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I. INTRODUCTION

The purpose of this report is to provide a means by which the
parameters of the Generalized Rayleigh Distribution can be estimated
from experimental data.

The Generalized Rayleigh Distribution can be expressed as

p() o .A 2* 0  '1/2(n-2) *oo(0

where 4

R - 0,

x 2  2

, + X2 X2

is a random normal vector distributed in n dimensions,

X

nn

A1

A 2
is th: mean vector,

A

A A 2+A + .+ A2
1 2n

Mn is a positive definite covariance matrix = In * where 0o is

a positive constant and I is the identity matrix,
n

I is the modified Bessel function of the first kind of order v.
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The derivation of the probability density function in Equation (1)

is given by Miller1.

II. BACKGROUND

Special cases of the Generalized Rayleigh Distribution appear
in many pk',sical environments in electrical engineering, radar engineer-
ing, and sc-te areas of optics.

This report is an outgrowth of research in the area of laser radar
technology. However, the results should be of general interest and find
application in other disciplines where the Generalized Rayleigh Distri-
bution is encountered.

If n, the number of dimensions, in Equation (1) is set equal to 2
then the probability density function can be expressed as

p(R) R () EXP {- (R2+A) I M (2)

2
This distribution is sometimes called the Rician Distribution

Radar engineers will recognize it as the output of an IF amplifier when
the input is Gaussian noise and a sinusoidal signal of constant
amplitude.

If A is allowed to approach zero in Equation (2) then it can be

shown that I0 (*) is approximately 1 and the probability density

function can be expressed as

p(R)- ( ) (A 21(3)

This is the well-known Rayleigh Distribution. To radar engineers
it is the familiar output of an IF amplifier when the input is Gaussian
noise.

In many practical situations it becomes necessary to have the capa-
bility to estimate the two parameters (A, * 0) of Equation (2) from

experimental data. This was the problem that had to be addressed during
the research in Laser Radar Technology.

1Miller, K. S., Multivariate Distributions, Robert E. Krieger
Publishing Company, Inc., New York, 1974.

21bid.
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The remainder of this report presents the development of the
methodology to estimate the two parameters and an analysis of the per-
formance of the estimation technique in a simulated environment.

III. METHODOLOGY

Some of the more common statistical techniques employrd to
estimate the parameters of a known distribution are:

a) Maximum likelihood estimators.

b) Method of moments.

c) Method of quantiles..

d) Minimum variance.

Each of these methods was explored and analytical and practical
problems were encountered in all four methods.

Applying the technique of maximum likelihood requires the determina-
tion of the log-likelihood function of a sample drawn from the distri-
bution. Given a sample of size n drawn from the population whose dis-
tribution function is p(R; A, 0o) the likelihood function is

L(R 1. . . .. . , Rn; A, *o
) =Pn(Rip ..., Rn; A, *o)

= p(R; A, *o ) p(R 2; A, *o )....,p(R r; A, * 0)

= TT p(Ri; A, *o
)  (4)

i=l

The log of the likelihood function is usually easier to work with
and is

n

InL= On T p(Ri; A, 'o) (5)

The estimates of V' and A are determined by solving the following

00

simultaneous equations

0 .(6)
0
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The problem with this approach is the difficulty in taking the
partial derivative of the log of a Bessel function.

The moments of the Generalised Rayleigh Distribution proved diffi-
cult to work with. The expressions for the first two pupulation moments
are (for n = 2)

P = (2* UP/ I A: 224

= (2*0 ) EXP 2 r(2) 1F (2, 1, (7)

where r(x) is the gamma function and 1F is the confluent hypergeometric
function.

The first moment can also be expressed in terms of Bessel functions.
That is,

These population moments are equated to the sample moments and the
resulting system of equations is solved for the parameter estimates.
These equations could be solved only through some approximation procedure.

Quantile estimators require that the probability density function
be integrated to yield the cumulative density function. The integral

of Equation (3) can not be easily evaulated and a numerical or series
approximation is needed.

Linear estimators have been developed3 but this technique (at
least the one reveiwed by this author) requires that *o be a known
constant.

D, e to the computational complexity of the assumptions involved the
previous methods were eliminated from consideration as viable candidates.

Normally, in a situation such as this where the distribution is of
a form that does not yield simple estimators, an alternative approach
is to attempt to apply some simple transformation which results in a
simplification of the estimation process.

3Miller, loc cit.



A transformation of the distribution in Equation (2) yields a

distribution form for which simple parameter estimates can be found and
which characterizes a device known to the radar engineer. The trans-
formation is

X = R2 (9)

The result is the same as passing the output of the IF amplifier
through a square law detection device.

Applying the transformation to the probabi! ty density function in
Equation (2) yields the following density function:

P (X) =( )EXP~ 1 A ( a) (10)

Letting p = 1, G- 2 and = o results in
2,0 0

p(X) = F1EXP 4a} EXP ( IQX P- (Pvr?) (11)

4
which is the Bessel Distribution as defined by Laha

This form of the density function allows one to develop moment

estimators for the parameters (A2 and 0o) of the Generalized Rayleigh

Distribution.

The moment estimators can be developed from the characteristic
5

function given by Laha

0 (t) ( I - EXP 2 (12)x c (I - it/l (12

The moments of the distribution are found by taking the derivative
of 4x (t) with respect to t. The first four moments are

4Laha, R. 0., "On Some Properties of the Bessel Function Distri-
butions," Bull-Calcutta Mathematical Society, Vol. 16, p. 59-71.

5 1Ibid.
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d 4) (t)/dt 2

2 (t)/dt 2_ + ,__+_

'i 2  16a4 2a3 a,2

(13)
d3 (t)/dt3  6 D 2

( x 3 . 4 ( 3 p+ 6 ) ( 3 2 + 9 D+ 6 )i3 6LC 165 + 4a 4

+ (p3 + 3p 2 + 2p)
3

d4 (t)/dt4  8 6 4 2
p4' (X) ff 0 + _ + +

4 4 256 8  16a 7  8

2 3 2 4 3 2
+ (p- + 6p + llp + 6) + (P+ 6p + llp 2 + 6p)

The complete derivation of these moments is shown in Appendix A.1 A
Letting p 1, a , and P = yields:

0 
00

pj(X) = 2 + 24'

4 2 2
p2(X) - A4 + 8 0A2 + 84'2

(14)

(X ) = A 6 + 18*A4 + 722A2 + 4843
300 0

8 6 2 4 3 2 4pi(X) = A + 324A + 288* 0 A + 768*o0 A + 38440

The first two central moments are:

Pl(X) - kj(X) = 2 + 24,°

(15)
P(a)- 4'(X) ] 2  A2  2

2 x  =2
;.L i o8



Estimators for the two parameter- .An be found by equating the
e ations for the population moments in Equation (15) to the sample

2
moments and solving the two equations for *0 and A2 . The sample

estimates 
are

A2 = + 2 -e(X)

(16)

S M1 (X) - A

0o 2

where 1 (X) and 14(X) are the two sample moments, i.e., MI(X) is the

sample mean and l(X) is the sample variance. A2 cannot bt. a negative

quantity; therefore, the sign of the radical in A is positive.

IV. PROPERTIES OF THE ESTIMATORS

In most statistical analyses it is desirable to know something
about the properties of the different estimators so that some logical
choice can be made between competing estimators. Although only one set
of estimators has been developed it is still desirable to investigate
some of the more common optimality properties of the estimators.

An analytic investigation of the properties of A and 0o was not

performed because the approaches necessary to such an investigation
proved to be analytically intractable. However, an empirical analysis
of some of the properties was performed by simulating sample data from
the Generalized Rayleigh Distribution.

The f.irst property investigated was that of consistency. An
estimator is said to be consistent if:

a) The expected value of the estimator approaches the true value
of the parameter as the sample size increases.

b) The dispersion (variance) of the estimator decreases as the
sample size increases.

The following simulation runs were made va-ying the parameters
and the sample size. Seven samples for each set of conditions were run
by vary'ing the seed number for the random number generator.

9
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A2: 2.0, 5.0, 10.0, 17.0, 26.0

o: 1.0

0

n : 25, 50, 75, 100, 200, 300, 400, 500, 750, 1000.

The results of the analysis are shown in Appendix B. An examination
of the results indicates that the estimators appear to be consistent.

Figures 1 and 2 show a plot of the expected value of A and standard error

of A2, respectively, for one case.

A second property that is desirable for an estimator to possess is
unbiasedness. For an estimator to be unbiased its expected (average)

value must equal the true parameter value. Consistency implies
asymptotic (n=.ow) unbiasedness but it does not imply unbiasedness for
any specific sample size. One cannot conclude from the simulation data
in Appendix B that the estimators are unbiased for any sample size;
however, it can be concluded that the bias is relatively sm-.ll for
sample sizes greater than 75. A more accurate estimate of the true
bias could be obtained by generating more than 7 samples with which to
calculate the expected value.

V. PERFORMANCE OF THE ESTIMATORS
To determine how well the parameter estimators A2 and 40

perform in a practical situation a number of random samples from

Generalized Rayleigh Distributions were generated with various parameter
values. From these samples the estimators were calculated and a chi-
square goodness-of-fit test was performed to determine if the sample
data were really drawn from a Generalized Rayleigh Distribution. The
rationale behind this approach is that since the distribution is known

to be the Generalized Rayleigh then the parameter estimators should
lead to an acceptance of the hypothesis of the chi-square test if they
adequately estimate the true parameters.

The only problem with this approach is that the distribution
parameters used in the test must be either known or estimated by the
maximum likelihood method. Since the method of moments was used to

estimate the parameters, the chi-square test is not strictly applicable.
This problem arises quite often in practice where the usual procedure
is to use the chi-square test and to hope that any error introduced

is small.

Twenty-one different cases were examined using a 1000-sample data
points. The results of the chi-square test are shown in Table I.

10
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TABLE 1. RESULTS OF CHI-SQUARE GOODNESS-OF-FIT TESTS.
SAMPLE SIZE = 1000, CELLS = 25.

True Parameter Estimated Parameter Critical
Values Values a Level

2 "2
A 04 A i^C

0.0 0.5 0.28 0.35 0.76

0.0 1.0 0.55 0.69 0.76

0.0 2.0 1.12 1.39 0.76

1.0 0.5 1.12 0.43 0.62

1.0 1.0 1.33 0.81 0.02

1.0 2.0 1.85 1.52 0.66

2.0 0.5 2.10 0.46 0.53

2.0 1.0 2.24 0.90 0.37

2.0 2.0 2.61 1.70 0.37

5.0 0.5 5.10 0.46 0.42

5.0 1.0 5.20 0.91 0.78

5.0 2.0 5.47 1.77 0.52

10.0 0.5 10.10 0.47 0.57

10.0 1.0 10.18 0.92 0.39

10.0 2.0 10.39 1.81 0.48

17.0 0.5 17.09 0.47 0.25

].7.0 1.0 17.17 0.93 0.06

17.0 2.0 17.35 1.83 0.02

26.0 0.5 26.09 0,.47 0.50

26.0 1.0 26.16 0.93 0.23

26.0 2.0 26.32 1.84 0.55

12
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To apply the chi-square tests that were used requires that the
sample data be divided into equiprobable frequency cells. The !umber
of cells in this analysis was 25.

The larger the critical a level in Table 1,the better the fit;
i.e., the hypothesis that the data are from a Generalized Rayleigh Dis-
tribution with parameters A and % is more likely to be accepted.

A common ( level is 0.05 or 0.10. As can be seen there are three cases
where the 0 level was below 0.10. For these cases the hypothesis must
be rejected.

A better fit for the data in these three cases could possibly be
obtained Sy a slight shift in some of the cell limits since the cells
containing abnormally high and low frequency counts were adjacent to
one another, The difference in some of the data points in the adjacent
cells was ii the second and third decimal places.

VI. COCLUSIONS

It is believed that the parameter estimators developed in
this report provide a simple, viable means by which the parameters of
the Generalizea Rayleigh Distribution can be estimated. Furthermore,
from the empirical study it would appear that the estimators offer
consistent and relatively unbiased estimates of the true parameterd.
The practical value of the estimators is realized with the ease with
which the necessary calculations can be made.

13



Appedix A.
DERIVATION OF THE MOMENTS FOR THE BESSELDISTRI13UTION

The probability density function of the Bessel variate is given by

Laha6 as:

The ass:(.iated characteristic function is given as:

(t) ( t )p EXP it2 (A-2)

The jth factorial moment of the distribution can be found by

d4 x (t)/dtJ 
( -3=~) [ = (A-3)

J(X = =t0 0A4

1  - it/)EXP 2 - jL 146z (l - t/Q J (A-4)

it-

Letting w I -

and

2it

2

4n (I - it/o)

then for j = I

d d x(t) d w-p ey

dt dt

-p dey  + y dw' P

dt dt

SP eY + eY(-pw-P
1  dw

Laha, loc. cit.
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\dtP

(t kci PW ct L2

dt( 2t

The first moen i

0oen.i, it/a)' (1 it/a))(A5

For~~0 2 on pid

d )x () d dOx t/ )

dt2 dt

dOx (t 2 ip2 +
4a 1-it/a)( it/a)

Letting z z +z2

4a,2(1 _ it/a)2 (1 _ it/a)

then
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dz dO (t)

= M (t + x
x d dt

dz(t) +  0(t)
x x

x(t

i 4  2e2(p + I_ i2p(p + 1)0 x 1604(l - it/a)4 + 2a 3(1 - it/a) a2(1 . it/a)2

The second moment is

()I i P4  + 1 p )+- i2 P(I + 1
S4 4 t/) 3  2(l 2

16a ( - ita) 20a(l-iir a t12IP2 (X) = 12

4(X + + (p + I} (A-6)
16a4  2 3  C? I

For j = 3 one finds

d 3 x(t) d(d 2x(t)/dt )

dt dt
S 42 2 2}

4  2 (p+ 2d( (tip - +___-L (l + 1)

x, (i - it/a) 2a3(1- it/a 3 ) (1 - it/a)2

dt

I'tting a a1 + a 2 + a 3

4 t22 i2p +1
ip 4 + - (v+ 2) 2.(2 + +12p(P+

1664(1 - it/a)4  23(1 - it/a)3  C(1 - it/a) 2

then

17



d 3 (t) d 0 (t)a
3 x

dt3 d

da adO (t)=0(t) da x
jx dt

Now dO x(t'/dt has been shown to be

Kr

do x (t) {42( 2 + I
d- x

t  
4a 2(1 - it/) 2  (1 - it/a)

which we previously defined to be

= 0x(t) z

0 x(t) (z1 + z2 )

Therefore

d 3 ( (t) da
d 3 x t + aO(t) (zI + zdt 3  x d

= (t) + a (zI + z2)

da, da da

W + -- + 3 + a zI + a z2 + a z + a z

+ a 3 z1 + a 3 z2 1

i 36 i34

0 W (t) + (3P + 6)
= t 6406(1 - it/a)6  16a'(1 - it/a)5

+3 2 (3p2 + 9p + 6) + 13( 3 +3 + 2p)

4a 4(1 - it/a)4  a 3(1 - it/a)3
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%3

d (px(t)/dt3 1
5(X) 1 3 t=

(6 223 2
+ + *9p + 6) + k p+2

64 16a 4 4

For j = 4 one finds

d4 0x(t) d (d
3 x(t)/dt

3)

dt dt

3 6 , 3 , + _ i 34 (3p+ 6)

64a6(1- it/a)6  16a(1 - it/a)5

32 2 + p3 (3 +v2 t+ i3 (3p2 + 9 P 6 ).+i +3 2

3 31
dt

Letting b = b1 + b2 + b3 + b4

3 6  i 4(3 p + 6 ) + 13,2(3R2 .+ 9p + 6)
6 6 5 5 4 t a 4

64a (1 - it/a) 16a (i - it/a) 464(1 - it/ a)

i 3 (p 3 + 3p2 + 2p)

a 3(1 - it/)

then

d4 0 x(t) d 0 x(t) b

dt 4  dt

Lb + bd x(t)
_-) (t ) db
x dt dt

19



40(t) !b+ b 4xW(z) + z
x dt ( 1 +z2

0xW L + b (z + z2)

1 dbl  db2 db3 db4=4*(t) [- ++- +- +-- + blz +bz 2 +bz + bz + b~z
x I dt dt dt dt 1 1 1 2 2 1 2 2 3 1

+ b3z2 + b4z + b4z21

,, 14 8, + i40(p + 3)
ffi I) 256c8(1- it/)+ 16a 7 (1 - it/) 7

+ 1 434(3p2 + 15D + 18) + 14E2(D3 + 6p 2 + llp + 6)

8a6( _ it/a) 6  a5(1 . it/a) 5

+ i4(D 4 + 6p 3 + l, 2 + 6p)

a4(l it/a)
4

fd 4 0 x (t)/dt4

++ 3+ 4(3D2 + 15D + 18)

256a 8  16a 8a

+p2( 3 + 6p 2 + Up.+ 6) + (p4 + 6p3 + Up2 + 6p)a5  

a
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Appendix B.
SIMULATION RESULTS

TABLE B-I. SIMUIATION RESULTS - EXPECTED VALUE AND STANDARD
^2

DEVIATION OF A AND *

Parameter Estimates
True 2

Parameter A
Values

2 Sample Standard Standard
A 4' Size Mean Deviation Mean Deviation

2.0 1.0 25 2.10 0.40 1.17 0.63

50 2.55 0.52 0.94 0.20

75 2.06 0.80 1.02 0.37

100 2.48 0.46 0.90 0.11

200 2.04 0.43 0.91 0.13

300 1.99 0.22 0.95 0.13

400 1.98 0.34 0.97 0.20

500 1.99 0.22 0.99 0.16

750 2.08 0.13 0.97 0.02

1000 2.08 0.17 0.95 0.10

5.0 1.0 25 5.39 0.82 1.19 0.43

50 5.72 0.38 0.97 0.20

75 5.33 0.67 0.98 0.23

100 5.48 0.56 0.95 0.12

200 4.97 0.51 0.93 0.13

300 5.05 0.26 0.94 0.10

400 4.99 0.3.3 0.98 0.17

500 5.00 0.27 0.98 0.15

750 5.08 0.10 0.98 0.12

1000 5.06 0.15 0.97 0.08
10.0 1.0 25 10.70 1o17 1.18 0.38

50 10.92 0.37 0.98 0.18
75 10.50 0.79 0.99 0.18

100 10.53 0.77 0.97 0.13
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TABLE B-i. (Continued).

Parameter Estimates
True

Parameter A *0
Values

- Sample Standard Standard
A o Size Mear Deviation Mean Deviation

10.0 1.0 200 9.93 0.60 0.93 0.12
300 10.08 0.35 0.93 0.09

400 10.0 0.35 0.97 0.14

500 10.0 0.32 0.98 0.13

750 10.01 0.08 0.99 0.10

1000 10.05 0.17 0.97 0.07

17.0 1.0 25 18.02 1.5 1.17 0.37

50 18.12 0.45 0.98 0.17

75 17.67 0.96 1.0 0.17

100 17.61 1.01 0.98 0.14

200 16.89 0.70 0.93 0.12

300 17.11 0.47 0.93 0.07

400 17.02 0.40 0.97 0.13

500 17.00 0. 36 0.98 0.13

750 17.1 0.09 0.99 0.09

1000 17.04 0.20 0.98 0.07

26.0 1.0 25 26.82 1.87 1.16 0.40

50 27.33 0.59 0.99 0.17

75 26.85 1.15 1.0 0.16

100 26.69 1.25 0.99 0.15

200 25.86 0.82 0.94 0.12

300 26.13 0.61 0.93 0.07

400 26.03 0.46 0.97 0.12

500 26.01 0.43 0.98 0.12

750 26.12 0.11 0.99 0.09

1000 26.05 0.24 0.98 0.07
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