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1. Introduction and Summary. 

Suppose x
1 , ... , Xn are independently distributed according to 

2 2 N(l11 , a1 ), ···~ N(pn' an) , respectively. Does the distribution of the 

maximum of ••• ' X n 
uniquely determine 

In other terms, can more than one set of independent normal variables 

give rise to the same distribution of the random variable which is the 

maximum of the constituent random variables? Our paper answers this 

question; in fact, the relevant theorem ansvrers this question about 

identification of parameters on the basis of the maximum of a set of 

random variables for a more general family of parent distributions. 

Our attention was called to this problem by an inquiry from an 

econometrician (Professor Takeshi Amemiya, Department of Economics! 

Stanford University). In an econometric model x
1 

is defined as the 

quantity of a commodity which consumers would be willing to purchase 

under specified circumstances including the price of a unit, and x2 
is the quantity that would be sold by the producers under certain 

conditions. A simple stochastic model specifies the demand and supply 



schedules as 

(1.1) 

(1. 2) 

where p is the price of the commodity and u
1 and are inde-

pendent (unobservable) normal random variables with means 0 and 

variances and 
2 a
2 

, respectively. If the price is set indepen-

. 
dently of the market (for example, by an outside agency or by custom), 

then the quantity actually sold by the producers to the consumers at a 

given price p is the minimum of xl and x2 given by (1.1) and (1.2). 

Since the econometrician wishes to determine the demand and supply 

schedules, he raises the question of whether observations on the quantity 

passing from producers to consumers at various prices determine the 

parameters of the model: the intercepts al and a2 ' the slopes sl 

and s2 ' and the variances and Since the normal distribution 

is symmetric, the question is mathematically equivalent to the question 

posed in terms of the maximum of x
1 

and x
2 

. (In the more customary 

equilibrium model there is a third equation equating demand to supply, 

xl = x2 . This model' in which xl = x2 and p are observable random 

variables, represents a market in which the price adjusts so that at 

that price the quantity xl that buyers demand is equal to the quantity 

x2 that sellers produce.) 

In this paper we have studied the question in greater generality 

by considering the maximum of an arbitrary number of random variables. 
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Intuitively, the approach is that if the variance of one of x1 , ···~X . n 
is larger than the variance of the others the distribution (or density) 

of the maximum in the upper tail is similar to the distribution (or den-

sity) in the upper tail of the component with maximum variance. It is 

therefore convenient for us to prove identifiability on the basis of a 

general condition on the upper tails of the densities in a certain family 

(Section 2). As applications of this general theorem we answer the 

question posed in the first paragraph in the affirmative and also assure 

our econometrician that the parameters in the model are identi.fied. 

It is natural to ask in what way this property of identification 

carries over to multivariate cases. In the econometric example a set 

of consumers may consider purchasing a number of commodities and a set 

of producers may propose to sell these commodities; for each commodity 

t~e quantity actually sold from producer to consumer at a given price 

is the minimum of the amount desired at that price and the amount offered 

by the producers at that price. 

We study the multivariate case within the framework of the normal 

distribution, the parameters of which are the means of the variables, 

the variances, and the correlations between the variables. The maximum 

of the vector variable is defined as the vector of the maxima of the 

respective elements of the constituent vector variables. Consideration 

of the marginal distribution of the maximum of a particular coordinate 

of the constituent vector variables determines the set of means and 

variances of that coordinate (by Theorem 2.1). However, the one-to-one 

correspondence between the means and variances of two different coor-

dinates of the constituent vector variables is not available from study 

3 



of the several marginal distributions. Moreover~ identification of the 

correlation coefficients in the distributions of the vector variable 

cannot be made from one-dimensional distributions. 

In Section 3 we treat the multivariate normal distribution where 

all means are zero and all the correlations are nonnegative; in this 

case there is identification wherever the correlation is not zero. In 

Section 5 we treat the case of two vector random variables; then there 

is complete identification. In order to treat this case we develop a 

generalization of Mills' ratio, which is of interest in its own right. 

This is given in Section 4. 
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2. The Univariate Case. 

Theorem 2.1. Let ~ be a family of vrobability density functions 

f on R
1 

which are continuous and positive to the right of some point 

A and such that if f and g are anx_ two distinct members of ;1 

then lim {f(x) /g(x)} exists and eg_uals either 0 or oo Let -- x-+oo -

·" $ • ' 
X 

n 
be independent random variables with respective Vdf's 

... ' f n 
in a , and Y

1
, ... , Yn be in9-_ependent random variables 

identical distributions, then m = n arid there exists a permutation 

of {l, ... , m} 

i=l, ..• ,m 

Proof. B,y definition 

(2.1) 

such that the pdf of 

m 
II 

i=l 
Pr{X . .::;.. x} = 

l 

where F.(x) = Jx f. (u)du, and similarly, 
l - 00 l 

Y. 
l 

m 
II 

i=l 

is fk., 
l 

F. (x) 
l 

(2.2) 
n 
II 

i=l 
G. (x) , 

l 

where G.(x) = JY g.(u)du , and g1 , ... , gn E ~ • We are given 
l - 00 l 

(2.3) 

Hence, 

m 
II F.(x) = 

i=l l 

5 

n 
II 

i=l 
G. (x) , 

l 
_oo < x < oo 



m 
(2.4) I 

i=l 
ln F. (x) = 

l 

n 

I 
i=l 

ln G. (x) . 
l 

Differentiating with respect to x , we have for all x > A 

m n 

(2.5) I 
i=l 

f. (x) /F. (x) = 
l l I 

i=l 
g. (x)/G. (x) 

l l 

By changing notation we can rewrite (2. 5) as 

m+n 
(2.6) I 

i=l 
a.f. (x)/F. (x) = 

l l l 0 ' 

where a.= l, i = l, .•. ,m, and a. = -1, i = m+l, ••. ,m+n, and 
l l 

f . = gi, i = 1,2, ... ,n 
m+l 

There exists an f. ' 
say fl ' such that 

l 
lim {f. (x)/f1 (x)] 
X~ l 

is either 0 or 1 for i = 2, ... ,m+n . Let I = 

{i: fi (x)/f1 (x) + 1 as x + oo} • Then dividing (2.6) by f 1 (x) 

and letting x + ~ , we have E. I a. = 0 , so that 
l£ l 

I contains an 

even number of elements, half of which are from {1, •.• , m} . Thus 

a certain number of f. in (2.5) are identical and are identical to 
l 

the same number of g. • Subtracting these identical terms from both 
l 

sides of (2.5), we have a new equation of the same form but with fewer 

terms. The process can be iterated until each term on one side of (2.5) 

is matched with one term on the other. If m = n , the proposition is 

proved. On the other hand if m # n , say m < n , we have n - m of 

the gi such that gi(x) = 0 for all x >A, contrary to the assump­

tion about '(/ • Hence, m = n . Q.E.D. 
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~ample 2.1. The family of normal densities with arbitrary means 

and variances satisfies the assumptions of the theorem. In fact, if 

(2.7) 

then as x-+oo 

(2.8) 
cp(xll12,a2) 

<P (xI J.ll ,all 

t/l (x Ill , a) = - 1
-m a 

0 if 
2 > 2 

(Jl (J2 

2 2 
(Jl < (J2 

1 if 2 2 
(Jl = (J2 

Example 2 • 2. Let 

(2.9) cp(xja,S,a,p) = 

Then as x -+ oo 

(2.10) 

0 if 2 > 2 
or if (Jl (J2 

t/l(xla2,f32,a2,p2) 2 2 
or if Hx I al, sl ,al ,pl) (Jl < (J2 

or if 

or if 

and lll 

2 2 
(Jl = (J2 

2 2 
(Jl = (J2 

2 2 
and Ql,l + sl pl (Jl = (J2 

2 2 and > l-12 (Jl = (J2 lll 

2 2 
and (Jl = (J2 lll < j.l2 

= l-12 . 

and Ql,l + f3lpl > Q/,2 + f32p2 ' 

and Ql,l + f3lpl < Q/,2 + f32p2 ' 

= Q/,2 + f32p2 . 

The parameters are identified if at least two of xl, ••• , xn have 

densities with the same pair a,S and different values of p {In the 
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econometric "equilibrium" model x1 = x2 and p are random variables 

determined as the solution of (1.1) and (1.2); any joint normal density 

of these two variables is consistent with various sets of 8
1

, 8
2 

, 

and and hence the parameters cannot be identified.) 

Example 2. 3. Let ( ) -A.x X< 0, ¢>._X = :\e , x~O. Then 

0 if Al < A2 ' 

(2.11) 
¢A.2 (:x) 

if A.l > >..2 ¢A. bd 
1 

1 if A.l = >..2 . 

There exist many families of pdf's which do not have the property 

postulated in the theorem but the members of which are identified by 

the distribution of the maximum random variable. 

Example 2.4. Let 

-(x-a) e , x ~a 

(2.12) f (x) = 
a 

0, x<a. 

If f.= f , i = l, ..• ,m, 
1 a. l?;i = fb. , i = 1, •.• ,n, then 

l l 

(2.13) Pr[max{X., i = l, ..• ,m} ~min{a., i = 1, •.. ,m}] = 0 
l l 

implies 
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(2.14) 

Further, the form of the cdf of the maximum for values of x between 

the smallest and second smallest distinct a. tells us that the number 
1. 

of a. = min{a.} is the same as the number of b. = min{a.} ; and also 
l 1. 1. 1. 

that the second smallest a. = the second smallest b. • Proceeding 
1. 1. 

this w~, we reach the conclusion that m = n and {a
1

, ... ,am} is 

a permutation of 

Example 2.5. Let 

(2.15) 

... ' b } • 
m 

f (x) 
a 

1 -lx-al 
=z= 

In this case, if f. = f and 
1. a. 

1. 

gi = fb. , then for all sufficiently 
1. 

large x , eQuation (2.3) becomes 

(2.16) II 1--::::-e 
1 = m ( 1 -x+a.·) 

. l 2 
n ( 1 -x+bi) 
II l--::::-e

2 
• 

1.= i=l 

Without loss of generality, we m~ assume m .S. n , write 

multiply both sides of (2.16) by 

(2.17) n-m 
z 

n 
z , giving 

n ( 1 b.) 
_II z- z= 1 

• 

1.=1 

X 
z = e 

Equating the zeros of the two polynomials yields the conclusion that 

m = n and is a permutation of ... ' b } 
m 

9 
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There are also examples of a family of densities whose elements 

are not identified by the distribution of the maximum. For example, 

let 

(2.18) 

and a' = {f 
a 

max{X.} is 
~ 

(2.19) 

a > 0} • 

X~ 0 , 

X > 0 , 

If f. = f ' 
~ a. 

i=l, ••• ,m, 
~ 

{ 

xt:=l ai 
~ , X ~ 0 , 

1 , X > 0 

and the only inference from (1) is t;J. a. 
~=1 ~ 

10 
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3. A Special Multivariate Normal Case. 
I 

Suppose the vector X. = (X1 . 5 ••• , X . ) has the distribution 
-l l pl 

N(]!i' ~i)' i = 1, •.• 5n. Let Yj = max(Xjl' •.. , Xjp) a!fd let 

Y = (Y
1

, ••• , Y ) Does the distribution of Y determine the para-
~ p 

meters ]!p ~1, ]J ' L: ? -n -n 
Consideration of the marginal distribu-

tion shows that the distribution of yj determines the values of the 

pairs 2 2 
(v.l' cr .1)' ... ' (]J. ' cr. ) J J Jn Jn 

for each j . (The element 

of ~i is cr j i crkip jki . ) But, the marginal distributions do not lead 

to correspondences between the different values of j . However, if 

bivariate distributions are identified, then the correspondences for 

j = 1, ... ,p can be made. Accordingly we turn our attention to bivariate 

distributions. 

We consider an arbitrary number n of bivariate normal distribu-

tions but restrict them so as to minimize the kind of tedious computa-

tions which we are not able to avoid in Section 5 in the detailed dis-

cussion of the case n = 2 

Theorem 3.1. If ~1 , ... , ~n' F1 , ... , Fm are nonsingular bi-

variate normal cdf's with zero means and the correlations in 

~l' ... , ~n are all nonnegative, then 

(3.1) 

implies that 

n 
IT ~i (x,y) = 

i=l 

m = n , there are no 

m 
IT 

i=l 

F. 
l 

F. (x ,y) 
l 

with negative correlations, the 

number of zero correlations is the same on both sides of (3.1), and the 

F. 
l 

~. 
l 

with positive correlations can be identified one-for-one with the . 
having positive correlations. 
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Proof. ~ letting one variable go to infinity in the identity 

(3.1), we see from the one-dimensional result of Example 2.1 that the 

set of x-variances on the l.h.s. of (3.1) is a permutation of that on 

the r.h.s.; and the same is true of they-variances. Also~ m = n. 

Therefore, if the x-variance, correlation and the y-variance in 

are respectively 2 2 
then we may without loss 0. ' pi' Ti ' assume, 'l 

¢. 
l 

of 

generality , that the corresponding parameters for F. 2 t~ are oi' ri' l l 

where (t1 , •.• , tn) is a permutation of (T , ••• , T ) 
1 n 

' 

Taking logarithms in (3.1) and differentiating with respect to x , 

we get 

(3.2) 

where n(·) and N(·) are, respectively, the one-dimensional standard 

normal pdf and cdf. 

Now, let o = max{o., i = l, ... ,n} , 
l 

I = {i : o. = o} 
l 

I 0 (p) = {i : pi = O,i E I} I 0 (r) = {i : r. = 0, i E I} . 
l 

(3.2) by (1/o)n(x/o) and letting x -* oo , we get 

(3.3) L 1 + L 1/N(y/t.) 
iEI0 (r) {i:iEI,ri<O} 1 

On dividing 

Since the last term is strictly monotone unless {i i E I, r. < O} 
l 

is empty, we see that there is no 

12 

r. < 0 
l 

for i E I and that 



I
0

(p) and I
0

(r) contain the same number of points. Hence, the terms 

corresponding to p. = 0) and (a = 0., r. 
l l 

= 0) cancel one 

another out in (3.2). 

Next, let S = min{p.T. 
l l 

l 

and 

I 1 (p) = {i : p.T. = S, i E I} , I 1 (r) = {i : r.t. = [3, i E I} • In l l l l 

(3.2), let y = Sx/a + u , divide by 1/0 n(x/0) and let x ~ oo 

holding u fixed. Then we obtain 

(3.4) 

Letting u ~ oo , we see that 

N( u \ + 

t.h-r~J 
l l 

I 1 
{i:r.t.<S,isi} 

l l 

{i : r.t. < S, i E I} is empty. l. l 

ferentiating with respect to u in (3.4) we get 

(3. 5) 

Dif 

Let T = max{Ti' tj : i E I 1 (p), j E E r1 (r)} , divide by 

n (u/h
2 -62

) and let u ~ oo • We see that the number of Ti = T is the 

same as that of t. = T , and that for the corresponding ~. and F. , l l l 

we have p. = S/T = r .. 
l l 

Eliminating the terms -vri th T. = t. = T 
l l 

from (3.5), we can repeat 

the process with the remaining largest value of the y-variance; and 

continuing this way, we see that we have identified 

{(ai, Pi' Ti), i E I 1 (p)} with {(ai, ri, ti), i E I 1 (r)} one-for-one. 

Eliminating these terms from (3.2), we can now repeat the process with 
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the next larger value of piTi' i £I- I 0 (p) , and continuing this 

way, we are able to identify {(cr.' p.,-T.), i £ I - I 0 (p)} with 
~ ~ ~ 

{(cr.,r.,t.), i s I - r
0 

(r)} one-for-one. We are then left with an ~ ~ ~ 

equation-similar to (3.2) but with a smaller number of terms and with 

a. < a . Iterating the procedure successively, we are thus able to ~ 

identify {(cr., pi' T.) pi > 0' i = 1, ••• ,n} with 
~ ~ 

{(a. ' ri' t.) r. > o, i = l, ... ,n} one-for-one. ~ ~ ~ 

Finally, removing these identical terms from both sides of (3.1), 

we are left with products of one-dimensional normal cdfs in x and y 

with the same set of x-variances appearing on both sides and also the 

same set of y-variances, but there is no unique matching of (x,y) 

pa~rs among these. 
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4. A Bivariate Mills' Ratio. 

For the investigation in Section 5 we need a generalization of the 
univariate Mills' ratio 

(4 .1) n(x)(.; - : 3) < 1 - N(x) < n(x); , X > 0 , 

where n(·) and N(·) are the standard normal pdf and cdf. (See, e.g., 
Feller [1], p.-175.) 

Theorem 4.1. Let 

(4.2) ~ (x ,y) = J . <P ( u, v) dudv , 
u>x 
v > y 

where 

{4.3) 

If p > 0, A= (x-py)/0 > O, B = (y-px)/0 > 0 , ~ 

If p ~ 0, A > 0, B > 0 , then 

15 



Proof: 

( 4. 6) !I (x ,y) = J Q exp r~ (x+s )2 ~2p (x+s) ~z+t )+ (;y:+t) 2 ] dsdt 

s,t>O 2'IT 1-p2 2 (1-P ) 

2 = ~(x,y)(1-p ) J (A,B) , 

where 

(4.7) J(A,B) = J 
u,v>O 

[ 
u

2
-2puv+v

2
]· [ exp - 2 exp -Au- Bv]dudv . 

We have (for u ~ 0, v ~ 0) 

(4.8) 

(4.9) 

(4.10) 

Let 

(4.11) 

2 2 2 2 2 2 
(1-p) (u +v ) ~ u - 2puv + v ~ u + v , 

2 2 2 2 
u - 2puv + v = u + v , 

Ja = J exp[- a
2

(u:+v
2
)] exp(- Au - Bv)dudv . 

u,v>O 

p > 0 • 

p = 0 ' 

p < 0 . 



Then for 2 
a = 1 - p 

(4.12) 
p > 0 ' 

(4.13) J (A,B) = J
1 

, p = 0 ' 

(4.14) J a ~ J (A,B) ~ Jl ' p < 0 . 

Note that Ja is the product of two terms of the type 

(4.15) 

where c = A or B The e~~ression (4.15) equals 

(4.16) = e:xp[ c2j l27f f _l exp(--v2 )dv • .. 2 a r::::-:=
2

.,. 2 2a > C VC:'If v -
a 

If c > 0 , this is bounded above and below, respectively, by 1/c and 
2 2 (1/c)(l-a /c ) according to (4.1). For p = 0 the theorem follows 

directly from (4.1) because ~(x,y) = ~(x)~(y) . For p > 0 and p < 0 
the theorem follows from (4.6), (4.12), and (4.14). Q.E.D. 

Remarks. Notice that the conditions A> 0, B > 0 for x > 0, 
y > 0 correspond to a point (x,y) in the first quadrant that is above 
the regression line (Y on X) and to the right of the other (X on Y). 
If p .S. 0 , then A > 0 and B > 0 are automatically satisfied if 
x.,y > 0 . 

It is of interest to compare Theorem 2 with the bound of Harkness 
and Godambe ([2]). The principal term in our estimate (which is also 
our upper bound) is 
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(4.17) 

subject to the assumption that x- py, y- px > 0 (which is are-

striction only if p > 0). Since (4.17) is symmetric in (x,y) , let 

y = ex , with 1 ~ c < 1/p if p > 0 • Then (4.17) is 

(4.18) 

In the Harkness and Godambe estimates, the principal terms in the upper 

and lower bounds are, respectively, 

(4.19) 

and 

(4.20) 

(l+p)2 
2 2 

C X 

. [ 22 J 2 [ 22 J 1 X C (l-2p+l) _ 1 (l+p) X C 2(1-p) 
exp - 2 - 2 2 exp - 2 

2TI~ 2(1-p ) 2TI~ C X 2(1-p ) 
{ 

Now, (4.18) = (4.19) = (4.20) if c = 1 , but for 1 < c < 1/p , 

(4.18)/(4.19) + 0 and (4.20)/(4.18) + 0 as x + oo • 

Finally, if p > 0 and y > x/ p , we can still get quite good 

bounds from (4.4) by using ~(x' ,y) ~ ~(x,y) ~ ~(x,y') where x < x' < y 

and ~ < y' < y , which is better than using ~(y,y) ~ ¢(x,y) ~ ¢(x,x) . 

Since the denominator in the last factor in (4.18) is maximized by 

choosing c = (p + 1/p)/2, ~(x,y') , with y' = [(p
2
+1)/(2p)]x, might 

18 



be a reasonably good upper bound for ~(x,y) when y > x/p , p > 0 

similarly, ~(x' ,y) , with x' = [2p/(p2+l)]y might be a reasonably good 

upper bound. In the case of a general bivariate normal distribution, we 

have 

(4.21) 

. 2 2 c~-v) - 2p(s-v)(t-v) + (t-v) 
1 a2 

crt T
2 ----- exp _..;;._... _____ ..;;...;;.._ ___ _..;. __ dt ds 

2TicrT~ 2(1-P
2

) 

Corollary 4.1. Let (4.21) be denoted~ ~(a,b; v,v,cr,T,p) , let 

~ integrand be denoted £;y_ ¢ ( S, t; V, V ,a, T ,p) , and let 

(4.22) A= 

a-v - pb-v 
cr T 

B = 
b-v a-v --P 

T cr 

If p > 0, A> O, B > O, then 

(4.23) (1 _ Al
2
)(1 _ B~J < {i)(a,b; ).l,v,cr;r,p)AB 

2 
< 1 • 

crT¢(a,b; v,v,cr,T,p)(l-p ) 

If p ~ O, A > 0, B > 0, then 

19 



u~. 24) 

Corollary 4.2. Let y - v == c(x-l.l) , where c is !:!_;positive 

constant . Then, ~ x + co , ~ have 

(4.25) 

for all c > 0 if p :;_ 0 and .!£!_ c E: (pT/0, T/[ pa]) if p > 0 . 
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5. The General Case of Two Multivariate Normal Distributions. 
As was explained in Section 3, the solution of identifiability for 

the multivariate normal case depends on the solution for the bivariate 
normal case. We treat the case of n = 2 in terms of the notation of 
Section 3. 

Theorem 5.1. If ~1 , ~2 , F1 , F2 are bivariate normal cdf's such 
that 

(5.1) 

then ~ of ~ following relations holds : 

(i) ~1 = F 1 and ~2 = F2 ' or 

(ii) ~1 = F2 and ~2 = Fl ' or 

(iii) ~. (x,y) 
]. = Ai (x) Bi (y), i = 1,2, and 

F 1 (x ,y) = A1 (x) B2 (y) , F 2 (x ,y) = A2 (x) B1 (y) 

Proof. We shall give a detailed proof under the assumption that the 
means are all zero. The proof for the general case of arbitrary means 
is not different in spirit, but only involves additional tedious compu-
tations of the same kind. As in Section 3, we shall assume the parameters . 
to be (o~, pi' T~), i = 1,2, on the lhs of (5.1) and 
i = 1,2, on the rhs. From (5.1) we obtain 
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(5.2) 

where n(·) and N(·) are univariate standard normal pdf and cdf, 

respectively. Also, 

(5.3) 

I. First consider the simple case cr1 = o2 , T1 = T2 . ~ consi­

deration of the marginal distributions we have cr1 = cr2 = s 1 = s 2 , 

T
1 = T2 = t

1 
= t 2 , so that the problem can be reduced to standard form 

by scale transformations on x and y . In this case (5.2) and (5.3) 
give us 
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(5.4) 

+ n(x)n(y) Jcx-ply)l N[-(Y-_P=-2x_), 

[~ ~ 

+ n(x)n(y) J(y-plx)J J---=-(x-p~)] 
[~] [~ 

+ 4>1(x,y) 

= g (x,y) . 
r 

On putting y = x , we have 

(5.5) 

1 ( p2 2) + exp ~ x 4>1 (x,x) . r--? p2 
/1-p::: 

2 

x-+oo 
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(5.6) 

On the other hand 

(5.7) 1 

~ 1 

2 

Hence, if p1 = p2 , then r 1 = r 2 = p1 = p2 and ~l = ~2 = F1 = F2 • 

If p1 > p2 , then r 1 = p1 and r 2 = p2 ; thus ~l = F1 and ~2 = F2 • 

Now suppose max(p1 ~ p2 , r 1 , r 2 ) = p
1 

= 0 . If p2 = 0 , 

(5.5) ~ 4 then gr(x,x)/n
2

(x) + 4 , which implies r 1 = r 2 = 0 . If 

P2 < 0 , (5.5) ~- 3 ; then gr(x,x)/n
2

(x) ~ 3 , which implies 

rl = 0 > r2 = p2 . 

Now suppose max(p
1

, p
2

, r
1

, r
2

) = p
1 

< 0 . Then (5.5) ~ 2 . 

Consider 

(5.8) 
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+ 2N(R-pl x) N(fl!-P2 x~ l+p 1--p 1 2 

By Mills' ratio 

(5.9) (;;£-p. ) ~+p. 1 1 ( 
1

-P. 2) - l l l N --x ~ ----e - x l+pi 1-pi X /2-IT xp 2(l+pi) 

Then as x+oo 

(5.10) 
{

]_ if 
12 ( -pl 2) 11-p::- exp - x + 

1 l+pl 
2 if 

Similarly as x + oo 

0 if p1 > rl ' 

[gr(x,x) ~ -P 
(5.11) -2 - 2 ~ exp (1 + 1 x2) + 1 if rl = pl > p2 

n (x) pl 

2 if rl = r2 = pl . 

We obtain identification. 

II. Having disposed of the case cr1 =_o2 , Tl = T2 , we now consider 

the situation where there is at least one inequality. Without loss of 
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generality, we may suppose cr1 > cr2 • Then in Equation (5.2) '· if we keep 

y fixed and let x + oo , we ~ave 

if pl > 0 ' 

(5.12) 

if pl < 0 . 

In.the same way, from (5.3) we get 

0 if r
1 

> 0 , 

(5 .13) if r 1 = 0 

if r
1 

< 0 . 

Consequently, from (5.1) we see that 

(a) pl > O=> r > 0 1 ' 

(S) pl = 0 => r = 0 1 

(y) pl < 0=> r 1 < 0 and t2 = '[2 (so that tl = Tl) . 

In Case (a.), let y = yx , where y = p1T1 /cr1 , and x + oo; then, 

noting that l/cr2 - 2py/(~T) +.y2/T2 = (l-p2 );cr2 + (p/cr- y/T) 2 , from 

(5.2) we obtain 

(5.14) 
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On the other hand, looking at the expression for (5.3) similar to that 

for (5.2), we observe that 

(5.15) 

so that 

(5.16) 

f. (x,yx) = 
]. 

0 

1 

Hence, on account of (5.1), we conclude that 

(5.17) 

r. 2 

)

2 
::L - -2.-- -x t. (j. 

if 

]. ]. 

2 2(1-r.) 
]. 

This implies t 1 = T1 and r 1 = p1 • So, in Case (a), ~l = F1 and 

hence ~ 2 = F 2 . 

Next, in Case (S), the original equation (5.1) becomes 

(5.18) 

If we now remove the common factor N(x/cr1 ) from both sides, differen­

tiate with respect to x and remove the common factor (l/cr2 )n(x/cr2 ) 

from both sides, we are left with 
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(5.19) 

If p2 = 0 , the lhs of (5.19) is independent of x , and hence r = 0 2 
in this case, both sides of (5.1) are products of univariate cdfs, and 

there is no unique matching of (x,y) pairs. On the other hand, if 

p2 # 0 then r 2 # 0 ; and differentiating (5.19) with respect to x 

we have 

L_ P X 

( 5. 20) (L) P2 
T2 2 cr2 

N Tl cr2~ 
n 

a 2 

L X 
- r -

N(~) 
r2 t2 2 cr2 = n 

cr2£; h-r~ 

Setting y = 0 yields p
2 = r 2 , and with arbitrary y1 putting x = 0 

gives t2 = T2 . Hence, iPl = F l 

Finally, in Case ( y), pl < o, 

in (5.1), we take x,y < 0 and use 

for a normal cdf, we obtain 

(5.21) 
2 
IT 

i=l 
iP. (x,y) = 

l 

and iP2 = F 2 

rl < o, t. = 
l 

the fact that 

2 
IT 

i=l 
F. (x ,y) , 

l_ 

Ti' i = 1,2 . If, 

<Hx ,y) = iP(-x,-y) 

x,y > 0 . 

Now, if we set y = ex and let x + oo , we see from Corollary 4.2 that 

the asymptotic relation (4.24) holds for ~l and F1 for all c > 0 
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and also holds for ~2 and F2 at least for all c in an interval of 

positive length containing the point T2/cr2 . Hence, we have 

(5.22) 
r 22 /J 22 2 ¢.(x,cx),l-p1 ) 2 f.(x,cx)(l-r.) IT l IT l l + 1 

i=l x2(..l_ _ cpiJ(..£.. .. Pi) i=l _x2(..1... _ cri)(_£_ _ ri) 
CJ. T.j T. (J. CJ. T. T. cr. l l l 1 l 1 1 l 

as x + oo , for all c in an interval of positive length containing the 

('5. 23) [ j 2~ 2 ¢. (x,cx) 2 (1-r.) [ 1 IT l ( ) = IT ----2J._,k,... exp - -2 Q ( c) 
J."=l fl. x.cx . 1 (1 )2 

I J.= -Pi. 

where Q(c) is a ~uadratric polynomial, and (5.22) implies that the rhs 

of (5.23) has a finite positive limit for all c in an interval ?f posi­

tive length. This can happen 9nly if Q(c) = 0 ; the limit is then 
2 /( 2 2 IT. 1 (1-r.)/(1-p.) . l= l l 

Thus we have 

(5.24) 2 [ 1 2p. c 2j 2 1 I - - _1_ + .£._ (1-p. )- = . 
1 2 cr.T. 2 J. 1= a; J. 1 T. J. J. 

2 [l 2r. c 2] 2 1 I -- _1_ + .£..._ (1-r. )-._1 2 0.T. 2 l 1- cr. 1 1 T. 
l l 

and 

(5.25) 2 2 -3/2( 1 cr.)( r.) IT (1-r. ) - - ---1;.. ....£.. - 2.. . 
1 1 cr. T. T. cr. J.= l l J. J. 

both relations holding for all c in an interval of positive length. 

Conse~uently, from (5.24) we obtain 

(5.26) 1 1) ~1 1) ----- + ---- =0 2 2 2 2 2 ' cr l-p 1-r cr 1-p 1-r 1 1 1 2 2 2 
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l(l l) 1(1 1) ----- +- ----- =0 2 2 2 2 2 2 ' T 1-p 1-r T2 l-p2 1-r l 1 1 2 

(5.28) 

If r 1 = p1 , then ~l = F1 , and hence ~2 = F2 • So, it remains only 
to investigate the possibility r 1 ~ p

1 
; in this case, (5.26)==> r 2 ~ p2 , 

and from (5.26) and (5.27) we have 

Tl T2 
-=-= 
crl cr2 

say 

But from (5.25) we know that the polynomials in c on the two sides of 
the equation have the same zeros. The zeros of the lhs are {T/p

1 , Tp
1

, O} 
if p = 0 2 and and of the rhs 

Hence, the assumption that leads to the conclusion 
and This, together with (5 .26), contradicts the assumption that 
,..,. > a· vJ. 2 • Thus in Case (y) also, we must have r 1 = p1 , r 2 = p2 , so that 
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