
■« «in--!« „ ..,. ^w^wWWIWI—l

► vi

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A033 394

IMPROVING INFORMATION STORAGE RELIABILITY

USING A DATA NETWORK

MASSACHUSETTS INSTITUTE O
C
 TECHNOLOGY,

CAMBRIDGE, MASSACHUSETTS

OCTOBER 1976

mmmimmammmiimimim —> mmmmmmimmmmmimmmimummmtMmam^^^^^

R;
■'J:.'i A-

,:a u-Au/.i^od 1

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

SECURITY CLASSIFICATION OF THIS PAGE (Whwi Oat« Bnfnd)

REPORT DOCUMENTATION PAGE

MIT/LCS/TM-78

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subllllm)

Improving Information Storage Reliability
Using a Data Network

S. TYPE OF REPORT a PERIOD COVERED

S.M.Thesis, EECS, Sept.'76

7.' AUTHORr!^™"""

Arthur J. Benj2min

«. PERFORMING ORG. REPORT NUMBER

MIl/LCS/XM-7g
f. CONTRACT OR GRANT NUMBCHC«)

N00014-75-C-0661

^"VEttFEItitlRttRSTHiTTTJSH NAME AND ADDRESS
Massachusetts Institute of Technology
Laboratory for Computer Science
545 Technology Square

—rw»r-Mya Ma«,cg^h,,g0ft-Q n9HQ

10. PROGRAM ELEMENT. PROJECT. T *SK
AREA « WORK UNIT NlMBERS

11. CONTROLLING OFFICE NAME ANO ADDRESS
Advanced Research Projects Agency
Department of Defense
1400 Wilson Boulevard

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Virginia 22217

TS"T5!yfWBTrnOT^HrTTnETTT7cT5n»"k«poro

12. REPORT DATE

October 1976
13. NUMBER OF PAGES

S(H dlllmnnl /ram Controlling Olttf)
m

IS. SECURITY CLASS, (ol ihlt report;

Unclassified

IS«. OECLASSIFICATION/DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol In» »bttract onlorod In Block 20, II dlUotont Irotn Rtpotl)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnuo on r«v«rae »id* II n*ca««ary mid Idmntlly by block number)

Computer Networks
Computer System Structure
Computer System Reliability
Distributed Databases
File System Backup and Recovery

File i'ystem Design

20 ABSTRÄCTfCont7nu»onr»vJrt»Tläw!nTeJ»«äry «^3»nr7r^T^iöcFnuqib«0

Backup and recovery methods using magnetic tapes are common in computer
utilities, since information stored on-line is subject to damage. The
serial access nature of the tape medium severely restricts the flexibility
and simplicity of accessing and managing the stored data. A method using a
data network will be described, to present a backup mechanism which takes
advantage of a large, inexpensive, random access remote data storage facility
to provide data access and management functions that are more flexible than

DD ,: FORM .J71
AN 73 14/3 EDITION OF I NOV 6S IS OBSOLETE •

S/N (1102-0 14- «60 1 «
SECURITY CLASSIFICATION OF THIS PAGE (Wnmn Dmt* Snlmd)

•MM
ss

Ti

t&CiJHITY CLASSIFICATION OF THIS PAOCflWuri Dal« KntermfJ

20. those provided by a traditional backup facility. Although data transfej
rates will be reduced, data access and management will be simplified, and
system availability will be improved. The work described is based on a
network backup facility built for the Multics computer utility, using the

ARPAnet.

/

ft J

U
SECURITY CLASSIFICATION OF THIS PAOEflThan Oaf« Bnttnd)

..... ..,.^,. A -■ w -■■ - - - ■

T

MIT/LCS/TM-78

IMPROVING INFORMATION STORAGE RELIABILITY

USING A DATA NETWORK

Arthur Jay Benjamin

October 1976

This research was sponsored in part by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA o^der No. 2095 which was
monitored by the Office of Naval Research under contract No. N00014-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

U - m -- i^gtBlgtmiimmJmmmu** -'-"■ " .■'■-■—' • -■in-nmrr'r r 'I niniilrnitoitiaM

ACKNOWLEDGMENTS

The success of any research project depends upon the interaction of
ideas among interested people. The research reported in this thesis is the
result of many comments and criticisms from the people around me.

First, I would like to thank Professor Saltzer, my thesis supervisor,
for encouraging the discovery of new insights by helping to define the essence
of the problem. His continued patience, interest, and comments have helped
both the development of the ideas, as well as their presentation in this
thesis.

During the implementation phases of the research, Raj Kanodia, Ken
Pogran, and Doug Wells have been invaluable in providing the necessary details
for using the ARPAnet. Similarly, Jerry Farreli and Hal Murray at the
Computer Corporation of America have been very helpful in providing assistance
in using the Datacomputer. The Computer Corporation of America has been very
generous in making the Datacomputer facility available for this research.

Finally, thanks go to 'Nancy Federman, Harry Forsdick, Jeff Goldberg,
Doug Hunt, Allen Luniewski, Drew Mason, and Dave Reed, so only for their
technical contributions, but also for the interesting distractions which they
provided to help put this project in perspective.

- 2

■ ■ Umtm ■-—■

DEDICATION

This work is dedicated to my mother,

- — -- -- in wniii -■*-^"

IMPROVING INFORMATION STORAGE RELIABILITY

USING A DATA NETWORK *

by

Arthur Jay Benjamin

ABSTRACT

3ackup and recovery methods using magnetic tapes are common in computer

utilities, since information stored on-line is subject to damage. The serial

access nature of the tape medium severely restricts the flexibility and

simplicity of accessing and managing the stored data. A method using a data

network will be described, to present a backup mechanism which takes advantage

of a large, inexpensive, "andom access remote data storage facility to provide

data access and management functions that are more flexible tnan those

provided by a traditional backup facility. Although data transfer rates will

De reduced, data access and management will be simplified, and system

availability will be improved. The work described is based on a network

Dackup facility built for the Multics computer utility, using the ARPAnet.

Thesis Supervisor: Jerome H. Saltzer

* This report is based upon a thesis of the same title submitted to the
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, on September 27, 1976 in oartial fulfillment of the
requirements for the Degree of Master of Science.

- 4

. - ■ ■- -' 1 1 ""---'--~--|i II 11II fr"- ■■■'— ~ —' ' ■Illl IIIHMI 1

■^ ■j#üSSJBPW *

TABLE OF CONTENTS

ACKNOWLEDGMENTS

DEDICATION ,

ABSTRACT ,

Page

TABLE OF CONTENTS

LIST OF FIGURES .,

Chapter 1 Introduction

I. i Background , , 9
1.2 A Data Network approach to Reliability Enhancement 11
1.3 Plan of the Thesis 14

Chapter 2 A File System Model for Storage Reliability

2.1
2.2
2.3
2.4
2.5

Introduction 17
Two Classes of File Systems 19
Catalogs and File Storage Organization 21
Information Storage Representations 24
Summary 29

Cnapter 3 File System Reliability Enhancement

3.1 Introduction 30
3.2 Measures of Reliability 32
3.3 Approaches re Improving File Storage Reliability 36
3.4 The Backup System Model 39
3.5 Summary 44

Chapter 4 Design for a File Storage Backup System

4.1
4.2
4.3
4.4
4.5
4.6

Introduction 46
The Discrepancy Detection Mechanism 50
The Policy Implementation 55
The Backup Storage Facility 59
File System Storage Recovery 66
Summary , 75

5 -

TABLE OF CONTENTS (Continued)

Page

Chapter 5 The Network Implementation of the Backup Facility

5.1 Introduction 77
5.2 Naming of Objects in a Distributed Environment 80
5.3 The Consistency Issue for Backup Copies 85
5.4 Reliability in the Network Environment 89
5.5 The Multiple Copy Problem for Backup 95
5.6 Protection of Remotely Stored Data 99
5.7 Performance Issues 108
5.8 Charging for Backup Services 118
5.9 Summary 121

Chapter 6 Conclusion

6.1 Summary of Results 123
6.2 Other Applications Using the Backup Mechanisms 127
6.3 The Distributed File System and Beyond 129

BIBLIOGRAPHY 133

- 6 -

- -- ■- ■ i - - m ---

LIST OF FIGURES

Figure Title Page

2.1 Hierarchical Organization of Files 23

3.1 Four Components of a Backup System 40

4.1 Interacting Components in the Backup System Design 47

4.2 The Discrepancy Detection Mechanism , 52

4.3 The Backup Policy Implementation 56

4.4 Request Types and Corresponding Operations 61

4.5 I/O Cont-ol of Data Transfers 63

4.6 Correlation Between File Stability and extent of Sharing 69

4.7 File System Storage Recovery 72

5.1 File Name Usage 82

5.2 Double-key Encryption for Descriptor Files 104

- 7 -

— - —--—"-*—

Chapter One

Introduction

1.1 Background

Many contemporary computer systems are too complex to understand well

enough to guarantee that they are free from design errors. It is even harder

to guarantee that an implemercation of the design is correct. As a system

grows in size and sophistication, it becomes more and more complex, and as the

ability to understand this complexity diminishes, so does confidence in

correct and reliable operation. Even if the correctness of the implementation

could be guaranteed, external environmental factors preclude 100% reliable

operation. For example, hardware failures, power failures, etc., are

inevitable. Faced with the fact that failures will occur, the system designer

must consider reliability enhancement and failure recovery strategies for the

important components of the system.

One of the most important, and complex, components of a computer

operating system is the file storage component. File system reliability

enhancement and recovery techniques are often overlooked in the haste to

design and implement an operational system as quickly as possible. Although

- Page 9 -

-. T, ■ ,„v i im nMamaaMMnjn^^^Maa^^^^MjaittMn^M^^,
 -■- - -

1.1 Background

this approach may seem to be the most economical In the short term, looking

back later often shows that an unfortunate tradeoff has been made between

system development time, and subsequent utility, performance, and reliability

of the system. Due to the importance of the fije storage system, the complex

nature of the Interactions among its components, and the resulting

inevitability of software and hardware failures, a file system storage backup

and recovery facility is essential.

The most common file system reliability enhancement and failure

recovery facility used today utilizes magnetic tapes for storing backup copies

of files. The complexity of such systems varies from a simple strategy for

dumping a bit-for-bit image of the entire file system storage, to a versatile

tape management facility allowing selective retrieval of individual files. In

all cases, the backup facility is a specially designed file storage system

which can only be used for limited file system purposes (such as storing

backup copies of files), and can not provide much flexibility, due to the

restriction in access capabilities inherent in the tape storage medium.

i',t "ever, tape is not the only feasible storage medium for storing backup

copies of files.

- Page 10 -

— ^— II MMM.^1—M—j—»^>MM^^^—«Ml^^l

^g»MPumipiMj.iiiim»i|iw»i.wini»i-ie'"» ».■»■»-'■^■■-'■■■<ww»"i|"i»"»"«."'
W^w^gwwpywryp -■ w

^sap

1.2 A Data Network Approach to Reliability Enhancement

1.2 A Data Network Approach to Reliability Enhancement

In this thesis, we investigate the use of a data network for providing

file storage capabilities for backup purposes, using a random access storage

facility, in such a way that the backup facility can be regarded as an

extension to the regular file system. The backup facility maintains a

consistent backup image of file storage, and the local file system is regarded

as a cache storage facility for efficient access to tilas stored at remote

computer systems within the network. The major advantage in using a network

over using magnetic tapes is the availability of a large, inexpensive random

access storage medium which provides increased flexibility in storing,

accessing, and managing data. Separation of file contents from information

describing the file, and its structural relationship to the rest of file

storage, allows independent management of file contents and catalog

information. Independent management of different classes of data, although

possible, would be inefficient using a tape system, because access to data

items scattered throughout tape storage requires the use of slow sequential

access techniques.

- Page 1 1 -

=SS ■ —

w/^ _jiSO^W'^*,ww'

1.2 A Data Network Approach to Reliability Enhancement

The use of a data network for file backup improves reliability at a

reasonable cost for recovering from situations in which a failure does not

cause extensive damage. It is assumed that catastrophes are rare, and

therefore the discussion in the thesis is oriented toward the more frequent

but less catastrophic loss of information typically affecting less than half

of all file storage. The network facility hastens recovery by allowing the

system to be made available to users as soon as the catalogs and system

libraries are intact. Files need not be retrieved in a special predetermined

order, and no time consuming tape searching is required. Instead, a flexible

random access data management facility allows files to be retrieved "on

demand" as they are referenced by users.

The increased flexibility in data management afforded by a network

system allows better user control over backup operations. Specification of

how to produce consistent backup copies of a database is possible, and the

user can know the precise state of backup copies of files. This is

accomplished by separating the mechanisms of detecting modifications to local

copies of files from the policy of incorporating those changes into backup

copier, to make them consistent. The provision for allowing a user-defined

backup policy provides the necessary flexibility.

In addition to flexibility of data access and management, the network

provides diversity of file storage facilities. The ability to widely share a

file storage service among several computer systems makes a large random

- Page 12 -

—,,.-,..., „1 mi M- mmtmamatamtrntammtmumm^^s^m^m^m^^mm^^^^ttti^m^aa^^^m^^^^^^^m^

1.2 A Data Network Approach to Reliability Enhancement

access storage facility economically feasible, just as timesharing made large

centralized computer systems economically feasible. The accessibility of

multiple file storage facilities increases the total reliability of file

storage, since failure of one instance of a network file system does not imply

the failure of the whole backup facility. Using multiple storage facilities

improves reliability, but introduces problems of multiple distributed copies

of files. In fact, the backup facility is viewed as a special case of a

distributed file system, and the major problem is to keep backup copies

consistent with local cache copies of files. Since backup storage is mainly

accessed to update inconsistent copies and only occasionally to retrieve

copies, a scheme is used to centralize distributed copies by a file migration

technique. Under normal circumstances, all backup copies will be located at

one storage facility, and only when that facility is unavailable will copies

become distributed, and then only until they can again be consolidated. The

central consolidation rcheme is shown to he analogous to some common tape

management strategies.

Throughout the thesis, backup is viewed as a solution to problems of

reliability. Howevei, the incorporation of specific designs within the

framework of contemporary computer systems and computer networks raises other

issues which are investigated at the same time. A prime interest is the

investigation of mechanisms for managing backup copies of files as a special

case of the harder problems inherent in distributed file systems. It is hoped

that some of the solutions to the special case problems will provide some

- Page 13 -

1 »J«jpiJiipjui
.»WKF"?^ i imjup " . ii i .

1.2 A Data Network Approach to Reliability Enhancement

insight into the nature of the harder problem. The organization of the thesis

leading up to this goal is described below.

1.3 Plan of the Thesis

Chapter two presents a model of a file system that will be useful for

describing various mechanisms in the operation of the backup facility. Access

to information in the address space is distinguished from access to

information in file storage. The controlled, preaictable nature of the latter

type of access is the basis for detecting modifications to local files.

Various approaches to defining and improving reliability are outlined

in chapter three. Reliability is related to availability, and a goal of

maximizing availability is set for the backup facility to work towards. A

model for a backup system that improves reliability by maintaining redundant

copies of information is described, and some existing implementations are

outlined. The model identifies four interacting components: a file

modification detection mechanism, a backup policy implementation, an I/O

facility, and a file retrieval technique.

A detailed design for a general purpose backup facility is presented in

chapter four. Based on the models of chapters two and three, each component

of the system is considered in turn. The interfaces are described, and

- Page 14 -

 "Tun i •Miwa^
MMMHt

.,-rmm ■ ■nip n, iiiin.L,.., UMni.iufcHm^.wiii'WMnniiwyw i n n. T. .ii»m|i i.» i, i wmp

1.3 Plan of the Thesis

related issues, such as security and protection of information, user

requirements, etc., are considered. The nature of the backup file storage

facility using a data network is also described.

Finally, in chapter five, the specific issues that are important in a

network implementation of the backup facility are described. A solution to

the problem of naming objects in a network, using globally unique identifiers,

is followed by s discussion of consistency of files. Consistency is

guaranteed by the use of temporary shadow copies, which themselves remain

consistent before and during backup operations. To make the backup system

more reliable, the use of several storage facilities in a network is

considered, but the resulting production of multiple copies of files can cause

difficulties in locating and accessing the correct copy. To counter the

effects of these difficulties, centralization of file storage is described,

followed by a discussion of protection of remotely stored information using

techniques of data encryption. Since the use of a network usually restricts

the bandwidth for data transmission, as compared with local I/O channels to

tapes and disks, for example, the expected performance of the proposed system

is analyzed using elementary concepts from queuing theory, and is found to be

adequate for the file usage patterns expected in a typical shared computer

utility. Finally, some ideas about charging and accounting for network backup

services are considered.

- Page 15 -

"gj°a*r»"»* -*~

1.3 Plan of the Thesis

Chapter six provides a summary of the results of the research that led

to the ideas in this thesis. These ideas are then extended slightly to

illustrate their applicability to other types of facilities that might serve

users. The chapter ends with a presentatiju of suggestions as to how some of

the earlier ideas might be useful in considering the problems of the

distributed file system. The extensions of the ideas as complete solutions to

distributed file system problems are left as topics for further investigation.

- Page 16 -

iri.i .-I..I.I. MM^MMMMHH^MIMt •MMMMMI

"~i i i «piiunwi."'—^u ,.„~.

Chapter Two

A File System Model for Storage Reliability

2.1 Introduction

One of the most important functions provided by a computer system is

the management of stored information for users. A file system provides a

facility for managing stored data, and names and other attributes associated

with the data. This chapter presents ?. file system model that will be useful

for describing various mechanisms employed in the operation of a facility for

improving information storage reliability.

In most systems, the access characteristics and representation of

stored information in files (usually in secondary storage) differ from the

access characteristics and representation of the information as referenced by

program instructions executing on a hardware processor. For example, access

to secondary storage may be slow, but information is stored in "blocks," while

access to information in primary memory by the hardware processor is fast, but

only a word at a time is referenced. The contents of a file, as a collection

of information, is a user level concept. The individual units of information

(e.g. words, pages, records, etc.) that comprise the contents of the file are

- Page 17 -

■■■ ■ ■■ --■■' — ■■■■i.iiiii,
»-*--■ -•■ •■-- ■-TI-- lir-- ---I- |-

..-■ ^...)h.,^->.^.-i.||

mm m^*m* '."•"»■ i ..iii.j.i.1 rum», »»I iinuwn» i... , -t_-r _..-...IJ. ■M I t^B

2.1 Introduction

implementation level concepts. These information storage units are referenced

by programs during their execution, and are stored as ordered sets of bits in

primary memory or in a hierarchically structured memory system. The name?

used to reference information represented in this form are used by the

hardware processor, anc' comprise the program namespace.

The user is concerned wiih ordered sets of bits called files. Names

for files are typically human interpretable arbitrary length strings of

characters, and these names make up the user namespace. The investigation of

two classes of file systems, the read-write and the direct access file system,

and a subsequent look at information storage representations in more detail

will help clarify the relationship between the user namespace and the file

system, and the program namespace and the address space manager.

The next section describes the two classes of contemporary file systems

in terms of the data access operations and name mapping functions which they

implement. This description is followed by a brief discussion of the use of

catalogs in the file system implementation. The major content of the chapter

follows with the identification of two states for information accessibility.

File contents that are currently in use by programs, and therefore have a

representation that is susceptible to modifications if referenced in a program

namespace, are distinguished from a file storage representation that

implements a more permanent storage. The explicit nature of updating the

permanent storage from the volatile address space representation of the

- Page 18 -

MMM - ■ III
MM

PWWPWPPWWilW

2.1 Introduction

information will later provide a mechanism for detecting modifications to

files.

2.2 Two Classes of File Systems

The function of a file system is to maintain a binding between a user

oriented filename and a unique identifier (ÜID) which is used to name the file

in the context of its implementation. This binding allows filenanes to be

mapped into program namespace implementation oriented names for use by

programs executing hardware instructions. Whereas the implementation of the

program namespace and adc ?ss space are necessary components in the

architecture of a computer system, the implementation of the user namespace

and the file system are not. They are provided for the convenience of the

user so that operations on stored data can be managed in a higher level naming

context than the hardware instruction level.

In addition to providing a mapping between filenames and UID's, the

file system may also store descriptive information about each file, such as

its length, its creation time, its access attributes, etc. This descriptive

information is stored in catalogs, or directories. Catalogs also implement

the filename-UID binding, and will be discussed in more detail in the next

section.

- Page 19 -

MUMtan _ -^- ^ ■ ■■ iiia^M ^^Mt*mmam^mm*Mm^m^*mma**m*mmmmm*mmammmmm>mammmmmmmmaiK*M

Wl^<^PMMPP^BW*PWIg^WBqmw^'UB>ll U.J. lUMlJMlJIMp.l, IPPBBP pippWWB>^B»yai— 'il.M.vi.ip* ■illii'Mim V*'.-' -■H.«y iwv"c~»— **TTW

2.2 Two Classes of File Systems

The method by which the file system enables program namespace

references to infoimation stored in a file, given the filename, leads to two

kinds of file systems. In the read-write file system, information referenced

by the filename is identified from the filename-UID binding maintained by the

catalog, and copied into (or out of) a program namespace context (i.e. the

address space), and this copy is accessed in the usual address space way

directly by the hardware. In a direct access file system, the filename is

translated via the catalog into a program namespace name, and this na^e will

subsequently allow the program to access the information directly in its usual

address space way. Thus, the read-write file system, given a filename and a

program namespace name, will move information between the two implementations

of the namespaces. The direct access file system provides only a name

translation function. Access to the information is accomplished in the

program namespace by using the name provided by the translation. Given a

direct access file system, a read-write file system can be modelled by simply

performing the additional functions of moving the information between the file

(as identified by the name translation) and a copy of the file named in the

program namespace. Therefore, we will just consider a direct access file

system.

- Pag'i 20

i ii» in ■■ M.1II1 i ii ii taM^MM——rnmmm ■MM

paopp ip»waiWWWf pM LWIIISHiWIW .'»«■, l.i.ipilLI.1.HIjmi.l».i.!..HW ■■*«,» "HLH ■'.^IWIH- ■■■^%".. UJ'.""7 - P I ■JM.i^^W^-

2.3 Catalogs and File Storage Organization

2.3 Catalogs and File Storage Organization

The file system catalog or directory is used to record associations

between names (and possibly other descriptive information) and the stored

representation of files. A file, defined as an uninterpreted ordered

collection of bits, is a very general object. A file may in turn be used to

represent objeccs in a higher level context, e.g. ascii bytes representing

stored ttxt, or machine instructions representing a program which can be run

on a processor. We will not be concerned with any higher level semantic

context associated with a file. All files will simply be ordered sets of

bits. However, there is one significant implementation strategy that will be

considered, which defines a structure on a particular type of file that is

used by the file system itself.

Consider the implementation of catalogs in the file system. If the

catalog object is implemented using the file, an interesting property results.

In general, the catalog stores information about files. If some of these

files are actually catalog objects, then catalogs can contain information

about other catalogs. This leads to a structured hierarchy of files, with

non-terminal nodes being catalogs, and terminal nodes being either catalogs or

non-catalog files. A catalog is therefore a special type of file that is

implemented, interpreted, and manipulated only by the file system.

- Page 21 -

■«■

' ^JiSjg^1^"WP-*-'",u■—""■"""■" ' '' ' ■■' "m »mi• *mmm — mm ww w —*&*** ■- mm* in ii» II»H nm

2.3 Catalogs and File Storage Organization

Given a tree structured organization of catalogs and files, one may

hierarchically order information according to one's needs. For example, the

administrative hierarchy often leads to a convention of assigning each user a

unique identifier recognized by the system at login time. In addition, each

user is associated with a project for administrative and accounting purposes.

Adopting this convention in a tree structured file system organization usually

results in a set of catalogs for the projects, with a sub-catalog for each

person in the project. This strategy can be extended horizontally by the

system administrator for system related purposes (e.g. projects, libraries,

resource control and accounting strategies, etc., may be system relevant

categories realized by catalogs across the highest level in the tree), or

vertically by the user for personal requirements (e.g. organization of

information according to subprojects, realized by catalogs within catalogs),

as pictured in figure 2.1. The important point is that any structure imposed

on the organization of user files is implemented by the catalogs, and no

inherent assumptions about such organization is required in the stored

representation of non-catalog files themselves.

- Page

tmmmm

2.4 Information Storage Representations

figure 2.1 Hierarchical Organization of Files

Page 23 -

.. .. ., ..-,-^.-... -.■,-.-, „.^^^..^Mi^^ll^^ijU^

I r - -- - ^^

2.4 Information Storage Representations

2.4 Information Storage Representations

The direct access file system provides a name mapping function between

the filename and the program namespace context. The program namespace

consists of names used by the hardware while executing instructions to access

information. This information and the set of names used to access it make up

what is commonly known as the address space. In studying reliability of

information storage in the file system, the representation of stored data in

both the files and in the address space is considered, as well as operations

that transform data between these two representations.

Within the general purpose computer system we are considering, useful

work is done by referencing and performing transformations on stored

information. These actions are performed by the process. Informally, a

process is a collection of information with a dynamic history of references to

and transformations on the information. The process is the only active agent

in the system responsible for creation, modification, and destruction of

information. Fach process is associated with one address space (previously

defined as an ordered set of bits) named by hardware interpretable names.

Furthermore, it is assumed that the address space is implemented in a

- Page 24 -

 ■"'"'• "■"■-""• — "■• - ■•"■'"""' ■ ' - -■*—-*-■ iir i i[_iij_ij_ijaüiauMiU__i.

2.4 Information Storage Representations

segmented hierarchically structured virtual memory [BCD 72]. Many other

systems can be modelled as restricted sub-classes of this type of system, so

it will be adopted in this model.

A major reason for building a hierarchical virtual memory system is to

multiplex a scarce primary memory resource. The result provides a uniform way

to address information as if it were in primary memory, even though special

mechanisms may actually be required to support this illusion. This usually

implies a subsystem (the "paging" subsystem) for managing the multiplexing of

primary memory by moving copies of information between the allocated faster

memory and the more abundant b ;t slower secondary levels of storage. The

policy governing the allocation of primary memory is based on performance

considerations, so that, for example, the information referenced most recently

in the address space of a process executing instructions will remain in

primary memory, since it is likely to be referenced again immediately (the

locality of reference principle). Otherwise access may require the movement

of information among the levels of the memory hierarchy. This implies that

infrequently named information will not be in primary memory most of the time.

In factv information will only be moved into primary memory when it is named,

and it can only be named by a process in the context of its address space.

The operation of expanding the size of an address space (in this model,

the process of adding a segment to an address space) is called initiat ion. In

the direct access file system model, initiation involves adding information

- Page 25 -

r-iin- -~—.mriiMirmr-if innwiM» rir-iiTir I m 11-1 mtmtmm^^^^^^^ggi

2.4 Information Storage Representations

(identified by the filename and the file system napping function) to the

address space by creating a new segment, and returning the program namespace

name for this segment. Subsequent execution of hardware instructions that

name this segment invoke the virtual memory machinery to create the appearance

that the contents of the segment are actually stored in primary memory. Tne

inverse operation, called termination, removes a segment and its name from an

address space.

There must be some mechanism for long term storage of information when

it is not initiated, i.e. for storing the informational content of segments

when they are not part of any address space. Such storage is not the

responsibility of the hierarchical virtual memory manager, but of the file

system. Since such uninitiated information can not be named by any process,

it will not be stored in primary memory, but in secondary memory (probably at

the least expensive, slowest access level). Furthermore, since it cannot be

named by any process, and only the process can modify stored information, such

information will be static. The static long term representation of stored

information managed by the file system will be called an immune file, since it

is not subject to modifications by the actions of any processes. When this

information is a writable part of an address space under the auspices of the

virtual memory manager, it will be called a susceptible file, since it will be

susceptible to changes by processes which can name it. Thus an immune file is

the long term storage representation for segments stored in the file system,

and the susceptible file is the storage representation for segments in the

- Page 26 -

■ ■■■ — —> ■-■■■- i—m Ml MMMKMM^MMMl

2.4 Information Storage Representations

virtual memory initiated from immune files. In this thesis, we will be

concerned with the reliability of information managed by the file system and

stored in immune files. The discussion of reliability enhancement mechanisms

in later chapters requires an understanding of the distinction between immune

files and susceptible files, and how the file system and the virtual memory

manager should cooperate in using these objects.

When an immune file is named by a process (using the filename), the

file system will communicate with the virtual memory manager (using the

storage implementation oriented OID bound to the filename) to request creation

of a new segment, initiating the immune file into a segmented address space,

and returning the new name of th? segment in that address space. The file

remains susceptible until it is terminated from all address spaces.

For reliability and efficiency purposes within the virtual memory

implementation itself, it is often the case that a copy of an immune file is

made, and this copy is initiated and made susceptible to modifications by

processes. In this strategy, th.-.re is a special action performed by the

virtual memory manager, called an update, which periodically reflects changes

made to the susceptible copy, back into the immune file. This special update

operation occurs outside the context of a process or an address space, and

actually changes the immune file. The important point is that such changes

should occur only by the update operation according to a well defined

strategy. We will adopt this latter model for three reasons. First, a model

- Page 27 -

„.»,,,>,. — ., .,n..,ii in , . ir, ir, fiiifn,i m irrimmmmmm»mam^mmmmmmmiiimmtUUUm

2.4 Information Storage Representations

in which a copy is not first made can be described by requiring an update

operation to occur after each change to a susceptible copy of the file.

Second, since changes to an immune file occur outside the context of a process

or an address space, updates can occur at well defined times governed not by

the unpredictable dynamics of a particular process or set of processes, but by

a precise strategy defined by the virtual memory implementation. Finally, the

controlled operation of updating an immune file will be an important mechanism

in the strategy to be developed later for improving reliability of stored

immune files by making copies of them when they change.

In summary, susceptible files are managed by the virtual memory

subsystem, and are subject to numerous, frequent, and unpredictable

modifications by processes. On the other hand, the virtual memory manager

reflects these modifications back to immune files by the update operation in a

well defined way. Immune files are managed by the file system, and are not

subject to numerous, frequent, and arbitrary modifications by processes.

Reliability of stored immune files is studied because the update operation

provides a precise way of determining their state of modification (based on

strategies and policies implemented in the virtual memory manager), and

because this type of storage is more abundant and more permanent than storage

used in implementing the address space. The next chapter introduces the area

of reliability and presents a model foi describing the virtual memory manager

and its interface with the file system in terms of improving reliability of

immune file storage.

- Page 28 -

2.5 Summary

2.5 Summary

This chapter has presented a model for a file system that will ,e used

for describing various mechanisms in the operation of a backup facility. The

real-write and the direct access file systems were described, and a

hierarchical file structure was illustrated. Finally, the implementations of

information storage in the address space and in the file system were defined.

In the address space implementation, information in the virtual memory is

susceptible to modifications by processes, while information in file storage

is modified only in a well-defined precise way, by an update operation. The

update operation will be the basis for detecting modifications to files.

- Page 29 -

,■.■■■,•*■ läaaMtoatt* -■ ...■■■...-*.-..--.-^ ..-■*-. ^.-^w^, ■ ■^.,.,_,■■ ■■ -.^..-.- m^mjamljttjM ,^^m^^^^ljmmialm

Chapter Three

File System Reliability Enhancement

3.1 Introduction

Reliability can be a subjective impression based on how "useful" a

facility is, or it may be an objective measure of a system's performance based

on operating statistics. Subjectively, a data storage mechanism is "reliable"

if its users are confident that data can be storad and later accessed

correctly and when desired. Making a system more reliable boosts confidence

in both availability and correct functional operation. Measures of

availability can be used to provide an objective measure of reliability, but

characteristics such as user confidence and correctness of operation are

harder to quantify. Therefore, this thesis considers a measured improvement

in availability to indicate an improvement in reliability.

During the course of a system's operation, failures are possible.

Generally, a system will function until a failure occurs, and then it will

become unavailable. Unavailability may be a direct result of the inability to

proceed after i serious failure, or the intentional result of an action by an

error detection mechanism in response to a failure, in order to prevent

- Page 30 -

■■ - - —••*■■

 ■■-- - - - ■■■ ••'•■' ' • ""YMiiniilia

3.1 Introduction

subsequent widespread damage. Techniques for error detection for information

storage systems will not be discussed here. Instead it is assumed that

incorrect functional operation of the system is detected by an error detection

mechanism that responds by making the faulty system unavailable until the

cause and effects of the failure are corrected. Thus, a system is available

only when it is functioning correctly, and availability (and reliability)

depends on how quickly recovery from failures can be completed. The thesis

investigates mechanisms for redundant storage of data to facilitate rapid

recovery from failures, increase availability, and thereby improve

reliability.

Measures of reliability based on measured availability and failure

recovery time are discussed in the next section. Recovery time is not the

only important factor, however. The extent of recovery possible, in terms of

the amount of unrecoverably lost information, is also considered. A goal of

the reliability enhancement system is to minimize both recovery time and the

amount of unrecoverable loss of information, at a reasonable cost.

Traditional approaches to improving reliability are summarized ind an

approach which provides for recovering backup copies of information is

selected. Some desirable characteristics of this type of system are .stated,

and shown to be properties of existing implementations using magnetic tapes.

Page 31 -

MMWtA Mtf

3.1 Introduction

The last section presents a model for a backup system that will be

referred to extensively throughout the rest of the thesis. In this model,

four components are identified. A file modification detection mechanism is

used to invoke a backup policy implementation. Based on the particular policy

in use, requests for movement of data are made to an I/O component. The I/O

component is also used by the file retrieval mechanism.

Finally, it is suggested that a network implementation is advantageous

because it retains the desirable properties of a tape system, while offering

improvements that offset the penalties of new constraints. This suggestion is

the subject of detailed consideration for the remainder of the thesis.

3.2 Measures of Reliability

Reliability and availability are related. When the inevitable system

failure occurs, information may be lost. How quickly and how completely

recovery can be done determine reliability, also. In some cases, rapid

recovery and high availability are important, while in other cases it is more

important that recovery be complete and no information be permanently lost.

Many systems attempt to reach a compromise between the two costly ideals of

rapid and complete recovery.

- Page 32 -

M^fcaltf IÜ ■■■■-■ 'Mmtu-^tiMh^i]LMii «ii i
»liiUMll I

3.2 T.easures of Reliability

In applications such as air traffic control, stock inventory data

bases, and computerized bank accounts, it is important to prevent

unrecoverable loss of information. In commercial timesharing applications, it

may be tolerable to accept some permanent loss of data if recovery can be made

more rapidly, thereby improving availability. The effort invested into

improving reliability, and the tradeoff between speed and extensiveness of

recovery, depend upon the cost of a failure, in terms of resulting danger to

human life, financial loss, etc., for a given system application. This thesis

will investigate reliability considerations for a general purpose computer

system providing file storage facilities for user applications. Such a system

might be a large shared computer utility (e.g. Multics [Cor 65, Org 72, MIT

74]), or a small dedicated private system. The issues and solutions will

apply to both classes of systems, but the difference in scale may dictate

differing implementations. The larger system will be the primary object of

interest in this thesis, and the reader may imagine how the ideas apply to a

snail system.

Availability is the first factor in measuring reliability. It can be

measured as the mean cime between failures (MTBF). The type of system being

considered here Is assumed to exhibit a MTBF on the order of several days.

The second factor useful for measuring reliability also relates to

availability. This factor is the mean time to recover (MTTR). The MTTR

measures how fast recovery can be accomplished, and thus indicates how soon

- Page 33

3.2 Measures of Reliability

the system can be made available again. The MTTR depends on the severity of

the failures encountered, the amount of lost information, and the method of

recovery used, and is assumed to be no longer than an hour. The MTBF and the

MTTR together lead to a measure of availability txpressible as a percentage of

total time that the system is available.

The last factor that relates to reliability is the system's

susceptibility to unrecoverable, permanent loss of information. This measure

depends on the other two factors, and on the particular recovery strategy

employed. The basic idea described below is that information which is newly

created is subject to permanent loss until some measures are taken to assure

its reliable storage. The amount of such information provides a measure of

susceptibility to unrecoverable loss of stored data.

According to the file system model described in chapter two,

information is created only when a susceptible file is modifLed. This

irodification will result in an update to the immune copy of the file, thereby

ttoring new information in file storage that will require the invocation of

:he reliability enhancement facility to prutect against loss and permit

recovery if needed. The invocation of the reliability enhancement facility

results in a backup operation.

For the system, there is an average update rate and an average backup

rate. The backup rate will always be smaller than the update rate. The

difference between the two rates defines the resolution of the backup

facility, i.e. how quickly backup operations can respond to updates.

- Page 34 -

3.2 Measures of Reliability

Unrecoverable loss of data occurs if the system should fail after

immune files have been updated, but before backup operations have completed

for those updates. The average number of these "outstanding" updates provides

a measure of susceptibility to unrecoverable loss of information, and is a

function of the resolution.

Improving the resolution reduces suszeptibility, but may be expensive.

A tradeoff is required between the amount of work relegated to the system for

improving the resolution, and the amount of information loss acceptable to

users. The extent of such a loss that is acceptable depends on how hard it is

to regenerate the information.

Changing the resolution of backup operations need not affect the MTTR,

because improvements to resolution can be made in the backup facility, while

the MTTR depends on the recovery techniques. Tue separation of backup and

recovery strategies allows the resolution and t'ie MTTR to be optimized

t
independently by strategies specially adapted for their needs. A gc^J of a

network approach is to do just that: to develop backup and recovery

strategies that exhibit both high resolution, and low MTTR. The networ'- makes

this separation feasible, while traditional tape systems prohibit this

separation, resulting in a situation in which attempts to improve the MTTR

cause resolution to be degraded, and vice versa. Some reliability enhancement

techniques are outlined in the next section, and the tape backup facility is

discussed.

- Page 35 -

■ 'itf-'- '■•■■ -— ■■ --

^ ^^..- - -^-^-^ ^-^ - -^-^ —^- *-

3.3 Approaches to Improving File Storage Reliability

3.3 Approaches to Improving File Storage Reliability

The strategy for improving reliability is to increase availability by

better error recovery techniques. Error recovery techniques include

backtracking, majority consensus [We 72], and redundant storage of data [Fr

69, Pe 71, St 74]. Other techniques in structuring operating systems help to

limit the effects of errors. These techniques include the use of structured

programming [Par 72], protected domains [Shr 72], dynamic reconfiguration [Fab

73, Shi 71], and distributed processing [Orn 75, Row 73], Careful

construction of system components may facilitate the use of special a

posteriori repair utilities for rebuilding databases, regenerating files, etc.

Since repair utilities require explicit knowledge of the structure of the

damaged objects, they will not be discussed here.

One structuring technique for the file system catalog and file storage

implementation fits particularly well with the objectives of recovery in

helping minimize recovery time. By allocating storage for catalogs and the

files they describe in physically local storage units, damage is likely to be

confined to a minimal number of subtrees in the hierarchical file

organization. By confining damage to the fewest number of catalogs, the

number of users that are affected and the chances of damaging critical shared

- Page 36

—_—. :.;:.^i77,ri;i MMMMIMMMM—^***a*mm***mimmm*m iMi^BMI

3.3 Approaches to Improving File Storage Reliability

file system contents that need to be available for system operation (e.g.

system programs and data, system libraries, administrative databases, etc.)

can be minimized. If the system can be made available as long as this

critical data remains undamaged, then a technique that confines damage

improves the chances for survival over a situation in which scattered damage

can occur. Only those users whose catalogs sustain damage will be affected,

while the system could be made available to others. The recovery strategy

used is to quickly restore critical data that was damaged, making the system

available sooner and lowering the MTTR, rather than requiring that all data be

restored before any user can use the system.

Other structuring techniques can be useful for improving reliability,

for example, by building a system with internal redundancy so that damaged

components can be repaired or reconstructed. Th^ approach taken in this

thesis is to build a system that provides external redundancy of information

in stored files, so that intact current copies of damaged information can be

recovered from a storage facility different from the file system. By using an

independent storage facility for backup copies, it is less likely that damage

to the file system will also affect the backup system. Tn fact, it is

desirable that the backup system be remote from the file system, in a literal

sense, so that physical damage to the file system (e.g. fire, pxplosion, etc.)

will not affect the backup system. There are many strategies in use now for

implementing such a backup system. Most use magnetic tape as a storage medium

since it provides an Inexpensive way to store large volumes of information,

- Page 37 -

■ inlmiiif-1

3.3 Approaches to Improving File Storage Reliability

and tapes can be removed Irom the 3ite of the computer and stored remotely.

Whatever storage medium is used in a particular implementation, there are

several ways to produce backup copies of information.

One technique for maintaining redundant file storage information is to

produce a dump of the entire storage implementation. To produce a consistent

backup copy requires that the system be unavailable during the backup

operation, so this approach is not acceptable. Although a raw dump of the

file system may speed recovery from a complete loss of all stored information,

it is assumed that such failures are rare, so we will look for a technique

better suited to more frequent but less extensive loss of information.

For efficiency purposes, it may be desirable to make backup copies of

the smallest unit of information storage that is managed by both the file

system (for long-term storage) and the address space manager (for access in

the virtual memory implementation). However, such implementation dependent

information units (e.g. pages, disk records, etc.) are not usually visible to

users, who view information in terms of files. Since backup operations are

concerned with immune files, and not necessarily with their implementation for

use by the address space manager, the file is selected as the basic object for

which backup copies will be maintained, (i) A model of a backup system that

maintains redundant copies of files is discussed in the next section.

(I) The selection of the file as the fundamental object managed by the backup
facility does not preclude the implementation of a strategy for maintaining
backup copies for smaller storage units that comprise the file implementation,

- Page 38 -

3.4 The Backup System Model

3.4 The Backup System Model

In this section, a four component model of a general purpose backup

system is presented. After describing the function of each component, the

application of the model to a tape backup system is outlined. Finally, it is

suggested that a data network backup approach offers advantages of simplicity,

diversity, and reliability over the tape approach, and the remainder of the

thesis presents a more detailed consideration of the issues.

The four component model of a backup system is illustrated in figure

3.1. First, there is a mechanism for detecting when a backup copy should be

made, based on the state of the file system. Second, a policy implementation

governs if, when, and how a copy will be made. To actually maintain a backup

copy of a file, an I/O facility is Invoked. Finally, there is a mechanism for

retrieving backup copies of information that has been lost or damaged.

for efficiency and performance purposes. However, this level of detail would
usually require an explicit knowledge of the file storage implementation, with
a complicated facility for mapping between pieces of a file and backup copies
of those pieces, and for determining the logical location in the file system
of backup copies. If files a«-e large and are modified in small, localized
areas (such as in database management applications) , this approach might be
worthwhile. However, as discussed later in chapter five, most files in the
type of system being considered here are small, so the added complication of
this approach is not justified.

- Page 39 -

MM mm

3.4 The Backup System Model

Data

^ File System Storage Facility

Retrievals

X"
Requests

-> Input
Output
Module

±
State

Change

Detection

±
Policy

<
Data

> Backup
Storage
Facility

Figure 3-1 Four Components of a Backup System

Page 40 -

■ r -■ ■--■"- I "---■■--■ ■ i..-^-.-^-.**. —mmmm«Ulk

3.4 The Backup System Model

The purpose of tlu backup facility is to maintain redundant,

up-to-date, consistent c-n>fes of files. (2) The local file storage facility

provides a cache for efficient access to files which are saved in backup

storage. Changes to the c :ate of the local cache storage are detected by the

backup system, and reflected into backup storage by periodically copying those

files which have been created, deleting copies of those files which have been

deleted, and re-copying those files which have been modified since the last

time they were copied inlo backup storage.

Some state change detection mechanisms require the inspection of file

storage to passively notice that an immune file has been modified, making it

inconsistent with respect to the backup copy. A more responsive detection

mechanism that can provide better resolution relies on a strategy to actively

notify the backup policy implementation when an inconsistency has been

introduced (by an update operation) in an immune file in the local cache.

While the policy is usually incorporated within a state change mechanism that

operates by inspecting file storage, the model described here separates the

detection mechanism from the backup policy implementation. This separation

provides greater flexibility in defining a policy (which is an rdministrative

issue), and simplifies the design by isolating the essential mechanisms (which

are technical issues).

(2) In fact, backup copies may not always be up-to-date, or even consistent,
These and other problems are discussed in detail later in the thesis.

Page 41

■ - ''■•

3.4 The Backup System Model

The policy implementation determines if, when, and which backup

operations are to be requested when it is notified of an inconsistency. It

invokes the I/O facility to perform operations for maintaining backup copies.

The I/O facility contains knowledge about the implementation of backup copies,

and manages the backup storage facility.

Finally, a retrieval mechanism restores copies of files after they are

lost or damaged by a failure. Essential files, such as the system libraries,

are restored before the system is made available. This can usually be done

quickly, and the system can be made available shortly after the failure. In

addition, all catalogs are assumed to be present. As users reference files

not already in the cache (using the catalogs), copies are retrieved from

backup storage. This strategy also uses the I/O facility to reference backup

copies, and allows the system to be made available to users, even though files

may still b'_ mining from the local cache. Total availability and perceived

reliability benefit from this recovery technique that does not require all

files to be restored before users (many of whom may not have been affected by

the failure) can perform useful work.

The actual maintenance of backup copies is the responsibility of the

I/O facility. Most contemporary systems use magnetic tape storage facilities,

as mentioned earlier. In a tape oriented system, backup storage is

incrementally updated by sequentially writing new copies of files on

successive tapes. A major disadvantage lies in the inability to re-organize

- Page 42

«* u
*"- -■- MillliU HMM

3.4 The Backup System Model

previously written information in the backup storage. Becausr it is

unreasonable to replace an inconsistent copy on a tape with an u..-to-date

consistent one, due to the sequential access nature of :h« mei-turn (the

inconsistent copy ray be on another tape> o" it may be of a diff.;ren size,

etc.), an elaborate tape management scheme is necessary to balance the volume

of backup tape storage and the cost of locating and accessing information,

against the level of reliability enhancement desired. Tne inability to access
<

backup storage in a f. exible, efficient manner also makes it difficult to

determine its state, and hence it is difficult for users to determine just

what state backup copies of their files are in. Nevertheless, such tape

systems have been successful in providing reliability enhancement for file

storage [Fr 69, St 74].

If more flexible, efficient access to backup copies of information is

convenient, many of the management problems become sin.olified or disappear. A

random access data storage facility available in a necv rk offers these

advantages. This is not to say that new problems and constraints do not arise

with a network approach; indeed they do. However, under the operating

assumptions made about the expected frequency and severity of failures,

limitations caused by such new constraints (principally caused by limitations

in realizable bandwidth for data communication) will be outweighed by the

simplification and improved availability obtainable with a random access

information storage facility.

- Page 43 -

 —- - 1 i-

3.4 The Backup System Model

A network implementation should retain the advantages of contemporary

tape systems (e.g. remote storage of data, economical storage of large volumes

of data, etc.), while providing improved reliability and greater flexibility

so that users may take better advantage of backup services that are provided.

A design for a file storage backup system that uses a data network, based on

the four component model, is described in the next chapter.

3.5 Summary

This chapter has presented a model for reliability enhancement for

stored information. Availability of the system and rapidity and extensiveness

of recovery from a failure were the major factors determining reliability.

Use of techniques such as structured programming, protected domains, dynamic

reconfiguration, and distributed processing provide useful approaches to

constructing reliable systems, but the technique selected for recovering from

failures in which data is lost is one which provides redundant storage of

data.

A model of a backup system which maintains redundant copies of

information was described. In this model, four interacting components are

responsible for performing backup operations. A state change detection

component determines when a backup copy should be made. A policy component

decides if and how a backup operation is to be carried out. An I/O component

- Page 44 -

.„«nmi.ii..„.I,■,.,,..,, ,„rii-.i.i-,,ii,., „i, ,..,,..n.<Mim-w,.- ■ jam ■ | ,,, „ in rmiiiirliiiiiWiMilM^

3.5 Summary

is responsible for the actual transfers of data, and a recovery component

provides a facility for retrieving backup copies of files after a failure has

caused loss of or damage to information.

Page 45

Chapter Four

Design for a File Storage Backup System

4.1 Introduction

The previous two chapters have presented models for a file system and

for the reliability of such a system. This chapter will elaborate on the

design of each of the four interacting components shown in figure 4.1. This

design derives from an implementation of a facility providing backup file

storage for the Multics computer system [Cor 65, MIT 74, Org 72], utilizing

the ARPAnet [ARPA 74, Cro 72] and the large capacity data storage facility

known as the Datacomputer [CCA 75, CCA 73, Mar 75], which is accessible via

this network. The purpose of the backup facility is to improve file storage

reliability by providing an interface between local file storage and remote

backup storage.

It is recognized that each component must solve particular application

problems for backup, and at the same time satisfy global requirements of the

system design. The state change detection mechanism and policy implementation

are designed with system security issues in mind. Only information that is

needed for these components is made available, and only in a controlled way.

- Page 46 -

. __ ——— mmmmtmmmmm ___ _ _

4.1 Introduction

Kernel <

y

Non-
Kernel

I
V».

Discrepancy

Detection

and

Retrievals

Policy

Implementation

Backup

Storage

"

Kernel I/O

Data Transfer

facility

I/O

Control

Policy Mechanism

Figure 4.1 Interacting Components in the backup System Design

- Page 47

.. ,^.,.., ■- ..— ■-... -■: - ■

 -- ■ —

4.1 Introduction

The access to information is clearly defined so that unauthorized release of

and/or modification to information will not occur. Isolation of a policy

implementation from a kernel mechanism facilitates the required control over

information access, by defining a specific inter-component interface. This

architecture also separates information release issues from denial of service

issues.

A mechanism is described for creating and maintaining backup copies on

the Datacomputer. The use of the network and the Datacomputer makes large

volume random access storage feasible, and also simplifies data management.

This simplification is realized by dividing backup storage into two

independent classes of information: the file itself, and a description of the

attributes of the file. Random access permits asynchronous control over a

file and its descriptor, corresponding to asynchronous operations to local

files and catalogs. Since the volume of file information can be much larger

than the volume of the corresponding descriptor information, and network

bandwidths may impose data transfer rate limitations, separate access and

control over descriptor information in backup storage allows data management

functions tc occur in parallel with data transfer operations. Other uses for

the backup storage system can be implemented through a particular descriptor

management strategy.

- Page 48 -

■ - ■■■■■-» ■ - - - ■-■■ ■-■ mm—l ■■--:■--—t^ajjjj—gmmg-fc, -..,.■., _..,.- .„, —,-—^J.»^_^j_»^t^J_^MJ-.j

4.1 Introduction

The last component is concerned with system recovery after a failure,

and specifically with file retrievals. The local file storage is accessed by

users in an unpredictable way, while the backup storage is accessed only by

the process responsible for managing it over the network. If the file systen.

is considered to be the backup storage and the management programs for

implementing this storage on the Datacomputer, then the local file storage can

be viewed as a cache memory for the backup image of file storage. This image

is accessed through a single, well defined, controlled interface, and should

be less susceptible to damage. When local damage occurs, the file can be

removed from the cache. Subsequent reference to the file will cause it to be

retrieved automatically from backup storage, if the catalog indicates it

should be in the file system image. Therefore, only the catalogs are required

to be present after a failure, for the system to be made available to users.

An empty cache will then be loaded on demand as users reference files. This

permits file retrieval to proceed with a limited bandwidth network by first

restoring files that users need immediately, and then restoring others. Since

only catalogs need be available before the system becomes useful, system

recovery time is lowered, and limited network bandwidth is used to best

advantage.

Each component described involves an internal set of mechanisms, and a

set of external interfaces. These will each be described in the following

sections.

Page 49 -

MMMa—: m .^^.■^J ^^»^laBhM^A,,,^^,^^,^^,,^^^^^

4.2 The Discrepancy Detection Mechanism

4.2 The Discrepancy Detection Mechanism

The set of files in backup storage represents the contents of the file

system, and local storage provides a cache memory structure for accessing it.

The backup facility manages this cache by keeping backup copies consistent

with respect to cache copies. The basic driving force for maintaining this

consistency comes from the discrepancy detection mechanism.

The backup file collection is maintained as an image of user's

information, while the catalogs define the structural relationships betvc^n

the files. Two classes of changes can cause the cache state to become

inconsistent with respect to the backup file collection. Changes to catalogs

cause alterations to the structure of the file collection (e.g., create or

delete operations). Catalogs are managed by the file system, so such

operations as create and delete which cause discrepancies between cache state

and backup storage state will be detected by the file system.

The second class of changes involves modifications to user's files.

Only susceptible files in an address space are subject to intentional

modification. Such modifications made in an address space by a user's process

will eventually be incorporated into the immune copy of the file by the update

- Page 50 -

4.2 The Discrepancy Detection Mechanism

operation. An update, in general, (3) is an operation which is invoked

occasionally to reflect a set of changes to a collection of susceptible

information, out to the inriune version of that collection of information. An

update operation should be an explicit, well-defined event initiated by the

address space manager, such that it will be the only operation that will ever

intentionally modify an immune file. As such, this event will also provide a

discrepancy detection mechanism for events that modify immune files, making

them inconsistent with respect to backup copies.

In a general purpose computer utility allowing controlled sharing of

information, access to system data and state information needs to be

controlled by the kernel. The discrepancy detection mechanism is a kernel

facility with an interface that provides control over the release of file

storage and address space state information. These interfaces are shown in

figure 4.2 and are described below.

The objective of the discrepancy detection mechanism is to communicate

to the backup policy implementation information about candidates from among

all susceptible files, which become inconsistent with respect to the

corresponding backup copies, and hence become eligible to be copied into the

backup storage system. Some current schemes utilize a r.echsnism which

(3) The update operation is employed to maintain consistency among multiple
copies of data. Making a new backup copy of a modified file is also an update
operation. However, in this chapter, the term "update" will refer only to the
operation of keeping the file system (immune) contents consistent with the
address space (susceptible) contents.

- Page SI -

4.2 The Discrepancy Detection Mechanism

File System

CREATE

DELETE

9»

File
Storage

(Immung

State Change List

7K

Address
Space

Initiation

 a
(Susceptible)

Updates

±.

Policy Implementation

Report Manager

—7F—
V

User

Interface

Figure 4.2 The Discrepancy Detection Mechanism

- Page 52 -

4.2 The Discrepancy Detection Mechanism

combines the detection and policy implementations. We will attempt to

separate the two. Instead of using a passive strategy whereby the detection

mechanism leaves "clues" about candidates for being copied from the file

system into the backup system, which the policy implementation must discover

on its own before acting, we use a dynamic technique whereby the detection

mechanism notifies the policy implementation about candidates for backup as

soon as they are detected. This strategy allows backup copies to be made

sooner after modifications occur, improves resolution of the backup facility,

and reduces the potential for unrecoverable loss of information that could

result from a failure.

In principle, the state of the file storage cache could be determined

by inspection. In practice, the volume of storage precludes techniques that

require inspection of the entire cache, because frequent inspection would be

too time consuming. To determine eligible files for backup would entail a

search of the cache each time state information was needed, and furthermore

would not be a dynamic operation. To facilitate rapid and freque." access to

cache state changes would be sufficient for purposes of discrepancy detection,

A state change list is maintained by tlv file system for this purpose. (A)

(4) The state change list provides an efficient mechanism for determining the
current state of the file system, if the previous state is known, and
therefore provides redundant information for efficient access. If this
infornation is lost in a failure (an event assumed to be rare, relative to the
frequency of state changes), it can be reconrtructed by the more time
consuming operation of inspecting the entire cache, thus allowing recovery.

- Page 53 -

4.2 The Discrepancy Detection Mechanism

Only two operations can cause intentional cache state changes. CREATE

or DELETE requests change the structure of cache storage, and updates to

immune files change the contents of cache storage. Each type is an explicit

operation, and results in an entry being placed on the state change list.

This list element is called a discrepancy report.

The state change list, or discrepancy report list, records the history

of state changes in the cache storage system. Discrepancy reports will

eventually result in some action being taken, through a report processing

mechanism. Report processing is done by the policy implementation, through a

kernel interface to the file system.

The policy implementation exists outside of the operating system kernel

as a user-level process. Its purpose is to decide if, when, and how to

dispose of discrepancy reports, and subsequently request backup-related

operations. In order to respond dynamically to state changes as they are

detected, it communicates with the file system through a report manager

interface. The file system informs the policy implementation of the arrival

of each report, through an interprocess communication (IPC) operation called

notification. Conversely, the policy implementation processes reports it

receives from the file system and returns information about their disposition.

In addition, the file system provides a user interface for the usual types of

file system operations. Access to the report manager interface will usually

be restricted to the policy process, which runs as an administrative support

- Page 54

 ■ -- - -■ ■ —

4.2 The Discrepancy Detection Mechanism

function in the system. This policy implementation is discussed in the next

sec t ion.

4.3 The Policy Implementation

The policy implementation provides a facility for processing

discrepancy reports. This processing can be arbitrarily complex, depending on

the particular administrative needs. However, this complexity is a purely

administrative issue, and is divorced from the mechanism issues of report

notification and subsequent backup operation. In the global picture, the

policy implementation provides an administrative interface between

kernel-detected state changes and the available primitives for performing

backup operations.

The major function of the policy implementation is embodied in a

decision module, shown in figure 4.3. When notified of the generation of a

new discrepancy report, the policy decision module begins processing it.

Based on inputs from the file system and/or users, the decision module informs

the report manager of the disposition for the given report, and (optionally)

places a request for backup operations in the request buffer (e.g., priority

queues). The decision module should implement a fair and flexible policy, so

that unconcerned users receive a default level of reliability enhancement for

their files, while users with special requirements can easily specify

- Page 55 -

■ ■ —— —
~ - ■-—

4.3 The Policy Implementation

File
System

Report

Manager

Notification
POLICY
IMPLEMENTATION

User

Interface

MZ W.
fi eport

Disposition

■>

Report

Processing

—7F—

Decision

Module

->

ilz.
Request

Manager

Ak_
Request

Buffers

I/O
Control

> Requests

Figure 4.3 The Backup Policy Implementation

- Page 56 -

 ■-- - ■-■ - .^^^—mmmmmm „gju mi ,..,..... mmm _..,.,^_ _^.,J,.„. .-,.,., ,^_—JJHH^—^_„^

4.3 The Policy Implementation

non-etandard decision criteria without adversely affecting backup operations

for unconcerned users.

For example, notification of the occurence of an update from the

susceptible file to the immune file in the cache can be passed on to the user.

Instead of relying on a default policy which provides for making a new copy of

the modified file, it may be desirable for the user to journal the changes

just incorporated in the immune file by the update, and later produce a new

complete copy in backup storage. Allowing the user to journal changes as they

occur to immune files can provide better resolution than waiting for the

system default strategy to produce a backup copy. The flexibility of this

type of mechanism provides more precise user control over backup operations,

so that the precise state of backup storage is always known to concerned

users.

The list driven backup scheme outlined here can model the operation of

current typical backup systems. A particular policy implementation requests

backup operations based on file storage state information. For example, the

complete, incremental, and catchup dump strategies can be modelled as decision

criteria based on dates and times of file modification and backup, stored as

file storage state information. Similarly, user-defined strategies are

implemented as user-level policy procedures which embody specific decision

criteria. An appropriately authorized process can then obtain report

- Page 57 -

4.3 The Policy Implementation

notifications, process reports based on file storage state info^-mation it is

authorized to access, and request backup operations through the user interface

to the policy implementation's request buffers. (5)

The -kernel interfaces for accessing report list entries and file

storage state information can be controlled to only allow access by an

authorized backup policy procedure, using the standard system-implemented

access control mechanisms. The policy procedure itself, being an

administratively maintained component of the system, can be audited to insure

that it makes proper use of the kernel interfaces to which it requires access.

This architecture partitions (protected) mechanisms and (administrative)

policies into separate security environments (e.g. kernel vs. non-kernel), and

still permits a flexible user interface without compromising security.

After the policy implementation is invoked, there will usually be

requests for backup operations placed in the request buffer. These requests

will be translated into specific operations for accessing and controlling the

backup storage facility, which are discussed in the next section.

(5) In order to prevent different users from using incompatible private
policies for a given file, an access control list specifying "backup"
permission for certain users will be associated with files backed up by users.
Otherwise, private backup techniques for guaranteeing consistency among backup
copies (of a database, for example) could be subverted.

- Page 58 -

 - ■■■*'- -...— ...■ ■■ ■ ■■ -- - -— - „„..^^j^Ma^^ - : ,--..... .^-...^-.^,......, , ^a^^^M^—^^*imjg

4.4 The Backup Storage Facility

4.4 The Backup Storage Facility

The key reason for using a network for backup storage is that it

provides access to a large, inexpensive, remote, random access data storage

facility. Most large random access storage facilities are expensive.

However, just as the timesharing concept made large computer systems available

to many users by sharing expensive resources, in a similar way the

Datacomputer makes large random access storage available to hosts on the

ARPAnet. Timesharing led to more general resource sharing, and the

Datacomputer holds the possibility for more extensive sharing of data in a

network community. In this section, however, we will be concerned with only

the file system-like attributes of the Datacomputer.

The purpose of the backup storage facility is to retain information for

possible retrieval at a later time. In the organization of file system

storage, there are usually two classes of information. There is the file

itself, and there is descriptive information about the file (e.g. author,

length, time of creation, access capabilities, location in physical storage,

etc.), maintained in the catalogs. Backup storage organization will be

divided into these two classes of Information for each file. There will be

the contents of the file, and an associated descriptor. This separation and

Page 59

a^Maaaa^^
mmmmmmtamm

4.4 The Backup Storage Facility

the random access nature of the storage facility allows independent accesses

to the file contents and to the attributes of the file. Structural changes to

the cache file storage are represented by modifications to catalogs, and will

be reflected in backup storage by changes to the descriptor. Cache file

storage content modifications will result in sending a copy of the file

contents to be stored in the file on the Datacomputer. Any access to a

descriptor will be called a status operation, and any operation that writes a

file in backup storage will be called a copy operation. Status operations

result from status control requests from the policy procedure. The policy

procedure may also make service requests, which result in the informational

content of a data file being transmitted. The copy operation is one of two

types of operations for carrying out service requests. The second type, the

retrieval operation, is discussed in the next section. The types of requests

and what types of operations they result in are illustrated in figure 4.4.

The component of the backup system that manages storage on the

Datacomputer is callad the I/O Control component. It interfaces cache file

storage and policy requests in the local system, with remote backup file

storage on the Datacomputer. Communication between the I/O control process

and the Datacomputer is accomplished using a data management language called

Uatalanguage [CCA 73]. Local backup requests are translated into appropriate

Datalanguage statements by the I/O control process, which sends them to the

Datalanguage interpreter process on the Datacomputer.

- Page 60

„..-.■^,^^.^^^^^^^..J.,_, .■,..,:-,-, .,....-.■.:, ,„,.,.._„

4.4 The Backup Storage Facility

Policy Requests

Copy Operations Retrieval Operations

V
Access Data Files

Use File Transfer Connection

Transfer Data Only

J

Status-Control

Status
Operations

Access Descriptor Files

use Status-Control Connection

Transfer Datalanguage, status, and
control only

Figure 4.4 Request Types and Corresponding Operations

- Page 61 -

4.4 The Backup Storage Facility

Datalanguage supports the usual file system primitives of creating,

reading, writing, naming, and deleting of files, (6) and provides the only way

to access backup storage. The backup file storage is accessed less frequently

than the cache file storage, and in a uniform manner (using Datalanguage) by

the I/O control process, and not in an arbitrary refeience pattern by user

processes. This strictly controlled precise access strategy makes backup

storage less susceptible to unintentional access, reduces the possibility of

undetected errors, and improves reliability, because Datalanguage syntax and

backup protocols must be strictly adhered to for Datacomputer file management

operations to succeed.

Datalanguage requests that represent copy operations cause the contents

of a local cache file to be sent over the network, to be stored in a backup

data file. Status operations result in local catalog information being sent

over the network to descriptor files, or retrieval of (status) information

from descriptor files. Actual I/O operations are performed by the kernel, and

are controlled via a kernel I/O interface to which the I/O control process has

(6) Other more sophisticated data management capabilities are also supporte-d
in Datalanguage, and although they are not essential for operation of the
backup system, they can be quite useful. For example, to obtain a list of
names of all backup files created by a given user, all descriptors could be
read to search for the appropriate ones. However, Datalanguage can
effectively treat all descriptors as a database, perfon a keyed search of the
database, and return only the requested information. This allows database
management-type processing to be done by the Datacomputer concurrently with
any other local processing, and only the requested results need be sent over
the network.

- Page 62 -

_i ii '■■-■■■■■■-■-

4.4 The Backup Storage Facility

LOCAL SYSTEM DATACOMPJTER

File
System
Storage

Kernel I/O
for Data
Transfer
Operations

Copy/Retrieval Operation
(Over File Transfer Connection)

[Datalanguage]
and

Control

Policy

Requests

 Status Operation
(Over Status-Control Connection)

Datalanguage
Interpreter

I/O
Control

Figure 4.5 I/O Control of Data Transfers

- Page 63 -

- - ■ I — •—■—-— . - '.^W

4.4 The Backup Storage Facility

access. These operations are diagrammed in figure 4.5, and discussed further

below.

The I/O control procedure is responsible for maintaining data and

descriptor files on the Datacomputer. To do this it needs to be able to read

and write descriptor files, and hence have access to all catalogs in cache

storage. Status information and Datalanguage are both sent over the same

network connection, called the status-control connection, between the I/O

control process and the Datacomputer. However, the I/O control process needs

neither read nor write capabilities for data files on the Datacomputer, or for

local cache files. Instead, it has a much more restricted capability, called

the enable capability. The enable capability is used to cause the actual

contents of data files to be sent over the network, without any user-level

process ever needing access to the actual information that is senc.

In servicing a request for" a copy operation, the I/O control process

sends Datalanguage to the Datacomputer to establish an auxiliary network

connection, called the file transfer connection, and associates it with a

given data file. The enable capability allows the I/O control process to

access a (restricted) kernel facility which sends the contents of a specified

file over a specified network connection. At the conclusion of transmission,

both ends close the connection. The progress of the transmission can be

monitored by the I/O control process over the status-control connection, which

- Page 64 -

4.4 The Backup Storage Facility

can be used to update the descriptor file at the end of transmission. Thus,

the I/O control process, which has the responsibility and authority for

maintaining descriptor files and requesting data transfers for data files, has

only the capabilities for doing just that, and must rely on the protected

kernel interface (and its own enable capability) for actually transmitting the

data. Similarly, the kernel cannot transmit any data unless the I/O control

process has enabled a file transfer network connection with the Datacomputer,

and informed the kernel about this connection. Thus, both the kernel and the

I/O control process must cooperate with each other before any access to the

data file on the Datacomputer will succeed.

The backup storage management strategies described above illustrate the

precise, deliberate control that is necessary to effect changes in backup

storage, and also show the need for cooperation that tends to insulate backup

file storage from the effects of unintentional attempts to cause changes. It

might be observed, however, that while only the kernel can send and receive

the contents of data files, user-level process can access descriptor files in

all ways. In the implementation of the Datacomputer, an access capability is

required in order to access files, and by providing only the I/O control

process with this capability, other user-level processes will be unable to

access backup storage. On the other hand, with this capability, the I/O

control process is totally responsible for the management of data and

descriptor files (but not the contents of data files). To protect remote data

from unauthorized accesses that succeed, the kernel enciphers the data before

- Page 65 -

4.4 The Backup Storage Facility

sending it. Data encryption will be discussed in more detail in the next

chapter.

So far, we have discussed only one side of the Datacomputer management

story — local to remote storage. Discrepancy detections result in

information transfers from local files to remote data files, and from local

catalogs to remote descriptor files. The ability to use the backup storage

facility in the other direction — remote to local storage — is primarily

based on how useful the descriptor information is. One could envision

elaborate descriptor management strategies for maintaining numerous versions

of files, archival storage for files deleted from (logical) file storage, etc.

Such elaborate schemes, although realizable as descriptor management

strategies, are beyond the scope of this thesis. Instead, we are interested

in reliability issues, which in the context of descriptor management, involve

recovery strategies for cache file system damage. This will be discussed in

detail in the next section.

4.5 File System Storage Recovery

During normal system operation, users initiate immune files into their

address spaces, by referencing them through a catalog. If the cache file

storage is damaged, some catalogs and files may no longer be accessible. When

damage is detected, the system is made unavailable to users until the extent

- Page 66

4.5 File System Storage Recovery

of damage can be determined and appropriate recovery operations can be

completed. This section discusses different degrees of damage that might

occur, and how to recover as rapidly as possible. The cache memory view is

the basic perspective from which recovery will be described.

A basic assumption is made that catastrophic failures are rare, and the

purpose of the backup system described here is to facilitate recovery from

more frequent but less extensive failures. (7) The extent of damage can

sometimes be confined by careful organization and management of file storage.

For example, redundant copies of the root in a hierarchical file system may

prevent damage to a few bits from precluding access to the entire file storage

contents. While such techniques are useful, they will not be discussed here.

Instead, it is assumed that a recovery mechanism exists for the case in which

extensive damage occurs.

Certain contents of file storage are more valuable than others, in the

sense that their loss or damage has a more widespread effect. One example is

the root, or other high-level catalogs in a hierarchical file system. Shared

files comprise another example. In the general purpose computer utility, many

system files are shared. In fact, many, such as the system itself, accounting

programs, editors, etc., are used by every (or almost every) process. These

commonly used shared programs and data files are required for normal system

(7) A performance analysis in the next chapter will give a better feel for the
tradeoffs that might be reasonable between the degree of a failure, the
recovery time, and the resolution supported by the backup facility.

Page 67 -

4.5 File System Storage Recovery

operation, and are usually grouped in a system library. While these files are

accessed frequently, they are modified relatively infrequently. On the other

hand, user files are generally modified more frequently, and shared less

extensively. The larger the group of users for a particular program, the more

stable it tends to be, since it has been debugged and will be modified only

occasionally. The same may not be true for data files, however. In general,

there is a negative correlation between frequency of modifications to a file,

and the number of users who access it, as illustrated in figure 4.6. The loss

of frequently modified files would affect only the few users who access it,

while loss of rarely modified files might affect all users. It is the former

class of files that the network backup system is designed for. If a system

library is damaged, it is assumed that it can be recovered rapidly and easily,

for example, from tape, since it is a relatively stable set of files.

Availability of the system libraries is assumed to be a prerequisite

for system availability. Another assumed prerequisite is the presence of all

catalogs in the file system cache storage. After damage is detected, the

system is made unavailable. If system libraries are damaged, they are

repaired or restored by some local mechanism (perhaps using the network backup

facility, but not necessarily if that would take too long). Damaged files are

repaired, otherwise they are removed from the cache, and the catalog marked

accordingly. Damaged catalogs are repaired or restored, and then the system

is made available to users.

- Page 68 -

■ ■-—- ■■ ■■ ----'- ■-■■■

m -—■—- -- —— 1aiimmajmmamim0ii0Hmm*iam mattmiiamimlM... m , .^,—._._^—^^^,^^1^^«,^,.,,,^^^«,^,,^

4.5 File System Storage Recovery

Increasing

Number of

users Sharing

the File

A

(Unused)

Files Essential for

System Availability

Files Backed Up for

User's Protection

(Stable) Increasing Frequency of Modifications and^a;t.-;

Figure 4.6 Correlation Between File Stability and Extent of Sharing

- Page 69 -

-_.„;.. J._.^..->- ..^-. .,... ^ ^.._ _.. ..m

i **^*m^mA *

4.5 File System Storage Recovery

Specific techniques for repairing the cache will not be discussed here.

Approaches to restoring the system library have been mentioned. The issue of

restoring catalogs is a little harder, since they are not only shared

extensively and are required for system availability, but they may also be

modified frequently. However, catalog storage represents a minority of total

file system storage, perhaps only 10%. This makes it feasible to maintain

duplicate catalogs locally in the cache, or perhaps use another

high-reliability storage technique. The key observation i^ that the system

library and the structure of file storage need to be complete and intact

before the system is made available, and because these change less frequently

than the user's files, and constitute a smaller amount of storage, a local

backup technique that allows faster data retrieval than the network affords

can be used to reduce recovery time and increase availability. (8)

Once the system libraries and catalogs are complete and intact, the

system can be made available to users. However, there may be files missing

from the cache that are backed up on the Datacomputer. When a user tries to

initiate such a file, the catalog entry will indicate that it is not in the

cache. The file system will place the filename on a missing file report list

and will signal the policy procedure to request retrieval of the file, by the

(8) These local backup techniques could use the network, but it is assumed
that this would be slower than using an extra local disk, or tape storage for
the system libraries. Techniques for restoring libraries and catalogs are
described in [St 74].

- Page 70

M— I., ini-n ilTitiMlMaM»
■■

»Ml

4.5 File System Storage Recovery

I/O control process, from the Datacomputer. The sequence of events is

described below, and the steps are keyed to the picture in figure 4.7.

Reference (via the catalog) to a file that is missing from the cache

(1) causes an entry to be placed on the missing file report list, and

generates a missing file fault notification to the policy (2). The missing

file report is processed (usually with high priority), and a retrieval request

is sent to the I/O control component (3). The I/O control component

establishes appropriate network connections for retrieval cf the backup copy

of the missing file from the Datacomputer (4).

Retrieval operations occur "on demand" as missing files are referenced.

The effect seen by the user is a delay in referencing the file, since it is

stored on the Datacoraputer. However, the file may not be the most recent

version, since the failure causing the damage may have resulted in

unrecoverable loss of information. The discrepancy detection and notification

strategy described earlier attempts to minimize this undesirable effect by

tracking changes dynamically so that resolution is minimized and backup copies

can be made as closely as possible to the time of the actual modification that

caused the inconsistency. Similarly, retrievals are made as closely as

possible to the time of the reference to the missing file. The missing file

processing technique resembles the normal operation of a multi-level memory

system, and fits the cache file system model introduced earlier.

- Page 71

----- ■■' ■ ■ ma
—-—-—■ -■•

4.5 File System Storage Recovery

File System1

Cache
Storage

"Missing Fil«!

®
ir

Catalog

Missing File
Report List eport List

Report Manager

Policy ® Missing
File

, Fault

Report Processing

Data Transfer Operations

File Transfer Connection

®

I/O
Control

<D

Status-Contro
Connection

Request

Handler

Retrieval Request

DATACOMPUTER

Data File

Descriptor
File

Figure 4.7 File System Storage Recovery

Page 72

 - -- --- -. —.-
 -■ '■ ■-■ -—*

4.5 File System Storage Recovery

Files that are not yet referenced may also need to be restored. These

can be retrieved at a more leisurely pace, perhaps when no demand-retrievals

are in progress. These retrievals will make subsequent reference to the file

faster for the user, since the file will already be in the cache. Strategies

for background retrieval of unreferenced files can be imagined by the reader,

and will not be discussed here.

A retrieval operation can be the result of a missing file fault, or it

could result from a background retrieval request. Retrieval operations

originate from within the file system, and cannot be made by user processes.

They are therefore secure. They are handled in a similar fashion to copy

operations. A data connection is enabled by the T/0 process, and the file

system is then able to receive the contents of the file from the Datacomputer.

The connection is closed, and the file system removes the missing file tag in

the catalog, and proceeds as if the file were there when originally referenced

by the user.

Under the assumption that damage will usually not be widespread, the

rate of retrieval requests when the system is first made available will result

in a small, but not unmanageable delay in accessing the missing file. Given

the alternative of system unavailability, this is a bearable condition because

it still allows some functioning at a reduced level. Depending on user

reference patterns, the delay in access will decrease as retrieval requests

- Page 73 -

4.5 File System Storage Recovery

become less frequent, and more files are restored. Typically, most users

should not experience any delay, especially if the extent of damage is

confined to only a few catalogs and/or files. The philosophy is to provide

full service for most users and degraded service for a few, rather than no

service for any until full service can be provided for ali. The effect is to

improve the overall reliability of the file storage system.

As a final note, it is suggested that the file retrieval mechanism

could be generalized by an appropriate implementation of the report processing

module in the policy component. Such a generalization would not only allow

backup copies of files to be retrieved from arbitrary storage facilities (e.g.

tapes, other nodes in the network, etc.), but would also provide a mechanism

for extending the usefulness of the local catalog. Such an extension, for

example, could be used to implement a distributed file system in a network, in

such a way as to allow uniform access to distributed file./. This would make

all files appear to be local to the user. With this suggestion, the possible

implementations will be left to the reader's design.

The interactions among the file system, the policy procedure, the I/O

control process, and the retrieval mechanism have been described in order to

give an overall view of the network backup facility. The goals have been to

minimize unrecoverable loss of information and minimize system unavailability

by a secure and flexible strategy. Some of the issues discussed in detail

pertain to backup facilities in general.

- Page 74 -

4.5 File System Storage Recovery

There are still several issues pertaining to a network implementation

that have not been presented. Problems in naming files and in keeping backup

copies consistent are found in backup facilities in general. However, the

possibility that specific components in a network backup facility might fail

leads to techniques of maintaining (temporarily) multiple backup copies on

different systems. Protection of remotely stored data, performance of the

network implementation, and how to charge for backup services are also topics

yet to be discussed in detail. The next chapter will concentrate on these

issues as they relate to the use of a network for carrying out backup

operations.

4.6 Summary

This chapter has discussed in detail the components of a backup system.

Each component has a well defined function and interface to produce a secure

and flexible system.

The discrepancy detection component reports file modifications to a

policy component, which processes discrepancy reports and then requests backup

operations. The I/O control component, in cooperation with the kernel,

maintains backup copies on the Datacoraputer in servicing requests from the

policy component. Data and descriptors are maintained independently, and only

the kernel needs to access file contents to transfer them over the network.

- Page 75 -

-■■"-*■ >-—

4.6 Summary

Recovery after a failure occurs in two steps. First all catalogs and

system libraries are restored, and then users are allowed on the system. As

they reference files, ones that are missing from the cache are retrieved from

backup storage automatically. The result is a slight delay in accessing

missing files, but an improved recovery time and greater system reliability.

Page 76 -

Chapter Five

The Network Implementation of the Backup Facility

5.1 Introduction

The previous chapter has described the local operation of a backup

facility, but has not considered the issues that arise specifically in a

network implementation of a backup storage facility that interfaces to the

local system. This chapter presents a discussion of these issues, some

solutions, and a comparison with alternative approaches.

The ability to name objects of interest is essential in order to access

them. Names for objects that exist in a network environment are discussed in

the next section. Specifically, these objects are network connections used

for communication, network hosts which provide file storage facilities, and

backup copies of files.

In making backup copies, it may be required to produce copies of a file

in a known state. This is important for guaranteeing consistency of a set of

files that comprise a database. By first making a consistent "shadow copy" of

a database, subsequent backup operations can reference this consistent copy

- Page 77 -

.„.,..„.„,„..,—— „...■■■- :: ■-."-— — , „-'jgjjg ^j^^gj^^^^^^

5.1 Introduction

while users can continue to modify the database, without producing

inconsistent backup copies. The method by which shadow copies are modified is

analogous to the method for updating immune files from susceptible files.

The purpose of the backup facility is to improve reliability, but the

reliability of the backup facility itself depends on the reliability of the

components from which il is constructed. In the face of unreliable operation

of network facilities for data access and storage, the backup facility must be

able to take an alternative approach to continue providing service, A

technique using several network hosts to store backup copies of files is

investigated.

When several distributed hosts are used to store data, there are

problems in locating, accessing, and keeping copies consistent. Distributing

storage facilities so that backup service is not terminated if one (or a few)

such facilities should fail may result in multiple distributed copies of data.

However, the nature of access needed for backup purposes allows a special type

of "distributed file system" to be implamented. The maintenance of

distributed files in the network is compared with maintenance of copies using

a tape system. The network implementation is shown to be more flexible.

By storing data at a remote facility which can be accessed only

remotely, one loses the ability to locally control access and protection of

the data. To provide some confidence that the use of a remote data storage

facility will not circumvent local protection strategies, the use of

- Page 78 -

- ■

mum

5.1 Introduction

encryption is described whereby the degree of protection provided is

maintained under local control.

The use of a network for data communication imposes bandwidth

constraints on the ability to move large amounts of data frequently and

quickly. A queueing model is presented and an analysis given to show that by

careful selection of requests for backup service (which can be accomplished by

an appropriate policy implementation), the level of performance realized by

the limited bandwidth network backup implementation provides improvements in

reliability over a tape system, without undo sacrifice in performance when

recovering from a failure.

Finally, some ideas on charging for services are presented. Backup can

be considered as an example of general services provided for users. Special

services are charged at a rate proportional to the amount of resources

required to provide the service.

In the next chapter, generalizations of some of the ideas presented in

this thesis will be suggested as feasible extensions of the backup facility

for solving harder problems. Of main interest is the problem of distributed

file systems, which includes all the issues discussed in this chapter.

Page 79 -

■

5.2 Naming of Objects in a Distributed Environment

5.2 Naming of Objects in a Distributed Environment

There are usually two types of names for objects accessiDle to users in

a computer system. An implementation-oriented name is often used by the

primitives which manage the object (e.g. storage pointers, UID's). A

user-oriented name consisting of character strings is available as a

convenience to the user, so that character string names must be mapped into

implementation-oriented names in the actual access to the objec'.. Examples of

objects maintained in a computer system include files, processes, principals,

catalogs, and domains. Names of interest in a network-oriented backup

facility are for file and network-related objects. These are discussed in

this section.

Every file in the cache file system is named with a UID in a catalog.

In addition, the catalog implements a mapping from user-oriented character

string names, to the corresponding DID name. This mapping is reliable because

the system is assumed to provide a backup mechanism for catalogs, which

implement this mapping. The UID of the cache file is used to derive a unique

character string name for the backup copy of the file on the Datacomputer.

The character string name by which the user knows the file is not used. This

strategy prevents the disclosure of catalog information (the user's character

- Page 80 -

———MaMHaaiti MHHIHH

5-2 Naming of Objects in a Distributed Environment

string name for the file) in a non-kernel environment (e.g. the policy

implementation), because only the cache UTD-derived character string name is

used by the policy implementation and the 1/0 contro. process. (9) No

accesses to local files or remote backup copies of files need the user's

character string file name, except when referenced through a user interface.

In this case, an authorized user may map a character string name to its

corresponding UID, and the UID in turn is used to request backup operations,

as shown in figure 5.1.

This uniform naming convention allows objects to be named from user

environments, kernel environments, and over the network in another file system

environment, while controlling access to the name mapping function of the file

system by the standard access control mechanism in the local system. All

accesses to files will be by UID name, which can be obtained from the file

system mapping function by an authorized user. The key point is that the

inverse mapping from UID to user-oriented name is never required, because only

the UID name is used for requesting backup operations.

Associated with each file on the Datacomputer, there is a descriptor

file, also stored on the Datacomputer, which, by convention, is named

"UID.descriptor" for data file "UID". The descriptor file may contain

(9) The file system provided by the Datacomputer also maintains its own
implementation-oriented UID name for files stored there. These files are not
accessed by the I/O control process by the Datacomputer defined UID name, but
by the character string name, which is derived directly from the UID for the
cache file.

Page 81 -

. ,.

5.2 Naming of Objects in a Distributed Environment

User Oriented

Character

String

Name Space

File System
Name Mapping
Facility

Implementat ion-Oriented

UID

Name opace

Figure 5.1 File Name usage

- Page 82 -

5.2 Naming of Objects in a Distributed Environment

character string names for the associated data file, as a facility for

redundantly storing catalog information, but these names are not essential for

backup operations, only useful. For example, if local catalogs are damaged,

information in descriptor files can be used by a recovery facility to restore

catalog information over the network. Furthermore, it was indicated in an

earlier footnote that the Datacomputer can treat the set of descriptor files

as a database describing the contents, structure, and state of file syste™.

backup storage. Database operations that would be time consuming to perform

in the cache file system (e.g., inspection of every catalog entry) could be

done faster, and concurrently with other operations, by an appropriate

database management request to the Datacomputer. Such uses were hinted at

earlier, and numerous applications can undoubtedly be imagined by the reader.

Another name that is needed in the network backup facility is for the

network connection object. As described earlier, there are two types of

network connections: the permanent status-control connection for sending and

receiving Datalanguage and catalog/descriptor information, and the temporary

data connection for sending/receiving the contents of data files. A

connection is named by a pair of complementary port names. A port is a sender

or recipient of data on a network connection, and is named by a host-socket

pair, uniquely identifying the host, process, and socket number for the p.irt.

A connection consists of a sending and receiving port. The status-control

connection is actually a pair of connections, between a local send and receive

- Page 83 -

5.2 Naming of Objects in a Distributed Environment

port, and a Datacomputer receive and send port, respectively, allowing two-way

communication between the I/O control process and the Datalanguage

interpreter. The port names used for establishing the two connections are

negotiated via the ARPAnet initial connection protocol (1CP) [ARPA 74].

Data connections are established differently. For copy operations, a

send data connection is established using the enable capability of the I/O

control procedure. The Datacomputer associates a receive port name with a

data file, and this port name is sent to the I/O control process over the

Datalanguage connection. This foreign port name is then sent to the kernel

I/O facility, which establishes a simplex connection, sends the contents of

the requested file to the foreign port, and closes the connection. The

Datacomputer takes all incoming data and places it sequentially into the data

file previously associated with its receive port, and then closes its side of

the connection. Note that this type of connection :".s set up under control of

the I/O control process and the Datacomputer using the status-control

connection, and requires the cooperation of the kernel for transmitting the

data. This description illustrates the separation of a privileged data

transfer facility and a trusted port name management facility, and the mutual

cooperation required for moving data.

The retrieve data connection for retrieval operations is set up in a

similar way. The Datacomputer informs the I/O control process of the send

port name it will use to transmit the data. This port name is passed along to

- Page 84 -

iii —

5.2 Naming of Objects in a Distributed Environment

the kernel, which reads all data from that port into the appropriate file, and

both ends of the connection are closed. In both of the above operations, no

data file contents ever pass through the I/O control process; only port names

are necessary to enable data transfers between cache files and backup files

(through port interfaces) over the network.

For most purposes, the mechanisms and facilities described up to this

point will be sufficient for normal backup operations. However, if there are

consistency constraints on sets of files, a special user policy implementation

is required to define those constraints. The issue of consistency is

described in the next section.

5.3 The Consistency Issue for Backup Copies

For most user files, consistency means that the copy created on the

Datacoinputer is identical to a (reoent) copy in the cache. This may not bo

the case if the file is modified while it is being copied. However, such a

modification will cause it to be copied again later, so it will eventually

result in a consistent copy.

The harder consistency problem arises in the case of multiple files

with a defined relationship among their separate contents. The default backup

policy does not allow an arbitrary user specification of the relationship

- Page 85 -

5.3 The Consistency Issue for Backup Copies

defining the consistency constraint among several files. A user implemented

policy permits this specification, however. In fact, a user implemented

policy is necessary for specifying consistency constraints, because the system

has no way of determining the constraints the user wishes to impose on a set

of data files.

Upon notification that a component of the user's database (i.e. a

user's file) has become inconsistent with respect to a backup copy, the user

policy implementation can decide whether or not to request backup operations

for the database, based on database state information. If it is desirable to

backup the database, it is likely that the state would change before actual

copies could be written out to the Datacomputer. Since the state of the

database at the time of the copy operation could be different (and

inconsistent) than at the time of the discrepancy notification, it would be

desirable to have some control over the state of the database at all times.

The user policy implementation can include this control.

At the time of the notification, the user's decision raodu:e may decide

to backup the database, if it is consistent at that particular time. The

consistency constraint requires that the database be in the same (or at least

a consistent) state at some later time when the copy operation is actually to

be carried out To guarantee this, it will be necessary to make a shadow copy

of the database, and request a backup operation for the shadow copy. The

shadow copy is a consistent snapshot of the database at the time the decision

- Page 86

loL^iMai «Ml

5.2 Naming of Objects in .1 Distributed Environment

the kernel, which reads all data from that port into the appropriate file, and

both ends of the connection are closed,, In both of the above operations, no

data file contents ever pass through the I/O control process; only port names

are necessary to enable data transfers between cache files and backup files

(through port interfaces) over the network.

For most purposes, the mechanisms and facilities described up to this

point will be sufficient for normal backup operations. However, if there are

consistency constraints on sets of files, a special user policy implementation

is required to define those constraints. The issue of consistency is

described ir the next section.

5.3 The Consistency Issue for Backup Copies

For most user files, consistency means that the copy created on the

Datacomputer is identical to a (recent) copy in the cache. This may not be

the case if the file is modified while it is being copied. However, sued a

modification will cause it to be copied again later, so it will eventually

result in a consistent copy.

The harder consistency problem arises in the case of multiple files

with a defined relationship among their separate contents. The default backup

policy does not allow an arbitrary user specification of the relationship

- Page 85 -

5.3 The Consistency Issue for Backup Copies

defining the consistency constraint among several files. A user implemented

policy permits this specification, however. In fact, a user implemented

policy is necessary for specifying consistency constraints, because the system

has no way of determining the constraints the user wishes to impose on a set

of data files.

Upon notification that a component of the user's database (i.e. a

user's file) has become inconsistent with respect to a backup copy, the user

policy implementation can decide whether or not to request backup operations

for the database, based on database state information. If it is desirable to

backup the database, it is likely that the state would change before actual

copies could be written out to the Datacomputer. Since the state of the

database at the time of the copy operation could be different (and

inconsistent) than at the time of the discrepancy notification, it would be

desirable to have some control over the state of the database at all times.

The user policy implementation can include this control.

At the time of the notification, the user's decision module may decide

to backup the database, if it is consistent at that particular time. The

consistency constraint requires that the database be in the same (or at least

a consistent) state at some later time when the copy operation is actually to

be carried out. To guarantee this, it will be necessary to make a shadow copy

of the database, and request a backup operation for the shadow copy. The

shadow copy is a consistent snapshot of the database at the time the decision

Page 86 -

■

5.3 The Consistency Issue for Backup Copies

to perform backup was made. When the actual backup operation is performed,

the shadow copy will still be consistent, and will be copied to the

Datacomputei instead of copying the real database. Completion of the copy

operation will be communicated to the user, so that the time that the latest

consistent backup copy was r. .de, and the identity of the shadow copy from

which it was made, will be Known, and the shadow copy can be disposed with as

the user process sees fit.

It is possible that several discrepancy notifications may be received

before a copy operation for a shadow copy is completed. If backup is

requested for each one, then old shadow copies that have not yet been copied

to the Datacomputer can be superseded by new shadow copies. This results in a

:nore recent, but still consistent copy being written out ■ The observation

being made is that shadow copies are analogous to immune files, but are

naintained by the user. This means that updates to shadow copies are made by

explicit, controlled, well defined operations that the user policy

implementation specifies in order to enforce the database consistency

constraints. Backup operations then reference the shadow copy instead of the

real database, just as they reference immune files instead of the susceptible

files in the address space of a user. Disposition of shadow copies is also

handled by the user policy implementation.

Page 87 -

5.3 The Consistency Issue for Backup Copies

Whereas an immune file might be updated during a copy operation, making

the backup copy inconsistent, updates to shadow copies should not be

permissible during a copy operation. To prevent copy operations from

commencing while an update is in progress, or to prevent an update from

occurring while a copy operation is in progress, a locking scheme is required

for the database. (10) Thi? information enables the user to know at all times

and with absolute certainty, the state of the database, the shadow copy, and

the backup copy. This knowledge is essential if any sense is to be made from

a backup copy of the database that is later retrieved from the Datacomputer.

The fact that a consistent copy is retrieved, along with the time that the

shadow copy it was made from was updated, will enable the user to determine

the state of the retrieved database, and perform appropriate recovery

operations for unrecoverably lost data.

Any ability to recover from a failure depends on the reliable operation

of the backup facility and the resources it requires for its implementation.

In a network environment, communication services are required, but may not

always be reliable or available. The issues of reliability pertinent to the

network backup implementation are. discussed in the next section.

(lU) When the request processing component encounters a shadow copy locked by
the user, it should not wait on the lock. Otherwise, a user could
indefinitely deny backup service to all other users. Instead, the request
could be re-queued, or checked again later, etc. Note that a user could make
separate shadow copies instead of performing updates, but the economics favor
the ability to replace old shadow copies while enly postponing the request for
backup while they are locked for updates. The reliability of only the locked
database is affected if backup is delayed by a malicious user. Service for
other files is not affected.

- Page 88 -

■ 1

■mum i

5.4 Reliability in the Network Environment

S.4 Reliability in the Network Environment

The purpose of a file backup mechanism is to improve the reliability of

file storage. This goal can be reached only if the backup facility itself is

reliable, i.e. if it is available to operate correctly when required. In the

network backup implementation, resources that are local and resources that are

remote are required for backup operation. Local resources include those

facilities of the operating system that are shared by all users (file system,

address space, etc.) and will not be discussed here. The use of remote

resources makes the network implementation quite different from the

traditional local tape backup implementations. Whereas the tape medium is

accessed locally, but can be removed so that data can be stored remotely to

protect it from local perils, the Datacomputer storage facility is accessed

remotely, and the information is stored remotely. The key issue to be

discussed in this section is based on the observation that in the network

environment, access to the data is not under complete local control, but

depends on the reliability of remote resources.

- Page 89 -

5.4 Reliability in the Network environment

One essential resource required by the backup system is a usable

network connection to communicate with the backup storage facility (the

Datacomputer, in this case). Such ^ connection may not be available for a

number of reasons. The network itself may not be operational. We assume that

this is rare, and when it does occur, it will be only temporary. Another

possibility is the failure of the local network software (e.g. the Network

Control Program). This failure is local and will not be discussed here. The

remaining factor determining the ability to maintain a usable connection is

the availability of the Datacomputer itself.

The Datacomputer is a hardware/software system that is prone to all of

the problems of system reliability discussed earlier. As a network resource,

it will be assumed to be less reliable (less available) than a local tape

medium, (11) since many factors determining its availability are not under

local control (e.g. a remote power failure might affect the Datacomputer, hut

not the local system). However, in a network, while a remote resource -lay

exhibit reduced availability for a specific instance of that resource, the

underlying ability to share resources around the network makes more instances

of a particular resource generally available [Cos 75, Cro 75, Rob 70, Th 7^].

(11) Since magnetic tape is prone to many types of errors from aging,
deterioration from storage in poor environments, etc., it is less reliable
than the Datacomputer for storage of data, but being local, is almost always
available. Conversely, data storage is assumed to be very reliable in the
backup storage facility, but the facility will occasionaly be unavailable for
access to the data. The tape problem can be solved by storing many copies
(locally) on different tapes. The availability problem for reliable network
data storage facilities is the issue addressed in the text.

- Page 90 -

—J.il— «■■■!—t - - - -~ -—-■
tfiüi

5.4 Reliability in the Network Environment

The overall availability of a backup storage resource, such as implemented by

the Datacomputer, is not necessarily lower than with the tape system. In

fact, availability may be improved if resources are shared widely enough. The

resource management problem then becomes more significant if several resources

are shared among several users. Some ideas about network resource management

in the context of reliability will be presented in the remainder of this

section.

While some action can be taken to recover from local failures, not much

can be generally done to affect remote recovery. However, the network backup

facility can uc» storage facilities other than the Datacomputer. In an

extreme case, it could revert to writing copies of files onto tapes, as in the

traditional system. In a mild case, it might be possible to use another

instance of the Datacomputer as the backup storage facility. In a more

general case, any network file system might be usable, as long as ir. can

provide the essential primitive file system functions of naming, storing,

recalling, and deleting (unnaming) data. The explicit knowledge of where the

copy of the file is actually stored is not relevant to the operation of any

component of the backup facility, except the I/O control process.

The I/O control process needs to know the identity of the network

backup storage facility in order to establish the status-control connection

according to the initial connection protocol. In the normal operation of the

file backup system, all backup copies are assumed to reside en a primary

Page 91

mSBBJCr

5.4 Reliabij'tv in the Network Environment

backup storage facility (e.g. the Datacomputer). If this facility is not

available, some strategy for choosing an alternate storage facility is

invoked. For example, a simple list of alternates can be used, and if none

are available, a tape system can be reverted to. One such alternate facility

might be another Datacomputer. The same I/O Control process would be used for

performing (Datalanguage) backup operations, but the file system would have to

record which Datacomputer was being used to make the copy. In the most

general case, backup copies would be made on an arbitrary system, for example,

a Multics, a TENEX [Bob 72], etc. This is feasible to do, because only four

primitive file system functions of naming, storing, recalling, and deleting

data are required. These primitives are available on most systems, and are

independent of the structure of a particular file system. No information

about the structure of the local file system needs to be reflected in the

structure of the backup storage facility. A hierarchical local file system

becomes a "flat" backup file storage structure. Optionally, descriptors can

include structural information about the local file system. However, catalog

information and structural reliability are both assumed to be maintained by

the local system. The descriptor allows the option of using backup storage

facilities on the network (e.g. database management facilities on the

Datacomputer) for managing catalog information and improving catalog storage

reliability.

- Page 92

'■'-- i■ ■-■-•• ^-- ,.,- ..*..,,..^ ..,-.,.... IMIII.]M ,., HMk
■-- MM

5.4 Reliability in the Network Environment

For each type of file system, an I/O control process can be used to

translate policy requests into the specific primitives provided for

maintaining backup copies, for example, by the translation to Datalanguage

described earlier. Either each file system could support a Datalanguage

interpreter interface, and the same I/O control process could be used (the

remote solution), or more likely, a separate I/O control process could be

designed to Interface to each type cf file system (the local solution). The

possibility of using several different storage systems for maintaining backup

copies introduces naming, consistency, and multiple copy problems [Boo 72, PeM

75].

The name of a backup copy is the same as the UID of the cache file in

the local system. However, if a backup copy can reside on several storage

systems, a mechanism is required to identify its "residence." A unique name

of the host system providing the backup storage facility will be sufficient.

Since many systems may share backup storage, the inclusion of the name of the

"home residence" of the file will make the local UID unique throughout the

network. Each system can maintain its own UID mechanism, but global names

must include the identity (address) of the system that generated the name, so

that two different systems using the same UID mechanism will not produce

duplicate UID names in backup storage. The combination of the address and the

UID name of the file are enough to locate and identify a file uniquely

throughout the network. This global name will be called the network-wide

- Fage 93 -

■■•■ M ■■■-- ■ ';"■—■■ . ■ ■ ■■ II»^aMM^i

5.4 Reliability in the Network Environment

unique ID (NUID). (12) When a copy of a file is made, its NUID is recorded in

the local catalog so that retrieval operations will be able to find the copy.

The retrieval of files is triggered by a reference to a catalog entry

for the file, that indicates that it is missing from the local file storage

cache. In addition, the catalog maintains the network address of where the

copy of the file is actually stored, uniquely identified by the NUID. Since

all catalog information is backed up locally, and all catalog information is

available before the system is made available, all references to missing files

can be resolved. An appropriate retrieval request can be processed by moving

the file from its storage location (tape, network host, etc.) into the cache

file storage. Essentially, the extended backup facility described here

maintains reliable operation by implementing a distributed file system, with a

centralized catalog and a local cache storage facility for efficient reference

to the data. However, the use of more than one storage system will

undoubtedly result in several versions of copies of a ocal cache file. The

multiple copy and version problem must be solved to allow retrievals to access

the correct copy, and to allow copy operations to proceed using the primary

backup storage facility when it again becomes available. These problems are

discussed in the next section.

(12) Forging of host addresses, either as local or remote residences of files,
can be prevented if the communication network provides a secure mechanism for
establishing the identity of communicating hosts. One host naming files for
another is prevented by authenticating the identity of the host requesting
backup. Authentication occurs within the network implementation, and prevents
a .nalicious host (or user) from acting as an imposter.

- Page 94

11 "a" Mi MMBMJB^JSI
I , ■-■■■—*—.^-.«MM—M>

 I " ■^--~

5.5 The Multiple Copy Problem for Backup

5.5 The Multiple Copy Problem for Backup

The abstract concept of the file system is one in which only one real

copy of the file exists, and the cache is used to facilitate access. Whether

actual copies are distributed or not is irrelevant from an abstract point of

view. Any new copy made on a particular system becomes the "real" file, and

the fact that other copies that may now exist are deemed to be obsolete needs

to be recorded. Such a mechanism could operate as follows. Normally, copies

are made to the primary backup storage system, and the NUID of the copy is

recorded in the local catalog. When the primary backup storage facility

becomes unavailable, a new copy will be made on an alternate facility.

However, the obsolete copy's address (the file's "former address") is also

recorded with the descriptor on the alternate storage facility, and the

current NUID is recorded in the local catalog. This technique can be applied

iteratively if the alternate facility becomes unavailable. Eventually, the

obsolete copy will become available again, and the (temporary) new copy on the

alternate storage facility can be moved (by the backup system) back to its

"former address." The goal is to cause the eventual migration of all files

back to the primary storage facility. Copies on alternate storage facilities

are meant to be only temporary, until the primary facility again becomes

available.

- Page 95 -

— --"' »ui,m,,., u, , , intm**m*äUmmm**mmi*mmmm*m**maih^*mi*^ä^^^lm^^^Uia

5.5 The Multiple Copy Problem for Backup

The random access network backup facility is capable of maintaining a

complete copy of file storage. The incremental and catchup dumps used in

managing a less flexible tape system are not required. Copy operations simply

update the complete dump to keep it current. However, if the primary backup

storage facility is unavailable, the use of an alternate facility during this

time is analogous to making an incremental dump. The migration of files back

to the primary facility is similar to the consolidation operation of the

catchup dump, and can use a similar mechanism for producing copy requests.

The catchup dump and distributed file migration to a centralized location both

attempt to facilitate the access to backup copies of files, especially when

retrievals are required.

Retrievals will attempt to obtain the current copy, since it is

identified by the NUID in the local catalog. If the storage facility

containing this copy is not a\ailable, the retrieval cannot proceed.

However, the other alternate storage facilities could be tried, to retrieve an

obsolete copy. There is no guarantee that one exists, and the use of an

obsolete copy may not be helpful for most users. Therefore, obsolete copies

will only be considered for retrieval at the user's direction (for example, by

setting an appropriate bit in the catalog entry for the file). The ability to

maintain multiple copies in the backup system is similar to the archiving

function mentioned earlier. Since the backup facility is not designed to

provide an archiving facility (although it could provide such a facility with

a suitable extension to the mechanisms presented here), the management of

multiple copies in a general way will not be discussed here.

- Page 96 -

5.5 The Multiple Copy Problem for Backup

One way to describe the above mechanism is as a "backup for backup."

This means that if a copy operation is temporarily disabled, another facility

will "fill in" for the primary storage facility. This allows the ability to

keep making up-to-date copies, but makes it difficult to find and access them

when they are widely distributed. To help alleviate this problem, the

"migration" of copies back to their primary homes was described. Migration

results in an opposing force to centralize file storage. The result is that a

primary backup storage facility failure makes recovery (retrievals) difficult.

7'..is case arises only if both the local system and the primary backup storage

facility should fail at the same time. It is assumed that the reliability of

both systems is approximately the tiame. Assuming that the probability of

failure of either one is £ (typically, _p_ might be approximately 1%) , if

failures are not correlated, the probability of a simultaneous failure is on

the order of £ squared, which is considerably smaller than £.

However, even if a simultaneous failure should occur, the time to

recover is increased only by the MTTR for the primary backup storage facility

to recover, which might be about the same as the MTTR for the local system.

Thus, the probability of simultaneous failure is £ squared, while the effect

of this rare event on recovery time is linear (2£) . Therefore, the migration

of files to a centrally accessed storage facility is reasonable for backup

purposes. (13)

(13) For a general purpose distributed file system, this is no longer true,
because there are usually as many read accesses as write accesses. The key

- Page 97 -

_, , ■■■■- I ■.■<■■■.»-■ ' ■—»

I llll -■■■-.-■>-*

5.5 The Multiple Copy Problem for Backup

The management of multiple copies under the special access requirements

for a backup system is much simpler than in a general purpose distributed file

system [Cro 75, FaH 72, Th 73]. Also, the file system image does not support

the concept of multiple copies or versions of files. Nevertheless, copies of

files may from time to time be distributed among several different storage

facilities. The diversity of system designs makes any uniform external

protection mechanisms difficult to devise. F/ven if a protection mechanism

were common to several storage facilities, or only one storage system were

used, the lack of local control over the remote system environment is

sufficient to erode confidence in the security and protection mechanisms.

System programmers at remote sites could dump the disks, for example, if

sufficiently motivated to do so. The need for some local control over

protecting against the release of information that is stored outside the local

system leads to the technique of data encryption. Encryption should make any

backup data worthless without the key. The issues of local control over

protecting remotely stored data, and the management of keys, are discussed in

the next section.

difference that makes this approach feasible in a backup system is the fact
that most accesses are write-once to a (virtual) single copy. Obsolete copie?
are only referenced to delete them, and current copies are read for retrievals
much more iarely than they are written. This is another difference that would
make an archive facility more difficult to handle.

- Page 98 -

■*•"-- ^.-.™~a-^-~-.-..- ,i ■■■ ■- -„L. -. ^ fmm

MMMMM

5.6 Protection of Remotely Stored Data

5.6 Protection of Remotely Stored Data

In a traditional tape backup system, ail access to information is

performed locally, and backup copies may be stored remotely. In a network

backup system, backup copies are both stored and accessed remotely. Once

information leaves the environment of the local system, there is no guarantee

that it will be protected to the same degree it was in the local system,

against unauthorized release or modification. Furthermore, the storage

facility itself is not under control of the local authority, and neither is

access to the storage facility. This lack of control over the access to

remotely stored backup copies necessitates a local protection mechanism to

prevent security violations.

Access to the backup facility requires a capability, which is

implemented at the remote system. Assuming that this implementation is

secure, access can be controlled by possession of this capability. In the

network system described, only the I/O control process will have the required

capability. In addition, the enable capability is required for proper

cooperation between the I/O control process and the kernel I/O facility. This

is implemented in the local system. Only an I/O control process will have the

necessary capabilities for accessing the remote storage facility.

Page 94

 -,-—■ ..,-■,- mUtätk - , m «au -■ -- ■ - i II '■■-■■•■ - ■■■■■ ■^----. - - ^--,.--:^- <-~.-^---^-—,...-...- .

5.6 Protection of Remotely Stored Data

Certification of the local I/O control process, by auditing the programs used

in that environment, will help guarantee that proper use is being made of the

backup facility interfaces. This is under local control, and will not be

discussed further.

there is still the possibility that the remote implementation of the

capability mechanism for controlling access to the backup storage facility can

be subverted, by system programmers, for example. There is no guarantee that

a remote system kernel is secure, and even worse, there is no way to find out

what types of security violations are likely to occur. Stored information

could be compromised in any of a number of ways. From the time that

information is seat out over the network, it could be intercepted by an

intruder tapping the communication lines [Ke 76], or it could be copied from a

remote storage device by a stand-alone dump program. The solution is not to

prevent such activities, but to make them harmless, by encrypting all data

sent over the network and stored remotely.

There are numerous techniques that have been proposed for the

encryption of data [Fei 73, Fei 75, NBS 75, Sm 72, Tu 73]. We will assume

that the kernel I/O facility implements some encryption/decryption mechanism

for outgoing and incoming data on the network connections. Rather than

discussing the mechanics of encryption and decryption, we will concentrate on

applications of encryption to protecting remotely stored data, and on the

management of keys.

- Page 100 -

5.6 Protection of Remotely Stored Data

There can be two types of remote files that need to be protected. Data

files contain the actual informational content, and an associated descriptor

file contains attributes describing the file. Each type of file may need to

be protected by a different application of encryption. In the simplest case,

the use of descriptor files is not needed, since all catalog information is

kept locally and reliability is enhanced by a local redundancy technique.

Descriptor files are not needed, and no catalog information is ever sent over

the network. To protect data files, they are encrypted using a

system-generated unique key, which is stored in the (local) catalog entry for

the cache file. When the file is transferred over the network, it is

encrypted/decrypted by the kernel 1/0 facility, using the key stored in the

catalog. Any information outside the control of the local system exists only

in the encrypted form, and is as protected as the local encryption mechanism

allows. The point is that the degree of protection is under local control, in

the implementation of the encryption mechanism.

The encryption mechanism makes remote backup copies worthless without

the key, if the work factor required to cryptanalyze them is high enough.

There is no way to prevent inspection of backup copies by an unauthorized

intruder, but the local encryption mechanism determines the work factor

required for decrypting the data, based on the value of the data. Similarly,

there is no way to prevent unauthorized modification to remote data. However,

unauthorized modification to data is a den:'";l of backup service issii'», and

affects the reliability of file storage, unauthorized release of data Is a

- Page 101 -

— --

5.6 Protection of Remotely Stored Data

security issue, which subverts the file system protection mechanism, and is

more important to protect against. (14) The best that can be done is to

detect the fact that a modification has occurred. A checksum technique, which

stores a checksum in the local catalog, could be used to verify that a

retrieved copy is probably unmodified. Unauthorized modification, being a

denial of service issue that reduces reliability, might be protected against

by some of the reliability enhancements discussed earlier in this chapter

(e.g. by making multiple copies of the data), and will not be pursued here.

For a particular application of encryption techniques, there are three

measures of merit based on the effects of: 1) how much information is

divulged if the correct key is discovered; 2) how much information is made

unuseable if a key is lost; and 3) how much work is required to re-encrypt

files if the key is changed. In the simple strategy described above, each

file is assigned a unique key, which is stored in the catalog. This limits

the divulger.je or loss oi: data if the key is compromised or lost, to the

contents of the corresponding file. To change a key, only that one file needs

to be re-encrypted. Multiple keys, one for each file, are useful in this

respect. To compromise the entire set of backup copies requires knowledge of

as many keys as there are files. However, if descriptor files are maintained

in backup storage also, this strategy may have to be modified.

(14) There have been cases of security violations in the implementation of
backup systems. For example, access to a backup tape with unencrypted data
from the entire file system could allow a user to read the password file. The
network facility separates the issues of control over (local) access to backup
storage, and protection against (remote) inspection by encrypting the remote
data.

Page 102 -

5.6 Protection of Remotely Stored Data

Descriptor files contain backup copies of catalog information. If

local catalogs contain keys, then descriptor files would also contain these

keys, to improve reliability of key storage. By encrypting each descriptor

file under a separate key, the advantages of the strategy just discussed, with

respect to the three merits, are retained. However, there are two problems.

If the set of descriptor files is to be searched as a database, the use of

separate keys for each entry in the database would make the search, at best,

inefficient. More importantly, however, the ability to retrieve catalog

information would be eliminated if damage to a local catalog destroyed the key

needed to decrypt the backup information! The solution is to use two special

keys, as described below, and illustrated in figure 5.2.

In order to use descriptor files as a database, and to be able to

retrieve catalog information even if local catalogs are destroyed, all

descriptor files are encrypted by the kernel I/O facility using a single

descriptor master key (DMK). Database access to all descriptor files can then

be done uniformly under the same key, and maintenance of this key is

independent of the local file system. The DMK needs to be specially

protected, however, since its loss would prevent decryption of all descriptor

files. (15)

(15) Loss of the DMK would not compromise protection < f remote data files, nor
prevent operation of the backup system. However, since backup information
from catalogs would no longer be available, an alternate form of catalog
reliability enhancement would have to be relied upon to make sure that
retrievals could be accomplished after a failure. The extra work required in

- Page 103 -

^"1

5.6 Protection of Remotely Stored Data

DATACOMPUTER

0 Data Key

Debcriptor
Information

User's

File
^y^^Data Key
A. Encryption

Figure 5.2 Double-Key Encryption for Descriptor ^iles

Page 104 -

jsm^mm pWI'JJIlMUiWi Uil • pf,"iui jjA" m luiiiiipM^s^ywuiii ^ w.. i U^JUJM. mmm '"

5.6 Protection of Remotely Stored Data

If it should be desired to change the DMK, then all descriptor files

would have to be re-encrypted under the new key. Since descriptor files do

not represent a majority of backup storage contents, this might be feasible,

but would not be practical to do too often. Frequency of DMK change depends

on the work factor associated with the encryption strategy. A goal should be

to make the work factor high enough so that the DMK does not need to be

changed often, especially if there are many descriptor files.

The effects of a compromised DMK exhibit the most serious: flaw with

this mechanism. By compromising a single key, an intruder could decrypt all

keys to data files, and subsequently decrypt any data file. The degree of

protection of the entire set of backup data files rests with the protection

afforded the DMK. Although the DMK is maintained locally, even a snail

possibility of guessing or otherwise compromising this key might exist. To

prevent compromise of the DMK (e.g by remote intruders) from compromising the

protection of all data files, the following additional mechanism is employed.

The problem is that knowledge of the DMK exposes all data file keys.

To prevent this, the system will also maintain a _key_ protection key (KPK) ,

which will be used to encrypt each data file key before the descriptor file is

encrypted. Thus, data file keys are encrypted twice, first under the KPK, and

this case would justify special precautions being taken to guard against loss
of the DMK.

Page 105 -

5.6 Protection of Remotely Stored Data

then under the DMK. Compromise of the DMK will only release status

information about the data file, and will not allow the contents of the data

file to be decrypted. Both the DMK and the KPK are required to decrypt the

data file. This technique effectively protects data file keys, and hence the

contents of files, with a higher security key than is used to protect status

information. The higher security key is represented by the composition of

encryption/decryption operations using the two different keys. (16)

The two key data protection strategy fares well with the three merit

criteria mentioned above. Key compromise has been discussed already.

However, both keys are managed by the same (local) authority, and this

authority must be trustworthy. Otherwise the system breaks down. Since the

key management authority is local, it can be audited to make sure it is

implemented in a trustworthy and reliable manner.

Loss of the DMK prevents catalog information from being retrieved.

Loss of only the KPK still permits catalog information to be retrieved, but

will prevent data files from being decrypted. Loss of either key must be

prevented. A scheme for guaranteeing the protection and the reliability of

the two keys is essential. Such a local scheme can take special measures to

(16) Determination of the DMK is "easier" than determination of the KPK, in
the sense that one has more information available (all the descriptor files)
for using cryptanalytic techniques. To determine the KPK, first the DMK would
have to be known, and then only the set of data file keys would be available
for r.ryptanalysis. Protection is "guaranteed" by an encryption technique
requiring a sufficient work factor, coupled with periodic key changes.

- Page 106 -

... .,,-, „nil in- n ...,,,...mm^m^mmMmtä^i^^atmmim^^^^tammä^mtmMäatmtm^m^^^am^^^^^mmitm^^^^^^^^^^m^l^tmumtU

i',i..niu^|.ii—(p.i.m.1 M.,.1 . in

5.6 Protection of Remotely Stored Data

realize this guarantee (but should not use the network), since it pertains to

the very special objects, the DMK and the KPK.

Changing the KPK will affect the storage of the encrypted data file

keys in the descriptor files. Since the KPK is less easily compromised, and

the amount of work required when it is changed is small, it can be changed

whenever the DMK is changed.

The two key idea protects status information (descriptors) at one

level, and places a stronger protection on the keys to access the data files.

The strongest level of protection is in the protection of the DMK and the KPK,

but since these are always stored and accessed locally, a reasonable

confidence can be encouraged that remote copies of local cache files will not

be exposed to anyone outside the context of the local system, either in remote

storage, or in the communication network.

The use of a network connection tc communicate with a remote storage

facility can be viewed as a thin pipeline through which information flows. At

times, the demands for information transfer may be greater than available

capabilities. Estimates of network bandwidths and performance of request

servicing are made in the next section.

- Page 107 -

- - "jf W 'J iiliPWH"11 •■■ ■ ■■■■^■ii ■ ,^^i^^^ ■■■■■■ "■ »-WH ■ ~— "»■ .»«'^»»«-»«rl'W« n.lB!l,lww^y^'W»'M:*>-'W.W'!*J;-. '^. m»t«.Pl ' ■ '. r.

5.7 Performance Issues

5.7 Performance Issues

Traditional tape backup systems have a high bandwidth I/O connection

between the local file system and the backup storage medium. This is not the

case with a network implementation. TVe demand for backup service will

frequently exceed the capacity for providing that service. A general queuing

strategy can be used to buffer requests when the demand rate exceeds the

service rate. This section will investigate the performance issues and

problems that arise in using a limited bandwidth network connection for

backup. A simple queuing model is presented with assumptions about request

rates and network bandwidth, to illustrate typical performance of the

facility.

Requests for backup service are made as a function of the update rate

and the particular policy implementation in use for processing notifications.

In the queueing model chosen here, we will assume that requests are made in a

Poisson manner (i.e. the distribution of inter-arrival times is Poisson) .

Since requests originate from modifications to immune files, and these files

are referenced in a manner which depends on the number of user processes

running in the system, the reference patterns used by these processes, the:

size of the primary memory facility, virtual memory management strategies,

Page 108 -

5„7 Performance Issues

etc., each notification can be assumed to be an independent event. This

assumption is reasonable because most notifications arise from independent

updates from independent processes. On the scale of the whole system, the

independence assumption holds for the set of susceptible files in all address

spaces. Based on network bandwidth, request processing overhead, and the

processing strategy, we will derive a limit on the useful request rate that

can be handled.

The queuing model used will be an M/G/l system with a FIFO request

processing discipline. Requests are made in a Poisson manner with average

rate r (to be determined in the analysis). The average request processing

rate depends on processing overhead, distribution of workload for incoming

requests (i.e. service distribution times), and useful network bandwidth.

Processing overhead is assumed to be constant for all requests, and is

essentially time allocated to bookkeeping functions, sending Datalanguage,

establishing auxiliary network connections, etc. Typical network bandwidth

based on the ARPAnet is on the order of 40 thousand bits per second for a

single connection. Future networks can conceivably support transfer rates an

order of magnitude larger. Other techniques, such as multiplexing multiple

connections in parallel to achieve higher effective transfer rates will also

be considered later. The major workload is in transfering data over the data

connection, either in performing copy or retrieval operations. First, we will

consider copy operations.

- Page 10^ -

— - ■■ ■■•- '—- -- - -

PHP! mmmm IIMUHU.,1.. I !l^!II»Wim^-^' *" •'^•, i.iiii.i.i

5.7 Performance Issues

It is known from tlementary queuing theory that the average waiting

time in a FIFO M/G/l queuing system depends on the request arrival rate, the

mean service time, and the variance in the service time. The request

processing overhead is assumed to be constant, so adds only to the mean

service time, and not the variance. To determine the mean service time,

consider the distribution of requests for copy operations for different length

files. Based on observations on the Multics file system, most files are

small. Ranging between zero and 255K words, thsy average about 4K words in

size. Furthermore, the distribution is exponentially decreasing, with a rapid

decrease in the number of files with larger sizes. Approximately 90% of the

files are within 5K words of the mean file size. This sharp distribution has

a relatively small variance. Given that the average file is 4K words in

length, the average service time can be calculated from the network bandwidth.

For Multics, the word size is 36 bits, and IK words can be transferred over a

40Kb connection in about one second. The average copy operation will

therefore take 4 seconds. For this particular case the variance was

determined, by measuring an actual distribution, to have a value of

approximately 2. Any per request overhead is added to the mean, but does not

affect the variance.

The M/G/l system exhibits an unstable, fluctuating behavior when

operated near saturation, as determined by the utilization factor. The

utilization factor is the ratio of the average arrival rate to the average

service rate, and must be less than one for a steady state solution for this

- Page 110 -

■pimi -i ii i ii. mmmm WPPW wwawwwwwi '■^"■"■*- ■«—»—«*— ■ ■ ■--.;' w■ f

5.7 Performance Issues

type of system. Given an average service rate s, plus the fixed overhead, we

can calculate the maximum serviceable request rate for a given utilization

factor. Assume that the fixed overhead can be accomplished in parallel with

other copy operations, and is thus zero in the steady state, since it does not

add to any particular service time. The average service time can therefore be

taken to be 4 in the example. Also assume a utilization factor of 75%, to

keep the queues from becoming saturated (this essentially means that the

server is busy 75% of the time). Then the maximum request rate is r such that

r*s < .75, or r < .19 (approximately). This is about one request every 5

seconds. Some requests will take longer than 4 seconds to process, and new

requests will back up in the queue. Others will take less time, and the queue

will empty out. About 25% of the time, the queue will be empty and the server

will not be busy. The average waiting time in the queue will be 6.8 seconds,

and the average number of requests in the queue will be 1.3 in the steady

state solution. This means that if the request rate is limited to one every 5

seconds, then each request can be serviced within an average of 10.8 seconds.

This is desirable, since one is attempting to complete the copy operation as

soon as possible after the actual request is made. If requests are made more

frequently, the system approaches saturation, and there is a long delay

between the time a request is placed on the queue, and the time it is

serviced.

- Page 111 —

^ l__l_HI] I in 11| II l> llllll nil IT III H*T»r"* ""**-- ■"■'- " l^mk_^_,.^JMyjm1, dM«HS»

5.7 Performance Issues

The request rate calculated above can be interpreted on a per user

basis as follows. The mean time between requests is 5 seconds. The average

number of requests in 5 minutes is 60. If the system supports 60 simultaneous

interactive users, each could make one backup request every 5 minutes on the

average, and have a backup copy operation completed within 10.8 seconds. The

submission of one backup request each 5 minutes for each user is reasonable,

considering the way modifications to files usually occur. (17)

First, it may not be desirable to backup files generated by programs

(e.g. output from compilers, text formatting programs, etc.), since they can

be regenerated if needed. Second, temporary files used in generating output

should not be backed up, since it will usually be cheaper (and more feasible)

to restart the operation from the beginning, than to produce and recover

backup copies of intermediate results. Also, modifications to most files that

will be backed up tend to be bursty and infrequent. For example, a compiler

may generate output into a temporary file and copy the final result into a

permanent file when it is finished, or an editor may buffer changes in a

temporary file and copy them into the permanent file when requested by the

user to do so.

(!7) These assumptions are corroborated by performance measurements made on
tlie Multics system. The assumptions above allow for 720 requests per hour,
independent of the number of users (these requests are somehow distributed
among the users). On Multics, the request rate observed during mid-afternoon
peak usage periods is under 350 requests p^r hour (about three quarters of
which apply to user's files, and the rest to input/output queues and other
system files), based on statistics from incremental dumps using magnetic
tapes. These measurements imply that the network facility can handle peak
request loads quite well, if the individual request rates a^e limited, as
described and justified above.

- Page 112 -

'■--■■^'■'■~*™->- <■*•>■*■■-..: I-'- -■ |||-||| || |||-Ü! -•— - - ■— -— ■- *- '—""—^

m p •>■ MHnmi HHIIPV^'MW.W ■■ i J JUVJiil

5.7 Performance Issues

The result is that the permanent file, which is to be backed up, is

modified within a small time interval, and then remains unmodified for awhile.

The small time window during which modifications occur, the larger time frame

during which copy operations occur, and the small average time needed to

perform a copy operation tend to decrease the likelihood of making

inconsistent copies by copying a file while it is being modified. The

assumption is that a particular file being modified this way will remain

unmodified for about 5 minutes, or at least notifications will be filtered by

the policy implementation so that copy requests for these files will be maJe

once in 5 minutes. (18) This mode of operation means that a user can lose

only 5 minutes worth of work on a file, but it will take about 11 seconds to

make a backup copy of the bursty mouifications. (19) Contrasted with a lar^e

(18) For example, if a request is made to make a backup copy of a file before
a previous backup request for the same file has been serviced, the new request
need not be placed on the queue. Although requests may arrive more often,
only new requests arrive each 5 seconds. This is reasonable, since the size
of the set of modified susceptible files for which requests are made will be
smaller than the number of requests generated. Several requests may arrive
for a given file before it is backed up, but the assumption is that a file can
receive backup service once e.ery 5 minutes for each user.

(19) These observations are based on the performance assumptions made earlier
in the text. Perhaps the average service time is 10 seconds instead of 5, but
perhaps only 30 simultaneous users are modifying files. It is difficult to
specify precisely the parameters of the model. The example is intended to
illustrate a reasonable scenario, and demonstrate the feasibiiity of the
implementation. The reader is free to imagine alternate scenarios and draw
conclusions about the performance of thr? implementation in that environment,
with a specific policy implementation, etc. The flexibility of the policy
implementation, however, should permit the ideas presented here to be made
useful in a wide variety of performance situations, and this fact, not
specific performance assumptions made here, is the key to the utility of the
mechanisms presented.

Page 113

M^»iin.™w^!l

5.7 Performance Issues

incremental dump tape system in which a file accumulates perhaps an hour's

worth of modifications before it is backed up, although tne copy operation may

complete within far less than 11 seconds, the user stanas to lose up to one

hour's work in a failure. Thus, more frequent copying, but slower copy

operations, will minimize unrecoverable loss of data, and dynamic recovery

minimizes unavailability. The result is an improvement in reliability of file

storage. Dynamic recovery performance is discussed next.

Higher bandwidth connections reduce the average service time, and

reduce the variance as the square of the ratio of the new to the old average

service time. Higher bandwidth permits higher request rates while still

maintaining a given utilization ratio, average delay, and average queue

length. For retrievals, however, the rate of requests for backup operations

has a time-dependent average; at first there are many requests, and once a

file is retrieved, it no longer has any retrieval requests associated with it.

The retrieval rate tapers off as more files are recovered in the cache

storage. The problem can be viewed in terms of how long it takes a request to

be processed, and how long it takes for the retrieval operations, working

continuously, to complete. Again assuming an average file size of about 4K

words, we need to make some additional assumptions about the retrieval

scenario to estimate typical performance.

- Page 114 -

mmmmtm m iiMiii

5.7 Performance Issues

After a system failure, all catalogs and the contents of the system

library are restored, and users can log in. References to user files will

usually find the file to be already in the cache. However, for several users,

the files will be missing, since the damage tends to be local, and only

affects a few users. These early file references typically attempt to access

such information as the user's mailbox, stored programs, or data files. Only

a few files are actually required at a given time, for example to edit the

source of a program, some text, etc. Several files may be needed if a program

references several subprograms, but they need not be present until actual

reference time in a system that supports dynamic linking, such as the Multics

system. The delay experienced in retrieving a file that is referenced but

missing is important to the user.

The analysis for copy service is applicable to the retrieval service

problem. The basic assumption is that the system can service retrievals

idequately with a delay time of 10.8 seconds if a request arrives

approximately every 5 seconds. This is a steady state solution, which applies

if the system operates in this mode for awhile. In fact, the longer the

retrieval operations are in progress, the better the situation becomes, since

the request rate tapers off. Depending on the particular user, ehe

inter-reference time to different files may vary from a short time for

programs that make a rapid sequence of references to subprograms, to a long

time for editing a file before needing to reference another one. A reasonable

average might be several minutes between references to different files. For

P;v,;c IIS-

•■■■in ■ilium ii mBHUHi. WWW - ! ■ w*.miij..np.iiuii!iiiiiw ,i. wi>mw»

5.7 Performance Issues

example, a user who references 20 files during an hour long session could

probably accomplish some reasonable work, and would average one reference each

three minutes. A reference rate of one per five seconds would support 36

users at the 75% utilization factor level. If the system could support 100

simultaneous users, this means that 36% of all system users could be affected

by a system failure, losing all their files, but could still access their

missing files with an average delay of about 10 seconds. This argument is not

intended to specify a level of operation for which this approach to backup is

feasible, but is intended to show that even after a fairly widespread failure,

any user can profitably use the system for performing some useful operations.

This does not imply that all users can function at full capacity, but only

that most users can, while at first those most severely affected by the

failure must 'ride out" the delays encountered in the recovery transients,

which should be minimal and as short lived as possible.

We close this section with a look aK the extent of effect that extreme

changes in performance an order of magnitude in size might have on the

operation of the network backup facility. At times, the network or the

communicating system might become so heavily loaded that for awhile, it can

only provide service at a level an order of magnitude reduced from normal.

Alternatively, with the advent of cheaper microprocessors and higher bandwidth

communication media, it might be possible in the near future to dedicate

processor facilities to achieve a? effective communication bandwidth and

request processing delay an order of magnitude improved over the level

Page 116 -

SEWpg"

5.7 Performance Issues

described previously. First, we consider the degradation caused by reduced

service levels.

If requests can only be serviced at a rate of one per minute, then the

request rate must be limited to one every 80 seconds in order to maintain the

same utilization factor of 75%, and results in an average queue waiting time

of just over 100 seconds. This slow service is inadequate for processing

requests for copy operations that result from notifications for the default

level of backup. An alternative high-bandwidth backup facility should be used

to empty out the request queues once they become jammed with requests.

However, it might be appropriate to continue performing user-requested backup,

which could proceed at the slower rate if the average user-request rate is

Tiuch smaller than the system default rate. This is really a form of graceful

failure of the network facility, which still allows a reduced level of

operation for some users, but should be handled by an alternate backup

strategy suggested earlier, until conditions improve. The future holds

promise for tremendous improvements in performance, however. Some-

calculations are presented below.

Assuming a network bandwidth of one million bits y>er second, which is

not unreasonable in some current network designs [FaL 72, Far 73, MB 76, Wo

75], the request processing time average drops tr .2 seconds. The request

rate that can be supported at the 75% utilization factor level is then almost

four per second, and the average queue waiting time is about a third of a

Page 1 17 -

5.7 Performance Issues

second. PossLble trends that could offset the Improvements of higher

bandwidth communications might be toward larger files and systems that support

a larger number of simultaneous, interactive users. However, these trends

certainly seem to be much slower than tie opposing trends toward higher

bandwidth communications. The net effect should be to improve the level of

service that can be provided for backup of user files, reducing the cost of

the service, and improving the reliability of file storage for computer

systems in a network.

5.8 Charging for Backup Services

Although the issue of charging for computer services is largely an

administrative one, there are several considerations to keep in mind for a

network backup system. Charges for local services need to be distinguished

from charges for remote services, since the two types of services are

administered independently. This section will briefly consider the arguments

for a charging scheme for backup in a shared system using the network.

It has already been mentioned that a default level of backup service

should be provided for users who are unconcerned with particular reliability

requirements. The operation of the backup facility and associated costs and

charges should oe invisible. The system provides a standard file storage

facility, and users pay a fee based on the amount of file storage used, and

- Page 118

^

5.8 Charging for Backup Services

not on the amount of backup service provided for their files. Perhaps several

classes of storage for several reliability requirement levels can be provided,

at several different pricing levels, but the internal accounting and

mechanisms of use remain invisible to the user.

User-defined backup is another story. In this case, special services

are being performed at the user's direction. Four costs are involved: the

cost of interfacing the notification and request submission strategy to the

user, the cost of processing requests, the cost of transmitting data over the

network, and the cost of storing data at the remote backup facility (e.g. the

Datacomputer). The costs for invoking the user interface to backup will be

reflected in the charge made for the user's process resource. The cost of

processing a request submitted from a user policy will be small compared to

the costs or information transfers and data storage. Only one copy of a file

is maintained in the backup file system, so this iiarge is based on file size.

The major cost is In communication, and depends on how often backup operations

are requested, and how much information is sent for each request. To properly

account for frequency and volume of user backup service, charges can be made

in terms of the total number of bits transferred for the user, and the

quantity of backup storage required, it might also be possible to give

"credit" for user backup in the amount of the standard default backup that the

user would normally receive. Only the added costs incurred for usin^ more

than the average share of resources would be charged.

Page 119 -

-. i ■ ■»■■nil« M ■ f^m^mmmimtitmiimiimmmmmmmmmämmatimam MkXad

5.8 Charging for Backup Services

It is mentioned in closing that use of the backup service resembles the

use of other classes of service commonly provided in shared computer systems.

Most such services provide a queuing mechanism for submitting requests, and an

accounting strategy for charging for the amount of resources consumed in

providing the service. For example, the line printer queue service receives

user requests ancf charges for service based on how much paper is consumed, how

many characters were printed, etc. Since it is not usually of concern to the

user that the precise state of request processing be known at all times, this

service can be accomplished in parallel with other user operations. It can be

called an asynchronous service. Typically, users of asynchronous services

must be aware of consistency problems that might arise when user accessible

files are modified during the time interval between the submission of a

service request, and the time the request is serviced. For line printer

services, this problem is usually ignored. For backup service, consistency Is

a real issue. The facility described in this thesis provides the user with

the flexibility to implement a special backup policy, but just as importantly,

provides for control over the delivery of backup service, so that the state of

asynchronous service operations can be determined, and more precise

information is available about the state of backup files. This is a hard

service to provide in a tape oriented system. The use of a network allows the

random access nature of a large storage facility to be made available so that

better service can be provided for the user in improving the reliability of

fiie storage.

- Page 120 -

^m^mammumm ■H

5.9 Summary

5.9 Summary

This chapter has considered several issues relevant to a network

implementation of a backup facility. The generation and use of names for

uniquely identifying network connections, hosts, and backup copies of files

were described. A solution to the problem of enforcing user defined

consistency constraints on backup copies of files was presented. In this

solution, backup copies are made from temporary shadow copies of user files,

which remain consistent before and during backup operations. The method of

updating shadow copies is analogous to the method of updating immune files in

a well defined manner.

Since the primary network backup facility may not always be available,

a strategy was described by which the I/O control component of the backup

facility may use several different network hosts for storing backup copies.

This strategy results in distributed copies of files, which may make locating

and accessing a correct copy difficult. While the retrieval process is

severely hampered by the unavailability of the backup storage facility, it

will always be possible to continue making oackup copies, which is the primary

operation of the backup system. To facilitate access to backup copies,

temporarily distributed copies are consolidated at the primary backup storage

facility when It again becomes available

- Page 121 -

- --- • •""1,*Ma'

5.9 Summary

The ability to control access to data is lost once the data is stored

on a remote system which may be accessed by other users. A data encryption

scheme for protecting backup copies of files was described. This scheme

provides confidence that the use of a remote data storage facility will not

circumvent local protection goals.

A queuing model analysis was presented to demonstrate that reasonable

performance can be expected from the backup facility using contemporary

network technologies and for typical user demands. Finally, charging for

backup services was described. The charge for a service is proportional to

the cost of the resources used to provide the service.

- Page 122 -

- n Miy^ülMM HMIMMa ■MMHMH« ■ÜMNMÜ

Chapter Six

Conclusion

6.1 Summary of Results

It can be a frustrating and disappointing experience to find that a

system is unavailable when it is needed. The situation is improving today

with the ability to construct more reliable hardware and software. There is a

parallel psychological trend for users to become less and less tolerant when a

system is unavailable, as the system is generally accepted as more reliable.

Whereas users might have tolerated delays of hours in the past, the reliance

on computer utilities to provide almost continuous service now makes delays on

the order of minutes unacceptable. This thesis arose from the observation

that in a network, which provides an environment where redundant instances of

resources can be widely shared, the unavailability of one specific instance of

a resource does not necessarily preempt the availaoility of the service that

it provides.

In particular, one of the most important services provided by a

computer system is that of file storage. Recognizing that a file storage

facility is subject to a wide variety of failures which e,,n result in

- Page 123 -

-^.„„»nm. a—MUMi xvmmmm M„,^,„„„,..,,„, „,_...,., ..„^„,^.,M.U.J.MJ.,

-^_JJ.JfrJg* pwwHWppjm ii i J'W'HI ■ ,■,!

6.1 Summary of Results

unavailability of the system and an inability to accomplish useful work, one

can take several measures to cope with this situation. The early content of

this thesis has discussed a number of approaches to improving reliability of

file storage in an unreliable environment. Each particular technique is more

or less appropriate to a particular application, depending on the goals and

purposes of the system. In this thesis, we consider the use of a general

purpose computer utility which provides file storage for users, and which

might be used for a wide variety of applications. The underlying assumption

is that the system should be reliable in the view of the users, and this is

evidenced by high availability and low mean-time-to-recover. By using

redundant storage of information in a high availability network environment,

these goals can be reached.

The network is useful for providing backup storage of files not only

because of the high availability of storage facilities, but just as

importantly, because of the economic feasibility of using a large remote

random access service. Random access capabilities significantly reduce the

backup copy management task that is a major burden in tape backup systems, ßy

maintaining only a single copy in backup storage, it becomes much easier to

determine the state of backup copies relative to local copies, and recovery is

much more rapid because all files are consolidated at a single storage

facility, and can be accessed for retrieval dynamically while the system

itself is available to the general user community. There is no need to search

a tape library, mount several reels, and restore all files before the system

can be made available to <sers.

- Page 124 -

6.1 Summary of Results

Dynamic recovery while the system is available to users improves the

perceived reliability of file storage, but only if ba-:kup and recovery work

together in a way that reduces the amount of unrecoverable loss if

information. A dynamic backup notification mechanism was described that

closely tracks changes to local file system information so that these changes

can quickly be reflected to backup copies. A useful way to view these

operations is to think of the local file system implementation as managing a

cache for efficient access to information in the logical permanent file

system, which is stored remotely, and accessed in a carefully controlled

manner to protect it from unintentional mishaps.

The improvements in capabilities for accessing and managing backup

storage afforded by a random access network facility permit greater control by

users over the state of backup storage. Database consistency can be

guaranteed, and the existence of only one copy of a file in backup storage

greatly simplifies the task of determining what state newly retrieved files

are in after completing recovery from a failure.

The use of the network for remote storage of backup copies of

information presents certain problems not present in a local tape system. The

lack of local control over the storage and access of information requires some

form of protection mechanism. Encryption was chosen as a solution since it

affords a technique to protect remote information to a degree that can be

specified locally, in the implementation of tne encryption strategy.

Page 125 -

 ■-" ■■-—■'-*— "■—--■-
MiMiiMHMaMMMiliiMiHMflMaäiiBiiaih

6.1 Summary of Results

A basic assumption was made early In the thesis that catastrophic

failures are rare, and the solution presented is therefore oriented toward the

more frequent but less severe form of failure that accounts for most instances

of system unavailability. Some form of high bandwidth mass storage facility,

such as a tape system, could be used to recover from a total loss of file

storage. Since network bandwidth is limited, it would not be appropriate to

use this facility to recover from such a situation. However, a queueing

analysis of the proposed mechanisms has shown that even with a network

bandwidth that is low in the context of current technology, satisfactory

backup service can be provided for both backup and retrieval needs.

The possibility that the primary backup storage facility may not be

available leads to a scheme to provide backup for the backup facility. Since

the network permits access to many storage facilities, the use of an alternate

allows backup operations to continue in the face of a temporary failure of the

primary facility. The resulting management of multiple distributed copies can

be a difficult problem. However, the special nature of access needed for

backup copies eases the burden. By consolidating distributed copies made

during a temporary failure, copies can be centralized at the primary storage

facility when recovery is completed. This operation is similar to the

management of multiple copies on tapes during the maintenance of complete and

catchup dumps, but is simpler to accomplish because access to backup storage

state information is much easier. The fact that file storage recovery is

prevented only if two üv ependent systems fail at about the same time lessens

- Page 126 -

■■ i mm ■ -' ■ -r^~-««~t^-v^--*******»****»* IIIIMI *MW

.,^■,.1.1 II, !, 1. .11-—-

6.1 Summary of Results

the chances that a backup copy will be unavailable for retrieving when the

local system fails.

The drawbacks ar.d limitations discussed above require that certain

tradeoffs be made, for example between frequency of backup and acceptable

amount of unrecoverable loss of information. Even so, the mechanisms provide

an improvement in reliability enhancement over tape systems from the two

standpoints of system availability and degree of recovery possible. In

addition, the basi mechanisms used by the backup facility are meant to be

simple, secure, and flexible. Several generalizations and extensions of these

basic mechanisms for other uses are suggested in the next section.

6.2 Other Applications Using the Backup Mechanisms

A discussion of the operation of the backup mechanism has already been

given. Rather than reiterating that discussicn here, we will merely suggest

some possible extensions for providing other services that might be of

interest. An investigation of all the issues that ^ight arise is beyond the

scope of this thesis, and as such, is suggested as an area of future research.

The basic facility that the backup storage mechanism provides is a form

of file system. Basic assumptions were made about the contents and access

needs of this file system for purposes of backup, in order to simplify the

- Page 127

6.2 Other Applications Using the Backup Mechanisms

design and illustrate the essential issues. Some of the restrictions can be

removed to provide more general file system services for users. One such

service has already been mentioned several times: a file archiving facility.

By allowing multiple copies of a file to exist, several backup versions could

be retained for an indefinite amount of time. A carefully defined interface

is required to produce the desired effect in backup storage when a local file

is deleted. The maintenance of distributed copies is more complicated, since

writing a new version does not make the old one obsolete. A user interface is

needed for managing archive storage (e.g. for operations such as recalling and

deleting archived files), and an access control mechanism for retrieval of

archived copies is required. It might be desirable to archive catalog and

access control information with the file, instead of keeping it local. The

tradeoffs between access cost and storage cost need to be investigated.

Archiving is one example of what might be called a user service. The

organization of computer systems in a distributed computing network

environment motivates the cavelopment and delivery of services to a wide

distribution of users [Cos 75, Cro 75, F?r 73, Rob 70, Row 75, Th 73]. The

essence of distributed computing is the semi-autonomous tight coupling between

a set of local resources dedicated to providing an efficient, cost effective

set of services, and an additional need and ability to share other services,

on an occasional basis, using a network communication facility. New services

can be provided using extensions of the mechanisms presented in the thesis.

It will also be of interest to investigate the nature of requirements fur

backup service in a distributed computing environment.

- Page 128 -

6.2 Other Applications Using the Backup Mechanisms

The design presented has been oriented toward the needs of a large,

shared computing utility. The nature of the needs of smaller systems, such as

personal computers, intelligent terminals, special purpose dedicated systems,

etc., that might also be part of the computer network is an area that will be

interesting to investigate. The tradeoffs between recovery time, system

availability, and a specific policy implementation will vary with the

application and the size of the system. Protection and alternate reliability

enhancement schemes may also vary. While the design presented in the thesis

is believed to be flexible and general enough to be adaptable to specific

needs in all these situations, only one environment was illustrated.

Especially with the distribution of many services in the network, the specific

nature of backup requirements for each system will be a matter of local

concern. Further investigations into requirements of other applications can

be done by the reader wishing to implement a backup facility for that

application.

6.3 The Distributed File System and Beyond

The backup service provides a very restricted set of file system

functions. Data can be stored and later retrieved. Access is restricted to a

privileged backup I/O procedure. The basic mechanisms us*^d to store and

retrieve files can be useful for implementing a general purpose distributed

file system. A short summary of the issues will be given in this section.

- Pajie 129 -

6.3 The Distributed File System and Beyond

A file system provides a facility for managing file names for users.

Names provide a handle for accessing the file. The backup system provides a

primitive naming and access facility, but will not be sufficient for a general

purpose distributed file system [Boo 72, FaH 72, PeM 75]. A technique

employing uniform use of network-wide unique file names that are more flexible

than UID's should help.

The mechanism used for retrieving files that are not in the cache can

be adopted to access files in a distributed file system. A distributed file

system can be considered to be the union of the individual file systems that

comprise its implementation. The cache mechanism provides a technique for

efficient access to distributed files. Maintenance of the distributed file

system is a cache management problem. However, if distributed files are

shared, this problem becomes a very difficult one. Some of the ideas

presented are applicable for naming, accessing, and updating distributed

files, but are not sufficient for keeping shared files consistent or handling

a general file migration strategy. Unavailability of part of the distributed

file system introduces problems, but so does a multiple copy scheme that might

be used as a solution. Controlling and authorizing access, and improving

reliability for such a file system are other problems.

With the advent of larger and cheaper computer networks, there are two

tendencies for storing data. One tendency is to centralize data for personal

use, so that access and control are efficient and localized. An opposing

Page 130 -

0.3 The Distributed File System and Beyond

tendency is to distribute data for sharing, for reliability, and for economy.

If reliability is a concern to the user, it is hoped that the ideas in this

thesis will lead to a practical, flexible, and successful backup facility. If

other issues are a concern, it is hoped that the ideas in the thesis are a

step in the right direction toward solutions to harder problems. Whether the

end application is a private, dedicated file system, or a large, shared

distributed file system, needs for communication will make networks useful,

and needs for reliable services can use networks to enhance reliability of

file storage.

- Page 131 -

BIBLIOGRAPHY

[ARPA 74) Advanced Research Projects Agency, "ARPA Current Network Protocols,"
(December 1974), NIC Document Number 7104, Network Information
Center, Stanford Research Institute, Menlo Park, Ca.

[BCD 72] Bensoussan, A., Clingen, C. T., and Daley, R. C, "The Multics
Virtual Memory: Concepts and Design,'' CACM 15, 5 (May 1972), pp.
308-318.

[Bob 72] Bobrow, D, et. ai., "TENEX - A Paged Time Sharing System for the
PDP-10," CACM 15, 3 (Mar&* 972), pp. 135-143.

[3oo 7?] Booth, G. M., "The Use of Distributed Databases in Information
Networks," Proceedings First International Conference on Computer
Communication (October 1972), p. 371, Washington, D.C.

[CCA 7 5] Computer Corporation of America, Datacomputer Version 1_ User Manual,
Datacomputer Project Working Paper No. 11 (August 1, 1975),
Cambridge, Ma.

[CCA 73] Computer Corporation of America, Further Datalanguage Design
Concepts, Datacomputer Project Working Paper No. 8 (December 15,
1973) , Cambridge, Ma.

Xcr 65] Corbato, F. J., and Vyssotsky, V. A., "Introduction and Overview of
the Multics System," AFIPS FJCC Conference Proceedings 27 (1965),
pp. 185-196, Spartan Books, Washington, D.C.

[Cos 75] Cosell, B. P., et al., "An Operational System for Computer Resource
Sharing," Proceedings Fifth Symposium on Operating Systems
Principles (November, 1975), pp. 75-81, Austin, Texas.

[Cro 72] Crocker, S. D., et al., "Function-Oriented Protocols for the i.KPA
Computer Network," AFIPS SJCC Conference Proceedings 40 (May 1972*,
pp. 271-279, AFIPS Press, Montvale, N.J.

[Cro 75] Crocker, S. D., "The National Software Works: A New Method for
Providing Software Development Tools Using the ARPANET," Proceedings
Meeting on 20 Years of Computer Science (July 1975), Pisa, Italy.

133

BIBLIOGRAPHY (Continued)

(Fab 731 Fabry, R. S., "Dynamic Verification of Operating System Decisions,"
CACH 16, «1 (November 1973), pp. 659-668.

[FaH 72] Färber, D. J., and Heinrich, "The Structure of a Distributed
Computer System: The Distributed File System," Proceedings First
International Conference on Computer Communication (October 1972),
p. 364, Washington, D.C.

[Fal, 72] Färber, D. J., and Larsen, K. C, "The System Architecture of the
Distributed Computer System: The Communications System,"
Proceedings Symposium on Computer Networks (1972), Brooklyn
Polytechnic Institute.

[Far 73] Färber, D. J., et al., "The Distributed Computing System,"
Proceedings of the 7th Annual IEEE Computer Society International
Conference (February, 1973), New York, N.Y.

[Fei 73] Feistel, H., "Cryptography and Computer Privacy," Scientific
American 228, 5 (May 1973), pp. 15-23.

[Fei 75] Feistel, H., et al., "Some Cryptographic Techniques for
Machine-to-Machine Data Communications," Proceedings IEEE 63, 11
(November 1975), pp. 1545-1554.

[Fr 69] Fräser, A. G., "Integrity of a Mass Storage Filing System," The
Computer Journal 12, 1 (February 1969), pp. 1-5.

[Ke 76] Kent, S. T., "Encryption-Based Protection Protocols for Interactive
User-Computer Communication," S.M. Thesis, M.I.T. Departement of
Electrical Engineering and Computer Science, published as M.I.T.
Laboratory for Computer Science Technical Report No. 162 (May 1976),

[Mar 75] Mar til, T. and Stern, D., "The Datacomputer: A Network Data
Utility," AFIPS NCC Conference Proceedings 44 (May 1975), p. 389,
AFIPS Press, Montvale, N.J.

[MB 76] Metcalfe, R. M., and Boggs, D. R., "Ethernet: Distributed Packet
Switching for Local Computer Networks," CACM 19, 7 (July 197b), pp.
395-404.

134 -

BIBLIOGRAPHY (Continued)

[MIT 74] M. I. T. Laboratory for Computer Science, "An Introduction to
Multics," Technical Report No. 123 (February 1974).

[NBS 75] National Bureau of Standards, "Computer Data Protection," Federal
Register 40, 52 (March 1975), pp. 12067-12250.

[Org 72] Organick, E. I., The Multics System; An Examination of Its
Structure (1972), M.I.T. Press, Cambridge, Ma.

[urn 75] Ornstein, S. M., et al., "Pluribus — A Reliable Multiprocessor,"
AFIPS NCC Conference Proceedings 44 (May 1975), p. 551, AFIPS Press,
Montvale, N.J.

[Par 72] Parnas, D., "On the Criteria to be Used in Decomposing Systems into
Modules," CACM 15, 12 (December 1972), pp. 1053-1058.

[Pe 71] Peck, P. L., "Survey of Applicable Safeguards for Insuring the
Integrity of Information in the Data Processing Environment," MITRE
Corporation Technical Report (Washington Operations), MTP-356 (June
1971).

[PeM 75] Peebles, R., and Manning, E., '"A Computer Architecture for Large
(Distributed) Databases," Proceedings International Conference on
Very Large Databases (September 1975), p. 405, New York, N.V.

[Rob 70] Roberts,/L., and Wessler, B., "Computer Network Development to
Achieve Resource Sharing," AFIPS SJCC Conference Proceedings 3 b (May
1970), pp. 543-549, AFIPS Press, Montvale, N.J.

[Row 75] Rowe, L. A., "The Distributed Computing Operating System,"
University of California at Irvine, Department of Information and
Computer Science, Technical Report No. 66 (June 1975).

[Row 73] Rowe, L. A., Hopwood, M. D., and Färber, D. J., "Software Methods
for Achieving Fail-Safe Behavior in the Distributed Computing
System," Proceedings IEEE Symposium on Computer Software Reliabi1itv
(May 1973), p. 7, New" York, N.Y.

[Sal 75] Saltzer, J. H., and Schroeder, M. D., "The Protection of Information
in Computer Systems," Proceedings IEEE 63, 9 (September 1975), pp.
1278-1308.

135

BIBLIOGRAPHY (Continued)

[Sh 71] Schell, R., "Dynamic Reconfiguration in a Modular Computer System,"
Ph.D. Thesis, M..I.T, Department of Electrical Engineering, published
as M.I.T. Labors*- ry for Computer Science Technical Report No. 86
(June 1971).

[Shr 72] Schroeder, M. D., "Cooperation of Mutually Suspicious Subsystems in
a Computer Utility," Ph.D. Thesis, M.I.T. Department of Electrical
Engineering, publr'ied as M.I.T. Laboratory for Computer Science
Technical Report N>.; „ 104 (September 1972).

[Sm 72] Smith, J. L., Notz W. A., and Osseck, P. R., "An Experimental
Application of CrypiDgraphy to a Remotely Accessed Data System,"
Proceedings ACM 25th National Conference (August 1972), pp. 282-297.

[St 74] Stern, J. A., "Backup and Recovery of On-Line Information in a
Computer Utility," S.M. and E.E. Thesis, M.I.T. Department of
Electrical Engineering, published as M.I.T. Laboratory for Computer
Science Technical Report No. 116 (January 1974).

[Th 73] Thomas, R. H., "A Resource Sharing Executive for the ARPANET," AFIPS
NCC Conference Proceedings 42 (June 1973), pp. 155-163, AFIPS Press,
Montvale, N.J.

[Tu 73] Turn, R., "Privacy Transformations for Databank Systems," AFIPS NCC
Conference Proceedings 42 (June 1973), pp. 589-601, AFIPS Press,
Montvale, N.J.

[We 72] Wensley, J. H., "SIFT — Software Implemented Fault Tolerence,"
AFIPS FJCC Conference Proceedings 41 Part 1 (December 1972), pp.
243-253, AFIPS Press, Montvale, N.J.

[Wo 75] Wood, D. C, "A Survey of the Capabilities of 8 Packet Switching
Networks," Proceedings 1975 Symposium on Computer Networks: Trends
and Applications (1975).

- 136 -

 —— .^—~—-MM ■*■" -"'"- "■■ - -—- ■ -.^.--..,,- -~~ -^"^

