DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

JuLy 1976

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A03Y4 856

\

= s it -

mOT L AN ATION OF THIS Pase When ‘dlﬂ‘f‘nh'.'g'

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2, GOVT ACCESSION NO.

AFOSR - TR- 77= 0015

3. RECIPIENT » CATALOG NUMBER

TITLE (and Subrittie)

DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

5. TYPE OF REPORT &4 PERIOD COVEREO

Interim

6. PERFORMING ORG. REPORT NUMBER

. AUTHOR(s)

Philip Howard Mason

8. CONTRACT OR GRANT NUMBER(a)

F44620-73-C-0074

PERFORMING ORGANIZATION NAME AND ADORESS
Carnegie-Mellon Uniersity

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Rolling AFB, DC 20332

Computer Science Dept. 61101D
pittsburgh, PA 15213 AO 2466

11. CONTROLLING OFFICE NA%E ANO ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency Inlv 1976
1400 Wilson Blvd Ty YR
Arlington, VA 22209 203

T WONTTORING AGENCY NAME 8 ADDRESS(I7 different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research (NM)| UNCLASSIFIED

155, DECLASSIFICATION/ DOWNGRADING
SCHEOQULE

DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If dilferent from Report)

. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identily by biock number)

20

ABSTRACT (Continue on reverse aide If necessary and identily by biock number)

An approach to designing programs for implementation in a multiple instruction stream-
multiple data stream processing environment is presented. A program is modeled as a
directed graph consisting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the model is represented by massage tokens. Eaclk
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabilisti

FORM
DD 1 JAN 73

EDITION OF 1 NOV 6315 OBSOLETE

1473

UNMCLASSIEIED

y SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

—————

i kb

e, YL ¥

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

v K e 2

choice functions. A system, called STEPPS, has been buill in wiite & THEEEE =2 ==
described and evalustion tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

_ The design approach is to describe a multiprocessing program in terms of the modeling

system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the mode! is well formed, (b) whether
the model contains deadlocks, (c) predictions of steady state properties of each
process. In addition, without much difficulty, analysis functions external to STEPPS
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difticult to determine without resorting
to simulstion. Therefore the STEPPS system includes a mode! simulator with data
collection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
inclusion of data collection facilities not originatly provided by STEPPS.

As a system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance sttributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about t.e real
system parameters, the mode! can be tuned to more closely predict ultimate system

performance.

Geveral examples of communicating processes are modeled using STEPPS including
pipeline processes, probabilistic processes, P/V synchronization, and reader /writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, thu implications of restricting the numbers
of available processors and using different scheduling slgorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, wiien a multiprocess program under development is
sufficiently instrumented, the STEPPS madel and system can be used to help tune the

program's structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, sv:h &s queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as & new spproach to designing multiprocessing programs,

—

(@) UNCLASSTFIED

SEC L HITY CLASSIFICATION OF Yi'c PAGE(Whe n Frtered)

e o

DT e,

M T R S —— ru——

Design Tools for Evaluating

Multiorocessor Programs

8 Philip Howard Mason

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213
July, 1976

Submitted to Carregie-Mellon University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

g
|

L]

This research was supported by the Defense Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C0074) and is monitored by the Air

Force Office of Scientific Research. ' ce)
|

{
it

B
a

g3 | =9

MCES!

|

!

\

i

:

Abstract ‘
|

An approach to designing programs for implemantation In a multiple instruction stream-
multiple data stream processing envirsnment is presented. A program is modeled as a
directed griph corsicting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the mode! is represented by messags tokens. Each
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabllistic
choice furictions. A system, called STEPPS, has been built in which a model can be
described and evaluaticn tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

. The design approach is to describe a multiprocessing program in terms of the modeling
system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the model is well formed, (b) whather
the model contains deadlocks, (c) predictions of steady state prcperties of each
process. In addition, without much difficulty, analysis functions external to STEPFC
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difficult to determine without resorting
to simulation. Therefore the STEPPS system includss a model simulator with data
cdllection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
Inclusion of data collection facilities not originally provided by STEPPS.

As 2 system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance attributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about the resl
system parameters, the model can be tuned to more closely predict ultimate system
performance.

Several examples of communicating processes are modeled using STEPPS including
pipeiine processes, probabilistic processes, P/V synchrorization, and reader/writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, the implications of restricting the numbers
of availabie processors and using different scheduling algorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, when a multiprocess program under development Is
sufficiently Instrumented, the STEPPS model and system can be used to help tune the
program’s structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, such as queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as a new approach to designing multiprocessing programs,

ACKNOWLEDGEMENT

I sincerely thank my thesis committee who with their advice, guidance, and criticism of
this thesis helped me tu maintain their high star dards: Bill Wulf (chairman), Sam Fuller,
Charles Kriebel, Victor Lesser, and Mary Shaw. 1 am grateful for having been
associated with the Carnegie-Mellon Computer Science Department end | must
acknowledge the initial, and continuing, inspiration gleaned from Alan J. Perlis, my first
computer science teacher, former Carnegie-Mellon department head and supervisor. In
addition, | am grateful for the interest, support, and assistance from my friends,
colleagues, family, and especially my parents.

Most of all, | thank my wife, Lee, for suffering through all the lonely nights (and days),
for helping me to rewrite many pages, for learning to use the computer to type this
thesis, for keeping me going, and for her understanding.

TABLE OF CONTENTS iv

TABLE OF CONTENTS

CHAPTER PAGE
| Problem Statement, History and Goals
LA Introductiono e I-1
1.8 Diractionof thiswork I-5
1C Other work bearing on the problem 1-8
1D The STEPPS System I-15
LE The STEPPS system and simulator 1-24
LF Thesis contributions and oulline of remainder
ofthesis 1-29
11 The STEPPS Model
ILA Modeling the behavior of a process I1-1
1.8 Data flow and links 11-3
I.C Notation and definitions 11-6
I.D STEPPS system capabilities I1-11
11 The Use of the STEPPS Approach to Program Design
LA Use of the STEPPSmodel 11-1
111.8 Using STEPPS during system design: A
Bliss/11 compiler 11-12
£ l.C Using STEPPS during system construction and
tuning: Hearsay I1.. 111-28
b Iv Analysis of a STEPPS Model
IV.A Markcv and semi-Markov processes V-1
IV.B Well-formed STEPPS models Iv-6
$ IvC Deadlock structures and situations Iv-8

Iv.D Reducing a STEPPSmodel Iv-13

TABLE OF CONTENTS v

IV.E The recognition of deadlocks Iv-29
v The STEPPS Simutator and STEPPS Interactive System

V.A Simulation objectiveso oo e e V-1

v.B Simulation operation and data collected V-3

v.C The implementatiion of the STEPPS system v-10
12 Summary

VLA Designing programs for multiprocessor

computers o . e e e e e Vi-2

viB Experiments and results VI-5

VviC Future research and refinements to STEPPS VI-9

ViD Corclusions . « v v v v v v e e e e e e e e e vi-12
A STEPPS System Manual

Al Introduction o e e e e e e e A-1

A2 Model creation oo e e e e e e e A-3

A3 Model analysis and system commands A-8

A4 Simulationcommands e o e e e A-8

A5 Keyword commands - ..o e e e A-9
B Using the STEPPS System

B.1 Bliss/11 example protocolo B-1

B.2 The STEPPS Hearsay limodel B-3
o Velidation of Simulation Results
Biblography . . « o o v e e e e e e e e i
INDBX . o o v e vii

-
T W T P

"P'

N T e

Figure [-1

Figure [-2
Figure [-3

Figure I-4

Figure -5
Figure [-6
Figure [-7
Figure [-8
Figure [-9
Figure 1-10
Figure I-11
Figure I-12
Figure II-1
Figure IlI-1
Figure III-2
Figure III-3
Figure I1I-4
Figure 111-5
Figure III-6
Figure III-7
Figure I1I-8

Figure 1I1-9

FIGURES

FICURE PAGCE

Possibie reiationships between two proceses, A
andB. I-5
Amarkedgraph. [-10
A finite state atomaton I-10

A Petri net that is neither a marked graph nor a
finite state atomaton. I-11
UCLAmodeinodes. I-13
Pipeline. v i . 1-17
Registrar’s data retrievai system. [-20
Process ALPHA I-21
Mapping between Petri nets and STEPPS modei 1-23
Mapping of UCLA modei to STEPPS. I-24
Incompatibleioop. 1-27
Incompatible non-locp 1-27
Process and iink graphicai notation. [1-8
Fork and joinprocesses -2
Subroutine process. -4
Concurrent processing subroutine cali I11-5
Poisson arrival process Il11-6
General service time process .- -7
Pipeline of processes -8
Lock/Uniock synchronization. I11-10
Reader /Writer synchronization. -11
Biiss/11 phase structure 1-13

FIGURES

Figure 1II-10
Figure I1I-11
Figure III-12
Figure I11-13
Figure I11-14
Figure III-15
Figure III-16
Figure 111-17
Figure 11I-18
Figure I11-19
Figure 111-20

Figure [1I-21

Figure [11-22

Figure 11I-23

Figure 111-24
Figure 111-25
Figure 111-26
Figure 111-27
Figure 11]-28
Figure 111-29
Figure I11-30
Figure 111-31
Figure 111-32

Figure I111-33

Bliss/11 measured data.
STEPPS Bliss/11 model commands
Bliss/11 graph model

Bliss/11 simulation FIFQ table.

Bliss/11 simulation LINK table

Bliss/11 simulation RANDOM table
Bliss/11 percentage maximum throughput

Graph of measured throughput

Bliss/11 simulation FIFQ queue lengths . .

Bliss/11 simulation LINK queue lengths . .

.......

Bliss/11 simulation RANDOM queue lengths

Table of results of multi-copy Bliss/11 phase

models

Multi-copy Bliss/11 phase modal Thru Rate grapk . . .

Multi-copy Bliss/11 phase model percentage Max

Thru Rate graph

LEX decompositionresults

Simplified HSII system organization . . .
Description of precondition process . . .

STEPPS precondition model

Knowledge Source process description . .

STEZPPS Knowledge Source model
PCSELECTOR process

Set of identical Knowledge Sources . . .

Hearsay Il locking structure matrix

Hearsay Il representative results

vli

1-17
1-17
11-18
I11-18
111-19
111-19
111-20
I1-21
111-22
111-23

111-23

111-24

111-25

111-26
111-27
111-32
111-33
I11-33
111-34
111-35
111-35
111-36
111-40

I11-42

Figure IV-1
Figure IV-2
Figure IV-3

Figure IV-4

-t

Figure IV-5
Figure IV-6
Figure IV-7
Figure IV-8
' Figure IV-9
Figure IV-10
Figure IV-11
Figure V-1

Fipure C-1

Markov processes v 0 o0 .. Iv-3

Improper initial condition. Iv-10
Loop with immediate-recurient states , . Iv-11
Incompatible sequence Iv-12
Linksplitpaths Iv-13
Process splitpaths Iv-13
Process combinations, Iv-18
Adjacent ports of aprocess. Iv-21
Ports attached to SOURCE/SINKS Iv-23
Combining processes that are in-parallel Iv-25
Anirreduciblegraph. Iv-29
Aringofprocesses. v v\ 0. v-2
Bliss/11 FIFO 6 processors evaluation data. c-2

I-1

Chapter [

Problem Statement, Hisiory and Goals

LA, Introduction

This research develops bothr a methodology for enhancing the design of
. programs to be composed of concurrently executable subparts and a set of tools to
support that methodology. The execution environment which we shall be concerned
with consists of several processing units operating under the control of separate
instruction streams. Intuitively, when parts of a program are processed in such an

i required to execule the program should decrease‘. For

environment, the real time
this reason, as \sell as others, much current research effort addresses program
structure for jus. such a multiprocessing environment. This thesis addresses the
problem of decomposing programs for concurrent execution in such a way that the
decompositions are efficient with respect to certain specifiable criteria. The approach
is to provide a set of tools with which a system designer can manipulate and analyze a
program mode! created to predict the performance of a system designed for a multiple
asynchronous instruction stream environment. The tools are applicable to both the
early design of a program and later tuning of a program under construction.

t"Real time" is the time elapsed between tha start of computation and the time the
final result is available. It is different from the total processing time since operations
may be performed concurreritly.

*This does not always occur. Graham [Graham 72] has shown that adding more
processors can increase real time due to scheduling anomalies.

LA Introduction 1-2

There are several reasons why many researchers are consldering
multiprocessing and problem restructuring In favor of mereiy building faster computer
hardware without explicit concurrency. First, certain probiems overwheim current and
projected technology when programmed for single Instruction stream computers. An
example is the problem of weather forecasting for any single place on the eerth. At
present, this problem can not be solved with enough lead time to make the forecsst
useful. Another large problem is fast-response scheduling, cost accounting, and
resource management for large corporatlons. In this problem the mathematical
computations are not necessarily as complex as those for weather forecasting, but the
amnunt of data processing required can be exiremely large end, as for weather
prediction, there is a time constraint on the answers. For each of these problems, a
solution might be attalnablz In a reasonable perlod oi time If some of the computations
could be distributed and executed in parallel. Among the unknown factors are how the
problems should be decomposed for distributed processing and what communication
constraints and processing attributes eliclt favorable computational attributes (such l;
real time speed and low cost).

There may also be economic incentlves to implement a program in a
multiprocessing environment. For example, it may be less expensive to implement a
speech understanding system on a set of minicomputers than on one fast and relatively
complex uniprocessing computer. The price benefits may occur because of

1. the use of so called off-the-chelf equipment making total processing
power cheaper than large uniprocessing machines, and

2. economies of scale in manufacturing.
Perhaps the most compelling reason (possibly a consequence of the flrst two)

for wanting to decompose programs for multiprocessing environments Is that such

LA Introduction 1-3

environments are now available and It is important to use then properly. C.mmp [Wulf
72b), BBN Pluribus IMP [Heart 73], tha Burroughs D825 [Anderson 62), UC Berkeley’s
Prime [Quatse 72), and UC Irvine’s DCS [Farber 75] all have some multiprocessing
capabilities. Additionally Clark’s macromddules [Clark 72], Bell’s reglister transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewlorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelines for decomposing a problem for
multiprocessing execution [Newell 75) A number of questions related tv the discovery
of such guidelines have been investigated. Thase include.

1. Can a problem be decomposed for solution in a multiprocessing

environment? [Karp 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65,
Ros~nfeld 69]

2. How can the algorithmic structure of a multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Will the same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattainable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In a
sequential program. [Karp 69, Keller 73a, 73b, Riddle 72)

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What measures are interesting about the ccmputation? Some may be:
speed, redundancy, (in)efficlency, resource utilization, and economles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there are scarce resources?
[Adam 72, Graham 72]

7. How can bottlenecks be identified and their effects lessened or ciiminated?
[Courtois 72, Dijkstra 74, Rice 73]

8. What are the effects of restructuring the communicatlons among the
cooperating processes? [Balzer 71, Horning 73]

9. What style of decomposition and machine structure would « st suit &
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

LA Introduction I-3

environments are now availabie and it is important to usa them properly. C.mmp [Wulf
72b], BBN Plurlbus IMP [Heart 73], the Burroughs D825 [Anderson 62], UC Berkeley’s
Prime [Quatse 72], and UC Irvine’'s DCS [Farber 75] all have some multiprocessing
capabllities. Additionally Clark’s macromodules [Clark 72]), Bell's register transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewiorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelinss for decomposing a problem for
multiprocessing execution [Neweil 751 A number of questions reiated to the discovery
of such guidelines have been investigated. These include:

1. Can a problem be decomposed for solution in a multiprocessiry

environment? [Karn 66, Gosden 66, Miranker 71, Dennls 71, Anderson 65,
Rosenfeid 69]

2. How can the aigorithmic structure of & multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73as, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Wil :he same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattasinable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In @
sequential program. [Karp 69, Keller 738, 73b, Riddle 72]

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What messures are interesting about the computation? Somo may be:
speed, redundancy, (in)efficiency, resource utilization, and ecoromles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there ere scarce resources?
[Adam 72, Graham 72] '

7. How can bottlenecks be identified and their effects lessened or eliminated?
[Courtois 72, Diikstra 74, Rice 73]

8. What are the effects of restructuring the communications among the
cooperating proce;ses? [Baizer 71, Horning 73]

9. What style of decomposition and machine structure would best suit a
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

B b e i cnne BECAR ey o ot e

LA Introduction I-4

The last question points out that there are several styles of multiprocessing.
Flynn [Flynn 66] described processing organization in four ways:

single instruction stream - single data stream(SISD),

single instruction stream - multiple data streams (SIMD),

multiple instruction streams - single data stream (MISD), and

multiple instruction streams - multiple data streams (MIMD).

These computing styles may he used to describe an entire computing
environment and a‘fect a problem’s decomposition and algorithms. However those
systems that do not allow a programmer to program explicitly for multiple streams of
data or instructions will be considered as singie stream machines. For example, any
multiprogramming machine performs some operations concurrently (e.g. 1/0), but a
programmer is usually unable to control this concurrency. In an array or associative
processor a control unit specifies which operation is performed simultaneously on
many data items simultaneously -- these are SIMD machines. The current pipeline
machines (CDC STAR-100, TI ASC) perform parts of single operations on several pieces
of data. The programmer has no control over which operations are performed
concurrently, so these are also single instruction stream machines®. Even in muitiple
instruction stream processing there can still be a spectrum of communication schemes.
Networks of computers and multiprocessirg computers with common memory are are
defined to be multiple instruction siream machines only when a programmer can
specify concurrent operations and these operations can be performed concurrently.

A multiple Instruction stream program Is defined to be a program In which two
subparts of the program can be specified to execute concurrently. Since these are

ta pipeline machine has multiple data streams as far as a programmer |s concerned,
but actually the stream of data comes into the pipe sequentially.

(B T N .

1.A Introduction 1-6

subparts of a totai there is some reiationship between them. The reiationship must be
in the form of some common date communication and/or shering. If the subparts are
named A and B then at ieast one of the following must occur: data progress from A to
B, from B to A, from some C to A and B, or from A and B to some C. (Figure 1-1 shows
the possible reiationships between two processes in a directed graph notation) When
dsts progress from one program to another it means that the second program uses
some resuits of the first in its computations. Of course, other processing may
manipuiste the deta between the processing of two subprograms and sdditional date
may be provided to the second prcgram from sources other than the first program

(and the first prcgram can provide dats to other programs).

A o c
® © O

Figure I-1. Possibie relationships between two processes, Aasnd B

If A and B are reiated, one of these relationships must hoid; otherwise Asnd B

wouid be unreiated and thus not subparts of the ssme program. In the first and
second cases one subprogram sends dats to the other and continues to process after
sending data to the second subprogram. In the third case, data can progress to both A
and B from a common source and aii three can be processed at the same time. In the
last case, A and B can be processed simultaneousiy and esch [s abie to send data to

the same third process, C.

e R b, L

1.B Direction of this work I-6
1.B. Direction of this work

At present there are no proven guidelines on how to structure a problem for
irnplementation in a multiple-instruction-stream multiprocessing environment. Rather
than address the guidelines problem di.rectly, this work presents a design environment,
a sel of evaluation tools, and a design approach whereby a system designer can
explore attritutes of alternative program decompositions. A major premise for this
research ‘s that the communication pattern among, concurrent procssses is critical to a
system’s performance. The goal is to identify issues end (D make predictions which
will provide some practical information to the system designer at an early stage and
also during later program tuning. This research has been directed towards solving a
more specific set of problems than those presented in the previous list, namely:

1. How can interactions among the concurrent computations be modeled?

2. Are the interactions safe, i.e. deadlock free? For example, can one show

that a program never arrives at a state in which one process is trying to
communicate with a second process while the second is waiting to send a

communication to the first process?

3. When the structure is not deaclock free, whet is the probability of a
deadlock?

4. Where will most of the process and communication activity occur?

5. Where ttlenecks occur, and how may they be relieved? For
examp introduction of buffers or additional processes help?

6. Are there working sets of processes? If certain subsets of processes
tend to be active at different times then fewer processors will be
required for a program (and consequently less parallelism can be
attained).

7. What are the effects of restricting the number of processors? What are
the effects of alternative scheduling algorithms?

These questions were chosen because they may present hidden problems to

1.B Directlon of this work 1-7

the system designer. Inexpensive and fast approximate answers to these questlons
should be useful when a program is being designed and also when it Is belng tuned to
Improve a program's periormance.

Currently there are no generally accepted languages or graphical techniques
for representing or modeling a multiprocessing computation and the communication
interactions among processes. Thus problems that might be prevented by a clear
algorithmic description technique may still occur. However a system designer has some
understanding of the relationships among the parts of his system. He can implement
the subparts in many different languages, but it is the interfaces between the subparts
that are usually not we!l described. Parnas [Parnas 71] has suggested communication

schema to be used while creating communicating modules, but has not described how

to represent the communications in an entire system. This lack of global view may

prevent the recognition of potential problems. This, then, illustrates the importance of
discovering a method for the automatic detection of deadlocked structures and
potential deadlocked structures. If the system designer can easily identify in advance
where he may have made such an error, then he is spared the task of finding the
problem later. It would be preferable to prevent such probiems, since many of the
criteria for preventing deadlocks are known; however, in complex systems it is
increasingly difficult to be aware of all potential deadlock conditions.

If the system designer is able to estimate which particular subparts of his
system wlil contain the largest amount of activity, then these subparts will be the most
appropriate places to expend effort to Improve performance.

The ability to compare the potential performance of alternate systems easily is

extremely important. Almost all disciplines concerned with the creatlon of large

s s AP £ AT M Mt e | e Sl & e gl e e e s vt

1.C Other work bearing on the problem -5

interacting subsystems use the technique of rmocaling the behsvior of the whole
system and extrapolating the performance of this model to deduce properties of the
large system. Examples of this technique range from the use of wind tunnels and
analcg simulation of fluid flow to discrete computer simulations of supermarket check-
out counters. A tnol for the prediction of computer system decomposition performance
should be just as useful. An important aspect of a design system is how easily the
designer can alter the attributes of his system and determine the effects of those
changes.

We feel that important assets of design tools are that they:

1. be easy to use,

2. provide results quickly,

3. be interactive (when using a computer system), and

4. make it easy to perform design Iterations.

1.C. Other work bearing on the problem

Several kinds of tools are available to a system designer. These tools include
graph models, queueing theory models, simulation languages, programming languages
and theories of design of complex systems. Each of these tools can be useful at some
time during the design and construction of & multiprocessing program. Graph models
are usually used to represent multiprocessing computations and for analysis of control
flow within a program. Queueing theory is used to predict and study performance of
simplified models of complex processes. Simulation is an approach to modeling more

complex systems to obtain similar performance predictions. Programming languages

I.C Other work bearing on the problem I-9

ere tools for explicitly representing multiprocess algorithms. They also may contain
orimitive operators that can facilitete proofs of properties of programs. Design
theorles, such as that of Parnas, provide techniques that facilitate construction of
complex systems and their understanding. No one tool is comprehensive enough to use
es a quickly obtained predictor of the performance of a multiprocess program.

With sufficient instrumentation the behavior of a multiprocess program can be
measured. These data can be used in several ways to predict behavior changes when
some system parameters and structures are modified. Again queueing theory and
simulation techniques are useful tools for these predictions. As before neither method
necessarily provides fast predictions of the sensitlvity of performance to changes in
program parameter and structure.

The following are brief presentations of some tools that bear a relationship to
those that will be presented later. It will be seen that the purely analytic techniques
are often too restrictive on assumptions, not useful for overall program design, and of
limited applicability dus to computational complexity. The simulation techniques require
too much ef<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>