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PREFACE

Application of circulation -contreol (CC) airfoil technology
to both rotary wing and fixed wing alrcraft is currently being
pursued by the Department of the Navy and industrial contractors.
Although the advantage of direct high 1ift control has been well
egstablished for this type of airfoil, relatively large pitching
moments have not been analyzed in terms of their effect on aero-
elastic limits., The purpose of this study is to establish a means
of evaluating safe flight boundaries for a fixed wing application
through analysis of the problems of circulation control torsional
divergence, control reversal, and control effectiveness. A CC
stall filutter condition is also analyzed and is shown to occur
even with the wing in pure bending.

The dependence of airfoil force and mement coefficlents on
both angle of attack and blowing rate required modified analyt-
ical procedures. The three-dimensional aualysis uses a modi-
fied lifting line theory in matrix formulation which allows ncn-~
linear spanwise aeroelastic variations as well as partial span
CC airfoils. Two-dimensional airfoill characteristics which are
nonlinear with blowing rate required an iterative approach to
establish a reference spanwise distribution of varlables. Air-
foil derivatives were then taken at this reference condition.
Divergence and reversal boundaries were established by a linear
analysis zlong with variations in lift and control effective-
ness with speed.

The author is grateful for the overall guidance provided
by Dr. Jewel Barlow and for his assistance in establishing the
parameters of significance. The author also extends thanks to
Micc PRos~ McC-ossin and Miss ¥athleen Henderson for typing and
assistance in preparing this report.

The wind tunnel evaluation was performed in the DTNSRDC

8- x 10-ft subsonic wind tunnel in Jenuary 1974, and the ana-

lytical study was performed over the period April-July 1975.
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ABSTRACT

‘ Static aeroelasticity is examiued for a wing with circula-

9 % tion control (CC) airfoils. The airfoils use tangential blowing
1 over a rounded traiiing edge to provide a lift augmentation pro-~
portional to the jet momentum of the blown air. Airfoil lift and
pitching moment magnitudes are dependent on both angle of attack
_ and jet momentum. In combination with an elastic structure, this
y double dependenice of 1ift and moment can lead to a CC reversal

3 condition which is analogous to aileron reversal. Increases in

4 jet mumentum beyond the reversal point result in 1ift decreases.
. Boundaries for torsional divergence and CC reversal are theoreti-
‘ cally examined for the simple two-dimensional case and then for

a tnree-dimensional wing. The wiag analysis uses a modified
lifting line theory and two-~dimensional CC airfoil data to evalu-
ate the behavior of a circulation control wing (CCW). Two para-
meters, lift effectiveness and control effectiveness, define the
behavior of an zlastic CCW relative to that of a rigid CCW. A i
modified version of the wing analysis 1is used for comparison to
: wind tunnel data from a CCW model. The model had a root attach-
¢ ment device which allowed rigid body wing torsional deflections
k in response to the aerodynamic pitching moments.

Stall flutter conditions were encountered which ianvolved only
the wing bending mode oscillating at the first cantilevered
natural frequency. A first order explanaticn of the flutter is
provided by two-dimensional considerations. It is showm that
the wing stall flutter boundaries may be established from the
, two-dimensional analysis by proper scaling and by establishing »
3 an aerodynamic equivalence. i
) The theory was in good agreement with wind tunnel evalua-

3 tions on a model CC wing. Because of the large geometric twist
in the available model, portions of the wing were at or near
angle-of-attack stall conditions even though blowing maintained
k significant levels of lift coefficient. Such conditions are
unique to CC airfoils. This caused some difficulty in obtaining
a soluton with the lifting line theory which would provide a

. numnerically stable and convergent iteration. The approach used ' 5
in conjunction with the modified lifting line thecry and two- i
dimensional airtfoil data is believed to be the first such
analysis, notwithstanding the establishment of divergence and
reversal boundaries.
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funded under Work Unit 4-1600-001,
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INTRODUCTION
. Circulation control (CC) airfoil technology is currently being pursued
by the David W. Taylor Naval Ship Research and Development Center (DTNSRDC),
Carderock, Maryland, for application to rotary wing and fixed wing air-
craft. The basic advantage of this new technology is that a high 1lift po-
tential with direct 1ift control is attainable by controliling the jet
momentum issuing from a thin spanwise slot along the rounded trailing edge
of the airfoil. This means of control also produces airfoi. pitching
moments which are on the order of magnitude of flapped high lift airfoils,
and it also offers the potential for operation at moderate to high subsonic
flight speeds. Relatively large pitching moment coefficients at significant
levels of dynamic pressure require that the boundaries of torsional diver-
gence be established for safety of flight. Similar boundaries for the con-
dition of CC reversal musi also be examined to ensure satisfactory vehicle

control and performance.

BACKGROUND

The CC airfoil is a boundary layer control type of airfoil which em-
ploys a thin slot on the upper trailing-edge surface. Air blown from this
slot remains attached to the airfoil rounded trailing edge by the Coanda
principle and establishes the airfoil stagnation points according to the
combination of angle of attack and blowing magnitude. Initial experimental
investigations with circulation control by tangential blowing were conducted

on circular cylinders by Dunham.1 These investigations proved the high

lbunham. J., "Circulation Control Applied to a Circular Cylinder," Nat.
Gas Turbine Est. (England) Report R. 287 (Jul 1967).




lift capability of the concept, but the geometry was complicated by multiple
slots and lacked the potential of higher speed operation. Nevertheless, the
results of application studies by Cheesemanz’3 and others showed that the
concept had promise. Subsequent studies at DTINSRDC have concentrated on
quasi-elliptical airfoil shapes employing circular arc camber and modified
trailing edge contours. This series of airfoils has provided both the high
11ft capability and the low profile drag characteristics demanded of practi-
cal airfoils. Stone and Englar4 have provided a comprehensive bibliography
of reports on CC airfoils and their applications.

A considerable bank of two-dimensional data has been compiled at
DTNSRDC on the CC airfoil for various gemetry combinations of airfoil thick-
ness ratio, camber, and trailing-edge design. Most of these results are
covered in the aforementioned bibliography.a Figure 1 illustrates typical
CC airfoil geometry for two-dimensional models. Some transonic data are
avallable, but presently there is no information on the unsteady character-
istics of the CC airfoil. Consequently, those problems which require this
type of data, such as classical flutter, cannot be theoretically exemined
with any degree of confidence. The ensuing analysis therefore includes
only steady-ctate airfoil data and addresses only the divergence, CC re-
versal, lift effectiveness, and stall flutter problems which are amendable
to steady or quasi-steady assumptions.

The characteristics of CC airfoils depend on the two independent vari-
ables of angle of attack o and jet momentum coefficient Cu. The dependence

«f 1ift on two independent variables gives a wide range of o and Cp which

2Cheeaeman. I. C. and A. R. Seed, "The Application of Circulation Control
by Blowing to Helicopter Rotors," J.R.Ae.S., Vol. 71, No. 848 (Jul 1966).

3Cheesemuu, I. C., "Circulation Control and Its Application to Stopped
Rotor Alrcraft,” AIAA Paper 67-747 (Apr 1967).

AStone, M. B, ad K. J. Englar, "Circulation Control - A Bibliography
of NSRDC Resezrch and Selected Qutside References,' NSRDC Report 4108
(Jan 1974).
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Figure lc - 30-Percent Ellinse with 1.5~Percent Camber

Figure 1 - Typical Circulation Control Airfoil Geometry for
Two-Dimensional Models
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develop the same 1lift. Figure 2 is typical of a CC airfoil which shows

botk the powerful dependence on Cu and an unusual angle-of-attack stall
behavior. However, the a, Cu combination used to develop a given Cl greatly
affects the aerodynamic efficiency and the drag and pitching moment co-
efficients. Figure 3 presents typical pitching moment coefficient data re-
solved to the half-chord position. Note that the magnitude and range of
pitching moment coefficient are considerably larger than those of a

conventional airfoil, The fact that the airfoil center of pressure varies

greatly for different combinations of o and Cu has thwarted attempts to

define a conventional aerodynamic center for CC airfoils. It has therefore

been customary to resolve the pitching moments about the half-~chord
position.

The behavior of interest in this report is the increasing magnitude of
negative airfoil pitching moments as jet momentum is increased. At a given

flight speed, jet momentum would be increased to provide increased Cz and

increased 1lift. However this same control also produces larger magnitudes

of negative pitching moments. 1In the case of an elastic wing, this would

K

result in reduced angle of attack, tending to reduce the 1ift. So there

is a possibility that the reduction in 1ift due to this decrease in angle

‘;, ! could be more powerful than the increase in 1lift due to increased jet

momentum. The net effect would be a decrease in lift for an increase in
jet momentum, or an apparent reversal of the circulation control. This
condition is denoted as CC reversal,

The CC reversal condition is somewhat analogous to aileron reversal,
hence the name. As is well known, alleron reversal is defined as that

point where rolling moment becomes zero because of aileron-induced anti-

|
I
|
i symmetric 1lift distribution. This occurs because of wing torsional de-
i flections brought about by the aileron-induced pitch moments, and so it is
\ a reversal of the net effect of the control input. Circulation control is
! being considered as a direct means of controlling total wing lift (and
J possibly rolling moment alsc). Therefore, the reversal condition of
’ interest is not when rolling mom:nt goes to zero or even when 1lift goes

-é to zero; it is when the rate of change of 1lift due to blowing goes to
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Two-Dimensional CC Airfoils
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zero (BL/BﬁIVj = 0). Thus CC reversal is also a reversal of the net

effect of a control input. Basically the phenomenon is produced by the
increasing nose-down pitching moments with increasing lift due to blowing.
The mechani-m is also seen to be similar to aileron reversal.

A limit-cycle stall flutter condition was experienced during wind
tunnel evaluation of a CC model wing. There were no torsional deflections
during this phenomenon, but the wing oscillated at its first cantileverad
bending frequency and at a magnitude proportional to the blowing rate.
Analysis of that condition indicates that it occurred as a result of the
very gradual stall pattern of CC airfoils. The particular family of CC
airfoils on the model wing have pure elliptic leading edges and encounter
angle-of-attack stall at high blowing rates and low positive effective
angles. It must be noted that the family of airfolls preseutly intended
for firxed wing application do not stall until conventional stall angles
are reached. However the model results used herein are sufficient for de-
fining and examining the potential boundaries, and the analvsis may be

applied by using the appropriate set of two-dimensional airfoil data.

AIRFOIL DATA REPRESENTATION

The nonlinear behavior of CC airfoils with CU (and a) has prevented any
meaningful simplified or close-form type of analysis which employs a linezar
approximation over the normal range of a and Cu. However, the method used
here does utilize a linear representation for analysis of the two-dimensional
wing problems of divergence, CC reversal, and 1ift effectiveness. The sec-
tion C, and Cm may be approximated over a limited range by

‘ 50

C, =C

¢ + y CU + aon (1)

£

and
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This holds only for a limited a range and for relatively low Cw‘ but {t is
consistent with the needs of a two~dimensional analysis whose gnly purpose
is to show behavioral trends and to aid in problem definition.
Three-dimensional CC wing divergence, reversal, and effectiveness
studies also require a compact representation of section characteristics.
The need for greater accuracy requires that the correct magnitudes of Ll

and C, be represented and that the "local" aerodynamic derivatives be
50
used here to reflect differences in behavior at different combinations of

a, Cu. Application studies have resulted in computer-tsbulated data decks
and standard interpolation and correction computer programs which facilitate
handling of the two-~dimensional data. The analysis and two~dimensiocnal rep-
resentation which follow have used these data decks and programs where prac-
tical. The interpolation program also cerrects the data values for slot
height-to~chord ratios and Reynolds numbers which are slightly different
from the hasic tabulated data. This interpolation utilizes three sets ot
tabulated airfoil data for different combinations of thickress and camber.
Each set includes two-dimensicnal Ci' Cd' and CmrC as functions of both «a
and C . ?

For a predetermined reference condition of o and C“, ine following
perturbation approach is used herein tu define airfoil characteristics ar

any given wing section for the three-dimensional analysis:

13
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* :
CQ + uACu + alo f

@]
L}

(@]
il

*
Cm + Cm AC + C Ao
50 u H Ty

* *
The values of CQ and Cm are the section :haracteristics at the reference
* *
values of o and Cu . The AC‘J and Ao are changes in Cu and o from those . :

values used in obtaining C * and Cm*. The section derivatives u, a, Cm s
and Cma are evaluated locally about the reference a*, CU* point. The g
change in CH’ ACU’ results from an increase in q when solving for the diver-
gence or reversal speed while holding blowing pressure, or th, constant.

*
Thus ACU =C -C

2

U Moo
The definition of Ao naturally depends on the reference angle. Two

kel e L = e

i cases will be considered. The first, and more convenient, is applicable to
operation where the 1ift curve slope 1s constant. Here the reference con-
dition may be defined as that value of CR obtained at the geometric angle.

All calculations for the induced angle i may then be accounted for by a

I N T W

i closed-form solution of the lifting line theory matrix equations. The C2

is then expressed as

@]
|

= C * C * + C * + a(¢-1) 2
Q(ag’u) U\u"p) a¢ ()

(@]
1}

2 CQO + uCu + a¢ - ai

2 2 + uCU + a¢, and ¢ is the deflection angle.

14




i

(2t iy

3

The second case is applicable to wings which, at least in part, operate at
or near the stall condition where the 1ift curve slope is not constant. The
previous form is insufficient in the nonlinear range since it can yield in-
correct values for a, if evaluated at the geometric angle, and considerable
error is introduced if the slope is assumed to be constant over the entire
corrected induced angle i. It was found during this study that numerical
instabilities and even multistable conditions that yield erroneous results
may be obtained if one tries to reevaluate a in an iterative manner. How-
ever, the following form provided a stable iterative solution for most of
the casges tried. The refereace condition is taken as that of the rigid wing
in order to establish a reference distribution of induced angle. Particu-
lars on how this reference distribution is obtained are given later in con-
nection with the wing root elasticity case. However, once the distribution

is obtained, CZ may be represented by small variations about that poinut as

c, =¢c,* ( i, ¢ +uc ¢+ A1) (3)
2 g (& » € H(c, " a($ -
or

c, =C, + uCu + a¢ - alAi

L L

o
or

Cl = Cl - ali

* * * * —
where CQO = CQ (Qg -1, Cu ) - UC“ and Cl = CR'0 + uCu + a¢. The same
notation and procedure are applied to the pitching moment coefficient.

Stall flutter analysis depends heavily on the airfoil nonlinear be-
havior with angle of attack. The above linearized approaches are therefore
useless 1in such calcuiations. Appropriate representations of airfoil char-

acteristics are described in the relevant sectione.
TWO-DIMENSIONAL STATIC AEROELASTICITY

The two-dimensional case is considered here for purposes of establishing

the primary relrcionship which governs torsional divergence, CC reversal,

15
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and lift and contrcl effectiveness. Consider a section of a CC wing acting

in a two-dimensional flow. As shown in Figure 4, the section is torsionally

TORSIONAL SPRING

ELASTIC AXIS

CC JET
MIDCHORD

Figure 4 - Two-Dimensional Representation of Aeroelastic Wing

restrained by means of a spring mount about a position which establishes the
elastic axis. The position of the elastic axis from the airfoil leading
edge will be denoted by EA.

Available CC two-dimensional data have been resolved about the airfoil
midchord; this, then, will be the reference point for aerodynamic forces

and moments. The 1ift and moment about the £A are then given by:

L = qSC,

Mg, = 0 = ch(cmso - €Cy) - K¢

where € = (.50 - EA/c = elastic axis position relative to midchord,
positive forward

¢ = torsional deflection

K = torsional spring constant

16
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Lift and moment coefficlents are described by Equation (1); there the angle
of attack is the geometric incidence plus torsional deflection about the EA,

or a = ag + ¢. Substitution into the moment equation gives the deflection

angle
Cm - ECQ Cm - ecz
o = 50 _ 50 %)
- (C, - e€a) Y
o
where
Cm = Cm + Cm cC + Cm o
50 o po M o B
CQ = Cl + uCu + aag
o
Yy=¢- (C - ga)
T
¢ = K/qSc

Equations (1) and (4) can then be substituted into the 1ift equation to

yield
L = g8 (EQ + a¢)
or

= . 8t . a
L = gS [(cg + aq) -5+ @ +c o) ]
. [»] o] Q

at a .
+ [u(l -+ Cmu '{] v, (5)

TORSIONAL DIVERGENCE

It is readily apparent from Equation (4) that torcional divergence will
occur when Y = 0, or at that point when the dimensionless stiffness (K/qSc)
just balances the natural aerodynamic tendency in pitch. Therefore the

cvitical value of dimensionless stiffness is given by

17
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K

C =

4 D~ qDSc - (cm - €a)

a

For a predesigned torsional stiffness, the divergence q is given by

K
9 ¥ sc (C. - ca) (6)
o

The divergence equation indicates no dependence on initial settings of angle

of attack or blowing. The cbvicus point is that a cenventional wing of sym-
metrical section properties will theoretically diverge in a negative direc- i
tion as readily as it will diverge ia the positive direction. A cambered
conventional section will behave similarly but relative to its zero lift
E angle. The lift curve slope must then be evaluated for differences in
behavior at positive or negative lifts. If the CC airfoil is viewed as a
34 variable camber section, where camber is dependent on blowing rate, it is

sean that the airfoll derivatives Cm and a are themselves dependent both ?
a

on angle of attack and on blowing rate and therefore that both affect the

value of 4y

A special case occurs for (Cm - €a)<0, or €>Cm /a, for hevre the de-
o Q
nominator of Rquation (4) remains positive even for zerv siiffness. Con-

sequently a torsional divergence does not exist. Physically, Cm /a denotes

a
the instantaneous moment center due to angle of attack. Thus E>Cm /a is a i
3 a l
A condition which requires that EA be placed sufficiencly forward to ensure \

that 2C_ /3a is negative. This always produces aerodynamic restoring ; ‘

moments and thevefore ensures a stable condition.
The dimensionless divergence stiffness CD may be plotted for various
f operatcing conditions of a, Cu in order to define the tradeoff between re-

quired stiffness and EA position. The graph sliown in Figure 5 uses

Cuw .
Y
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Figure 5 - Effect of Elastic Axis Position on Two-Dimensional
Divergence Stiffness

two-dimensional data of a 15-percent thickness uncambered elliptical airfoil
with a modified rounded trailing edge. Note that the separate lines are due
to variations in the airfoil derivatives as obtained from two-dimensional
data; in contrast, the assumed linearity of ZEquation (1) would provide only
one line for a given airfoil. Values of [ above the divergence lines cor-
respond to Y>0 in Equation (4) and so are not divergent. As q is increased,
the value of 7 decreases and approaches the divergence value CD from above.
Note that a "substiff' design point g<gy also appears feasible from the

graph. However regardless of the stiffness, [ = © at q¢ = 0 and so the di-

vergence condition would have to be passed through before the substiff

design point 18 reached-an obvious impossibility.
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In general the trend of Figure 5 is typical in that it shows lower
stiffness requirements, or higher values of Ap > for more forward positions
of the elastic axis. Also the curves indicate that an EA position of around

0.25¢ would minimize the problem of torsional divergence.

CIRCULATION CONTROL REVERSAL
As mentioned in the introduction, the CC reversal condition is defined
as that value of q at which there is no change in lift for a change in the

blowing control input, or

aL
omvV

3

Applying this condition to Equation (5) yields

_a

U+
TR

(C -€u) =0
"

In terms of the dimensionless stiffness and reversal q, the above equation

becomes
- K a
L, = = C -=2C €))
R qRSc m, M mu
or
q, = K
k sc (C -ﬂcm)
a H 1]

The reversal stiffness CR is seen to be independent of the EA position;

this 138 in contrast to the dependence of divergence speed on this parameter,
However divergence was defined as a condition of the total lift whereas re-

versal 1s a condition of only that 1ift due to blowing.

20




At this point it is appropriate to also consider the deflection angle
at the reversal condition. Combining Equations (7) and (4) yields the

following:
C. - €C
R YR
where
YR - CR - (Cm - ea)
o
)

The region of interest is for those conditions when the reversal speed is
less than the divergence speed (or CR > CD’ or Yg > 0). Thus the sign of
¢R is determined by the numerator, which simply represents an equivalent

moment coefficient resolved about the elastic axis CmE - Cm - eEi.
A 50

Figure 6 presents two-dimensional data which have been resolved about three
chord positions that represent three EA positicns. As shown, the forward
EA position provides negative moments almost exclusively, indicating ¢R < 0.
The different behavior for the aft position indicates that the sign and
magnitude of ¢R are heavily dependent on the geometric angle of attack.
Evaluation of ¢R by using the linear relations of Equation (1) gives

the expanded expression

(Cmo - eczo) + (Cmq - sa)ag + (Cm - eu)cu
O * - (€ - en (a/w)
u

The typical variations shown in Figure 7 support the conclusions
reached above. More specifically, (1) EA position has considerable impact
on the deflection magnitude and sign at reversal conditions even though it

21




Figure 6 - Pitching Moment Coefficient Resolved to Different Chord Locations
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does not directly affect reversal speed and (2) slightly forward EA positions
are desirable because of reduced sensitivity to angle of attack. As shown
in Figure 7, ¢R is independent of € at Gg = 0. Setting Cm =C = ag =0

in the above equation gives ° °

1
¢R =-3 LlCu, (Cm Cl (!8 = 0)
o o

This corresponds to a zero net lift since ag = () and the reversal condition
i3 defined as zero net 1ift due to blowing (for the linear analysis).

Another point of interest is the variation in deflection angle as it
approaches ¢R. The following inequality may be stated for q approaching
which is less than 9p¢

QR
> gy >y

Then by using Equations (4) and (6) and the above inequality,

—9-- CR-;D >+ 0
b TG -

First of all, this states that ¢ does not change sign as q ~+ 9g- Since the
above ratio is always positive, the sign of ¢ must remain at its initial
plus or minus value. Therefore those regions in Figure 7 which show ¢R >0
must correspond to inital ¢ > O values also, and vice versa. Second, the
above equation states that ¢ approaches ¢R as an inverse function of q
such that the valuer of Figure 7 also represent maxima (or minima) values
up to qg.

To return to Equation (7), the reversal stiffness (or reversal q) does

not depend either on G or on CH in this linear analysis. Thus the various

25
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combinatione of Figure 7 all correspond to a single reversal stiffness.
However both the nonlinear behavior of pitching moment indicated in Figure
6b and that of lift coefficient derivatives shown previously suggest that
CR does, in fact, depend on both a and Cp. The curves of Figure 8 were

a=0

DIMENSIONLESS CC REVERSAL STIFFNESS, $R

0.6

l l

0 0.02 0.04 0.06 0.08 0.10
JET MOMENTUM COEFFICIENT, C#

0.0

Figure 8 ~ Effect of Local Airfoil Derivatives on Two-Dimensional
Reversal Stiffness

obtained by taking the local airfoil derivatives from two-dimensional data
and applying Equation (7) to each point. Although this approach shows
definite variations, it atill allows for a conservative and yet representa-
tive choice of derivatives which may be used in the linear analysis to
bracket the reversal speed. On the other hand, it indicates that if local
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derivatives from two-dimensional data are to be used, they must be careful-

ly selected in order to provide conservative results over a broad operating

range.

LIFT AND CONTROL EFFECTIVENESS

It should be noted that because of other terms in Equatfion (5), the
change in wing lift may be different than expected by the defined CC re-
versal condition. For instance, the reversal condition may not be reached
and yet the 1ift may have diverged. Comparisons of both 1ift and control
effectiveness are therefore required to establish the overall wing behavior.
Treating these in reverse order, CC control effectiveness (C.E.) is analo-
gous to alleron effectiveness. It is a measure of wing lift response to
a change in the control input of jet momentum. Herein it is normalized rel-
atlve to the control effectiveness of an idealized rigid wing response.

The variation of C.E. with jet momentum and with q provides a direct measure
of the available coutrol. The definition of C.E., shown later, is such

that C.E. = 0 at the point of CC reversal. This i{s also analogous to the
definition of aileron effectiveness which goes to zero at the point of
alleron reversal.

Since aileron control contributes only an antisyrmetric 1ift distribu-
tion, it does not contribute to the net wing lift. However the circulation
control contributes a symmetric lift disc.ribution when used as a direct 1lift
control, and so it affects the net wing 1ift. Hence there is also a need
to define a 11ift effectiveness parameter L.E. This is a measure of the
elastic wings net 1lift relative to the 1lift whirh would be available from
an idealized rigid wing. Thus the two parameters L.E. and C.E. respectively
measure the net lift and the available control power of the elastic wing
relative to these characteristics of an idealized rigid wing.

Lift effectiveness 1s the ratio of elastic wing 1ift, from Equation
(5), to the 1lift of a rigid wing. The rigid wing lirt is alsn obtained from
Equation (5) by setting y = = which is the zero deflection case. Lift

effectiveness as a function of q for constant blowing is then

it 0 MRS 1l AT
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L.E. = qS(Cz + ag ) + umv
o g

3

or

qs(C_ +C_a ) +C_nv
B " ®  0m 3 (8) &

L.E. =1-254
Y qS(CQ + a0 ) + umV
o g

a

Y

J

where Y 1s also a function of q as previously defined. Obviously Equation
(8) retains the same qualities of divergence and CC reversal that have been
A examined for Equation (5). However, it is complicated by singularities

fj ; when the rigid wing lift in the denominator goes to zero. Although this is
possible for almost any ag < 0 with blowing, it is not an operational condi-
tion of interest and so does not limit the usefulness of the parameter as
defined. The lift effectiveness at reversal is also of interest. Substi-

tuting Cquation (7) and the definition of y into Equation (8) results in

qs(C_ +C_oa ) + C v,
m m g m 3

L.E. . =1 +—% ° 2 i - €
REV e-C /u qS(Cg + aag) + umVj

u o

Control effectiveness is defined as the elastic wing 1ift response to

a control input, normalized by the idealized rigid wing response or

3L/9mV, of flexible wing

N . C-E- = 3i7amv

j of rigid wing

This definition corresponds to C.E. = 0 at CC reversal., Evaluating the

above parameter by using Equation (5) yields
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C.E.=1+23|H_
1 > € ¢))

Further substitution of Equations (6) and (7) into (9) gives the more com-

pact form

= 1-a/q, (10)

C.E.

In the latter form, it 1Is obvious that C.E. >~ 0 as q -+ QR and that C.E. is
undefined at the divergence singularity. This presents no real problem since
at a divergence condition, C.E. is rather meaningless anyway.

Lift and control effectiveness parameters become identical in the

special case of Cm - Cl = as = 0 and take the form of Equation (9).
o o
Typical variations with speed for this case are shown in Figure 9 for dif-

ferent EA offsets €. These curves are generated for fixed controls or blow-

ing rate (mV,). Thus the magnitude of blowing coefficient Cu decreases with

increasing q? The mnre forward EA positions are seen to produce reduced
valves of both 1ift and control effectiveness. In contrast, negative EA
offset produces augmented lift and control effectiveness but at the same
time it results in a lower divergence q as was shown in Figure 5.

Reversal speed and C.E. are shown to be independent of ag by Equations
(7) and (9). Therefcre Figure 9 represents C.E. for any value of ag, but
it represents L.E. only for ag = (. The reversal stiffness 1s also shown to
be independent of € by Equation (7); this is reflected in Figure 9 by the
coalesence of curves at zero effectiveness. Lif: effectiveness variation
with speed is shown in Figure 10 for ag = + 3 deg, again for conditions of
constant blowing rate. The strong effect of angle of attack on pirching
moments 1s very evidert here, reflecting the relation of Ecquation (8).

The previous graphs have shown the variations of L..L. with speed for

constant reference values of stiffness K and blowing rate ﬁVJ. Figure 11

e e
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evaluates the variation of L.E. with sciffness at constant q for different
values of EA offset at ag = 0. Dashed lines show the stiffness magnitude
relative to divergence and reversal stiffness. It appears from this plot
that design stiffness on the order of 4;R would be sufficient to provide
safe operation and avoid excessive structural deflection. Figure 12 pre-~
sents the variation of L.E. with Cu at constant q for two EA positions.
Note that the effects of angle of attack quickly diminish as Cu increases,
approaching the L.E. value at ug = 0 deg.

Some understanding is attainable from the simplified preceding equa~-
tions, but their application is limited to crude first order approximations
of divergence and reversal. Spanwise variations in elastic bending and air-
foil characteristics, as well as three-dimensional wing effects, are, of
course, absent from the simple analysis. In fairness, the analysis may
apply quite well to cases where three~dimensional wing aerodynamic deriva-
tives are available, especially when only a root end restraint is to be
considered (as will be done later). Nevertheless a more precise analysis
is required if two-dimensional airfoil characteristics are to be generally

applied to a wing.

THREE~-DIMENSIONAL STATIC AEROELASTICITY

This section is concernaed with spanwise variations in airfoils and
torsional stiffness variations in wings. Aerodynamic theory utilizes the
1ifting line approach to calculate local induced angles which are dependent
on the wing lift distribution. The equations are expressed in standard
matrix form for both 1lift and pitching moment coefficients.

The wing-induced angle distribution 1 may be related to local values
of a nondimensional circulation parameter T by a geometrically defined
matrix N. This basic relationship is explained in some detall on pages
303-307 of Scanlon and Rosenbaum.5 Local 1ift is a function of both the
nondimeusional circulation and the characteristics of the local two-

dimensional airfoil. Combining these relations then provides a matrix

SScanlon, R. H. and R. Rosenbaum, "Introduction to the Study of Aircraft
Vibration and Flutter," MacMillan, New York, (1951).
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expression for the distributed wing 1ift. The induced angle distribution is
given by

{1} = N{t} (11}

and the 1ift per unit span is related to the section circulation by

L' = oVl

or

L' = 2qT (12)

where T = T'/4V. The 1lift per unit span is also related to local airfoil
properties by

L' = qeCy (13)
A comparison of Equations (12) and (13) then establishes the relation
between T and the local airfoil 1ift coefficient as
cC
L

Section lift is given simply by L = AyL'. The set of equations to be solved
is then:

(L} = ql224y]) {1} (15a) ;

{CCR ?
{1} = W] (15b) |
{1} = N{r} (15¢)




. e

The dependence of Cz on 1 provides the final relationship. The form
of this relationship also determines the solution form for the equations.
In the fcllowing, Equations (15) will be solved by using relations in
Equation (2) for the case of distributed elasticity and those in
Equation (3) for the case of wing root elasticity.

DISTRIBUTED ELASTICITY

This section provides an analysis of a wing having distributed tor-
sional elasticity and resulting distributed torsional deflection. Airfoil
characteristics will be represented by Equation (2) and are therefore
agsumed to be linear with angle of attack. Combining the last of Equation
(2) with Equations (15b) and (15c) gives the following expression for the T
distribution:

= [+ 5] ] N {«Z—Q} |

Substitution into Equation (15a) then gives the lift distribution:

{CEQ} .

{L} = () |53 (16) !
ca -1 |

where (Qs) = [284y] + [; + [E@] N] . The distributed elastic twist is i,

related to aerodynamic moments by the matrix of structural influence co-

efficients
{¢} = o{mM} (17) |

Aerodynamic moments are expressed as follows where the moment coefficient *

has the same form as Equation (2):

{M} = q{AchJ {c, - ecp}
50




{M} = q[Ayc] lE‘ } -q [Ayczc ] {i} - ¢q [AchEJ {Cz} (18)
m m
50 o
The following relations are available from Equationa (15):

q Mayc?e] {c;} = fee] {L}

{1} = N[zm},] {L}

which may be used to express the moment in terms of 1lift.

{M} = q Mbye?] CARERC R, (19)
0

where [s] = [Ayc C JN [ ]-+ [ce] and C =C +C C +C_ ¢.
m 284y L m mu M m,

The distributed elastic twist is obtained by substituting Equations

(16) and (19) into Equation (17). Coefficients Eh and Cm are expanded,
50
and the resulting matrix equation is solved for the ¢ distribution to give

{6} = q L 6 [Ayc?] Te, +¢, )
o] U

Lo (a1 @) [—%] lczo + “Cu] (20)

2 ca
where Q = I - g8[Ayc CmaJ + q9(s] (Qs) {EE} .
The need to describe the moment coefficlent in terms of both a and Cu

is unique to the family of blown airfoils and to CC airfoils in particular.
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This requirement causes the above equation for elastic deflection to be more
complex than its equivalent for a wing of conventional airfoils. Moment
coefficient dependence on induced angle caused the more complex [s] term

of Equation (19), and dependence on the elastic twist required the Cm term
o
in che Q matrix. Although it is correct, the Q matrix is an undesirable

feature of the anlysis since it contains q, and so Q-l prohibits an algebraic
factoring of all q terms in the final 1ift equation.

Lift distribution on the wing may now be obtained by expanding Ei in
Equation (16) and substituting Equation (20) for the elastic twist. The jet
momentum coefficient C‘J is expressed directly as ﬁvj since this is a
quantity over which a pilot would have direct control. A fixed control type

of analysis then maintains constant mV,; as a result, Cu changes inversely

3
with q. The wing 1ift distribution is then

cCQ

o} H .
{Lh=q @) ‘*ﬁ'} + @) [zg] tav)

+ q2 (QS) [%%] Q_l B[Avczj {Cmo}

+

a @) [55] o oteyec, 1 {av,)

. CC
q? «,) [%%] Q! o(s)] @) {—559}

a @) [57] @ etsl @) [5] v} (21)

Torsional Divergence
It is apparent from Equation (20) that Qml must exist in order for {¢}

to be finite. The same observation may be made for the 1ift from kquation
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(21). Therefore the divergence q is established by requiring that Q be
singular, or det Q = 0. Note that Q_1 = Q=1 for q = 0 and that the lift

reduces to
! .
{L} = (Qs) ['ﬂ] {mvj}

This 1is obviously not a valid condition since it corresponds to Cu = o and
the aerodynamics involved are not representative. However it implies that
the trivial solution of q = 0 is eliminated in the above process since it
does not result in det Q = Q. Therefore the desired solution is the lowest
positive q which satisfies the criteria. The process also eliminates the
need to evaluate the right-hand side of Equation (21) for calculations of
divergence speed. It is practical because of the speed and accessibility
of modern digital computers.

Basically it is seen that Q, and thus 4p» depend on the parameters a,

cC , €, ¢, £, and 6 (stiffness matrix). These are the same parameters which
o
govern the two-dimensional divergence, given by Equation (6), but they bear

the more complex relations imposed by aerodynamic and elastic spanwise

interactions.

Circulation Control Reversal and Effectiveness

As with the two-dimensional case, CC reversal is defined as the point
where wing lift does not change with blowing. However, spanwise variations
of L and mV, require a slightly different mathematical definition. Let the

J
total wing 1ift be

L, =1 {u)
and define the distribution of jet momentum as

{ﬁvj} - mv )r {m}

3
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wheve ilVJ)r is the jet momentum at some wing reference station and {m} is
then a dimensionless distribution of jet momentum normalized by the reference

value. The reversal condition is then defined in scalar terms as

oL
W

omvV ). =

3

0

This condition may be evaluated from Equation (21) where the scalar quantity

ﬁvj)r may be taken across the matrix products:

)
-a—;,-j"—)-; -0 = 1] @) [—ﬁ] {m} +q 1 @) [g—g-] Qs [Ayccmu] {m}

- a1y @ [§7] e (a1 @ [3f] (m
From this form, the reversal speed is ~

. 1 @) [5}5] {m} o
Ry @) [% Lo [[Achm ]- [s1 @) [-2-%]] {m}
u

The solution given by Equation (22) is direct in the sense that Q-l is

a direct calculation which is readily attainable from several computer
techniques. However it 1s iterative since Q itself 1s dependent on q.
Hence it must be reevaluated by using the initislly calculated qR’ which
then ylelds a new g from Equation (22). This is then a recursive-type
formula, but it does not require the change in form which is necessary with
some techniques for successive 1terations.5’6 For this reason, it is be-

lieved to be a more direct solution procedure for computer programming.

6Bisplinghoff, R. L. et al., "Aercelasticity," Addison-Wesley,
Massachusetts (1957).
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Once the reversal q is obtained, Equation (21) may be used directly to cal-~
culate the lift distribution and, if desired, the total wing lift since Q-l
is then available at QR

As with the two-dimensional case, the equation for 95 does not appear

to deperd on the magnitude of blowing mV )r or on any other initial condi-

tions of angle of attack or camber. Howiver these values do affect the
local airfoil derivatives contained in Equation (22) and therefore do have
an effect on Q- Also like the two-dimensional case, Equation (18) shows
that the aerodynamic moment and therefore the deflection angle are affected
by the EA offset.

Lift effectiveness is again defined as elastic wing 1lift relative to
rigid wing lift as discussed earlier. Elastic wing lift is the summation
of distributed 1ift from Equation (21). Rigid wing lift is the same minus
those terms due to elastic deflection. The lift effectiveness is then

cbtained from their ratio:

Elastic Wing: L (E) = |1] {L}Equation 1)

cC
Rigid Wing: L (R) = q (1] ) { 2£°} + 1 @) [5’91] {ﬁavj}

L, (E)

L,(R)

Lift Effectiveness: L.E. = (23)

No simplification 1s possible for the general case, but the indicated calcu-
lations are direct when L.E. is generated versus q.

Circulation contrel effectiveness is defined as the sensitivity of the
elastic wing lift to jet momentum relative to the sensitivity of the rigid

wing lift to jet momentum, or

DLwlahV )r (elastic wing)

C.E. = oL /omv,) (rigid wing) (24)
W r
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L @[] ) +a 1y @ [55] a7 [[Ayccm ]- s @) [ﬁ]]{m}
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(25)

* It is seen from Equations (22) and (25) that these parameters have been con-
sistently defined such that circulation control effectiveness is zero at the : 3
reversal speed. Neither L.E. nor C.E. is defined at the divergence speed
since Q 1s singlular at that point but, as previously discussed, there is no ‘ N

need for their evaluation in this instance.

BT

The relations presented in this section provide analytical ability for

P

the general case of a circulation control wing. Matrix exprescions have

£ e S s -

contained such terms as chord, EA offset, and lift and moment derivatives
with respect to o and Cu. Thus the analysis is applicable to the general
! case where chord and EA offset vary with span and where airfoil characteris- j
tics vary with span (including partial-span (C airfnils). The airfoil t
representation has assumed angle-of-attack linearity for variations about %

i

the geometric angle and has assumed CU linearity for variations about an

arbitrary reference CU' Although this analysis has been oriented to specific
static aerroelastic problems, the basic 1lift equations may certainly be ap-
plied to performance-oriented design goals as well.

Now consider a special case of the preceding analysis, one that allows
for elastic deflection at the wing root only. However it includes an

iteration preocedure for obtaining the rigid-wing-induced angle distribution

i e o

which eliminates an angle-of-attack linearity assumption for the rigid wing.
The procedure was found necessary for the analysis of wings which while
operating under partial angle-of-attack stall conditions still develop sig-
nificant 1i1ft coefficients due to blowing.

WING ROOT ELASTICITY
The following analysis retains tha previous lifting line theory ard is
for a three-dimensional wing with varying aerodynamic properties. However

elastic properties allow for torsional softness only at the wing root. Thus




the deflection mode is one of a rigid body where all spanwise stations ex-

perience equal torsional deflections and all contribute equally to the pitch-
ing moment which causes that deflection,

This special case is considered for theoretical comparison to model
data from just such a device. A blade from =z CC rctor m del was experimen-
tally evaluated as a fixed wing, both with and without root torsional flexi-
bility. The natural ctorsional stiffness of the blade wus much too high to
allow torsional deflections for the q range available in the DINSRDC 8- x
10-ft subsonic wind tunnecl. Accordingly, special root end fixture was
designed and used to provide the blade with a rigid mode torsional responiz
to its own aerodynamic moments. Experimental results from the model will
be presented later along with an anaiytical comparison.

As previously described, the model blesde geometry included considerable
built-in twist or washout. When tested as a fixed wing, this led to am iu-
board angle-of-attack stall condition even though signif{icant lift coeffi-~
cients were maintained by CC blowing. The combination of negative lift
curve slopes and¢ operation in a nonlinear o range required an iterative solu-
tion to obtain induced angles. Airfoii characteristics for this analysis
are represented by Equation (3), wherz the reference condition is th~
iterated solution for the rigid wing including induced angle distribution.
Local airfoil derjvatives are taken at this reference condition, and a
linear analysis is used to establish the boundaries of torsional divergence
and CC reversal. A byproduct of this approach is the solutioa to tre rig.l
wing 1lift distribution without any restricting assumstions of airfoil
linearity.

Consider first only the rigid wing; the problem Is to converge on its
induced angle distribution. Combining Ecuation {(3) with Equatlons (1%h) and

(15¢) gives the following exprrgsion for Ail:

, -1 %l
(A1} = PN [—7| - P T{i} (26}
where P = I + N Eg% . Here Ai represents the difference between the

it b £t
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indtial (or previous) induced angle and the induced angle for the next itera-

tion. Obviously the solution criterion is for Ai = 0, where the terms on
the right-hand side are in balance. At each step in the iteration, the pre-
vious angle distridbution is adjusted by Ai and is then used to reevaluate
3 distribu-

tion. Local values of the 1ift curve siope are also reevaluated. This RS

the effective angle-of--sttack distribution and the corresponding C

gives adaitional equations to be used in conjunction with Equation (26) for
describing the iteration procedure:

{1} = {1} + {A1}

- - [
{x} {cg} 1}

{c,}

% {CEI“*Cu} ‘

{a} {a{&,Cu}

\ Convergence to {AL} = 0 yields the induced angle, lift ccefficient, effec-
tive angle, and lift curve slope distributions of the rigid wing. These
become the reference distributions which are denoted as { }* for tlie re-

maining analysis. At this point, the vigid wing 1lift is given by

2 2 S

cC2 *
(L} = ql284y]) ‘ET"}

e sk

e

or

—— ————— e

1L} = q{Ayc Cz*} 27)

The elastic wing has the additional variation of torsional defl:a2ction
which, in turn, changes the Yift distributicn ind the Induced angle distribu-

tion from those of the rigld wing. Tirse are assumed to be ralatively



small variations from the rigid wing and are approximated by linear rela-
tions. The induced angle distribution of the elastic wing may be related
to that of the rigld wing by using Equation (15c):

{1} = {1}* + (01) = N{1}
oY

(a1} = N{t} - {1}" (28)

Applying Equation {3) to Equation (15b) gives the following expression for

dimensionless circulation:

{1} = [5-;—] {ck0 +uc )+ [12’% {p} - g%] (A1} (29)

Combining Equations (28) and (29) gives the elastic wing circulation
ca -1
31] (8} + R

-1 L -1 ca * (30)
{t} = R [22] {c, L +u) + R EE] {1}

where R = I +[ ] N.

Substitntion of Equation (30) into Equation (15a) then provides the
1ift distribution of the elastic wing in terms of the deflection angle ¢ as

ch
{L} = q(@)) { , + @) [57] (8v,) + a@) [57] (1
+q@) [57] {0} (31)

where (@) = [224y] K71




order to reduce Equation (31) to a usable form.

termined by the sum of the outboard wing moments

The deflection angle ¢ must be expressed ia terms of other variables in

For the case of root elas-

ticity only, the distribution of ¢ 1s constant with a magnitude d, de-

.
-

{¢} = o{1;
The moment balance is then
Ko = |1 (M} (32)
vhere the aerodynamic moments about the EA are expressed as follows:
2
{M} = q[Ayc“] {Cm - ECQ}
50
2 2
{M} = qlAyc“) {c_ +cC_C } + q@[Aye“Cc_ ] {1}
m m U m
o u o
- q[Ayczcm 1 {A1} - fee] {L}
o
K * 1 1
: But {41} = N{t} - {1} from Equation (28) and {T} = y [EEZ;} {L} from
3 Equation (15a); thus
) 1 1 *
(o1} . [———my] {L} - {1}
The moment equation in terms of lift is then:
2 - 2
3 {M} = qfAyc“) {c_ +¢c_c } + qbdfAyc“c_ ] {1}
m m U m
3 () U o
2 *
+ qlAyce C, 1 {1} - [s] {L} (33)

o

2 1 )
where [s] [Ayc CmaJ N [EEZ;} + fcel.
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A solution for the deflection magnitude ¢ is obtained by substituting
the lift distribution, Equation (31), into the moment distribution, Equa-
tion (33). This is then applied to Equation (32) which is solved for ¢;

the result is shown by Equation (34):

¢ =

A - e (LU ts) W)) + -—J——-B A Aq (Llj [s] {U}) (3%

q
K-Aq K-Aq

The 1lift distribution of the elastic wing is now obtained by direct

substitution of the rigid body deflection angle ¢ into Equation (31). After
gathering terms, this gives the 1lift distribution to be

(wh = qlw} + @v,) (U} + g=5e alv) - = (LY 1s] W) (V)

P L e ST

Y

M 3

o 89,0, BV} - e dv (L) ts] (U}) (W) (35)

where (W} = @) [£7] (e, + ai’}

{u} = (@) [%I]{m} :

v} = (@) [ ] {1}
A= |1} [Ayczl {Cm +C) 1%}
[o] a

B =1 [AycC ] {m}
u

is] = [Ayczcmaj N [EE%;] + [ce!

A -LlJtAyczcm 1 {1} - |1} (s} {v}.
a

Note that the matrix facturs in parentheses in Equations (34) and (35) and

the defined terms A, B, and A are all scalar quantities,
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Torsional Divergence

It is clearly seen from Equation (34) that the deflection angle is

R R T e L

divergent as K-Aq approaches zero. Equation (35), which describes 1lift, is
g : seen to diverge at this condition also. The divergence speed is then given
by

| 9 = /A (36)

where 9y is seen to depend on stiffness K and the distributions of Cm y 8,
o
¢, and ¢. These relations are more easily seen when the terms of A are ex-

panded and regrouped as

-1
A = (1) [aye®c ] [1 +N 59-]] ) - 1] tee) @ [5] @
m 28 8 28

; ; a

Circulation Control Reversal and Effectiveness

The definitions of circulation control reversal and of 1lift and control

o, S e e e

T T

effectiveness used here are identical to those previously defined for the
general case of distributed elasticity. Taking aLwlaﬁVj
(35) yields !

)r from Equation

3L,
w
m—j)r = |1] {u} *“Eilx'a (B - |1} [s] {u}) 1] (v} (37)

b Reversal speed corresponds to that value of q at which the above partial

derivative goes to zero or

K +

q =
ROx- (- (1] (s] {UD IL.LJ_%”) (38)

Both reversal speed and divergence speed for this case (Equations (38) aad

(36), respectively) are seen to be less complex than their counterparts for
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the case of distributed elasticity and yet more complex than those for the
two-dimensional case. This simply reflects the relative complexity of the
wing root elasticity problzm with respect to those otiier two cases.

It is certainly advantageous, if not common practice, to design to the
condition of qD > s or qD/qR > 1. This relation is obtained by combining
Equations (36) and (38), and it may be used directly in lieu of individual

calculations for qp and qp-

1} {v}

q
2.3 -L@- 1 1s1 {uh Tt

ap A
The factors A, {V}, and {U} are normally positive. Thus in order for the
above equation to satisfy the previous inequality (qD/qR > 1),

B - 1] [s] {U} must be less than zero. But B is normally negative (be-

cause Cm is negative) and because it is dependent on airfoil characteris-

K
tics, it is not readily changed. The design parameter which may be varied

is seen to be the elastic axils offset € that occurs in the matrix [s].
Examination then shows that to increase the ratio qD/qR, € should be in-
creasing positively (forward). Basically it is seen [from Equation (36)]
that an increase in € decreases A and thus increases 9p- The effect on QR
is less obvious and involves canceling effects in the denominator of Equa-
tion (38). This at least indicates a smaller change in g accounting for
the increased qD/qR ratio. The reduced effect of € on aR is not surprising
since the previous simplified two-dimensional analysis had predicted no
effect at all.

Lift effectiveness was defined by Equation (23). Applying Equation
(35), and the notation used there to the definition of L.E. gives \

Lw(E) =14 Equation (35)

L,(R) = q [1] {w} + av,), (1) (U}
L (E)
L.E. = E!T§7
W
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NHECOEE RS TRT) )Llj vl

q(a - |1] [s1{WD+av))_ (B - (1] [s){U})
L.E. =1+ K-;lq (

This value of lift effectiveness at the reversal speed 1s of interest siuce
this establishes relative importance. 1I1If thn reversal speed is determined

to be marginally satisfactory (does not yield broad safety margins) then it
may be ilmportant to maintain high 1ift effectiveness at the reversal bound-

ary. This would be a quantitative consideration beyond the normal procedure

of designing 9, > g > Upax’ Evaluating L.E. at 4 gives

A - 1] [s] {w} \
~ag |1) W} - qp (B - L & {U}) L1) {v} \

L.E - 3
*"'REV q 1] W} + av), 1) {u} ,

Circulation control effectiveness was defined by Equation (24). As
f. previously discussed, it is a measure of elastic wing lift response to a i
-'; change in the input control of jet momentum., It differs from lift effective- |
| ness in that the latter is elastic wing total 1lift at a fixed control set- }
ting. Applying Equation (37) to the definition gives:

|1) {u} +—K-§H (8 - |1] [s] {ub [1] (v}

if C.E. 1] o7
' 3
5; f Substitution of the equations for q, and R provide the following simplified
V form:
; C.E. = ——— (39)

First of all, it is noteworthy that this is the same relation obtained for
the two-dimensional case despite the fact that the definitious of g and qp
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are quite different. Second, Equation (39) shows again that C.E. goes to
zero as q approaches g Finally and most significant, Equation (39)
establishes the importance of the concept of circulation control reversal
as defined herein. Specifically the values of g and 9 not only aid in
defining boundaries of the flight envelope but they alone can describe the

effectiveness of circulation control over the entire flight envelope.

Trim and Stability

The equations developed above for wing root elasticity may also be
readily applied to such problems as aircraft trim and stability. This
subject is beyond the scope of the present report, but it would be neglect-
ful not to mention such alternative uses. The following brief treatment
is intended merely to show the new interpretation of terms and their
application.

Very simply, the equations for wing root elasticity may be thought of
as applying to the aircraft itself where (1) the spring restoring moment
stems from the horizontal tail surface, (2) rhe deflection angle ¢ repre-
sents an alrcraft attitude change, and (3) the parameter € represents the
dimensionless distance from wing midchord to aircraft center of gravity

(CG). The wing aerodynamic coefficients are still referenced to the mid-

chord position. The horizontal tail surface contributes a nose-down pitching

moment to the aircraft given by:

M, =~ X q 5, (CLt +a, %) (40)
o

where CL is taken as positive up and accounts for the combined effects of
t
o

tail incidence, downwash at the tail, elevator setting, and initial aircraft
attitude. The following definitions are useful:

Ky = X, 4, 5, 8,
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K X q, S¢ .
t

4 -—-—---—S._—
(o]

qSc q S

where ¢ is the wing mean, or reference, chord. Note the equivalence between
Kt here and K from Equaticn (32).

When the aircraft is in moment equilibrium, the summation of moments
about the CG equals zero. This is basically a balance between wing moments, ;
Equations (33}, and tail moments, Equation (40). Equating these twe to zero 5
and solving for ¢ gives the aircraft trim attitude, where ¢ is the change

in attitude from the initial assumed angle.

mv,)
¢ = f-— (a - |1] [s] {wh) + f LE (5 - (1] (s] {UH
g, Sc-) g se-x 1
t
c
- L
_ e e
ctSc-A a,

The above value for ¢ may then be used in Equaticn (31) to evaluate the
trim-corrected wing 1ift distribution.

Certain static stability problems may also be analyzed., The following
considers the af:~vaft longitudinal angle-of-attack stability. The wing
moment from Equation (33) is repeated below, after Equation (31) has been

substituted for 1ift and regathering terms.

M = q(s~- [1] [s] {W}) + @&V

P B - (1) [s] {uh) + q2

The summation of moments about the CG is simply the above wing moment and

the tail moment from Equation (40). The criteria for angle~of-attack sta-
bility is then

52

i A




A

R S

3“cc

A

The advantage in using the equations of this analysis for trim and
stability problems is the greater accuracy obtained through the combined use
of two-dimensional airfoil data for both 1lift and mcment coefficients and
proper spanwise distributions provided by the lifting line theory. It has
become increasingly apparent that pitching moments from CC airfoils have

significant contributions and must be included for an accurate analysis.

CIRCULATION CONTROL WING MODEL

A semispan model of a circulation control wing (CCW) was evaluated in
the DINSRDC 8- x 10-ft subsonic wind tunnel to experimentally verify the
existence of the CC reversal phenomenon and to provide data on the behavior
of a torsionally soft CCW for comparison with theory. The wing model con-
sisted of one blade from a CC helicopter rotor model and provided full-span
blowing. The standard rotor model setup was used for the CCW test since
data acquisition, data reduction techniques, and air supply lines were
established for this configuration, Figure 13 shows the CCW model in the
wind tunnel. The wing was mounted in a zero sweep position on the rotor
head, which was locked for this test to prevent rotation. All force data
were taken from the wind tunnel balance frame by using Toledo scales and
a Beckman analog-to-digital converter. Lift scale accuracy is believed to
be within + 0.1 1b and pitching moment within + 0.1 ft-1b. Each data point
is an average of 10 to 12 records taken on the Beckman system. Wing duct
pressure was measured by an internally mounted Kulite pressure transducer
(type CQL~080-25, 25 psia, + 1X). Air mass flow to the wing was measured with
a venturi meter in the alr supply line,

Geometry of the CCW model is given in Table 1. The semispan model
measured 40 in., (1.016 m) from the head centerline to the wing tip. Circu-
lation control airfoils extended from Statiom 4 (0.1016 m) to Station 39.88
(1.013 ) with a linear variailon of airfoll thickness and camber in between.

Root and tip airfoll geometry are shown in Figure 14, It is emphasized that
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TABLE 1 - CIRCULATION CONTROL WING MODEL GEOMETRY

Wing Parameters

Semispan, ft/m _ 3.00/0.914
Chord, in/cm 3.2/8.13
Geometric Twist, deg -8.63

Adirfoil Parameters

Root Tip
Thickness Ratio, t/c 0.25 0.15
Camber Ratio, &8/c 0.0625 0.0
Coanda Radius Ratio, R/c 0.0497 0.0403
Slot Height Ratio, h/c 0.0015 | 0.00312

3.2 INCHES

4+ D~ \\ \‘\

1|

SN\
-+
a4

TIP SECTION

ROQT SECTION

Figure 14 - Alrfoil Geometry of CCW Model
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the model wing geometry was actually designed for rotary wing application
and was used in this study only because of its availability. The geometry

L e R i i e N R e 2

L; j does not reflect current designs for application of CC airfoils to fixed

g wing aircraft. However, 1t does reflect characteristics which are basic to
& , current CC airfoiis, e.g., high 1lift augmentation and pitching moment of g
significant magnitude. As such, the test results are sufficient to identify ;
the parameters of importance to this study and to serve for comparison to i §
the theory presented later. ! ‘

Two types of data were taken with the model wing. For the first set,

the wing was rigldly mounted to its support, and a range of wing incidence |
angles and jet momentum provided a performance map for the configuratica and
served as a reference for the second data set. For the second set, the CCW
e was mounted to a torsionally soft, spring-restrained, root-~end attachment

N f which allowed a rigid body mode of response to the aerodynamic pitching

; moments that simulated the distributed aeroelastic response of a full-scale
wing. Such a device was needed to provide a low tcrsion stiffness consistent
; ! with the limited dynamic pressure range of the wind tunnel. Since the

B | results depend directly on this device, 1t will be described in some detail.

o AR KO - v g e e, TR e 2and LR e S

Figure 15 illustrates the mechanism that allows this torsional degree

o

of freedom. Two sets of ball bearings join a fixed outer ring (attached to |

iR

the rotor head) and & free inner ring to which the wing is attached. The

i
i

inner ring has a through-center hole for the wing air supply. Torsional

L By

freedom is restrained by two linear springs at the top of the mechanism.

On2 end of each spring is attached to the rigid outer ring. Stops on the
arm prevent torsional deflection beyond about + 14 deg (this also corresponds
to the comprecced lengtn of the tensiom springs). The mechanism was de-
signed to allow wing torsional freedom about one of three chordwise positions
=0.4¢, 0.5¢c, or 0.6c. The 0.4c position was not used since it resulted in

excessive nose-down deflections for the stiffness used.
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Figure 15 - Soft Torsion Root Attachment Device
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Figure 15a - Fxploded View

Figure 15b - Assembled View
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Figure 15d - Installation for £ = -0.10
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Figure 16 indicates the arrangement of the springs relative to the

LINEAR SPRINGS

\

ATTACHED TO
NONROTATING
OUTER RING

CCW ATTACHMENT
{(ROTATING INNER RING)

Figure 16 - Details of Wing Root Attachment Device

centerline of rotation. The equivalent rotational spring constant KG = 2Kr2

was calculated from the average linear spring constants to be Ke = 4.7505
ft-1b/radian. Figure 17 shows the linear calibration for each spring and
the normal spring operating range. Differences in the preload values for
the two springs are unimportant since they do not fall within the operating
range.

Wing incidence angle was set by initially allowing the wing to come to
a torsional equilibrium, where the torsional spring halanced any wing
gravity moments. Torsional freedom was then locked out and the desired
incidence angle was set. Thus when the lock was released, the wing was
in equilibrium at the desired incidence.

The second data set was taken by using the soft torsion mechanism for
several values of iInitial wing incidence and a range of jet momentum. Addi-
tionally, free-stream q was varied to obtain the desired results. At low

q, the torsional spring restrained the deflzction to small values which
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APPLIED TENSION LOAD - Lk

k = 3.769 LB/IN

' D R

0 0.4 0.8 1.2 1.6
SPRING DEFLECTION — IN

Figure 17 ~ Linear Calibration for the Two Springs

corresponded to a high ratio of spring stiffness to aerodynamic pitching
moment. The significant deflections occurring at higher q provided experi-
mental data in the regions of torsional divergence and CC reversal. During
the entire test program, the model was visible through plexiglass panels

in the wind tunnel walls and the observer recorded estimated torsional
deflections when appropriate to ensure correct interpretation of the data.
A particular run was terminated whenever the model wing reached full de-
flection limits, as noted by the observer. This data set will be presented

and later compared to the theoretical analysis.
TORSIONALLY RIGID MODEL WiNG

The 1ift ccefficient behavior of the torsionally rigid CCW model is

shown in Figure 18 for a range of incidence angles and hlowing magnitudes.
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The data shown for the CCW model follow the same trends as previously shown
for the basic CC airfoil, namely, increasing 1lift with both increasing jet
momentum and increasing incidence angle. Wing root pitching moments are
shown in coefficient form in Figure 19 for the same case, Rcot pitching
moments were measured by four strain gages mounted at the wing root in a
Wheatstone~bridge arrangement rather than by wind tunnel balance scales in
order to provide greater accuracy for the relatively low magnitudes of wing

pitching moments.

MODEL WING WITH ELASTIC AXIS AT 0.5 CHORD

Torsionally soft wing root conditions were examined over a range of q,
initial incidence, jet momentum, and EA position. In general, the test
procedure was to hold wind tunnel q constant and to vary wing duct pressure,

or C . Since the root spring constant was fixed, the dimensionless stiff-
w
ness { was varied by changing wind tunnel q.

Figure 20 shows the elastic wing 1lift variation with CU at different
w

q settings, or different 7, for three initial Orrp values. Rigid wing data

are also shown fcr purposes of compar.son. The powerful effect of dimension-
less stiffness ¢ on the wing lift is clearly evident in Figure 20a (initial

aTIP = - 3 deg); it resulted in a condition of CC reversal for the lower
value of . The reversal condition did not show up for the higher ¢ even

at the extreme C values shown, but the reduction of lift effectiveness

w
due to gradually decreasing angle-of-attack was quite evident. In contrast,

1ift effectiveness was seen to improve at low Cp for the low ¢ corndition,
w
corresponding tn small positive pitching moments. But as (Iu increased, the
w
pitching moment decreased to approach zero, causing a reduced deflection

angle. The reduced angle-of-attack resulted in further reductions of
pitching moment until finally the wing could no longer sustain a positive

pitching moment and deflection angle. At a slightly higher CU , tue pitch-
W

ing moment became negative, causing an angle-of-attack reducticon which
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Figure 20 - Effect of Torsional Stiffness on the Lift Coefficient Character-
istics of the Elastic CCW Model at Different Initial aTIP Values
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Figure 20c - Initial « = -6 Degrees
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further reduced the pitching moment. This resulted in a sudden angle-of-
attack change to a new equilibrium position between the aerodynamic moment
and the spring restoring moment. Beyond this point of CC reversal, further

C,, 1increases were characterized by reduced wing CL' In this region, in-

M

creased Cu caused larger negative pitching moments which reduced the angle~
w
of-attack. The angle-of-attack change caused a still larger negative pitch-~

ing moment that affected the new equilibrium position. The result was a
net reduction in wing CL due to the overpowering reduction in angle-of-
attack., Figure 20a shows that this region continued until the deflection
limit was reached.

The hysteresis effect shown is aerodynamic in nature. On the return,

the angle-of-attack is already at a lsrge negative value. As C“ is de-
w
creased, the pitching moment magnitude is decreased. However, the negative

deflection angle tends to support itself by maintaining the large negative
pitching moment magnitude. The double dependence of 1lift and pitching
moment >n angle-of-attack and jet momentum suggested the possibility of scme
aeroelastic problems not considered in the study. Specifically, the in-

tentional or inadvertent addition of oscillating C,6 to the above-mentioned

hysteresis could potentially result in a condition similar to stall flutter.
The return points were eliminated from the plot for an initial QTIP of
-4 deg (Figure 20b) to show more clearly the effects of stiffness € varia-
tions. The onset and full development of CC reversal is evident as f de-
creased. There was a reduction in both lift effectiveness and control
effectiveness at the large ;, but the deflection angle limit was reacned
before a reversal condicion was obtained. A condition of CC reversal was
obtained at § = 1.621. The wing 1i1ft remained nearly constant beyond the

reversal point even though Cu was increased to three times its value at re-
w
versal. This reflects the balance between increasing lift due to jet

momentum and decreasing 11ft duc to decreasing angle. of-attack. Finally at

L, = 1.471, the reversal condition occurred at a lower value of C“ and was
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characterized by significant reducticns in lift for further increases in Cu
w

(8Lw/8ﬁvj<0).
The trends changed at an initial wing incidence of -6 deg (Figure 20c).
At this low incidence, the pitching moments started off negative, causing a

reduction in lift even at Cu = 0. The initial deflection angle was ob-
w
served to be approximately -7 deg, putting the blade tip at a geometric

angle of about -13 degrees. As jet momentum was increased, the deflection
angle continued to decrease, but 1lift increased and did not display a CC
reversal condition. The deflection limit, approximately -14 deg, was

reached at CU ~ 0.09. Since the elastic wing was against the deflection
w

stops for CU values above this point, the setup prevented finding a CC re-
w

versal condition if one did exist. Theoretical calculations predicted a CC

reversal at CU ~ 0.16, with deflection angles beyond th: range of the
w
model.

Life effectiveness (L.E.) and control effectiveness (C.E.) were evalu-
ated by comparing the data of Figure 20b to the rigid wing data of Figure
18. The L.E. is a direct ratio of elastic wing tc rigid wing lift and was
calculated directly. Figure 21 sbhows the variation of L.E. with C, for

L

each q value for an initial o p of -4 deg. Large initial values of L.E.

TI
resulted from the initial nose-up pitch attitude of the wing at Cu = 0, As
w
C‘J was increased, the pitching moments decreased and then became negative,
w
resulting in reduced pitch attitudes, reduced lift, and reduced L.E., It

should be noted that the L.E. plot does not provide information on the
occurrence of CC reversal. In fact, the elastic wing lift was still greater
than the rigid wing lift (L.E. > 1.0) shortly after the reversal condition.
Likewise the C.E. parameter, discussed below, gives no information on the
large initial 1ift of the elastic wing as shown by L.E. However the two
parameters do provide two different types of information for examining

elastic wing behavior.
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The C.E. was defined by Equation (24) relative to the jet momentum at
some reference station on the wing ﬁVj)r. The C.E. of the model wing data
may be evaluated by observing that jet momentum at some reference station
bears a fixed relation with the wing total jet momentum, or rth)r = Q ﬁTV.,
where the Q factor depends on distributed slot height and strip width at the
refercnce station. Furthermore, since this relation is unaffected by wing
elasticity, it is the same for the elastic wing as for the rigid wing. There~
fore C.E. may be easily evaluated from the model wing data by the equivalent

equation.expressed in coefficient form:

aC. /3C (elastic wing)
L uw
BCL/BCuw (rigid wing)

C.E.

Figure 22 indicates the varjation of C.E. with C  for each value of q and

L
an initial o = -4 deg, as evaluated from the data of Figure 20b. CC re-

versal is ingizated by those points where C,E. = 0. Negative values of
C.E. denote the condition beyond CC reversal where increases in jet mome¢ntum
result in decreases in wing 1lift,

A comparison of Figures 21 and 22 shows some unusual conditions. At

the highest q and C“ = 0, the L.E. was quite high and C.E. was positive
w
but rather small. This corresponds to a high lift condition (due to a posi-

tive deflection angle) but a very low control power condition. The low
conirol power stems from the fact that very high section angles on the in-
board position of the wing cause a partial angle-of-attack stall or the
formation of a leading edge bubble. The circulation ~~-trol becomes rather
ineffective under these conditions and, for the wing, resulted in a signifi-
cant loss of control. The C.E. went to zero for the high g curve of Figure
22, denoting CC reversal. However, the value of L.E. was still greater than
1.C at this point. Again, this was a relatively high lift condition even

though control cffectiveness nau become zero. The region Cl > 0.80 showed
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strong control reversal (C.E. < 0) and associated strong reductions in L.E.

as lift and angle-of-attack dropped rapidly with further ilncreases in Cu .
w

The L.E. and C.E. values at initial Oppp = -6 deg shown in Figure 23

were calculated from the data of Figure 20c. The L.E. began as a strong

negative value at Cu = ( but rapidly iuncreased to become positive for

w
2

INITIAL ap = —6 DEG
-’N— C.E'
L.E.
2

E DEFLECTION LIMIT

q=12
B ¢t =1.855

EFFECTIVENESS
S

-4
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6 [ | | | | | \ I L
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Figure 23 ~ Variation of Elastic Wing Lift and Control Effectiveness with
Wing Jet Momentum Coefficient

CL > 1.20. This behavior 1s quite different from that displayed in Figure

21 which showed high initial values of L.E. and then a drop with increasing

¢ . The negative initial value of L.E. is attributed to negative initial

uw

deflection angle. This drove the elastic wing to negative 1lift compared to
a small positive lift for the rigid wing. The reason for increasing lift

of the elastic wing with igcreasing CU is less clear, especially since the
W
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deflection angle went tc larger negative values as Cu increased. It is be-
w

lieved that the wing inboard section was at a more favorable operating con-
dition and provided a strong lift response to the increasing jet momentum.

Examination of the wing center of 1ift position (rolling moment/lift) indi-

cates a significant inboard 1lift in support of this argument. Figure 24
2
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Figure 24 - Elastic CCW Center of Lift Variation with Wing Lift Coefficient

shows that the center of lift was outboard for the regative lift condition
cn the elastic wing. This suggests that the inboard section may have been
developing positive 1lift becaus. of camber and jet momentum even thougii the
net wing lift wes negative. At positive wing 1lift, the center of lift was
around the midspan position, reflecting a nearly uniform distribution

across the semispan.
MODEL WING WITH ELASTIC AXIS AT 0.6 CHORD

The root attachment mechanism shown in Figure 1% was repositioned so

cthat the center of rotazion of the device corresponded to the 0.60 chord
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position of the model wing. This established the elastic axis at 0.6 chord
or EA offget of € =~ -0.10, where € = 0.50 - EA/c. The center of rotation
was shifted to have the CCW model in the same position relative to the

wind tunnel and thus avoid any need to consider model position in the data
reduction program.

Since the model center of gravity position was forward of the elastic
axis for this configuration, static moments resulted. These were compensated
for by the spring restraint, leaving the model a: an equilibrium angle - a
balance between static moment and spring restoring moment. Model incidence
angles were then set from this condition as previously described. The
initial spring deflection required to establish moment equilibrium reduced
the usable range of pitch-down deflection and increased the usable range of
pltch-up deflection. This did not hinder the results in any way since model
deflections were predominantly in the pitch-up direction for the aft EA
position.

An EA offset of € = -0.10 results in rather strong pitch-up moments
from the wing 1lift (at 0.50 chord) acting through the 0.10 chord moment arm.

This moment contribution from lift increases with C and o and tends to con-
w
ceal the decreasing negative pitching moments resolved at the airfoil mid-

chord. Figure 6 has previously shown the pitching moment trends as all
forces and moments were resolved to different chord locations. Extrapola-
tion of those data to a 0.60 chord resolution point would show that the net
plitching moment increases with C“. This behavior is opposite to that

shown for the 0.50 chord resolution point. It is interesting to ncte from
Figure 6c that pitching moments tend to be independeat of CU when resolved
to a 0.55 chord location.

The above discussion siggests that deflection angles should be positive
for the aft kA position. Divergence conditions are also suggested by posi~
tive pitching moments which increase with angle-of-attack. The CCW wind
tunnel test showed an immediate pitch-up divergence for an initial incidence

angle of q,

rip - -3 deg, even for zero blowing. Obviously meaningful data

7%



were unobtainable for this incidence angle. However, data were obtained for
aTIP = -8 deg over a broad range of blowing conditions. These reduced

angles of attack produced small negative initial pitching moments. As CU
w

was increased, the momeuts became positive and resulted in pitch-up de-
flections of the model wing.
Figure 25 presents the elastic wing lift coefficient behavior versus

Cuw for two different initial Orrp values. For Crrp = -6 deg (Figure 25a},

the zero blowing deflection angle was estimated to be -3 deg, corresponding

to a negative initial pitching moment.. As CU was increased, the deflection
w
angle became positive and produced rapid increases in wing lift. The deflec-

tion angle reached a maximum of about + 9 deg at CU ~ 0.20, which corre-
w

sponds to o of about +3 deg. Inasmuch as this angle is beyond the wing

TIP

stall condition, further Cu increases produced very little change in wing
w

CL'

Comparison between the C, characteristics of Figure 20c (¢ = 0.0, q =

L
12.0, ¢ = 1.855) and Figure 25a (¢ = -0.10, q = 7.69, 7 = 2.895) shows a

marked difterence in the overall clastic wing response to changes in the
elastic axis location. The elastic wing C, was considerable less than that
of the rigid wing for € = 0.0. However th; case for € = -0.10 showed
regions of substantial improvements in elastic wing CL relative to that of
the rigid wing. It should be noted that because of the reduced q, the
relative stiffness was higher for Figure 25a than for Figure 20c. An
attempt was wade to evaluate the wing at € = -0.10 for q = 12.0. However
the reduced relative stitffness resulted in abrupt changes in angle-of-attack,
giving the appearance of a divergent condition.

The elastic wing response for € = -0.10 at an initial angle of «a

TIP

-8 deg (Figure 25b) was similar to that shown at « = -6 deg (Figure 25a).

TIP
The initial deflection angle was estimated to be -6 deg at zero blowing.

The larger negative deflection angle an’' reduced wing C. were expectcd for

L
= -6 deg.

arIP = --B deg compared to aT

Iy
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Figure 25 - Elastic Wing Lift Coefficient Behavior versus Cu for the
w
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The L.E. and C.E. shown in Figure 26 were determined from the data of

3

INITIAL ayp = —6 DEG

CONTROL EFFECTIVENESS, C.E.

LIFT EFFECT!IVENESS, L.E.

EFFECTIVENESS

ELASTIC AXIS AT 0.6 CHORD

-1 L ] | ] l |

0 1 2 3 4
RIGID WING LIFT COEFFICIENT, C;

Figure 26 — Elastic Wing Lift and Control Effectiveness for the 0.6 Chord

EA Location and Initial aTIP = -6 Degrees

Figure 25a (init{ial Arpp = -6 deg). Values of L.E. started off negative but

quickly approached 1.0 and above as C‘J
w

from about 0.4 to 2.3 in the more important Cu
w
2.0 and above indicate a porential for increased control effectiveness by

was increased. Values of C.E. ranged

region, The values around

However the C
W
limited, and any such gains must be traded oif against the problems of opera-

proper EA placement, range where this occurred was very

tion near divergence boundaries.
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COMPARISON CF THEORY AND MODEL WING DATA

The previously derived theory 1is now compared to results from the wind

tunnel evaluation of the CCW model. Rigid wing conditions are used as a

: baseline to establish the relative ability of the theory and two-dimensional
f data to predict three-dimensional wing behavior. Comparisons include the

§ L.E. and C.E. parameters and the limiting conditions of CC reversal and

| torsicnal divergence. First, however, it is necessary to describe the

computer-programmed solutions for the theory.

DESCRIPTION OF PROGRAMMED SOLUTION

The equations derived In the section on wing root elasticity were com-
puter programmed in Fortran IV for use on a CDC 6700 digital computer. The
program calcuations followed the same procedure¢ ~utlined in the afore-
mentioned section. Specifically, the rigid wing lift distribution was
solved first by an iterative method, resulting in reference distributions

of C C , O, Cu, induced angle, and associated air oil derivatives.

]
'} m50

These reference distributions and derivatives were thei used in a linear

analysis which evaluated L.E. and C.E. as a function of q for a given wing
stiffness and jet momentum distribution. Note that this corresponds to
decreasing values of dimensionless stiffness f and jet momentum coefficient %
Cu. Airfoil derivatives evaluated at the reference condition were alsou i
used to evaluate CC reversal speed R and torsional divergence speed 9pe A
flow chart of the program is shown in Figure 27.

The program allows for arbitrary inputs of wing semispan, chord, slot

height distribution, root and tip thickness ratio, twist angle distribution,

root stiffness, and initial incidence angle. In keeping with the CCW model
geometry, the program 1s currently limited to constant chord and full-span

CC airfoils, but modifications to a more general case would not require ex-
tensive changes. The N matrix of Equation (11) is internally evaluated by !
the program from the abuve input geometry. At least one tabulated set of 5

two-dimensional CC airfoil characteristics is also required. 1If the program
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were modified to accommodate partial-span CC airfoils, then an additional
table of the appropriate two-dimensional conventional airfoil data would
have to be provided also.

Several characteristics of the anaiysis were roted during use of the
program. The first concerned the angle-of-attack stall conditions pre-
viously noted. Although this required rearranging the order of solution, it
did not solve all the problems of a discrete numerical solution. Any
parameter which causes a sudden change in the spanwise lift distribution
would physically be expected to cause corresponding local changes in the
induced velocity and induced angle distributions. The induced angle change
would diminish as distance from the disturbance increased, and the magnitude
of the change would depend on the magnitude and distribution of the disturt-~
ance. It is a basic advantage of lifting line theory that it can reflect
such interactions of one statiorn with another and in quantitative terms.

When this interaction is combined with a discontinuous distribution of
even onie parameter in a discrete strip analysis, the result becomes dependent
on the number of strips into which the wing is divided. This is easily seen
if one considers that in a strip analysis a discontinuity can be over no less
than the width of one strip. Likewise the effect of the discontinuity on
adjacent sections must be over their entire widt'i, and so the minimum impact
may be determined by the strip width. Since CC airfoils depend on two in-
dependent parameters, O and Cu’ there is ample roow for highly nonlinear
distributiong; these appear as discontinuities in a strip aralysis. Cach
section Cg~ depends on the local induced angle, and this dependence is not
unique for operation in the gradual stall region. The characteristic be-
comes compounded by the Interaction between adjacent wing stations, as pro-
vided for by 1ifting line theory, and results in mulcistable numerical solu-
tions that lead to errconeous answers or simple nonconvergence.

The missing iugredient in the above analysic wnich allows multistable
conditions 1s the very one which in nature prevents the problem, namely,
viscosity. Viscous effects on the wing prevent sudden changes in adjacent

airfoll pressure distributions even if a slot height suddenly changes. The
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simplest means of accounting for this in the analysis is to smooth the input
slot height distribution and to simultaneously increase the number of strips
(decreasing strip width), or to change the distribution of strips. This
reduces local variations and also allows a more accurate analysis of their
effect. This analysis used 14 wing segments with the following nondimer.-
sional end points: 0.0, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.68, 0.75, 0.80,
0.85, 0.90, 0.95, 0.98, 1.00.

Figure 28 shows typical output from the computer program for rigid wing
results and for the calculation of s dg» L.E., and C.E. The top line prints
out the more significant input parameters, primarily for identification.

The second line contains calculated values of the semispan wing air weight
flow in (pounds per second), jet velocity in (feet per second), wing jet

momentum coefficient Cu , compressor horsepower required, and an equivalent
w
drag term calculated from the compressor power. The next two lines are the

net lift and pitching moment of the semispan wing and their respective co-

efficieuts. The series of columns then show span distributions of airfoil
thickness ratio (T/C), local angle-of-attack (ALPHA) in degrees, induced
angle (IND ANG) in degzrees, local section C“ (CMU), local section CQ (CL),

wing segment lift (LIFT), and local section Cm (CM50). Divergence and
56
CC reversal predictions are on the next two lines, respectively. The next

section of output, headed LIFT ANL CONTROL EFFECTIVENESS, shows the varia-

tiot.s of these parameters with increasing dynamic pressure.

COMPARATIVE ANALYSIS

Theoretical predictions of the CCW model lift and pitching moment were
made by using the basic two-diaensional airfoil data available at DTNSRDC,
Airfoil cheracteristics were corvrected in the computation for variations in
Reynolds number and slot height-to-chord h/c ratios which differed from that
of the basic data.*

*
Details of these corrections were reported informally by the author in
March 1973 as NSRDC Technical Note AL~290.
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c¢C WITING ANALYSIS

SPAN CHORD PS1G VEL Q Tl ALF RN
3.000 «267 o0 100,06 12.0 ~3.0 170000,
wDOT VJUET CMUW HPC EQDRG
«001 10, .000 000 o0
RIGID WING LIFT = S.0 CLWING = «539
RIGID WING MOMFNT = 09 CMSOWING = 035
STA T7C ALPHA [ND ANG cMy cl LIFT cM50
15 «C4B 3.62 1.79 000 1.195% .14 «086
A 237 3,33 1.19 .000 1,076 1.03 082
»75 227 2.79 «85 .000 «929 .89 070
1.05 217 2.17 «5S8 000 771 o T4 «057
1.35 207 1,55 «32 000 606 .58 44
1.65 «196 88 «10 000 440 W42 «0¢8
1092 0187 .28 "009 0000 .293 022 oOll
?.15 0179 "017 ""031 .000 .170 oll '0001
2.33 0173 ‘c"q "052 .000 0072 003 -.OlO
2.‘08 .168 -.70 '.75 .000 -.005 ".00 -.016
2.63 0163 -085 -1.05 .OOO -.07"" "00‘0 "0020
2.78 «158 -.87 ~1e47 «000 - 1217 -+06 -.022
2.90 «154 ~-oh6 =2.03 .OOO "0138 "004 ~-.017
2,97 «151 ~e22 ~2¢69 .000 -.098 -,02 -.006
DIVERGENCE. ¢ = 16.9 vV = 118.8 K/QS()D = 1.32
CC REVERSALe« ¢ = LTI | V = 108.3 XK/QSC)R = 1,97
LIFT AND CONTROL EFFECTIVENESS
G LIFY LeEe Ce€e ROOT ANG
12,0 8,27 1.642 «533 3,54
13,0 10.18 1.874 « 365 4,8)
14,0 13.24 2.263 081 6.95
1500 19017 30098 "'.‘qu 11-32
17.0 ~41R,21 -58,859 44,501 -329.29

Figure 28 - Typical Program Output
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83



ey e g 1ty 4 L DA SRR & 1 Ay 0 A SR
T T TR T ST ST T TR TR T TR AT T T
e : L

Sy

Slot height magnitude affects the h/s correction to airfoil CQ and is
the primary term in the pressure-mass flow relationship which determines the
Cu value. Internal duct losses for the model had been measured and found to
correspond to an 18-percent loss in the duct gage pressure at the wing tip.
This factor was used in the analysis when calzulating pressure ratio and jet
velocity. Figure 29 indicates good agreement between test data and theoreti-

cal values of C for a range of pressure ratios. This agreement is basic
w
to the prediction of wing C, - C relacions.

L uw

qQ =120

THEORY

e
w

WING JET MOMENTUM COEFFICIENT, C“w
o o
-t N

0.0 1 ] 1 | 1 | !
3 12 14 1.6 18

PRESSURE RATIO, P/P,

Figure 29 - Comparison of Theoretical and Experimental Values
of C for a Range of Pressure Ratios
w

The analysis was originally derived and programmed for application to
normal full-span wings, but it is applied here to a wing model of one-half
span. This difference in geometry 1is believed to be alleviated somewhat by
the sizable hub to which the model wing was attached; see Figure 13. Never-
theless the predicted values of induced velocity at the wing inboard
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stations are affected by the inherent assumptions of a full-span wing. Con-

sequently some differences may be expected between the one-half span model

data and the theorectical predictions.

Rigid Wing

Figure 30 gives predicted values of wing CL versus Cu for several
W

app > DEG

~N

W'NG LIFT COEFFICIENT, Cp

1
-1 L | ] | ] 1 l L | I 1 J
% 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

WING JET MOMENTUM COEFFICICNT, C“w

Figure 30 - Predicted Rigid Wing Lift Coefficients for Several

Initial OLT.[P Values

incidence angles. In general the calculated values agreed quite well with
those measured in the wind tunnel. There were two notable differences how-

ever. First, the model data showed much less initial 1lift augmentation
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thun predicted by the program. A comparison of rolling womeacs for o = -6

deg and Cu ~ 0.02 shows that the model wing was still lightiy loaded on the
w
outboard sections, with the center of 1ift at about 12 percent span. Pre-

dicted center of 1lift for the same conditions is more like 35 percent span,
representing more outboavd loading. This suggests that the outbcard regions
of the model wing did not attain theoretical values of initial augmentation.
Moreover, measured wing lift in this condition was only 4.5 1lb and so small
differences in section C, would account for considerable variations in the
center of 1lift. )

The second notable difference between model dats and predicted C2 con-

cerned behavior at extreme Cu values, Cu > 0.20. Model data in this
w w
region showed that the wing CL became less sensitive to angle-of-attack

setting, but predicted value of CL at extreme Cuw retained about the same
sensitivity to angle-of-attack. Most of this difference is attributed to
the CU range of the two-dimensional data. Two-dimensional data are normally
limited to the praciical range 0 j_Cu < 0.24, which is also the range of
data used in current pe+formance prediction programs. Wing 1ift predictions
which require section Cu greater than this are based on a simple linear
extrapolation of two-dimensional data. Accordingly, the general agreement
in CL magnitude is considered very good, and it is not surprising that non-
linear behavior is not predicted in the high Cu range.

w
Typical spanwise distributions of predicted Cl and o are shown in

Figure 31. At zero blowing, the program predicts an upwash on the outboard

portion of the wing (induced by that portion which develops negative CE) and

a small downwash inboard. These induced angles are algebraically addded to
the wing geometric twist angle to give the local effective angle-of-attack

distributions shown. At moderate values of Cu , a downwash is predicted
w
over most of the wing span corresponding to positive CZ' However, the wing

tip station will retain an upwash until extreme magnitudes of CU are reached.
w
Even under these conditions, the tip downwash will be much less than that of

the adjacent inboard stations.
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Figure 31 - Predicted Rigid Wing Distributions of Lift Coefficient
and Angle of Attack
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Predicted values of wing root pitchiang moment Cm are shown in Figure
50
32 for a range of CU and a. The predicted trends and magnitudes are in

w

0.2

50

o
o

WING PITCHING MOMENT COEFFICIENT, Cu

06 L | 1 1 | | | [ | {
4] 0.04 0.08 0.12 0.16 0.20 0,24 0.28
WING JET MOMENTUM COEFFICIENT, C‘lw

Figure 32 - Predicted Rigid Wing Root Pitching Moment Coefficients

fair agreement with measured data. Model wing data showed generally lower

C values than those predicted.
M50
data were low and that the predictions are more representative of those

It is believed, however, that the measured

moments developed by the model wing.

The elastic wing responses in Figures

20a and 20b support this belief.

In those figures, the initial wing

for aTIP

This requir~- a positive pitching moment at

response was to pitch up of -3 and -4 deg, as indicated by the

initial wing increase in lift.

C = 0 for these angles.

1 However, as shown in Figure 19, the pitching
w
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moment measured from rigid wing data was slightly negative for o = -3 deg

TIP
and Cu = (. Linear interpolation across the angles would give even more
w

negative values of pitching moment for o = -4 deg. These elastic wing

respcnses suggest that rigid wing pitchi:;Pmoment behaves more like the pre-
dicted values of Figure 32 than the measured values of Figures 19.

Overall, the rigid wing is reasonably well represented by theory. This
is, of course, a necessary prerequisite to enable predictions of divergence
and CC reversal conditions. Calculations of L.E. and C.E. also depend on the

basic rigid wing characteristics, as will be shown in the following section.

Elastic Wing with Axis at 0.5 Chord

As shown in Figure 27, elastic wing characteristics are obtained from
the converged solution of the rigid wing lift distributions. The elastic
wing properties are summarized in the computer output directly after the
rigid wing detailed output shown in Figure 28, The predicted elastic wing
characteristics will now be shown for selected ~ases corresponding to pre-
viocusly presented CCW imodel data. These predicted values were generated
with pressure increments of 0.1 psig in order to accurately define the elas-

tic wing CL’ L.E., ard C.E. variations with wing Cu + This pressure incre-
w
ment corresponds to Cu increments of 0.0045, 0.0040, and 0.0036 for the q
w
values of 12,1, 13.7, and 15.1, respectively. Larger increments allow in-~

accurate fairings which would not represent the intricacy of the analysis.

Increments of Cu for the model data were about three times those used

for the analysis. This required the L.E. and C.E. parameters to be evaluated
from fairings through the data. As such, these parameters evaluated from
model data are representative, but they may lack detail in those regions
where CL changes rapidly.

Tnitial conditions are also different between model data and theory.
The model data were obtained by successive increments in pressure. There-

fore, as a new value of Cu was being set, the model was being perturbed
W
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’ from its CL and deflection angle at the old setting. In contrast, the theo-
' retical prediction is based on an initial condition of zero deflection angle
? for each point (i.e., the analysis 1s not one of time history and so does

not have memory). Figure 20a indicated that the initial condition signifi-

%’ cantly influences wing behavior, especialily al couwdliiouns involving larger
deflection angles. Thus this difference in intial conditions between theory
and experiments can be expected to affect their agreement at any given point,

but it does not reflect on the validity of the theory. The difference

s

occurs only when detflection angles are relatively large, and this happens

only when the boundaries of CC reversal and torsional divergence are ap-

_ proached. Therefore, the initial condition is significant only to the

f i extent that it affects particular behavior in the proximity of these
boundaries. In contrast, the validity of the theory lies in its ability to

predict where the boundaries are and to predict the general wing character~

istics in the flight regime prior to such boundaries.

Predicted elastic wing lift coefficients are presented in Figure 33 for
initial %rrp = -4 deg. (Comparative model wing data for this angle was
shown in Figure 20b.) At zero blowing, the trend of increasing wing C.L with
increasing q is in good agreement with the data. The predicted behavior !

also shows that the CC reversal condition will occur at zero blowing for q =

15.1 and will reoccur at Cu ~ 0.02. This also agrees well with model data.
W ;
The intent of the analysis is to predict those operating conditions at

wirtJch CC reversal will occur and to provide a means of evaluating proximity
to those conditions. To this extent, the theory has a good correlation
with model data.

Predicted values of lift effectiveness are indicated in Figure 34 for

an initial angle of o = -4 deg. (Comparative data were shown in Figure

TIP
21.) The predicted behavior for q = 12.1 (f = 1.836) is very similar to that
shown by the data. At zero blowing (minimum CL), the predicted L.E. was

within 3 percent of the data, and for CL ~ 2, the difference was within 5

percent. The agreement was less satisfactory for intermediate values of
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Figure 33 - Predicted Elastic Wing Lift Coefficient at Initial !
Urip = -4 Degrees
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Figure 34 - Predicted Elastic Wing Lift Effectiveness at Initial
%ppp = -4 Degrees




CL‘ As g is increased, the predicted L.E. also increases for zero blowing
conditions. In general the predicted L.E. agreed with the data, showing the
strong q effect as CC reversal and torsional divergence boundaries are
approached.

Torsional divergence is indicated by the sharp dropoff in predicted
L.E. at the higher CL value in Figure 34. Note that the boundary is pre-

dicted to approach rather quickly for q = 13.7 and q = 15.1 as Cu , and
w

hence CL’ is increased. 1In this case the torsional divergence is in the
pitch~down direction, as indicated by the reduction of L.E. in this region.
Predicted values of C.E. are given in Figure 35 for an initial angle
of %ppp = ~4 deg. (Comparative data were shown in Figure 22.) The theory
shows a consistent peak in the C.E. for all three q values shown at CL ~ 1.0.
This same characteristic was seen ir the model data for each q value, but it
occurred at the slightly shifted position of CL ~ 0.70.
The model data exhibited an unusual behavior of CC reversal at q = 15.1

-~

(see Figure 23). There was an initial condition of CC reversal at LH = 0
w
(minimum CL)’ but a rapid recovery as C, was increased until it reached the

above-mentioned peak in C.E. As CL wasturther increased beyond the peak,
C.E. dropped as rapidly as it had previously increased, and again plunged
deep into the CC reversal condition (C.E. < 0.0) until it reached a minimum
C.E. Beyond this point, the curve again changed direction and went back to
approach C.E, = 0.0, but was stopped by the model deflection limits. At 3]
= 13.7 and 12,1 the model data exhibited the same general behavior. This
very complex behavior reflects a delicate balance between wing aerocdynamic
moment contributions from angle-of-attack and from jet momentum. The pre-
dicted behavior shown in Figure 35 reproduced each of the peaks and valleys
demonstrated by the model as it crossed back and forth from CC reversal to
nonreversal conditions.

No recovery from the final plunge in C.E. was shown in Figure 25 for q
= 13.7 and q = 15.1. This is the same negative torsional divergence shown
by the L.E. behavior of Figure 34.

A comparison between model data and theory would be incomplete without

mention of the two-dimensional analysis presented earlier. The model wing
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response 1s similar to that analysis in that toe model allowed only for root

torsicnal elasticity. The CCW data of Figure 20b showed that CC reversal

b conditions cccurred at a Cu value of about 0.03 for an inirial dTIP of -4
: W
n? deg. It 1s interesting to compare the two-dimensional value of CR (dimen-

sionless reversal stiffness) to the experimental values shown. According

to Figure 31 the local angle-of-attack at tlis value of cu and at 90-
W

& _ percent span would be approximately -4 deg. This rough angle-of-attack

estimate may be used in Figure 8 to evaluate the CP of the two-dimenrional

R
1.6 agrees quite well with the value of 1.621 (Figure 20b) where the CCW

analysis. At o = -4 deg and C“ ~ 0.03, the prediction that [, will be about

a5

model first experienced CC reversal. According to Figure 11, the opera-
tional limit on ¢ should be no less (han abouf 4 CR to avelild excessive

structural deflections and stay within a 10-parcent deviation from rigid

SRS NS Tk

i wing performance. The use of 4 CR for design purpuses gives some latitude
so that the two-dimensional estimate of LR mizy be all that is required to

avoid CC reversal conditions.

Elastic Wing with Axis at 0.6 Chord
[he elastic wing behavior changes dramatvically as the elastic axis is
shifted aft of the 50-percent chord. As was shown in Figure 25a for an

{nitial angle of aTIP = -6 Jeg, the CCW model exhibited piftch-up tendencies
for a 60-percent chora elastic axis (¢ = -0.10) as C  was lIncreased,

W

Eventually the deflection angle became so great as to cause angle-of-attack
stall on the wing, which 1is shown by the asymtotic Cx characteristic for

C > 0.16. Predicted lift coefficients for the sale case are shown ir
W
3 : Figure 36. The slightly negative deflection angle predicted at € =+ .0

t results in a lower C, for the elastic wing than that obtained for the rigid

L
wing; this is in cgreemenc with the data. As CU is Increased, the pre-

i dicted deflection angles become increasingly positive and produce higher

elastic wing CL values, This is also in agreement with model wing data

A AN e
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Figure 36 ~ Predicted Elastic Wing Lift Coefficient for 0.6 Chord FA

Location at Initial GTIP = -6 Degrees
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until stall occurs. The theoretical analysis of elastic wing behavior is
based on linear coefficients from the established rigid wing operating con-
ditions, and it is therefore incapable of predicting a nonlinear stall
characteristic created by the elastic deflection. Linearity assumptions are
commonly of a conservative nature.
Predicted variations of L.E. and C.E. for the elastic wing are shown
in Figure 37 for € = -0.10 and an initial angle of Opip = -6 deg.
3
INITIAL orp = -6 DEG
—
2 o
CONTROL EFFECTIVENESS
o /
W
E — I
>
i~ 1 b— S ot E—
(&
w
u:
w LIFT EFFECTIVENESS
0
: €=-0.10
i q~ 7.69
I — §= 2835
ELASTIC AXIS AT 0.6 CHORD
-1 | l i I | ' i
0 1 2 3 4

RIGID WING LIFT COEFFICIENT, C|_

Figure 37 - Predirted Elastic Wing Lift and Control Effectlveness for
0.6 Chord EA Location and Initial Urrp = -6 Degrees

(Comparative data were shown in Tigure 26 as evaluated from the CCW model

data.) The predicted variations have trends similar to those for the

model data, but there are also dissimilarities. Because of the aft EA
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location, the elastic wing CL plays a significant role in determining moments
about the elastic axis for these cases. This adds a pitch-up moment contri-

bution at low Cu conditions in the predicted behavior which did not exist in
w
the CCW model. As a result, the theory predicts more positive deflection
angles and correspondingly higher values of elastic wing CL and L.E. than
found for CCW data in the lower Cu range.
W
Figure 37 indicates that predicted C.E. trends drop rather steadily from

about 1.3 at zero blowing to about 1.05 at CL = 2.5, with a slight rise at
CL 2 1.0. This behavior is very similar to the CCW model data.
Summary

The predicted variations ot elastic wing CL, L.E., and C.E. have been
shown for two different EA locations and compared to CCW model data.
Figures 33-35 indicated the predicted elastic wing behavior for a 50-percent
chord EA location as it varies with dimensionless stiffness . The pre-
diction of strong reductions in wing performance as [ was decreased agreed
well with CCW model data. At the lowest 7 value, the theory predicted

repetitive conditions of CC reversal as CU is increased, ending in the
W
prediction of a negative torsional divergence. The repetitive CC reversal

was clearly shown in the model data for the same value of [, substantiating
the theoretical prediction. Figures 36 and 37 showed the predicted elastic
wing behavior for a quite different condition where the elastic axis wag
located at the 60-percent chord. This EA location involves strong pitching
moment contributions from the elastic wing CL and results in predominantly
pitch-up tendencies. The predicted variations for this condition are also
in general agreement with the model data. The theoretical analysis of

both rigid wing and elastic wing behavior has been seen to represent the
CCW characteristics over a broad range of conditions. The theory has pre-
dicted general trends of L.E. and C.E. as well as particular variations of
these parameters with changing jet momentum and changing dimensionless
stiffness. Finally, the theory has predicted magnitudes of q and dimension-
less stiffness for CC reversal conditions which are in good agreement with

the data.
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TWO-DIMENSIONAL STALL FLUTTER

The stall flutter characteristics of a wing with CC airfoils may vary
considerably from those of wings with conventional airfoils. This difference
is attributable to the gradual stall of the typical CC airfoil and to the
varying combinations of o and Cu at which it occurs. A detailed discussion
of the phenomenon which creates this stall pattern is beyond the scope of
this paper, but it is contributed to by the larger leading edge radius of CC
airfolls together with the continued forced circulation due to trailing edge
blowing. Figure 2 has presented the angle-of-attack behavior of a typical
CC airfoil for constant blowing rates. As shown, the stall angle lowers
significantlr for increased blowing. This behavior creates a stall flutter
condition whichk involves only the wing bending degree of freedom. The re-
sulting flutter condition occurs basically at the wing first natural frequen~
cy in bending. It is not suggested that this type of stall flutter is the
only one which may develop. The previous chapters have certainly shown the
importance c¢f including torsional moments in any general analysis. Further-
more, the flutter condition may be continued by oscillating values of Cu in
response to oscillating pressures at the blown slot, or by unsteady aero-
dynamic responses. The coupled bending~torsion wing response is not to be
dismissed as a pussible mode for stall flutter either. It is observed, how-
ever, that stability boundaries are usually lower when they are determined
bv the lower energy levels of structural response. Specifically, it is sug-
gested that a stall flutter involving only wing bending will be lower, and
hence more¢ important, than one involving the higher bernding-torsion wing
respon: e,

The exp-rimentally observed stall flutter tends to be of limit-cycle

nature ar the effective angle-of-attack oscillates about that at Cl . In
max

contrast, on the stalled side of the curve, negative aerodynamic damping
extracts energy from the free stream, thus adding energy to the aeroelastic

wing system. ‘The .imit-cycle behavior is apparently caused by the balance

of structural damping and the symmetry of Cl about CE (the gradual stall).
max

o B k£ e .
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FORMULATION
Consider a section of CC wing acting in two-dimensional flow. The
section is torsionally rigid and restrained in heave through a spring mount

and damper, as shown in Figure 38. The equation of motion for this system is

___LINEAR o
SPRING |

DAMPER

c __ ®—D—o Y
\\ S -

OSCILLATING WING

}
Figure 38 ~ Wing Representation for Two-Dimensional Stall Flutter }

§ + 2ymné + wnzd = (1/m) F(t) (41)

undamped natural frequency

€
]

structural damping factor

<
-1

where m = mass per unit length j
}
]
|
!

L]
—~
[ag
~
[}

aerodynamic forces = qc Cy

(g}
]

¢ ™= Cy (a(t})

The behavior of Cl at a constant C“ may be catagorized as linear or non-

linear. Linear behavior with angle-of-attack may be represented as
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CR.'CSZ. +Cl Ao
0 o

where Ao is the change in angle-of-attack due to bending oscillations such

that Ax = —G/Vw. Prior to stall, Cz > 0; this represents conventional aero-
o

dynamic damping and it adds to the structural damping. For some region
beyond stall, the 1ift curve slope remains negative over a significant a
range for CC airfoils. This tends to cancel structural damping and may or
may not cause divergent oscillations. Stability for this case is simply
defined by:

Zywn + (1/m) q ¢ Cza/v°° >0

Nonlinear behavior with angle-of-attack occurs near the stall condition.
In order to evaluate the system characteristics in a closed form, it is
necessary to approximate the nonlinear CZ - o relationship in this region by
some continuous function., A parabolic function was chosen for its con-
venience and the ease with which it is fitted to data. Admittedly, the
function will not precisely represent a given data set, but it is sufficient
to model the more important overall trends. Appendix A shows that the basic
parabolic equation of X2 = 2PY provides a good representation of two-
dimensional data. The resulting expressicn for the lift coefficient is
shown below in terms of the mean effective angle g, the angle for maximum

1lift coefficient s and the oscillatory angle - &/V.

1 |- 2 180y § — 180
Co =% [_‘“‘%’ "Z(T)v(“'%’*(T

<|os »

) 2] + ¢ (42)

m

Terms in the above equation which have not been previously defined may be

found in Appendix A.
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The nonlinear angle-of-attack behavior is of primary interest since it
is encountered prior to the oscillatory divergence associated with constant

negative Cz . Equation (42) 1s seen to consist of constant terms and time-
o
dependent terms. Substitutions into Equation (41) would yield a differential

equation that describes a damped oscillatory motion of the wing section. The

constant portion of the forcing function contributes only to the steady-

state solution and is of no particular interest here. The time-dependent !

portion of the forcing function is the aerodynamic damping contribution, and

it determines the system stability in forced vibrations. It is this portion

which determines the existence and sustainment of the stall flutter condition. :
Substituting Equation (42) into Equation (41) and rearranging terms

glve an equivalent damping coefficient of

vy + 2 (85) 2(29) @ - o (3) - (R20) &

An irterpretation of the aerodynamic damping terms may be found by examining
their source in Equation (42). The term containing (u - am) is the mean
aerodynamic damping and is linear with 6. Its magnitude and sign depends

on the value of the mean effective angle o relative to the angle for maximum

e ™ e T

life oL When the mean effective angle is on the back side of the lift

curve (a > am), the mean aerodynamic damping contribution is negative, or
destabilizing. This term is the predominant of the two in establishing
system stability for small oscillations.

e e e . e

The other aerodynamic damping contribution is a function of 62 in
Equation (42), or § in Equation (43). This term reduces the section Cz for
both positive § and negative §, thus contributing both positive and negative

aerodynamic damping respectively. As ihe wing section plunges down during

its oscillations, this term contributes negative damping by reducing Cg.
The reduced Cl effectively adds energy to the system, allowing the wing to

plunge further down than it would otherwlse. This energy is conserved in i
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the spring as a pontential energy of deflection and is then converted to

wing kinetic energy as the cycle progresses and the wing heaves up. However,

As the wing heaves upward (positive §), the same damping term still reduces
the CR’ which now contributes a positive aerodynamic damping. The positive
damping now extracts from the system that energy which had previously been
added during the downward plunge. Thus, the net energy gain per cycle is
egsentially zero even though the motion tends to be sustained.* It is this
process which is believed to be responsible for the limit-cycle behavior
observed during stall flutter tests of the CCW model.

The first term discussed above has a greater relative magnitude than
the second fof small amplitudes of motion. As such, it determines the
initial stability of the system. As amplitude increases, the second term
becomes predominant and tends to develop the limit-cycle rpsponse. For the

purpose of establishing stall flutter boundaries then, the 6 term wiil be

dropped and only the first term will be retained. This gives the following
equation as the stability criterion for the modified equivalent damping:

1l gc 2 180 o~ _
Zywn + = % Vo (o am) >0 (44)

This may be solved as an expression for the limit on the mean effective

y angle-of-attack to avoid stall flutter:

ywn(ZP) m

- _n YD) . |
@-o)2-g b Ve ;

where (a - um) is in degrees. Since the quantity (2P) is always negative
and the other terms on the right-hand side are all positive, the equation

states that in order for stall flutter to occur, the mean effective angle a

*
This explanation does not violate the First Law of Thermodynamics since
¢ the energy source is provided by the free-stream velocity.
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must be greater than the value of am. This is especially interesting since

3 : oscillatory motion could carry the maximum angle even further into stall,

i | or further beyond .

i An alternate solution of Equation (44) gives the boundary on free-stream

f velocity for the avoidance of stall flutter:

Yw (2P) m :
Vep = = g0 ——— (45) {

pe (o - am)

The stall flutter velocity VSF is seen to decrease as the reciprocal of the
quantity (o - am). As 0 becomes much greater than am. the section moves
further into stall and provides more negative aerodynamic damping, de-

1 creasing the stall flutter boundary. In general the level of free-stream
velocity for stall flutter must be great enough to amplify the negative
aerodynamic damping to the extent that it equals or exceeds the stiuctural
damping of Gwn. As structural damping Gwn is increased, the stall flutter
boundary also increases.

- The values of am and (2P) in Equation (45) are quite dependent on the
g’ magnitude of Cu. Therefore the calculation of VSF’ which is for constant
N Cu, does not correspond to constant jet momentum conditions. This is not
restrictive, but it could lead to misinterpretation of the results. For j
examplie, if C 1is initially evaluated for a refercnce jet momentum ﬁuvj)o and
dynamic pressure 4 then the jet momentum at the stall flutter velocity 5

mvj)SF would have to be |

Cade
~"
o]
R ahane s T S -

for the same Cu. The use of Equation (45) will be shown later in comparing
theoretical atall flutter boundaries to the CCW model data.
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The unusual point of this stall flutter is the manner in which it is

approached with CC airfoils. The angle-of-attack at Cz may decrease by as
m
much as 10 deg as jet momentum is increased. So although the system may be

stable at low blowing rates (low CU and high am), it may pass into stall
flutter and even divergent oscillations at high blowing rates (high Cu and
lower am) while at the same o and flight speed. Even more interesting is
the lift behavior in this transition. Generally the Cz - Cu relationship
shows continued positive augmentatiorn beyond the a stall. Thus greater magni-
tudes of 1lift may be developed by increasing Cu while foing deeper into stall
flutter conditions, even neglecting the effects of dynamic stall overshoot
commonly developed by conventional airfoils. This 1s apparent from Iquation
(42) which shows that the time average CZ’ and hence 1lift, i§ primarily de-~
pendent on the steady-state conditions of Cu and o and that § terms contrib-
ute only to the high frequency oscillatory forces of flutter.

This predictable and gradual behavior may prove to be very important
and useful in application. It has several implications. TFirst, stall flut-
ter for a CC airfoil does not mean an attendant sudden loss of 1ift. Second,
increased blowing alone at flutter conditions will worsen the condition by
driving the o to still lower values. Third, recovery is obtainable by a
sharp decrease in angle-of-attack along with increased blowing rates. Fourth
and finally, this recovery process may actually increase 1ift, resulting in

no loss of altitude.

MODEL WING DATA AND COMPARATIVE ANALYSIS
The experimentally observed stall flutter appeared as a simple harmonic
motion involving ouly the wing bending mode. At an incidence angle of %rrp
= 0 deg and above, the flutter began to occur only as Cu was increased
W
beyond a value of about 0.20. The frequency and character of motion was

examined by a strobe light aimed at the wing tip. This showed tha. the fre-
quency of oscillation was that of the first cantilevered natural bending

frequency of the wing. Strobing the tip at multiples of this frequency
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produced a multiple exposure during oscillation and showed that no torsiomnal

deflection occurred. The wing cherdwise position of center of gravity and
elastic axie are nearly coincident on the model so that such uncouplad
motion is possible. The amplitude of oscillation was observed to be about

0.5 to 1 in. peak to peak, which increased as Cu was increased. For a l-
w

in. oscillation to occur at the wing first bending frequency (19.3 Hz), the
wing tip must have experienced an oscillating angle-of-attack of * 2.9 deg.

The previous formulation for the two-dimensional case cannot be applied
directly to data for the three-dimensional model wing. Distributed elastic-
ity is one of the primary differences since it produces a distributed de-
flection for the wing. It is the corresponding distribution of aerodynamic
response which then creates the driving bending moments to cause the wing
stall flutter condition. However, an equivalence may be drawn between the
two systems such that the terms of Equation (41) for the two-dimensionai
case are scaled to represent the characteristics of the three~dimensional
wing. Appendix B shows :he details of this equivalence and the numerical
values corresponding to the CCW model. The numerical values are valid only
for the case of Crp ™ 0 deg, corresponding to the incidence angle at which
stall flutter was observed on the CCW model. The scaling is sensitive to
wing incidence since it depends on establishing a position for the wing
center of oscillating lift.

The theoretical stall flutter velocity for the CCW model is evaluated
by substituting the numerical values of Appendix B into Equation (45) for
the two-dimensional wing. This equation is shown below in terms of the

aerodynamic operating conditionms.

2P

(a - am)

VSF = ~1.4124

Since the above equation is inten..d to represent the CCW model, the aero-

dynamic terms (2P), 6, and am must be evaluated at the appropriate model
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wing opersting conditions. More specifically, these terms must be evaluated
from two-dimensional airfoil data by using local values of Cu and effective
angle-of-attack at the representative wing location. They can then be re-
lated to the corrc¢sponding wing values of Cu and Aprp for comparison to the

model data. v

Appendix B gives the center of oscillating 1ift for the model wing as
2.467 ft (0.752 m) from the wing root, or at 82.3 percent span. Theoretical
values of the wing local Cu and o for this station were obtained from the
rigid wing predictions at an incidence angle of Orrp = 0 deg. The wing root
is stalled for this incidence, even at zero jet momentum. As jet momentum
is increased, the stall region extends further outloard, approaching the

wing tip. Figure 39 presents these values of CU znd a at the center of

032 T [ j [ ] | 1 | T | - 4
ap = 0 DEG
- WING STATION 2.48 FT —

0.24

0.16

LOCAL ANGLE OF ATTACK, a — DEG

LOCAL JET MOMENTUM COEFFICIENT, C,
o
8

| | ] 1 ] ] 1 | | | ] -12
0 0.04 0.08 0.12 0.18 0.20 0.24
WING JET MOMENTUM COEFFICIENT, C“w

Figure 39 - Theoretical Variation of Local Jet Momentum Coefficient
and Angle of Attack
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oscillating lift as they vary with the wing Cu . Although these values are
w
at the 82.3 percent span, they may be compared to the two~dimensional data

which are available for the wing tip airfoil. Figure 40 shows this cross-
plot and allows an evaluation of the operational proximity to the stall con-
dition. As previously discussed, the mean operational angle o must ba
greater than the stall angle o for stall flutter to occur. This condition
is 1initially satisified at Cu = 0.12 in Figure 40, suggesting the possibility
of stall flutter for Cu 2 0.12.

The stall flutter velocity V__ may be evaluated from Equation (46) and

the information in Figure 40. Tthvalue of the term 2P is a measure of the
stall rate (i.e., sharp or gradual). This term was evaluated from the stall
region of the two-~dimensional data for C“ values of C.12, 0.16, and 0.20. A
single value gave good agreement with all three CU curves. Figure &i in-
dicates the resulting sensitivity of VSF to the angular difference (a - am).
Plotted this way, the stall flutter boundary is examined independently of any
particular value of o or e The boundary is seen to drop rapidly as o
exceeds am by just 1 deg. This behavior should be expected with the very
low damping factor for the CCW model. Operaiional conditions for C‘J values
of 0.12, 0.16, and 0.20 are superimposed on Figure 41 to give the specific
VSF value for each condition. The values of VSF may be related back to the
corresponding wing Cu values by the curve of Figure 39,

w
The theoretical stall flutter boundary for the CCW model is shown more

meaningfully in Figure 42 as it varies with the wing parameter CU . Experi-
w

mentally observed stall flutter conditions from the CCW model data are also
shown for -omparisun. In general the agreement is quite good between theory
and experiment. To put this in perspective, two important points should be
noted., First, the theoretical boundary is based on a single-degree-~of-freedom
model, using two-dimensional airfoil characteristics and mass scaling, to rep-
resent the wing flutter. By contrast, the wing flutter condition actually
depends on the span distribution of structural elasticity, aerodynamic pro-

perties, induced angles, and wing mode shape. More specifically, the local
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angle-of-attack changes drastically with the wing span, and it is the span-
wise integration of this quantity which creates the negative aerodynamic
damping to prcduce flutter conditions. The simple theory, however, uses
representative terms at only a single point along the wing span to predict
the stall flutter boundary. The second point to be noted concerns the ex-
perimentally observed stall flutter conditions. The model wing was not
equipped with an "exciter" of any «ind, and so the stall flutter condition
was solelv dependent on wind tunnel turbulence to initialize the motion.
This 1is certainly sufficient for unstable conditions, but it does not aliow
an accurate measurement of the neutrally stable flutter boundary. The ex-
perimentally observed stall flutter conditions shown in Figure 42 were in a
state of steady oscillatory motion and their amplitudes were most certainly
beyond the neutrally stable stall flutter boundary. Accordingly, the ex-
perimental boundary must lie to the left of the data points marked as being

in stall flutter, or at lower Cu for a given velocity. This suggests even
w
better agreement between theory and experimental data than shown in Figure

42.

To summarize, the necessary condition for stall flutter is that the
effective angle-of-attack must be greater than che stall angle at the appro-
priate CU' If this condition is satisfied, then the stall flutter velocity
depends on the relative magnitudes of structural and aerodynamic damping,
as given in Equation (45). An equivalence may be established between the
three-dimensionoal wing stall flutter and the single-degree-of-freedom two-
dimengional stall flutter Loundaries. This equivalence is based on a linear
apprroximation of the wing mode shape, and use of a representative wing
station at the center of oscillating lift suggests that only a portion of
the wing need be ovperating in stall conditions for stall flutter to occur.
Theoretical calculations of a stall flutter boundary for the CCW model ob-~
tained by using the above equivaience are in good agreement with the ob-

gerved stall flutter condition from CCW model data.
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CONCLUSIONS
The static aeroelastic characteristics of a wing with CC airfoils has

been examined both by a two-~dimensional approach and by a three-dimensional

e e a

wing approach that utilizes a modification of lifting line theory. The
theory has shown good correlation with experimental data from a CCW model, |
verifying the ability to predict rigid wing performance and the boundaries |
of torsional divergence and CC reversal. The parameters of 1lift effective-
ness and control effectiveness provide a quantitative assessment of the

elastic wing behavior at dynamic pressures below the boundaries, and may

serve to establish acceptable limits of operation.

The simple two-dimensional analysis has shown that divergence stiffness
; is strongly affected by EA placement. More forward EA locations, approach-
ing the quarter-chord, are preferable to improve the boundary of torsional
divergence. However this results in larger pitching moment magnitudes about
the EA for the rigid wing. The reversal stiffness CR was shown to depend
primarily on the airfoil lift and moment coefficient derivatives with
respect to Cu and . A value of ACR is suggested as a minimum design stiff-
ness, corresponding to about * 1l0-percent deviation from the rigid wing
behavior. This stiffness level should provide satisfactory avoidance of
torsional divergence as well.

The three-dimensional wing analysis was derived for the general case
of distributed elasticity and then modified to allow only wing root elastic-
ity for comparison to the CCW model data. This comparison demonstrated the
ability of the theory to predict speclific variations of L.E. and C.E. for

the elastic wing as a function of Cu and incidence angle. The courrelation
W
maintained agreement even as CC reversal conditions were encountered.

The wing root elasticity analysis may also be applied to certain trim
and stability problems of the aircraft as a whole. The advantage of this
application is that specific 1ift and moment variations can be included
along with angle-of-attack in the trim attitude solution. Wing 1lifr may be

obtained from many combinations of o and CU ; each has different net pitching
W
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moments and so the trim attitude for a specified 1ift is not unique. It is

to be expected that the relative stability will also change with the o Cu

combination at trim. v
Stall flutter conditions encountered with the CCW model may be pre-

dicted by a two-dimensional analysis when proper scaling and aercdynamic

equivalence are used. This stali flutter condition involves only the wing
bending mode and rfalls in a class of relatively few single-degree-of-freedom
flutter problems. The stall flutter condition may occur at a number of o
and CU combinations since each Cp level has a different associated stall
angle. Wing lift tends to be maintained at stall flutter due to the gradual
stall characteristic of CC airfoils. Once stall flutter has vccurred, an

increase in Cp will aggravate the condition by effectively lowering the
W
stall angle. Recovery 1s cbtained by a sharp decrease in angle-of-attack _

[

along with an increase in Cu . Properly executed, this process should elimi-
W
nate the condition with no loss in lift or altitude.

It is recommended that further analysis be performed to evaluate the

classical flutter problem for CC airfoils. Since the trailing edge stagna-
tion point is variable on this type of airfoil, conventional unsteady aero-
dynamics do not apply. This requires that wind tunnel data be obtained for
CC airfoils during both oscillating a and oscillating CU conditions to
establish dynamic characteristics for 1lift and pitching moment.

et e . =
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APPENDIX A

REPRESENTATION OF THE LIFT COEFFICIENT NEAR STALL

The general behavior of CC airfoils near the angle of attack stall con—
dition is gradual and almost symmetri~. Therefore, a simple parabolic fit
is sufficient to describe first order behavior. The curve shown in Figure

A.l at a constant blowing rate may be represented about the stall conditfon

4 p—
S % O
« 3}-
5 ®)
W
3] O
[T o
[V
8 | o
[ 2 L—
| T
] PARABOLIC CURVES

DATA: 16-PERCENT ELLIPSE
1 - Oc, =020
@] C, =012
0 1 | | | ] 1 | | ] )
-18 —12 -8 ) 0 4 8

ANGLE OF ATTACK —a, DEG

Figure A.l1 - Parabolic Representation of Lift Coefficlent
in the Stall Region
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by the following parablolic equation:
(a-am) = 2P (C 2 ) (A.1)

2 :
where 2P (a1~am) /(C9vl - sz). The point (Cgm, am) is taken at the
maximum Cz condition and the point (Cﬂx’ a1) is chosen to yield the most
reasonable curve fit. Solving the above for 02 yields the more convenient
form
1 2
Cp=7p - +C (a.2)
Figure A.1 shows that this gives a good approximation of the Cz vari-
atioa over about a l2-deg range of angle of attack. Two parabolic curves
are shown for Cu = 0.12 to indicate the quality of curve fit which may be
obtained. The quality may be improved over a narrow argle~of-attack range
(Ia—am! < 3 deg) by sacrificing the agreement over the broad angle-of-
attack range.
In representing the oscillating airfoil, the angle of attack is sepa-
rated into a mean value a and a time-varying term due to heave. For small

angles this may be described as

- 180
o (2

) s/v (A.3)

where the angles are expressed in degrees. Substituting Equation (A.3) into
Equation (A.2) and expanding gives the fecllowing equation for the 1lift

coefficient in terms of the mean angle and the heave velocity:

o m b [6- 00t 26 -0 (M) () (B ] e @

m
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The quantity (& - am) signifies the relative proximity of the mean angle of

attack o to the angle of attack for maximum 1lift coefficient Cp - The sign

m
of this quantity is seen to determine the sign of the first order aero-

dynamic damping term.
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APPENDIX B
EQUIVALENCE BETWEEN THE TWO-DIMENSIONAL STALL FLUTTER
EQUATION AND A THREE-DIMENSIONAL WING
The distributed structural properties of a three-dimensional wing yield
a frequency and mode shape for the first natural bending mode. This fre-
quency for the CCW model was measured as 19.3 Hz, or 121 radians/second. The
calculated mode shape for the CCW model is shown in Figure B.l. In general
1.0
Z
S 08— EQUIVALENT
5 RIGID WING
r MODE SHAPE
L 06—
o
@ ELASTIC WinG
' N 04— MODE SHAPE
= OFFSET
3 = HINGE
3
S 0.2
: L L1
0 0.2 0.4 0.6 0.8 1.0
' & DIMENSIONLESS SPAN, y/2

? Figure B.l - Bending Mode Shape and Equivalent Representation of CCW Model

| the wing mode shape and frequency may be adequactely represented by the rigid
; body response of an outboard portion of the wing acting about an offset
hinge with spring restraint. This equivalent system 1s also shown in Figure
B.1 for the CCW model. The hinge position was chosen to represent the

wing mode shape. The equation of motion of this single degree-of-freedom
system is

. . 2 1
0+ 2Ymn9 + W 6 = T; Mh(t) (B.1)
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Here Ih is the wing moment of inertia about the hinge, Mh (t) is the time-
dependent aerodynamic bending moment about the hinge, and W, is the natural
frequency (which is set equal to that of the actual wing). The above equa-
tion has only a single degree of freedom and its form is similar to the
equation which describes two-dimensional stall flutter.

The deflection angle variable 6 of Equation (B.l) may be replaced by
the linear displacement § at a distance r from the hinge. The substitution
of § = r0 and its derivatives into Equation (B.l) gives the following equa-
tion in terms of the linear displacement at a point y = h + r from the wing
root:

% x 2 r
5 + 2ywn6 +w § = f; Mh(t) (B.2)

The equation for two-dimensional stall flutter was previously given as
o : 2 1
S + 2Ywn6 + W § - L(t)

(B.3)

and it is the equivalence between this equation and Equation (B.2) for the
wing which 18 to be established.
form.

These two equations already have the same
Obviously the frequency w and damping factor Yy used in Equation
(8.3) should be numerically equal to those of Equation (B.2) for the wing.
Furthermore the forcing functions of the two equations should be aero-
dynamically equivalent and of equal magnitude.

The forcing functions of Equations (B.2) and (B.3) each consist of
steady-state and time-varying components. The latter contribute to the
system stability and are the compnrnents of interest here. Consequently it
is the time-varying portions of the two forcing functions which must be
equivalent. The induced angle distribution of the wing may be assumed
constant in time for quasi-steady-state conditions. Geometric angles are

also fixed since no torsional deflections are allowed. This leaves only tne
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angle of attack change due to § motion as contributing to the time-varying

forcing function. The wing lift and hinge moment may be expressed as

(2-h)
W e
W

h o
J(Q'h)
= rdZ
Mh o

Here dZ = a Aaqedr, Ao = -r68/V, and r is measured from the hinge. It is
more convenient to express the hinge moment in terms of the integrated 1lift

and an offset for the center of oscillating lift as

Mh =r Lwh (B.4)

where r, = Mh/Lw is the spanwise center of lift offset from the hinge. The
h
value of r, may be evaluated directly from the above equation as

J’(E-h) 2
acr dr
o

fa ™ J’(l—h) —
acrdr
[0}

and is seen to be independent of time. It should be noted that because of

(B.5)

simiiarity of terms in the numerator and denominator, it is necessary to
prescribe only the basic distributions of a and c in order to evaluate r,
Equation (B.5) may be evaluated from the rigid wing distribution of a,
if this is available, and from the known chord distribution. The distribu-~
tion of a depends on the wing operating conditions of Cu and angle-of-attack.
The conditions of interest are those near the wing stall where the analysis
is subject to multistable solutlons and cannot provide accurate distribu-
tions of the local angle of attack or of the 1ift curve slope. However,

the value of r, may be approximated by assumed dictributions of the a term.
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Uniform distributions of a and ¢ place r, at two~thirds of the hinged wing
length. A triangular distribution of a(a = a, r) and a constant chord place
r, at three-fourths of the hinged wing length. Note that these r, offeets
are measured from the hinge location and must be added to the hinge position
h to obtain center of oscillating lift position relative to the wing root.
Geometric twist in the CCW model produces a nearly trapezoidal angle
i?f‘ of attack distribution. At aTIP = 0 deg and high magnitudes of Cuw, this
| gives a basically triangular distribution of the a term over the hinged wing
length. This basic distribution of the a term and a constant chord place r,

at three-fourths of the hinged wing length for the CCW model.

Aerodynamic equivalence between the time-varying portion of the forcing

functions of Equations (B.2) and (B.3) can now be establighed by using r,
in Equation (B.2) in place of the arbitrary span location r. The equation
then describes the motion of the center of oscillating 1ift. Substitution

of Equation (B.4) gives the wing forcing function in terms of the oscillating
(time-varying) wing lift as

¥
\
5 ra2 Lw |
E h |
‘ 1
The two~dimensional lift per unit span is assumed to be equal to the average
wing lift per unit span as
L(t) = L /(&~h) (B.7)
W,
h
A solution for the equivalent mass per unit span of the two-dimensional 1
£ wing is obtained by using the above relation and equating the wing and two- .
dimensional forcing functions. This equivalent mass per unit span provides
the proper magnitude scaling of the two-dimensional aerodynamic forcing

function in relation to that of the wing. It is given by




SRR

I
m=—Lt h (B.8)
r, (%-h)

The equivalence between Equation (B.2) for the wing and Equation (B.3J)
for the two-~dimensional stall flutter is now complete. It requires that
the two equations have the same natural frequency wy and the same damping
factor Y and also that the time~varying portion of the aerodynamic forcing
functions be scaled. The scaling is based on finding the center of oscil-
lating 1ift for the wing, Equation (B.5), which is taken as the representa-
tive point for the equivalent two-dimensional 1ift. The magniiude of the
two~dimensional forcing function 1s made equal to that of the wing forcing
function by scaling the two-dimensional mass per unit span as shown in
Equation (B.8).

The above parameters are tabulated below as calculated for the geometry
of the CCW model. The center of oscillating lift was calculated from the
triangular distribution of the 1ift curve slope. The damping factor was
i evaluated from an oscillograph recording of the btlade bending moment varia-

1 tion during free vibrations.

" ! First natural frequency in bending w, 121 rad/sec
Damping factor y 0.00899
Hinge offset h 0.8667 ft

%; Wing moment of inertia about hinge Ih 0.1295 slug/ft2
Center of oscillating lift r, (from hinge) 1.600 ft
Center of oscillating lift r, + h (from root) 2.467 ft
Equivalent mass m per unit length 0.02371 slug/ft
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