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PREFACE

This report presents a new formulation in search theory inspired
by Pacific-Sierra Research Corporation's continuing analysls of ASW
problems. The formulation is distinguished by 1) a realistic character-
ization of the search environment relative to prior analytical wmodels,
and 2) low computational costs compared to simulation techniques. The

report should be of interest to operations researchers responsible for

for optimizing search tactics and assessing search technology.
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d 1.0 INTROLUCTION AND SUMARY

A fundamental problem in search theory is to calculate the proba-
bility of deteaction for searchers attempting to find a target whose
initial i10cation and subsequent motion are characterized statistically.
The searchers' paths and laws of detectiva are assumed known. The
solution'of this problem has {mportant applications in the optimization
of search tactics and the assessment of search technology. Because of
a lack of relevant and accessible research on the moving target probiem,
operations analysts have often resorted to overly simole aralytical
procedures or expensive computer simulations to obtain numerical results.,

This report presents .4 new formulation that provides an exact solu-
tivin fur the search probiem, assuming a Markovian search and a target
whose motion is a diffusior process. These assumptions are rhen relaxed
to a; 'ly the search formulation to seveiral important non-Markovian tar-
gets and searchers. In general our purpose is to 1) render the search
formulation accessible to operations analysts without sacrificing mathe- f
matical rigor; <) narrow the gap between certain analytical assumptions i
and the behavior of actual targets aud existing search technology; and (
3) iltlustzate the utility of the formulation with simple numerical I
exaumples. After a brief review of previous related research, the pre- }

i

sent section summarizes the developments in this report.

1.1 PRIOR RESEARCH

In his pioneering work {1], Bernard Koopman solves problems in-

volviug -he search for moving targets with his classical "randow search"




detection model. Although 1t remains a viable analytical tool thirty

. years after Jts introduction, the random search model {s limited by

omisnion f certain vperational considevations such as a realistic ropre-
sentation of efther target or searchei motion, or an accommodation of
gencral detectior laws.

Later results in search theory have generally emphasized the optimal

allocatinn of search effort for detecting targets that are either sta-

tionary or have simple .inds of motirn. The recent book by Stone [2]

presents a unified treatment for much of this work.
Hellman [3] provides a general formulation of the Markovian search

problem that is similar in many respects to developments given here. ‘

However, the level of presentation and the use of a Fokker-Planck equa- l

)

tion to describe target motion may have limited the application of

Hellman's work by those seeking computational results for actual search

problewms. For comparison, we describe the work «f Koopman and Hellman ;

in somewhat more detail atter developing our formulation of the search

problem.

1.2 SUMMAPY

Section 2.0 considers the search for a Markovian target that moves
discretely in both time and space. That is, the target may be situated
in any one of a8 countably infinite number of 1-catfons, and is capable
of jumping to another locatiun at each time step. The initial distri-

bution and the location-to-location transition probabilities for the

target are known, as well as the probability that the searchers will

find the target, given its locaticn. The latter is determined by the
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searchers’' pachy and laws of letection. We aerlve a recu.s.ve ditterence

cquat ton {or the distribution of the tsrget at any time conditioned on

an unsuccessful secarch until that time. This «xpression is then used
to obtain the probability ot detection. Although it only crudely repre- |
sents the movement of real targets, the discrete formulation (. a pood |
model for certain generalized search problems, as we show in an example i
involving the Interception and decodir, of clandestine messages. !
The discrete search problem of Sec. 2.0 also introduces the con-
tinucus case treated in Sec 3.0. Working similarly but at a somewhat !
higher mathematical level, thar section iderives a nonlinear integrodi{f-
ferential equation for the target location density conditioued on an
unsuccessful search. Tue target {7 assumed to move ae a diffusion pro-
cess with knowm initial density and transition probabilities. The
searchers’ atility to find the targrt 18 represented by the Markovian
search density introduced by Koopman and used throughout the literature.

By working with the joint events--target location and unsuccessfu)

search~-we linearize rhe integrodifferential equation and use its solu-
tion to establirh a simple expression for the probability cf letection.
Section 3.0 concludes with a physical interpretation of the continuous
search formulantion, comparing it with the treitment by Hellman.

Section 4.0 applies the continuous search formulation te certain
operat k.nal aspects of actual searches. The search density of Sec. 3.0

is expressed as an explicit function of the individual laws of detection

and paths of an arbitrary number of moving or stationary searchers.

Using K~crman's latersl range curve, we find an approximation that
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extends the scope ot the search formuletion to many important ano -
Markovian search devices. The approximation involves the [nversion
of an Abel integral equation to obtain the "equivalent” Markovian law
of detection from anv well-hehaved lateral range curve,

That section also extend:s the search tormulation to fnclude a simpie
but important class of non-Markovian targers of which the classical {lee-
ing datum is a special case. The fleeing datum Is a target that infitially
selects a heading at random in the Interval 0° to 360°, and then move
on a straight-line course at a known constant speed.  Closed-form solu-
tions of the differential equatifons derived in Sec. 3.0 are obtained for
such a target. These solutions are used in a numerical example to
{l1lustrate the dependence of the search path on detection probabllity;
the resull is cowpated to one obtained with the path-invariant random
search model of Koopman.

The last section concentrates on the numerical optimization of
search effort in a problem dealing with stationary sensors used to

detect a fleeing datum with an inftial circurar normal distribution,

The sensors are assumed to have | definite-range law ot detection. We

use a simple and inexpensive computational procedure to tind the optima!l
circular sensor pattern that maximizes the probability of detection for
a searcl. of fixed duration. The optimization is performed over a range

of input parame -8 relevant to a submarine search. For a specific set

B At

of inputs, the best circular pattern with e ght sensors is shown to be

superlor to an opf imil squire pattern using nine sensors.




Finally, we corsider the #ifect ui target course changes subsequent
to the initial heading sclection of the fleeing datum. The search 1z
undertaken by sensors in a circular pattern pisvicusly optimized for a
specific fleeing datur. problem. All iaputs remain as in that probiem,
excent that the target chonoses a new course every fixed time iucrement.
The surprising result is that additional course s=isciions hardly in-
crease the target's chance of escape; in fact, they decrease irs chance
of escape if not sufficiently frequent. Section 5.0 couclades with
suggaestions for broadening our computational experience and extending

the aralytical development of the search formulation.




2.0 SEARCH IN DISCRETE SPACE AND TIME

IO o TPy

F This section considers the search for a Markovian target that moves 1

1n discrets time in s space consisting of a denumerable set of states or

——

locations. 7he discrete search problem provides a structure in which

we can ccensider the more complex situation where the search process and

il 2o e aeians,

target movement occur in continuous time and space (i.e., where the tar-

get moves as a diffusion process). The continuous case, treated in Sec.

3.0, is the most relevant to real-world search problems, and, happily,

will lead to closed-form solutions for the cumulative probability of

detect ‘'on in many problems of interest. !

The discrete search problem, however, has intrinsic importance be-

yond merely introducing the continuous case as demonstrated by the example
at the end cf this section. In addition, search problems are often part
of a iarger model that has a previously defined discrate space for target i
motion. The discrete formulation is therefore especially useful in a
large-scale simulation of a military nperation where search is one of
many functions that contribute to its overall success. Such simulaticns
are haudled almosi exclusively by digital computers where friendly and
enemy forces are constrained to move on a finite grid in discrete time

steps.

Ignoring for the moment the distinctions between the discrete and

continuous cases, we can make the followling informal descristion of the

- eavg

- ot Bus.

general cla«s of search problems addressed: Find an expression for the

cumulative probalility of detection for a given number of moving ot

stationary searchers attewpting to detect a target whose location :t
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t = 0 and motion for t > 0 are governed by a specified initial distribu-

tion and transition probability function, respectively. Each searcher's

path (fixed point for a stationary searcher) and law of detection are

also given. Our approach is tc first dervive an expression for the location
density of the target for any time t > 0, conditioned ou an unsuccessful
gearch in the interval [0,t). The solution of this expression is thexn
used to esteblish P(t), the probability of detection in the interval [O,t).
For the discrete case, this procedure entails finding aan expression for
P(u), the probability of detection by time n, after estsbliishing a re-
cursion fcr the distribution of the cerget st n given that rhe target has

not been detected.

2.1 TARGET MOTION

Let the 'ocatlon of the target at time n be represented by
{Xu.n = 0,1,2,...}, an irreducible Markov process defined on the state
space X taken to be the set of pusitive integers x = 1,2,3,.... Hence,
target motion 18 consideved to be a discrete Markov process with reapect
to both the state variable x and the time variable n.

At n = 0, target location is characterized by the known tnitial

target location demsity o (x), defined by

P (x) -S’{XO- «} . xeX .

guch thac

Epo(x) -1 .

x=]
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Tirget movement is represented by the known stationary one-step tran-

aition probabtlitice

v -:?{xnﬂ-ﬂxn-i} .

1
such that, for 1,}e)X, and n = 0,1,2,..., we have as usual

1) ¥y 2 0

(11) Ew“ -1 .
i=l

and

n ordering target transition and search events, a prerequieite for

the analysis to follow, we assume that the ntu target transition occurs

instantaneously at time n -~ €, n = 1,2,..., where ¢ << 1 18 arbitrerily '

omall.

2.2 SEARCH PROCESS

! Consider the detection event defined by

Bn : {target detection at time n + €} R :
t

where 1t is assumed that all x&X are searched instantaneously at each
time n+c, n = 0,1:2..... and (a8 iu the case of target transitions)

€ << 1 18 arbitrarily small. The ability of che eearcher to detect the

target ia chsracterized through the known search density y(x,n) defined

i by




Y(x,n) =B | %, =x}

for all x¢X and n = 0,1,2,....

We remark that the search density y(x,n) results ‘rom the combined
effect of a finite number of stationary or moving searchers, each with
its own (poasibly unique) detection rule and ssarch path (a fized point
in X for a stationary searcher). Furthermore, the search--more generally,
each searcher--masy commence at some time n' after the initial target
"fix" with asscciated density oo(x); in this case, Y(x,n) = 0 for all
x€X, and n = 0,1,2,...,n'- 1. Both of these points are elaborated
in Sec. 4.0, which considers the applications for the continuous search
formulation.

We limit the present analysis to s Markovian search in the sense
that the result of a search at time n + ¢ depencs only on the location
of the targe: at that time, and not the results of prior searches. More

precisely,

B B}

.?{anlxn-i. B a2t s By

n-1’

n:?{an | X = 1}

= v(i,n) .

The Markovian property has two interpretations. If we define the

search as flnished at the time of the first detection, then a search at

time n + ¢ implies the realization of the events Bn—l’ Bn«2""' o’

and the property has a trivial meaning. Ou the other hand, if we choose
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to continue the search indefinitely, then the Markovian property allows
us to count detections without altering our search strategy (remember-
ing that y(x,n) f{s fixed a priori). In the development below, we solve
for the probability of the firet dutection by time n. Thus, both inter-

pretations are viable.

2.3 INDEPENDENCE OF TARGET MOTION AND SEARCH

On intuitive grounds, the target is unaware of the search, and the
searcher's strategy is fixed a priori; target motion and search should
thus be indepenr ent in some sense. To embody thies intuitive notion

concretely, we introduce the independence property:

X ., v 4!/X =1, B.B ......,B)
1 * n n

1TL n-t o

-f’{xn-f-l =1 I xn- 1}

- *ij .

This property simply states that the (n+1)th transition is independent
of the previous n searches. Rewriting it 1n a slightly different

form,

P =3B X =1, T K ..., B}

~PX = |xn-1}.?{nn | X ~1}

- &“ v(i,n) ,

vhere we have enployed the Markovian search property as well.




o Banl

11

2.4 SEARCH THEOREMS

In order to establish P(n), the probability of detection by time n,
we introduce p(x,n), the target location density at time n, given an
unsuccessful search until that time--or, more simply, the conditional

dengity. Thus,

yeees B} 2.1

p(x,n) -.?{Xn-x Iin-l o

for x€X. The following theorem obtains a recursion for p(x,n) from the

glvens po(x), ¥,,,» and y(x,n).

13
THEOREM 2.1:

The condicional densiiy p{i.m) suilisiles ihe recursive equaiton

E (1-v(1,m)] wij p(i,n)
i=1

-, n= 0' 1’ 2,... ’(2.2)
E [1-Y(1.ﬂ)] D(i.n)

i=]1

oij,ntl) =

with initial ceondition p(i,0) = po(i), ieX.

PROOF:

From Eq. (2.1) we have

p(1nt1) =X L =1 B ,.00, )

v

-y{xl.\#l’gj' Bn""' B}

ann,...,ﬂo}

VY. P

v

R A s i adl aiadhe a

o ms o aam
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Py m 3 B |8 _..-a B}
»
P\ yeeuy B )
n n-1 o
vhere
L]
MB |B__.....B) = E P =1, 8 |B _...008)
1=1
[ _J
.2 Pe_|x =1, B ), B IPX =B .. B
11
[ _J
- ; AW Y -1 B R bafi nd
L—‘v‘v o n ’ n.—l' * Ta RS- IR N
=1

From the Markovian search property,

P8 | X =1, B

_yeeree B} =PI | x =1}

=1 -y(1,n) ,

so that

PB_ lin-—l"”’i‘o} - Z (1-v(1,0)]) p(i,n)
i=]
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Sinilarly,

-Z.?{Xn+l-j, B | X =1, B seens no}.?(xn-i | B _1+---» B}

From the independence property,
P =3 B X =1, B ,...,B}
.y{xa+l =1 in | xn- 1)
".f{xnﬂ'j | xn"i};?{fn | X - 1}
= vy (1-y(1,n)]

Therefore,

J{xn-ﬂ- 3 Bn I Bn—l""’ eo}

- Z "’,j [1'-'7(1’“)] 0(110) ’
i=]1

which ..cmpletes the proof.

B e

iyt T

e st LA
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Now we let Q(n) be the probability of an unsuccessful search until

time n. Thus,

Q(n) -.9(5“‘1. Bn-2""' Box .
and the probability of detectlon by n is
P(n) = 1 - Q(n) .

The following theorem ertablishes P(n) from knowledge of p(i,n).

THEOREM 2.2:
The probability of detection by time n is given by

n-1 b
" e Ty
BP(n) =1 - i i z ’{I‘Y(i.'ﬂ 3} e{d,n'} ’
n'=0 {=1

where y{1,0) = 0 and p({,0) = po(i) for all 1eX.

PROOF :

From Eq. (2.3) we have

Q(nt1) _:?{i“,..., B}
Q(n} = =
PE e B )

=P8 | B _yoe--» B}

(2.3)

(2.4)

~
L2
.

(%, ]
-
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- E.ﬂan | X =1} (X =1[B ... B}

i{=]
- 2 (1-y(1,n) ]} p(1,n) .
i=sl
Thus,
n-1 o
Qin) = !—-! £ 1i-vi(1,n" )1 p(1,n*) .
) A1 Lad
a'=0 i=1

which together with Eq. (2.4) completes the proof.

2.5 DISCRETE SEARCH PROB.EM

As an application of the discrete search formu:lation, consider the
following generslired search problem. Each day Red selects a broadcast
channel to send an encoded message to remote operatives. In arn attempt
to intercept and decode Red's message, Blue also selects a channel each
day. Both Red and Blue are limited te one selection daily, and we &ssume
ther cuommensurate sets of channels sre available to each. We also
assume that Blue has some knowledge of the process by which Red uaakes
daily channel selections. The problem 18 to assess Blue's strategy for

intercepting and decoding Red's mesgsage.
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The "target” fn this case is Red's broadcast channel. Let the
Markov process {xn.n- 1,2,...}! with state space X represert Red's daily
channel selection. Thus, 1f X is taken to be the finite set of integers
x=1,2,...,1I, then Xn = x Las the interpretation that Red chooses to
brnadcasat on channel x€X for day n. VWe usssume thar, on day zerv, all
channels are equally 1llikely, so no(x) - [‘1 for all x&X. Blue's knowl-
edge of Red's broadcast sequence is embodied by the one-step transition
probabilicies ‘blj for all {,je€X.

Blue's strategy, fixed a priori, consists of the monitored sequence
of channels denoted by <zn>. such that znex for n=0,1,2,.... 1If Bluye
has correctly selected Red's broadcast channel on auny day, then he has
prcbability Y, of decoding Red's message. Blue's "search density" is

thus given by

Y, x =z
y(x,n) =
0 otherwise
for all x€X and n=0,1,2,.... The probability that by day n Blue will

have successfully decoded a message sent by Red 1s, from Eq. (2.5),

n-1

1
P(n) = 1 - l—[ Z [L-vy(i,n")]p(i,n") .

n'=0 i=]

where p(i,n) {s found from the recursive egquation (2.2),
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|
| .
[M-y(,0)ly,, o(i,n) ¢
Z i) .
i=1 ! |
p(),n#l) = - e ’ |
IS
E [t -y(i,n)]p(t,n)

i=1
~ |
with inftial condition p(L,0) = 1 ~ for all teX. |
i
) L
]
A
‘4




3.0 SEARCH_FOR_A TARGET WHOSE MOTION IS A DIFFUSION PROCESS

Thias section derives the key result of our analysis--a linear dif-
ferential equat fon from which a simple expression for the probabflity
of detection {3 obtained when the scarch {s undertaken in cont inuous
space and time. The target is assumed to move as a diffusfon process
with a kiown transition probability function and initfal distribution.
The search process is the continuous gpace and time analogue of the
discrete Markovian search discussed in Sec. 2.0.

The importance of the (ontinuous search problem is twofold. First,
physical considerations suggest a continuous space and time representa-
tion of target and seafther behavior. Real targets generally cannot
move over finite distances in zero time. and existing search devices
generally operate continuously in tiae. Happily, these observations
suggest thart the processes used to define the search problem have little
difficulty meeting the regularity and continuity conditions required for
the derivations below.

Second, the continuous search formulation involves capressions that
are easler to manipulate than the recursion of Theorem 2.1 for the dis-
crete case. Indeed, Sec. 4.0 presents a closed-form soluticn for a
classical real-world problem, the search for a fleeing datum. Only
simple numerical integrations are required to compute . he (robability of
deteccion for this problem.

The analysis of this section {8 necessarily carried out at a siguni-

ficantly higher mathematical level than that of Sec. 2.0 tor the discrete

search problem. However, the structure of the derivations remains the
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sawe: establish a relation fov the conditlonal targev location density,
and derive an exorevsioen tur the probabilicy of detectioer as a function of
the ciuditional dausity. The kntegrodifferential equation for the con-
altional density i3 linearized by considering the join: density {1 e., -
the densivy assoriated with the joint event, target location, and un-
successtul search). Secilen 4.0 soives the iinear integrodiffevential
equiation fox the joint densl'ty under the assumption of the classzical

fleelng-datuw *asget motion and an arbitrary Markovian search.

3.3 TARGET MOTION

Consider the Markov process {X(t), >0} with continuous time r ra-
meter te [0,=) and state space X taken to be EZ, the two-dimension: .
Zuclidean space. The location of the target at time t > 0 i3 represented
by the random variable X(t)E€X with coordinates (Xl(t), Xz(t)), - <
4,{t) < =,

At ¢ ~ O, the target is located according to the known inirial

density p_(x). Thus,
L}

o, (x)dx = FX(D)e dx}

and
[po(x)dx =1 , (3.1)

where dx is an infinitesimal ¢lement of area containing the point x€X,
and the integral is over E2 (as will be the czcz for all intograls opelow,
unless otherwise noted).

The known transition probabilities of {X(t), tip} are given by the

Yunction ¢{x,t;y,1), 1 > t, x,ye¥X, such thar




e ——— - - - - - - e -
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vix,t;y,1)dy = P{X(1) €dy | X(t) =x} (3.2)
and

/w(x..t;y.t)dy =1 . (3.3)

Since (X(t), t>0} is a Markov process, it satisfies the Chapman-Kolmogorov

equation; namely, for se(t,1),

vix,t;y,t) = fio(x.t;z,s) v(z,s;y,1)dz . (3.4)

We assume that p(x,t;y,.7) has a derivative with respect to t at v = ¢,

80 that we may write for small At

Ylx,t;y,t+At) = S(y-x) + At [3 "3:’ LS ] +o0(At) , (3.5)
=t
vhare é(.) denotes the two-dimensional Dirac delta function.

We will also need a set of regularity conditicons that limit the be-
havior of the target over smsall intervals of time. These conditions will
be recognized as those used in the dorivation of the Kolmogorov diffusion
equations. W.th S'S taken to be = circle of radius § > 0 and center x,
the regulsrity conditions for x = (xl.x:,), x.veX, te€{0,»), and small At
are given by

J vxvthody - oo (3.€)

2
E -56

J[ (yi-xi) vi(x,t;y,t+ot)dy = ai(x,t)ﬁt + o(at) , 1=1,2 , (3.7)
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f(yi-xi) (yj-xJ) v(x,t:y,t+it)dy

Ss

- bij(x,t)At + o(av) . i,j=1,2 » (3.8)

and

Joix® %)Y v iy, tHae)dy = 08e) 1,3=1,2 ,» (3.9
S
8

where, for Ey. (3.9), u,v > 0 and u + v > 2.

3.2 SEARCH PROCESS

The search is undertaken continucusly ir time and is Maiiovian in

naivie, L we denote the detection event for T > t by
B(t,t): {target detection within [t,t}} ,
then the known search density v(x,t) is defined by
v(x,t)at + o(at) = 4*{B(t, t+At) ]X-x} (3.10)

for x€X, te [0,»), and small At. Ncte that the probability in Eq.
(3.10) is conditioned on u stationary target at x. We will expend con-
siderable effort to suit cuy definition of y(x,t) to the case of a
target that, while moving, satisfies +he regularity conditions (3.6) to
(3.9). 7To this end, we require that, for all xeX, te [0,~), a constant

M exist such that

y{x,t) <M <w : (3.11)

and, for all x,y€X, te€ [0,~), and small At,
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P(B(t,t+at) | X(e+ar) = y, X(t) =x}

= {y(x,t) + E 1/n} [dla/axl + dzalaxz] ny(x,t)
n=1,2 x=y

+ o(ly-xlz) At + o(At) R (3.12)
where we have made use of the notation
(i) di - (_Vi—x’) 1]

2
(11) [dla/ax1 + d23/3x2]

o 14222752 2 2.2,. 2
[dla ,axl + Zde?a laxlaxz + dza /ale .

2) + o{d
1 {

(iii) o(iy-xiz) = o(d 1d2) + o(d;) .
Furthermore, we assume that the first- and second-order spatial partials
of y(x,t) exist and are bounded for all x€X and te [0,«).

Equation (3.12) bears further explanation. It ambodies the notion
th t, if we know that the target remains in the immediate neighborhood
of x over a small interval of time At, then we can express the proba-
bility of detection in {t,t+At) by an expansion of y(°,t)at + o(4t)
about the point x. Indeed, LLemma 3.1 below proves that, since the target
cannot leave tha neighborhood of x in a small interval of time, it is un-

necessary te condition on the nearby endpoint X(t+it) = y.

Ag in the discrete case, we must formalize the Markovian nature of

the search. We thus require that the seacch prccess satisfy




23

P{B(t,1) | X(t) =x, B(O,t)} = P{B(t,t | X(t)=x} (3.13)
and

P(B(t,c+at) | X(t+at) =y, B(O,t)} = FP{B(e,t+at) | X(c+at) =y} + o(At)
(3.14)

for all x,yeX, te[0,»), and small At. Finally, the independence of

search and target motion 1s embodied by the obvious requirement that
PIX() edy | X(t) =x, B(0,t)} = P{X(r)edy | X(t) »x)} (3.15)
for all x,yeX, Tt > t, and t,te [0,»).

3.3 CONDITIONAL DENSITY

The conditional dengity p(x,t) iz defined for dx, &n infinitesimal

element of area containing x, by
p(x,t)dx = P{X(t)edx [B0,t)) , (3.186)

where x€X and t€ [0,»). This subsection derives a nonlinear integro-
differential equation for p(x,t) in terms of the givens po(x), v(x,t;y,T1),
and y(x,t).

The following lemma extends the definition of y(x,t) to a moving
target that satisfics the regularity conditions given by Eqs. (3.6) to

(3.9).

LEMMA 3.1:

Given the process {X(t), t>0} representing target ilocation,

the search demsity y(x,t" satisfies the following conditione for snall At:

e m——
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A. P(B(t,t+t) | X(t) =x} = 1 -y(x,t)At + o(At) (3.17)
and

B. P{B(t,t+ot) | X(t+at) =y} = 1 -v(y,t)at + o(at) . (3.18)

PROOF:

For par: A, we write

P(B(t,t+at) | X(t) = x)

- [.?(E(t,tﬂt) | X(e4at) =y, X(t) =x)} L{X(t+at)edy | X(t) = x}

which by Eqs. (3.2), (3.3), and (3.12) becomes

ura
AN

araay |l we
Cab iy | ooy

- ¥
[y 2N

n L)
= 1 -vy(x,t)at + At E : 1/n! }[dla, )xl + dzalaxz] y(x,t) + o(jy-x|°)
n=1,2 x=y

Vv(x,t;y,tHe)dy + o(at)

The integral in this last expression need be performed only over SG’ since
the iirst- and second-order partials of y(x,t) are bounded and Eq. (3.6)
applies. Furthermere, Eqs. (3.7) to (3.9) imply that performing the inte-
gral over 56 will result only in At and o(At) terms proving part A of the
lemma. The proof of part B is similar, i{f we coraider ihe process

{X{t}, t>0} reversed in time and ifwpose similar regulari’y conditions.

We will need the following lemmas tc obtain our main result in

Theorem 3.1.
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LEMMA 3.2:
P{B(t,t+at) | B(O,£)} = 1 -4t fy(x,t) p(x,t)dx + o(At) . (3.19)
PROOF:
Using Ecs. (3.13), (3.16), aud (3.17), we quickly obtain
P{B(r,t+ar) | B(0,t)}
- f.?{i(:,cm:) | X(t) = x} P{X(+)cdx | B(0,¢t))
- f[l-y(x,t)Ar. + o(ar)]) o(x,t)dx ,
vhich proves the lenms.

LEMMA 3.3:
For dy, an infinitesimal element of area containing ycX and

amall At,

P X(e+At) e dy | B(O,t)}

- dy {p(y,t) + At/[-wﬁm] p(x, t)dx + o(At)l . (3.20)

;
PROOF :

With help from Equ. (3.2), (3.5), (3.15). and {3.16), we obtain
FPx(t+at) € dy | B(0,t)}

- f,‘?{X(t-&-At}edy | 2(t) = x} PLX(t)€dx | B0, 1)}
X

- dy./*‘lxst;)'r t+at) p(x,t)dx
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- dy_/‘[s(y-x) + At W(x,t;y,71)

+ o(At)] p{x,t)dx

T =t
- dy‘p(y.c) + A:[[—aﬂ‘-;—jilﬂ] p(x,t)dx + om)l .
; . |
wing the lenma.
For notational convenience, let
re) = fy(x,e) plx,e)dx (3.21)

for all t=[0,»). The function I'(t) will be recognized as the secrch
int. ty in the sense that the probability of detection in the interval
{t.t .), conditioned on an unsuccessfui search in [Q,t), is [(t)at + o(avr).

Indeea, Lemma 3.2 tells us that
FP{B(t,t+at) | B{O,t) = T(t)At + c(At) . (3.22)

The following theorem presents an integrodifferential equation for

the conditional density p(x,t).

THEOREM 3.1:
Given the inputs o (x), ¥(x,t;y,t), and y(x,t) for the continuous
search problem, the conditional target location density p(y,t), yeX,
te [0,%) 8 the solution of the nonlinear integrodifferential equation
?E_;!t;tz - [aﬂ!x't'}! 12] p(x,t)dx + p(y,t) [T(t) - y(y.t)] (3.23)

1
3 T=t

with initial condition p(y,0) = »_(y) for all yeX.
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PROOF:

From Eq. (3.16), we have
p(y,t+At)dy = L{X(t+as) e dy | B(t,c+st), B(O,t)}

_ PIX(t+at) Edy, B(t,t+at) | B(0,t)}
{B(t,c+at) | B(U, )}

o 2lx(eat) edy | B(O,0)) LUB(r,e+at) | X(t+at) =y, B(O,¢)]
P{B(t,c+t) | B(0,t)}

woting that, for small g,
-1
(1-¢) ~ =1+ ¢ + 0(e) .

with the help of Eq. (2.722) we can write

— — ~1
[.‘)’{B(t.t-O-At) | B(O,t)]
= 1 + r(t)ar + o(at)

Together with Eq. (3.14) and Lemmas 3.1 and 3.3, this expression results in

p(y,t+at) = (p(y,t) + At[[?_ﬂ:’_s_:._y_,jl] p(x,t)dx
(=t

+ n(Ac)i [1- y(y,t)at + o{at)] [1 + I'(t) + o(at)]

T=L

“ o(y.t) + At ;[[M}.%m)] 0(x,U)dx

+ o(y,t) Il(t) -v(y.t)]‘ + o(at)

|

Transnosing, dividing by 4t, and letting At -~ O completes the proof.
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Corollary 3.1 shows that the solution of Eq. (3.23) 1is indeed a

proper density for ali t¢ [0,=).

COROLLARY 3.1:
The solution of the equation for the conditional density pre-

gented in Theorem 3.1 eatisfiesfp(y,t)dy = 1 for qll t€[0,»).

PROOF:

Let w(t) -[p(y. t)dy for all te[0,~). Then Eq. (3.23)

becomes
3/3t w(t) = u(t) + v(t) s
wvhero
u(e) = f[[@ﬂ’.@ﬁs&l&] p(x,t)dxdy
y x T 1=
- [p(x,t) [a/atfi(x.t;y,r)dy] dx

X y JT't

and

v(t) -fp(y.t) (r(e) - y(y,t)idy
r¢e) [w(t) -1} .
By Eq. (3.3), however, u(t) = 0 for t€[0,~), so that
3/t w(t) =~ I(r) {wit)-1) .

The solution of this equation is

4
i
!
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t

!r(c)dc

But w(c) = 1 by Eq. (3.1), completing the proof.

w(t) = 1 +K e

We are now prepared to consider the probability of detection P(t).

Specifically,

Q(t) ~ P{B(0,t)} (3.24)
and
P(t) =~ 1 - Q(v) (3.25)

for all t€[0,»). The following theorem obtains P(t) from the search in-

tensicy T(t).

THEOREM 1 2:

The probability of finding a target by time t when the target

movas as8 a diffusion procees ts giver:. by
t
P() = 1 - expl-f r(e)agl (3.26)
0

where the search inlengity, T(t) u./§(x,t) p(x,t)dx, 18 expregsed in terms

of o(x,t), the solution to the equation of Theorem 3.1.

FROOF :

From Eqs. (3.22) and (3.24),

Qe+t = P{B(0,t+at)})

= P{B(0,t)} F{B(t,t+at) | B(O,r)}

= Q(t) {L-r(t)at + o(Ar)]
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Thue .

Q(eHie) - Q(t) . r(e) + o(At)
Q(t)ate At

and, after letting At + 0, and noting that Q(0) = 0, we obtain

t

log Q(t3 = - [ renar
0

proving the theovem.

3.4 LINEAR SEARCH EQUATION

The nonlinearity of Eq. (3.23) makes closed-form solutions for tie

conditional density p(x,t) and probability of detection P(t) difficult

to Ccome by; Rv considerinae the

A
(
(
’
It
[
'
{
[
'
)
2

0

simply, the joint demsity) p(x,t), we can obtain a linear search equa-
tion and a simpler expression for P(t). Thus, we define for all x€X

and te[0,»)
pix,t)dx = F{x(t)edx, B(O,t)} , (3.27)
and quickly note thart
p(x,t) = o(x,t) (1 - P(t)] (3.28)

and

P(t) = 1 -[p(x,c)dx . (3.29)
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THEORFM 3.3:
The joint target location Jdensity p(y,t), yeX. te [0,«) satisfies

the linear tntegrodifferential equation

: Btt "f 2 ng' . I p(x,t)dx - v(y,t) p(y.t) , (3.30)
T=t

with initial eonditior p(y,0) = po(y) for all yeX.

PROOF :

The proof is to simply trausform Eq. (3.23) by Eq. (3.28).

Although the joint density has less intuitive appeal than the con-
diclonal density, it clearly represents the supevior analytical tool for
solving uearch problems. Egquations {(3.29) and {3.30) will thus be tie
operative equations as we apply the results of this section to the

aumerical problems of Secs. 4.0 and 5.90.

3.5 PHYSICAL INTERPRETATION OF THE SEARCH FO+MULATICN

The nonlinear equation for the conditional density, Eq. (3.23), and
the linear equation for the joint density, Zq. (3.30), have simple but
important physical interpretations. Eoth equations consist of two terms--
the diffusion term resulting in density changes due only to target move-
ment, and the search term causing density changes due only to the effect
of search. For example, consider the search for a stationary target,
i.e., a target with the trivial transition probability function ¢(x,t;y,1) =

8(y-x). In this case, Eq. (3.23) becomes

e R LS T N LI M C S B (3.31)
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and p(x,t) is affected only by the search denaity y(x,t). Alternatively,
with no search--1.e., {f y(x,t) = 0 for all x¢ X and t¢ [0,~)——we obtain
the search-free equation
99—%1—‘1- f[ﬁ’—(lﬁ—rltl)] p(x, t)dx , (3.32)
drmt
where p(x,t) 18 affected only by the motion of the target. Similar observa-
tions can be made for the joint density, p(x,t,-
The situation 18 fllustrated in Fig. 3.1, where it is assumed that
the initial density po(x) was circular normal, and that at t = 0 the
target chose a heading from a uniform distribution on {0,27) a d fled at
a known speed (the classical fleeing datum). The (xl.xz) plane 1is the
search reglon and the Xq axis plots p(x,t) for t = T > Tl > 0, where the

gearch by a single wmoving searcher commenced at T Tnus, p{x,t) is the

1
solution to £q. (3.32) for téE[O,Tl), and Eq. (3.23) for te?[Tl,T). The
details or the solution are taken up In Sec. 4.0: but for now we note that
the wide depression {n the center of the p(x,T) .urface 1ls causcd by the
Begsel function spreading of a fleeing datum density, as first described
by Koopman [1], and the narrow depressicn along the vidge is due to an
unisuccessful search following this path.

Intuitively, we expect that if we search an area unsuccessfully,
then the object of vur search {s less likely to be located in that area.

This phenomenon caused the depression along the ridge of p(x,T) in Fig. 3.1. |

Analytically, Eq. (3.23) rells us that, for points under tho influeuce

of the searcher (i.e., those for which v{x,t) dominates its average
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r(t) -[y(x,t) p(x,t)dx), the change of p(x,t) with time due te tne search
is negative. The effect of TI'(t) in Eq. (3.23) is tc elevate p(x,t) for
points relatively free of the influence of the searcher, resulting in
/p(x,t)dx = 1 for all t€[0,») as shown in Corollary 3.i. (In the linear
Eq. (3.30), the secarch term [ - y(x,t) p(x,t)] is always nonpositive so
that Jtrp(m,t)dx = 1-P{t) <1 for ail t€{0,»).)

The search-free equation, Ea. (3.32), is a ditect result of the
Chapman-Kolmogorov equction, £q. 3.4). Indeed, we can write Eq. (3.3)

for t&[0,1) as
v(n,0y,1) = [w(:'-.t;v.':) v(x,0:7,t)dz

Iantegrating over the initiai density p (x) results in

~

P
Jlu'(x,O;v.T) P, (2)dx =f";(2.t;y.r) Ifw(x.ﬂ.z,t) P, (x)dx|dz ;
or, in the absenie of search,

iy, ) ”]k"(z.t:y.t) ple.t)az s

se that

:P-%Llirnt [ {éz’_(_a_g.ix:_n] e yde

T={

wnich is the search-free eguation (3.32).
Finally, we remark that the only difference betweern Eq. {3.23) and

the equaticr presented by Hellman [J] iz in the 4iffusiia term, because

Hellman starts with a Fokker-Planck equatior. for ¢(x.t;y,1), rather than
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V(x,t;y,1) itself. (Thus, by a manipulation similar to the one above

for the Chapman-Rolmogorov equation, one could obtain a Hellman search-
free ewation from the Fokker-Planck equation.) The specification of the
motion of an actual target by those responsible for the search would,

needless to say, lead directly to a representative tramsition probability

function, rather than a Fokker-Planck equation.
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4.0 APPLICATIONS OF THE SEARCH FORMULATION

This section applies the results of Sec. 3.0 to certain operational
aspects of actual searches. The emphasis is on target motions and search
procerses that ostensibly violate the Markovian assumptions needed to
derive Eqs. (3.23) and (3.30), on which th continuous search formulat ion
is based. This section should be regarded as an introduction to the work
necessary to bridge the gap between the analytical assumptions made for
tractatility, and the behavior of actual targets and existing search
devices.

Subsection 4.1 details the straightforward generalization of the

or moving searchers. Reccgnizing that search devices are often not
Markovian in the sense of Eq. (3.13), we present a good "equivalent"
Markovian search density in subsection 4.2 by invertirg the integral
equation for Koopman's lateral range curve. Subsection 4.3 extends the
gsearch formulation to handle the simpiest kind of non-Markovian target
motion for which the classical fleeing datum is a special case. Closed-
form solutions of the search equations are obtained tor a fleeing datum
search. Finally, to i1llustrate the generality of the search formulation,
subsection 4.4 presents a numerical exaw)'! 1in which the probability of
detection is calculated as a functien of time for two paths followed by
a moving searcher attemptirg to find a fleeing datum; this result is

compared to one uvbtained with a descendent of the path-invariant “'random

search” model first proposed by Koopman.
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4.1 "WLTIPLE SEARCHERS

The search density y(x,t) defined by Bq. (3.10) for a atationary
target i1s actually the aggregate effect of the total search effort.
The precise manner in which v(x,t) depends on the activities of many
individual searchers does not affect the developments of Sec. 3.0, but
is central to the application of the continuous search formulsation.
Thus, below we coastruct Y(x,t) from the paths and lews of detection

for each of an arbitrary number of moving or stationary searchers.

Consider a search undertaken by n searchers such that the ith

searcher follows the known path zi(t)ex for t&(T 2). where

11°Ty

T,, > 0 is the time at which the ith searcher commences his effort, and

il

I‘izé(l"u,w) is the time at which he abandons the search. Obviousliy,

for a stationary searcher, zi(t) = ziex for t€|[T The law of

11°T42)-

detection for the ith searcher is defined in the same manner as yv(x,t);
i.e., the probability that the 1th searcher will detect in the smail

interval [t,t+\t), given that the target is at x€X, is

yilx,zi(t)]At + o(At) .

The n searchers are assumed independent in the serse that, from Eq. (3.10),

n
y(x,t)at + o{At) = 1 - n {1 —yiix,zi(t) jat + o(at)}
im]

n

= At E Yi{x'zi(t)} + o(AL) .

j=1
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The search density y(x,t) is thus exprelledlin terms of the in-

dividual laws of detection yi[x.zi(t)], i=1,.,...n, by

'n‘
Y(X,t) -Z' Yilx‘xi(t)] . (4.1)

i=1

Clearly, in order that the search process continue to satisfy Eqs. (3.11)
through (3.15), the laws of detection for the individual searchers must

satisfy siwilar conditions.

Noting that, for all xe&X, 'yilx,zi(t)] = OQwhent <T,, ort>T

11 i2°

ve can define '1’2 - 'I'l as the search duration where

l<i<nm i1
and
T, = max T .
2 1<i<n 12

Obviously, Tz > T1 and y(x,t) = 0 for t < T1 or t 3_T2. T, 1is commonly

1
referred to as the "time late" in military applicatlons.

4.2 NON-MARKOVIAN SEARCH: INVERSION OF A LATERAL RANGE CURVE

A sensor commonly used to search for submarines operates approxi-
vately as follows [4]: A signal that may indicate the presence of a sub-
marine 1e integrated over s "sliding" time interval of fixed length.

If the value cf the integral ever exceeds a predetermined threshold,

then the sensor is activated. Such a sensor is anot Markovian in the

sense of subsection 3.2 because of the "memory" property of the integral

-
s 2 mnanh R g O et 2Tt 23
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operator. The present subsection develops a usefﬁl approximation for
non-Markovian search devices that allows us to apply the search forwmula-
tion to many situations where such devices are employed.

Whether or not a search device is Markovian, it can be chars terfzed
by the so-called Ilateral range curve, q(E). fhe function q(£) is defined
as the probability of detecting a stationary target when the searcher
follows a straignt-line path of infinite length and closest approach &
to the target [1]. The lateral range curve can be approximated by
empirical data or computed directly from physical arguments.

Consider a search employing a single Markovian sensor with lew of

detection yllx,zl(t)], which 18 a function of only the target-to-
gearcher Euclidean distance r = Ix-zl(t)|. If the target 1is stationary
at the origin ot Ez, gnd the searcher 1s statioanary at 7= (E.u)GEEZ,
then denote the search density by y(r) = Yl[O,zll. Now let the searcher

pove at speed w along the path from (£, -®) to {(£,~), thus obtaining the

probability of detection q(£) from the well~known expression [1]

q(g) = 1 - exp [~ ‘E)] R (4.2)
where

(r

FE) = = /v( £l +u2)du : (4.3)

(Note that Eqs. (4.2) and (4.3) can also be obtained by use of Egs.

(3.29) and (3.30) for ¥(x,t;y,T) = &§(x) and p{y,0) = 6(y).) Clearly,
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q(£) is the lateral range curve for a Markovian device with law of
detection yllx.zl(t)].

The following question is reasonable to ask at this point: If we
know the lateral range curve for a radially symmetric non-Markovian
device, can we calculate the "equivalent” Markovian law of detection by
inversion of Eq. (4.3)7 As shown below, we can generally invert the
lateral ra. ge curve and then use the resulting Markovian law of detection
as input to the search formulation.

In order to¢ «nvert Eq. (4.3), write

F(E) = ;2;'[ v({?+ uz)du

( 2 52)1/2
where, as before, r = (52-+u2)1/2. Now let rz = ]1/s and Ez = 1/a, so
that
a
F(a-]/Z) N a1/2 (s 1/2)ds
w 3/2 172
5 (a-8)
or
a
A(s)ds
G(a) -/ ‘A—)-m . 4.4)
0 (a-8)
where
G(a) = & a—l/Z I_.(";1/2)
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and

3/2

A(s; = 8 7(3-1/2

) .

Equation (4.4) is an Abel integral equation [5], the solurion of

vhich, for continuously differentiable C(a), is

-]
\(sy = 8@, L [ G'(a)da . (4.5)
1ml/Z TI‘J (s-a)l 2

As an example of the use of Eq. (4.5), constder the lateral range

curve for the inverse cube law ¢f detection [1]

q(E) = 1 - exp [- —21,-] ,

1 £
L ove |

where w {8 searcher speed and k is a coastant dependent on scveral aspects

of the search that need not concern us now. Thus,

Fee) =2,
wi

G(ay = Zkal/2

and, from Fq. (4.9),
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Therefore, as expected y(r) = k/r3, the scarch density for the inverse
cube law of detection.

Although we have shcwn how to obtain the equivalent law of detection
for a non-Markovian scarch device, we have not shown how good an approxima-
tion it is for calculating the probability of detection using the search
formulation cf Sec. 3.0. Obviously, it is an exact approximation for
infinitely long straight-line search paths, wherein lies the key to a
reneral evaluation of the inversion technique. If the motion of the
searcher relative to the target 1s nearly linear at almost constant speed
over the detection range of the aevice, then the fnversion technique
represente a good approximation. Further analysis is necessary to estab-

lish the accuracy of the technique under more general search conditions.

4.3 CONDITIONALLY MARKOVIAN TARGETS: THE FLEEING DATUM

The search formulation is applied here to a member of the simple
class of non-Markovian target motion described as follows: At t=0, a
realization of an n-dimensjonal random variable o is obtained from the
known deasity f(a). Target motion for t > 0 i{s Markovian with con-
ditional transition protability function wu(x,t;y,T). Let the solution
of Eq. (3.30) for wa(x,t;y,r) be denoted by pu(x,t). The joint density
is then given by the n-dimensional integral p(x,t) --fpa(x,t)f(u)da,

and the probability of detection remains P(t) = l-ifp(x,t)dx. This

Pt S

e R il o, b ikt it -
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clas: of motion, which we shall ca!l conditionally Markovian, is a
generalization of Stone's conditionally doterministic motion [2], where
knowledge of a at t = 0 implies deterministic motion for t > 0. The
fleeing datum, which we now treat in detail, is an Important example of
conditionally deterministic target motion.

The fleeing datum mcves at a known constant speed u on a straight-
line path after chooding a heading 6 at t = 0 from a unifont distribu-
tion on [0,27n). If § is measured counterclockwise with respect to the
x, coordinate, then the condit{onal transition probability function for

1

the fieeing datum is given by the two-dimensional Dirac delta function

where ve = u(cos 08, sin 6) is the random velocity vector with magnitude
u and direction #. Substituting Eq. (4.6) into Eq. (3.30) results in
the following linear differential equation for the joint density con-
ditioned on the bearing 6€ [0,2n):

3Pe(x,t) ) )
ot Ve -V Pe(x:t) e Y(X,[) pe(xot) . ((‘-7)

The solution of Eq. (4.7) for initial condition pe(x,O) - po( ) is

t

pﬂ(x,t) = o()(x-vet) exy fy[x—ve(t-—s),s]ds (4.8)
(4]

e ]
for x€E” and t€(0,»). 7T.us, the probability of detecting a fleeing

datum by time t€ [0,») for {nitial locatlon dens: vy oo(x) and search

i

Rl ot
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density y(x,t) is given by

x =0

n
P(t) =1 - -217'/- po(x—vet) exp{j y[x—ve(t—s).s]ds dedx s (4.9)
0

where Vg = u(cos ¢, sin 8) 18 the randomly oriented velocity vector with
known magnitude u. This expression is used extensively for the numerical

optimization procedure of Sec. 5.0.

4.4 CCHPARISON WITH A RANDOM SEARCH MODEL

Prior to the work of Hellman [3] and the formulation presented
here, problems concerning the search for a moving target were often
treated by use of Monte Carle gimulations or the random search medel
of Koopman [1]. Simulations involve relatively high program develop-
ment and execution costs, whereas the random search model omits many
important features of the operational search problem, such as the :.;
searcher's actual path and realizable target motion. After a brief dis- . -.“
cussion of the random search model, this subsection solves a simple f
fleeing-datum search problem using that model and compares the result
to the solution obtained using Eq. (4.9).

The random seatrch model is predicated on the following assumptions: !

1. The target's position is uniformly distributed in a regiom

of area A and maintains that distribution for all te{0,«).

2, The search path is random in A {n the sense that disjoint

sect'ons of the path are distributed uniformly and in-

dependently in A.
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3. The searcher's law of detection 18 such that detection ta
certain within range d of the target and cannot occur
outside d.
Assumptions 1 and 2 do not corvespond well to physical imperatives but
it 1s asserted [1] that, in situations where target and searcher are
moving in complex paths at varying speeds, the assumptions are reasonable.
Assunption 3 is the well-known definite-range law of detectiom, which
1is ofter used as an approximaticn for a device with lateral range curve
©
qQ(E). In this case, d is taken to be Jrq(ﬁ)dﬁ.
Assumptions 1 through 3 lead to the well-known random search formula
for the probability of detection
2dL

I4
P-l-—exp(—T ,

where L is the length of the searcher's path in A. If we now consider the
search area to be a circle with increasing radius R(t) = Rl + ur (1.e.,
the radius is increasing at the rate at which a fleeing datum is assumed
to be moving outward), then the probability of detection may be approxi-

mated by the random search formula for an expanding area [s)

2wtd
P(t) = 1 - exp[} ;iz?izf;;;j] » (4.10)

where w 1s the searcher's speed and the search commences at 1 = 0. We
will use this expression as representative of the random search formula-

tion for a fleeing-datum searcl. problem.




46

In order to use EBq. (4.9), we must first underatand the impli -ations
of using the definite-range law of detection. Strictly speakiug, it re-
sults in an unbounded and discontinuous search density v(x,t), thereby
violatiug assumptions (3.11) and (3.12). Although a formal arguwent
employing the limit of a sequence of bounded and continuous functions
could be made, a more direct way Lo justify the use of the definite-
range concept comes from a physical iInterpretation of Eq. (4.8).

For fixed xEEZ, 0€[0,2n), and t€{0,»), Eq. (4.8) weighs
exp[—ugxy[x-ve(t-s).s]ds] by the value of the initial density at x- vet.
For search path zl(s)GEEz, se€[0,»), yY{y,8) = Yl[y,zl(s)] is infinite
when Iy-zl(s)l < d, and zero otherwise. The motion of the target im-

¥ [x-ve(t—s), z, {s}]ds is a straighct-iine path

1

t at s = 0, to y; = X at 8 = t. Therefore, 1f the target

LI RS & &

[ 2]

[]

2]

b=
d-\"

from Y " XY

moving on this path ever comes within range d of the searcher at zl(s),
then gyyl[x-ve(t-a), zl(s)]ds = =  and pe(x,t) = (); otherwise,
AFYIIX"VB(I-S). Zt(s)lds = 0, and pe(x.t) =- Do(x-vet). These observa-
tions lead to a remarkably simple numerical procedure for evaluating
Eq. (4.9) wher a d:finite-range law of detection is assumed.

Consider the following inputs to a hypothetical submarine search

problem:

1. The ini:ial target density is given by

p (x) = R - exp [~ (x2 + xz)/202] » X = (x ,x.)&F .
o 2w02 1 2

where ¢ = 10 nmi.




The subvarine moves as a fleeiag datum with speed u =~ 3 kr
The search 1g undertaken at Tl = } hr by a cingle cearcher
using a definite-range law sensor with d '+ 2 nmi.

The searcher flies at c¢onstant spsed w = 200 kt along the

path zl(r) = [zll(r),ztz(r)]ezﬁz, T = t-T], where

zll(r) =« r(1) cosg % [D-—r(t\]z ,

5 1/2
r(t) = (U? _ LW O\{i

and D = 32 nmi. Tae search terwinates at Tz = 7 hr.

The search path definel in item 4 is an inward spiral starting at

D = 32 anmi from the origin when t = T1 = 3 hr. and ending ac approxi-

mately 2 nmi from the origin when t = T? = 7 hr.

The probability of detection for this problem was calcuiated with
the help of Eq. 4.9) and plotted in Fig. 4.1 uader :zhe heading "inward

spiral search path.'" The cclculation was repeated for a secoun search

g
i
]
|
|
|
£

*
path zl(w) = z](Tz-r). Te;{O,TZ-Tl), which is simplv an urfolding of

ST ne

the first path. Figure 4.) plots the result »Y the second calculation
under the heading "vutward spiral search parh.™ The vesults of these

two ca:culations are intuil.ive: The outward spiral nath quickly resu'te
' q ¥

4
¢
:
:
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in a relatively high probability of detection, since the searcher is in
a relatively "dense" target area fcr about the first two hours of search;
the inward spiral path takes about two hours before rapidly increasing
the protabili-y of datecticn, sincn, after that time, the searcher
finallv begins to move through a relatively dense target area.

Figure 4.1 also graphs the probability of detection calculated
using Eq. (4.10) for random search of an expandiag area. The input
values for this calculation are taken from the first two calculations
as applicable, i.e., u= 3 kt, d = 2 nmi, and w = 2030 kt. Since the
search commences at t = Tl = 3 hr, we chose Rl = 1,50 + uTl = 24 nmi.
This choice is arbitrary, but the main conclusion to be drawn from
Fig. 4.1 does not depend on it: the path-invaria:t random search formula-~

tjon is not a good estimate of search system performance for known search

tactics.
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5.0 NUMERICAL OPTIMIZATION

The theory of optimal search for a stationary target has received
considerable attention; the recent book by Stone [2] presents a unified
treatment for much of that work. Saretsalo {7), working with Hellman's

quation for detecting a Markovian target, has presented a necessary
condition for the optimality of the search density y(x,t) in the sense
of maximizing the probability of detection P(T) for fixed Tgl[0,=).
Saretsalc's result 1s directly applicable to the search formulation of

Sec. 3.0, but the question ot sufficiency limits its utilicy.

The computatiorsl simplicity of Eq. (4.9) suggests the use of
mumerical techniques to optimize the searcn for a fieeing daium. Theve~
fore, this section considers the numerical optimization of a stationary
search (1.e., a search with density y(x,t) = y{.) for all x&X and

te (T 2)) for a fleeing datum with a c.rcular normal initial density.

r
We constrain the search density y(x) to be the result of using n = 4,

8§, or 12 definite-range-law sensors equally spaced on the circumference
of a circle with radius R certered at the origin of Ez. R is then chosen
to maximize P(TZ), the probability of detection over the search interval
[Tl’TZ)' The performance of the best circular pattern using eight sen-
sors 1is compared to tha* of an optimal square nattern with nine sensors
and showa to be superior. Finally, we determ e the effect of using a
fleeing datum circular pactern to find a target that in fact randomly

chooses a new course every AT time unite. The .:ection concludes with

suggestlons for broadenin; o r computational experience and extending

the analytical development of the search formulation.
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5.1 STATIONARY SEARCH FOR A FLEEING DATUM

This subsection performs a numerical optimization of a constrained
stationary search for a fleeing datum. Initially, the target is asaumed

to he located according to the circular normal density

oo(x) . 7 €xp { -(xf+x§)/202] , X= (xl,xz)e E2 . (2.1)

2ro
Target motion for t > 0 is given by the fleeing-datum transition prob-
ability function of Eq. (4.6). We restrict our attention to the class

of search densities defined by

(0 te [0,1‘1)
Y. X, t) =< y(x) te.['Il.Tz) (5.2)
’\0 tE[Tz."“)

A search using a member of this class of densities is referred to as a

stationary search with time late T. and duration T, -T,. The following

1 2 1
numerical optimization seeks to maximize P(Tz), the probability of
detection during the interval [Tl’TZ)’ over a specific family of sensor
configurations that satisfy Eq. (5.2).
The solution of Eq. (4.7), the fleeing-datum linear search equation
conditioned vn target heading 6 & [0,2n), when y(x,t) Is given by Eq.

(5.2), is

v )
oo(x \et) . teIO,Tl.

(po(x-vet) exp[—fy[x—ve(t—s)]ds] t.e[Tl,Tz) ’

pa(xvt) =

T
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vhere Ve = u(cos 6, sin 6) is the target velocity vector with known

speed u. The probability of detection in [T,,T.,) is thus given b
12 y

2n T2
1
P(Tz) -]~ 7 f/ po(x-veTz) exp —f Y[x~va('1‘2-s)]ds d8dx .
X 6=0 Tl

(5.3)

where, for the numerical work below, we assume that pn(x) is circular
rormal.
The search is assumed to involve the use of n definite-range-law

senscrs with detection range d. The sensors are assumed to be inde-

tational implications of assuming definite~range~law sensors.) We seek
the optimum placement of the n sensors such that the probability of
detection calculated from Eq. (5.3) is maximized. However, we do not
atteapt a global optimization, but instead constrain the sensors to lie
equally spaced on the circumference of a circle centered about x = 0,
the mean of po(x)—-gee Fig. 5.1 for n = 8 sensors--and then calculate
the radius R of the circle that maxiuizes P(TZ) As long as the cir-

cular detection areas of the individual sensors do not overlap (as will

motion.
Placing the optimizaticn in the context of a search for a fleeing

submarine by use of moovred acoustic sensors (i.e., sonobuoys), the

following values were chosen for the input parameters: o = 4, B, or

12 sonobuoys; u = 6 or 12 kt, ¢ = 20 or 40 naf; and d = 4 or 10 nmi.

pendent in the sense of Eq. (4.1). (Subsection 4.4 discusses the compu-

be the case for our aralysis), the circular pattern is reasonable in view

of the radial symmetry of both the initial density and the fleeilng datum
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Notes:

(1) Sensor i is located at z,

(2) Each senscr detects w.p. 1
out to range d

g

\

.

A .

Al L

\\ﬁ/
D

Fig. 5.i--Circular pauttern of n = 8 definite-range-law sensors
used to detect a fleeing datum
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The time late Tl and search duration T2 "Tl were fixed at 4 and 6 hr,
respectively. The table below lists the radius of the optisum circular
sonobuoy pattern, and resulting probabilitv of detection, for each com~
bination of the parameters n, u, 0, and d. Figure 5.2 plots p(x,t),

t = 7 hr, the conditional density midway into the search for case 14 in
the table. The darker an area, the more likely the target is within

that area, assuming an unsucceassful search. To show the sensitivity of
P(Tz), the detection probability, to changes in R, the radius of circular
sonobuoy pattern, Fig. 5.3 plots P(Tz) against R for cases 10, 12, 14,
and 1€.

Figure 5.4 plets P*(Tz), the probability of detection for the
optimum circuiar sonobuoy pattern, against n, the number of sonobuoys
deployed. Each of the eight ~urves corresponds to a unique combination
of u, 0, and 4. The plot could be used, say, to conclude that a search
for a fleeing submarine using only four sonobuoys, each with a 10 nmi
detection range, is about as effective as a search using 12 sonobuoys,
e. ch having a 4 nmi detection range.

To demonstrate the effectiveness of the circular sonobuny pattern,
we calculated the probability of detection for a square pattern, using
nine sonobuoys as shown in Fig. ©.5. We chose the distance between
sonobuoys L to maximize P(TZ) for speed u = 12 kt, detection range
d = |0 nmi, and initial standard deviation ¢ = 20 nmi--as in all cases
= 4 hr end T, ~ 10 hr. The maximum

1 2
* *
P (T,) = 0.35 was achieved for 1. = 53 nmi; Fig. 5.6 plots p(x,t), ‘

using the circular patterns T

* .
t =7 hr for L = L. . Thus, the optimal square pattern with ntne sono-

buoys was slightly less effective than the optimal circular pattern

using eight sonobuoys (case 8).




OPTIMUM CIRCULAR SONOBUOY PATTERNS

initial Optimum Maximum
Case Numbex of Ta- ‘et Stanua:d Detection | Patterv Prolrability
Sonobuoys Spced Deviation Range Radius of Detection
(n) (u kt) (¢ nmi) (d nmi) (R" nmt) (P*(TZ))
1 4 6 20 4 25 0.11
2 20 10 26 0.32
3 40 4 24 3.07
4 J 40 10 29 0.21
5 12 20 4 68 0.07
6 20 10 52 0.18
7 40 4 59 0.05
8 | ,L 40 10 58 0.14
9 8 6 20 4 30 0.21
10 20 10 32 0.58
11 40 4 28 0.13
12 ¢ 40 10 35 0.35
13 12 20 4 67 0.13
14 \ 20 10 62 0.36
15 40 4 63 0.10
16 H 40 10 58 0.28
17 12 6 20 4 32 0.31
18 | 20 10 40 0.75
19 | 40 4 29 0.19
20 v 40 10 44 0.44
21 12 20 4 67 .20
22 | 20 10 62 0.54 i
23 l 40 4 65 0.15
24 | 40 10 L 65 0.40
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Target speed: u = 12 kt

Initial standard deviation: 0 = 20 nmi
Sonobucy detection range: d =

R = 32 nmi
= 4 hr

10 nmi
Pattern radius:

Time late: T1

Density plot: p(x,t}, t = 7 hr

Fig. S.2--Target density p(x,t) for an unsuccessful search using a

circular pattern with n = 8 sonobuoys
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Fig. 5.3--Probability of detection versus radius for representative circular
sonobuoy patterns
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Probatility ¢f detection, P"(TZ)

lu] o Notes: (1) At t = O, target has circular
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wm—— [TTT2D to T2 = 10 hr
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/ sonobuoy detection
/ »[ range: d = 10 nmi

sonobucy detection

Number of sonobuoys, n

Fig. 5.4--Probability of detection for optimam circrlar sonobuoy

patterns used to detect a fleeing submarine
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Xo Notes: (1) Sensor i is located .t z;
A (2) Each sensor detects w.p. 1
out to range d
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Fig. 5.5--Square pattern of n = 9 definite~range-law sonobuoys
used to detect a fleeing submarine
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Fig. 5.6--Target density p(x,t) tor «n unsuccessful search using a R
square pattera with n = 9 sonobuoys
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5.2 FEFFECT OF TARGET COURSE CHANGES ON OPTIMIZATION

We now consider the eiffect of deploying an optimal circular sono-
buoy pattern to detect a target that is assumed to move as a fleeing
datum when in fact it randomly chooses a new course every A1l time units.
Recall that a f:ceing datum moves on a straight-line path after a single
random heading :electiorn at t = 0. As in subsection 5.1, we assume that

the target distribution at & = 0 is circular normal, and that the search

conmences at tiue late Tl > ., The target is assumed to move as a

leeing datum uatil t = Tl; however, at t = Tl’ the target selects a
new course from a uniform distribution on {0,2%). Furthermore, the

target continues to select a new course every AT time units corresponding

and subsequently aitempts to avoid detection.
At t = Tl’ the target leccatiun density is the sclution of the

search-free equation (3.32) for a fleeing datum. Specifically, for

Z

O e cr PR UL P LY e il A

x = (xl,xz)GEE

o(x,T.) = ——L7>exp [—?vzi-usz)/Zaz 11 (xuT [5%Y . (5.4)
1 ngz 1 0 1

where rz = xf 5 xz, and I0 denctes the ordinary Bessel function of order

cero with an imaginary srgument. Since the search ccmmences at the tiae

of the first new cource selection, Eq. (5.4) can be interpreted as the

A\ TS, 1) 0. OB Tl AP ST X TR WAL A o 0y

initial density «f a fleeing-datur: seuvrch problem with time late zero

o s e et s e A et N Ao

and search duratio &T. The jeolrt density at t = Tl + AT can then be

computed usiung Mg. (4.8) 2
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2n T1+ﬂT
1 N
p(x,T, +4T) = 2,,/ °("“’91“’T1) exp[—/ Y[x-vel(T1+AT-s idsfaf, .
0 T,

The probability of no detecticn in the interval [Tl,Tl-fAT) is

simply
QAT(I) = p(x,Tl +AT)dx

From Eq. (3.28), the conditional density at t = Tli-AT is

-1,
p(x,Tl+AT) = QAT(L p(x,T1+AT) .

Now using p(x,T1-+AT) as the initial density for a fleeing datum search

er . .o i
lem in the ilanierval (T (2}, the

. TAT, T, +2AT}), we can compute
177 ’ PSLE “ar

probability of no detection in that interval, and so on. This procedure

obtains the probability of detection in the interval [O,TZ) given by

k=1

where AT is conveniently chosen such that mAT = T T

27 "1
For case 10 In the table, the radius of the optimum circular pattern
x
of eight sonobuoys is R = 32 nmi. Holding all other inputs the same

as in case 10 (i.e., submarine speed u = 6 kt, initial standard devia-

tion ¢ = 20 nmi, and soncbuoy detection range d = 1C nmi), we use this

e e = A A———————— o & . ——. |+ —

cir~ular pattern to compute Pm(T,) from Eq. (5.5) as a function of m, the
number of covrrse changes in the 6 hr interval [T1,T2). The results are

graphed in Fig. 5.7. The value of Pm(TZ) at m = 0 is, of course, the
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probability of detection for the optimum circular.sonobuoy pattern when
the submarine moves as a sim le fleeing datum. It is of some interest
to note that Pm(TZ) >PO(T2) = 0.58 form=1,2,...,7. A submarine
attempting to avoid detection by a circalar sonobuoy pattern optimized
for a fleeing datum would thus actually decrease its probability of
escape by making a few additional course selections. Fur..ermore, Fig.

5.7 suggests that an optimum fleeing-~dstum search pattern is not signi-

iicantly compromised by any number of course changes in the inter-

F val [T,,T,) (L.e., ipm(TZ) -po(-rz): < U.03 for all m>7). Although our
example is somewhat idealized, these results may warrant further in-
vestigation with wmore realistic inputs.

: As a finai caicuilation for the inputs of case 10 and m - 6§ course
changes, Fig. 5.8 plots Pm(T2) from Eq. (5.5) against R, the radius of
a circular sonobucy pattern. The optinum civcular pattern of eight
sonobuoys is shown to have a radius of 28 umi wh:n the submarine is
assumed t: select a3 new bearing every hour. This compares . ith an

optimum radius of 32 omi for the simple fleeing datum motion.

5.5 EXTENSIONS

The purpose of this report is to 1) render tne search formulation

accessivle to operations analysts withecut sacrificing mathematical

e e Yra bl W

r ucr; 2) narrcw tlie gap between certain analytica! assumptions and the
behavior of actual targets and existing scarch devices; and 3) illustrate
: the vtility of the formul-tion with simple numerical o} -imizatlon pro-
edures. The developments horeir should be regarded as an intreductior to

this work. Somr: suggestions fcr further research are given below.




65

Notes: (1) Search inputs:
* Number of sorobuoys: n =~ 8
+Sonobuoy detection range: d = 10 nmi
*Time late: T1 = 4 hr
*Search duration: I, - Tl " 6 hr

2
1.3p- (2) Submarine inputs:
- +Standard deviation at t = 0: O = 20 nmi
0.9 L *Speed: u = 6 kt

*First course cihange at Tl = 4 hr
«Later course changes every hour

0.8+

0.7+

0.6 /-\
—

0.5

Probability of detection, P (T,)

0.3}

0.2+

0.1

-
=
L
OL’\’ZIOI L1 1215¢L113101L1 IGLSLLI 14%11144151_LLL§10

Radius of sonobuoy pattern, R (nmi)

Fig. 5.8--Effect of sonobuoy patterm radius on probability of detection
for a submarine that changes course every hour
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The numericsal analysis cof this secilion would be more relevant to an
actual search if a modest effort were made to lmprove the characterization
of target and sesicher behavior. For example, by obtailning analyticel
solutions of Eq. (3.30) for 1) the class of conditionally deterministic
tar et motion or 2) more general diffusion motions, we could peiform the
numerical work of this section for a much broader and realistic set of
targets.

With regard to the search process, it would be desirable to solve
numerical problems fo: search devices with more sophisticated laws of
detection than the definite-range conrcept. Perhups an integrarion-type
sensor (sece subsection 4.2} subject to "convergence zone' phenomens
i8] would be a rorze realistic device to study. More generally, future
numerical work shculd include the constrained optimization of a moving
searcher problem--i.e., from a given family of pacths that 1 moving
searcher wigit follow, find the path that results in the highest prob-
ability of detection in a given search prohlem.

On a more fundamental level, work should be done on the problems
of evasive targecs, Ialse targets and false contacts, multiple targets,
and search devices cthat detect as a function of the relative orientation
of target and searcher. Finally, for a general Markoviar. search, we
have yet to sulve the problems of obtailning sufficient conditions for

an optimal search density and how to obtain such a density having found

those conditions.

b ———t s -
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