 0 Ss

TheLhe• 
I

j0

is a Mu&Ure (the counting m.asre) on \IS, U'). Let X be a measure on

(V, U) then v n v1 .x S n > I i tht prouct meUre on -b)

Suppose that Pb is absolutely continuous with resrmct to v)n (i.e. the
n

entire imesue P is concentrated on the set •.x•s ; i E K)) for all

n > 0, then we have

P f1 b (a) (2.13)
0

i-O

and

b Zn f b, (si ) is) (2.14)
n n-i=O
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Hence

"f (Z, . .. f( .7

fn ( s " (zn) (2.15) ,

,t.f{
s2

fb () fb(Z Ls)2.7

I'b (a 2n) -fb (a' (2.18

S0 (2.1

S- -. .i•ting and. (.2 14e

:fb (I
op

(2. i.17) .. w
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where the right hand side is defined by (2.4). Thus, finally, for the

finite parameter set S

fb (s. n 0 s . (2.19)

? (5s f (zn)
tai3.

2.3 Parameter Estimates and Stochastic Convergence
A

An estimate Sn on S is a U -measurable mapping from 0 onto S.n n
A

" maximum likelihood (ML) estimate on S is an estimate s e S such
n

that

{f (zn) , s e S< f ̂ (Zn)

s s n

"A maximum a posteriori r:obability (MAP) estimate on S is an esti-

mate s e S such that

{f (sIn) ; s •S (Sn1Z)

Let S be linear. Then a least-squares (LS) estimate on S is an

SJI
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estimate s e S such that

for any estimate a an S. XT denotes x transposed and denotes the

true paraeuter, assumed to have the same dimension as a.

Let the true parameter be assumed to belong to a finite set

{s e Rm; j e k}. ften the LS estimate am 00 at instant n is the con-

ditionml expectatiton

ev~~er e b ( Ue. t a fada vrsble n) dv , )i

t ?(az~ (2.20)

l ira n =oa~.
A stochastic sequtnce NCx ) on (12, U, P) is said to converge almost

everywhere (a.e.) to a random variable x on 02, U, P') if

A stochastic sequence (x ) on M, U, P) is said to converge in the

mean (or in LI) to a random variable x on (0, U, P) if

lm Ejx -x - aI
I

Fl.-JA -i

~l
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A vector-valued stochastic sequence (xn) on 1Q. U, P) is said to

converge in the mean square (in u.s. or in L9 ) to a random vector x

on (f, U, P) if

S- 2 z)

A sequence of~ parameter astivates3 OA~ is, -sad to be cosse4 .e

or in the mean sqa•we if it converges a.e. or in the mean square to the

true parameter. I , ,I
We now presrit witAQut proofs three well known results from the

probability theory, wh,.Vh are used in this thesis.

Theorem 2.1 (Jensen's ineowlity, e.g. Dauer [19721, p. 322).

Let x be a real intN-rable random variable on a probability space

(., U, P) with values in I, and let g(x) be a convex integrable function

on Rl then

Theorem 2.2 (Fatou's Lerm, e.g. Bauer [19721, p. 71)

Let (%) be an integrable stochastic sequence on (Q, U, P) such

that x > 0 a.e. for all n, then

E lim inf x < lim inf E x
n Ib1
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Theorem 2.3 (Lebesgue's dominated convergence theorem, e.g. Chung
[1974], p. 42)

Let (xn) be an integrable stochastic sequence on (9, U, P). Then

if

limx -x a.e.

where x is an integrable random variable on (01, U, P) and if there

exists some integrable randorn variable y on (S, U, P) such that

E y-<

and

Ixnl< y a.e. for all naI
then

limEx -Ex.

2.4 Martingales and Martingale Difference Sequences

Let (W., U, P) be a probability space and let (U ) be an increasing

family of a-subalgebras in U. A Vn-Measurable stochastic sequence b;n
n

(a) El nl <"

(b) E n-b xn U n_ a.e. 4

on , 2 U, F)is caleda U-mart"gale i for.ech n-

. • . :+.•.,• - ... , +.+ , _
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If the equality in (b) is replaced by_< then (xn) is called a Un-super-

martingale.

It can be shown (Doob [1953], p. 93) that the likelihood ratio se-

quences ( .n) s e S, defined in section 2.2 are U -martingales

according to the measure P*. Hence

n d P /d P d P VU dP
n* -1 aon s'n-1 *'n-.1 n-i s4n

d P.n/dP P,n- " d Ps,n-1 d P if
d P d P

* ,n-l s'n-l
4 d Psn-i d P*,n-1

-1

Consequently, we have by (2.7), (2.6) and (2.2)

S1 f (z -'n-1
h: (z Zn-i) - E _ n • _ -1 for each s e S

* f*(z nI )- (2.21)

Theorem 2.4 The martingale convergence theorem, e.g. Chung [1974],
p. 334, Bauer (19721, pp. 341-343)

Let (x ) be a U -martingale on (S, U, P) and let

sup E x <•n>0 n

where

x - sup (x , 0)ni n

I~4
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Then (xn) converges a.e. to a finite limit.

Let (S, U, P) be a probability space and let (Un) be an increasinga

family of O-subalgebras in U. A U -measurable stochastic sequence (x
n n

on (62, U, P) is called a U-ma~rtingale difference sequence if it is

integrable and if

U
E n -i 0 &*.e.

n

Let y be a stochastic sequence on (6, U, P) and let (U) be a sequence
nn

I of C-subalgebras of U, generated by (yI#... 1'Yn" Then, clearly

rU
i,"(yn - E lnl

*• is a Un-martingale difference sequence. Also note that if (xn) is a

VU-martingale difference sequence then
n

Sn

i ? is a martingale. Indeed

E ~ n- X
m~4

i n~~-1 U~

E; m n

Sn-I

xM Xn91
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2.5 Stationarity and Ergodicity

The purpose of this section is to provide definitions and con-

vergence results for ergodic sequences, which will be used in the the-

sis. It is not intended to provide an elai..nate presentation of the

concept of ergodicity. For a thorough development of ergodic theory

the reader is referred to, e.g., Doob [1953], Halmos [1956] and

Chacon and Ornstein [1959].

Consider a probability space (6, U, P). A transformation T from

.Q to U is said to be measure preserving if

P(T- 1 A) - P(A)

for all A e U.

Given a mea- xe preserving transformation T, a U-measurable event

A is said to be invariant if

'-A - A

Let (x n) be a stochastic sequence on (0, U, P) with values in

(k', Si1 where R is the k-dimensional Euclidean space and 8 is the
R£. B£

U algebra of Borel sets of R Let be the 0-algebra of Borel sets
L£•

of R where R" - RxR x... Then (xn) is said to be s if for
c 0"n

each k > 1

P ,(x 1,....xn e c]- - L(xk+l' '+2"" eC

for every C e .

r

"L"



"-26-

A stationary sequence (xz) on (M, U, P) is said to be ergodic if

every invariant event in U has probability zero or one. It can be shown

(e.g. Stout (1974], p. 168) that (xn) is generated by a measure pre-

serving transformation T (the shift operator), i.e.

x n(W) - xn-l(T W) (2.22)

Let (x ) be a vector valued stochastic sequence from (•, U, P) into i
(R", 61) such that the probability density with respect to the Lebesgue

asure m €i, 0ý ) of (n) is Gaussian on Rt , with

E Ix -mconstant for all n

and

E J~(x n- m x (xn+k _ m x)T ý depends only on k.

Then (x ) is a stationary Gaussian sequence.

Proposition 2.1 (Grenander [1959], pp. 257-260 and Doob [1953, p. 494)

A zero mean stationary Gaussian process is ergodic is and only is
n2

lim E I R(k)1 2 -0
W O n•l k -

where

S~T
Rk) = E xn xn+k

? -I
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and where jR(k)j denotes the determinant of R(k).

Theorem 2.5 (The ergodic theorem, e.g. Doob [1953], p. 464, Halmos
[1956], p. 22, Weiner [1949], p. 16)

Let (xn) be an ergodic sequence on (E, U, P) and let f(xn) be a
nn

U-measurable function such that El f (xo)I is finite, then

n
lim n f(x.) = E f(x 0)
nJ0

j=0

The following version of the central limit theorem of probability

theory will prove useful in later chapters.

Theorem 2.6 (Billingsley [1961])

Let (x ) be an ergodic stochastic process on (•, U, P) such that
n

E x is finite and

U
E n-lx = 0 a.e.n

(i.e. (x ) is an ergodic martingale difference sequence). Then the

n

n

distribution of n-!j Exk approaches the Gaussian distribution with

k=1

mean zero and variance E x 2 .

'I
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2.6 Metric Spaces and Stochastic Metrics

Consider a set S and a real-valued function e on SxS which satisfied

(i) e(s;s) - 0 for any s e S

(ii) e(s;t) - e(t;s) for any s, t e S

(iii) e(s:t) < e(s;r) + e(r;t) for any s, t, r e S.

Then e is called a pseudo metric or. S. If in addition to (i), (ii) and

(iii) e satisfies

(iv) e(s;t) - 0 ; s, t e S implies s-t

then e is called a metric on S. The pair (S, e) is called a metric

Now consider a probability space (9, U, P) and an increasing family

(I n) of a-subalgebras of U. Let (e n) be a (U n)-measurable sequence ofnnn

functions on SxS such that each e satisfies (i) - (iii) above. Then

we shall call (en) a stochastic pseudo metric sequence (*) on S. If

each en satisfies (i) - (iv) above, we shall call (e ) a stochastic

metric sequence( ) on S.

(*

"(*)These definitions do not seem to have appeared in the literature

before.

wwI
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K CHAPTER III

INFON6ATIGI

In this chapter we develop the notion of the information in a

sequence of observations favoring one parameter in a given parameter set

against another. We do not make the assumption, common in the deriva-

tion of other information measures in information theory, that the true

parameter is included in a known set, or, equivalently, that the true

measure belongs to a known set of measures. The mean and the conditional

mean values of the discriminating information in a single observation

are shown to possess properties that will prove useful in the following

chapters. In particular, their absolute values are metrics, or dis-

tance measures, on the parameter space. This provides a meaningful

measure of the relative closeness of parameters to the true parameter.

The new information measures are then compared with other measures com-

mon in information theory.

3.1 The Information in a Single Observation

Let S be a parameter space and letT (*T S), where* is the true

parameter. If for some pair of paramseters s, t 6 Ti.."

f5 (Zn) > f (Zn)

or, equivalently,

j:: log f (Zn) > log ft(Zn)

r ~-29-i
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we say that the parameter s is favored over the parameter t by the

observations Z. Then log f (Zn) may be regarded as a measure of the
6

.information in Zn for selecting a parameter from the set T. The differ-

ence

log fs(Zn -log f(Zn) log h (Zl

is then a measure of the information in Zn for selecting between s and

t. If (3.1) is positive then s is favored and if it is negative then t

is favored. The difference

log hS (Zn) _ log h, (Zn-i) . log h, (Znl) (3.2)

t t t nh

is then a measure of the difference between the information favoring

against t at instant n and the information favoring s against t at in-

stant n-1. It can then be regarded as a measure of the information

favoring s against t in the observation z n. We define

Un
In(s;t) = E__-l log hts (zIlZn-1) (3.3)

as the conditional mean information in z favoring s against t and I
n

Yn(sit) E E, log htS (z Znl-) (3.4)

as the mean information in z favoring s against t. (A more general
f o1 (s on-l

form of (3.3) would be (s;t) E E~n- log ht (z z for some sequencen n

(A) such that An e U . However, for the purposes of this thesis we

n
'TI
•tI
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use the information defined by (1..)
3.2 Properties of Information

We now show some properties of the information measures defined

above that will prove to be useful in the following chapters.

Theorem 3.1

Let S be a parameter space. Then for any s e S and for each n > 0

we have

I (*;s) > 0 a.e.n -

and

I n(*;a) > 0

with equality if and only if f (zZnlz n-l f,(Z nZn-) a.e.

Proof

xn(*;s) = -E, log h (zn 1 z I

Using the inequality
I

log a <a-i ; log a = a-1 if and only if a = 1 (3.5)

We get

(*;s) > 1 - (z zn-l 0 a.e. (3.6)
n n

where the second equality follows from (2.21). To show that equality

holds only if f) s f,(zniZn) a.e. (sufficiency is trivial)

holds

S- ... - - ~ -,
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suppose that

I ('is) E*1 n-E 1 h Sz jz 1  a

i.e.

U 1 n1
E. •- : t< yl,-' ) l h: (z niZ -.) 0 a.e.

By (2.0) we then have

h (ZnZnI) - log h* (zl - ljdP* (3.7)

(3.7) a1d (3.5) together give

h (n1Zni ) -1 aoe.

or

f (znlZ') - f*(znlZ n-) a.e. (3.8)

Hence, equality in (3.6) holds if and only if (3.8) holds. Similarly,

since I n(*is) > 0, we have

I (n*;s) m EI n (*;s) > 0

with equality if and only if I n(*s) - 0 a.e., which, as shown above,

occurs if and only if fs(Z n5izl) f*(Znn -1 ) a.e.

Corollary 3.1

Suppose that r e S is the true parameter. Then for any t e S

"I (s;t) and !n(s;t) are maximized on S at s r. This maximum is

In
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unique unless for some s e S fs(Zn;zn-l) = fr(Z nIZn-l) a.e.

Proof

By theorem 3.1 we have

I n(r;t) - In (s;t) = I n(r~s) > 0 a.e.

and

Y (rat) - I (sjt) =I (ris) > 0
n n n _

with equality if and only if f s(z nzn) - fr (z nizn-) a.e. The asser-

tion follows.

Theorem 3.2

The sequence (1Yn(s;t)[); s, t e S is a sequence of pseudo metrics

on S. It is a sequence of metrics on S if an only if In (s;t) - 0 implies

s - t. The sequence (IIn(s;t) l); s, t e S is a stochastic sequence of

pseudo metrics on S. It is a stochastic sequence of metrics if and only

if In (s;t) 0 implies s = t.

Proof

To prove that Ii (sit)I is a pseudo metric on S for each n we have
n

to show (see section 2.6) that for each n it satisfies the following

conditions.I

i i(s;s l -- 0 for any se S

(ii) .Y (s;t) I = l (t;s) for any s, t e Sn n

(iii) ln (S;t) T< (_ ; (r) I + IYn(r;t) I for any s, t, r e S.

n n• n-• I• '•• '',"' • ••• f 'i: • • •• •..•• • , • .• ' ,•
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We have

Hence

log h: (znle-8 ) - 0

Then also

E log h: (ZnIZn-l) = 0

and (i) follows. Also

Y(sjt) - -'-It;s)

and (ii) follows.

Condition (iii) is proved as follows

IF (s; r)I + I Y¢ r;t) I

J S r n(z n-l)I
,IE log h" ( znZ 1) I + IE*. log ht

- JE, log fs(znlZn-1 ) - E* log fr~znlzn-l)

+ jE, log fr(Zn Zn-I) - E, log ft(znIzn-1 )I

SE, log fs(znlz-') - E* log ft(znIVn-1 )I

IE, log ht (zIZ-1 )j =I (s;t)I
t n n
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If in addition to (i), (ii) and (iii) I (s;t)l satisfies

then IT(s;t)I is a metric on S. Th. assertion follows for ITn(s;t)l.

The result for IIn (S;t)I is obtained by shoving that conditions (i)-(iv)
U

above hold a.e., replacing E, by E, 111 and following the same steps. 5

Theorem 3.3

For any t, r e S and for each n > 0 the sequences (lIn(*Ct)I) and

(II n*;t) I) satisfy the properties Ui) - (iii) above. They satisfy

(iv) if and only if ftl :n-') - f( lzn ln-1) a.e. implies t

Proof

The proof of propp-ties (i)-(iii) is obtaired precisely as in the

proof of theorem 3.2. (iv) is satisfied if and only if ft(zn Zn-l)

- f,(zi 'll) a.e. implies t - * by theorem 3.1.

The variables l1n (*;t) I and Ii.(*;t)I; t e S are then distance

measures fror the true parameter * to points in the parameter set S. .

They can be regarded as extensions of the metrics I1',,:)I and IIn (8:01

on S to the set T u " S).

Corollary 3.2

Let s, t e S be any pair of parameters in the paramter space S.

Then s is closer to the true parameter * than t in the metric I Ins(; t)I

if and only if In(s;t) > 0 a.e. and in the metric IY (s.t)I if and

n

N I
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only if I (sIt) > 0.

Proof

s is closer to the true parameter than t in the metric i n (S; t) if

and only if

But by theorem 3.1

•1(-,5) = •I(*;s) a.e. 'for any a e S

Henae, a is closer to the true parametex than t if and only if

n!
I nlets) < lnl*;t) a.*.!

ln*;) X(*s)-Ine~) 0 aI. i

To show that s is closer to the parameter than t in the metric

it) I an identical procedure can be followed using I (Si t) instead

of I n(Sit).

Eam6le 3.1

Let x be a random variable, whose probability density is known to

belong to the set x-2

f. x) - - e ; 1 - 0,1,2 (3.9) ,1
,/27 .

~J
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Suppose that i-O is the true parameter, i.e., that x is actually dis- [
tributed according to f (x0 . The mean information in a single observa-

tion x favoring one parameter against the other is found to be

20

I1lzO) 1(1:0) log +
02 2o2/Cr

I(2;0) - 1(2:0) log 1 - -
~ og± + 2

2 2

a 2 a 2
Y(;) (%2 log -2 + )0

1 2 1

Note that I(ij) -* 0 as ; a.

Theorem 3.1 is verified as follows m

1 ra,-~l0) <_ .[logo -I + o

0 0

where we have used the inequality 1 - a < -log a.

Similarly

1(2;0) < 0

To verify corollary 3.1 we check whether

1(2;1) > 1(2,!0)

but

1 (2;1) 1 (2; 0) !(0;1) --(1; o) > 0
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similarly

I(112) > U(; o).

Next, we check the conditions under which the parameter 1 is closer

to the parameter 0 than the parameter 2, in the metric senses defined by

"theorem 3.2. By corollary 3.2 it suffices to have

I(l;2) > 0

log- °02 +--o > O. (3.10)
1 2 1

(3.10) relates the relative closetaess of the paraters 1 and 2 to the

true parameter 0 (see corollary 3.2) with the covariances associated

with the parameters. It is interesting to check, then, whether the

: :closeness of the covariancew implies closeness of the parameters in

the information metric sense, i.e. whether

y 1 2  21 < 10 2- a I (3.11)a -0

implies that the parameter 1 is closer than the parameter 2 to the true

parameter 0, i.e. that

"I4U;2) > 0.

"In general, (3.11) does not imply (3.10), which depends on the numerical

values of 0o, O1 and 02. However, (3.11) does imply (3.10) in two

Scases, namely:

I

Li ++
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Case1: I 0 <01 < 02

Clearly, (3.11) is satisfied. Using the inequality log a < a - 1

for a 1 we have

2 02

log 2 < 2/_ -1 (3.12)
2 2

or

a2 2

log -A-> 1> - I > 0 (3.13)
.2 2T 2

22

2
and since -L- < 1 we further have

2

1

2 2 2
2a a

a 2 >a ( a2

Hence

2 T 2

a aT

a2

Case 2: 0r2 < CT1 < o0

(3din ) is again satisfied. By (3.12) we have

\log 2> 1 1<_
a 2 1r 2

2
S1

.#l
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2 0l 2

log 02 >~
1 1 2

Hance

1(1:2) log 2 3+ a( _> 0.

S1 2 2

However, if we have

Case 3: CY < 0O < 2y

or

C ass.• l 4 C2 < "o < 01

Thenai -,aol < [a - Cr1, i# j - 1, 2; 1 , j does not necesarily imply

I(i;j) > 0 or T(i;j) > 0. For instance, let

rI
0

and

Then if

0 ,2.731

we have
01 2 _ < 2 021

0 2 0

I.I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Then

U(i;2) I(U;2) 1 + - = 0.134 > 0

But if

o 2 =4
4

then we have

a2 _a 21 > Ia 2  a 21

But

T(2l)- I(2;i) 1.386 + 2 - 1 -0.057 < 0.

Hence closeness of the covariances to the true covariance does not imply

closeness of the parameters to the true parameter in the metrics I I ('; )

and I[(C.;.) in general, except for cases 1 and 2 above.A

We shall use the notation

n(S;t) _S Ii I(S;t)[

and

d (s;t) -IFn(S;t)I

Then we have sequences of metric spaces

i ~(S, n' dn)

where S is the parameter set. Note that while I (s;t) and 6 (s;t) are

Un-l-measurable random variables, Y (s;t) and d (s;t) are not random var-
n-in n

iables. We shall see that I (s;t) and 6 (s;t) are useful for purposes of
n n

4.

I

-?- 7~.
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analysis. The metric d (s;t) will prove particularly useful when it is
n

constant in time, as will prove to be the case for ergodic observation

sequences. The parameter metric space can then be denxted (S, d).

3.3 Comparison with Other Information Measures

Attempts by statisticians and engineers to assign quantitative

measures to the intuitive notion of information have resulted over the

years in many different definitions of information. Information measures

can, in essence, be classified in two different categories. One is

charachad by the Sham= entropy, which has proved useful in comni-

cation and source-coding theory, sometimes termed information theory.

The other is characterized by Fisher's and Kullback's information measures,

which have been more popular in statistical circles. Our information

measures fall in the second category. It seems that different permuta-

tions of Fisher's or Kullback's information measures result from differ-

ent interpretations of a given set of data, which in turn reflect the

intended application. Our version of information seems to be the most

general, since, unlike other definitions, it does not assume that the

true parameter belongs to the parameter set under consideration. However,

special care must be taken in evaluating the advantages of one definition

of information over another.

The information measures defined in this chapter prove very useful

in the analysis of the asymptotic behavior of parameter estimates. They

provide insight into the convergence of the estimates in the presence and

in the absence of the true parameter. However, they can only be computed

7-
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if the true parameter is known. Nevertheless their application is not

limited to analysis, as will be evident in Chapter 5 where we consider

several model selection problems. On the other hand, several other in-

formation measures which are useful in given applications, such as

signal detection, do not possess properties which are useful for analy-

tical purposes, such as the metric property. In the rest of this section

we briefly discuss a few information measures, common in the information

theoretic and the statistical literature and relate them to the informa-

tion measures defined in section 3.1.

3.3.1 Kullback's Information, the Divergence, the Bhattacharyya

Distance and the Ambiguity Function

Kullback 11959] defined the mean information for discriminating in

favor of one hypothesis H1 against another, H2 , given an observation x as

f(12) 2l (x) dp W
ii 1 kl': c f1 (x)

where V is a probability measure corresponding to HI. f is the density
V 1

of 11 with respect to some measure X and f is the density with respect
2

to ) of P 2" a probability measure corresponding to H2 . The divergence

between H1 and H2 , first introduced by Jeffreys [ 1946] and employed by

Kullback [1959] is defined as:

14JU ) (112) +1(2; 1)
()J(l;2) - fW]log+ k2

1 1
-fflog 2 (x) l (x)

., f2 (x)

f 2 (x) f2 (x)2
LI
r~I
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In contrast, 1(l;2), defined by (3.3) would be written as

1(1;2) -flog f2(x) du(W
f2 Ix

where V (x), the correct probability measure may be different from both

Ul(W and IL2 W

sab The Bhattacharyya distance (Bhattacharyya [1943]) between two den-

sities fl1 W and f2(x) of an observation x

B- - £nf[fl(x) f 2 (x) WI dX

where A is the Lebesgue measure on the space of x. Properties of the

Bhattacharyya distance and the divergence were studied and compared by

Kailath [1967], and they were found to be particularly suitable for

signal detection in communication. However, Kullback's information,

the divergence and the Bhattacharyya distance do not satisfy the triangle

inequality and thus fail as metrics on the parameter (or hypothesis)

space. In contrast, the metric property of the information measures

introduced in section 3.1 follows from the consistent use of the true

probability measure throughout, whereas Kullback's information, the di-

vergence and the Bhattacharyya distance are defined using different mea-

sures.

The ambiguity in an observation x between a parameter s and the true

parameter * is defined as

ys - E, log f s(x)

S 7
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The ambiguity function y has been found useful in the analys .s of

error in radar applications (Woodward [1953]). In fact

I(s;t) - Yt - Ys

Hence, the information between two parameters as defined in tUis thesis

is the difference between their ambiguities.

3.3.2 Fisher's Information

We shall now show that the information measures introduced in sec-

tion 3.1 are related to Fisher's information measure (Fisher 11956],

Savage [1954]). We follow a similar comparison between Kullback's and

Fisher's information measures (Kullback 11959D. However, in order to

relate measures of the same quantity, we define Fisher's information in

a single observation zn. I

Let S e R be the parameter space. Suppose that for any % e S the

following regularity conditions (Cramer (1946], Gurland [1954], hold for

all i, J - 1,-A

1) a log fs(znIZn-) 1 F 2 log fs(zznizn-l < F,

1i ) 1 (Zn) ,sI I < 2 % a.e.

where the partial derivatives are assumed to exist and F1 (Zn) -,d F2 (Zn)

are integrable random variables.

f fs (z n1Zn-l) a, 2f s(z niZ )-
2) f as dP, - 0;. dPf - 0
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We define Pisher's information in a single observation at a para-

(3.9)

Consider a point s e S and a close point s + A e S. Using Taylor's

expansion to second order we have

log t -a - log f (z (Z-l) - n

But

alog fs(ZnIZn-l) a3fs(z nl) na 2 'log f5 s(Zn Izn- 1)

af (%z ass8i as3

a1 _2fa(z n z n-1 afa( nIzn-I) afa(%•zn-1

The information in zn favoring s against a close point s + As as

defined by (3.4) is

I n (s;s + &s) f, ( o s+As(zn I

•, k Zn-1

k Alog fs(z Jzl 1

Es,
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•f ki l 2og fs (Zn[ zniAs1 ' ' Asi dP

24i-i J-1 Do i 3sj

k kf afss(z (n l znl

2 
**

i-i j- s~ as

kaf(ZnIZnl) kfs(znZn-l)

E E ~As iAs I (s) .)Ii.i jnZ-l

inforation8 in a sigensrainb

k k

1s E As) n As F (S) A

Ti j1i,j,n'

where the last equality is obtained by the regularity condition 2) above.i

Hence, the information in a single observation is related to Fisher's ,

information in a single observation by

I n S;s+ AS) = AST fF (s) As '

Defining similarly the conditional Fisher Information in a single obser-

vation as a matrix I F(s) whose elements are
n

s _ - 1 f(z nln-. 1 f(znZn-1 >
s nZ n z"-"i,s3, n •* 1zn- si- ' )(fs (z Zn In-l) as i
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We get, using a similar procedure

In(s;s + As) _.I AST IF(S) As
zI 2 n

3.3.3 Self Information and EntropI

To complete this discussion, placing the information measures

motivated and defined in this chapter in perspective with respect to

Iother measures found in the literature, we montion two other measures

which are quite common in information theory, namely, the self infor-

mation and the entropy (e.c. Fano [1961] and Gallager (1968]). The defi-

nition of these measures is based on the Bayesian assumption (see Ch&p-

ter 2). .

Consider a parameter set S. The self information in the measure-

ments Zn about a parameter s e S is defined as

(s) a- log f(slzn) (3.14)n

A comparative measure of information can then be obtained by taking the

difference of the self information corresponding to two parameters

S, t. e S

Al S(S; t) S S (S) - 15(t) lo - "(IZJ)

The self information difference between s and t in a single observation

zn can be obtained, using (2.6) and (2.19) as
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$ f (z
AI(s)-Ap(Osit) log 1 09 h' Un Z (3.7-5)

nnlf (zlZ n-l+ te l"l ,.:.+

Taking expectation and conditional expectation of (3.15) with respect to

the true measure one gets

E. J'&?-S;t) - AIS 1 (s; t) I(S;t) (3.16)

and

U l
Eln- al{ (S t) - nl- (s;t)} -I (a; t) (3.17)

Hence, the mean and the conditional mean values of the self information

difference in a single observation are the negative values of the infor-

mation measures defined in section 3.1. (The sign is, of course, of no

significance since the self information defined by (3.14) is in fact

lack of information, and would become positive information, in the sense

meant in this chapter, by inverting the sign.)

Note that in (3.17) the expectation is taken with respect to the

correct probability measure k, independently of whether the correct j
parameter even belongs to the set S. If, on the other hand one makes

the assuWtion that the true parameter belongs to a finite set, say

{siji e K E (0,...,p)), and takes a conditional expectation given Zn of

(3.14), then one gets

U pI

E b n~ i3 -S fb ( jZn) 1oq fb (s Zn) EH (Z') (3.18)

n ..j3 - ,.
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(3.18) is the entropy m e. Note that the entropy differs from the

other information measures considered in this section in the sense that

it is not a cogparative measure betWeen parX&mUtrB. -tt does provide

S* V USre of the average information gained from the observations*

with respect to the a priori assuptiOns (Berger 119711).

'I

I



CHAPTER IV

CONVEPRGNCE OF MAXIMUM LIKELIHOOD AND BAYESIAN

ESTIMATES ON FINITE SETS OF PARAMETERS

In this chapter we study the convergence of maximum likelihood and

Bayesian parameter estimates for general classes of observation se-

quences. The convergence of the estimates follows from the convergence

of the likelihood ratios over the parameter set. Consistency conditions

are derived in terms of the information in the observations. The case

where the true parameter is not necessarily a member of the parameter

set is also considered. Rates of convergence in the mxvan for the ML and

tha MAP procedures are derived.

4.1 Convergence of Parameter Estimates

Let (zn) be a stochastic process on a probability space (0, U, Pk)

and let S - K E {0,...,p} be a parameter set such that {P.; j e K} is a

family of probability measures on (Q, U). Let (U n) be an increasing

sequence of a-subalgebras of U generated by (Zn) and let Pj,n be the

restriction of P. to U for each j e K. Consider the following con-:3 n :}

dition:

(c4.1) For some k e K and for each j e K; j 9 k

lim h (Zn) -0 a.e. (4.1)
n-•14

-5i- z -i
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In the sequel we show that the convergence a.e. of the ML and the MAP

parameter estimation procedures and the convergence a.e. and in m.s. of

the LS procedure follow from condition (c4.1). Of course, the major

difficulty in proving convergence of the parameter estimates is to

verify condition (c4.1). In the following sections we give conditions

for general classes of observation sequences under which condition (c4.1)

is satisfied when k is the true parameter and extend the results to the

case where the true parazater is not necessarily a member of the para-

meter set. The latter case is treated specifically in the following

chapter where the following theorems will prove very useful.

Theorem 4.1

Suppose that (c4.1) is satisfied, then ML estimates on K converge

a.e. to k as n-'.

Proof

Since the set j K; J p k is finite, (c4.1) implies

lim sup ( ~(Zn); j e K ;j ~dk~ 0 a.e.

HenceL 2,•, lim sup {~ •(Zn); j eK hkk (Zn) - 1

or

' £(zn
Sr lim ) - k a.e.

0U
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Theorem 4.2

Under condition (c4.1) MAP estimates on K converge a.e. to k.

Proof

By (2.19) we have for each j e K

fl(j) fj (z) o(j)

f(- (k) fk(Zn) fb(kh
0 k 0

By (c4.1) for each j e K ; j • k we have

fb(j)
urn fb(jlZn) <----- limra (Zn) 0 a.e.
n•-- fb(k) n4-

0

implying

lir fb(jlZn) = 0 a.e. for each j e K ; j ' k (4.2a)
n•c

But since

P

E fb(j.Zn) I
L j=o

we have

lin fb(kf Z) =1 a.e. (4.2b)

yielding the assertion.

Theorem 4.3

Suppose that a parameter vector s is assunneO to belong to a finite
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set s. e Rle j e K in the calculation of the estimates (but is not

necessarily a member of the set). Suppose further that for some k e K

condition (W4.1) is satisfied. Then LS estimates of s on R converge

a.e. to

1sk"
ProofI

By (2.20) and (4.2) we have

u•n " s. liz fb(jlZn) - a.e. I
There 4,.4

'I For the situation given in theorem 4.3 LS estizat'•s converge to s

in the mean-square.

--------Proof

We follow in part Liporace [1971] who treated the case of independent

and identically distributed observations. Consider the norm

N E E*{ s - T S ) Sn

pp P

s T flIj Sk)T j sZn) - (Si Sk) f)(silzn)
j=o i=i

Sp p
J,=• • (sj Sk T (si -S) E ,JfsjlZn) fb(silzn)}

j--o i--o

< PR 2  fb(sj.Zn) for some j e K ; j 1 k

!1
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where

R = max ((s. -s k)T(s s) e K~j k j - k)

since obviously

E,*fb(sj Iz n)} >E*{f(sjIZn) f(sizn)jn

(because f (s zn) _< 1).

By (2.19) we have for each j e K

fb (s.) f.(Zn) fb
fb(s 1zn) < 0h i (Z,)

f( (sk) fk(Zn) fb (sk)
0 ko

By (c4.1) we have for each j e K ; j 9 k

fb (s.)
rn fb~sI n) <0 lirn hk (Zn) 0 a.e.

o k

Hence

lirn (s jZn) = 0 a.e.

Now since

fb(szn) < n

we have by the dominated convergence theorem (theorem 2.3)

that for each j e K; j M k

i-bnfb nlir E, (s jZn) E, limr f(sZ) = 0
n-)- nI
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and thus

lir N < p2 R2 limE,3(s.IZnl) -Eo
n.Nonn

yielding finally

lia N 0.n M

4.2 Consistency of the Estimates

In Chapter 3 we defined for each pair k, j e K

I (k;j) -En log hj (Znj'
n 3 n

Let us also define

J (k;j) Z log h. (z niZ ) - I n(k;j)n J nn

Jn (k;j) is the error in the incremental information In (k;j), or the

information residual. Denote

n

Yn (k;j) -- I• I(k;j)

and

Ai n

Vn(k;j) - V Jm(k;j)

, Note that for each j, k e K (J (k;j)) is a U -martingale difference
n n

F sequence according to the true measure P,, and consequently (V n(k;j))
:tn
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is a U -martingale sequence according to P*.

Suppose that * e K, i.e. that the true parameter is a member of the

parameter set and consider the following conditions:

(c4.2) For some k e K and for each j e K ; j # k

limr sup Vn(k;j) >-o a.e.

(c4.3) For some k e K and for each j e K ; j 1 k

lir Y (k;j) - a.e.
n n

Lemma 4.1

Suppose that conditions (c4.2) and (c4.3) hold for k - *. Then

for each j e K ; j 1 * one has

lim h! (Zn) -0 aoe.
n-0-

Proof

We have noted (see section 2.4) that for each j e K the sequence

(hj (Zn)) is a U -martingale according to the measure P,. Furthermore

jn

E* h* (Zn) 1

It follows from the martingale convergence theorem (theorem "1.4) that

the sequence (hl (Zn)) converges to a finite limit. Thus, the sequence

(log h (Zn)) converges to some a < •. We have

iI

I.
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log h. (Zn) - Y (*;j) + V (*;j) (4.3)3n n

Suppose that

lim log h*- (Zn) -a > -*D a.e.

or

lim log h" (zn < a.e.

Then by condition (c4.3) and by (4.3) we have

lir V (*;j) - a.e.

contradicting condition (c4.2'. Hence, we have

lir log hj (Zn) = w a.e.
n-0*

or

lir log h] (Zn) - a.e.

yielding

lim h, (Zn) =0 a.e..

Theorem 4.5

Suppose that some k e K is the true parameter. Then under condi-

tions (c4.2) and (c4.3) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.
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Proof

The assertion follows directly from lemia 4.1 and from theorems

4.1 through 4.4.

Consider the following condition

Wc4.4) For some k e K and for each j e K ; j 0 k there exists some

C. > 0 and a subsequence (n. ) of n such that

I n (k;j) > cj a.e. for all n.
n. 3.

Theorem 4.6

Suppose that some k e K is the true parameter. Then under condi-

tion (c4.2) and (c4.4) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.

Proof

By theorem 3.1 we have

In(k;j) > 0 a.e. for all n > 0

Thus, condition (c4.4) implies condition (c4.3). The assertion follows

from theorem 4.5. a

In the following chapters we shall see certain important cases to

which the information condition (c4.3) applies. We now examine condi-

tion (c4.2). We have noted that for each pair j, k e K the sequence
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(J (k;j)) is a martingale difference sequence according to the true mea-
n

sure P*. The following special case is of particular interest.

Lemma 4.2

For any pair j, k e K let (Jn (k;j)) be an ergodic sequence. Then

lim sup V (k;j) - a.e.n

Proof

We have by (2.21) for each w e S

V (j,w) - J (k;j,w) + Vn_(k~j, T W)

where T is a measure preserving transformation. It follows that the

event

{li sup V (k;j) <

is invariant. Thus, either

P {lim sup Vn(k;j)< " 0

or
P {lim sup Vn(k;j) < 1

Obviously, we have that if

lira sup V (k;j) <

then
V (k;j)

I iia sup < Go

A n
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But by theorem 2.6

V (k-j)
P lim sup n < 4 <

Hence

P ilim sup Vn(k;j) < }< 1

yielding

P {lim sup Vn(k;j) < 0}- 0

Thus

.Ea9e41 lira sup V n k; j) -co a.e.I

Example 4.1I
Let (xn) be a sequence of independent identically distributed ob-

servations. Suppose that each x is distributed according to the den-n

sity
x2
n

f(x n e

Let the covariance a2 be given on a set ({a, i=1,2}, and suppose that

(j a I2, i.e. that 1 is the true parameter. As in exarple 3.1 we have

for all n > 0

(1;2) -log 212 + 
1

n 2 2 2

_INIMil ItIC
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and

22

J 11;2) " xUj - - -n 2  2  2 2a a 2 y

Since (xn) is an ergodic sequence, so is ( n(l;2). Thus, by lemma 4.2

condition (c4.2) is satisfied. It follows from (3.5) that if a ' a1 2

then In (l;2) 0 0 and then, by theorem 3.1 we have

I (1;2) - 1(1;2) > 0 for all n > 0
n

Thus, condition (c4.3) is satisfied for k - 1. Hence, by theorems 4.1

through 4.4, the ML and the MAP estimates of a will converge a.e. and

the LS estimates will converge a.e. and in the mean-square to a1 "A

The following general result provides a sufficient condition satis-

fying condition (c4.2). Although it will not be used directly in the

following chapters, it seems to have useful implications (see example

4.2).

Lemma 4.3

Suppost that for any j, k e K we have for any positive scalar a

E. V n (k;j)- a < (4.4)

where

n a inf n V (k;j) > a (4.5)

7-
• T'•, •n ••',,II •r~, • • o, • .1•• .. .... .. .. .... .• .•" •" -7 ...... t• ~ -- .... * ' m*.-
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then for each w e E4 either

lir V (k;j,w) exists and is finite
n-w

or~

lrn sup V (k;j,w) 4
n

Proof

Let

R a(k; j) Vn (k;j) - a
a

and

Va (k~j) E V(ksj)
n min (n, n

Note that

Va (k;j) < a + R (k;j)
n - a

Since Y (k;j) is a U -martingale, so is (Y a (k;j)). Obviously, we
n n n

have

EaV (k;j)} <a + ER (k;j)

Hence, under (4.4)

E *{Va (k;j) <o

It follows from theorem 2.4 that the sequence (v n (k;j)) converges to a

W'
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finite limit. Let

Aa- E • e : sup Vn(ki W) < a

a

and

A-Ua~ Aa
awl a

If W e A then W e A for some a, say, a . Then,a o

a

V n(kjw) V (k;j,w) for all n

and then

a
lim VC(k;j,w) Jim Vn (k;j,W) is finite.n-* - n-o*w

If W 0 A, then

lim sup Vn (k;j,w) '

Example 462

Let (rn) be a sequence of real valued random variables taking

values in the interval [0, 3]. Suppose that the sequence (x n) is not

necassarily independent or identically distributed. Consider two hypo-

theses (or two parameters) 1 and 2, according to which (x ) is i.i.d.

with probability densities

<x <1n -

f-x < 31l(n) 4 1 n_

elsewhere

7" --- r MW
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and

f 2 (x) - 2 < x< 3

elsewhere

It is easy to see that

J n(l;2) < 2 log 2 for all n

independently of the actual values the sequence (xn) might take in the

interval [0, 3]. Now since for any a > 0

V (1;2) - V + J (1;2)_< a + J (1;2)
na na n a n a

we have

E, Vn(1;2) - a <E Jn 1U;2) < 2 log 2
a a

for all n. Hence (4.4) holds. It follows from lemma 4.2 that condition

(c4.2) is satisfied for this case independently of the actual probability V
measure generating the sequence (x ).

n )

4.3 Convergence in the Absence of the True Parameter

Consider the probability and parameter spaces given in section 4.1.

While the absolute continuity of the restrictions P and P of two

measures P and P to the a-subalgebra U of U is possible to verify in

practical situations (it follows e.g. from the absolute continuity of
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the correspoading conditional densities fl,n (z nZnn- and f 2 , n(Zn Izn-l)

for each n), the absolute continuity of P1 and P2 does not follow and

is, in general, more difficult to verify. The following results are

(• nevertheless interesting from a theoretical viewpoint.

-, Theorem 4.8

Let conditions (c4.2) and (c4.3) hold for some parameter k e K.

Furthermore, suppose that the true measure P, is absolutely continuous

with respect to the measure Pk" Then for each j e K ; j 0 k one has

and, consequently, the parameter estimates will con.•rge to the para-

meter k in the senses specified in theorems 4.1 through 4.4.

Proof

Since the sequence (h (zn)) is a (UnV P )-martingale and since
Sk

Ekh 3(Zn) 1

it follows from theorem 2.4 that (q3 (Zn)) convergence a.e. Pk to a

finite random variable. Since P* is absolutely continuous with respect

to Pk' then (hi (Zn)) converges to a finite random variable a.e. P,.
kf k

4 •The remainder of the proof is identical to the proof of lemna 4.1, and

the convergence of the estimates follows from the convergence of the

likeliý,ood ratios by theorems 4.1 through 4.4.*

i

1;
i ,
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In the following chapter we shall treat the case where the true
- parameter is not necessarily a member of the parameter set for a case

of practical interest, namely, linear dynamical system. We shall not,

however, investigate the absolute continuity of the probability measures

P* and Pk' but rather use siazler arguments, enabled by the particular

problem under consideration.

Condition (c2.1) requires that for any parameter k e K, the re-
strictions Pj,n of the measures P., j e K ; j # k be absolutely contin-

uous with respect to the restriction Pken of the measure P k* An inter-

esting observation is given in the following theorem.

Theorem 4.9

Suppose that condition (c4.1) holdn for the parameter k e K. Then

the measures Pj, j e K ; j 10 k are singular with respect to the measure

Proof

For each j e K the likelihotJ ratio sequence k( n) is a martin-
"f (Z)

gale according to the measure P. (Doob [1953), p. 93). In addition, we

have

n- ( (4.6)
Ej J Zn
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'By the martingale convergence theorem we then have

li Z- finite r.v. a.e. P.
f IZn) 3

(where r.v. denotes random variable).

But under condition (c4.1)

fk (Z')
n,(lira -00 a.e. P*

So we have

P . - finite r.v. -1tn-bw fj (Zn) ,"

and also J
P. lm -n finite r.v. -0

Hence, under condition (c4.1) the measures P.; j e Y ; j • k are singu-

lar with respect to the measure P*.,

4.4 L1 Convergence

The L1 convergence of the likelihood and a posterior probability

a' ratios follows directly if condit.i.on (c4.1) holds. We show that under

a certain condition on the information in the observations the conver-

"gence rates are bounded by exponentials of the number of samples. The

true parameter is not assumed to belong to the parameter set. These

results provide performance measures for the ML and ?eAP estimation

Ai'JU1
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methods. In the following chapters we show that bounds of the L1 con-

vergence rates can be conputed in common situations for linear sys-

teos.

Theorem 4.10

Suppose that condition (c4.1) holds for some k e K.

Then for each j e x ; j 0 k we have

lia E*hk (Zn) -

and

,fb(klZn)

Proof

We have by (c4.1) for each j e K : j • k

k niia h. (Zn) - a.e.

and by (4.2)

, fb(klZn) -G a.e.

nr- f(jIZn)

Since both sequences are non-negative, we have by Fatou's lemma

(theorem 2.2)

"lim Ehk (Zk_> >lim inf E~hk (Zn) > E, lim inf hk (gn)
*rý n-*-h.(

S~and
a llm E f•t(kIZn) > lim inf E, > E, lira inf - 0

n-• fb (jIzn) f"(jIZn) - n*O fb(jlZn)Li
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Now consider the following condition

(c4.5) There exists a parameter k e K such that for each j e X , j 3 k

there exists a positive scalar a. and a positive integer N. such that

I (k;j) > a. for all n > N. (4.7)

Theorem 4.11

Under condition (c4.5) there exists some positive integer N such

that for each j e K ;j k the sequence (hk (Zn)) and

(fb(I) diverge in L1at rates no slower than exponential for all

n > N.

Proof

_~ %kzn Zn-1)

In (k;j) - Elog . n.. .)
f (z Zn-)

yieldingfk (Z n!" E, log (Z) Elog -
• . ~ ~f.(n fj (Zn)

By (c4.5) we then have n

.E f fk(Zn) fk(Z
SE, log E, log > (I.

f .(zn) f .(Zn- l) -

k"• yieliding

fk (Z n)
. E, log f .(n > a. + (n N N)aj for P-11 n _> Nj (4.8)

?n
f z1
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where 14.-I

fk(.•.Iz Z
- E1log Mkj) > a. (4.9)

f .(zjz N - N

Since log (e) is a concave function, we have by Jensen's inequality

(theorem 2.1)

f k(Zn) fk (Zn)

log E, .lT-i> E.log (4.10)o f(Zn) 
f (zn)

(4.8), (4.9) and (4.10) give

k fk n E a. (n - Nj.)aE n E > e e"Eh(Z) E- )e-

(n-Nj+l) a, (4.11)

for all n > N ,for each j e K k j • k

3

k nHence for each j e K ; j k k the like:Lihood ratio h. (Zn) tends in the
J

mean to infinity faster then an exponential with a rate of a..
J

By (2.19) we have for each j e K

fb~l~n .fb(k) fk()
fb(jIZn) fb(j) f,(Zn)

Thus, by (4.11) for each j e K ; j k k

E, fb (kl Zn) fbi(k) kn

( ) (
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> r--LNe + ' for all n > N. (4.12)- cj ) 3

Hence, for each j e K ; j # k the a posteriori probability ratio

fb (k Zn) tends in the mean to infinity faster than an exponential with

fb (j I Zn)

a rate of a..
J

Finally, taking N = max {Nj; j e K ; j � k} anda = ra {Cj. j e K;

j # k} we have that the sequences (hk (zn)) and ) converge in
J fb(j.n

L to infinity faster than an exponential with a rate of a for all
1

n >N .

At instant n the ML estimation method will select the parameter k

if
fk (zn

n > 1 for all j 6 K; j k k (4.13)
fj(n) --

The MAP method will select k if

> 1 for all j e K ; j k k (4.14)
?(jI Zn) -

Hence, the L convergence bounds established in theorem 4.11 provide a

qualitative measure of performance for th• ML and the MAP estimates in

terms of rates at which (4.13) and (4.14) are attained in the mean.

Of course, the bounds cannot be computed unless the true measure i
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known. Yet, if the true parameter can be assumed to belong to a finite

set, then bounds can be computed over the set. This will be demonstrated

in the following chaptr, where we consider linear systems.



CHAPTER V

STATIONARY LINEAR SYSTEMS

In this chapter we restrict our attention to linear systems driven

by white Gaussian inputs having time-invariant statistics. We make the

assumption that the system has attained steady state, i.e. that all sig-I

nals of interest are stationary. We first study the convergence of iden-

tification procedures. The convergence conditions are obtained in terms

of the second order statistics associated with the models in the model

set. If the L1rue model is included in the set, it will be identified

under a verifiable uniqueness condition. If the true model is not in-j

cluded in the model set, then the identification procedures converge to

a model in the set which is closest to the true model in the informationI

metric sense, introduced in Chapter 3, and in the sense of the second-

order statistics associated with the models. Then we treat the L 1 con-

vergence of the likelihood ratios and the ratios of a posteriori proba-

bilities. We show that under a simple uniqueness condition the sequences

of likelihood and a posteriori probability ratios are bounded in Lby

simple exponentials. If the true system belongs to the given model set,

Njthen the bounds can be easily computed using the a priori data. The L1

convergence results provide performance measures for the ML and the MAP

identification methods. Finally, the analysis is extended to other

modeling problems. Methods are suggested for selecting a reduced order

-74-
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model to represent a high order system and for selecting a represent&-

tive model from a set from which the true system, or an appropriate

model of it, are known to take their values.

The convergence of the identification procedures is proved by

direct application of the ergodic theorem. This chapter then depends

only on the results of Chapter 3 and section 4.1 and the more advanced

probabilistic arguments used in Chapter 4 are omitted. (Note that

since we consider here a very specific class of observation sequences,

we are, in fact, able to treat a more interesting class of problems

than that considered in section 4.2, as the true pirameter is not

assumed to belong to the parameter set.)

5.1 models and Densities

Consider the system

x mFx +G w
0n+1 n *~n

z =n Hxn + vn (5.1a)

initialized at n = n with0

T
Ex =0 Ex x =n

0 0o0 nn 0

where (wn) and (vn) are uncorrelated and mutually uncorrelated Gaussian

........ ........ ....... ........ l if
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sequences with

Ew iEv -0

n n

Ewl Q* ;E{v V T R(5.'b),E{nnw n I
The model set is a finite set of models for (5.1) denoted by

_ (Fi , Gil Ii) , j e K (o....p)} (5.2)

Let

K' - (* U K)

(As in Chapter 4, the restriction to a finite set is done for the

analysis of convergence and consistency. In section 5.4 we consider

other modeling problems and there the model set is allowed to be infin-

ite. Also note that the results of this chapter can easily be extended

to the case where the systeva (5.1a) is driven by an additional deter-

ministic inputs sequence.)

Let

An-
z. EnI z ; jeK'
J,n n

denote the one-step least squares prediction of z given the past ob-ne

servations Znl, assuming that the j'th model is the true one. For

each i, j 6 K' let

Z., = (n, n) EE(z - z ) T zn z ) (5.3)
j,n 0 jý(n ^j,n (zn Zj~nJ
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and

rin £rj (n, n) E iE(zn z (z n (5.4),n - J~n n J,nJ

1 0 1
denote the prediction error covariance matrices according to the respec-

tive measures. (For each j e K', Z. and Z. are computed, in ess-
3,n 3,n

ence, by a Kalman-Bucy filter corresponding to the j 'th model.) Denote

Sli s (n, no) (5.5)

provided that the limit exists.

We shall use the following condition:

(c5.1) For each j e K' exists and has a finite positive definite

value.

A sufficient condition for (c5.1) is that each model corresponding to

j e K' is detectable and controllable. For each j e K' Z. is ob-

tained by running a Riccati equation, or equivalently, a Kalman-Bucy

filter corresponding to (Fj, G., Hj, Qj, Rj) °

Also denote

l. - irn r. (n, n) (5.6)
3 n.. -+-

0

provided that the limit exists. ri is obtained by the following pro-
c

cedure. First, assuming n = -•, take 7. = 7. for each j • K' and
o j,n j

IA
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for all n>ni, where n1 is any fixed integer. Then the dynamic equation

generating simultaneously, according to the measure Pi, the state xn

and its' one step prediction by the j'th Kalman-Bucy filter 9. iso,n

in+l I n

'j n+1j .jK.H i Lj (Ij 9 LJn L n 0 F Kj n "

where

•j •j

Let

Fi1 0 i Gi _0

i_.
Fj FKjH Fj (I-K Hj0 FjKj

S0

0 R.

Then the matrix

i x i,n+ll
j,n fn+l j,n+

D~ 2 n+l.

is generated .by the Lyapunov equation

BAT. F + .Q G (5.7)
j n+l j j,n j j I

S. ... .....• • !,• m•'•.-i. ,,- 4 .+ ,•.•. =. )':•
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Initialized at n1 by any initial value. We can write

Ti = =1i (n, n)

Then let

.. lim r . (n, n1 ) (5.8)3 n l÷ -. -wo"o•

Finally
iT

H H +R. (5.9)

It is well known that the limit (5.8) of (5.7) exists A.nd is finite if

the matrix F. has all its' eigenvalues inside the unit circle. This is3

the case if for pach j e K' F. has all its' eigenvalues inside the unit

circle and (Fi, H.) is observable. Note, however, that these conditions
i

are only sufficiep;t, not necessary, for r. to be finite, sinue (5.9.)

may be finite even if T'., obtained as the limit value of (5.7) is not

finite.

Theorem 5.1

For each j e K' let the corresponding model be stable and observable

and let n = -c. Then the residuals. sequences (z . ) ; j e K';o n j, n ,

n > 0 are ergodic according tc' the true probability measure.

Proof

We have by (5.5) E.j,n E . for all n > 0. Since both z n) andjANN
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(z. n) are linear operators on a zero mean Gaussian sequence (x n they

are zero mean Gaussian, and so is the sequence (z - 2 .) for each

j e KW. Hence, (zn - Z j,n) is a zero mean stationary Gaussian sequence

for each j e KW. By proposition 2.1 we have that (zn- jn) is ergodicn J,n
if (and only if)

1 n12in• nT-' - 0k (5.10)

k-O

where I R(k) denotes the determinant of the matrix

H Hi + R. k-a,ý j •j i 1 , ý

" n- jn n+k- j,+k }i i T i k
H H (F k>O

We have for any k > 0

{R(k) H - HT HI I I' IFI "

Since all eigenvalues of Fr ar4 inside the unit circle, then

IF I < 1

Hence

Si,- IE aHR' 1 1 2 Hin I IFiI

k-1 k-i

- < go (5.12)

___'•" • . .- • ._ --. .. . . . - - -..- -uI i 1 2



-81-

Yielding

I n iR(k)2liM R- (k 0

The assertion follows. 3

Note that the stability and observability of the models, assumed in

theorem 5.1 are only sufficient, not necessary. In fact, we have

proved ergodicity of the state residuals (x - j,n ), which is not

necessary, to show the ergodicity of (zn - z J,n). In the sequel we shall

directly use the following condition.

(c5.2) For each j e K' the residuals sequence (zn - z. ) is ergodic.
n jn

5.2 Information, Convergence and Consistency

Consider the system (5.1) and the model set (5.2). Let condition

(c5.1) hold. Then the conditional probability density of z given the

past observations Z nl, corresponding to each model is

fj(Zn 1Zn-7) - 1 j exp - (Zn " 2j,n) C (z Zjn

j e K' (5.13) I
where £ is the dimension of zn. j

In Chapter 3 we have defined for each pair j, k e K'

fk (Zn zn-1)
I (k;j) E E log n-l
n f (z iZn1In
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and

d (k; j) I (k;j)fn n

We have for each j e K'

E log fi (zniz n-l) log 2 l-i *
Elgf) -- log 2w - • log - tr (5.14)

and for each pair j, k L K'

Zn(k; J) " (k; j) - log Erj + -L tr E1r
2 j j 2og 1:k

1rE-

ktr F l Fk (5.15)

Let

L log IZj + tr r i, j e K' (5.16)

Then we have (k J 5.)

'n(k'j) - " [2 .- k] j, k e K (5.17)

Also, by theorem 3.1

i(*;j) > 0
n ( for each j e K

Hence

ece d(*;j) d n(,;j) i(,;j) for each j e K

Thus, for any j, k e K



K1-- - -- "

d(C;j) - -(k) - , -. Ik

- I (k;j)

II
1"[")- L1 (•,.8)•

2Lj GIIs

Hence

d(*jj) > d(Wk)

if any only if

Le=a 5.1

Let (zn) n e generated by (5.1) and let conlition (c5.1) hold.

Then, undtr condition (c5.2), for any j, k e K

lim h (Zn) 0 a.e. (5.19)

if

Lk < L. (5,20)

"and only if

,< L (5.21)

w-I

'I

!1
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Proof

log l~(n og hc(ZmI Zm (5.22)1
M,-1

We have

log N ." ,Zn -l Z1 lo k)

log zn - J,n) ((n j,nl
2 i ^,f J •-

+ (z (z (5.23)

Since for each j e K the residuals (z. - zj,n) are ergodic, it

follows from the ergodic theorem (theorem 2.5) that

lim - log m -) - E logIm

1 (Z (iz IErn

Mim i L(j •k)

- 2 (Lk - L.) (5.24)

Now if

Then obviously

lir. lo I (z I z'l Jim log h' ~z') = a.e.
mlogk mnk k
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yielding

n•nurn (Z') -0

To Lprove that (5.19) impl.ies (5.21), suppose that (5.19) holds, but

(5.21) does not, then

S> Lj (5.26)

and by (5.24)

lim log (ZmZ 1 ) - lim log (Zn) W I
M-1

irplying

lirn hi (Zn) , (5.27)
k

which contradicts (5.19). Thus, (5.19) implies (5.21).i

Consider the following condition

(c5.3) There exists some parameter k e K such that

Lk < L. for all j e K ;j 7 k (5.28)3

Theorem 5.2

Consider the system (5.1) and the model set Ml', and let (c5.1) hold.

Undez conditions (c5.2) and (c5.3) the ML, the MAP and the LS identifica-

tion methods will converge a.e. and the LS method will also converge in

m.s. to the model (Fk, Gk, 1k, 2 k' H)

.- ''

k' Qk RkW )
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Proof

By le-ma 5.1 condition (c4.l) is satisfied for the parameter k.

The assertion then follows from theorems 4.1 through 4.4.*

Note that by (5.18) the identified model is the closest to the true

mo 1 in the metric d.

Corollary 5.1.

The convergence specified in theorem 5.2 will be to a model in

M such that L-I(5

ILin IL - I j , e(.29

Proof

By theorem 3.1 we have

S(* ;j) > 0 for each j e K

Hence

Lj -L, > 0

if
* *

U. •r.

So the assertion follows from lemma 5.1 and theorem 5.2..

The identification methods will then converge to a parameter in K, clos-

est to -he true parameter in the scalar L, which in turn implies close-

ness of the corresponding models in terms of their output statistics.

I Z
I?
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corollary 5..2

Suppose that the trt,- system belongs to the set I#, i.e. let (R, G,

H, Q, R) - (Fr, Gr, Hr, Qr' Rr) for some z e K. Let conditions (c5.1)

and (c5.2) hold and suppose that for each j e K ; j # r we have

L L -L #L - (5.30)

Then the idntification procedures will converge to the true model in

the senses specified in theorem 5.2.

Proof

The result follows immediately from coro]l.sry 5.1..

To compute the scalars L., j e K one must compute the matrices Z

and r,. While the matrix Z. can be computed by running a Riccati equa-

tion corresponding to the j'th model to ýteady-state, the matrix r.

cannot be compute4 unless the truin measure or, equivelently, the true

system is known. If r e K is the true parameter, then

r * pr ZE
r r r

and consequently

SLr - log r+ (5.31)r r

In the identification problem the true parameter is unknown. If the

true parameter can be assumed to belong to the ponrameter set, then (5.30)

will have to be checked for all pairs of pazameters ir the set, namely



(c5.4) For all pairs i, j E K ; i 9 j

L. , log IZi + g- (5.32)

Theorem 5.3

Let the system (5.1) belong to the set. MI, and let conditions

(cS.l) and (c5.2) hold. Then under conditions (c5.4) the true model is

identifiable a.e. by the ML and the MAP estimates and identifiable a.e.

and in m.s. by the LS estimate.

Proof

Under condition (c5.4) we have (5.30). The assertion then follows

directly from corollary 5.2.i

5.3 L1 Convergence

We have shown in section 4.4 the L1 convergence of the likelihood

ratios and the a posteriori probability ratios under condition (c4.1).

Furthermore, it was shown that under condition (c4.5) bounds on the L I

convergence rates can be established, thus providing a measure of per-

formance of the ML and the MAP estimation methods. We now show L con-

vergence and derive L1 convergence bounds for the identification of

stationary linear systemF treated in this chapter.
Consider the system (5.1) and the model set M and let condition

(c5.1) hold. We have shown ((5.17)) that under condition (c5.2)

In (k;j) I(k;j) = [L - Lk] for all nI!
F, •.2,•-' ?7 --'',-• ""• •-• ••" " " I•!

• : . .. .. 6r,
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for each pair k, j e K where L. * j e K are constants.)

Theorem 5.4

Consider the system (5.1) and the model set M, given by (5.2).

Under conditions (c5.1) and (c5.3) for each j e K ; j # k the sequences

(h. (Zn)) andn converge in L to infinity. Furthermore,3 l( j I z n ) )/ '
the sequences converge at rates no slower than exponential.

Proof

By lemma 5.1 condition (c5.3) implies condition (c4.1). The L

convergence of both sequences follows from theorem 4.10.

Now let

aj --1[Lj - L] for each j e K; j k

then following the proof of theorem 4.11, we get by (4.11) and (4.12)

for each j e K ; j # k
(n+l) •

E hk (Zn) > e ( (5.33)

and

b(k{Zn) fb(k) (n+l)aj
E ( (5.34)fb(jlZn) _ ()I

The rates a3. Y (k;j) ; j e K ; j 9 k can only be computed, as

discussed in section 5.2, if the true model is known. If the true model

I• I



is only known to belong to the set M1, then the rates can be bounded as

follows. We have seen that if k e X is the true parameter, then ((5.31))

1- log Ik

Now since

ci si[Lj -Lk] for each j eK j k

where k is now the true parameter, we have

----- i

T h nj 2 39 I k I1 ]

a >ci a m inimi'1{+[ LY ý-log I~kI 'E -1 3; 2 lg 9 1-k o9

for all j eK j y k I e ) (5.35)

(5.35) reads as follows- For each k e K suppose that k is the true

parameter. If

L. - log lk - I > 0 for all j e K ; j V' k (5.36)
j k

then take the min over j of (5.36). Continue the procedure over all

k e K, discarding such k for which (5.36) does not hold (since then k

cannot be the true parameter, for which (5.36) always holds). Then take

the least of all the minimum values of (5.36) found above. Note that

this procedure does not identify the true parameter, but rather finds

a lower bound for cj over j e K.



-91-

The asove discussitn is summarized in the following theorem.

Theorem 5,5

csider the systes (5.1) and suppose that its' true model belongs

to tCa set M 1 given by (5.2). Then under condition (cS.3) we have

E£1 (Zn) >0e'.n+ 1)aC (5.37)1

E .L(rizn5 > fb(r- ) (n-rl)a (5.38)

for each j e K ; j y' r where r is the true parameter and where a is

given by (5.35).

As discussed in section 4.4 the boundt (5.37) and (5.38) provide

performance measures for the ML and the MAP estimation menthods. We

have shown that bounds on t4e L convergence rates of the indicated

ratios can actually be computed for stationary Gaussian lnear systems.

5.4 Model Selection

In practice, when a mathematical model of a dynamical system is

required for purposes of estimation and control, one often knows, to

certain approximation, what thz model should be. However, because of

implementation constraint one has to select a different model. Such is

the case when the actual system is of high order, but the available

computation and storage capabilities are such that only a low order

model can be handled. Another modeling problem arises when the actual
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system's model is known to take its' values, which may be time-varying,

from a given set, but only a single model can be considered. An example

of practical significance is the dynamical model of an aircraft, whose

parameters vary considerably over its' flight envelope. However, the

airborne computation and storage capabilities are limited and a single

model of the aircraft dynamics must be used throughout its operation.

These are not identification prolems in the strict sense. Never-

theless the analysis in Chapter 3 and sections 5.1 and 5.2 suggests a

natural extension of the results into the model selection problems in-

troducad above. It should be emphasized that unlike the investigation of

convergence and consistency of parameter estimate the results of this

section apply to infine and even non-conpact parameter sets.

5.4.1 The Selection of a h.iduced Order Model

Suppose that the true system or an approximate model of it are

known, but their dimensions are too high for implementation of estima-

tion and control prodecures. A model of lower dimension is then desired.

Let the true system, or an approximate model of it be given by (5.1) and

let

M -(Fs, G , Hs Qs R) s e S (5.39)

be a model set of dimension lower than that of (5.1). The system co-

efficients in h depend on a parameter vector s belonging to a parameterI

set S. It is desired to find the model in the set M4 which is closest

to the true system (F*, G*, H,, Q,, R,) is -core mean'ingful distance

- . * 1., :.,w,• . . .•f4~•• '"•-,----..• • A,,,.
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sense.

For each s e Slet

L - log I•5t + tr (-I r (5.40)

s s s

where

r E. (Zn - Zsn) (Zn - z51 n)T?

z is the one-step least-square prediction of z given the past ob-
snn n

servations Z n- assuming that s is the true parameter value, and Zs is

the correspinding prediction error covariance matrix. Zs is obtained

by running a Riccati equation corresponding to the model (Fs, G, aHs al

Q , R ) to steady-state. The computation of r was discussed in the

previous section. Let s* e S be a parameter which satisfies the follow-

ing criterion

L * < (L* e s $, s 91 s°}
s a

0

Then, following the reasoning of section 5.2 the model (Fs, GsO, Hsee

R s) satisfies the following equivalent criteria:

1) The model which is closer to the true model than any

other model in If in the sense d(*;sO)< {d(*;s); s e S}.

2) The model which would be favored over any other model

in M by the incoming information.

3) The model which would identified as the true model among

any finite set of models from the set M by the maximum
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likelihood and Bayesian estimation techniques.

The model selection problem reduces then to the minimization prob-

Jlea

minL g sL: (5.41) se

we do not addxea the algorithmic problem of solving (5.41) or the exis-
*

tence of a unique minimum of L on S. These problems are suggested for

further research.

5.4.2 The Selection of a Representative Model

Suppose that the model of a linear system whose parameters may be

time-varying is known to take its values frow a set

S £Mt (P l(f Gs, H so Qs' R ) a e $S,,

Two different ca~ss may be considered.

1) The model takes a certain constant value in the set 1
and there is no prior knowledge even in a probabil-

istic sense on what value it might be.

2) During the system's operation its' mathematical model

varies over the model set M . However, it is not

possible to consider the model's time program.

In either case it is desired to selec't a single model from the set Al

to represent the system throughout its' operation. One criterion for

the selection of such a model is that the maximum possible distance d
4.m

between the representing model and the true model (whatever it might be)

a m 
..- -
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will be minimal.

The procedure for selecting the representative model from M willIt
then ase follows. First, for each parameter a e S find the parameter

t whose distance from s is maximal, and the corresponding maximum dis-

tance. Than find the parameter s for which the maximal distance found

is the first step Is minimal.

K IThe distance between a parameter a and the parameters t of the set

S is muxmized over t by maximizing with respect to t

Lt loc 11 . + tr rS1 r( (5.42)

where, as before

s( 2 I son~ n so

is obtained by running a Kalman-Bucy filter to steady-state, and

r:EEt {(zn zsn) (Zn -

is obtained by running a Lyapunov equation to steady-state, as shown in

the previous section.

The representative model is then found by solving the mininax prob-

"1% lem

mi max L s s, t eS (5.43)
5 t

SThe uniquenes of the solution of (5.43) is suggested for further re- I
search.

,tI
1.
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Remarks

1) The procedures described in this chapter find, in general, a model

in the model set, whose output (or observations) statistics are best

matched with those of the true system. However, for the modeling prob-

lows considered above, the role of the output can be plryed by any lin-

ear function of the state variables. If, for instance, it is desired to

exphasize certain variables that affect the system's performance more

than the others, or that can can be measured better than the others,

then these vaxiai'les can be selected as outputs for the model selection

procedures described above.

2) The problem of selecting a single model from a model set, considered

in sections 5.4.1 and 5.4.2 can be generalized to a problem of selecting

a number of models from the set, so that the model set is approximately

represented by a finite set of models. An identification procedure can

then be employed "on-line" to find the model in the finite set which is

closest to the true system. The selection of a finite model set would

require, as a first step, the division of the infinite parameter set

into a finite number of subsets. The way in which the parameter space

should be divided would depend on considerations of the physical prob- I
lem involved, but it seems obvious that the division could employ the

metric topology of the parameter space introduced in Chapter 3. (just

as interval lengths are used in Rn, say, to divide a rectangle into _

equal parts.) The selection of a representative model for each subset
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is then performed as described in sections 5.4.1 and 5.4.2 above. Fur-

ther research of this seeningly promising approach to system modeling

and identification problems is recosmendd.

II

tI

i.



CHAPTER VI

NON-STATIONARY lINEAR SYSTEMS

The assurmtion of stationaxity made in the previous chapter is now

removed, as we consider the general case of non-stationary, time-

vaxying linear systems. We first derive expressions for the information

in the observations, discriminating one model in the model set against

another. The information conditions for the consistency of the esti-

mates are interpreted in terms of the second-order statistics associated

with the differeMt models and computed by solving the corresponding

Riccati equations (or, equivalently, running Kalman-Bucy filters). The

consistency result for time varying systems is not, however, as ex-

plicit as in the stationary case. The L1 convergence o• the likelihood

and the a poate•i••i probability ratios is investigated. The separate

contributions of the stochastic and the deterministic parts of the in-

put to the information and, consequently, to the L convergence rates

axe shown.

6.1 modelsI

Consider ths system

x Fx + G wn+l x G nW

Z = 1, X + v (6. la)nt *on n nL

-98-

- ' °- - ~ ~ ~
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initialized at n - n with

E*x n = 0 ; Tx n T •.
0~ 0 0

where (wn) and (vn) are uncorrelated and mutually uncorrelated Gaussian

sequences with

n n

EjWnwnT}- Q ,n5 E{VnVnT)} R*,n (6. lb)

Consider a finite set of families of models

M2  {(Fj G H 'Fit R.
2 ,np j,- jn ) Ji,n 3,n;

j e K - (o1l,...,P)1 (6.2)

Let (zn) be an R. dimensional observation sequence. The conditional
n

probability 'ensity of z. given the past observations Zn-I and corres-

ponding to each model is given by

f(z i [(27T) Ij expj " (en -n j,n TZ-jn (zn " j,n)

,je K (6.3)

Vog
- mT
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where, an before, Zj'n is the one-step prediction of z given the past

n-1observations Zn, assumang that the j'th model is the true one (i.e.

assuming that the observations are generated by the J'th model), and

E. is the corresponding error covariance matrix. Both " and Zjn

axe generated by a Kalman-Bucy filtez corresponding to the J 'th model.

6.2 Information, Convergence and Consistency

The informti in a single observation zn, favoring the k'th

Mdal agin---st the j'th model will now be derived.

Ink; j) = - 1• log f z z -f (z nlZn'l)

_ Z;n-1 1Z T Z-1 (za z}•

n- I I. , )T -1

inon~ 20  Ziog f.z Iznn)

+ • * nT 2~ -^kn" "*n k n *n 2t 'ken ken* o

n-,T l i i l % T-

.- . ) ,T X-.1( ^ a~e

2 nE n enn j,n ",n nn ,n

1 ~ 2:T-1T 1 ET
zn l 9 ~ ~ t z n a lzzn)+~. Z*

Jon Jon *on 2*ot& in ),fn 2 n Jon Z*opn a.e.

S7
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But

E.n 1  Znf -n *.n + Z**n a. ..

Hence

(g 1 1z 1 1
ik) - log + tr (zn e"

1 (-1

*, ^ z.,nT Zk-n ^, n)

+5 - A - £ ) a.e. (6.4)

2 j, n j,n 2 *,n j,n

Lot

I '(k; J) log.raL~yJa (51 (6.5)

an

I(2k)j) - I(1) (k~j) + I(kj)n(6.7)

Suppose that condition (c4.2) is jatisfied. Then, cy lemma 4.2 i'

end by theorems 4.1 through 4.4 conditions (ct4.3) or (c"L4) are suffinientJ

T -1

n . n,2;T ( :t~7
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for convergenc* of the cstiwates to the k'th model iA M . However, itII

is not difficult to see thlmt the verification of conditions (c4.3) or

(c4.4) is not possible for the general case considered here under any

conditions imosed on the Wterministic part i (1) (k;j), du.. to the ran-n

dom part 1n(2) (k~j). In rection 6.3 we shall show that 1(2) (k;j) can be

further separated into deterministic xmd stochastic parts. we now show

that under the assution thp-t the tiue a.dcl b&• •gs to the given set

21 the e4nformtion eqression for the time varying system under con-

sideration is simplified and consequently m&e plicit conditions for

identification can be otained.

Sappose that some k e K is the true paraieter, then by (6.4)

I n(k;j) I n(k;j) + I :(k.j) (6.8)

I n

I (k;J) =B lo + -t (En, I) (6.9)

and
I (k;J) 2 z T )T (6.

n( 2 k,n j,,njfn(zkfn "J,.

Consider the following condition

(c6.1) For souw ' e K and for each j e K ; j • k there exists some

scalar U. > 0 and a subsequence (ni) of (n) such that

* k -n E .I I . for all n. (6.11)



where

IAili idet Al

Lemma 6. 1

Let somw k e X. be the true paramter# i.e. let

(Fn, - (FknGklk,nVkk,nRk,n)

Then condition (c6.1) iqulies condition (c4.4) for k.

Proof

Clearly

In (k;j) >0 for all n for eachj j K

Thus

I (k;j) > I '(k;j) for all n for each j e K.
n a

It will suffice then to show that condition (c6.1) iq'lies the nxistence

of a subsequence (n of ,ni) and some e > 0 such that

I (kk;j) > s. fo•t all (6.12)
rr

Con ides the following equation

rn~ n "n 0 (6.13)
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For positive definite Zk,n and E there exists a nonsingular matrix Aken jLi n

such that (Anderson, [19568, p.341):

T
TA n (6.14)

and

SAYjrjAn = I. (6.15)

Where Aýis a disgonal matrix whose elemnts are -.. L the

roots of (6.13). in e4±tion, w* have ni- > 1 for all i=1...,L and

n > 0.

It is easy to verify that I * (k;j) remains invariant under the

transformations (6.14) a~d (6.15). Hence

X1

,i" 1-0 A(Ui (6.16)
i-1

Suiose that for sme subsequence (nW) of (n)

-lko E. j II ct~ > 0 for'aa11nj (6.17)

Then there exists some > 0 and a subsequence (nd) of (u-d) such that

-1 > 1j for all ni for each i(i,...,3 (6.18)ni -r
r

since if such •j and such (na) do not exist, then

r-',
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Xni3 •Ias n ( 6.19)

where

B. shinl)I J$ i iuule... I X

a, n, a

and then

E .1 *E A ., z0

asn * C, contradicting (6.17). Hence, (6.17) implies (6.18).

bow conaider (6.16). Since

a - log a - 1 >0 (6.20)

with equality if and only if a - 1, and since the function on the left

hand side of (6.20) is convex in a, it follows that given 1 > 0 there

exists some a > 0 such that

a - log a - 1> a

whenever la - ii >

Thus, finally,(6.18) implies that there exists some C. > 0 such thatJ

1'. (k;j) > C. for all nj (6.21)nj -- J r

r

The assertion follows.
1B
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We have shown in Chapter 4 that consistency of the paramster

estimates (or, equivalently, identifiability of the dynamical system)

follows from conditions (c4.2) and (c4.4). Condition (c4.4) (or, more

generally, (c4.3)) seem to be, for obvious reasons, the Ucrucial"

condition for the strong consistency of the estimates. We show below

that condition (c4.2) holds for the case of time invariant stationary

linear systems. It seems, however, that condition (c4.2) would hold

for very general classes of observation sequences. For the general

case of time varying system we condition the consistency result on

condition (c4.2) which has to be checked for each case under consid-

eration. It seems, in particular, that condition (c4.2) would not be

difficult to verify for the class of periodically varying linear systems

and for systems driven by bounded deterministic inputs. This, however,

is left for future research.

Theorem 6.1

Suppose that the system (6.1) belongs to the set M2 specified by

(6.2). Furthermore, suppose that condition (c4.2) holds. Then the

system is identifiable a.e. by the ML and the MAP estimates and identi-

fiable a.e. and in m.s. by the LS estimate on the set if condition (c6.1)

is satisfied.

Proof

The assertion follows from leumna 6.1 and theorem 4.6.*

M- 1,

Sw 
~ ~ ~ v r - - a~ ..l~~ mJ
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Now consider the case, treated in Chapter 5, where the true sys-

tem, given by (5.1), is assumed to belong to the set Ml, given by (5.2).

Under conditions (c5.1) and (c5.2) condition (W6.1) simplifies to the

the following condition:

(c6.2) For each j e K ; j # k

Ij - ,s # a

Suppose that k 6 K is the true parameter, We have for each j G K ;

11 E - n _n-
In(k;j) m--log IT.1 .trjL En j (Zn - )(Z -j,n

+ 1log I1z + n-1I
k o ZI + 1tr E-1 En (z - -)(Z -I

k 2 k n ( Zkn)(n Zk)

where, for each j e K (C.22)

(z n £zj,n)Hzn - j,n

ri-~l TTri
-U1{ Zn Th Z*, zj T -. A T +. A T

" * n n *,n z,n - ,n z*,n zj,1 j,n

- * + (Z - Z jn)(Z*,n Zj,n)T (6.23)

and, since k *

J (k-j) log h. (Znz- I)
n -nn(

1trk ( - I)

2 k

M oi - ' w-M-* w4u.~
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+(z' Z (z -ý A T]

2 k1

J1 L(n -J,n)(n i,n k,n Jlin k~n ^)T]

(6.24)

Since the sequences (z - z and (Z^ - . are ergodic for alln ^j,n k,n - ),f

j, k e 1(# so are the sequences (I (k;j)) and (J (k;j)). It follows

from lemma 4.2 that condition (c4.2) is satisifed. Condition (c4.3) is

satisfied if condlition (cS.4) is satiafied, by theorem 3.1 and the

ergodicty of (I n(k;j)). The identifiability of the system under con-

dition (c5.4) thus follows from theorem 4.5.

6.3 L1 Convergence

We have shown in section 4.4 that by bounding the information in the

observations away from zero, bounds on the L 1 convergence rates of the

likelihood and the a posteri2-Or- probability ratios can be established,

which in turn provides performance measures for the ML and the MAP es-

timation procedures. in this section we consider the identification of
a general class of time-varyinq systems driven by stochastic and deter-

ministic inputs. The fact that only convergence in L1and not in thej

stronger senses of a.e. and m~s. is sought enables us to obtain rather

explicit results. The stochastic and the deterministic parts of the

input are showqn to contribute separately to the convergence rates of the

identification procedures.
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Consider the system

xn+l M F*on xn + G*,n U + J*,n Wn

z n - H,,n xn + vn (6.25)

where (u ) is a deterministic (known) input sequence and the other ele-

ments are as specified in section 6.1. Also consider a model set

. 3  {(Fj,n Gj,n J j,n, TjQj,n' ,In) j 6 K) (6.26)

where Qn and R. are the covariance matrices of (u ) and (vn4 respec-
J3n n n

tively, corresponding to each model.

The incremental information for favoring a parameter k over a

parameter j in the set K, is given by (6.8). For each j e K we have

"vI (*;j) 1 ( - )T ,A ( (6.27)

n 2 -n Jon on n j,n

Let
-, A* ^*

(,n Z )= H x (6.28)Jon *n j~ j~nj,n

where

H. , H. ) (6.29)
3,n on j,fl

and

A = (^,T X. -T T,
xx . ) (6.30)j,n ,n j,on(

11
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For eachje K we have

F.(I-K H. +i G u
j,n+l jn jln jn j,n J,fl n

+ F JnK JnH *nx n4+F K~ ~ v n (6.31)

where

K H liT H H.T + R.j,n j,n j,n j,l Jiln Jun Jufn.

Let

x ~- K. H, G

+ Jn )j,n H,n X,

where

u
x E*X E*E x I;R 'X,

Also letI

)~~ ,fl+l j,n+l jJuf3, Jil J~fl

+- F. K.~ H,(~-x~

4-. K. v

Jin 3,nl n

and

= Xn+l -+ X*,n+l Fn *, + *,n nS
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n:ow let

H;,. (6.32)
zJ,n Xj,f

where

T n T T (6.33)x -(x ,Xjn
j,n = *,n in

and let

'* - * ,h (6.34)
zJ,n H Hj,n xj,n

where

_ T w T T (6.35)
xj,n x(K,,, xj,n)

Then we can write

I" (*;j) " (Z. + zj ) -1 (z. + z.
n ,nl ),r j,i j,fl jIn

>~*T T: -*T~nE'~
"2 j n E j,n , j,n + zj ),f3 3,n j ,n

Let

S - Z . (6.36)
en Jn 3J,n

S= Z.(6.37)
j,n z ,n zr,n

and

G. Z. z. (6.38)
],n J,n ),n
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Then we have

*;j) tr £E-1 + e (6.391)In 2*j J•t ,n (J'n ÷ J,n J,n)

Vie sRhall use

J,n - aJ,n

which is obtained via the following procedure.

Define

A. x (6.40)
3, n ,n I ,

Then xjnis generated by the following equationa

S F. + +G w (6.41)
J,n+l J,n j,n j ni

where
F, 0 0

F F, * F,,(I - " 0j ,n InK* hIn n K*,n H*,n)i

F. K. H0 F, (IK Hjn•n

j,n J,n H*,n jn jnhn

(6.42)

J*,n 0

* In

G. - 0 F, W n (6.43)

Lni
0 F. K.

J,n j,n
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Also let

* n 0

Qn = (6.44)

Then

. n T m* T (6.45)•j.n - (o j0,z)j,n -0 ji~n c.

where

i*. E , X on (,n , (6.46)

is qenerated by the equation

n* -F. n F + 0 (6.47)•
j,n+l io, ,n Fj,n j,n (6.47)

initialized at

u, 0 0

j 1 0 0 To •

Next coasý4or V . We have

Fj,n+1 F Fon xi + G. u ;x. 0 (6.48):,+ , ,n j,n n J,0
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where

F 0 G
j*n On

[ J, K , J on Hr J onc U K- jon j, u l qj,.

(6.49)

(6.48) can be written as

n-i *
In - • jA (n,.m) u (6.50),n E I I JIM)

717-1

+\'r vj),,d + I" ( j )

T j,n fn jn

IW Im

;~o~,•-.
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Note that while J,n and k,n (or I (k;j)) depend only on the sto-

chastic part of the input the term jr. represents its' deterministic),nl

part. In the sequel we examine the separate contributions of these

elevents to the L1 convergence rates of the likelihood ratios and the

a posteriori probability ratios on the set K.

Theorem 6.2

Suppose that the true system (6.25) belongs to the set M3 qiven

by (6.26). Let k e K be the true parameter. Suppose that for each

j e K ; j W kc there exist a positive scalar a. and a positive.integqx

N. such that
J

II kn j,n I _ for all n > N. (6.52)

Then we have for each j e K ; j • k

kc (n-Nj+l) aj
E~h( (Z)n > e ( for all n > N.-- -- J

and

E* fb iIe) = e 3 for all n >N.fl(klzn) b(j) 3. .

Proof

The proof follows from arguments similar to those made in the proof

~ ~ 2
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of lema 6.1. We first show that (6.52) ipllies that there exists

som c• > 0 such that

- 11 > for each i-l,...,j, for all n >_NJ (6.53)

where An, ; i-,..., are the solutions of (6.13). Suppose that. (6.53)

does not hold. '-,hen for any e > 0 there exists some na > a such that

Ix€, -if1 < -j(6.54)

,ni

enE

and then, by continuity of the left hand side of (6.13) in An, given

a. > 0 one can take C such that

I1k,n- C n,i n •j,nl -I,n- J•,nl <

yielding

contradicting (6.52). Hence (6.52) implies (6.53). Now by (6.16) and

by the convexity of (6.20) we have that (6.53) implies that for each

j 6 K ; j • k there exists some a. > 0 such that
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I (k;j) > a for all n > N

Since I1 (k;j) > 0 we then have

(nk; j) > aj fqr all n > N. '':

Condition (c4.5) is then satisfied and the O ption foloPW* frda equa-

tions (4.11) And (4.12) in the proqf of' WhUre*i 4t ,,

Coro llau 6.1,

Let the sat"4, be .'ime invariant and let the true system belong

to Aý. Suppose t•hat, for,.each j e K given by (6.23) is finite and

non-s ingular?. Theni 'thý -convergence bounds asserted in theorem

(6.2) holds under conditý\n (c6.2), where k is the true parameter.

Proo__

Condition (c6.2) imp] .es that for each j 6 K ; j ' k there exists

some •j > 0 such that U

clearly,

urn• Ih:. - I= I - ZkH >nim11 j,n E k,nl II"j --k~ C

n-kv



-118-

hence, for any positive scalar O. such that 0 < aj < 3. there exists

som positive integer N such that

Sjn -j •, for all n > Nj

The assertion then follows from theorem 6.2.*

Theorem 6.3

Suppose that the true system (6.25) belongs to the set H3 given by

(6.26). Let k 6 K be the tru parameter. Suppose that for each j e K ;

j 1 k there exists a positive scalar a. and a positive integer N. suchj

that

tr E-1  , -> 2a for all n > N 6.55
J'n J-n - j-

Then the L convergence rates asserted in theorem 6.2 hold.

Proof

For each j e K ; j # k we have

I (k;j) > 0 for all n > 0

(It follows from (3.5). Also see the proof of lemma 6.1) and

tr L-1. 4k > 0 for all n > 0
j,n j,n -

~l i
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2 " , n ), n - - J

Condition (c4.5) is then satisfied and the assertion follows from equa-

tions (4.11) and (4.12) in the proof of theorem 4.11..

Theorem 6.2 guarantees a certain L convergence rate of the likeli-

hood ratios and the a posteriori probability ratios under a certain con-

dition involving the stochastic characteristics of the inputs to the

systems. Theorem 6.3 means that the convergence rates can be improved 1
by application of certain deterministic inputs, satisfying (6.55).

IA

I

.I
I

- - - -* '.,-'l
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CHAPTER VII

SUGGESTIONS FOR FURTHER RESEARCH

7.1 Extension to Compact Parameter Sets

As mentioned in Chapter 1, the extension of parameter estimation

convergence results from finite to infinite sets can, in general, be

obtained via the addition of topological conditions on the parameter

set. Let S be & compact metric space with metric S. In the previous I
sections we have studied conditions under which one has for some r e S. I

s n
(c7.1) lirn b (Z) - 0 a.e. for each s e S; s # r (7.1)

We have seen in Chapter 4 that if the true parameter is a member of the

parameter set, say, * - r e S, then (c7.1) is implied by the following

conditions
nI

Wc7.2) lir Im(r;s) - • a.e. for each s e S; s 9 r

m=l

and
n

lim sup m( r;s) > -W a.e. for each s e S1 s / r

The pointwise convergence in (7.1) is not sufficient for convergence

a.e. of, say, the ML estimates on S to r (although mistakenly consid-

ered to be by several authors).

-120-
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To obtain convergence a.e. of the estimates to r it must be shown that

for any open neighborhood V(r) of r one has

sI
lira sup h (Zn) = 0 a.e. (7.2) 1
n-K s e V (r) r

where V C(r) is the complement of V(r) in S. Consider the following

condition.

(c7.3) At each s e S the ratios hs (Zn) are continuous in s uniformlyr
in n. This means that for any realization of the sequence (zn) givenn 7

£ > 0 there exists for each s e S a neighborhood

V(s) - t :It - sl < 6 (7.3)

for some 6 > 0,such that I
sup iht (Zn) - hs (Zn)I < for all n > 0 (7.4)
t e V(s) I

'..corem 7.1

Suppose that conditions (c7.1) and (c7.3) hold, then ML estimates

on S converge a.e. to the parameter r.

Proof

Choose e < 1. Then for each s e VC (r) there exists an open neigh-

borhood V(s) satisfying (7.3) and (7.4). Since V(r) is open, VC (r) is

a closed subset of a compact set, hence, compact. Thus, there exists a

I
____ ____ ___ ____ ___ ____ ___ ____ _ _ _ __ ___ __ _ _ _ ___,__
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finite number of points s., i 6 I - (1,...,q) such that I
Vc (r) C U.{V(s) ie

Now

6 n ht, Zni, sup V h (Zr < 1rimax {sup hr (z i
n4* s E V-- i t e V(si)

< lir max {h.(Zn) + ie I}
n-w i I

- max lim [h(Zn) C i e Ii n-K i
ii

e <1 a.e. I

But since ii

lira sup h s (Zn) > limr hr (,n) 1
na s e S r WHO r (

the ML estimates on S converge a.e. to r..

The proof of convergence a.e. of MAP estimates on S to r is simi-

lar, as by (2.11) we have

f(slZn) fb(s) s n
_____ - h (Z)

2 f(rIZn) f1 (r) r

Condition (c7.3) and its applicability to, cases of interest are

suggested for further research. Two guiding questions seem to be:

6.L

I•
*J
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1) When can (c7.3) be replaced by continuity conditions on

the conditional ratios hS (Zn Zn-1 )?

2) How can (c7.3) be relaxed and still provide the transition

from (7.1; to (7.4)?

7.2 Existence and Uniqueness

Astrom and Soderstrom [19741, considering the identification of the

parameters of stationary Gaussian ARMA processes, presented the problem

of consistency of the ML estimate as a problem of existence of a unique

maximum over s e S of the scalar function lim f (Zn ). An equivalent

problem for state space models was posed in section 5.3.1 as the exis-

tence of a unique minimum of the scalar function Ls, defined by (5.40),

on S. A related problem is the existence of a unique minmax point of

t
the scalar function L , defined by (5.42), for the solution of the

modeling problem proposed in section 5.3.2.

The existence and uniqueness problem has also been treated in the

literature in terms of the parameters of certain realizations of the

system to be identified. Caines [1975b] has proposed the condition

that there exist a homeomorphism between the parameter set and the set

of impulse responses of the oystem's innovations representations for

the identifiability of stationary linear systems. Similar conditions

were suggested by Tse and Weinert [1975] and, for the finite parameter

set case, by Moore and Hawkes [1974]. The advantages of statistical

* uniqueness conditions such as the one suggested by Baram and Sandell

[1976] and in this thesis is that they apply to any given set of state

!V
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space models and not to certain canonical representations of the system,

and they are verifiable by standard computations (such as the steady-

state solutions of Riccati and Lyapunov equations). Their disadvantage

is that the actual parametrization of the system gets lost in the statis-

tical conditions. The homeomorphism condition presented above seems to

correspond to conditions (c7.2), which requires uniqueness, and (c7.3)

which requires continuity, put together. More elaborate investigation

of the correspondence between these conditions is suggested for future

research. The finite parameter set case should be addressed first.

7.3 Identifiability by Deterministic Inputs

The application of deterministic inputs to dynamic systems for the

purpose of identification and their optimal selection have been addressed

by several authors (Levadi [1966], Gagliardi [1967], Nahi and Wallis

[1969], Aoki and Staley [1970], Mehra [1972], Goodwin, et al [1973],

Lopez-Toledo and Athans [1975]). The analysis of section 6.3 suggests

a new approach to the problem. It follows from theorem 6.3 that any

input sequence that satisfies (6.3) will provide convergence in the

mean of the identification procedures at a certain rate. The condition

in (6.3) also involves the system's coefficients and thus, the selected

deterministic input sequence will obviously depend on the nature of the

system under consideration. The problem can then be presented as follows.

Under what conditions on the true system generating the observations

and on the model set will the identification procedures converge to a

p%
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model in the set using some input sequence, and what class of input

sequences will then provide identifiability?

7.4 Other Application Areas j
In Chapters 5 and 6 we have applied thL general theory derived in

Chapters 3 and 4 to certain aspects of linear system identification and

modeling. Further investigation of modeling aspects has been suggested

in remarks 1 and 2 in section 5.4. Other general areas of application

which have not been specifically addressed in this thesis are:

1) Application to certain classes of time varying systems,

such as periodically varying linear systems.

2) Application to non-linear system identification

problems. I
3) Application to signal detection problems in communication

systems.

I
5 42
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