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Abstract

We consider the task of numerically approximating the solution of an ordinary
differential equation initial-value problem. We-arc interested in two questions:

(1.) For any given one-step method, what is the complexity of finding an
spproximate solution with error less than ¢ ?

(2.) Given an infinite sequence of one-step methods of increasing order, how
should the method and the step-size be picked so0 as to minimize the
complexity of finding such an approximation?

‘We—describe a methodology that handles both questions. Furthermore, we find that
within such a sequence of methcds, the following hoid under very general

circumstance~:

(1.) For any 5,0 <5 < 1, thers is a urique choice of order and step-size which
minimizes the complsxity.

(2.) As s decreases, bcth the oplimai order and the complexity increase
monofonically, tending to infinity as ¢ tends to zero.

These rusults are applied to several classes of onc-step methods. Ir doing so, we
exhikit some new Taylor series methods that are asymptoticelly bettnr than Runge-
Kutta methods for problems of small dimension. Morsover, we provs that among all
classes of nonlinear Runge-Kutts methods, those dus to Brent have the highest order

possible.
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Section 1

Intraduction

With few excaptions, past work in anslytic computational complexity has focused
on the problem of finding a zero of a (nonlinear) ivarsformation of Banach spaces; in
most worh, this problsm iz specialized to that of finding a zero of an opersicr on a
finite-dimensional real or complex vector space (and in much of this work, the problam
is further specialized to the one-dimensional cass). huch has been discoversd about
the computational aspects of iterative schemes for the solution of zuch prokiems,
espacially in the areas of minimal complaxity (a.g, Kung and Traub [73) Traub #nd
Woéniakowski [76]) and maximal order (e.g., Kung end Traub [78] Woéniskowski [757,

In this - iper, we will consider another tepic in analytic computational complexity
theory, that of finding complexity bounds for the numarical solition of ordinary
differential equation initial-value problems on a fixed intervel. We wili ant be
interested in questions of the existence and the uniquerass of the solitions to s
problems; in fact, we will restrict our discussion of the applization of ganerst resulis o
the cazs where the unique solutions to thess prsblams are analytic fuotions,

We will limit ourselves here to classes of one-step melhnds jar the numericel
solution of these problems; in terms of informslional wsage, thesa metheds are
analogous to iterative zero-finding methods withcut manory (Sreub [64) 72D
Anslogous to the one-point iterative methods with mamory e7a the muyllisizp maiheds
for initiai-valus problems; thase methods will be dsait with in a future papar.

Our approach will be ‘0 assums that an initial-veive prohlem is givan, sicnz with
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some error criterion s, whars 0 < ¢ < §; wa then wish to compuie sn approximais
soluticn with arror no greater than «. Two basic quastions concern us:
{L.) For any given methed, what is the complexity of solving this preblem?

(2.) Given any "basiz™ sequence of methods with increasing order, which metivd
has minimal con dlexity?

In Section 2, we describe a methodology that handies both questions for cisssas
consisting of methods whees arror functions have s special form.  Furthermore, we
find thet within such a basic sequence of methods, the following hcid under very
gensrai congitions:

(L) For ony s, there i3 & uniqus cheice of order and slep size minimizing the
complexity.

{2)) As ¢ decrcases, hoth the oplimzl ordar and the complexity increase
monotonicaily, tending fo infinity a3 ¢ te.xis to zere.

Furthermore, within ~sny classes of problems and methods, the “pensity” (o.g., the
amount ths cost curve turns near the oplimum) associaled with using non-oplimal
order tends 1o infinity 28 s tends to zero.

Thess conciugions ara &n interesting contrast 1o known rosuits on zero-finding
via #isrgtions without mewmery. The iatler resulls feri to support the “folkiore” ides
trat it is “betlsr” o use a jow-orger method many Gmes, Gien to use a high-order
mathed a few times. In the orm-point caes, aolimal ordar is low, whiie in the multipoint
czae, oplimal srdar incresses with the groblem complexity (ki with little penelty for
using 2 msthod of non-optimal ordyr) (Kung and Traub {73]). in addition, optimal order
ior thess pcolcisns does not depend on the error criterion; it is computed for the
limiting cas® 25 ¢ 4pprosches 2570

One msy wondar why there is this discrepancy between the resultc for the

initisl-vslue problem snd thess for tho zero-finding probiem, since any initiat-value

_ e RARER s T Ly - R
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problsm may be writtan as an operator eguation, a3 in Stetter [73]1 The reason ior
this is that the methods usad for the two problems differ greatly--thosa for the initial-
valua problem computs sstimates for solution values ot new points by disgretizetion,
wkhile these for zero-finding computs improved estimates for the zero of a function by

In Section 3, we discuss the axtencicn of thess resuits to classes consisting of
methcds whose error funclions are somewhat more complizated than those censidered
in Saction 2.

In Section 4, we introduce the notions of normality and grder—convergencs for @
basic sequencs of one-stap methods. We prove it they zre equivalsnt undar certain
circumstances. A basic sequunce of methods enjoying these properties it very easy to
desl with in many raspects, especially when one is interested in compsring upper and
lower complexity bounds for such a class.

In Sz ‘tn 5, we apply the theory developed in the preceeding sections © th?
general problem of an sutonomous system of equations. We show that the cplimal
order and complexity behave as dascribed by (1.) and (2)) above for the class of
Taylor series methods and for various claseas of Runge-Kutta methods. In addition, we
construct new Taylor ssries methods that are esymnlotically betler {as s« tends to
zsro) than Runge-Kutta methods for problems of small c:mension

In Section 6, we look at the problem of a single scalar autonomous equation. In
this case, we may use the classss of “nonlinear Runge-Kutta methods™ deveicpad by
Brent (74], [76]1 Wa show that the behavior describad by (1.) and (2.) 2bove hoics for
these methods. In addition, we prove that among all classes of nonlinear Runge-Kutta

meathods, those cue to Brent have the highest order possibla.

e e g _ D
S — o




4

Section 7 &sscribes soms numerical ¢ata that support the above theoretical
results. In particular, these data seem to indicate that even for modest values of s,
there are considersbls savings in using msthods of oplime!, rather tnan fixed, order.

Finally, in Section 8, we draw some conclusions, make soms comparicons, point
out some unanswered questions, and define rsw arsas to which this theory should be

ex.onded.
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:‘ é L' l* [ . 1] :
y & Optimality Within a Strong Basic Sequence ,
oy b
bide: &
N We are interssted in the numerical solution of a class of ordinary difterential
\‘; ? equation initial-value problems on a fixed interval I of finite length; we takz I = [0, 1]
- without loss of generality. Mcre pracissly, let D be a set of initial-value points in the
. real N-dimensional linear space RN , and let "9 be a set of operators on RN , such that
. the initial-value oroblem of finding a function x: I » RN satisfying
- L (1) = vix(t) i teintl,
py b (2.1)
f x e ’ x(0) = X0
> ; : has a unique solution for every (xq , v) € Dx?9. The autonomous form of this system !
‘ is no restriction, since any non-autonomous system may be made autonomous by i
@ §
|
increasing the dimension of the system by one. - )
‘ﬁﬁ: : The moael of computation to be used is fairly general. We assume only that all |
“ . arithmetic operations are performed exactly in R (i.e., infinite-precision arithmetic),
f : and that for any algorithm to be considered for the solution of (2.1), a set of
i :;; procedures is given for the computation of any information about v required by that
v 2N
' e ¥ algorithm. (For instance, with Runge-Kutta msthods, we must be able to compute v at
- any point in its domain.)
g In this paper, we are interested in the numerical solution of (2.1) via one-step

. methods, using an equidistant grid as defined in Stetter [73]). (We limit ourselves to

i S O

equidistant grids in order to facilitste the comparison of methods of different orders;

the other extreme is taken by Lindberg [74], who considers the problem of picking an

%‘,
A
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optimal grid for a given method of fixed order.) Thus the methods considered will
generate approximations x; to x(t;) by the recursion

(22) x4y = X +helx,h (Osisn-1,n=hl)

where h is the step-size and ¢ is the increment function for the msthod (Henrici [62])
for briefrness, we will refer to "the method ¢." Despite the fact that ¢(x;, h) will
depend on some information about v, we will not explicitly indicate this dependence.
Thus, the method ¢ produces an approximation to the true solution of (2.1). We
want to measure the discrepancy between the approximete and true solutions. Various

grror measures have been introduced in the literature. These include the local

truncation error per step, the local truncation error per unit step, and the global error;

see Henrici [62] or Stetter [73] for definitions. These error measures may be either

absolute or relative (in the usual sense); they may be measured either at the endpaint

of the interval (as in Henrici [62], Hindmarsh [74]) or over the entire grid (as in
Sandberg [67], Lindberg [74]). There has been a great deal of discussion of which
error criterion is the best one to uss; for instance, G;ar [71] (Section 9.3) uses local
error per step, while Hull et al. [72] use local error per unit step. We take no sides in
this discussion, since any of these error measures may be used in the analysis to
follow.

Before proceeding any further, we will establish some notational conventions.
Let & be an ordered ring; then L* and X** will respectively denote the nonnegative
and positive elements of &. (This will be used in the cases X = R, the real numbers,
and X = Z, the integers.) The symbol ":=" means "is defined to be,” while "s" means
"is identically equal to.” The symbol "¥" will be used to _anote the gradient of a
mapping. If x;, xo: R > R and w: RZ4 R are differentiables, then for i = 1, ., we wil:

write

—
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3 : 3 whxy (Dxo(t)

k % for the result of differentiating u(x;,x) with respsct to x;, and than substituting

~, L x: = x1{t), xo = wo(t). Wa use the notalions "x 1 a" and "x T a" to indicate one-sided

;" . limits as in Bura [65] Finuly, we shall write "(ab).” to inidicate tho cth part of

' eguation (a.b), as in Gurtin F78).

E Now we are prepared to defina our problem. .Lot D anvi ¥ bz as above; R

: 3 consider a problem (xg,v) in Px. Let & be a class of one-ctep methods, and let

; - o: &I » R* satisfying lim hio elwh) =0 be a given function that will serve as an

E ‘ error measure. Choose an error criterion ¢ satisfying the technical restriction 0 < ¢ <

‘ Z 1. We then wish to answar two questions:

- § (1.) Given ¢ ¢ &, how may we pick h € | such that

‘ (2.3) s(ph) S s,

' i and what is the complexity of the procass defined by ¢ and h?

E | (2) How may one choose among all (g,h) € $x] such that (2.3) holds, that pair

g (¢*h*) giving minimal complexity?

' % In order to get useful bounds on e{p,h), it is necessary to introducs the concept ‘
:f k of order. In this section, we will use a highly restricted definition, which we wili relax i
'3 ¢ in Section 3. Let & = {;p: p € Z**}, and suppose that there is an analytic function &
f : i »: R* o R* such that lim p40 «(p)1/P exists and is nonzero and _ 1
_,'E ? (2.9) f(wp,h) = f{p) P forhelandpe Z** . f
! Then g, is said to have strong order p with respect to e, and & is said to be a strong 3
f basic sequence. (Although the error coefficient x will generally depend on the solution
* i, x of (2.1), we do not explicitly indicate this dspendence.) Note that the order of a i

g method depends on the error measure; for example, the order with respect to the local

§ error per siep is nne greater than that with respect to the local error per unit stsp or

i the global error.
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Equation (2.4) is somewhat mors restrictiva than that which is usually
sncountered in practice; more often, we expect x tc 4epand on h. We consider the
8 extension of our resuits to this case in the next section.

Ws now are sble to msasurs the complexity of computing an approximate

_solution to (2.1), with error not exceeding s, using a strong basic sequence @. Indeed,

{2.4) implies that a necessary and sufficient condition for w(pp,h) =g i3 that

(25) h = Wpa) = lp)L/P o~o/P,

7, where ‘

3 26) a= Gl .

(Note that since 0 < ¢ < 1, we have & € R**) Thus, the number of steps needed is
" given by

F (2.7) n = bl = fp)l/PoalP

(Note that n (as given by (2.7)) need not be an integer. But this poses no essertial

difficulty; see (e.g.) Traub and Woéniakowski [76]) Next, suppose that there exists an

.
, analytic function c R* = R* such that c(p) is the cost per step associated with the
method v Finally, we assume that the cost per step does not vary from step to step;

.» for the classes of methods we consider, this means only that we assume that the cost
3 of evaluating v (or its derivstives) does not depend on the point of evaluation. Thus
the complexity C(p,«) of solving (2.1) to within an error criterion s = ™% is simply
. _ given by '

: - (2.8 Clpa) = nclp) = fip) e®/P,

. where we define f: R* > R* by

(2.9) fip) = ulp)/P clp) .

We now turn to the question of picking for each « € R** that order p giving
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minimal complexity. In the analysis to follow, we will drop the restriction that p must
be an integer. However, we will recover optimality over the integers from optimality
over the real numbers in Corollary 2.1 . Without loss of generality, we assume that

(2.10) p>0 implies f(p)>0 .
(1f there were a p > 0 with f(p) = 0, use of the method *p would yield a solution wits
zero complexity, i.e., "with no effort.”) In addition, wo assums that

(2.11) limp e f{p) = 4+,
By (2.9), this assumption maybe viewed as a simple consequence of two conditions,
both of which are quite natural. The first is that limype, c(s) = +c3; the “better” a
method is (i.e, the higher its order is), the more we should expect to pay for its use.
The second condition is that if lim pteo x(p) = 0, thon there must exist a g ¢ I surh that
x(p) 2 AP for p sufficiently large. (For sxample, in the class of Taylor saries methods,
using the worst-case local error per unit step as the error measure, this second
condition would follcw from the assumption that any problem (xg,v) € D0 must have
an analytic solution,) |

Thus in order to find a minimum for C( - ,a), we merely diffarsntiate (2.8) with
respeact to p, finding

(2.12) 3 Clpa) = p2 f(p) o*/P [Gip) - o],
where G: R** » R is given by

12.13) G(p) = p2 f(p)/f(p) .
Thus a necessary condition that p be a minimum for C( - ,a) is that 3 Clp,a) = 0, i.e,,

(2.18) Gp)=a.

Sufficient conditions for the existence and uniqueness of a p satistying (2.14) and

minimizing C{ * ,a) avs given in
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Theorem 2.1: Let f satisfy (2.10) and (2.11). Suppose also that

2.15) G/(p) > 0 whsnsver Glp)>0.
Then there is a function p*: R** » R** such that (2.14) holds if and only if p = p*(a).
Morsover, for all p € R*Y,

(2.16) C*a} := C(p*(a)a) s Clp,a),
with equality holding if and only if p = p¥(a).

(Since p*(a) satisties (2.15), we call p*(«) the optimal order, C*(a) the optimal
complexity, and

(2.17) h¥(a) = hio*(a)a)
the optims! step-size.)

Proof of Theorem 2,1: If we write the Maclaurin seriss of f and substitute it

into (2.13), it is easy to see that

(2.18) limg,q Gip) = O.
We now claim that

(2.19) limpteo Gipl = +o.
Indeed, since (2.11) holds thers is a py > O such that #/(pg) > 0, i.e, Glpg) > 0. Thus
by (2.15), G is monotone increasing on [pq, +), and hence either (2.19) holds or there
exists a 4 > 0 such that Iimpm, G(p) = 4. If the latter holds, then G is bounded, and
we have

HAE) s 872 (1 S t < +o)
for soma & > O; integrating the above inequality over 1 st < p ylelds
Hp) < f1) &8 - 1/,

so that Iim’mm f(p) s K1) e‘, contradicting (2.11). Thus (2.18) and (2.19) hold;

together, they imply that for any a > 0, there is & choice o¢ p such that (2.14) holds.
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Suppose thet for some a > 0, thers were two numbors pg < p; with G{pg) =

G(p;) = @ Then by Rolle’s Theorem, there is a pp between pg and p; with G/(ppi = O,

e dGap

contradicting (2.15). Thus for each « > O, there is a ynique choice of p such that (2.14)

g et S
ARG

holds; we denote this choice by p*(a).

iy P

3 To prove (2.16), differentiate (2.12} with respect to p to find

(2.20) 3,2 Clp,a) = p~ #(p) /P GAp) + [Gip) - &} (3/3p) [p"2 f(p) €®/P] .

ot N

But upon substituting p = p*(a), the second term in (2.20) vanishes and the first term
is positive; so we have

3,2 Clp™ae) > O .
Thus p*(a) gives a local minimum for C( * ,a), which has only one critiza} paint (since

(2.14) has a unique solution) and (2.16) follows. Jj

Note that we have not said that p*(e) is an intager; in fact, this need not be true
in general. Since tha basic sequence ¢ is indexed by Z**, we have not yet salved the
problem of choosing from among all (yp,h) such that (2.3) holds, that pair yislding
minimal complexity. This problam is solved by

Corollary 2.1: For any a > 0, define p*(«) € Z** '~ e that elsment of the set

{Lo*(a)] , Tp*()1} which gives the smaller value of C{ - ,a). Thew

it DY ML S Byttt

C(p**(a)e) s Clpa) forpeZ* .

with equality if and only if p = p**(a).

ks

Proof: Cleariy we need only consider the case where p*(e) is not an integer.

o
o iy A B

Suppose there exists pg ¢ Z**, not equa! to p**(a), with C(og.ei < Clp**(a),a). Without
loss of generality, assume pq < io¥(«}} Then Clpgm) S Cllp*(e) La) 2 Cip*(a),a), which
1N implies that thers is a p; € (pg , pa)) such that 3; X(py,a) = 0. Hence, G{p;) = &, but

py # p*(a). This contradicts Theorem 2.1.
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it may be readily verified that the hypotheses ~.. 7 ...com 2.1 ars satisfisd for
many classes of functions f. Some of these are
le~>-ithmic: f(p) = In(p +8),
monomial: f(p) = p™ (m ¢ R*Y),

exoonential: f(p) = 8P (8> 1),

super-exponential: f(p) = pP , and

hyper-exponential: f(p) = ppp .
(W:; write "In (p + @), where e is the base of the natural logarithms, rather thar "In p"
as 2 technical convenisnce. However, an sxprassion of the form "In (p + 4)" with 4 >0
is necessary to guarantes that (1) > 0.) Furthermore, we find that if f hes the

monomial-logarithmic form

fp) = p2int. ) (a,beR™),

then the hypotheses of Theorum 2.1 hold. This may be verified either diractly, or by
using the following Lamma, alorg with the tact that the hypothesss hold for f(p) = p
and f(p} = In (p + &).

Lemma 2.1: (et f hove the form

fp) = a ML, (PN

where a ¢ R**, and for each i (1 s i S m), f; saisfies the hypotheses 6f Thecrem 2.1
and r; € R**. Then f satisfies the hypotheses of Theorem 2.1.

Proof: It is clear that if each §; saiisties (2.10) and (2.11), then so does f. If
each f; yields (via (2.13)) a G; satisfying (2.15), tiaz, f yields a G in the form

Gp) = I, rGip),

and so i% is clear that G satisfies (7.15). &

Nota that for our purpases, we will only be interassted in monomial and
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meiiomial-logarithmic growth. We include the sther examples of functions that satisfy
the hypotheses of Thecrem 2.1 to iliustrate the wide varisiy of functices that qualify.
So we have sesn that under the hypotheses of Thearsm 2.1, there is a unique
choice of order and step size minimizing ! e total complexity i<r any error crlerion.
What happens to these choices as a changes?
Theoram 2.2: Let f satisty the hypotheses of Theorem 2.1. Then
(1) p*«) and C%(a) increass monotonically with e
(2)  limgpes PH@) = limgpen CHa) = 40,

(3) If there eiists M > O such that «p)}/P < M for all p, then
lim inf g3 h¥(a) > O if a/p*() is bounded as ato.

Proof: To prove (1.), noiz that p* is the functional inversa of G Thus p*/(a) =
G'(p*(a))~! > 0, so that p*(a) increasas with .. Now use the chain ruls:
C*(«) = 3 Clp¥a)a) p*(e) « 3, Clp*(a)e).
But the first term on the right-hand side vanishes by the definitiun of p¥e). So
C*a) = 3, Clp¥lade) = ()] f(p¥e) a®/F @) > 0
ard C%(a) incres:es with e
Suppose trat fim 30, p*(a) # +0 . Since p*(e) incraases monotonically with a,
there is an L > 0 such that lim s, p*(a) = L. So {2.14) implies that
GL) « limype, Glp*a) = lim g @ = 400,
contradicting the continuity ¢i G. Thit proves the first part of (2) . Now for any
a > 0, we have
Cla) = fp*(a) o®/P (@) > f(p¥a)) .
Let aToo; thei (2.11) and the first part of (2) imply that the second part of (2.) hoids.
To prove {3.), lat such an ™ > O exist, so that [h'(ax)]‘1 s M o8/ P‘(‘). Then we
see that liny inf 1o h¥a) > O if [h‘(c)]“ i~ boundad as alw, which itself is true if

a/p*(a) is bounded as atw. §#

e A 0 AN U Mk i

AN el e

et a1
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Therefors under a very general sst of conditions, we sse that the more
accuracy we want in our computed solution, the greater its complexity bocomes. Of
cour<s, this is just what we would expsct. Whst is zomsv hat surprising is that the
min‘ral complaxity is obtained by letting the order , ncreass as the error
decreases, with p increasing without bound as s ’.lends. to zero. Moreover, the last part
of the theorem says that not oniy should the ordor be increased when trying to obtain
a more accurate solution, but that it may .lually turn out that the step-size should
not be alicwed < tand to zero.

We now determine whether we are saving a great deal by using the optimal-
order method. This may be thought of in several ways; we will consider how sharpiy
the cost curve turns at the optimum, the cost-differsnce betwesn .s.ng ¥ method of
fixed order and a method of optimal order, and the cost-ratio of a fixed-order method
to an optimal-order method. We will show that under certain reasonabla conditions, all
cf these measures tend to infinity with &

How sharply the cost curve turns at the mavimum is measured by 612 Clp*(«),a).
If wo consider five of the growth models mentioned above (e.g., monomiai, monomial-
logarithmic, exponential, hyper-exponential, and super-exponential), we find that
612 C(p*(a),a) is monotone increasing for & sufficiently large, and tands to infinity with
a, with kit one exception; in the case of “linear growth™ (f(p; = p), we find that
612 Clp*(a}} 5 &. However, in ihe classes of algorithms we ctudy, the case f(p) = p
des: not arise, provided that we include "combinatory cost™ (see Section 5) in our
complexity measure. Thus in general, we find that the “pointedness” of the cost curve
" near the minimum increases witsout bound as ato .

Next, we will show that for any f satistying the hypothesss of Theorem 2.1, the
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. '- difference in complexity betwesn using a msthod of fixed order and a msthod of

optimal order tends to infinity with e

Proposition 2.2: For any fixed py ¢ R** such that G/pg) 2 0,
fim.poo [Clpgm) - CHw)] = +».

Proof: Pick « so large that p*(c} > pg, and let pg < p < p*(a). If we write out
the partial derivative in the {ast term of (2.20), we #nd that

3,2 Clpa) = p2 1(p) /P G/(p) + p~ [z - Gip)] [(« + 2p) - Gip)] Hp) .
Since pg < p < p*(«), we have G{p) < «; it then follows that 6120(9,3) is positive and
bounderd away from zero as « tends to infinity. Since

Clposm) - C¥a) = 3,2 Clp.a) [pg - pH@}® / 2

for some p between py and p*c), the result follows. Il

As for the cost-ratio, a sim;ie calcuistion shows that

limgta C(po,:)/C’(c) - +®
in all of the examples given above. Thus there are a number of ways in which we
Z incur a large additional cost by not using the optimsl order.
One may wonder whether the result that optimal order increases and tends to
infinity with « is "reasonable.” Ons way of determining this is to sxamine actual
numerical tests; we cite Hull et al. [72] as a wall-known example. Since we are only
: l dealing with methods of fixed order, our theory dces not attempt to handle methods

such as Bulirsch-Stoer, Krogh, or Gear. Howaver, lst us lock at the results of Hull et

- al. for the Runge-Kutta methods (which are germane to cur discussion--See Section
. f 5.2). Even though there are conly three mathods (of orders four, six, and eight) and
» ' thres error criteria (s = 10~3, 1078, and 1079), Table 1 in Huil st al. [72] irdicates that
3 the optimal order does incresse as ¢ decreases. (Ws give mora extensive numerical

data in Ssction 7.)

il
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Finally, wa nots that the restriction that the grid bs equidistant may bs
wozkgned somewhat, provided that we use g focal arror meesure. Idized, Ist | be
parfitioned as =1y u .. u %, and now ascume that we use a grid that is equidistant on
each subinterval [y, .., }. 7hen the tolal complexity i3 given by the sum of the

complaxities of ail subintervals

CipgrmibL®) = Zi, Cilpyh

whare we set

; Cilpa) = fi(p.d ezlp | fi(p) t= q(p)llp cp);

E here x(p} is the error constant of , on L. Since wo use a local error measure, e
' find that C{py,...p,®) is minimized by choosing each p; to minimize C( -, @). Thus the
sarlier results apply; in particular, if we define pi‘(a) tc be the optimal order on [, we

3 find that if f; satisfies (2.10), (211), and (2.15), then pf(c) increases and tends to

infinity with «
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Section 3

Optimalicy Within a Besic Sequence

There are two difficuities with the approach taken in Section 2. The first has
alrsady been mentioned--we generzlly expect the error coefficient to depend on the
step-size. The second is based on the fact that there ars a large number of p"‘-order
methods of a given type, and we wish to use the best method possible. In thecry, this
would involve findirg a p"‘-order method with minimal cost per ztep. In practice, this
is not often possible; there is a gap between the minimal cost theorstically possible
and the cost of the best method known. So we ncw consider the extension of the
results in Section 2 to s more gensral setting, which will take these two difficultias
into account.

We first refine our notion of order. Let v: &%l » R* -be an error measure,
where @ = {¢p: p € Z**} is a ciass of ora-step mathods, a7! suppose that a function
r: R¥x] » R* and analytic functions g, xy: RY = RY exist such that tim p-0 :L(p)ll p
and lim 5,0 xu(p)ll P exist and are nonzero and

(3.1) elpph) = dp) h® forhelandpeZ**,
where

(3.2) 0 < xlp) < «lph) s xylp) < +@ forhel .

Then ¥p is said to have order p with respect to ¢, and & is said to be a oasic

swguence (as in Traub [64]) «{p,h) 1s said to ba the error coefficient of Yp- (Here we

i roduce the convention of attaching the subscripts "L™ and U™ to quantities that

refer to lower and upper bounds on complexity, respectively.)
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This definition of ordsr is similar to that in Cooper [69] and Cooper and Verner
72), except that we inciude a lower bound x (p) on «{p.,h); this lower bound is
necessary and sufficient to guarantee that the order of a method is well-defined. Note
that this definition makes sense for all values of h € [; thus, it is non-asymptotic in that

we do not require h { O in order for it to make sense. Clearly, a strong basic

. . ; Bt T i ek e D s s : .
e per et Oy v S BRI I3 Sty e " i
el g A P i Sl N w , e .
. . - i . . .
. ¥ ! B v A
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seGuence is a basic sequence; hence, the definition of order is an extension of the

e
hy

definition of strong order given in Seclion 2. Finally, note that the order depands on

VL,

the choice of the error measure ¢; for instance, the order with respect to the local
arror per step exceeds that with respact to the local error per unit step by cne.

We next discuss the notion of cost per step. As pointed out above, we will
generally have only bounds on the cost c(p) required per step of a given pth—order

method:

(3.3) ci(p) s clp) s cifp).

That is, ¢ (p) is a lower bound on the minimum possible cost per step, usually derived
via theoretical cons:derations, and cu(p) is an upper bound on the minimum possible
cost per step, which is derived by exhibiting an algorithm for computing ¥p (In what
follows, we shall assume that ¢| , ¢y : R* - R* are analytic functions.)

We now wish to give bounds on 7(p,a), the complexity of finding an approximate
soiution of (2.1) using the method ¢, such that c(vp.h) < 0% Suppose that (2.3)
holds. Then by (3.1) and (3.2), we must have

34) P s e e, h s hpa) = x ey /PealP
Hence, the number of steps n = h~! must satisty

(35) n 2 gpt/P el .

Defining (as in Section 2)

(3.9) Clp,a) = nc(p)
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(i.e., total complexity equals number of steps required multiplied by cost required per
step), (3.3) and (3.5) imply that

3.7) Clp®) 2 Clpa) = fi(p) 6%/,
where

(3.8) tp) = x(@P c (p).

That is, regardless of the algorithm used to compute Ppr the total complexity of finding

an approximate solution of (2.1) must exceed C|(p,a).

On the other hand, we find that in order to use ¥p to find such an approximate
solution, it suffices (by (3.1) and (2.2)) to take
(39) P WP = &% ie, h = hyfpa) = ) l/Poe/P
so that we need only take n steps, where
(3.10) n = xyp)t/Petlp.
(As in Section 2, the value of n given by (3.10) need not be an integer; again, this is
handled as in Traub and Woéniakowski [761) Thus (3.3), (3.6), and (3.10) imply that
13.11) Clpa) < Cuipya) = 0} e?/P,
where
(3.12) fup) = wfeI/P eyl

That is, there exists an algorithm for computing ¥p such that the total complexity of

finding an approximaie solution of (2.1) eguals Cfp,e). We summarize the above

results in
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Theorem 3.1: Let C(p,a) be the complexity of finding an approximate solution of
(2.1), using the method Pp With c(yp,h) se % Then

(3.13) Culpe) s Clpa) s Cifpal,
where C and Cy are given by (3.7) and (3.11). Moreover, if h = h(p,a) is the maximal
step-size for the method ¢ such that c(pp,h) s e then

(3.14) hyfpa) < hipa) < hi(pa). B

Next, we consider the problem of optimality. Define the optimal complexity by

(3.15) C¥a) = inf {Clp,a) pp € 4}
We are intarested in bounds for C¥(a). These are derived in

Lemma 3.1: Let fi and f|; satisfy (2.10) and (2.11), and suppose that f| and fyy
respectively yield (via (2.13)) G, ana Gy satisfying (2.15). Then G; and Gy havae
respective inverse functions pj*, pyy™ R** - R** such that for all p ¢ R**,

(3.16) CL*(a) - CL(pL’(a),a) s Culpa)
and

(3.17) Cy*@ = Cifpyta)a) s Cylpa),
with equality in (3.16) (respectively, (3.17)) if and only if p = nL’(a) (respectively, p =
pu’(a)).

Proof: This is an immediate corollary of Theorem 2.1. |

We call p *a) (respectively, p*(a)) the lower (upper) optimal order, C,*(a)
(respectively, Cij*(a)) the lower (upper) optimal complexity, and

(3.18) h *a) = hy(p *a)a) (respectively, h *a) = hyfpy*(a)a)
the lower (upper) optimal ster-size. Combining (3.13), (3.15), and Lemma 3.1, we have

Theorem 3.2: Let f| and f|; be as in Theorem 3.1. Then

CL’(a) s CYa) < Cuz(a) . B

Note that if we define p*(a) by
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Clp*(a)e) = CXa),
we can make no statement relating p*(a), p *(a), and p/*a). This is because we only
have bounds for C(p,a); we do not know C(p,a) itself. In fact, it is important to realize
vihat p *(a) and py*(a) tell us. First, consider p;*(a). We can achisve a complexity of
Cy¥(a) by using a step-size of h;;*a), along with the method of order py;*(a). This will
give optimal complexity within the sequence of algorithms for compuiing &, with cost
per step of ¥p given by c\y(p). Naxt, consider pl_’(a). It is of perhaps theorstical
rather than computational interest, in that we cannot comnute with it. What does
interest us is CL*(a), since it limits the theorstical improvement in CU‘(a). Thus, we
are interested in pL‘(a) solely as a means of computing CL’(a).

We now consider behavior of thess quantities as a« increases and tends to
infinity.

Theorem 3.3: Let f| and f|; be as in Theorem 3.1. Then

(1) p *a), py*(a), C *(a), and Cj*a) increase monotonically and tend to
infinity with a.

(2) If there exists an My > 0 such that xp)}/P s My for all p, then
lim inf 4365 h*(@) > O if &/p*(a) is bounded as atoo.

(3.) If thare exists an M > 0 such that nq_(p)l-'p 2 My for all p, then
lim inf 4340 by *(a) > O only if a/p| *(a) is bounded as atc.

Proaf: To provb i1.), it suffices to apply (1.) and (2.) of Thaorem 2.2 to pL' and
C_* and to py* and C*. The proof of (2.) and (3.) is similar to the proof of (3.) in
Theorem 2.2. R

Note that (1.) in Theorem 3.3 does not state how p*(a) varies with a; as we have
pointed out above, no statement about p*(a) may be obtained from the information

available, However, it is sasy to see that C*(a) increases monotonically with « aid that

lim g pooCHa) = 400,
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Thus, we have extended the optimality theory of Section 2 to a mors realistic

situation. In Sections 5 and 6, the techniques of this saction will be applied to some X
important basic sequences of one-step methods; we will see that the conclusions of

Lemnia 3.1 and Theorems 3.2 and 3.3 hold for thess basic sequences.
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Sectior 4

Normality and Order-Convergence

Let & be a basic sequence with raspect to the error measure ¢; we say that & is

order-convergent if thears axists an hy > O such that
' (4.1) Iimp?w xfp)hP = 0 for hs hy .
Clearly, the order convergence of & implies that limme c(yp,h) = 0 for h < hg. We
use the term “order-convergence” rather than "convergence,” since the latter term
appears extensively in the literature (e.g., Henrici [62]) and is always ussd to mean &
"step-size convergence,” i.a., limp 10 olesh) = O for a fixed method .

It is intuitively plausible that as the order of an approximation increases, the
approximation should improve, especially when one is trying to approximate a very
smooth function. Unfortunately, Gear [71] points out that an increase in order need
not always decrease the error. This situation appears in other situations in numerical
mathematics; for instance, the family of Newton-Cotes quadrature formulae is not
order-convergent. But suppose there exists a step-size hy > O for which the upper-
bound error is exponentially bounded for p sufficiently large; that is, there sxists
A >0 and pg € Z** such that

(4.2) x{p) ho? s AP forp>pg .

If we define

My t= max { MaxX | <p<pe {xu(P)llp} ) Aho-l} )

we then have

(4.3) olpph) S (Mh)P forhshy,peZ** .
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Note that the bound in (4.3) is similar to that given by Cauchy's Integral Theorem
(Ahifors [66], pg. 122) on the normalized derivatives of an analytic function. In fact,
for several classes of methods, the bound (4.3) holds whenever the solution of {2.1) is
analytic.

We also formalize a weakensd version of (4.3), which will be important in our
study of one-step msthods. Let & be a basic sequence, and suppose that for each
(xo,v) € DxY, there is a sequencs {hp: p € Z'”’} c 1 and a positive constant M) such
that

(4.8) olep) S (MhP ifhshy;
then & is said to be normal. Note that (4.3) implies (4.4), while (4.4) implies (4.3) only

when the segiience {hp} has non-vanishing support:

(4.5) hg = lim infpm, hp > 0.
If hg = O, normality gives an exponential upper bound on the sequence of principal
error functions (Section 3.3-5 of Henrici [62]), which are an asymptotic measure of the
error as h 1 0.

There is a simple ralation between normality at-\d order-convergence.

Proposition 4.1: ® is order-convergent if and only if ¢ is normal with
nonvanishing support.

Proof: If (4.1) holds, then (in particular) we have Iimptw xp) hop = 0, so that
x(p) hop s 1 for p sufficiently large; i.e,, (4.2) holds with A = 1. Then (as in ths
discussion above) (4.3) holds, implying normality with finite support.

Conversely, if (4.4) holds with finite support, we pick a positive hy which is less

than

v == min (My~L, inf {hy: p e Z*}}.
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(Note that # > O by (45)) Let h < hg ba given, so that for some 8 with 0 <3 < 1, we

have h = (1 - &)y if we define &|; by

afp) = My®,

we fine (since h < hp) that

oloph) S (M) .

Thus
7 a(P) hP = (MhIP = (My (1 -6mP < (1 -8)P
(the last step sinco 5 s My™1), so that (4.1) holds. Il
We are now interested in normality and order-convergence for a specific error
7 meusure «; we will be interzsted in fLy>» oL+ and g , which are (respectively) dstined

to be the maximum local error per unit step, local error per step, and global srror per
step over the grid. It is eazy to see that a normal (order-convergent) sequence @ =
{pp: p € Z**) with respect to o naturally yields a normal (ordur-convergent)

.' sequence ¥ = {¥p: p ¢ Z**} with respect to e (; by setting Vp = epyq for p ¢ y A

3 We now look at the relationships between ¢} (; and ¢
Propositinn 42: Let v have Lipschitz constant K on RN, and It & be normal
kb (respectiveiy, order-convergent) with respect to sy 3 with My in (4.4) independent of

¥g € domain(v). Then & is normal (respectively, order-convergent) with respect to e

Proof: (et p be the exact relative incrament function of (2.1) (as definad in

Henrici [62)), so that
x{tje1) = x(t) + hoalx(t), h).
Subtract (2.2) (with ¢ replaced by ’p) from the above to get
oj+1 = o + h [a(x(tph) - wplxih)],

where e; := x(t;) - x; for C Si<n Thus
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llopsgll s llejll + b lletxthh) ~ aleyhl + b fletxi) ~ eptxhill
$ (1+hK) ol « MP HP*L ithsh;

this last step follows from the Lipschitz condition and the “uniform™ normality with
respect to ¢ |, By Lemma 1.2 of lerrici [62] and the condition eg = G, wa have
ol s K1 T2t « i - 1] (VP

s K™ ({1 + 8K - 1] (M )P

s K1 (eF - ) (Mg
for all i; this gives
| sgleph) s KL (K- 1 04MP s (MP iFhshy,
for a suitably-defined M > 0. This proves the normaiity part; the remsinder of the
result follows from Proposition 4.1. |§

It it is undesirable to use the “uniform normality” (i.e,, the conditior that My; bs
independent of xg € domain(v) in (4.4)), we may use the following resuit.

Proposition 4.3: Let v be Lipschitz continuous, lst & be normal (respectively,
order-convergent) with respect to ¢}, and suppose that there exists a A > 0 such thet
for all g, € ® and all x, y ¢ RN,

llep(x) - wplydll s Aplx -yl .
Then &% 1s normal {respectively, order-convergent) with respect to egy

Proof: Immediate from Theorem 3.3 of Fenrici [62].

Thus normality for eg follows from normality for ey, a Lipschitz condition on v
and the elements of @, and a linear upper bound on the Lipschitz constants for the

elemants of &.

Wa now discuss the problem of finding uniform lower bounds on the error which

are similar to the uniform upper bounds which normality provides. This will amount to
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restriction ot the admissible problem class Dx so as to guarantee that the
problems are "sufficiently difficult.” Howaver, this rastriction may be abandoned if we

ars interested only in upper bounds. We shall assyme throughout the rest of thus

paper that there is an M > & (which will generally deperd on &, v, and the problam

(xg:v)) such that
4.5} elyh) 2 (MPRP  forhel.
Note that (4.6) wilt hold for any situation in which th..rs s no ordor-convergence, or in

which the order-convergence (if any) is no faster than an oxpcnential decay;

mareover, in the methods we consider in Sections 5 and 6, (4.6) is a consequance of -

the assumption that all derivatives assume the (sharp) worst-cass upper bound
provided by Cauchy’s estimata. It is clsar that if (4.6) holds for e , it holde for ¢ 1y
if (4.6) holds for ¢ ) and if the iratrix Vg has only non-negative entries (with at Isast
one positive entry), then (4.6) holds for ;-

It is possible to present a simplified version of the expressions derived in
Section 3, under the assumption that & is order-convergent. We first look at the
complexity of a single method within an order-convergent basic sequen .

Theorem 4.1: Let & be order-convergent with respect to ¢. Then

Cupa) s Clpa) s Cyylpal,
where
CLpa) = M ¢ lp) e?/P  and Cufpa) = My cfp) et/P

Proof: This is an immediate corcliary of Theorem 3.1 and the definition of

order-convergance. B

We may now do the optimality theory of Section 3, finding that

A7) GUp) = pZc/(p)e(p) and Gyfp) = p2 cyfiploytp)
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Note that the assumptions (2.10) and (2.11) now state that c|(p) and ¢ jp) must be
positive for p > 0 and tend to infinity with p, which is a natural way to expect the cost
per step to behave. The results stated in Theorems 3.2 and 3.3 hold as before.
Moreovsr, it should be noted that the M) and M needed in (2) and (3.) in the
statement of Theorem 3.3 are precisely the My and My in (4.4) and (4.6). Thus
lim infgpeo hy*(a@) > O if afpy*(a) is bounded 25 a* o, awi a/p *(a) is bounded as
a T o if iim inf pq hy *a) > 0.

Thus, the order-convergence of a basic sequence is useful in simplifying the
analysis of its complexity. Of the thras basic sequences we will study in this paper,
two are known to be order-convergent. The prcof of the order-convergence of the
class of Taylor seriss methods is a simple consequence of the Cauchy estimate; that of
the order-convergence of the (non-opiially ordered) nonlinear Brent-Runge-Kutta
methods {(given in Appendix B) invcives using some classical results ua orthogonal
polynomials to sharpen the proci. :» Brent [74] . (We note that it is not known
whether the c«ptimally-ordersd -2:)..ear Brent-Runge-Kutta methods are order-
convergent; it does appear lihely that they are normal with vemshing support.
However, we do not pursua this class of msthods, because of their high combinatory
cost, as indicated in Section 6.)

It is not known whether the linear Runge-Kutta methods found in Cooper [69]
and in Cooper and Verner [72] are order-convergent; the best result known is the
(My log(p+e))P result given in Appendix A, which involves strengthening the original
proof with other estimates from the theory of orthogonal polynomials. But it should be
pointed out that there does exist a class of order-convergsnt linear Runge-Kutta

methods; this is tha sequence given by using the weights and abscissae for Gauss

o ————e
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quadrature in the methods defined on page 144 of Stetter [73]1 The problam with this
class of msthods is that sach step of % requires 2 P(p+1)! function evaluations; the
prohibitive cost per step outweighs by far any advantage to be gainad from the
order-convergence. Thus, thc 3estion of whether there exist any order convergent
linear Runge-Kutta methods which are more efficient (i.s., have smaller cost per step)

remains open.




Section B

Appiications to Systems of Differential Equations

In the next two sections, we apply the theory developed in the precesding
sections to two of the most commonly-used classes of methods, le., Taylor series
methods and Runge-Kutta methods. In Scction 5, we shall treat the complexity of
sy"stems of differential equations, i.s., problems of the form (2.1) for which v is an
cperator on RN, wnere N is an arbitrary positive integer. In Section 6, we shall
resirict cur atiention to the scalar cass, i.e., the case where "9 consists of functions
v: R = R; for this case, Brent [74] has discoversd a class of "nonlinear Runge-Kutta
methods.”

Before discussing the complexity of these basic sequences, we fix our arror and
cost measures. For the sake of dafiniteness, we shall choose (3 a8 OUr error measure;
that is, we willl be interested in the global ~rror, rather than the local error per step
or per unit step. However, the other error moasuro;; may be used with a slight
modification of the discussion contained in the secuel.

We rnow maks precise cur notion of cost. We will be concerned with the total

number cf arithmetic operations required. Let $ be s givan basic sequence. As in

Traub and Woéniakowski [70] we shall express the cost par step s<scciated with v in
the form
(5.0.1) c(py:= B(S'ZP(V)) +dip) .

Here ﬁzp(V) is the information about v required to perform one step of Yo and we

writa a(mpl.v)) for the infermational cost of ¥pi We csll dip) the combinatory cost

of Pp-
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Note that we explicitly indicate the depandence of mp on v, so that we may
compars the cost of (say) an evaluation of v with a scalar arithmetic opsration.
Basically, e(mp(v)) maasures the cost of getling new data about v required by v
while d(p) measures the cost of combining this new data to get an approximste value
of the solution at a new point. For example, Euler’s method in rN

Xje1 =X} + hvlx;)
has informational cost 2?11 e(v;) . where vy , .., vy ars the components of v and for
any function «: RN, R, we define

5.0.2) e{w) := cost of evaiuating w at one point .

The combinatory cost is 2N arithmetic operations, i.s., one scalar multiplication and one
scalar addition for each of the N components.

Finally, we now assume that D and " have been chosen so as to guarantes that
the solution of (2.1) is analytic on 1 Thus Cauchy’s Integrai Theorom guarantees the
existence of a positive M such that for all positive integers p, we havo

(1/pY) IXPIt)j s MP fortel.
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B.1. Teylor Series hethods

The class ®7 of Taylor series methods is defined by expanding x in a truncated

Taylor series. Thus the incremsnt function ¥p is given by

(5.1.1) voleht = ZD20 vl b / (s,
where

(5.1.2) V) o= (a/at [ | ) m x,
The usual method of computing (5.1.2), as described in "classical® numerical analysis
texts such as Menrici {62], invokes the ehain rule. This quickly ieads to sxpressions of
horrifying complexity; for this reason, most texts quickly abandon the discussion of
high-order Taylor series mathods.

We are interested in faster algorithms for computing ¥p First, we address the
problem of a iswer bound for the combinatory cost d(p).

Proposition £.1.1: There exists a constant a_ > 0 such that any sequence of
algorithms for computing $ must satisty

(5.1.3) dp) 2 a pN .

Proof: Any algorithm for computing ) requires the infarmation

N = (0P 0slBisp-1} .

(We use the standard multi-index notation found in Friedman [69]) It is then sasy to
see that the above sai l.es C(pN) {as p T o) distinct elements, which are (generally)
independent; this is an immediate consequence of Problem 11 in Chapter [ of Pblya and
Szegd [25] Thus (5.1.3) gives a linear lower bound. |

Note that tha constant a| in (5.1.3) depands on A Since we 2re treeting the
case where N is fixed and p is allowed to very, wa will not indicale this dependence

expliciti 2. We now ses how close we can get tc an oplimum velus for d(p).
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Theorem 5.1.1: There exists a constant aj > O such that the combinatory cost

d{p7 of computing ¥p € ¢ satisfies the bound
(5.1.4) dip) < ay pNin (pee) .
Proof: We first consider the case N~ 1. Note that x(h) is the zero of
(5.15) F(z) = ﬁo dk/vi® - h.
As in Brent and Kung [76), we consider the formal power series
P(s) = Flxp+s) - F(xg),
where s is an indeterminate. Let V be the power series reversion of P. Adopting the
notation of Brent and Kung [76], we see that
x(s) = xg + W(s) = xg + Vp(s) + O(sP+l) |
By the uniqueness of the Taylor coefficients of an analytic function, we see that
pplxoh) = h™lvyth).
Since the number Vp(h) can be computed in O(p In p) operations from the Taylor
coefficients of v (by Theorem 6.2 of Brent and Kung [76]), the result for N = 1 follows,
For N 2 2, we use Newton’s method (Rall [63]) applied to the formal power
series operator P given by
(Py)s) = yls) - xg - fg viv(e) dr ;
clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined
recursively, Let a formal power series x(p)(s) satisfying
X(p)(s) = x(s) + o(sP*1)
be given. Precompute
(5.1.6) w(s) = ﬁ) V(x(p)(f)) dr - xg - x(p)(s) + 0(s2P*2) |
(5.1.7) Qls) = Wulx(py(s)) + 0(s2P*2),

and let u(o)(s) m 0. Then set

x(2p+1)<s) 1= x(p-,(s) + U(p+1)($) '
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where

©B.1.8) ygpp)s) = f3 Qrd ugeyln) dr + wis) + O1s2P*2), O sksp .

Following the proof given in Rali {69], we find that
X(2p+1)fs) = x(s) + Os2P*2)

We need only consider the cost T(p,N) of computing the series x(p)(s) in
determining d(p), since x(h) may be recovered from the formal power series in O{p)
operations. Clearly, we have the recursion

(5.1.9) T(2p+L,N) s T(p)N) + Tg + T7 + Tg,
where T, is the cost of step (5.1.m) for m = 6, 7, 8. Lot COMP(p,N) Le the time
required to find the first p terms of the formal power series f(y(s), .. , yNis)), where
f, Y15 « » yN are formal power series, aﬁd ¥1s = » YN have zero constant term.
Theorem 7.1 of Brent and Kung [76] states that

COMP(p,2) = O(p2 In p),
and it is easy to show that for any N ¢ Z**,

COMP(p,N+1) = O(p COMP(p,N})) .

Thus for N 2 2, we have

(5.1.10) come(p,N) = 0N In p),
and so we see that
Tg+T7 = 0(@p+1NInp).
Finally, let MULT(p) be as in Brent and Kung [76}; we see that
Tg = (p+1) [NZ MULT(2p+1) + O(p)] = O((2p+1) In p)
if Fast Fourier Transform multiplication (Borodin anu Munro [75]) is used. Since N 2 2,

we have

G.1.11) Tg+ Ty +Tg = 0(2p+1Nn p),

and so (5.1.9) and (5.1.11) imply that
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ToN = 0N inp),

which completes the proof. |

(Note that the second algorithm is inferior to the first algorithm when applied to
the scalar case N = 1, where we find that the second algorithm requires O(p2 In p)
arithmetic operations.)

We now determine bounds on C(p,a). First, consider lower bounds. Clearly,
there exists ey (v) 2 0 such that

5.1.12) e(Dﬂv;) 2 elv) (1sisn,ifle zh .
Since mp(v) has O(pN) elements, there exists a constant b > O such that

(5.1.13) elipv) 2 by e (v) pN .
From (5.1.3) and (5.1.13), we have a lower-bound cost per step of

(5.1.14) cL(®) = [a +b_ e W1pN .
This leads to

Theorem 5.1.2: Ci(p,a) = My [a + b e (V)] pNeo/p

Proof: This is an immediate consequence of (4.6) and (5.1.14). #§

Note that f,(p) := M (p) satisfies the condlions of Theorem 3.2. So the
optimality theory of Section 3 holds. In particular, we have

Theorem 5.1.3: C *(a) = My [a + by e (V)] (e/NN aN .

Proof: From (4.7); and (5.1.14), we find that G| (p) = Np, so that

pLia) = /N and h ¥a) = (MMl .

The result follows by letting p = pL‘(c) in the definition of CL(p,a;). [ |

However, recall that we assumed that the non-identical mixed partial derivatives
of v are independent. There are a number of systems for which this is not true (for

instance, constant coefficient linear systems); for suck systems, it is clear that we may
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be able to use the extra information of non-independence to find algorithms that are

faster than the lower bounds given above. However, we will ignore this case and only

consider the probiem for a "general” function v. .o
Next, we turn to upper bounds on the complexity., Theorem 5.1.1 tells us how to

combine the necessary information to get the solution at a new grid-point; we need

only measure the cost of getting the information. So, let

e{ly) = max {e(D‘v;): 13isN |l =k} .

A P
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TIRIRTrYY
skl el

L

Using the result in Pélya and SzegB [25], we see that

G.L15) ey s NIPT o®lw) (Noke1)t / [RIN-1)] .
‘: Unfertunately, the right-hand side of (5.1.15) does not fit our general model, so we
E must assume that we know hcw e(k)(v) changes as k increases, Wa will consider the

case where the cost of derivative evaluation is bounded; that is, we will assume that

(5.1.16) e®hv) < o fv)

for some e(fv) independent of k. Other cases (eg., e{kXv) = O(k™) for some m > 0)

3 may be analyzed in a similar manner; of course, they will give different results. By

(5.1.15) and (5.1.16), there is a by > 0 such that

A (5.1.17) eM,v) < byeytvpN.

From (5.1.4) and (5.1.17), we have an upper-bound cost per step of
‘ (5.1.18) Cufp) = ay pN In (p+e) + by eu(v)pN .
This leads to

Theorem 5.1.4: There exists an MU > 0 such that

Cufp) = Mylay pN in (p+e) + by eU(v)pN] oo/P

Proof: By Cauchy’s Integral Theorem, there exists a B > 0 such that

xS+ D 7 ke1)t s B%

where we define
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(5.1.19) iyl == max 4 ¢ 1 ly(OH
for any y: [ = RN, Thus by Section 3.3-3 of Henrici-[f2] we see that a Lipschiti

constant for s in @1 is given by
ZP7o Ik bk f et s ZPTL @MY s Liem (1 -BROTD,
provided that h < hq < gl By Section 3.3-4 of Henrici [62] and Proposition 4.3, there
exists an My; > O such that
CG('pah) < (w h)p .
The result now follows from Theorem 4.1 and (5.1.18). B

We are now ready to consider the cptimal p for Cigp,a).

Theorem 5.1.5:
(1) For all @ > 0, there exists pu‘(c) such that (3.17) holds.
(2)  py*(«) increases monotonically with «, and
’ put@ ~a/N asatow.
(3) Cy*(a) increases monotonically with e, and
CU‘(C) ~Myay (e/N)N Nine asat .
@) hyte)~MyeN! asatw.
Proof: Clearly c|; satisfies (2.10} art (2.11). Now write
Gfp) = Gylp) + Gylp),
where
Gy(P) = Np and Golp) = »p?/Co(p);
here we set
Da(p) := (p+e) [(p+e) In(p+e) + 1] and » :~ a3/ [byeifv)] .
We see immediately that G; satisties (2.15); a straightforward calculation shows that

Gp/(p) = » [D(P)T2 {rp [in (p+a)] - 1] + 26[¥ In (p+e) + 1]},

U
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so that Gy/(p) > O for p > 0. Thus Gy satisfiss (2.15), which shows that Gyj satisfies

(2.15). Hence pi;* and C;* behave as described in Theorem 3.3.
Since pu*(a;) goes to infinity with a, we see that
a = Gyfpy*@) ~ Npy*e + p ¥ / In p fa) ~ Npy*e),
which gives the asymptotic astimate in (2.). The rest of the Theorem follows from this
estimate. J
Unfortunately, the estimates given above are only asymptotic as a T o; this will
be typical, since many of the equations to be solved involve products of {ogarithmic

and polynomial terms, and thus cannot be solved exactly. On the other hand, these

asymptotic expressions ars sufficient for our purposes, sirce they describe how
quickly py;*(a) and C|j*(«) increase with

Note that as « tends to infinity, CU‘(c) becomes independent of e fv), which
= measuras how hard it is to evaluate the derivatives of v; this is becauss the

combinatory cost eventually overwhelms the informational cost. This kind of buhavior

will be typical of the complexity anzlyses in this paper. Finally, note that the bound

(5.1.20) € *a) = OlaM) < Ca) < Ol Ina) = CYa) asat

, implies that !
Cu*@ / C Xa) = Olina)as a T 0

this indicates the gap in our knowledge of the complexity of solving (2.1) via Taylor

saries methods.

e T T~ S
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5.2 Linear Runge=Kutis Methods

For many functions v, caculation of tha derivatives required by Tavior series
methods is prohibitively expensive. For this reason, we ars interestsd in mathods
which use information that is somewhat more readily avaiiable. In perticular, we will

consider methods that usv only evaluations ¢f v, combined in a highly structured

manner. We say that & py Is a class of linear Runge-Kutts methods (abbreviated, "LRK

methods") if each increment function pp M8y he written in the form
5-1
(6.2.1) op(xi,h) - z|_0 Agi iy ‘
where §
-1 ‘
(5.2.2) kj = V(Xi+hzj_okﬁkj) for0siss-~1, '
the integer s = s(p) is said to be the number of stages of ¥pi the number of stsges is - ;
equal to the number of times the vector function v must be evaluated. (In order to
simplify notation, we will not explicitly indicate ths depandencs of Aﬁ and kj on p.) The

method o defined by (5.2.1) and (5.2.2) is explicit in that k; depends only on

oy
£
%
X

kg s = 1 K13 see Butcher [64a] for a discussion of semi-sxplicit and implicit methods.
Since ths function ¥p is (in practice) always evaluatad by using the cbvious

algorithm suggested by its definition, we shall identity an algorithm for evaluating *p

m—cn o w e v A g

with fp itself. Thus the problem of finding ths best algorithm for evaluating ¥p in
P pK Is equivalent to the problem of finding the bast hasic sequence of LRK mathods
¢ possible. This is related to the problem of finding the smallest value of s{p) such that
¢p has order p. This minimal value is given by
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r

p P=123,4

p+l p=56
(5.2.3) s(p) =

p+2 p=7

unkngwn p28

For methods of order greater than seven, a gap develops. For instance, sighth-order

methods with eleven stages exist, and it is known that any eighth-order method-

requires at least ten stages. For arbitrary p 2 8, thé bsst bounds known for the
optimum value of s(p) are

(5.2.8) p+d(p) s sip) s (p2-7p+18) /2,
whare ¢(p) 2 ¢ In p for all p sufficiently large (for some ¢ > 0). The lower bound is
given in Butcher [75]} the orocf is quite involved, and the resuit is not much bette-
than the “trivial™ lower bound s(p) 2 p {Hindmarsh [74}, page 84). A class Sy Of
methods such that o requires only (p2 - 7p + 18) [ 2 stages is given in Cooper and
Verner [72].

We first consider lower bounds on the complexity C{(p,a) using LRK methods.
The "trivial” lower bound s(p) 2 p will be used, since the term d(p) will be small when
p is small and will not affect the asymptotic behavior of optimal order and complexity
for p large. It ie b~own (Butcher 764)) that at least O(pz) of the subdiagonal slements
of the matrix A (whoss slements are the x,j in (5.2.2)) must be non-zero in order for A
to define a pth—order method. Thus there exists a; > O such that

(5.25) dip) 2 a p?
since s(p) 2 p, we see that

(5.2.6) e(mp(v)) 2 Neg(V)p,
where we now write

eL(v) = min 1<isN e(vi) .
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Thus (5.2.5) and (5.2.6) show that a lower bound on the cost per step for Yo Is given
by

(5.2.7) ci(p) = a p? +Noy(v)p .

Theorem 5.2.1:

Cilpa) = My [a pe +N e (V) p] eo/P

Proof: This follows immediately from (4.6) and (5.2.7). i

It is cloar that f,(p) = My_[a P2 + N e (v) p] e®/P zatisfies (2.10) and (2.11).
We claim that f| yields a G satisfying (2.15). Indeed, write

fi(p) = t;(p) f5(p),
where
fi(p) = My a p
and
folp) = p +v, where » := Nev)/a .

Clearly f, yields a G; satisfying (2.15). Since fy is a linear polynomial with a negative
zero, it may be shown thrt f, yields a G, satistying (215). Thus f yields a G
satisfying (2.15); in fact, we have

(6528  GUp) = &1(P) +Galp) = p L +(L+oplyly.
This leads us to

Theorem 5.2.2:

CL¥m ~ (M. aLezld]cz as.cTco .

Proot: From (5.2.8), we ses that G (p) ~» 2 p as p T @, Since (2.10), (2.11), and

(2.15) hold, p| *(a) tends to infinity with . Thus
a= GL(pL‘(c)) ~ 2 pL’(a) acat®,

i.8., p *(a) ~ a/2 as a T . The result now follows from Theorsm 5.2.1. [§

|
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We now turn to upper bounds on complexity. The class doygy derived in
Cooper and Verner [72] has two deficiencies, tha first of which is thst no uniform
upper bound on ’LU("p'h) is known for @cyrys in addition, the combinatory cost for
this class of methods is O(p?) as p T . Instead, we turn to the basic sequance &®-py
discussed in Appendix A. There, we prove that there is an My > 0 such that

(5.2.9) ecleph) s (Myin(p +e) hP,
provided h < hp, where hp = {(In p)"l) 25 p T ®. Furthermore, thers ara a large

number of extra zaros in the matrix A for ¥p ¢ $crk- Using the notation of Appendix

A, ‘we see that the number of non-zero antries in A is

Tok = Tyl ep

=~ p3/3-p2/2 + 7p[6
s p3/3 + 2p2/3

for p € Z**. Finally, note that the number of stages s(p) requirad for ®p € ®cRK is

(5.2.10) s(p) = L(p2-2p +8Yz] s p2f2 +p
for p € Z**, which shows that the number of stages required for a pth-order method
in ®opk 2symptotically equals the number requires for a pth-order method in ¢oypi-
Thus (considering the combinatery costs), the class $oypk actually costs more per
step than does &cpy: ignoring the combinatory costs would have caused us to reach
the opposite conclusion.

First, we look at the cost per step. By (5.2.10),we see that

(5.2.11) e(mp(v» < 2 (zc:2 +p) Nedvi,
where

eyfv) = max jgonelvy) .

Since we are using $cRry; it is easy to see that there is a by 2 2/3 such that

(5.2.12) dip) s (p3/3 + by p?) - N .
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bounded by

{6.2.13) P = N[2p3/3+ 3 p2+Brp ],

By = eyfvV)/2+2by =2nd Gy = efv) /2.

Using (5.2.9) and (5.2.13) gives

Theorem 5.2.3:

Cufpa) = M. N (2p3/3 + f ;:a2 +8>5 fin(p +e) nelp /]
Now we look at the optimality theory for ne uppar bourd.
Thegrem 5.2.4.:

(L) For all @ > 0, there exists p;*(«) such that (3.17) holds.

(2) py*(e) increases monotonically with ¢, and

put(c) ~ af3 aseto.
(3.) Cy*(a) increases monotonically with «, and
CU‘(C) ~ [ZMUNeSI'dl ]aalna ssat o
@) hyte) ~ (Myedtna)! asato.

Proof: We write

e ——

fiag) = Myin(p +2) c fp)

in the form

flp) = f1(p) f5(p),

whers

fi{p) = MyNpin(p +e) and folp) = 2p7-/3+.‘!1 P+8p .

As was pointed out in Section 2, § | satisfies the hyrnotheses of Theorem 2.1.
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Combiting (5.2.11) and (5.2.12), we seo that the total'czzmbimtory cost per step is

Now wa

consider f,. Clearly fo has no positive zeros; it may be seen that the condition
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by 2 2/3 implies that fo has a positive discriminant and hence has no complex roots.
Thus f; has only negative reoots; one may the:: show that this guarantess that f,
satisfies the hiypotheses of Theorem 2.1. By Lemma 2.1, the same may Lo said for f.

Thus pyy* and C|;* behave as dascribed in (L) of Theorem 3.3. Ws also see that

Gu(p) ~ 3 pasp T o Thus the estimate in (2.) holds, from which we get the estimates’
in(3.) and (4.). B

So in the class of linear Runge-iutt> metnods, we find that

(5218  C *a) = Ol«?} < C¥a} $ C(a) = Ole® Incj
as « tends to infinity; hence, the ratio

Cy*@ / C %) = Ofeina)

indicates the gap in our knowledge of ths complexity of linear Runge-Kutta methods.

Finally, we wish to compare the classes of Taylor ssriss methods ani LRK
methods. Write Cyy1*, C) 1*, and Cr* (respectively, Cy ri* » Cpk" » and Cpry®)
for Cy* C.* and C* in the class @7 (respactively, the class ¥ ) Since we have
only asymptotic éxprassiows for these quantities, we are forcsd to use an asymptotic
comparison. If f, g : R** o R** salisty lim g0 Ka) » lim gqq 8la) = +0, we will

write

(5.2.15) f<g iff fl@)=olp(easat o;
we say that f is asymptotically less than g. If £ < g, thers is an ag > O such that
f(e) < gla) for a > aj, so there is a2 non-asymptlotic interpratation of the order
relation <. In addition, we see that if { < g, then g(c) grows much more quickly than
f(a) does as « increases. Using the results of (5.1.20) and (5.2.14), we then have ths

following
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(1.) If N =1 and (5.1.16) helds, then Cy*< Cipic® .
(2} itN24,then Cp*<Ci* . 1
So if de~'vatives are cheap to evsiuate, we see that the best Taylor serias
method known is betler than the best linsar Runge-Kutta msthod possible for the
scalar case N = 1; but if N 2 4, the bast linrear Runge-Kutta method known is better

than the best Taylor ssrios msthod possible.

e — - o
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Theorem 5.2.5: Suppose that (5.1.16) holds.
(L) ItN=1,then Cyy*<CLyink’ -
}
(2) ItN=2then Cyt*< Cyipyi’ - i
(3) 1t N =3, then ;
Cyr'(e) = O(Cy) ry*(ad ‘
and
| Cugrctie) = OCy7*(e)
\ asata
(4) INz24,then Cypm<Cr*. @ :
If (5.1.16) does pot hold, then (L), (2), and (3.) may be falss, but {2} wilt i
.~ certainly be true. As an immediate coroliary to the above theorem, we have ;
i Theorem 5.2.6:

Lo, LT S Aol ert L Sm s ~ nenn e R Tt e Sacimmmial Siem et Dot e mp - o w es i
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Section 6

Noriinear Runge-Kutta Methcds for the Scalar Case

We now consider a generalization of the familiar LRK methods, based on the
description in Brent [74], [76] A basic sequence $ppy is said to be a class of
nonlinear Runge-Kiitta methods (abbreviated, "NRK methods”) if each increment
function ¥p may be writtan in the form

(6.1) vplxph) 2 eglayh; kg, w Ko y) s
where

(6.2) kj t- v(yj), yj = fj(x;.h; kQs — ’kj-l) 0<jss-1)
for suitable functions #;: RMRXRNT » RN {0 5 j < s} as in the linear case, s = s(p)
is the number of stzges (i.a., evatuations of v) of Yo Again, for notziionsl convanience,
we do nnt indicate the dependence of the !‘j' Yjp and Tjon and p.

In the remairder of this section, we will only consider the scalar cace N = i,
since It is not known whether NRK methods exist for larger values of N In this ca:ze,
(5.15) shows how an s-stage NRK metho« of order p may derived.frorn a (p+l}th-ordcr
iterative method for sulving the nonlinear equation

(6.3) F(z) = 0 ’

using Brent-informaticn (Mesrsman [76]) of the form
(6.9) Q?a’s(F) Hod {F(Xo), F’(Xo)) F’(Yl)o ey F ’(YS-l)} .
Brent [741 [75] used this transformation to derive a sequence ®\gRry Of (modified}

Brent-Runze-Kutta methods ("BRK methods™), in which the s-stege mathod has orde-

(6.5) p = 2s-1.
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?’urthermore, Meersman [76] proved that this order is the greatest possible in the
class of all such BRK methods. We now extend Meersman’s result to include all NRK
i methods.

Theorem 6.1: No s-stage NRK method can have order greater than 2s - 1.

Proof: Let ¢ be an s-stage method with order p. We will construct (from y) an
iterative mathod ¢ of order q:=p + 1 for finding a :.;imple zero ; of an arbitrary
analytic functionF : R 2+ R,

The method v is defined as follows. Let xq be an approximation to | such that
F’ is nonzero between xg and f. (Since F/(}) # 0, such an xq exists.) Write tg :=

F(xgh without loss of generality, assume ty < 0. Now apply one step of ¢, using a

e e

step-siza >f -tg, to the problem
%0 = FxN! tg<t<0) with xitg) = xg,
whose solution is the functionsl inverse nf F
x(0) = Flo) = ¢ ;
3 then ¢ is given by
: ¥ixp) = xq - tn elxgi-tg) -
By the defin''on of ordar for iterative methods, it is clear that ¢ has order g;

moreover, ¥ uses the generalized Brent information (Definition 1L3.3 of Meersman [76])

E Ngps = (Fixoh FAyQh FAy ) m s Fys )} -
E Suppose that yg # xq; then g S 2s by Theorem 11.2.3 of Meersman [76]. On the other
‘1 hand, if yg =xg, then ¢ uses the Brent-information (6.4) by Theorem IL2.4 of

Meersman [76] {also due to Woéniakowski), we have q s 2s in this case also. Thus in

either case, we find that
p+l = qs 25,

and the desired result follows. §
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Thus ®MBRK is informationally-optimal in the class of NRK methods, in the sense

that each ®p in ®pgpK uses the minimum number of stages possible for a p‘h-order
NRK mathod.

We will now derive lower bounds for the complexity Ci{p,a) via MK msthods.
Clearly, Theorem 6.1 implies that

(6.6) e(ﬂp(v)) 2eVi(p+l)/2,
and a linear lower bound on the combinatory cost states that

(6.7) dip) 2 a_ p
for some a; > 0. By (6.6) and (6.7), a lower bound on the cost per step for ’ is

(6.8) c p) = (a +e(v)f2) p +e(v)/2,
which leads to

Theorem 6.2: C(p,a) = My [(a +e{v)/2) p + e(v)/2] ea/p

Proof: This follows immediately from (4.6) and (6.8). [

Note that f| (p) := M_ ¢ p) is a linear polynomial with a negative zero; it then
follcws that f; satisties the conditions of Theorem 3.2. So, the optimality theory of
Sec:’c . 3 holds; in particular, we have

Theorem 6.3: C\*a) ~ M e [a +e(v)/2]e asat .

Proof: From (4.7); and (6.8), we find that

Ge) = P2/ (p+a L), where 8 = 1422 [elv),
and 50 G (p) ~ p as p T o; thus p *(a) ~ @ as @ T co. The result follows by Istting
p = pL*(a) in the definition of C\(p,a). §

Next, we consider upper bounds on the number of oparations required. Instead
of using ®),grKs We will use the class $grk of "unmodified” BRK methods described in
Appendix B, where it is shown that thers is an My > 0 such that

(6.3) ogleph) S (MyhP;
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no such bound is known for ®)i8rK-  In addition, &\ apy requires the solution of p - 1
linear systems of squations, the ith having p - i unknowns, in order %o perform a
“reorthogonalization.” So the smallest known combinatory cost for this class is sbout
0(p3'81) arithmetic operations; this is obtained by using Strassen’s technique fer linear
systems (described in Borodin and Munro [75]). On the other hand, most of the
combinatory cost for v in &gpi is involved in finding the coefficients of the
polynomial p.., (see Appendix B); once these coefficients are known, the remaining
combinatory cost is O(p In p) as p T . An estimate of how much work is required to

compute these coefficients is given in

Lemma 6.1: Lst xg, Y1)~ » Yp» We 200 — » 2, D8 given, and let
Q) = [k a ¥
be the unique polynomial of degree at most r + 1 satisfying
Qlxg) = wg, QUxg) = 29, and Qly;) = z; (1gisr).
If T(r) is the time required ta computs qg, . , q;,1, then
T(r) = Ofr Inr) asrtoo .

Proof: The coefficients qj, 2qp, .. , (r+l)gp,) of Q' may be computed in time
Ofr Inr) by using a fast algorithm for computing the coefficients of the Lagrange
polynomial interpolating the points (xq, zg), (yy.2;) - , (¥.2,); see Borodin and Munro
[75] for details. Then O(r) ope. ations yield 4y, - » Gp4]s and Horner’s rule gives qp
with O(r) additional operations. Ji

Thus there exists aj; > 0 such that

(6.10) dlg) s aUplnz(pw) .

In order to simplify matters a bit, note that Theorem B.1 implies that

(6.11) e(?lp(v)) S efv)p
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Ailthough the estimate above is not exact for p > 2, it is asymptotically equal to that in
Theorem B.1. (If. necessary, the sharper estimate given thers may be used, but the
calculation of optimal order involves considerably more detail, the results of which are
not particularly enlightening.) Combining (6.10) and (6.11), we see that the cost per
step is bounded by

(6.12) cylP) = e(vip+ayp In(p+e) .
Thus (6.9) and (6.12) imply

Theorem 6.4: Ciffp,a) = My[elv)p +a,p In2(p+e)] e®/P . B

We now detarmine the behavior of pU*(a). Here we find that f {p) := M c\fp)
may be decomposed as

fulp) = t1(p} f5(p),
where
f1(p) = Myelv)p and fo(p) = 1+8 lnz(p+e) ,
and B := ajy / e(v). Clearly fy and f, satisfy (2.10) and (2.11), and f; yields a G;
satistying (2.15). We need only check that t, yields a G, satisfying (2.15). But
Go(p) = 28 p2 in (p+e) / Do(p), where Do(p) := (p+e) fo(p),
so that setting
go(p) = B p In2(p+e) [in (p+e) - 1]+ 2 f e In2(pre) + (p + 28) In (p+e) + p,
we find that p > O implies
Gy/(p) = 2 8p gylp) / Dxfp)2 > O .

Thus the optimality theory applies.

R o I P e v R Vep—
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Theorem 6.5:
(1) py(e) increases monotonically with e, and
pytla) » a asato .
(2) CyMa) incraases monotonically with & and
i@ ~ Myayea In2e asato.
(3) hyfe ~ My ! sato.

Proof; (1.) follows from the fact that Gifp} ~ p as p T o (2) and (3.) follow
from (1.) and Theorem €.4. §

So in the class of nonlinear Runge-¥utta methods, we find that

(6.13) C M) = Ka) s CHa) s Cfle) = Ofw In%e)
as a tends to infinity; so, the rstic

£ @) [ C e = Olinfe) asato
indicates the gap in our knowledge of tha complexity of nonlinear Runge-Xutta
methods.

Finally, we wish to compare the classes of Taylor seriss methods and NRK
methods. Adopting tha notation at the end of Section 5.2 in an obvious mannsr, we
have

Theorem 6.6: If (5.1.16) holds, then Cy1* < Cpynrx* -

Proof: Immediate from (5.1.20) and (6.13). N

Thus if derivatives of v are easy to evaluate, the best Taylor series msthod
known is better than the best nonlinear Runge-Kutta method known. However, if the
cost of evaluating the kth darivative of v increases faster than O(in k) as k T ®, then it

is easy to show that the opposite will be true.




Section 7

Numerical Results

In the previous sections, we computed (for several classes ot methods) that
crder which minimized the work required to attain a given error criterion. Here, we
consider actual numerical recuits of optimal order and minimal cost for various test
problems and classes of methods. The nptimal order for a given error criterion was
determined by finding, for sach method implementad, ths coarsest mesh that allowed
the error criterion to be :atisfied; the resulting complexities were then compared to
determine the optimal order. The error measure used was the “endpoint error,” i.e.,
the co-norm (sme a.g., Stewart [73], pg. 164) of the difference betwesn the true and
computed solutions, evaluated at the endpoint of the intervai of intersst (the unit
interval I). All testing was carried out on the Carnegie-Mellon University Computer
Science Department’s PDP-10 in ALGOL and FORTRAN, using double precision.

The tirst problems considered were of the form

(7.1) x(t) = Ax(t) x(0) = 1
on the unit interval L Although this problem is easy to handle analytically, any general
problem of the form (2.1) may be locally approximated by a linear system of orc nary
differential equations (ses e.g., Hindmarsh [74], pp. 17-18). If th coefficiant matrix of
this linear system is diagonalizable, an uncoupled set of scalar equations of the form
(7.1) will result,

These problems were solved via Taylor series methods; the optimal order is

given in Table 7.1 for the choices of A indicated. Here the optimal order was taken to
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be that order which minimizes the number of evaluations of the right-hand side of (7.1)
required to attain the desired errrr criterion. As sxpecad, the numbar of evaluations
required increases as the erru.  -iterion s decreases. Morsover, the optimal order
also increases monotonically as s decreases, just as the theory predicts.

We next turn to the solution of the test probiem

(7.2) X(t) = cos?(t)  x(0) = O .

For this problem, we searched for the optimum “unmodified" Brent-Runge-Kutta
method. For this problem, the optimal order was taken to be that for which the actual
CPU time (in milliseconds) requiraed to solve the problem to within a given s was
minimized. Since there is a certain amount of randomness in such & measurs, the mean
time for ten runs was analyzed. Not surprisirgly, it turned ou! that the order which
minimized the CPU tims also minimized the number of evaluations of the right-hand
side of (7.2). Since the (n + 2)N-order method requires the zeros of the Jacobi
polynomial G,(2, 2, * ), and the best set of values available only contained the zeros
for 1 s n g 8 (Table 25.8 of Abramowitz and Stegun [64)), only the methods of order
not sxceeding ten were implemented.

The results for probiem (7.2) ars given in Table 7.2. Here, the optimal order p?,
the optimal number of mesh points n*, the minimel number of evaiuations C:, and the
minimal mean CPU time C: are given. Note that thess all behava as predicted. In
addition, we computed tho ratio of the msan CPU tima for & fourth-order method
C:M, * ) to the minimal mean runtime. As the theory predicts, this ratio appears to be
increasing without bound as s tends to zaro. (The same behavior was found for the
ratio Cy(4,°) / C: , where Cal4, * ) Is the number of evaluations required by a fourth-

order method.)

Finally, we looked at the "hard" problsm
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K = 32 G KX sis2)
3 (7.3)
3 %i(t) = ffz exp(-;; (t - N elsinedr (151,js2)
(where “"exp” denotns the exponential function), with initial conditions

x1(0) = ¥,(0) = 1

The vij were all taken to be one, while tne ¥jj were taken to be
711 -] ’ 712 '722 = 10-6 ’ v21 = 10-3

(This system of differential equations is similar to the system governing a two-species

gas chemical reaction; see e.g., Finlayson [71])

e Since the system (7.3) is nonscalar and nonautonomous, the Brent-Runge-Kutta
3 methods are not appropriate. Since the derivatives of xi(t) are nct readily 2vailable,
” the Taylor series methods are not particuiarly easy to apply. Thus we used linear

Runge-Kutta methods for the solution of (7.3). The particular methods RKp of order p

(1 < p s 8) used were as follows.

RK1 ... Euler's method

RK2 ... Raiston [66] (5.6-40) "modified Euler”
RK3 ... Ralston [66] (5.6-45)

RK4 ... Ralston [66] (5.6-48) "classical methoc"”
RKS ... Cassity [66]

RK6 ... Butcher [64b] (first method on page 192)
5 RK7 .. Shanks [66]

RK8 ... Cooper and Verner [72]

P T e

A

The methods of order less than eight have the optimal number of steges per step,
while the method of Cooper and Verner has the minimum number of stages of ali
= elghth-order methods known (see Section 5.2).

Most of the work involved in solving (7.3) was in evaiuating "‘ijm- An obvious
change of variable reduces this to a Gauss-Hermite quadrature; & twenty-point

quadrature (Tabla 25.10 of Abramowitz and Stegun [64]) was used for maximal

accuracy. The Chebyshev rational function approximation given on page 356 of

N . K § e e T
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Frdderg [69] was used to compute (sin ¢) / ¢ for |¢| S 1; the system doubie-pracision
sine routine was used for j¢}> 1.

Since so much of the time required to soive (7.3) was spent ir evaluating "ij(t)'
the measure of cost was the number of svaluations of the set {qj(t): 1si,j$2}
that is, we measured the number of evaluations of the (vector) right-hand side of (7.3).
(Moreover, the amount of computer time required to search for the optimum was so
great ss to preclude running the problsm a large number of times and averaging the
results, as was done in the previous example.) Results are given in Table 7.3, where
P, nf, and C: (defined as for (7.2)) are given as a function of the error criterion. The
table stops at \ = 10'5, since the eighth-order method (i.e., the highest-order method
implemented for testing) was reached at that level. Again, note that the theorstical
results predicted aras confirmed in this difficult examp.s.

So, our three numerical examples yield data which agree with the theoretical
result that the optimal order p*(a) increases with a = In ol Moreover, in Sections 5
and 6, we saw thst p¥(a) = Ola) as a T o; i.e, the optimal order increases linearly
with . The data in Tables 7.1-7.3 support this resuit.

Further testing still remains to be done. In these examples, we picked problems
that were well-suited to one particular typs of method (e.g., it was easy to get the
derivative information required by Taylor series methods for (7.1)). Future testing
should look at problems that ars "neutral” in the sense that the informations required
for the various classez of methods are equally hard to obtain. Thiz would allow the
comparison of various classes of methods. In addition, we point out that “fast”
methods of polynomial marinulation wers not used (due to the additional programming
involved in designing such a package); perhaps such a package should be mplemented

for future testing of the Taylor series anJ nonlinear Runge-Kutta methods.

; Al < e = W —————
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Taylor Series Methods for Test Problem

TABLE 7.1

() = Ax(1) x(0) = i
“logyps | A=-e | A=-1 [ Am-lfe | A=1lfe | An]l jA=e
1 2 3 1 1 3 8
2 g 4 2 2 4 9
3 11 6 3 3 ) 11
4 12 7 4 4 7 12
5 14 8 S ) 8 14
&6 15 9 6 6 g 15
7 16 18 7 7 18 16
8 17 11 8 8 11 18
9 19 12 9 9 12 19
tes:

> .:zlﬂayi-%-'
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1. In all cases except A\ = -8, 5 = 10‘1, the optimal mesh-size was

h = 1.0; for this exceptional case, it was h =05 .

2. Entry in table is the optimal order for the given A and s. This equals
the mimimal number of function evaluztions required to solve the
problem on the entire unit interval, except for the excepticnal case
noted above, where four was the minimal number of evaluations.

e
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TABLE 7.2

Brent-Runge-Kutta Methods for Test Froblem

5 . i = cosx(t) x(0) = O

"!0‘106 p‘ n* C: C: C‘(at ) C:

e

1 1 2 2 2.783 3.93

i 2 2 2 4 7.8264 3.28

b e T R
R i L S

3 4 2 l 6 | 23.154 1.88

8 | 3z2.481 1.38

Rk g o

18 | 456.837 1.87
12 | 68.978 2.15
14 | 75.813 3.18
16 | 92.852 §.58
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Linear Runge-Kutta Methods for Test Problem

TABLE 7.3

MO~ I OO0 x0 =1 (sis2)
cij(!) = ¥ Sigg exp(—rlj (t - 7)2) rlsine dr (1si,js2)
-l tl ot | c
ogjp¢ | PO | @ o

1 3 8 | 24
2 4 | 18 | 48
3 4 | 15 | &8
4 7 3 | &
5 5 g | 99




Section 8

Summsary and Conclusions

In this thesis, was have constructed 2 methodology for studying the
computational complaxily of one-step methods for the numericsl solution of ordinery
diffsrential agualion initisi-vsiue problems. We developed lower and upper bounds on
tha complexity of ¢ given msihed, snd chowed how to pick that mathed within a basic
ssquancs which miniadzes complexity, Under very general hypothesss {which wers
later verificd for g number of commonly-used classes of methods), we saw that the
optimal order Incroases as the error criterion s decresses, tending to Infinity as s
tends fo 2ury; this is in contrast to the situation in iterative complexity (Traub and
Woéniskowski [76]). borecver, in many of the specitic classas of methods studisd, we
saw that the oplimal stap-size does np! tend io zero witn s, a resuit indicating that it
is impsrtant to not assume that h tends to zerps. Thess rezuite of optimal ordsr and
step-size were then used !o find bounds on the complexity of uolving the equation to
within 2 given s, using a givan class of msthods; using thess bounds, we were sble to
compare the "goodness” ¢f ssveral such classes.

We now turn to some izsues that have besr £+ 2g by this study. Probsbly the
most important point is that we havs found svidzn.s that high-orlar methods may be
of praclical (i.a,, computational), ss weil as thsorsiics, arest, However, wa need {0
learn much more about them, the crucial point not being that of gatting maximal order

for a given information sst, but thalt af gstiing svinimsl complexity for a mathod of

3 given order. For example, the optimsily-ordared ciess &) mru has graater complexity
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than the class ®gpy; indeed, the cifferences in combinatory cost far outweigh any

advantages the former has over the latter, as was ptinted out in Section 6. (Even if
we were to take the drastic step of ignoring combinatory cost, we would still be faced

with the fact that $gpx is known to be order-convergent, while no such result is

known for @),gnr.) A similar situation arises when we compare the classes $opy and
®cyrk Of linear Runge-Kuita methods (Section 5.2).

Finally, we consider some open qusstions.
(1) In a2 number of instances, we have only been able to show “trivial" lower
E bounds, i.e., lower bounds which are linear in the amount of information needed.
However, the bes! algorithms known have complexity which grows faster than linearly
in the size of the information set. How may we narrow thic gap? (Note that this is an

issue that touches almost all areas of complexity {reory.)

pliiiag
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(2) What are the possibilities of extending this ana',zis (0 include
"polyalgorithms” for the solution of initial-value problems? It is often wise to vary the
step-size from steo to step; furthermore, many existing programs allow the order to

vary. It would be useful to have a complexity theory that includes these methods.

(3.) We assumed throughout this thesis that infinite-precision real arithmetic

iF ik

E: was available. It would be of great interest to study the complexity of initial-value
problems using variable-precision arithmetic, a far more realistic model.
(4.) What is the comglexity of using multistep methods to solve initiai-value

problems? We have some preiminary resulls for the class of Adams-Bashforth

predictor /Adams-Moulton corrector methods, using ¥gRy o find the necessary starting
values; this work will be reported in a future paper. (This class is order-convergent,

and a result similar to Theorem 3.3 holds; it also appears that the choice of starting
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method is of great importance in the complexity analysis.) Besides the multistep
methods, many oth, classes of methods remain to be analyzed, such as extrapolation
methods, spline methods, multistep Runge-Kutta methods, and special methods for
;'stiff“ equations. (Of course this list is by no means exhaustive; see Gear [71] or
Hindmarsh {. 4] for further discussion.)

(5.) The error equation (3.1), (3.2) holds for non-iterative methods for the
solution of a number of other problems such as boundary-value problems for ordinary
and partial differential equations. Hence, we suspect that a great deal of the analysis
in Sections 2, 3, and 4 may go through unchanged. A long-term goal is the study of

such problems from a complexity viewnaint,
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Appendix A

Error Bounds for a Basic Sequence of
Cooper-Runge-Kutta Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK*)
methods due to Cooper [69]) We shall first prove the following
Theorem A.l: There is a basic sequence ¢y of LRK methods such that
(L.) Each ¥p ¢ $ Rk requires
s(p) = (pz-p+2)/2
evaluations of v per step.
(2.) There exists an M; > 0 such that
(A1) ogloph) S (MyIn (p+e) h)P
for h < hy = Ol(in p)1).
We use the notation of Cooper and Verner [72]) Let p € Z** be given; define
p:Z*n[0,pl+> Z* by
o keiGen /2 itjdp

(A.2) p(j) :=
S if ] =P,

L )

where we write "s" for "s(p)” as defined above. Next, a set {§p, ..., {;} ot integers is
defined by picking §y := p, and setting £ (i # 0) to be the uniqus integer in (1, p]
satisfying

(A.3) ol -1) <i s olf) .
We now pick ug , ... , Ug € | salisfying

(A.8) up=0, ug=1, y A0 iA0

and
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5 (A.9) &= Ej and i ¥ j) impliss u; ¥ uj -

Finally, we pick a matrix of cosfficients A := {xﬁ: 0sjsi-l, 1s1ss)}such that

(A.6) k‘j=0 if'a<5j-1 (1shjss3)
and

A7) Nyl = el Osesg-L1sise .
Cooper anr; Verner [72] point out that these conditions may always be fuifilled; the
resulting A defines a pth-order LRK method with s stages.

We are interasted in a choice of Ug s - » Ug which will give s small error
coefficient. To lthis end, we will choose

(A.8) {uj: fj-n}-{(1+xkn)/2:1$k5n} (lsrnsp-1),

where X, , « , Xpn are the zeros of the Jacobi polynomial Py := Pn(l’” (seo

Szegd [59]). Since these zeros are distinct and lie in [-1, 1], conditions (A.4) and (A5)

may be satisfied.

Now we are able to exhibit a solution to the ith system in (A.7). First, note that
i@ equation for ¢ = O may be separated from the others, since up = 0. Setting
2 nw=¢§-1, *
we see that

(A9)  Ng = G-ZiNj = u-T{k; i<iand fzn},

the last by (A.6). We wish to determine the nonzero xﬁ, i.e., those X{i for which 51 2n

and j <i. So setting

: |
A xi; =0 unless j¢ (jl 1y Jn} ) :i:s
; we see that the remaining \; are the solution of the system :
k n Y. - -1 e+l ?'
§ Z,a1 Y xilk (r+1)" y, (lsesn) .
‘; ; Thus the \;; are the weights for an interpolatory gquadrature formula on [0, y;] with

',k




- %
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2.icissae Y P an . From the usual exprassion for such weights and (A.6), we see
that

Mj. ™ Hikn = [2P,’(cos dkn)]-l S ;i,ml {Pp(cos 9) / (cos & - cos &, )] sin & d¢ ,

UM
where x, ., = cos ¥, (1 Sk <n).

Lemma A.l: py,, = Otnlinnasnt e

Proof: Since the zeros of P, are symmetric about the origin, we may assume
that 0 < &, < #/2. Using (8.9.2) of Szegh {59], we then find

Hikn = O(k3/2n=3) j' :;i,n-rl [Pnicos @) / (cos & - cos @ )] sin & d¢ .

Case 1: Finel S "i,n+l S O neif2. We consider the integral over

(91,/2, "i,n +1] s since Theorem 15.4 of Szegh [59] proves that
O>/Zn3y 1 71 +1 jgl"/a = owh

here tiie integrand is the same as in the preceding integr.l. But the proof of (15.4.12)
in Szegd [59] extends almost immediately to a proof that the remaining integral is
O(k‘zn), since (15.4.12) is proved by order-uf-magnitude estimates. Thus Hikn ™
0tn~1) = 0(n"! 1n n) for Case 1.

Case 2: Fns1f2 S %inet S 30 n,1/2. We consider the integral over
(Pxn/2 ',i,n+l] y since Szegd [59] shows that
| = o7l .

-3)
| j"‘m/ 2
As in (15.4.13) of Szegd [59], we have

d.
LN+l 0(nk'3/2)l + 1, .
Sdknlz : 2
Here
K
Iy = ( W*lpgysine .
1 j'o,m/'z
with

O(9) := [cos (N0 + o) - cos (NOyn ¢ 1))/ [cos @ - cos ®nl>

where N:=n +3/2 and ¢ := -3%/4, and
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Ip = "L:;Zl Ry(®.04) sin & d¢ = Olnk~3/2)
with R, the remainder term in (8.8.2) of Szegd [59] Unfortunately, the proof that
(15.4.18) of Szegh [59] is bounded does not extend to a proof that I; is bounded,
since the proof of the former requires that the interval of integration be svmnetric
about 9, ,,. However, it is straightforward to verify that
4. .
Iy = o) §5/% ein 3 / 610 = Oinm) .

Thus wy, = O(n"zk iInn) = O(n'1 In n) for Case 2.

Cose 3 Bdynyy S Gine S 3z/4. ‘We consider the integral over
(3%x,/2, "i,ml] , since Szegd [59] proves that

5/2,-3v| (¥ - 1%
03/2n 3| f3,, a1 = Ola™)

But the proof of (15.4.19) in Szegh [59] extends to prove that the remsining integral is
0(k‘5/ 2n) (as in Case 1). Thus pj, O(n'l) - O(n" In n) for Case 3.

Case 4 3r/4 < "i,n+1 s "n+1,n+1' We consider the integral over
[3x/4, "i,ml] , since Szegh [59] shows that

5/2. -1 (F | w -1
O3/ 3§ f3jq1 = 07H) .

As in Cases 1 and 3, the proof of the above may be extended to piive & similur bound
on the integral of interest. Thus wy, = O(n"l) " O(n‘1 In n) in Case 4, completing the
proof of the Lemma

Thus (A.9) and Lemma A.l show the existence of a A > 0 such that

i-1

(A.10) 2’.“0 lhijl S Mn(g +e);
here \ is independent of p. Moreover, the result for the case i = s may be sharpened.
We see that xs, 2 0, since the Y for the sth system in (A7) sre the abscissas for
Lobatto quadrature. Thus

s-1 5-1
(A.11) 2,-_0 !ijl - zj-O ksi -1,

the consistency condition in the last equality being a consequence of (A.7) with ¢ = 0.
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Proof of Theoram A.1: As in Cooper and Verner [72], we define

& = x(ujh) - k;
and
5 j'ui (uh i-1 .
i} Muh)du -zj_o Aij X(ujh)

for 0 s i < s; note that §g = ¢ = 0. Let z(h) bs the computed approximation to x(h);

then
h~L fx¢h) - 2] = |1 7L [x(h>-x(0)l-zf.'é Asi i ll
(A.12) s lIsgll + llzis.'é Asi 8l

S lIBgll + max k= p-l lis;ll 4
the last by (A.6) and (A.11). By the analyticity of x, there is an A| > 0 such that
8 = bl [ xtup) - Sy IR0 [ o ] 5 (Ap P
and
-1
7y o %G - 280 it 0000wt s (g Wb
so that the definition of §; gives
i-1
& < 8+ 3j.0 Nt i
E . -l
(A.13) S (Ap )+ zi_o Ikijl (Ap h)
i

&

S (Az h)

for a suitable A, > 0. Thus (A.12) becomes

(A18)  h7Lneh) - 2l s (Ap hIP 4 max & = p-1 il -

We now use Lemma 1.1 of Cooper and Verner [72] and (A.6) to find that if L is a
Lipschitz constant for v, then there exists Ag > 0 such that

i-1
lll < LG+ hL 570 Dyl max j 1
41
s (Ag h)s' +(Agh)In (¢ +e) max i Ilsjll )

tha last by (A.10) and (A.13); here, the maximum is taken over all j < i such that

Ej 2 & - 1. A straightforward induction shows that if (1 +In 2) Ag h < |, then
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el S (Agin (& + &) I

for a suitable Ay > 0. Combining this with (A.14), we find

(A.15) bl fiuch) - 20l < (Ag In (pro) WP,
the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschitz constants
tor the increment functions. Let L be a bound on [|Vvil, and write "va(y,h)" to
indicate gradient with respect to the vector variabls y. Now

Vel 5 Z5 Ml max ggig-1 NVK I
= max pggs-1 IVKity:hli,
where we write "k(y,h)" lo indicate the dependence of k; upon y and h. By the
definition of k;(y,h), we find
Vi) = Vi) [y + h Zj_g Nj Tyl
where u=y + h 2;1) xij kj(y,h) and 1p is an NxN identity matrix. Taking norms in
the above gives the resuit
5 s Lk#hu[ln(&,w)max{fj: j<i and E,-z&,- t}],
where §; := ||Vki(y,h)ll. Writing xp for the Lipschitz constant for Ypr it is sasy to see
that (A.16) and the ebove inequality imply
A 8 2050 LN ILZ in (pre-t0,
which is bounded for all p, provided that h s hp <(Lin (pw))’l. Thu: {A.1) follows
from this resuit, (A.15), and Theorem 3.3 of Henrici [62] &

The value for s(p) indicated in Theorem A.l may be improved somswhat by
noting that since we ars using a Lobatto quadrature, higher order may be expacted
with fewer steps. Indeed, if we use ths strategy outlined in the comments following

Theorem 4 of Cooper and Verner [72], we have
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Theorem A.2: There exists a basic sequence ®crx ©f LRK methods such that
(A.1) holds and ¥p requires
s(p) = W(p2-2p +4)/2]

evaluations of v per step. Ji

N

b
n




Appendix B

Order-Convergence of a Basic Sequence of
Breni-Runge-Kutta Methods

E i In this Appendix, we dascribs a4 subclass of a class of iterative methods for the
. solution of scalar nonlinear equaticns. This subclass will then be used to generate an
order-convergent basic sequence ®gr of nonlinear Runge-Kutta methods.

E v Lemma E.l: Let F: DcR - R have » simpls zero §, and suppose that F is

analytic at §. Pick k, m ¢ Z*" with m « 1 2 k Then thers is a saquence

"

¥im ™™ Wmn ¢ 0 € Z+) of stationary multipoint methods without memory such that

the following hold:

g e Btk ab L

(1.) The msthod Vkmn Uses the information
7 nkmn Had {F(xo)» -y F( I'H)(xo)’ F(k)(YI)n R F(k)(yn)}
- (the points y; , .. , y, being suitably chosen) to compute s new

'f approximation x; to § from a given approximation xq by setting

- X} = ¥gmalxQ) -
(2)  There exists a B> 0 and an hg > O such that if |xg - T s hg , then
Ixy =8l s Blxg=-tI* forallneZ*,
where
3 (8.1) p = mnim+2n+i,2m+n+1) .
£ Befors proving the Lemmas, we describa how the method .., computes an

improved approximation xy from the old approximation Xq -




At et Lk 61

i iyt

70

Algorithm for computing xy = Wy pn(xg).

(1) Let 8 := [F{xg)/F'(xg)l.
(2) Letez 1 ba an approximate zero of
pyx) = 2?:0 (x - )to)i F“)(xo) i
satistying
(B2)  zy =~ %o +0®) and Ipy(z)) s (A §HL,
where A, is independent of n.
(3) Let
Yi == X9+ G (21 ~xg) (lsisn),
where
Gin = (Lex:) /2
and x> ... > xp, are the zeros of the Jacobi polynomial
Px) = Plk-L mel-K)y)
(see Szegd [59)).
(4) Let Pn+] be the polynomial of degree at most m + n that interpolates the
information @}, ., , and let x; te an approximate zero of p,,; satistying
(8.3) xp = %0+ 0@) and Ipy,iix))l s (Ay 8P,
where A, is independent of n and p is given by (B.1).

Here we use the notation of Brent [74} Clearly, ¥y .., € C/(k, m, n), the only
difference being that conditions (B.2) and (B.3) replace {2.2) and (2.4) of Brent [74] It
is easy lc soe that (B2) and (B.3) may be realized by using [logo(m+1)] - 1 and
flogolp/(m+1)] iteraticns of Newton’s method, with the raspective starting
approrimstions of xg - F(xg) / F/(xg) and zj .

Proot of Lemma B.1: Lot x|’ be the exact zero of p,,; naar xg. Wa ther find

that there is a { between x’ and z; such thal
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(B.A)  [F(xy N S Ipneyizy) = F2p) + Ipf4y (8 - FABI iy =20 .
lging (B.3), the analyticity of F, and standard techniques of interpolation theory
(Traub [68]), it is easy fo show that (2.8) snd (2.10) of Erent [74] may bs rewritton ez
IPrag) - FI s (Ag ™1 and
(8.5)
P2, 1000 - FAx)} s (Rq T

for fx - xgl S 48. (Here ali constants A, wiil be independent of n.) Similariy, we find
thst

by -2l s (Ag O™ and 2y -1l 5 (Ag BT,

o that the trisngle inequality gives

(B.6) EPRIPRT L

Using (B.4), (B5), and (B.6), we see that
10 ) S Ipgay(zy) - Fizg)l + (Ag 2

(8.7) )
S lpnsyf2g) - Filzyl ¢ IFo(zy)l + (Ag p2menel

where

Fyoa) = o2 x - xgl Filixg) /it and Fplx) s= FO) - Fyad

Clesrly [0l 5 (Ag HM*2P*L 50 that (8.7) becomes
(8.3) Flxy/d s Prs1f2y) - Fl(zl)l + (A0 .
As in Brent [74], we now write
pml(x) - rl(x) + fa(X) ’

where r, (i = 1, 2) is the polynomial of degree at most m + n satistying

rixg) = Flidxg) 0 £ism
and

rMyp = FMyp sjsm .
It we let

Plx) = rylx + xg) - F(x + xg).
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and write ¢ := zy - xq (in this Appsadix only), we find that

PiX0)=0 (0sism and PKhg ) =0 (Lsisn) .
We may easily alter the proot of Lemma 4.3 in Brent [74] to show that
rifzh ~Fy(zg) = Pls) = 0.

Thus (B.8) becomes

{8.9) Flxp N < Irplz)l + (A 8.

To bound the remaining term, let us write
rofx) = 2;’:1 Bjym (X - xo)j"m ’
recalling that rp has a zero of multiplicity m 2t x, . Using the notation of Stewart (73],
we see that the nonzero coefficients of r, are given by the sclution of the linear
system
Wy = ¢,
where
jj = a{nl (1<ijsn),

§j v a-,(_msi‘m(j+m)‘:/(j+m-k)! {(lsjsn), and

]

v = & Fz(k)(y-,) / okl

in (Lsisn) .
Sinze Wiica Vandermonde mairix, we find that the entries of U = wl &g given by
fij * in -1 Cn-ipn-1,j [ Trgj @jn = @en) s
where
:p‘rn'll, =z aplnn - ap“vn i
the sum being tsken over all multi-indices Py — Py not includ:ing j (Gregory and

Karney [69]). Since there are fewar than 2" summands, eack of which lies in [0, 1],

. $ 2%, implying that

we see that “un-l,

oyl s 20wy [ Tygy b - @)

So we have




nl = 35;,1 vl
$ n 2" max 1<jsn | A Fz(k)()'j) / [6;1:“ Gn'(“jn)] I,

(B.10)

where
Golx} = Gplm+ L +2-Kx) = O], (x - )
(see Abramowitz and Stegun [64]).
Now it is clmar that
mek m-k
By Theorsm 8.9.1 of Szegd [59), we may show that
% 2 Ay n2;
using this result and (22.5.2) of Abramowitz and Stegun (64), we find that

K -
MaX | <icn [Q;:‘ Gn’(cin)] !

m

By the symmetry relation (4.1.3) of Szegh [59] we may assume that O < x;, < 1. Using

8.10

+2n +

1
. ) max | cicn IPn'(xjn)i'l ,

Theoram 8.9.1 of Szegd {59], we may show that

Pa' a5 (A7,
and s0 (B.10), (B.11), the definition of Fp, and the above imply that

Il S (Agq 92l
yielding ths resuit

oz s 2;‘_1 TH S nmax g Il S (A SMHENL

So (B.9) becomes

IFO Il s (Ayg 80 .
By Taylor’s Theorem, this implies

i/ -l s (A2 8P .

The desired rosult then follows from (B.3) and from (2.5) of Brent (74} §
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We now describe the basic sequence ¢y . The methods in this basic sequence
are given by
wilxg,h) = vixg),
polxg, h) = vixg +hvixg) / 2),
and for p 2 2,
vplxg s h) = h1 ¥1,1,p-200! = %01 »
with "1,1,p-2 applied to the function F given by (6.15) and the approximation x; to

x1’/ being given oy an appropriate number of iterations of Newton’s method {as

described above),

Theorem B.1: The basic sequence &gpy is order-convergent with respect to the
global error. Moreover, the number of stages s(p) required by ¥p € ®gRrk is given by

p itps2
s(p) =
p-1 ifp>2

Proof: We use the notation of Lemma B.1, writing z(h) for the computed pth-

order approximation x| to x(h) and p,,1( ", xq) for the polynomial p,,; . The resuit
of Lemma B.1 is that
™l ja(h) - x(h)] < (8NP,

the desired result for a single unit step. To prove the giobal result, we must considar
the Lipschitz constants for $gpy.

We implicitly differentiate the result pn*l("l" xo) s 0 to find

3 eplxg h) = -1 Qn (x) xg) + slxg) .
where
Qnaifxy’ixg) = 1+ 32 P41(x1" xp) /3] Pryyilxy’s xp)

and

i) = h1 d/axg) [x) - xy7] .

e I S L S R e S R T R AN T T SR T L e
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It is easy to see that xy and x;” are anulytic functions of xg . Since their difference

tends to zero uniformly on the domain of v as p T @, it follows that
lim pteo lp(XO) - 0.
We claim that
Qn+fxys%g) = Ohinp) as nto,
uniformly in %q . Tc see this, note that we may write the interpolation polynomial Pn+l
in terms t Jacobi polynomial P, , finding that

Prsilxxgd = (-1 (/2) 5’{‘1") Pathdt + hvixg) Iy, Ikn = b,

where
fx) = 2(x-xq)/[hvixgl] - 1
and
1 i)
T = [2 (1 + xq) Vi) Prflegn)TH 77 @+ 1 P /@ - ) it
Ne .

31 Pasikylxg) = LR [ vixg) ¢ (e P E L g Lny) s
where
SRR 4t ST
Lan(x) = P 00 [ [Py/(xy,) (% - %)), 3nd
gt == 1 /[(1+8vlxg+(1+hvixg)/2)] .
By (8.21.10) of Szegd [59], the first term in the expression for 8y pp,,1(x1’, Xg) goes
to zero as n T @ ., A minor modification of the proof of Theorem 14.4 of Szegd [59]
shows that the 4 st in the remaning term tends to g(f(x(h))) asnt . So
91 Ppsitxy’ i %) ~ vixth)! asnteo .
tsing Lemma A.1 and techniques similar to those yielding the above estimate, we, find

32 Pr+ilXy’ 1 %g} = Othinn) - vixih) ™! asnto .

This gives the estimale ciaimed for Q,, (x;/, xo) .
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So the Lipschitz constant for vp ¢ $gR 8rows as the logarithm of p. By

Proposition 4.3, gy 's order-convergent. §
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