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A MICROMECHANISTIC INTERPRETATION OF CYCLIC CRACK-GROWTH
BEHAVIOR IN A BETA-ANNEALED Ti-6Al-4V ALLOY

INTRODUC{ION

Macroscopic rates of fatigue crack propagation (da/dN) for varicus alloys are com-
monly characterized as a function of the stress-intensity factor range AK, such that [1]

da/dN = C(AK)™ . 1)

A. logarithmic plot of da/dN vs AK over the full spectrum of AK levels is typically sig-
moidal in form, as shown schematically in Fig. 1 [2]. Region 1 is comprised of low AK
values in the proximity oi the nonpropagating threshold region, while Region 3 is com-
posed of high AK levels that approach the fracture toughness. It is the behavior between
the inflection points, in Region 2, that is of prime concem to predictions of finite-life
structural fatigue. It is this behavior which is most often approximated by Eq. (1) with
appropriate values for the parameters C and m.

The work presented hereir is part of a larger study to determine whether titanium
alloys are amenable to significant enhaicement in Region 2 fatigue-crack propagation
resistance (FCPR) through heat-treatment/microstructural modification, and if so, to
elucidate the mechanisms of such control. This subject is poorly understood [3~5], and
the limited data available appear to be in considerable disagreement. Consider, for in-
stance, the results reported in Refs. 6 and 7 as to the influence of a beta anneal (BA) on
the Region 2 resistance of Ti-6Al-4V: Ref. 6 reports a fivefold reduction in growth rates
relative to those associated with the traditional mill anneal (MA). However, Ref. 7 in-
dicates no effect, even though the reported atloy chemistry and microstructures associated
with the MA and BA appear comparable to those given in Ref. 6. Our work indicates
that the BA enhances the resistance by up to an order of magnitude, owing mainly to a
sharp trapsition in crack-growth behavior. A micromechanistic interpretation of the transi-
tion is offered with supporting metallographic and fractographic evidence.

MATERIAL AND PROCEDURE

The material used was received in the form of 25.4-mm-thick «/f rolled plate with
the following composition: Ti-6.7%Al, 4.3%V, 0.10%Fe, 0.20%0, 0.03%C, 0.011%N, and
0.006%H. This ailoy was studied in microstructural conditions corresponding to those of
the otiginal MA (1 h @ 788°C, air cool) and of a subsequent BA [6] (1/2h @ 1038°C,
cooled @ ~400°C/h to RT + 2 h @ 732°C, cooled to RT). This heat treatment was per-
formed in a vacuum furnace; cooling was accomplished with a jet of helium to simulate
an air-cooling rate. Metallographic samples were etched with Kroll’s reagent. Fractographic

Manuscript submitted August 16, 1976.
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Fig. 1—Schematic of cyclic crack-growth behavior

analyses were made by both scanning electron microscopy and transmission electron
microscopy of two-stage, platinum-shadowed, plastic-carbon replicas.

Determinations of growth rates were made from 25.4-mm-thick compact tension
specimens with an 0/W r; 10 of 0.486 [8], as shown in Fig. 2. Stress-intensity factors
were evalucted according o {8]

p / 2 3 4
Ky = —é‘ﬁ//—a— 30.96 - 195.8 k%) + 130.6 (%) - 11863 (ﬁ,—) + 154.6 (—&,—) (2)

where P = load, a = crack length, B = thickness, and W == width (64.8 mm). Specimens
were loaded on a 490-kN-capacity, closed-loop hydraulic test machine in ambient labora-
tory zir. For each heat treatment, duplicate specimens were subjected to cyclic tension-
to-tension loading with a haversine waveforrr, at a frequency of 5 Hz and a load ratio of
R = Ppin/Pmax = 0.1. The amplitude of loading was maintained constant throughout the
growth rate test of each specimen, but was different for each of tae paired specimens so
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Fig. 2—Compact tension cyclic crack-growth specimen

that da/dN data could be generated over different yet overlapping ranges of AK. With
the first specimen, rate data were obtained over the range 0.26 < a/W < (.53, after which
the specimen was subjected to a determination of the plane-strain fracture toughness

Kj, [9]. With the second specimen, cycled at the higher loading amplitude, rate data
weie obtained over the range 0.26 < a/W < 0.62. Measurements of crack length were
made optically at 15X with a Gaertner traveling microscope. Tensile properties, given in
Table 1, were obtained from standard 12.8-mm-diameter specimens of 50.8-mm gage
length. Crack-tolerance data are repo:ted for the TL orientation, but tensile properties
are given for both the T and L directions [9].

RESULTS AND ANALYSIS
Cyclic Crack-Growth Behavior

Logarithmic plots of da/dN vs stress-intensity factor range AK are shown in Fig. 3
for the MA and BA, with the corresponding microstructures. These data indicate much

Table 1 —Mechanical Properties

Heat Orientatio Kie 0.2% oy Tuts E RA Elongation n
Treatment | = ¢ "1(MPa-m1/2)| (MPa) | (MPa) | (GPa) (%) (%)
Beta TL,T 87.4 869 958 117 16 11 0.044
Anneal LT,L - 892 960 119 23 16 0.036
Mill TL,T 41.5 1007 1034 130 29 14 0.021
Anneal LT,L - 948 986 118 26 15 | 0.025
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enhauced resistance associated with vhe BA, owing primarily to a transition T that occurs
at AK = 23 MPa-m1/2. At this point, the exponent in the growth rate law (Eq. (1))
changes from m = 3.1 above to m = 6.3 below. Consequently, growth rates below ', are
reduced by as much as an order of magnitude from those for the MA. Immediately above
T, growth rates are less by about a factor of 3 for the BA. For comparison, the Region 2
exponent for the MA is m = 3.6.

Interpretation of the Transiiion

The Reversed Plastic-Zone Size vs Microstructural Dimensions—Metallographic and
fractographic evidence suggests that T is the point at which the reversed plastic zone,
hypothesized by Rice {10] and verified by others [11,12], attains the size of the rverage
Widmanstatten packet (awp). The height of the reversed plastic zone above the Mode 1
crack plane can be computed as {10,11]

2

12

= 0132 (25 (3)
205

where 0.132 is an experimentally validatea factor for plane strain [11] and 0§ is the
cyclic yield stress. For estimaiion purposes, 6% is commonly approximated by the mono-
tonic yield stress, a practice that the evidence in Refs. 13-15 tends to support for the
present case. If o} is so approximated from Table 1, then at T, 1§ = 23.4 um. This
value agrees well with measurements of dw = 25.4 um. This compares to average prior
B-grain and c-grain sizes of 142.5 um and 2 3 um, respectively. A compilation of gn-ati-
tative metallographic data for the MA and BA is shown in Table 2. (If in the case v the
MA a transition to structure-sensitive behavior were to be predicted ased on d,, it would
be expected to occur at a lower level of AK than for the data reported in Fig. 3.)

Structure-Sensitive vs Structure-Insensitive Growth—If such a critical r§ is associated
with T, a change in the micromode of crack growth should occur, from microstructurally
sensitive below T to insensitive above. Electron fractographic evidence supports such a
change: The morphologicai similarities of the fracture surface topography illustrated in
Fig. 4a and the microstructure shown in Fig. 3 indicate th2 structure-sensitive nature of
crack propagation below T. By contrast, above T the fracture topography appears to be
structure insensitive, consisting primarily of broad, relatively ilat arsas covered with
striations (Fig. 4b). (It might be, however, that, the normal striation mode will fail to
reveal certain types of structural dependence, such as those owing to texture.)

Table 2—Quantitative Metallographic Data

- - dwp
do d (Avg. Widmanstatten

Heat Treatment s . -
(Avg. a-Grain Size) | (Avg. Prior IfGram Size) Packet Size)

BA 2.3 um 142.5 um 25.4 um
MA 4.8 um - -
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fig. 4—Replica electron fractographs for the BA: (a) Below T, AK = 17.1 MPa-m1/2;
(b) above T, AK = 30.8 MPa-m!/2

Crack Bifurcation in the Widmanstatten Packet—The importance of the Widmanstatten
packet to the structure-sensitive nature of crack propagation below T is further indicated
by crack-path sectioning results. In individual packets that border the fracture surface,
cracks appear to have nucleated at multiple, parallel positions that bear a distinct relation
to the orientatinn of a-phase platelets, as shown in Fig. 5. This suggests crystallographic
cracking, as though individual parallel platelets behaved in unison, as a single crystal.

This is reasonable, because a parallel set of platelets that transform from the §-phase ac-
cording to the Burgers relation [16,17]:

(110}3//(0001),

(111)g/(1120),

(of whic' *here are severai variants) is of a single orientation [18].

The signifi -antly enhanced resistance observed below T in Fig. 3 is directly attribut-
able to this crack sifurcation,* which reduces the effective AK (and therefore da/dN)

*Since the commencement of this writing, cyclic crack growth similar to that in Fig. 5 has been brought to
the authors’ actention [19] fur another §-annealed titanium alloy, IMI 685. In that work, it was observed
that cracks within a Widmanstatisn pecket exhibited a similar relation to the orientation of the a phase
platelets as displayed in Fig. 6, rathe- than running parallel to thz o § interfaces. It was further observed
that, with slower cooling rates from the f-phase field, and the consequent increase in dyp, the enhance
ment in crack propagation resistance was greater.
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(a) AK = 17 4

MPa:m!/2; (b) AK = 18.8 MPa-m1/2, Arrow indicates trace of fracture

Fig. 5—Metallographic crack path section for the BA:
surface (Cu, Ni-plated).
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Fig. 6 —Crystallographic cracking of Widmanstatten packets
of another titaniumalloy (IMI-685) subjected to cyclic crack
growth (courtesy P. A. Blenkinsop [19])
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by dispersing the strain-field energy of the macroscopic crack among muitipie crack tips.
Such an effect has previously been reported for cyclic crack growth in pearlitic steels [20].

Evidence of the bifurcation comparable to that exhibited in Fig. 7a was also wit-
nessed at the specimen surfaces during growth rate testing. For the MA, by contrast, the
crack path was straight and collinear with the trace of the Mode 1 crack plane, as illus-
trated in Fig. 7b.

o R A RIS

Fig. 7—(a) Example of bifurcation observed at specimen surface in the cyclic crack
growth of a Widmanstatten Ti-6Al-4V alloy, relative to (b) a normal nonbifurcated
crack in a titanium alloy

T — w5 A




B PPy
RGRTp e (L

S AT

o,

.
S A o

SaRR AT

TSR i

B

45
3,
H
f:
¥
(’5
13
p
3
s
s
Bt
A
4
P
’

YODER, COOLEY, AN1' CROOKER
Observations on the Overall Enhancement

Over the full range of AK levels examined for the BA and MA, the enhancement in
crack-growth resistance with the BA is significant. Besides the transition T, there are two
other notahle features in Fig. 3 that distinguish the enhancement:

(a) The onset of accelerated Region 3 growth rates is displaced to a much higher
AKX level for the BA (from ~25 MPa-ml/2 for the MA to ~40 MPa- m!/2). For plane-
strain conditions, the AK level associated with the onset is related to fracture toughness,
ana for lesser constraint to a critical level of crack-opening displacement {2]. In the
present work, the maximum K levels associated with the respective onsets represent full
plane-strain constraint, as defined by the specimen size requirements of ASTM E399-74.
Consequently, it is rot surprising that the ratio of onset levels is in roughly the same
proportion as the K:, levels reported in Table 1 (41.5 MPa*m1/2 for the MA and 87.4
MPa- ml/2 for the BA).

(b) For Region 2 behavior, there is a substantial offset (to the right in Fig. 3) for
the BA data above T relative to those for the MA. Put another way, the growth rates
for the MA substantially exceed those for the BA above T {or any extrapolation of that
portion of the BA data trend in Fig. 3 to AK levels below T). As noted earlier, for the
BA above T, cyclic crack growth occurred predominant.v in the normal striation mode
(cf. Fig. 4b). For the MA, in contrast, the cleavagelike mode evident in Fig. 8 appears
to cover about 50% of the fatigue fracture surface, with the normal striation mode
accounting for the rernainder. These cleavagelike features are superposed with striations,
in accord with the case described in Ref. 21. Though such “cyclic cleavage” is to be
distinguished from “‘static-mode cleavage,”* described in Refs. 22-24 as a micromechanism
of cyclic crack growth, the results for the MA suggest that the incidence of “cyclic cleav-
age,” without concurrent crack bifurcation, may reduce crack-growth resistance. If so,
these results would be consistent with the observation in Ref. 22 that growth rates are
accelerated as the proportion of static-mode cleavage increases relative to the normal
striation mode. On the other hand, the evidence in Ref. 21 does not indicate the prop-
agation resistance associated with cyclic cleavage to be inferior to that associated with
the normal striation mode. (No mention is made in Ref. 21 of crack bifurcation asso-
ciated with the appearance of cyclic cleavage.) Perhaps, then, the inferior resistance for
the MA is attributable to the much smaller monotonic strain hardening exponent n noted
in Table 1t (0.021 vs 0.044 for the BA) or the somewhat greater yield strength (1007
vs 869 MPa for the BA).

Further Observations on the Nature of Structure-Sensitive Growth

Because of the importance of the structure-sensitive mode of cyclic crack growth in
the case of the BA, it is appropriate to further examine its origins. As shown by the
scanning electron micrographs in Figs. 9 and 10, the fracture surface is faceted in appearan«t.

*For example, the former mode is reported to be AK dependent [21], the latter K, . -dependent {22].
tValues of n were computed according to [25)

(0.002 e/n)" = 0,/0y4 (4

where e is the natural logarithmic base (2.718).

10
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Fig. 8—Cyeclic cleavagelike features and striations in the fracture surface for the
MA at AK = 17.5 MPa- m1/2, Replica electron fractograph.
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Fig. 10d— Detail of faceted morphology of the BA below T showing fine striations on
facet at 14,650X; replica electron fractograph
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A recent comprehensive study [26] reveals that such a faceted morphology occurs at
relatively low AK levels in a broad spectrum of alloys with close-packed crystal structures;
this morphology has heen attributed to a glide plane decohesion mechanism [26,27]}.

Examination of the facets by both replica and scanning electron fractography, over a
wide range of magnifications, discloses the complexity of their nature; they exhibit three
different types of superposed lineal features:

1. The river-line patterns reminiscent of cleavage (hereafter referred to as “R-lines”),
exhibited in Figs. 9-11 (Figs. 10c and 11 especially)

2. The quilted pattern of lines displayed in Fig. 4a. which resembies the Widman-
stdtten microstructure and perhaps plays a key role in the structure-sensitive crack growth.
These lines, hereafter referred to as “W-lines,” are also indicated in Figs. 10b, 10c, and 11.

3. Striations,* the characteristic mode of fatigue crack propagation, as evidenced
in Figs. 10d and 12. Striation spacings A are in quite reasonable agreement with the mac-
roscopic growth rate data of Fig. 3. For example, Fig. 12 indicates that A ~ 5.7X 10™5 mm
(570 A), which compares to da/dN ~ 4X 10”5 mm/cycle for AK = 17.1 MPa-m!/2 in
Fig. 3.

The following observations are relevant to interpreration of the W-lines:

1. They are not to be confused with striations, as they are ~2 orders of magnitude
larger.

2. The R-lines are thougnt to be associated with «/p interfaces [28,29]; thus, it
seems likely that W-lines are not, as their orientation is closer to normal than parallel to
the R-lines, as shown in Figs. 10c and 11. In fact, a similar orientation between the
multiple, parallel cracks in Fig. 5 and the «/f interfaces is observed.

3. Multiple, para'lel cracks appear to open along the W-lines, as shown in Fig. 13.

4, The W-lines are of a similar configuration to that defined by the a/f interfaces
of the Widmanstatten microstructure in Fig. 3.

5. Note that the W-lines in Fig. 13 are not perfectly straight and paraliel but
rather are curved and intersecting in some cases.

6. Figure 14 shows large offsets in R-lines where they are crossed by W-lines.

BT, N s 2

Observations 2 and 6 strongly suggest that W-lines trace slip bands (and ensuing slip-band
cracks). Furthermore, in view of Observations 2, 3, and 6, it is conceivable that the

: muls’.+.+. parallel cracks that describe the crystallographic bifurcation in Fig. 5 may also
be trac *- of W lines. The other observations are not inconsistent with such an interpretation.

"o e

*It should be noted .at the superposition of very fine striations on these facets is in accord with the find-
ings in lef. 21, whzre fine striations were reportedly superposed on cleavage facets in the cyclic crack
growth of a Ti-6Al-4V alloy. In Ref. 26, however, no such superposed striations were reported in the
faceted, cyclic crack growth of the several alloys investigated, including a Ti-6Al-4V alloy.
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Fig. 12—Fine striations in the structure-sensitive crack growth for the BA,
AK = 17.1 MFa-m1/2, Replica electron fractograph.
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(It 1s also pertinent to note that in Ref. 26, slip-band cracking was associated with the
faceted behavior.) Moreover, it has been suggested in Ref. 21 (among others) that the
plane of “cyclic cleavage” is the slip plane, {1010}, in the present instance, when the
material has a planar slip character. If this interoretation is assumed, then Observation 5
may imply that cross slip occurs in the reversed plastic zone.

DISCUSSION
Influence of Texture

It is well known that crystallographic texture can significantly influence the mechan-
ical properties of titanium alloys [30], including fatigue crack-growth rates [31-34]. One
way to account for the influence of preferred orientation, at least in part, is through the
elastic (Young’s) modulus E [30,32]. In particular, it has been observed in several in-
stances that growth rates can be normalized with respect to E; in other words, if AK
were replaced by AK/E in Eq. (1),

da/dN = C'(AK/E)™, 5

the crack-growth rate curves would be expected to converge [2]. However in the present
work, if such a normalization were undertaken by using the values of E in Table 1, the
data plots for the MA and BA would in fact diverge from their present positions in

Fig. 3. (Similar divergence was noted in the texture studies of Ref. 32.) Thus, on the
basis of this test, the displacement between the MA and BA plots does not appear attrib-
utable to texture. That is not to say, however, that texture had ~o bearing on the
present results (the nature of the structure-sensitive growth, etc.) or the differences be-
tween the present results and those of others.

Transitional Behavior

Among those differences, it is noted that the growth rate data for the BA in Ref. 6
did not exhibit a transition (and no mention of crack bifurcation was made), even though
a fivefold enhancement in resistance was reported for the BA relative to the MA. The
reason for this difference is unclear; it can be speculated, however, that if a larger awp
were associated with the BA in Ref. 6 than in the present work, then a transitional r§,
might not be attained until AK levels in excess of the largest reported in Ref. 6 (~38
MPa-m1/2) were reached.

It is further noted that the growth rate data for the BA in Ref. 7 did exhibit a
transition, but at such low AK levels that r§ was reported to correlate with d,, rather
than dywp. (dwp appears to be about an order of magnitude larger than dy in both the
present work and Ref. 7.) The reason for this differe-.ce is unclear. It should be noted
that structure-sensitive crack bifurcation was reported in Ref. 7 for crack growth below
the transition.

Other instances of transitional behavior in Region 2 .rack-growth data have been ob-
served with Ti-6.Al-4V alloys [29,35-37], for which detailed mechanisms could not be
fully elucidated. I.is intere:ting to note that Ref. 35 reports a transition in the case of
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a MA. Moreover, as in the present work, crack branching was reported to occur below
the transition.

Nature of the Structure-Sensitive Growth

The evidence in Fig. 5, as supported by the recent findings reported in Ref. 20,
indicates that bifurcation in the present work does not occur along «/ff interfaces, in
contrast to the reports in Ref. 38 that enhanced propagation resistance in the case of a
BA was attributable to «/f interface cracking. The reason for this apparent discrepancy
is unclear: perhaps it is related to differences in texture or cooling rates. (It has recently
been shown by Ref. 39 that the nature of the «/f interfacial phase, including crystal
structure, can be radically affected by altering the cooling rate. Moreover, Ref. 40 re-
cently reported some preliminary data to confirm the effect of cooling rate per se on
da/dN for Ti-6Al-4V.)

Obviously, more work is needed to fully resolve the complex nature of structure-
sensitive growth of fatigue cracks in Widmanstatten Ti-6Al-4V alloys.

SUMMARY

A beta anneal was found to significantly enhance the Region 2 fatigue crack propzgza-
tion resistance of a commercial purity Ti-6Al-4* alloy, relative to the levels determined
for a conventional mill anneal. Phenomenological highlights include the following:

1. The enhancement is particularly pronounced below a transition point in the
crack-growth behavior of the beta-annealed material, which occurs at a stress-intensity
factor range of AK = 23 MPa-m!/2,

2. Below the transition point, growth rates are as much as an order of magnitude
less for the beta anneal than determined for the mill anneal, although above the transition
they are still at least a factor of three less.

3. In terms of the growth rate law, da/dN = C(AK)™, the exponent changes from
m =~ 3.1 above the transition to m ~ 6.3 below.

Highlights from a micromechanistic interpretation of this behavior include the
following:

1. It appears that the transition correlates with the point at which the reversed
plastic zone attains the size of the relevant microstru:tural dimension (the Widmanstatten
packet size).

2. In support of this interpretation, electron fractographic evidence indicates a
change from microstructurally sensitive crack growth below the transition to insensitive
above.

3. The role of the Widmanstatten packet in this structure-sensitive growth is re-
vealed by metallographic crack-path sectioning. Within individual packets that border the
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fracture surface, cracks appear at multiple parallel positions that bear a relation to the
orientation of the a-phase platelets; i.e., these individual parallel platelets behave in
unison, as a single crystal.

4, The iransition, and the remarkably reduced growth rates that appear below it,
are attributable to crack bifurcation, which serves to reduce the effective AK. As for the
nature of the structure-sensiuive crack growth, it was found that

®  The fracture surtace is faceted in appearance.
® The facets are comprised of three superposed features:
River lines reminiscent of cleavage (“R-lines”)

Quilted lines which are of a configuration which resembles the Widmanstatten
pattern of the microstructure (“W-lines), and

Very fine striations.

®  The W-lines, which may be 12lated tc the origin of crack bifu:cation, appear to
trace slip bands (and ensuing slip-band cracks) as they cause offsets in the
R-lines.

Other factors contributing to the enhancement associated with the f-anneal, exclusive of
the transition, have been analyzed. These include the doubling of fracture toughness
Ki. from the level associated with the mill anneal, as well as fractographic distinctions.
A commentary on the possible influence of texture is also included.
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