ON GETTING PEOPLE TO COOPERATE WHEN FACING A SOCIAL DILEMMA: MORALIZING HELPS

Robyn M. Dawes
Harriet Shakes
F. Talarowski
ON GETTING PEOPLE TO COOPERATE WHEN FACING
A SOCIAL DILEMMA: MORALIZING HELPS

by

Robyn M. Dawes, Harriet Shaklee
Oregon Research Institute
and
F. Talarowski
University of California at Santa Barbara

DISTRIBUTION IN ACCORDANCE WITH
Approved for public release:
Distribution Unlimited
SUMMARY

Introduction

People are often faced with social dilemmas, situations where:
(i) each person is individually better off defecting from a group
 goal than cooperating in achieving it, and
(ii) all members of the
 group are better off if all cooperate than if all defect. This
 report is one of a series testing hypotheses about factors that may
 cause people to cooperate in such a situation. The particular factor
 investigated in this report is moralizing, i.e., the effect of
 focusing attention on the moral and ethical aspects of choice in
 such a dilemma situation and making an appeal to conscience.

Background and Approach

Our previous work has investigated people’s responses in a laboratory
social dilemma game. This game has been of the commons dilemma type,
in which each individual is faced with a choice between a defecting
or a cooperative strategy; each individual who chooses a defecting
strategy accrues the benefits directly, while a fine for defection
is spread out equally among all group members. For example, much
previous research has used groups of size 8; subjects may either make
a cooperative response which earns $2.50 for participating
in the experiment with no fine to anybody, or a defecting response
which earns $12 with a fine of $1.50 to each of the
participants including the defector. Thus, each subject has an $8
motive to defect ($12.00 - $1.50 - $2.50), but if all subjects defect
none receive anything (since the eight fines of $1.50 exactly match the
$12 payoff). If all cooperate, all receive $2.50. While negative
payoffs to cooperators (who must still pay the fines) are theoretically
possible in this game, all losses were in fact truncated at zero.
Subjects take this experimental game quite seriously.

Roughly 75% of the subjects cooperate when they are able to communicate
with one another whereas only 25% cooperate when no communication is
possible. Informal observation of this communication indicates that
subjects often discuss the moral or ethical implications of making the
defecting or cooperating choice. However, making a non-binding
commitment to cooperate does not increase the amount of cooperation.
It was, therefore, hypothesized that if the experimenter himself or
herself emphasized these ethical and moral concerns in a situation of
no communication, cooperation would increase. That is, since raising
these concerns in and of itself appears to increase cooperation, a
similar effect might be obtained even when the individual discussing
the ethical implications was not a member of the decision making group.
In order to test this hypothesis, two separate studies were run, one
using 143 subjects in Eugene, Oregon, and another using 56 subjects in
Santa Barbara, California. The game used in Eugene, Oregon, was
identical to the one discussed above, while that used in Santa Barbara
was highly similar. Half the groups at each location were randomly
assigned to a "morality" condition and half to the control condition.
In the former condition the experimenter emphasized at great length the ethical and moral implications of making a cooperative or defecting choice, while in the latter condition the game was explained without any comment concerning ethics or morals. Subjects were not allowed to communicate with one another.

Findings and Implications

In both locations, the morality condition led to significantly more cooperation than was found in the control condition. In Eugene, 63% of the subjects in the morality condition cooperated, whereas only 24% did so in the control condition; in Santa Barbara the corresponding figures were 68% and 54%. The moralizing created experimental demand more powerful than the $8 incentive to defect. The exact reasons for the success of this manipulation can be determined only by further experimentation. Perhaps the moralization worked because it appealed to subjects' consciences. Or perhaps it worked because it simply made the subjects think about the moral and ethical implications of their choices, whereas in the control condition they might not have done so.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE PAGE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Experiment 1</td>
<td>3</td>
</tr>
<tr>
<td>Method</td>
<td>3</td>
</tr>
<tr>
<td>Results</td>
<td>9</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>9</td>
</tr>
<tr>
<td>Method</td>
<td>9</td>
</tr>
<tr>
<td>Results</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>14</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>16</td>
</tr>
<tr>
<td>DD 1473</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1

The Game Payoffs

Page 6
ACKNOWLEDGMENT

Support for this research performed by Oregon Research Institute was provided by the Advanced Projects Agency of the Department of Defense and was monitored under Contract N00014-76-C-0074 with the Office of Naval Research, under subcontract from Decisions and Designs, Inc. The authors wish to express their thanks to Paul Slovic, Sarah Lichtenstein and Baruch Fischhoff for their comments.
On Getting People to Cooperate When Facing a Social Dilemma: Moralizing Helps

In a large battle, each individual soldier may reason that he is best off if he takes no risks; for that way he assures his own personal survival, while the effect of his decision on the outcome of the battle is minimal. Yet, if all the soldiers reason that way, the result will be a rout; and all would then be worse off than they would have been had they all been willing to take risks.

The above example illustrates social dilemmas. Briefly, a social dilemma occurs when (1) each individual reasons that he or she is best off defecting from the group effort no matter what other people in the group do, yet (ii) everyone is better off if all cooperate than if all defect (Dawes, 1975). Other examples of social dilemmas may be found in the decision to pollute (one might save considerable money while making a negligible contribution to the overall pollution problem), the decision in agrarian societies to have as many children as possible, the decision to cheat on income tax returns, and the decision to "rip-off" large organizations.

Recently, Dawes (1975) has devised an experimental paradigm for studying reactions to social dilemmas, and an extensive series of studies has been conducted by Dawes, McTavish and Shaklee (1976) to determine what factors affect the decision to cooperate or defect in a social dilemma situation. The paradigm involves offering subjects in a group the choice of either earning a small amount of
money with no fine to any other group member or receiving a large amount of money with an equivalent fine spread out equally among all members of the group. For example, in the studies reported by Dawes, McTavish and Shaklee, groups typically consisted of eight subjects. Each group member could make either a cooperative choice of earning $2.50 for participation with no fine to any group member—or a defecting choice of earning $12 with a $1.50 fine to each group member including themselves. Thus, each subject was $8 better off defecting ($12.00 - $1.50 - $2.50); yet, if all members chose the defecting choice, none would receive anything—because the eight fines of $1.50 exactly matched the $12 for defecting. Subjects viewed this task with extreme seriousness.

Several factors influencing choice were discovered. One was communication. When subjects were allowed to communicate with one another, the rate of cooperation was three times that of subjects who were not allowed to communicate (approximately 75% versus 25%). Dawes, McTavish and Shaklee had initially hypothesized that communication might result in subjects committing themselves to cooperate; yet a condition in which subjects were required to make a non-binding announcement of their intentions to the group elicited no more cooperation than did a condition in which subjects merely discussed the problem and were in fact prohibited from making such a commitment. Thus, it appeared that communication about the problem in and of itself was the important variable.

One informal observation made during these studies was that
subjects often brought up the moral and ethical implications of the
two choices when discussing them. For example, statements such as
"if you fink out on the rest of us you are going to have to live
with this for the rest of your life" were not at all uncommon.
Evidence that such moral exhortation may in fact work can be found
in a field study by Schwartz and Orleans (1973). These authors
interviewed taxpayers a month before the filing deadline; the ques-
tions in the interviews emphasized either the positive moral aspects
of paying taxes—e.g., good citizenship—or the legal sanctions for
nonpayment. Those taxpayers who had received an interview emphasizing
morality paid an average of $243 more than they had the previous year
while those receiving the sanction interview paid an average of only
$11 more. (Two control groups paid an average of $40 and $57 less.)

Thus, if moralizing works to control behavior in social dilemma
situations, both inside the laboratory and in a field setting, the
experimenters themselves should be able to increase cooperative be-
havior by emphasizing moral and ethical concerns, even though the
subjects themselves are unable to communicate with one another.
The following two experiments are devoted to testing the hypothesis
that moral exhortation might in fact be effective in controlling
responses to a social dilemma.

Experiment 1

The same game was used as in Dawes, McTavish and Shaklee (1976).
Subjects were not allowed to communicate with each other. In a
control condition, the results of placing an 0 (the cooperative
response) or an X (the defecting response) on the piece of paper
were explained, while in the experimental ("morality") condition,
the experimenter read a rather extensive statement about the group versus individual welfare implications of choosing the 0 or the X. As in previous research, all decisions were made in private, and were never revealed to other group members. Of course, each group member could determine from his or her payoff how many people had cooperated or defected.

Method

Subjects, 73 females and 70 males, responded to newspaper ads indicating that they could receive anything from nothing to $10.50 for participation in a psychological experiment. Subjects were recruited in groups of 8, each group being randomly assigned to the control or the morality condition until there were 10 groups in each. When less than eight subjects arrived, the payoffs were modified appropriately. For example, if 6 subjects arrived, the payoff for defection (placing the X response) was $9 rather than $12, again with $1.50 fine to each participant. In all, there were six groups of 6 subjects, five of 6 and nine of 8.

The morality condition read as follows:

Many decisions we make in society today involve a choice between individual gain and group welfare. It is, for example, to each individual's self interest to exploit the environment, since any gain accrues directly to the exploiter and the loss is shared by all members of the society. But if everyone were to behave similarly, it would lead to rapid destruction of the world's resources. Thus everyone is better off if everyone cooperates in protecting the environment than if each were to choose for his or her own gain. Consider, for example, the dynamics of the whaling industry. Each whaler has an individual
incentive to kill whales since he gets all the profit from the sale of meat, oil, and other whale byproducts. But at the same time, the whale population is decreased, threatening the survival of the species. Thus, that whaler's actions may cause the group to lose a valuable and fascinating species. Only if everyone cooperates in protecting whales will such a result be averted. In many other social decisions, the welfare of the group similarly depends on our laying aside our individual interests and cooperating with others for the group's welfare.

This is a study of ethical behavior in a similar social dilemma. In this experiment, we're interested in your choice in a decision between own gain and group welfare. We'd like you to consider the ethical implications of your behavior before deciding on your course of action today.

This table (Table 1) indicates the possible consequences of the decision each of you will be asked to make. You must decide whether to choose an X or an 0. As you will see, the X choice exploits the group, while the 0 choice is cooperative. You will have to mark an X or an 0 on a card in private. If you cooperate by choosing 0, you will earn $2.50 minus a $1.50 fine for every person who exploits the group by choosing an X. If you decide to exploit the group by choosing an X, you will earn $12.00 minus $1.50 for each exploiter, including yourself, who chooses an X. However, as you can see in the table, your payoffs do not go below zero. By looking at the second row of payoffs in the table, for example, you can see that
Payoff Matrix

<table>
<thead>
<tr>
<th>Payoff to X</th>
<th>Number Choosing</th>
<th>Payoff to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>10.50</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>9.00</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7.50</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6.00</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4.50</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.00</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1.50</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>0.00</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
if 7 of you cooperate by choosing 0 and 1 of you exploits the group by choosing X, then those choosing 0 will earn $1.00 and the one choosing X will earn $10.50. Or, on the third row, if 6 of you cooperate and 2 of you exploit, then those choosing 0 earn $0.00 and those choosing X get $9.00.

If everyone chooses 0, everyone gets $2.50, and you can all leave with a fair share of the payment and the good feeling that you all cooperated for the group's welfare. Each time a person chooses X, that person decreases the assets of the group, since every group member is fined $1.50 for every X chosen. While the exploiter may enjoy a high payoff by choosing X, he or she does so by taking money away from the other group members, possibly causing the other members to get no payment at all for their participation today. Moreover, the person who chooses X gets a high payoff only if the other group members cooperate by choosing 0. We can see on the last row of the table that if everyone tries to exploit the group, no one gets any money.

In sum, there are both risks and benefits to each choice. For the 0 choice, the benefits are that the group as a whole is best served, everyone gets a fair share of the payment. The risk of cooperating is that others might choose X and benefit themselves at your expense.

The person who chooses X may get a higher payoff, but only if the others in the group cooperate.

If everyone exploits the group, nobody gets any payment.
for their time invested today. Furthermore, if you decide to exploit the group you'll have to deal with the knowledge that your gain was arrived at by taking money away from others.

Your decision today will be totally private and none of the other participants in this group will know what you decided. You will each be paid and dismissed separately. Since both decisions and outcomes are private in this experiment, you cannot agree to meet after the experiment to split up the payoff. Once you have made your decision, you will write your code number and decision on the card in your envelope. You will also identify each other person in your group by code number, and indicate what decision you believe that person to be making.

You will be paid according to your accuracy in predicting the decisions of the other group members. After all experimental groups have been run, we'll identify the most accurate subjects and send them a check by mail. Thus, while we'll pay you for your decision immediately after this session is over, we'll have to delay your accuracy payment until we have evaluated your accuracy in relation to that of other participants in the experiment.

You will make your decision and predictions without communicating with each other in any way. I can answer any questions that you have.

As I mentioned before, we're interested in people's
decisions in a social dilemma of own versus group welfare. I once again urge you to consider the ethical implications of the choice you are about to make. I'd like to thank you in advance for your participation in this study of experimental ethics.

I can answer any questions you have at this time.

The instructions on the control conditions were identical except that there was no discussion of individual versus group benefit. These instructions are presented in Appendix A.

Results

The average percentage of defection in the morality conditions was 37.2. The average in the control condition was 75.8. Using the group as the unit of analysis, the t-value for testing these different percentages was 4.98 (p < .01).

Experiment 2

A parallel experiment was conducted at the University of California at Santa Barbara. There, college students in psychology who received experimental credit for participation played a game equivalent to a five-person game in which the payoff for the cooperative response was $2 and for the defecting response $10 with a $2 fine to each group member including the defector. This research was conducted by Talarowski (1976), who presented this game in many different formats. For purposes of this report, we will average across all formats.

Method

Fifty-six subjects were presented with 10 decompositions of commons dilemma games—five of a game in which the cooperative payoff was $2 and five of a game in which the cooperative
payoff was $2.40. In both games, a single defecting subject would cause the payoffs of the remaining four cooperating subjects to be zero; in both games universal defection resulted in a net payoff of zero to the group.

Half (28) of the subjects were randomly assigned to a "morality" condition similar to Experiment 1, and the other half randomly assigned to a control condition. The instructions were read aloud and they were also printed on the face sheet of the subjects' questionnaire. The morality instructions were highly similar to those in Experiment 1. The control instructions were the same as the morality instructions with the exception that no mention was made of the group and individual implications of the choices.

Subjects were paid off by being randomly grouped with four other subjects and having a single decomposition picked at random.

Results

In the morality condition, 32.5% of the responses were defections, while in the control condition, 46.4% were defections (p < .05). Note that here each subject is the unit of analysis.

Discussion

The effect replicated at two different locations, using two different games, using two different formats. While the results at Santa Barbara were much weaker than those at Eugene, the differences may be accounted for by differences in format or by (resulting?) differences in proportion of defection. The overall base rate of defection in Eugene was 52.6% while that in Santa Barbara was 39.5%. Of course, it is always possible the differences are a function of
geographic location, but we find it highly implausible that southern Californians are more cooperative than are Oregonians.

The important finding is: it worked. Of course, the manipulation is a form of "experimental demand," but that's just the point. Just as Milgram's (1963) subjects gave in to the demand to be obedient despite strong psychological resistances, ours gave in to the demand to be moral despite an $8 motive not to be.

The exact mechanism by which the moralizing works cannot be determined from these experiments, but must be the subject of future investigations. For example, moralizing may work by appealing to subjects' consciences. Or, alternatively, the moralization may work by simply making subjects aware of the consequences of their own behavior. The latter possibility is one that deserves much further consideration.

Previous attempts at experimental manipulation in which morality was introduced in a fairly subtle manner (in one or two sentences) did not work. Here we made the moral and ethical implications of the behavior as explicit as possible, and we did so in a highly redundant manner. We do not know the degree to which we could get the effect without preaching at quite such length.

Finally, it should be pointed out that the amount of cooperation in the morality condition in Experiment 1 (63%) is somewhat less than that obtained in the identical situation when the subjects were free to communicate with each other (see Dawes, McTavish and Shaklee, 1976). Since the conditions were so much different, it is not really appropriate to test for "significance"
of this difference. It is, however, suggestive; perhaps when people bring up moral and ethical considerations themselves, these considerations have more impact than when they are introduced in what is essentially a sermon.
References

APPENDIX A

This table (Table 1) indicates the possible consequences of the decision each of you will be asked to make. You must decide whether to choose an X or an O. You will have to mark an X or an O on a card in private. If you choose an O, you will earn $2.50 minus a $1.50 fine for every person who chooses X. If you choose X, you will earn $12.00 minus $1.50 fine for each person, including yourself, who chooses X. However, as you can see, your payoffs do not go below zero.

By looking at the second row, for example, you can see that if 7 of you choose O and 1 of you chooses X, then those choosing O will earn $1.00 and the person choosing X will earn $10.50. Or, in the third row, if 6 of you decide to choose O and 2 of you decide to choose X, then those of you choosing O will earn $0 and those choosing X will earn $9.00.

Your decision will be totally private and none of the other participants in this group will know what you decided. You will each be paid and dismissed separately. Since both decisions and outcomes are private in this experiment, you cannot agree to meet after the experiment to split up the profit.

Once you have made your decision, you will write your code number and decision on the card in your envelope. You will also identify each other person in the group by code number, and indicate what decision you believe that person to be making.

You will be paid according to your accuracy in predicting
the decisions of the other group members. After all the experimental
groups have been run, we'll identify the most accurate subjects
and send them a check by mail. Thus, while we'll pay you for your
decision immediately after this session is over, we'll have to delay
your accuracy payment until we have evaluated your accuracy in
relation to that of the other participants in the experiment.

You will make your decision and predictions without communicating
with each other in any way. I can answer any questions that you
have. I'd like to thank you in advance at this time for your parti-
cipation in this study.
<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Net Assessment</td>
<td></td>
<td>The Pentagon, Room 3A930, Washington, DC 20301</td>
</tr>
<tr>
<td>Assistant for Resource Evaluation</td>
<td></td>
<td>The Pentagon, Room 2E326, Washington, DC 20301</td>
</tr>
<tr>
<td>Special Assistant to the Principal</td>
<td></td>
<td>The Pentagon, Room 4E825, Washington, DC 20301</td>
</tr>
<tr>
<td>Assistant Director (Environment and Life Sciences)</td>
<td></td>
<td>The Pentagon, Room 3C125, Washington, DC 20301</td>
</tr>
<tr>
<td>Office of the Assistant Secretary of Defense (Intelligence)</td>
<td></td>
<td>The Pentagon, Room 3E279, Washington, DC 20301</td>
</tr>
<tr>
<td>Office of the Assistant Secretary of Defense (Intelligence)</td>
<td></td>
<td>The Pentagon, Room 3D129, Washington, DC 20301</td>
</tr>
<tr>
<td>Director, Weapon Systems Evaluation Group</td>
<td></td>
<td>400 Army Navy Drive, Arlington, VA 22202</td>
</tr>
<tr>
<td>Chief of the Studies, Analysis, and Gaming Agency</td>
<td></td>
<td>The Pentagon, Room 1D940, Washington, DC 20301</td>
</tr>
<tr>
<td>Director, Defense Advanced Research Projects Agency</td>
<td></td>
<td>1400 Wilson Boulevard, Arlington, VA 22209</td>
</tr>
<tr>
<td>Director, Cybernetics Technology Office</td>
<td></td>
<td>1400 Wilson Boulevard, Arlington, VA 22209</td>
</tr>
<tr>
<td>Director, Technology Assessments Office</td>
<td></td>
<td>1400 Wilson Boulevard, Arlington, VA 22209</td>
</tr>
<tr>
<td>Director, Program Management Office</td>
<td></td>
<td>1400 Wilson Boulevard, Arlington, VA 22209</td>
</tr>
<tr>
<td>Director, ARPA Regional Office (Europe)</td>
<td></td>
<td>Staff CINC PAC, Box 13, FPO San Francisco 96610</td>
</tr>
<tr>
<td>Director, ARPA Regional Office (Pacific)</td>
<td></td>
<td>The Pentagon, Room 2E326, Arlington, VA 22209</td>
</tr>
<tr>
<td>Chairman, Department of Curriculum Development</td>
<td></td>
<td>The Pentagon, Room 3E279, Washington, DC 20301</td>
</tr>
<tr>
<td>Office of the Assistant Secretary of Defense (Intelligence)</td>
<td></td>
<td>The Pentagon, Room 2E292, Washington, DC 20301</td>
</tr>
<tr>
<td>Director, Defense Intelligence Agency</td>
<td></td>
<td>The Pentagon, Room 3E261, Washington, DC 20301</td>
</tr>
<tr>
<td>Administrator, Defense Documentation Center</td>
<td></td>
<td>400 Army Navy Drive, Alexandria, VA 22314 (12 copies)</td>
</tr>
<tr>
<td>Deputy Director, National Security Agency</td>
<td></td>
<td>Ft. George Meade, MD 20755</td>
</tr>
<tr>
<td>Chief, Information Science Office</td>
<td></td>
<td>Arlington Hall Station, Arlington, VA 22212</td>
</tr>
</tbody>
</table>
Naval Personnel Research and Development Center
Management Support Department (Code 210)
San Diego, CA 92152

Naval Personnel Research and Development Center
(Code 305)
Attention: Dr. Charles Gettys
San Diego, CA 92152

Dr. Fred Muckler
Manned Systems Design, Code 311
Navy Personnel Research and Development Center
San Diego, CA 92152

Human Factors Department (Code N215)
Naval Training Equipment Center
Orlando, FL 32813

Training Analysis and Evaluation Group
Naval Training Equipment Center
(Code N-00T)
Attention: Dr. Alfred F. Smode
Orlando, FL 32813

Naval Personnel Research and Development Center
Management Support Department (Code 210)
San Diego, CA 92152

Naval War College
Attention: Professor C. Lewis
Newport, RI 02840

Dean of the Academic Departments
U.S. Naval Academy
Annapolis, MD 21402

Chief, Intelligence Division
Marine Corps Development Center
Quantico, VA 22134

Naval Intelligence Processing Systems Support Activity
Attention: CDR Richard Schlaff
Hoffman Building No. 1
2461 Eisenhower Avenue
Alexandria, VA 22331

Department of the Army

Deputy Under Secretary of the Army
(Operations Research)
The Pentagon, Room 2E621
Washington, DC 20310

Director, Systems Review and Analysis Office
Office of the Deputy Chief of Staff for Research, Development and Acquisition
Department of the Army
The Pentagon, Room 3E426
Washington, DC 20310

Commander, U.S. Army Intelligence Threats Analysis Detachment
Arlington Hall Station
4000 Arlington Boulevard
Arlington, VA 22212

Director, Army Library
Army Studies (ASDIRS)
The Pentagon, Room 1AS34
Washington, DC 20310

Technical Director, U.S. Army Institute for the Behavioral and Social Sciences
Attention: Dr. J.E. Uhlane
1300 Wilson Boulevard
Arlington, VA 22209

Director, Individual Training and Performance Research Laboratory
U.S. Army Institute for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
U.S. Army Foreign Science and Technology Center
700 East Jefferson Street
Charlottesville, VA 22901

Technical Director
Naval Intelligence Support Center
4301 Suitland Road
Suitland, MD 20390

Director, Center for Advanced Research
Naval War College
Attention: Professor C. Lewis
Newport, RI 02840

Dean of the Academic Departments
U.S. Naval Academy
Annapolis, MD 21402

Chief, Intelligence Division
Marine Corps Development Center
Quantico, VA 22134

Naval Intelligence Processing Systems Support Activity
Attention: CDR Richard Schlaff
Hoffman Building No. 1
2461 Eisenhower Avenue
Alexandria, VA 22331

Department of the Army

Deputy Under Secretary of the Army
(Operations Research)
The Pentagon, Room 2E621
Washington, DC 20310

Director, Systems Review and Analysis Office
Office of the Deputy Chief of Staff for Research, Development and Acquisition
Department of the Army
The Pentagon, Room 3E426
Washington, DC 20310

Commander, U.S. Army Intelligence Threats Analysis Detachment
Arlington Hall Station
4000 Arlington Boulevard
Arlington, VA 22212

Director, Army Library
Army Studies (ASDIRS)
The Pentagon, Room 1AS34
Washington, DC 20310

Technical Director, U.S. Army Institute for the Behavioral and Social Sciences
Attention: Dr. J.E. Uhlane
1300 Wilson Boulevard
Arlington, VA 22209

Director, Individual Training and Performance Research Laboratory
U.S. Army Institute for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
U.S. Army Foreign Science and Technology Center
700 East Jefferson Street
Charlottesville, VA 22901

Director, Organization and Systems Research Laboratory
U.S. Army Institute for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Technical Director
U.S. Army Concepts Analysis Agency
8120 Woodmont Avenue
Bethesda, MD 20014

Director, Strategic Studies Institute
U.S. Army Combat Developments Command
Carlisle Barracks, PA 17013

Director of Educational Technology (AMXMC-ET)
Army Logistics Management Center
Ft. Lee, VA 23801

Department of Engineering
Attention: COL A.F. Grum
United States Military Academy
West Point, NY 10996

Chief, Studies and Analysis Office
Headquarters, Army Training and Doctrine Command
Ft. Monroe, VA 23351

Commander, U.S. Army Research Office (Durham)
Box CM, Duke Station
Durham, NC 27706

Educational Advisor
Army Intelligence School
Ft. Huachuca, AZ 85613
Department of the Air Force

Deputy Assistant Chief of Staff for Studies and Analysis
The Pentagon, Room 1E388
Washington, DC 20330

Assistant for Requirements Development and Acquisition Programs
Office of the Deputy Chief of Staff for Research and Development
The Pentagon, Room 4C331
Washington, DC 20330

Air Force Office of Scientific Research
Life Sciences Directorate
Building 410, Boiling AFB
Washington, DC 20332

Commandant, Air University
Maxwell AFB, AL 36112

Dean of the Academic Departments
U.S. Air Force Academy
Colorado Springs, CO 80840

Robert G. Gough, Major, USAF
Associate Professor
Department of Economics, Geography and Management
USAFA Academy, Colorado 80840

Director of Intelligence Applications
Headquarters, Air Force Systems Command
Andrews AFB
Washington, DC 20331

Chief, Systems Effectiveness Branch
Human Engineering Division
Attention: Dr. Donald A. Topmiller
Wright-Patterson AFB, OH 45433

Director, Foreign Technology Division
Wright-Patterson AFB, OH 45433

Chief Scientist
Air Force Human Resources Laboratory
Attention: Dr. Howard L. Parris
Brooks AFB, TX 78235

Aerospace Medical Division (Code RDH)
Attention: LT COL John Courtright
Brooks AFB, TX 78235

Commander, Rome Air Development Center
Attention: Mr. John Atkinson
Griffiss AFB
Rome, NY 13440

IRD, Rome Air Development Center
Attention: Mr. Frederic A. Dion
Griffiss AFB
Rome, NY 13440

Director, Advanced Systems Division (AFHRL/AS)
Attention: Dr. Gordon Eckstrand
Wright-Patterson AFB, OH 45433

Other Government Agencies

Chief, Strategic Evaluation Center
Central Intelligence Agency
Headquarters, Room 2G24
Washington, DC 20505

Director, Center for the Study of Intelligence
Central Intelligence Agency
Attention: Mr. Dean Moor
Washington, DC 20505

Office of Life Sciences
Headquarters, National Aeronautics and Space Administration
Attention: Dr. Stanley Deutsch
600 Independence Avenue
Washington, DC 20546

Other Institutions

The Johns Hopkins University
Department of Psychology
Attention: Dr. Alphonse Chapannis
Charles and 34th Streets
Baltimore, MD 21218

Institute for Defense Analyses
Attention: Dr. Jesse Orlansky
400 Army Navy Drive
Arlington, VA 22202

CTEC, Incorporated
Attention: Mr. Harold Crane
7777 Leesburg Pike
Falls Church, VA 22043

Director, Social Science Research Institute
University of Southern California
Attention: Dr. Ward Edwards
Los Angeles, CA 90007
Research Distribution List
Department of Defense

Assistant Director (Environment and Life Sciences)
Office of the Deputy Director of Defense Research and Engineering (Research and Advanced Technology)
Attention: Lt. Col. Henry L. Taylor
The Pentagon, Room 3D129
Washington, DC 20301

Office of the Assistant Secretary of Defense (Intelligence)
Attention: CDR Richard Schlaff
The Pentagon, Room J3279
Washington, DC 20301

Director, Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Director, Cybernetics Technology Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Director, Program Management Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209
(two copies)

Administrator, Defense Documentation Center
Attention: DDC-TC
Cameron Station
Alexandria, VA 22314
(12 copies)

Department of the Navy

Office of the Chief of Naval Operations (OP-987)
Attention: Dr. Robert G. Smith
Washington, DC 20350

Director, Engineering Psychology Programs
(Code 455)
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
(three copies)

Assistant Chief for Technology (Code 200)
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research (Code 230)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
Naval Analysis Programs (Code 431)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
Operations Research Programs (Code 434)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
(Code 436)
Attention: Dr. Bruce MacDonald
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
Information Systems Program (Code 437)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research (ONR)
International Programs (Code 1021P)
800 North Quincy Street
Arlington, VA 22217

Director, ONR Branch Office
Attention: Dr. Charles Davis
536 South Clark Street
Chicago, IL 60605

Director, ONR Branch Office
Attention: Dr. J. Lester
495 Summer Street
Boston, MA 02210

Director, ONR Branch Office
Attention: Dr. E. Glove and Mr. R. Lawson
1030 East Green Street
Pasadena, CA 91106
(two copies)

Dr. M. Bertin
Office of Naval Research
Scientific Liaison Group
American Embassy — Room A-407
APO San Francisco 96503

Director, Naval Research Laboratory
Technical Information Division (Code 2627)
Washington, DC 20375
(six copies)

Director, Naval Research Laboratory
(Code 2029)
Washington, DC 20375
(six copies)
Scientific Advisor
Office of the Deputy Chief of Staff for Research, Development and Studies
Headquarters, U.S. Marine Corps
Arlington Annex, Columbia Pike
Arlington, VA 20380

Dean of Research Administration
Naval Postgraduate School
Monterey, CA 93940

Naval Personnel Research and Development Center
Management Support Department (Code 210)
San Diego, CA 92152

Naval Personnel Research and Development Center (Code 305)
Attention: Dr. Charles Gettys
San Diego, CA 92152

Dr. Fred Muckler
Manned Systems Design, Code 311
Navy Personnel Research and Development Center
San Diego, CA 92152

Human Factors Department (Code N215)
Naval Training Equipment Center
Orlando, FL 32813

Training Analysis and Evaluation Group
Naval Training Equipment Center (Code N-07)
Attention: Dr. Alfred F. Smode
Orlando, FL 32813

Department of the Army

Technical Director, U.S. Army Institute for the Behavioral and Social Sciences
Attention: Dr. J.E. Uhlaner
1300 Wilson Boulevard
Arlington, VA 22209

Director, Individual Training and Performance Research Laboratory
U.S. Army Institute for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Department of the Air Force

Air Force Office of Scientific Research
Life Sciences Directorate
Building 410, Boeing AFB
Washington, DC 20332

Robert G. Gough, Major, USAF
Associate Professor
Department of Economics, Geography and Management
USAF Academy, CO 80840

Chief, Systems Effectiveness Branch
Human Engineering Division
Attention: Dr. Donald A. Topmilller
Wright-Patterson AFB, OH 45433

Aerospace Medical Division (Code RDH)
Attention: Lt. Col. John Courtright
Brooks AFB, TX 78235
Subjects played a social dilemma game, with monetary payoffs, in groups of 5-8 from five to eight individuals. These games involved a choice between earning a small amount of money ($2 to $2.50) for oneself with no fine to other group members and earning a much larger amount ($8 to $12) with an equal fine levied on all other group members. Thus, each individual gained the small amount if all group members cooperated, while all received nothing if all defected, even though defecting is a dominating choice for
Abstract Continued

...each player. One-hundred forty-three subjects in Eugene, Oregon, and 56 students at the University of California at Santa Barbara played these games under one of two conditions: (1) the experimenter emphasized at length the moral and ethical implications of making the cooperative or the defecting choice; or (2) the game was explained without any moral or ethical exhortation. In both Eugene and Santa Barbara, the instructions emphasizing the moral and ethical aspects of the choice significantly increased the rate of cooperation, despite the fact that sizeable amounts of money were involved.