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INTRCOUCT 10N

The compliance calibration for two-dimensional cracks is seldom
attempted. This is due to the fact that a fairly wide selection of
methods (e.g., finite elements, collocation, complex variable, inte-
gral equations, etc.) are available to obtain stress intensity factors
to 31 good degree of accuracy and also due to difficulty in performing
experiments with sufficient accuracy. For the three-dimensional
probiems, in general, the difficultiec are compounded, analytically as
well ac experimentally. However, for an internally pressurized thick-
wall cylinder with a symmetric internal surface flaw located in the
axfal direction, the evaluation of compliance can be accomplished.

This nas been done by proper definftion of compliance and data reduction.
In fact, a fatique crack originating at the bore surface tends to be
orientated with its length in the axial direction and depth in the

radial direction.

The theoretical basis for the compliiance test using the linear
theory of elasticity is given in Section one.

With a starter notch of a semi-circular cross-section an extensive
set of tests were performed as explained in ‘Section two. In the third
section, the method of numerical data anmalysis is outlined, and the
stress intensity factors are computed. In Section four, we simulate the
actuai crack by a simpler geometry and using the method of three-dimen-
sional collocation, the stress intensity factors are computed. The exper-
jmental results compare well with the theoretica! results obtained. To tha

authors' knowledge, such a K] calibration does not exist in the literature.
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SECTIGN i - ANALYSLS (f CCMPLIANCE CALIBRATION

The volumetric compliarce method for a thin, straight-fronted
‘. radial notch has Seen discussed in [1]. For the present problem of a
: symmetric surface flaw lecated on an axial plane shown in Fiqure 1, it
is ciear that strain energy release rates and stress intensity factors
are functions of the axial coordinate x3.  However, if we restrict our

attention to the plane x3=0 only, the concepts of volumetric compliance

can be extended to compute the stress intensity factors at the deepest

potnt of the surface flaw, i.e. at x3=0. Let the following quantities

be defires at x320: 4V, is the change ir the internal volume per unit

tength in Vye Sue te the internal pressure p; G is the crack extension

force {strain energy release rate); C,. = AV1/0 is the volumetric

v
compliance, and b is the crack depth. Then,

. at x.=0 , 1)

The stress fntensity factor at x3=0 , denoted by K] is
I 0l 4
K=~ = G= -— (aV;/p) ., at x,=0 . (2)
1 (l-vz) Z(I-vz) do f 3

The above relation is a consequence of a ‘plane strain' condition at

x3=0, [2]. As indicated in (2), the compliance calibration can be

]UNDERNOOD, J.H., LASSELLE, R,R., SCANLON, R.D. and HUSSAIN, M.A,,
"A Compliance ¥ Calibration For A Pressurized Thick-Wall Cylinder
HichA]Rggzal Crack" Engineering Fracture Mechanics, Vol. 4, 1976,
pp. 231-244.

fl 2EMERY, A.F, and SMITH, F.M., "Some Basic Properties of Penny-Shaped
3 Cracks" Mathematika, Vol. 13, 1966, pp. 172-180.




accompliched at a given value of pressure by determining the change in
the internai volume of the cylinder (at x3=0) for a series of surface
Flaws of different depths and performing the indicated differentiation.
However, the measurement which can easily be made is the change in the
nutside volume ¢f the cylinder per unit length at x3=0 (equivalent
0 the change in cross-sectional area at x3=0). In the sequel we will
prove that the derivative of internal and external volume changes for
a given pressure is identical. AVO and AVm are the changes in the out-
side volume and material volume per unit length at x3=0. Hence
Mg = &V, + &V (3)
If 8Y is the total change in the material volume V bounded by

cyiindrical surfaces S, and 52 between cross-sections S_: x_=£ and

1 5 3

56: x3=—a and exterior to the upper and lower surfaces of the surface

flaw 53 and S4 » Figure 1, we have
V= [ ed (4)
» - £ - ' . l
1 + €5 + €, 15 the dilation. The generalized Hooke's
law for a homogeneous isotropic body can be written (using the usual

where e = e

notations) in the following form: (see e.g. [3])

. = Jo + .- ] ',’= . ] )
Ty A€1Je 2ue1j (i, =1, 2, 3) (5)
Contraction gives:
T, = (3 + 2u)e . (6)
. 13
Hence
1
&V = Sven Iv Ty AV (7)

J"SOKOLNIKOFF, [.5., "Mathematical Theory of Elasticity" McGraw Hill
sock Comoany, Mew York, 1956, p. 66.



Using the eauation of equilibrium

Tik’k =0 N (1,k = ], 2, 3) s (8)

one can show:

N
~
o
-

0

= g )y v (9)

The divergence theorem yields

v
X ) V= Is Ve Tik 3 ds = Is T X ds (10)

vaere S is a surface forming the complete boundary of the volume V
Y
ang -, e the direction cosines of the outer normal v of S and T1
A
are peocerponents of the traction T acting on S.  Hence we have

from £9) ana 010}

v
jv T,y 0 js Ty xj @ Mm)
and contraction gives
v v
- e f =
[V g AV foTyoxg dS fs T.rds (12)

The surface S in Figure 1 is formed by six surfacesdenoted by S‘.

52. e, 56 then

s ,
SO T N ARG S (13)

N e
N2e 28 3I2n !Sn

vhere (\T))n are tractions on the surface Sn' From the symmatry we
have (}‘)3 = (‘TJ)4 and (}‘)5 = (¥)6 and the outer normals are in opposite
directions for each pair (53, 54) and (SS’ 56). The last four
integrals, having possibly the crack depth b as a parameter, vanish.

This completes the proof that AVm is independent of b.
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v
For vt siosiur1ze6 cylinder we have (T =-e. P, (T)Z =

where o 5 e unt valtor in the radial direction. Thus

The stress intensity factor then ren be written in terms of the out-

ejre wvelure change of the cylinder per unit length

i E Wﬁ/p -11/2
Totpom !_I_]—-?“ i at *(3“0 {16}
:_2\ TNV
Sty N —‘.‘ll’*“ Ti50

The <paciren, made fren a steel canmon tube, was a cylinder with
a 7.1 inch smocth bore and a 14.25 inch outside diameter, giving a
diameter ratio of 2.007 and a wall thickness of 3.575 inches. The
length was 30 inches with a recess 1.5 inch long and 7.3 inch diameter
at each end for “he pressyre seal.

I% was tested as e vertical, hollow cylinder, internally pressurized
on a supporting mandrel so that the end loads were supported by the
internal mandrel, giving an open end condition. (See Figure 2.) The cyl-
inder erdc were vealed with threaded closures on the mandrel so that
there were no axial stresses produced in the specimen due to pressure
end loads. The pressure fluid was a synthetic instrument o1l which
remains fluid at pressures in excess of those used. The pressure was
fully exerted in the initial notch cavity when the c¢ylinder was pres-

surized.

~
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The wali was initially notched with a semi-circle of 1/4 inch
radius cut at the bore by electrical discharge machining (EOM}. The
notch was 1/2 inch long in the axial direction, 1/4 inch deep in thre
radiai direction and 0.03C inch wide in the circumferential direction
at the midsection of the specimen. A fatigue crack was grown from this
starter notch by hydraulic pressure cycling from zero to 48,000 psi
until it reached each successive desired depth, as determined by ultra-
sonic crack-depth measurement. The circumferential strains were then
read on the outside circumference with bonded foil strain gages at 14
angular positions relative o the notch location.

The strain gages were 1/4 inch gage length and were oriented in
the circumferential direction in a ring at specimen midlength. Two
gages were located on a line directly over the notch, one at 1 inch
above and one at 1 inch below the cylinder midlength, so as to permit
measurement of crack depth at its deepest point by placement of an
ultrasonic normal probe directly over the notch. Other gages were
located arcund the midlength circumference at angles from 59 to 1800
on either side of the notcn line, as listed in Table 1.

When measuring the strains at each crack depth,the pressure was
{ncreased to 16000, 32000 and 48000 psi and then decreased to 40000,
32000, 24000, 16000, 8000, 4000 and zero. The pressures were controlled
within + 1%. The readings from all gages were taken in sequence, with
the cylinder held at pressure, using a 24 channel switching unit and an
SR-4 strain indicator located outside the test cell. An identical

strain gage, bonded to an unstrained piece of the same steel lying on the




test specimen provi'ed temeerature compensation during the experiments.
If the final strain reading at zero pressure differed from the initial
zero pressure reading by more than 20 microinches per inch at any crack
depth ihe readings were repeated to eliminate measurement errors as much
as possible.

Strain gage data for the 48000 psi pressure level are listed for
the successive crack depths in Table 1. The gage positions are the
angular locations on the 0.D. from a point directly over the initial
notch,

Figire 3 shows the final fracture surface of this fatigue crack.

The crack profile at successive crack depths is reproduced in
Figure 4, The corresponding number of cycles to reach each depth is
given in Table 1. Figures 3 and 4 show that the crack, propagated from
the inftial semi-circular notch, remained a semi-circie until nearly
2-inch depth was reached. After that it became part-circular or part-
elliptical. It finally acquired the shape of a partially imbedded
ellipse, when the intersection of the crack front with the bore surface
became nearly stationary while the ¢1lipse deepened and lengthened. 1In
these latter stages of growth, after a 2-in. depth, the rate of propaga-
tion was quite fast. Unfortunately we did not obtain as complete strain
data as would be required for an accurate compiiance analysis for the
greater depths. The data is therefore analyzed for the semi-circular
shape up to the 2-inch depth only. In Figure 3 one can see the evidence
of a "free surface shear-11p" formation which fans out at about 20°

from the inner wall on either side of the initial notch.
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SECTION 3 - DALA ABALYSIS

5y considering only the cross-section of the ¢ylinder through the
strain gages {i.e., x3=0)the numerical problem is stated as follows.
Given the tangential strain at selected points on the circumference of
a circle,we wish to determine numerically the change in cross-sectional
area (equivalently AVO , the change in external volume per unit

length at x,=0).

3
This can be accompiished in two ways. First,we can integrate the

tangential ctrain to obtain the change in the length of the perimeter

27
AP = fo '2€¢(¢) do » at x;70 , (17)

ang assuming the distorted figure remains circular, we have the change

in cross-section area AAO:

1 2
My = g (2P0 + 0P) (18)

A more rigorous approach is to compute

s = (2T rere) gy (19)

R
From strain displacement relations,we have (using cylindrical
coordinates }: ()

up(rps8) = toe, (15u0) - ?i;f—i , (20)
where U u¢ are radial and tangential displacements. It can be
shown by eigenfunction expansions that the second term at the right of
(20}, for the present problem, is even in ¢ and periodic in 2w .
Neglecting second order terms (1inear elasticity), it is seen that this

term makes no contribution to the integral in (19). Hence,essentially

13




we have up(ry,¢) = rze¢(r2,¢) for the integration of (19). It was found
that the evaluationsof AAO,using the two methods, agree with each other
to four significant figures.
For the data analysis,our choice of an angular function was an
irterpolating periodic cubic spline ([4].
Definition of cubic spline:
Given an interval , a<X<B , {21)
a mesh on the interval,
R A amxgaxy < <xy=g o, (22)
and associated set of ordinates (data points) ,
Yoi g Yyttt Yy (23)
then the cubic spline satisfies:
sp(¥s x) € € on [ g1
SA(Y, xj) =5 (3=0, 1, oo , ) (24)

and 1s coincident with a cubic on each interval,

; s (j= vea
Xy <x<xg o 3=, 2, N . (25)
If, in addition, the derivatives
5,7 (@) = 5,00 (5) (be0, 1, 2) (26)

the spline is said to be periodic with period (g-a) .
If alternatively
SA(Y, XJ) = -YJ + EJ‘ » (j=0: 1, »o0, N) (27)
with the € subject to some minimizing constraint; it is said to be

an approximating rather than interpolating spline.

4AHLBERG, J. H., NILSON, E. N., WALSH, J. L., "The Theory of Splines
and Their Applications," Academic Press, New York, 1967.
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As described in the previcus section the data was taken at 14 angular
position for six crack depths and at nine pressures. Discounting the
data for crack depths greater than 2 in. (due to gage and tube failures)
we have 756 data points for numerical analysis. To indicate the smooth
nature of the strain data and interpolating functions we show in
Figures 5a - 5¢ the results for various crack depths at 48,000 p.s.i.
Once the spline function has been found the changes in the cross-
sectional area are computed by the methods indicated above. The partial
results ~re nresented in Table 2. [t should be noted that the first row
in Teble 2. for zero crack denth, is not empirical data but extrapolated
values and the set of data corresponding to starter notch (b-.25) have

been elininated. Tne stress intensity factors now have to be computed

from (16) :
/2
E d(AVO/P)
K, /p = — , at x.=0 , (16)
1 [2“_\)2) db 3

where AV0 is the change in the outside volume of the cylinder per unit

length at x2=0 and thus is numerically equivalent to AA0 and also from ;
\ v ]4

K*/ 4 d(AVO/P) ¢ 0 (28) E

p|—y — , at x,20 , ,

1 2(1-v2) db¥ 3 %

where b* = b + %ﬁ (Gi) is an effective crack depth suggested by
Irwin (5], (0<h <1, Gy = yield stress) to correct for the effect of

plastic deformation at the crack boundary.

TR, TR

o

5IRNIN, G. R., "Structural Aspect of Brittle Fracture", Applied
Materials Research, Vol. 3, 65, 1964.
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Table 2. Change in Area aho (inz) Enclosed by the Quter
Perimeter of the Cylinder at Xg = 0 for Various

Crack Depths at Seauential Pressure Levels

CRACK DEPTH PRESSURE p psi

b 1in 32,000 48,000 40,000 32,000

0 0.2312 0.3468 0.2890 0.2312
0.5 0.2325 0.3493 0.2908 0.2328
0.75 0.2326 0.3512 0.2911 0.2334
1.0 0.2375 0.3604 0.2958 0.235]
1.5 0.2389 0.3591 0.2989 0.2392
2.0 l 0.2496 0.3767 0.3142 0.2507
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To compute the derivative of AVO(b) we used a non-periodic approximating
cubic spline with an algorithm which minimized
.fb“ (3153 db + A %\ (s (b,) -av_ .1 (29)
‘0 i joq a0l 0i

where i s introduced to allow us to strike a balance between the
amount of smoothing desired vs, maintaining the integrity of data. As
seen from (28) we must of necessity evaluate b* and K]*/p , for a
given vaiue of h, by an iterative process which is stable. As a guide
te selection of 1 we consider the type of K expression common in
“racture mechanics , K1 = (constant) b]/2 and see that dZK]/db2 is
strictly monotonic increasing, A value of A=10 proved quite reasonable
jeading to a rapid and stable convergence of K]*/p.

The results of such an analysis for pressures of 40,000 and 48,000
psi are shown in Figure 6, In an ideal linear experiment K1/p,
for different pressure, should fall on the same curve. To partially
account for nlastic deformation at the crack surface we have incorporated
the Irwin's correction term, as explained before. In Figure 6, we show
the results for 48,000 and 40,000 psi without the Irwin-correction
(h=G) and with correction (h=1). For clarity we have deleted the results
for intermediate pressures and different values of h, 1In Figures 7, 8,
and 9 we show the results for different pressures, and h. In all of

these figures 1t is seen that the results are fairly close to each other.

SECTION 4 - RESULTS BY COLLOCATION METHQD

Because of the complexity in the geometry of the problem it seems

that an analytic closed-form solution is not yet possible. However,

23
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SECTION X4 = 0

X3
SECTION X, = O L X,

FIGURE 10. A rectangular block with a circular surface flaw is used to
simulate a shallow surface crack in a thick-walled tube.
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since we are working with relatively shallow surface cracks compared to
the wall thickness of the tube (most of the fatigue life is confined to
such crack growth as seen from Table 1) we can effectively simulate the
curved surface of the tube by a rectangular block with a surface flaw
in-the form of a segment of a circle as shown in Figure 10 and apply the
method of collocation. It is evident from Figures 3 and 4 that there
is a 'shear 1ip' region extending radially to about 20° on either

side of the inner wall of the tube. Hence the actual crack was sim-
uiated by a segment of a circle with a matching depth and the center
having an offset d of .3(radius) of the circle as shown, i.e.(b=a+d).
The thickness (TH) of the block was taken equal to the wall thickness
(1.e. TH=R0-R1) and it was found that it is sufficient to take half the
width (HW) and half the height (HH) equal to three times the radius of
the crack (HW=HH=3a). The loading condition on the block corresponds
to the Lamé solution together with uniform tension due to the presence

of pressure inside the crack:

1 \ R‘I2 + R']z (30)
afp=1+ —_— 30
z R2 | RZ  (Ri+dx)2

i 0 1

n?

Ry

In the sequel, we give a brief outline of the exterior collocation

method, the details can be found in [6].

6HUSSAIN, M. A., HAGGERTY, R. G., PU, S. L., and NOBLE, B., "Exterior
Collocation For Three Dimensional Surface Flaw", WVT-TR-75053, Water-
vliet Arsenal, Watervliet, N.Y., 1975,
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The method of exterior collocation,for a symmetric surface flaw located
on the plane z=0, requires construction of a set of functions which sat-
isfy the mixed boundary conditions on the plane z=0. These conditions
are: the normal stress is zero inside the crack-surface and normal dis-
placement is zero outside the crack-surface. Symmetry of the problem
further requires shearing stresses to vanish on the entire plane z=0. For
the case of a circular flaw this was accomplished using three-dimensional
Boussinesq potentials where the harmonic functions were represented by
Kobayashi potentials (integral representation of potential functions)

and superposition of such a solution with uniform field and plane strain
sclutions to satisfy the above boundary conditions. The results are:

o = 1 A (1 )r 2L (1-20)1y =21, ) (1321 )T [ (1-29) 121 ]

-gna'n'3/2(n-2)(2n+1)F(n+1/2)r“/[4/?br(n+1)]} €OS ng

i

% = | A C-n{n#1)r 2L (1-20) 121, ]- 201 g+ [(1-20) 121

+epa ™32 (ne2) (2041) 1 (n#1/2) e [4/20r (n+1) ]} cos 16

o
!

. A0/E7§é'3/2+£ Ay Tzl grea ¥ 2 (ani ) (n1/2)e"
[V2r(n+1)]} cos no ,

Tpg = g en An(n(n+1)r=2[(1-29) 1g-21y]-ne" 1 (1-29) 15-21 )
+a-1=3/2n (2041 )1 (n+1/2) X"/ (4200 (1#1) 1) sin ne
= % A, z[-nr']I3+I7} cos ne ,

Tgz 2 L " enAnnzr‘II3 sinng . (31)
n
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Where e,=0 for n=0, €,=1 for nf0 , the summation } is over n=0, 1/2,

n
1, 3/2, «»+,» and An‘s are constants to be determined by the collocation

method.
origin located at the center of the cricular crack of radius ‘a', and I's

We have used the cylindrical coordinate system (r,0,z) with the

are integrals given below:
]/Ze'Zde s

® -2
11 = I{) k Jn(kr) Jn+3/2(ka) k
Ip= - 2ly/oz , Ij=-3ly/ez , Iy = - 3ly/0z (32)
and
_ el 1/2 -zk
Ig = Jo KT 0poq (k) J43/p(ka)ki “e™ " dk
Ig =~ aIs/az » L= - axslaz (33)
After some basic integration,it can be shown from {31) above,
0, r<a ,
0{z=0)= (34)
2
1 1, 3 a
5A{j—<)[~—F P o
"75 !_ 227 "R
{2n+1)r{r+1/2)
] e, ()W AEELNTE) ) cosne, roa,
J “n'd \/Za3 T (n¥1)
0, forvr>a ,
26u, (z=0)=

2¢?7§'(\-v)a's/z(a2~r2)1/2 ¥ Ay(r/a)" cosne , r<a . (35)
n

Hence it 1s seen from (33), (34) that the set of functions selected
The stress

satisfy the mixed boundary conditions of the crack problem.

intensity factor can be computed from equation (34) or (35):
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Table 3.

Values of Ay's for N=28, v=0.3 and a=1", d=0.3", TH=3.575",

HW=3", Kd=3" with Linear Constraint Ay~ -FA,cos n

teos™1(d/a):
{ f i f { A
P | n : f+1/2
S -
lo | 0.17674000  x107 i - 0.28808100  x102
g 1 { 0.21008300  x10% | - 0.72235200 103
Ly , 0.15196900  x10% f - 0.21668300 x10%
E 3 0.21888900  x10% ! - 0.15776160  x104
; 4 1 0.78043600  x103 - 0.22554700  x103
' 5 5 £.51905666 10! 0.24505900  x102
5 ‘I - €.R9757900  x10! 0.17788800  x10]
7| - 0.18092500 x 10! 0.16957900  x10!
8 - 0.66020300  x100 - 0.28821800  x10~!
9 0.13661300  x100 - 0.43773500  x10°!
o - 0.13656300  x10°] ‘ 0.18752300  x107!
n - 0.9871200 x1072 ! 0.26154100  «10°2
2 - 0.48300500 x1073 0.50154900  x1074
13 - 0.14393100 x10°5 - 0.15544700  x1076
R e ]
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1 1

K =K(6) = /Za ) An cosne (36)
n

once the An's have been computed.

In general it is not possible to obtain An‘s in the infinite series.
An approximate solution, however, can be found by satisfying boundary
conditions at m selected discrete points, called collocation points,

on the remaining boundaries exterior to the plane of the crack. At each

boundary point there are three boundary conditions. From the 3m equa-
tions we can at most solve for 3m unkown coefficients An‘s. To avoid an
illconditioned matrix, the boundary conditions are to be satisfied in

a least square sense. Computationaily, the least square procedure, in
obtaining stable results, is to choose a rather large value of m and
solve An's from the NxN system of 'normal equations', which are derived
by minimizing the sum of the squares of errors at collocation points.
Since the value of N is not known a priori, we solve the normal equa-
tions for N=1,2,...until the required stability is achieved in K] and
there is no significant change in 'residuals'. As explained in [6]
there is an additional requirement for surface flaw problems; namely
the boundary traction must vanish at points of the crack-free surface
intersection. This gives a linear constraint on An's (see Table 3) and
leads to zero stress intensity factors at such points. With TH, HH, HW,
a, d, v, N,Figure 10y as input parameters and automatic generation of

m nearly equally spaced collocation points, & computer program was

6HUSSAIN, M. A., HAGGERTY, R. G., PU, S. L., and NOBLE, B., “Exterior
Collocation For Three Dimensional Surface Flaw", WVT-TR-75053, Water-
vliet Arsenal, Waterviiet, N.Y., 1975.

4




S

o

"SL<N 404 S3{NSB4 UOLIEI0(10D 0 A1L11qEIS 3yl Buinoys N s d/'y 0 udeay 11 3unols
44300 4O "ON N

(154 0g 0¢C 01 0
_ T 1 T T — I H I I _ I T T T ﬂ { T [ T _v
€0=n —10°1
0=%x NOI1D3S |
€0=p
P
‘ Nﬁ :— =B e
] —e
T&v HL €= HH 1 A
* P UGG g HL 5T
o AL H—=f— A H — |
601 =W "'Sid "O71T10D .
>\\...I\/’|I\‘/\\\|\A\v chN




S3uL0d uoL3ed0( (09 60} UILM 8z=N 404 0 sa d/ly 4o udess 21 3urerg

(F3993G) O

134 1 001 o¢ o
] ! I T T T T T T T

9V'LO1 i

€0=0n

€0=p
I=®
€ = MH
€= HH

60l=w ‘Sid 'O7TI0D

A

82 =N ‘44302 40 ‘ON i

0=%% NoILD3S - o M
-1

==K - ;

wﬁ —Hg'1 ;

S R T SRR A R e o R L e A i




*aqn3
3623334403M2-U0U 404 PQUIBM UOL3BD0( 10D puR 53533 BDURL|dwW0d A9 pauteIqo ‘g sa d/ly Jo ydeds -g| 3wn9ld

(*ur) q Hid2a >SOViD

02 S'1 0’1 <0 0
{ ! 1 T I I T T T I 1 T T T T 1 ! T T T F
/
/
A,
x \\u\ | 1,—
<
x -
\\\
X\u\l\l\.\.\\\-\ '..N M
- -
-
x — =
- —€ =
- o]
BONVITIdIWNOD ~
NOI1vDOOTI10D X —¥
—<

I rm gy T St e ey




written which calculates An's and the stress intensity factors as

briefly described. (The symmetry of the problem allows us to work with

half of the geometry.)

In Figure 11, we plot K]/p vs N, up to N=35, showing the stability
of the results. It is seen that the results are stable within 3-4% for
N>15. In Figure 12, we plot K]/p vs 6 for N=28 with 109 collocation
points. It is seen that K1/p is maximum at 6=0 (i.e. at the deepest

point of the crack) and vanishes at 0=107.46° (i.e. at points of the

crack-free surface intersection). In Table 3, we list An's for the above

)
: case showing convergences of A for Targe n. Similar computations were

carried out for crack depths of b=a+d = .1, .2, .3, .4, .5, .75, 1.0,
1.3 and 2. inches. The resulls are shown in Figure 13. In the same
figure, we have plotted K1/p obtained by compliance results (see

Figure 9). Excelient agreement 1s seen between the experimental and

theoretical results.

CONCLUDING REMARKS

In this report we have developed a compliance calibration of a
thick-walled circular cylinder with a symmetric internal surface flaw.
Results obtained agree well, for small crack depths, to those obtained

analytically for a semi-circular flaw by the collocation method.
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APPENDIX A

A collocation analysis for simulated crack geom. *ry was also
carried out for the case of an autofrettaged tube. Due to the presence
of compressive stress at the inner bore of the tube, it was reasonable
to assume the loading condition as a superposition of applied and the

residual stress fields. Hence, eq (30) was replaced by:

2
) a a
afp=1+—p—0 (& &
/P (1-a%/b2) ¢ b2 (a+d+x)2 }
2 2 2 2 2
12 10g (BB 4B 22Ty (5 100Pe1 -2 (13
o L2 100l e - (v g1-2)/ (1-55)],
+

for (a+d+x)<p
g/LK [(02/b2+02/ (a+d#x)2)-(2 Yogo/a+1-p2/b?) (1)
' (a2/b%+a2/ (a+d#x)?)/ (1-a2/b2)],

for (atd+x)>p ,
where a=R1, b=R° , are the inner and outer radii. Oy the yield stress ,
p 1s the pressure and p is the interface depending upon the percentage
of autofrettage {e.g., for 30¢% autofrettage p=a+.3{b-a).) The re§ult5
of such a computation for R]=3.55" R0=7.125" p=48,000 psi, oy=170,000
psi, and crack depths b = 125", .25", .5%, .7¢", .9", 1", 1.25", 1.5%,
1.75", 2" are plotted in figure A1. It is seen that ¥;/p is substan-

tially lower for an autofrettaged tube as compared to a non-autofrettaged
BK}/D
ab
opposed to a non-autofrettaged tube at b=0.

tube (Fig. 13). It is further seen that is bounded as

The compliance tust as previously explained was done for a 30%

autofrettaged tube of the same dimensions as before. The change in the
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cross-sectional area was computed as before and the results for a few
pressures are given in Table A7, It is inmediately seen that the data

is quite scattered for small crack depths. This may be due to the fact
that the notch was put in before the autofrettage process or may be

due to relaxation of residual stresses under cyciic loading in the
presence of a notch. Neglecting the first three data points and extrap-
olating the data for zero crack depth to AA0=.3571‘n2 the stress intensity
factors with h=1.0 and A=1000 (less smoothing) were computed. The
results are shown in Figure A1, together with the collocation data.

Again, fairly good agreement is seen for small crack depths.
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