Title

The Application of Diffusion Approximations to the Study of Time-Sharing Computer Systems and Transitory Queueing Systems

Authors

John P. Lehoczky

Performing Organization Name and Address

Carnegie-Mellon University
Department of Statistics
Pittsburgh, PA 19213

Controlling Office Name and Address

Air Force Office of Scientific Research/NM
Bolling AFB, Wash, DC 20332

Date

1976

Number of Pages

2

Distribution Statement

Approved for public release; distribution unlimited.

Abstract

1. A new method for studying time sharing computers was developed. The method allows for performance evaluation and an assessment of different scheduling algorithms. Two reports are in preparation.

2. Progress was made in studying complex maintenance-repair systems. The models developed allow for aircraft to be serviced by a number of different specialized repair crews. One report was completed. (cont)
Abstract

3. A new approach to linear and nonlinear compartment models was developed using diffusion approximations. These models can be used to study Air Force problems including personnel models and queueing networks. One report was completed, one is in preparation.

4. A model of communication systems with message interruption was developed and analyzed. The model applies to communication systems where messages may transmit on the same channel and thus collide, in satellite systems for example. One report is in preparation.

5. One report is in preparation which discusses the numerical solution of the steady state equations of large Markov systems. These numerical methods are used extensively in studying the behavior of many of the models mentioned in 1-4.
During the January 1, 1976 to December 1, 1976 period, substantial progress was made in the research supported by Grant AFOSR 74-2642B both in developing diffusion approximations as a general tool for studying stochastic systems and in analyzing a number of complex systems of particular Air Force interest.

Important progress was made in the analysis of time sharing computer models. A new technique has been developed which allows for performance evaluation of systems as a function of the scheduling algorithm used. The method also allows for service distributions to be of phase type rather than just exponential. This research will lead to optimal scheduling algorithms and will allow for finding the system configuration which meets a required grade of service. Two reports on this method are in preparation.

The new approximation method has been applied to complex repair-maintenance system models. Progress has been made in dealing with systems where a ground facility supports a number of aircraft. Each aircraft may require several different types of repair from specialized repair crews. One can use the approximation techniques to assess the performance of a system and to find an optimal scheduling of jobs. One report was written.
"A diffusion approximation for a repairman problem with two types of repair" (with D.P. Gaver), to appear in Management Science.

Further progress was made in the study of communication queueing models. An analysis of a communication queueing system where messages can collide on a given channel and force retransmission of both was completed. A technical report presenting this analysis is in preparation.

A study of general compartment models was undertaken. A diffusion approximation analysis was given for the general linear model. Progress has been made in generalizing this analysis to non-linear model. Compartment models can be applied to a number of problems of Air Force interest including personnel flow models and queueing networks. One report was written and one is in preparation.

Finally, progress was made in the numerical solution of the steady state equations for Markov chains with large state spaces. Methods using Gauss-Seidel iteration were studied. Of particular interest is methods of finding good starting values based on an approximate analysis of the system. One technical report is in preparation.