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ABSTRACT

Consider a unit in continuous operation. When this unit fails,

it is immediately replaced. In addition, opportunities arise

according to a renewal process when we can either replace this

unit at a reduced cost or do nothing. The problem is formulated

as a Markov decision process. If the unit has increasing failure

rate, the replacement policy that minimizes the expected total

discounted cost or the average cost of maintenance is characterized

by a single parameter i4 : If an opportunity exists, we replace

the working unit only if its age exceeds i . Techniques to

compute the minimum discounted cost and the optimal policy are

suggested.

Under this simple replacement policy structure, the operating

characteristics of the system are discussed for the special case

where the opportunities arise according to an exponential arrival

process.

A series system of two units where the failure of either unit

is also an opportunity to replace the other unit at a reduced cost

is considered. When the units have increasing failure rate, the

A _structure of the optimal policy is again determined.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The interest and the literature on decision models for main-

tained systems continues to grow. These models share a common

objective of reducing the incidence of system failure or the cost

of maintenance over a certain time. However, differing assumptions

on the life distribution of the items, the repair facilities and

costs, and the available information on the system have led to

different models and solution techniques.

Opportunistic models describe situations where it costs less

to replace (or repair) two or more units concurrently than to

replace them at different times. Thus the necessary replacement

of a unit upon its failure may also justify the replacement of

some other units whose failure seems imminent. These cost advan-

tages are often due to reduced overhead costs in joint replacements

and the economies of-scale. Typically, the replacement of an item

upon failure is viewed as an opportunity to replace other nonfailed

items in the system at a reduced cost. Such a situation may arise

when a system is sent to the repair shop for parts replacement.

Upon the failure of some critical component, a large cost is in-

curred in transporting the system to the repair shop and due to

services lost while the system waits for repair. Along with the

necessary replacements, one may now choose to replace several

other items at their marginal cost of replacement. These replace-

ments are called opportunistic as opposed to the necessary faiZure
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replacements. The criterion for deciding whether an item should

be opportunistically replaced or not is called an opportunistic

policy. These replacement policies and the advantages in

instituting them are largely the subject of this thesis.

First, we review some of the better known replacement models

and the situations they describe.

1.2 Replacement Models

In replacement models that seek to reduce maintenance costs,

we look for two things. First, the replacement of a unit before

failure must cost less than a failure replacement. Secondly,

the unit of interest must deteriorate in service. One measure

of deterioration with age is called the increasing failure rate

(IFR). If the unit has failure distribution F with density

function f , then the failure rate function r(t) = f(t)/l - F(t)

In the area of preventive maintenance, the best known results

are for the planned age replacement models (see Barlow and Proschan

[1965])i Consider a unit whose replacement upon failure costs

C a1rdwhose replacement before failure costs C2 < C1 *

When the failure distribution F is continuous, the po1icy that

minimizes the expected cost per unit time for an infinite horizon

problem is nonrandom: There exists some t c [0,-] such that

we replace the unit either upon- failure or at age t whichever

comes first. When the failure rate is continuous and strictly

increasing, the optimal replacement age t is finite -and, is

the unique solution to
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t C2
r(t)f(1 - F(x))dx - F(t) -

0 1 2
0

In addition to this model for a single unit system, Barlow

and Hunter [1960] introduced an age replacement policy for a

complex system sustained with minimal repair. The system is

replaced or overhauled at age T at a cost C . Intervening
1

failures are rectified at cost C2  through minimal repair which

does not alter the failure rate of the system. When the system

failure rate is continuous and strictly increasing, the optimal

replacement age T is again finite and unique. As before, it

may be determined by minimizing the long-run expected cost per

unit time over T

Various other extensions to the basic model have been made.

Fox (1966] showed that the age replacement policy also minimizes

the total expected discounted cost of maintenance. Schaefer

[19713 and, Wolfe and Subramanian [1974], introduced an age

* dependent cost in the model to rflect the decrease in efficiency

of the system with age.

When maintenance costs over a finite time period are of

concern, a sequential replacement policy is always better. In

this case, every successive replacement age is different and is

chosen to minimize the expected costs over the time still remaining.

Barlow and Proschan prove that the optimal sequence of replacement

times is nonrandom and illustrate its calculation in [1962] and

[1965].

!f
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For ease of implementation, the block replacement policy has

also received attention. Under this policy items of a given type

are replaced at failure and at times kT (k = 1,2,...). Let

C and C2 be the costs of a failure replacement and a planned

replacement respectively. If N(T) is the expected number of

failures in time T , the expected cost per unit time for an

infinite horizon problem may be expressed as

c1CN(T) + C2

T

Minimizing this over T determines the optimal replacement

interval. Barlow and Proschan derive this result and, compare

it to the age replacement policy in [1965] and [1975].

The periodic and sequential replacement policies referred

hereto describe single component systems. These policies extena

to multi-component systems if we assume stochastic and economic

independence between the components. In such a case, the optimal

policy for the system is effected by optimally maintaining each

component. One generalization of this model would be a recognition

of some form of economic dependence between the components. For

instance, opportunistic policies assume there are economies of

scale in undertaking joint replacements. Because of the complexity

of these models in general, only a few special situations have

been analyzed.

Radner and Jorgenson (see [1962] and [1963]) consider a series

system of two components, designated 0 and 1. Unit 0 has an

increasing failure rate. Suppose it costs C0 to replace it upon

- - _ . . . . -- _ . . . _ - I I ! 1 I1
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extensions by Klein, ([1962]), give the decision rules that

minimize the cost of maintenance.

Rosenfield considers the above model, ([1974]),-with the

added complexity of uncertainty about the state of the system.

He assumes that at any period we may replace the unit, or inspect

it, or do nothing. in every instance an expected operating cost

is incurred. Besides, a replacement or an inspection cost is

associated with the first two actions. Optimal decision policies

that minimize the total discounted cost of maintenance are deduced.

Finally, a recent survey of maintenance models by Pierskalla

and Voelker [1975] is mentioned as an exhaustive source of

references and related research efforts.

1.3 Thesis Plan

In Chapter 2, we develop an opportunistic replacement model

for a single unit. When this unit fails it is immediately replaced.

In addition, opportunities arise according to a renewal sequence

when we can replace this unit at a reduced cost or do nothing.

The opportunities could be the visits of the repairman or the-shut-

downs of the system of which this unit is a critical component.

The system is modeled as a Markov Decision Process, and the optimal

policy structure for the average cost and the total discounted -cost

criterions is established when the unit is IFR. This model also

adapts itself to seek marginal improvements in complex systems.

However, the case of a series system of two units is explicitly

considered. Here, we assume that the failure of either unit is

an opportunity to replace the other unit at a reduced cost.

-J- - -
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When the units are IFR, the structure of the optimal policy is

again determined.

Chapter 3 considers the opportunistic replacements of a

unit where the opportunities arise according to a Poisson process.

For this special case, the exact solution of the optimal policy

is determined. The operating characteristics of this model are

studied in detail. In addition, various classes of distributions

for Unit I and tiLair interaction with an opportunistic policy

are considered.
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CHAPTER 2

OPTIMAL OPPORTUNISTIC POLICIES

2.1 Introduction

This chapter establishes the structure of the optimal oppor-

tunistic replacement policy for two specific cases. In either

case, techniques to estimate the minimum cost objective and the

parameters of the policy are suggested. The applications and

extensions of these basic models are stressed by way of examples.

First, in Section 2, we consider a single unit in continuous

operation. When this unit fails it is immediately replaced. In

addition, opportunities arise according to a renewal sequence at

which times we can replace this unit at a reduced cost or do

nothing. When the unit has increasing failure rate, the replacement

policy that minimizes the cost of maintaining the unit is charac-

terized by a single parameter i : If an opportunity exists, we*k
replace the working unit only if its age exceeds i

In Section 3 we consider a critical system of two units where

the failure of either unit is an opportunity to replace the other

unit at a reduced cost. When the units have increasing failure

rates, the optimal replacement policy is characterized by two

parameters, i and J : If Unit 1 (or Unit 2) fails, we replace

both units only if the age of the working unit exceeds i

(or j ). In any case, the failed unit is immediately replaced.

All the replacement models treated in this chapter are modeled

as Markov Decision Processes and solved explicitly in discrete
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time space. The results for the continuous distributions follow

immediately. A review of the basic methodology follows. An

extensive treatment of this subject can be found in (Derman [1970])

and (Ross [1970]).

Let random vector Xt be the state of the system at time

t - 0,1,2, ... We observe Xt = i , and choose an action at

from a finite set of choices. In doing so, we incur a cost

C(i,a ) and our next state X j with probability P (at)
-t t+1 -

Let 7T be the policy or rule for choosing the actions. We wish

to determine a v that minimizes the "cost of maintaining the

system" One measure of our objective is the total expected dis-

counted cost V . Given initial state i , and policy ir we

define

(1) V () - {C(X, a)- + aC(X ,ap + 2C(x ,a) + .

where a is the rate at which future costs are discounted. For

a < I and C( , ) < w , V-(i-) is finite and xa meaningful objective.
IT-

Let

V(i) =Min V (1)
iT

iT

Under our assumptions, an optimal policy that is stationary (i.e.

depends only on the state of the system) exists (for proof see Ross

[1970], Theorem 6.3). Let it be v . Under policy w , V(-)

satisfies the functional equation

I
- - - - - - - ------- -
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(2) V(i) Min C(ia) + a-- Pi(a)V(i)j for all iIa

Another objective of interest is the expected average cost

of maintaining the system, 4(.) Given intial state i , and

policy r , we define

ni
I d(Xt,a) X0

T (i) = Lim E t= (
n-' (n+l)

We say policy w is optimal if

,(i) = Min (i) for all i.

In the replacement models to follow, we minimize the two cost

objectives defined above and deduce the nature of the optimal

policy T

2.2 Opportunistic Replacements of a Single Unit

2.2.1 The Model

We motivate the formulation of the problem by two examples.

Example (1):

Consider a unit that is in continuous operation. When this

unit fails, an emergency crew is called to replace it immediately

at a ccst (K + C) . In addition, a repairman visits the facility

periodically and offers to replace the (working) unit at a reduced

cost C . If we choose to replace the unl.t, we save K dollars
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but sacrifice the remaining life of the unit in operation. Clearly,

every visit of the repairman is a decision state where we may

replace the working unit or forego the chance.

Suppose the unit has a discrete failure probability density

g i = 0,1,2, .... The repairman's visits are also random with

probability density fi P i = 0,1,2, ... and f0 
< 1 . Suppose

that replacements, whether opportunistic or upon failure, take 1

unit of time. First, we minimize the total expected discounted

cost V of maintaining the unit. If future costs are discounted

at rate a < 1 and (K + C) < ,then V is finite. This

follows from the upper bound

V < (K + C) + a(K + C) + a 2(K + C) + ... for any policy it

< C

which is obvious if we note that (K + C) is the maximum we

spend in any period.

Example (2):

The above problem is equivalently defined by the following

system. Unit 1 is in series with sub-system 2. When 1 fails we

replace it at cost (K + C) where K is the cost of system

failure. Failure epochs of 2 constitute a renewal sequence and

are potential opportunities to replace 1 at reduced cost C

and, are equivalent to the repairman's visits in Example (1). As

before, let the failure densities of 1 and 2 be g, and f,

Suppose replacements of 1 or 2 or both take one unit of time.

P I~lim I~l PWI I I III PIII- _ =I
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V is now the cost associated with maintaining Unit 1 under some

replacement policy wr

For convenience, we shall follow Example (2) for further

developments. Define the system state by a pair

(ij) where i : age of Unit 1

j : is the time left to the failure of sub-system 2.

Note that the option to replace 1 or not arises only when sub-

system 2 fails, i.e. j -0 , So (±,0) is the only decision

state. When j # 0 , we do not know its value, nor do we need to

know it since (ij) , j 0 0 , is not a decision state.

Let Ri be the conditional probebility of failure at age

i of Unit 1 given survival to age i -- 1 . Ri  is the discrete

analog of the failure rate (see Barlow and Proschan [1965]) and,

i gi
Igk

k>i

If V(ij) is the minimum co! objeztIve given we are in

state (ij) , it obeys the functional q.tions

V(ij-) =I Ri {K + C + aV(0,j - 1)) +
(4a)i

(A -i) cV(i+l,j -1) for j > 0

and,

V(i,O) = Ri {C + a fjV(O'J)} + (I- R)

(M n -C + a f V , J);a f v(i + l,j)1
j J
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When we are in state (i,j) , j 0 , with probability Ri Unit 1

will fail and the state C the system at the next time period will

be (0,j - 1) . This ; :, .. ,.:ail an immediate expense of (K + C)

for system breakdon Z . ,__L1:nt plus the discounted value

of expected future costs - tich is aV(0,j - 1) . In this we

assume that we continue i. A intain the system using the best

available strategy. This icoounts for the first term in Equation

(4a). Similarly, the second term of Equation (4a) is the survival

probability of Unit I multiplied by the discounted value o future

costs if Unit 1 does not fail. Equation (4b) refers to the decision

state. When j = 0 (i.e. sub-system 2 fails) and Unit 1 fails

concurrently, we take the opportunity at hand and spend only C

to replace Unit 1. Our next state is QDJ) with probability f

So, the tota. .-pected cost is C + a f V(0,j)} . This accounts

for the first term in (4b). If 1 does not fail, we either replace

it and expect to spend C + a L f V(O,j) , or, do not replace it
j

and expect to spend a fJ(i +Vl,j) depending on which is less.
j

We now turn our attention to evaluating the optimal objective

V(i,j) , and, the structure of the associated optimal policy VT

If Unit i has itkreasing failure rate (Ri + i) , we show that

V(i,j) is monotnuic in i , and n hae the following simple

structure: There exists i e (0,-] such that whtenever we are in

a decision state (i,0) , replace Unit 1 only if i > i

2.2.2 Conputation of tht Cost Objective

An explicit solution of the functiona: equations for V(i,j)

is-near impossible. However, an interation technique for approaching
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functional equations is available. Let V0 (i,) 0 for all

, j and, define sliccessive approximations by

Vk+l (i,j) = Ri {K + C + aVk(Oj - 1))+(- R)

(5a)
aVk(i + 3,j - 1) for j > 0

and

Vk+l(i,0) = Rii C + a fjVk (0,j) + (1 - Ri)

(5b) j-Mn c + a f fjvk(Oj);a'1 f jyki + 1,J).

For example, when k - 0 Equations (5a) and (5b) would yield

V1(ij) = Ri(K + C) for j > 0

and,

Vl1(i,0) - Ri • C

:z-tuitively, Vk(i,j) is- the cost if we follow policy * for-

k periods and incur a terminal cost of zero, given we start in

state (ij) . Given a < , it follows that

Vk+l(i,j) > V(i,j) for all i , j , -k and,

Lim Vk(i,j) V(i,j) for all i , jj -k4),

Equations (5a) and (5b) give an easy technique to evaluate V

in terms of K , C , R , g and, a . In addition, they will be

helpful in establishing the monotonicity of V in i , the ag

of Unit 1.
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2.2.3 Optimal Policy Structure

As a necessary prelude to establishing the structure of the

optimal policy, we first show the monotonicity of V(i,j) in the

age of Unit 1.

Lemma 2.1:

If Unit 1 has increasing failure rate (Ri + i) , and

K , C > 0 , then for all k

(a) Vk(i,j) + 4 for all j

(b) K + C + aVk(O,J) > aVk(i,j) for all i , j

Proof:

For k = 0 , V0(i,j) =O for all i, j by definition.

Therefore (a) and (b) are trivially true. The proof proceeds

by induction on k . Suppose (a) and (b) are true for some k

First, we show Vk+l:(i,J) + i for all j

Case (i): j > 0

Rewriting the recursive Equation (5a),

Vk+l(i,j) = Ri {K+C+cVk(O,j- } + (lRi)cVk(i+l,j .l)

= Ri {K+C+aVk(O,j-1) - aVk(i+l,j -)} + acVk(i+1,j - 1)

j <__R {K+ C+ caVk(O,J -l) - ctVk(i+l,j-l)1 + aVk(i+l,i-i)

R i+1 {K+C+-aVk(Oj-l)} + (l-Ri+I) dVk(i +l,j-i)

<_R+l (K+C+aVk(0,j -1)1 + (l--Ri+I ) • aVk (i+2,j-1)

=Vk+l(i+l,J)

Z7I
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The first inequality is true since R+ > R, and the coefficient

of Ri is nonnegative by the induction hypothesis (b). The second

inequality follows from induction hypothesis (a), namely Vk + i

Case (ii): j - 0

First note that

Vk(ij) + i for all J

(6) = fjV k(i + 1,J) + i

= Min C + a [ fjVk(OJ);a f jVk( i+ l,J) 4 i

Now, f

Vk+l(i,O) Ri C + a fjVk(OJ)} + (1 - R) Min {C + a J fiVk(O~I);
aRJ {Cfjjko + ,j )}

a f j {C k aU JkOi) ~fV + 1,J)}

<Ri+l C + a fjVk(0,i4 + (1 - Ri+l )

Min {C + a fjVk(O,J);a X fjVk(i + 2) }

J iJ

=Vk+l(i + 1,0)

The first inequality follows from Ri+ > R. and

C a f i [fjVk(OJ) > Min C + a [ fjVk(O,J);a fjVk(t + 1,J)
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The second inequality follow from (6).

We have shown V k+(i,j) + i for all j . It still remains

to show that Part (b) is true for (k + 1) . That is,

(7) K + C + aVk(0,j) > aVk+l(i,i) for all i , J

For j > 0

L.H.S. = (K+C) + aR0 {K+C+aVk(0,j -1 + a2(l-R 0 Vk(l1i - 1)

= (K+C) + aR0 (K+C) + a
2 [R0Vk(O,j - l) + (1-Ro)Vk(l,i - 1)]

> (K+C) + aR 0(K+C) + a 2 [RoVk(O,j-l) + (l-RO)Vk(O,J-l)]

(by the induction hypothesis Vk f i)

2
= (K+C) + cR0(K+C) + a2 Vk(O,j-l) a A

R.H.S. a [Ri {K+C+aVR(O,j-l)} + (1-Ri) • aVk(i+l,j- I )]

<.a [R, {K+C+ciVk(OJ-1)} + (1-Ri ) "-{K+C+ aVk(O,j-l)}]

(by the induction hypothesis (b))

a(K+C) + a2Vk(OJ -1)

< A , (by inspection).

j :When J = 0 Equation (7) follows similarly.U

i When we are in state (i,0) the optimal policy v chooses

the action (replace Unit 1 or not) that minimizes the total expected

cost from thereon. The next theorem determines its structure.

:1 _
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Theorem 2.2:

If Unit 1 is IFR, and K , C > 0 , then there exists an

i c (0,-) such that when in state (i,0)

(a) replace Unit 1 if i > i

(b) do not replace Unit if i < i

(c) i Min i : a f f V(i~i) > C + a f fjV(0i)}

Proof:

As k + w , Lemma 2.1 implies V(i,j) + i for all j

nerefore, a . fjV(i,J) + i

Define i Min i : a f > C + E f V(O•j

Then, for all states (i,0) where i > i

a f V(i,j) > C + a fjV(Oj)
I J

and replacing Unit 1 minimizes the cost objective. The above
,

structure of n follows. N

To compute the optimal policy parameter i , let us define

i ) -Min i : a jVk(i) > C + a fjvk(OJ)

= MiJjjj ,- m { : ci~ jC(7k-i"i) - VkCO'i)) > C

It is unfortunate that i () is not monotonic in k and cannot

v a*serve as a bound on i . We show tbis by a simple counterexample.
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2.2.4 Extensions of the Model

One extension of the model is immediate. -When Units 1 and 2

have continuous density functionsi the above results are true for

any discrete approximation of the failure rate function of Unit 1

and the density function of Unit 2, as well as for thc; limiting

continuous functions.

To establish the optimal policy that minimizes the expected

cost per unit time we indicate the approach suggested in (Ross [1970]).

For the discounted cost model with discount factor a , we define

h (ij) = V(ij) - V(QO)•

The functional equations (4a) and (4b) can then be rewritten as

(I - c)V(0,0) + h (i,j) = R {K + C + aha(0,j - 1)1 +

(8a)
(1- Ri) ah (i + lj - 1) for J > 0

and,

(1 - a)V(0,0) +-h (i,O)= Ri -.fjh- (0,)} +

(18-b R )  in C+a f h (0,J);aX fjh (i-+-,J)

When X and C are finite we note that V(i,j) - V(O,J) < o

for all i , j and a . Under this condition, ha (i,j) converges
,n-

to a bounded function h(i,j) -and; (1 - a )V(0,O) converges to
n

a constant g for some sequence a n 1 (for proof see Ross [1970],

Section 6.7). In the limit, Equations (8a) and (8b) become

I
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g + h(i,j) = Ri {K + C + h(0,j - 1)) +

(9a)
(1 -Ri) h(i + l,j - 1) for j > 0

and,

g + h(iO)= Ri JC + f h(O'j)I +

(9b)

(I- R) .Min C + f h(0,J); fJh(i + l,j)

When Equations (9a) and (b) uphold, the optimal policy n is

stationary and the minimum average cost of maintenance is g .

To define v for the average cost objective, first note that

V(i,j) + i for all j h(i,j) + i for all j

- f h(i,j) + iJ

In the likeness of Theorem 2.2 we define

i Min i : f h(i,j) > C + fjh(0,i).

*

Then for all states (i,0) where i >i

7 f h(i,j) > C + f h(O,j)J J

Sand it is optimal to replace Unit 1.

P

I-
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2.2.5 Some Special Cases

When f 1

In formulating the discrete time discounted cost model we

specifically preclude the possibility f0 = 1 . If we interpret

fi to be the density function for the repairman's interarrival

times (see Example (1)), then f0 
= 1 implies that the repairman

and the associated economic- advantage in replacement is always

present. This is the case in the periodic age replacement model.

It suffices now to define the state of the system by the age of

Unit 1 , i - 0,1,2, .... The functional equation governing the

optimal discounted cost function V(i) is

V(i) = Min {Expected cost if we replace; Expected cost if we don't

replace)

Min {C + cV(0);Ri (K + C + aV(0)) + (1 - R1 ) •cV(i + 1).

When Ri i , it is easy to show that V(i) is monotonic in i

and the optimal policy structure may be characterized by i

Replace upon failure or when the age of Unit 1 equals i where

i = Min (C + aV(O) < R i(K + C + cV(O)) + (1 - Ri)cV(i + 1)}
i

As before, this result extends to the case of a continuous failure

j distribution. Using the principles of Renewal Theory, Fox [1966]

shows the optimality of this policy for a continuous IFR distribution

and a continuous discounting criterion.
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Series System of Several Components

Consider a series systera of several components where each

component is immediately replaced when it fails. The failure of

any component entails a cost for its replacement plus a fixed cost

K for system interruption. Now suppose we want a replacement

policy for some critical component in this system. We regard this

component as Unit 1 and the rest of the system as Unit 2 and note

that Example 2 describes this situation. Furthermore, the failure

distribution for Unit 2 tends to the exponential as its complexity

and the time of operation increase (see Barlow and Proschan [1965],

Section 2.3). If past failure data is available, it is easy to

estimate the parameter that defines this exponential distribution.

Similarly, we may consider another critical components as Unit 1

and determine a replacement policy for it. This gives us an approxi-

mate technique to introduce an opportunistic policy for components

where we may realize maximum benefit. Components whose replacement

costs are small compared to K are good choices for an opportunistic

policy.

The special case where opportunities to replace or not arrive

as a Poisson process receives special attention in the next chapter.

Using Renewal Theory, an explicit solution for the average cost

optimal policy parameter i is derived.

Replacements with Different Life Distributions

Another situation of interest arises when the failure distribution

for repaired omponents is different than-for original components.

H
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Let m = 0 if a new component is in service and m 1 if a used

component is in service. Let (i,j,m) describe the state of the

system, and, Ri'm and V(i,j,m) be the associated failure rate

and the cost objective respectively. The functional equations

for this case are

V(i,j,m) = Ri' m [K + C + aV(0,j - 1,1)1 + (1 - R i m) aV(i + l,j - l,m)

for m = 0 , 1 and j > 0

and,

V(iOm) = Ri'm C + a f V(Ojil) + (1 - Ri'm ) Min C + a fjV(Oijl);

a f V(i + l,j,m) for m = 0 , 1 and j = 0

If the new and the repaired units have increasing failure rates and,

R i > Ri,0  for all i , then there is a critical replacement age

i0(il) for the new (repaired) unit and the optimal policy again

has a stms. structure as given in Theorem 2.2. The successive

approximation technique can be used to evaluate the cost and

approximate i0  at4 ii

2.3 Simultaneous Re lacement of Two Components

2.3.1 Model Formulation

Consider a series system ef two units, I and 2. The system

fails when either unit fails and-!.s repaired by replacing the failed

unit immediately. If un'c n fails we incur a cost of (K + C n)

where C is replacement *,ost of component n and K is the
n
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overhead cost associated with system failure. When the system is

down, we have the option to replace the nonfailed unit at its marginal

cost Cn In replacing the nonfailed unit we sacrifice its remaining

life but hope to forestall the next system failure.

Clearly, failure epochs of Unit 1 (Unit 2) are potential

opportunities to replace Unit 2 (Unit 1). As in Section 2, we wish

to determine an optimal stationary replacement policy that minimizes

the total expected discounted cost of maintaining the entire system.

Let V denote the minimum cost objective and iT the "bestt

policy. Let a be the discount rate.

Suppose the system operates in discrete time t 0,1,2,

Let (i,j) denote the state of the system where i 0,1,2, ... is

the age of Unit 1 and j = 0,1,2, ... is the age of Unit 2. Suppose

that if Unit n fails (or is opportunistically replaced) at time

t , it returns to state 0 at time t + 1 . Let R. (P ) denote

the discrete failure rate of Unit 1 (Unit 2) at age i (j) . In this

discrete time space we allow the simultaneous failure of both units.

Given state (i,j) , the minimum cost function V(i,j) obeys the

functional equation

V(i,j) = RiPj {K + C1 + C2 + aV(0,0)) + R PJ {K + C1 + S(0,j + 1)1

(10)
+ iPj {K + C2 + T(i + 1,0)) + RiPJ {aV(i + l,j + )

where R 1 1 - Ri and Pi = I - P ,and where
I

(11) S(0,j + 1) = Min {C2 + aV(0,0);aV(0,j + 1))

(12) Ti + 1,0) = Min (C + aV(0,0);aV(i + 1,0)}

f1
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If Unit 1 fails and Unit 2 does not, we would take the opportunity

and replace 2 only if S(0,j + 1) = C2 + aV(0,0) . If 2 fails and

1 does not, we would take the opportunity and replace 1 only if

T(i + 1,0) = C1 + aV(0,0) .

Given the costs K , Cl , and C2 , and failure rate functions

Ri and P , we can calculate V(i,j) by using the successive

approximation technique again:

Vk+l(i,j) RiPj {K + C1 + C2 + aVk(0,0)} + RiP {K + C1 + Sk (0,j + 1))

(13)
+ RiP {K + C2 + T kk(i + 1,0)) + Ri {MVk(i + l,j + 1))

where

(14) Sk(O,j + 1) = Min {C2 + aVk(O,O);aVk(O,j + 1))

(15) Tk(i + 1,0) = Min {C1 + aVk(0,0);Vk(i + 10)) .

Define Vo(i,j) = 0 for all (i,j) . Then So(Oj + 1) = 0 for

all j , and To(i + 1,0) = 0 for all i

Intuitively, Vk(ii) is the expected discounted cost if we

follow policy ir for k periods and end with zero terminal

cost. For K, C1, and C2 < ,and a < ,

j lim Vk(i,j) V(i,j)kr-

lim-. k(Oj + 1-) S(O,j + 1-)

lim Tk(i + 1,0) T(i + 1,0)
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Also note that Vk(i,J) + k . Be:udes its computational value,

this technique helps us to establish the monotonicity of V in

i and j when Unit 1 and Unit 2 are IFR. This ultimately leads

to a simple structure for the best replacement policy nt

2.3.2 Optimal Policy Structure

Lemma 3.1:

If Unit 1 and Unit 2 are both IFR (Ri + i and P + j) , and

K , C1 , and C2 > 0 , then for all k

(a) Vk(i,j) + i for all j

(b) Vk(hi,J) + j for all i

Proof:

For k = 0-, (a) and (b) are trivially true since Vk(i,j) = 0

for all i , j . Also observe that for k = 0 ,

(a') K + C2 + Tk(i + 1,0) > av k(i + l,j + 1) , and

(b') K + C1 + Sk(O, j + 1) LaVk(t + l,j + 1)

Intuitively, (a') and (b') imply that no failure entails no more

cost than failure of either unit for a k period problem.

The proof proceeds by izduction on k . Suppose (a), (b),

(a'=), and (b') are true for-some k . First, we show that1 Vk+l(i,j) + j for all i . Rewriting the iterative equation (13),
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Vk+ (i,j) R[PJ {K + C+ C2 + aVk%0,0)) + j{K + C1 + Sk(Oj + 1)1]

+ R[P{K + C2 + Tk(i + 1,0)1 + P.{cVk(i + lj + 1))]

= .RiA(j) + RiB(J)

where A(j) and B(J) are functions of j , given some value of i

We proceed to show that both A(J) and B(J) + j for all i

A(j) = P. {K + C1 + C2 + aVk(0,0)}

+ P. • MiK + C1 + C + cV k,:,0);K + C + aV (0,j + 1))
2 1 k

Since P + j , and

K + C1 + C2 + aVk(0,0)

> Min {K +-Ci +-C2 + aVk(0,O);K + C1 + cVk(Oj + 1)1 1

therefore

A(j) _Pj {K + C1 + C2 + aVk(0,0)}

+ PJ+I " Min {K + C1 + C2 + aVk(0,O);K + C1 + cVk(Oj + 1)}

SPj+ {K + C1 + C2 + aVk(0,0)}
+ P " Min {K + C1 + C2 + a 0Vk(0,);K + C + caVk(0,J + 2)}

(since Vk + j for all i by the induction hypothesis (b))

= A(j + 1).

Now,

+
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B(J) P {K + C + Tk(i + 1,0)} + P {cVk(i + lj + 1)}
2 k

Since P+ + j , and by the induction hypothesis (a')

K + C2 + Tk(i + 1,0) .a Vk(i + 1,J + 1)

therefore

B(J) _ P {K + C + Tk(i + 1,0)} + P {V kCi + 1,j + 1)1
J+l 2 kj+1

<-P j+I {K + C2 + Tk(i + 1,0)1 + PJ+I {avk(i + i,j + 2))

(since Vk + j foz all i)

B(j + 1)

Hence, Vk+l(i,j) - [RiA(J) + B(J)] t j for all i . Similarly,

we can show that Vk+1(i,j) + i for all j

It sti.,i remains to show that assumpt-olS (a') and (b') extend

to k + . That is,

(17) (a K + C + T (i+l,0) >_cVk+(i+l,j+l) for all i , j

(18) (b') K + C1 + S (0,j+i) > aV .(i+l,j+l) for all i , j
1 k+l_

Equation (17) restated is

K + C2 + Min {C1 + aVk+l(0,0);av (i + l,0)} > aV 1 (i + l,j + 1)

j -which is equivalent to

(19a) K + C1 + C2 + Vk+l(0,0) >CVk+l (i + 1,j + 1) , and

(19b) K + C2 + aVk+l(i + 1,0) >zVk+l(i + lJ + 1)
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To see (19a) note that

aV k+l(i + 1,j + 1)

ia[R+ {JK + C1  + Vk(0,0)) + R i+IP {K + CI + S k(0,j + 2))

+ Ri+iPj+ {K + + Tk(i + 2,0)) + Ri+IP+I {aVk (i + 2,j + 2))]

< a[K + C + C2 + aVk(,0)]

<K + C1 + C2 + aVk(0,0) ,since a < 1

<K + C1 + C2 + ak+l(0,0) ,since Vk + k.

For Equation (19b), the left hand side is

(K + C2 ) + aVk+l(i + 1,0)

(K + C2) + a {Ri+iPoaVk(0,0) + Ri+lPOSk (0,1) + Ri+iPoTk(i + 2,0)

+ R +iPoaVk(i + 2,1) + Ri+iCi + PoC2 + (Ri+ + P - Ri P0)K}
i+1i~ 1 0 +1 0 1+i1o)0

> (K + C2) + a {R i+lVk(0,0) + i+T k(i + 2,0)

+ Ri+lC1 + PoC2 + (Ri+l + PO - Ri+IPO)K}

The inequality follows from cVk(0,0) < Sk(0,1)- and Tk(i + 2,0)

<O cVk(i + 2,1) . The right hand side of (19b) is

Vk+(i + l,j + l) < a {R+l(K + C1 + C2 + Vk(00)

+ i+(K + C, + Tk(i + 2,O))

8 (by inspection)
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The first inequality follows from K + CI + C2 + Vk(0,0) K + C1

+ Sk(0 ,J + 2) and by induction hypothesis (a'). Therefore, the

L.H.S. > 8 > R.H.S. of Equation (19b). The proof for Equation (18)

is analogous. U

If we let k in Lemma 3.1, we get V(i,j) + i for all j

and V(ij) f j for all i . This leads us to the simple replace-

ment policy given in the-next theorem.

Theorem 3.2:

If Units 1 and 2 are IFR, and K , C1 , and C2 > 0 , then

there exists i and j such that

(a) If Unit 1 fails and j > j , replace both units. Otherwise

replace only the failed Unit 1.

(b) If Unit 2 fails and i > i , replace both units. Otherwise,

replace only the failed Unit 2.

(c) j =Min {j : V(o,j) > C2 + a v ( 0,O) ) .

(d) i = Min {i : V(i,O) > C1 + a v (OO) .

Proof:

Define j and i as above. From-Lemma 3.1, V(O,J) + j

-and V(i,O) + i . Therefore for all j >j , V(O,j) > C2 + aV(OO)

and Unit 2 should be opportunistically replaced. Similarly, for

all i L i , V(i,O) > C1 + aV(O,O) which implies Unit 1 should

be opportunistically replaced. The above structure of the optimal

policy W follows. U
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In practice the critical replacement ages i and j can

be approximated by using the successive approximation technique

for a large number of iterations.

2.3.3 Extensions of the Model

When Units 1 and 2 have continuous IFR distributions, the

preceding results are again true for any discrete approximations

of the failure rate functions as well as for the limiting continuous

functions. When the expected.average cost of maintenance is to be

minimized, a sufficient condition for a stationary optimal policy

to exist is

V(i,j) - V(0,O) < N < co

When coasts K , C1 , and C2 are finite, this condition is obvious-

ly upheld. Using the technique suggested in Section 2, we can

again show that the optimal policy inherits the structure frord

the expected discounted cost case when both units are IFR.

The simplicity of the optimal policy structure for the two

models considered does not extend to more complicated systems

with interactive replacement activities. For example, let (ij,l)

be the age vector for a system of three units in serier, If Unit

1 fails, the decision to replace Unit 2 (Unit 3) would also depend

on the age of Unit 3 (Unit 2) and the associtated cost advantages

thereof.
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For convenience, we consider a series system of Unit 1 and

Unit 2. Unit 2 has an exponential life distribution and its

failures are potential opportunities to replace Unit 1. If Unit

2 fails and the age of Unit 1 exceeds 'a', we replace both units.

In any case the failed unit is immediately replaced. Let (K + C)

be the cost of a failure replacement and C be the cost of an

opportunistic replacement for Unit 1. Under such a policy,

Section 2 examines the time between successive failures, successive

replacements and other quantities of interest. In Section 3, an

explicit solution for the average cost optimal policy is derived.

Section 4 examines certain classes of distributions for Unit 1

which have received wide attention in other replacement models.

3.2 Failure and Replacement Intervals

Let F(x) be the failure distribution function of Unit 1

and, G(x) - 1 - e-x/ )l be the failure distribution of Unit 2.

We first observe that the replacement of Unit 1, be it opportunis-

tic or due to its failure, is a renewal for the entire system.

This is so because when Unit 2 is working, it is as good as new.

If Z denotes the random time between successive replacements

of Unit 1 and H is the corresponding distribution functionj then

S((x) for x < a

F(x) ,G(x -a) for x >a

where H 1 - H and, this notation is followed for all other

distribution functions as well. The mean time between successive

replacements can be expressed as

A nu pnmuni
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( E[Z] R (x)dx
E f

0

(2) a

f (x)dx+ fF(x)(x- a)dx

0 a

A replacement is opportunistic if Unit 1 is working and has

survived for at least time 'a' when Unit 2 fails. If P0 is the

probability that any replacement is opportunistic, then

(3) P0 =f PCx + a)dG(x)

0

To find the expected time between opportunistic replacements

we invoke Wald's equation (see Ross [1970]). Let ZI,Z2,Z3, ...

be a sequence of intervals between successive replacements, and

suppose that the Nth replacement is the first opportunistic

replacement. The Z 's are independent with a comaon distribution
i

given by Equation (1). Hence the expected time between opportunistic

replacement can De expressed as

E [Z'I = E[Z] • E[N] E[Z]/P o10

provided the random variables have finite expectations. Similarly,

the expected time between failure replacements of Unit 1 is

E[Z]/(l - P)

The distribution of the time between successive opportunistic

replacements is a -little more involved. Let Z denote this
.- t
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random interval and G be its distribution function. Since we

cannot have an opportunistic replacement before 'a', therefore

Z > a . We condition on the first failure of Unit 1, denoted

by X, which is also a renewal for the system and, observe

6(t - x) for x < a < t

Pxob {Zr > t I X1 
= x ) 6(t -x) • a(x-a) a<x < t

G(t -a) a <t <x

Unconditioning, we obtain

for t < a

(4) (t)- t

G(t - a)F(t) +fO(t - x)G(x - a)dF(x) for t > a

0

where G(x - a) = 1 when x < a

Now let Zf denote the random interval between failure replace-

ments of Unit 1 and F be its distribution. When t < a , the

only kind of replacement possible is a failure replacement. Therefore,

F(t) = P(t) for t < a . For t > a , we condition on the first

failure of the exponential unit after time 'a' and, derive a renewal

type equation for F as we did for G . We obtain

F(t) for t < a

(5) F(t) t-a

F(t)G(t - a) + f (x + a)F(t- x - a)dG(x) for t > a

0

Equations (4) aild (5)-define G and F implicitly and,, in

principle, can be solved by Laplace Transforms. For the various

replacement models in the literature, these.and other operating
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characteristics have been studied by Barlow and Proschan in [1962],

by Flehinger in [1962], and by McCall in [1963].

An analogy with a random age replacement policy is due.

Under such a policy, we replace the unit at time T or at failure,

whichever comes first. We assume that T has a known distribution

G . Let us define G as

St) 0 for t < a

IG(t -a) for t > a

1.0

G (t) e -

~.- t
a

where G is the exponential distribution corresponding to Unit 2

in the opportunistic model. The renewal processes associated

with this age replacement and the opportunistic model now have

the same distributions.I

I:

K _ . . .. .. . .
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3.3 Optimal Average Cost Policy

4 The structure of the opportunistic policy, as characterized

by parameter 'a', was shown to be optimal when Unit 1 is IFR in

Chapter 2, Section 2. For the special case of an IFR Unit 1 in

series with an exponential Unit 2 we can derive an explicit solution

for the optimal value of .

From Renewal Reward Theory, the long-run expected cost per

unit time, denoted by O(a) , may be expressed as

=Expected Cost of a Renewal Cycle
Expected Length of a Renewal Cycle

(6) p0 C+ (I -F 0) • (K+C)

E[Z]

where P0 is the probability that a replacement is opportunistic.

A necessary condition for the optimal value of 'a' is obtained by

equating the derivative of O(a) to zero. Thereby, we obtain

d(C_+ K(l - P0

or,

dP0  dE[Z] + K(d P [Z 0
(7 K[Z •d-a da 0 da"

From Equations (2) and (3), it is easy to verify that (dE[ZI/da) P 0

Using this fact and dividing Equation (7) by KP , we get
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z[z___ dP _

i0 0 + (I P C

-T0  da 0 K

Substituting the expressions derived in Section 2 and simplifying,

we obtain

a ff(x + a)dG(x)

(8) IF(x)dx -- F(a)
f CO K

0 f F(x + a)dG(x)

0

where f is the failure density for Unit 1.

It is illustrative to note the similarity of this condition

with the one derived for a fixed age replacement policy:

a
(9) 1 xdx • f C 

0F (a) K
0

where we interpret K as a savings in a planned replacement over

a failure replacement.

Let r(x) = f(x)/F(x) represent the failure rate function

of Unit 1. If we assume that r(x) is continuous and increasing,

then the left hand side of Equation (8) is increasing. Therefore,

the optimal policy as defined by Equation (8) does exist. If the

optimal a = , we infer that a policy of no opportunistic replace-

ments is best. Let
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f f(x + a)dG(x) fr()P(y)dG(y)

0

(10)$(a) ________ a _____

f F(x + a)dG(x) Jf (Y)dG(y)
0 a

where y x + a . It remains to verify that r(x) + x implies

d a~ xd
T , Fx $(a) F(a) > 0

0

Or,

a

(11) (F(a) • 0(a) - f(a)) +fF(x)dx . >d0(a) .
fda / 0

0

From Equation (10) we see that 0(a) > r(a) . Therefore, the first
term in Equation (11) is positive. For the second term in Equation

(11) we need only show that

dO(a) > 0
da -

Or,

fr (Y)g(y)dG(y)

d a
da 013

Jf(y)dG(y)

Or,

<I

, 
i
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F(a)g(a) * fr(y)F(y)dG(y) - r(a)F(a)g(a) [F(y)dG(y) > 0
f# f

Or,

f ry)F(y)dG(y) > r(a)JfCPy)dG(y)

a a

which is obvious given r(y) + y . When the failure rate is strictly

increasing, the optimal parameter a is finite.

3.4 Distributions in Replacement

Any maintenance policy is necessarily aimed against the

incidence of actual failures of the unit under care. Under an

opportunistic policy as defined in this chapter, we would like

to establish a class of failure distributions which reduces the

number of failures of Unit 1 in a given time t , either stochastically

or in expected value. Fortunately-, the classes of distributions

relevant to this replacement model are already well known in

Reliability Theory. Marshall and Proschan have studied these classes

and established their importance in the Age and Block Replacement

models in [1970]. First, we recall that a distribution F , with

density f , has increasing failure rate, IFR, if r(t) = f(t)/F(t)

is increasing in t . Th other classes for F are defined below:

A distribution F is New Better than Used, NBU (New Worse

than Used, NWU) if
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(12) F(x + y) < F x) F(y) for all x , y > 0
(>)

A distribution F , with mean 0 , is New Better than Used

in Expectation, NWUE, (New Worse than Used in Expectation, NWUE)

if

(13) fF(x + y)dx < F(y) " 8 for all y L 0

0 G)

Each of the above classes can be interpreted as a notion of aging

and one can establish the following hierarchy amongst them, (see

Barlow and Proschan [1975]):

IFR NBU =c NBUE

and,

DFR = NWI=, NWUE

Let {Xi) denote the sequence of intervals between successive

failures of Unit 1 when no replacement policy is in effect, F

denote their distribution and, N(t) denote the number of failures

in (O,t) . Let {X denote the intervals between in-service

failures of Unit 1 under an opportunistic policy. The fX i have

a common distribution F defined by Equation (5). Correspondingly,

N(t) shall denote the number of failures in (O,t) . In general,

X , F , and N depend on the policy parameter 'a' and, wherever

necessary, we shall specify as Xi(a) , F(-,a) and N(t,a)
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For the sake of results that follow immediately, we let

{Xi,k } denote the intervals between in-service failures of Unit

1 when at most k replacements are permitted between successive

failures. Under this constrained opportunistic policy we may

define Fk and N k(t) correspondingly. In our propositions

that relate F with the in-service failure process, we shall

use induction on k and bear in mind that F0 . F , and

F k-- F as k - - . Equivalent to Equation (5), we define the

in-service failure distribution under the constrained policy as

F(t) for t < a

(14) ,k(t) t-a

jF(t)G(t-a) + f P(x+ a -1 (t-x-a)dG(x) for t > a

0

Our first result shows that the NBU is the largest class which

stochastically increases the interval between in-service failures

when we institute an opportunistic policy.

Theorem 3.1:

The failure distribution for Unit 1, F , is NBU (NWU) - xi,k

stochtastically increases (decreases) in k for all exponential

G associated with Unit 2, and policy parameter a > 0

Proof:

First we show that F is NBU implies Pk+l(t) L Tk(t) for

k = 0,1,2, .... Since the Xik are independent and identically

distributed, it suffices to prove the theorem for i = I . Let

k - 0 . Then by Equation (14), we have
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-I F'~ ) =F for t < a

and,

t-a]l (t) -(t) "G(t -a) + f F(x + a) • (t - x -a)dG(x) for t > a
00
0

1:-a

Let us write F(t) • - a) as F(t) - f dG(x) . Then,

0

t-a

F1 (t) F(t) + f [F(x + a) .F(t - x - a) - F(t) dG(x)

0

F F(t) , since the Integrand is nonnegative

by the definition of NBU

When k ,we have

F2( for t<a

and,

t-a
F 2() (t) + f [F(x + a) - P I(t - x - a) - F(t)]dG~x) for t N a

0

t-a

F(t) + F [P(x + a)F(c - x - a) - F(t)]dG(x) since

-0
l -(t - a)> - x -a) by the result proven above

- (t)
1
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The proof proceeds identically by induction on k f

To show the converse, we assume Fk+l(t) - Fk(t) > 0 for

all t . It suffices to consider the case when k = 0 and t > a.

Then,

t-a

F (t) - F(t) -- f Ix+a)- Ft - x - a) - F(t)]dG(x) > 0
0

for all G(x) = 1- e x/  and a > 0 . If we let v-+ 0 the

exponential approaches the degenerate distribution and the above

inequality becomes

F(a) • F(t - a) - F(t) L 0 for all a > 0 , t > a

Therefore F is NBU. When F is NWU all the inequalities in the

proof are reversed. U

Corollary 3.2:

F is NBU (NWU) 4* Nk(t) stochastically decreases (decreases)

in k , for all-exponential G and a > 0

Proof:

Since the {X i,k  and (X i,k+lI  are sequences of independent

random variables, it follow from Theorem 3.1 that

Prob {N k+(t) > n) - Prob {Xl'k+1 + -+ Xn,k+1 < t)

<_Prob XI1k + +Xn, k _t

= Prob {Nk(t) > n)
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For the converse N k+l(t) < . Therefore, for k = 0 we have
st

Prob {Nl(t) = 0) = (t) > Prob {N(t) = 0) = t)

Hence F is NBU by Theorem 3.1 again. When F is NWO all the

inequalities are reversed. U

Our primary interest was in prescribing minimal conditions

on the distribution F which stochastically reduce the number

of in-service failures in (0,t) when an opportunistic policy

is introduced. As a direct result of the above theorem, we can

say that when F is NBU, X, ! Xi and N(0,t) < N(0,t) for
tst

any policy parameter 'a' and any Poisson arrival process for

replacement opportunities.

As noted earlier, the NBUE is a weaker notion of aging than

NBU. Correspondingly, we can establish that the NBUE class is

the largest which can realize a reduction in the expected number

of in-service failures when an opportunistic policy is introduced.

The next theorem shall prove this.

Theorem 3.3:

The failure distribution for Unit 1, F , is NBUE (NWUE)

E[Xi,k] increases (decreases) in k for all exponential G

assoctated with Unit 2, and policy parameter a > 0

Proof:

First we show that F is NBUE implies E[X l,k+l] :' E[)l,k

for k = 0,1,2, .... Since the {X i k are i.i.d it suffices
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Sincc the integrand in expression (17) is nonnegative by the

definition of NBUE, therefore

E[X 11 ] > E[X]

Now let k 1 Corresponding to expression (16), we get

E[1,2 E[X] + [F(x + a) • (t - x - a) F(t)ldt • dG(x)

0 x+a

SE[X] + f (x + a)- •E[X F(t)dt dG(x)

0 x+a

(here we note that f F(t - x -a)dt -E(Xi)

> E[X] + x + a)- E[X] - F(t)d dG(x)

0 x+a

(since E[X ] > E(X] by the result proven above)

- E[X ,11 -

Similarly, the proof proceeds on induction to show that E[Xlk+l] >_

E[Xl,k] for all k

To show the converse, we assume E[X 1 ,1 ] - E[X] > 0 for all

a 0,and G(x) - 1 - e-  . Substituting for these expected

values, we get

P + a) E(Xj f (Odt dG(x) 0

0 X+a
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If we let u 0 , the exponential approaches the degenerate

distribution and the above inequality becomes

P(a) * E[X] -fF(t)dt > 0 for all a > 0

a

Hence, F is NBUE. The results for NWUE follow by reversing

all inequalities.10

Again, we may note the implication of the above theorem that

is particularly interesting. If Unit I has distribution F that

is NBUE, then the expected time between in-service failures in-

creases when we introduce an opportunistic policy with any parameter

'a' and any Poisson arrival process for replacement opportunities.

We now assume that F conforms to the strongest notion of

aging defined before, namely the IFR class. Under this assumption,

the optimality of the policy structure was proven in Chapter 2. We

shall now investigate the changes in the time between successive

in-service failures with respect to changes in the policy parameter

'a'. First, we give an alternative definition of IFR:

F is IFR 4=: F(t + A) decreases in t
F (t)

for each A > 0 . This property of the survival function is called

polya frequency of order two', PF2  (see Barlow and Proschan [1975]).

We begin by establishing an intermediate result in the next

lemma.

7--I -- l-
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Lemma 3.4:

If Unit 1 has distribution F that is IFR, then

Fk(t) <F(a)Fk(t - a) , t > a , k = 0,1,2,k k

for any policy parameter a > 0 and exponential G associated

with Unit 2.

Proot:

For k = 0 , F0 (t) B F(t) . Since IFR = NBU, the result is

true by the definition of NBU.

Now assume the lemma is true for some k > 0 . It remains

to extend the result to k + 1 . First note that

Fk+l(t) = Fk(t) for t < (k + l)a

since it is impossible to use the k + 1 replacement opportunities

allowed in time t < (k + l)a . Therefore, consider t > (k + 1)a

Then, by Equation (14),

t-a

Fk+l(t) = F(t) - G(t-a) + f F(x+a) • Tk(t-x -a)dG(x)

0

(S) t-2a t-a

= -F( >G(t-a)+ f F(x+a).Fk(t-x-a)dG(x)+ f F(x+a)-

0 t-2a

oFk(t -o aa)dG(x)

Now for x c (t - 2a,t - a),

6 J** ___ -
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F(x + a) • (t - x -a) F(x + a)• F(t - x -a)~k t

<F(a) F(t- a) since F is PF..

Substituting this inequality in the right hand side of Equation

(18), we get

t-2a

k+1(t) (t)a(t - a) + f F(x + a)Fk(t - x - a)dG(x)

0

+ F(a)F(t - a){G(t - 2a) - 3(t - a)}

t-2a

< F(a)F(t - a)G(t - 2a) + f F(x + a)Fk (t - x - 2a)F(a)dG(x)

0

(where we use the induction hypothesis Fk (t - x - a)

F(a) Fk(t - x - 2a))

=F(a) • T (t - a) .E
k+l

If we let k in Lemma 3.4, we approach the unrestrained

opportunistic policy, and deduce that

F is IFR = F(t) <_(a) • F(t - a) for all t >a > 0.

We are now ready to establish that given F is IFR, the times

between successive in-service failures decreases stochastically as

the policy parameter 'a' increases. This also implies a reduction

in the mean time between in-service failures.



52

Theorem 3.5:

If Unit 1 has an IFR distribution, F , then Xi = 1,2,

decreases stochastically in policy parameter a > 0 for all

exponential G associated with Unit 2.

Proof:

It suffices to show that -L F(t,a) <0 for all a > 0 when
d da

a F(t,a) T F(t) = 0 and the theorem is trivially true.

Assume that F(t,a) < 0 for t < na . Then, for

t < (n + l)a,

.da ] (t ,a) = d- {(t)g(t - a) +JF(y)F(t - y,a)dG(y - a

a

(where y x + a)

t

d1

= i F(t)G(t - a) + . I (y)F(t - y,a)dG(y - a)

a

t
F 1 F(a) . (t - a,a) + F(y ) " F' t -y  a)

a

- {F(t,a) - F(a) • F(t - a,a)) +

t

P (a) t - a))d(Y) TFt yadG )

a

The first term on the right hand side of Equation (19) is non-

positive by Lemma 3.4. For the second term, note that when

t < (n + l)a , t - y <na for y e (a,t) . Therefore,
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d T(t - y,a) < 0 by the induction hypothesis. Hence,
da

T (t,a) < !o t <(n + )a

and by induction it follows that this result extends to any t

when a > 0 .0

From Theorem 3.5 we see that when in-service failures have

to be minimized, the policy parameter 'a' should be set to zero.

This would mean that every time an opportunity arises (i.e. the

repairman visits or Unit 2 fails) we should replace Unit 1. This

would naturally entail an increase in the total number of replace-

ments required to maintain the unit. In general, we would like

to weigh the costs of in-service failure replacements against

opportunistic replacements and select the optimal policy as defined

in Section 3.3.

I
I

hJ
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