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Abstract

We consider the task of numerically approximating the solution of an ordinary

differential equation initial-value problem. We-arm Interes in two questions:

(1.) For any given one-step method, what is the complexity of finding an
approximate solution with error less than ?

(2.) Given an infinite sequence of one-step methods of increasing order, how
should the method and the step-size be picked so as to minimize the
complexity of finding such an approximation?

We-describe a methodology that handles both questions. Furthrmore, we find that

within such a sequence of metho*s, the following hold under very reneral

circumstance,

(1.) For any s, 0 < s< 1, there is a ur.ique choice of order and step-size which
minimizes the complexity.

(2.) As a decreases, both the optimai order and the complexity increase
monotonically, tending to infinity as s tends to zero.

These rosults are applied to several classes of one-step methods. In doing so, we

exhii some new Taylor series methods that are asymptotically betttar than Runge-

Kutta methods for problems of small dimension. Moreover, we prow#, that among all

classes of nonlinear Runge-Kutta methods, those due to Brent have the highest order

possible.
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Section 1

p Introdction

With few exceptions, past work in analytIc coMpuftat10l complexity has focused

on the problem of finding a zero of a (nonlinear) trarmformation of Banach spacee; in

most worh, this problem is specialized to that of finding a zero of an operator on a

finite-dimensional real or complex vector spce (and in much of this work, the probtem

is further specialized to the one-dimensional casel Wuch has been discovered about

the computational aspects of iterative schemes for the solution of such problems,

especially in the areas of minimal complexity (eg.., Kung ared Traub (73, Traub snd

Wo:fniakowski [76]) and maximal order (e4g, Kung and Trab (741 Wolnlosid [75],

In this - jper, we will consider another topic in analytic computlirasl co'm ity

theory, that of finding complexity bounds for the numerical solution ot ordinary

differential equation initial-value problems on a fixed lrterv*L We *it not be

interested in questions of the existence and the unilUens of tht soltio, to s ,

probl s; in fact, we will restrict our discussion of the aFplication of Zonerxi results to

the case where the unique solutions to these pfoblems are a"alytic ftumwtri-.

We will limit ourselves here to classes of or*-steh M.fethSIS 13r the nurn ic-.

solution of these problems; in terms of informational issage, the" .ethods are

analogous to iterative zero-finding methods without memory (Traub [641 [72).

Analogous to the one-point itorative methods with memory tie the MWbis§ Mjb9!

for initial-value problems; thee methods will be deat, with in * future ppar.

Our approach will be lo assume that an initial-value problem is given, ,itv -ith

=t-
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somae error criterion s, where 0 < 6 < 1; we then wish to compute an approximate

-1 solution with error no greater than . Two basic questions concern us:

(.) For any given method, what is the complexity of soiving this probltm

(2.) Given any 'basic* seque= of methods with increasin order, which method
has minimal con Plexity?

Ln Saction 2, we describe a methodology that Itandlu both questions for ciasses

consisting of methods whoe *rror fmctlons have a special form Furthermore, we

find thtt within zuch a ba;ic sequence of methods, the following hoW urder very

genrai conditions:

(U For 6 s a, theme 4 r unique choice of order and step size miniMizing the
comploxity.

(.) As s dcreases, t4,h the optimal order and the complexity Increase
monotonicaily, twndin to infinity as s teWs to zaro.

Furthermore, within wmiy clanses of problems aW methods, the 'penalty" (a., the

timount tho cost cumrve turns mar t,* optimum) associated with uti n non-optimal

orwde'e ten1 to infinity as s tweds to zero.

These con.iusions ame an interesing contrait to hawn resufts on zero-finding

via iiMr oi, without memy. The latter res,.As tent to supoort the *folklore" idea

that it is bettor" to ute a low-order mthod mny limes, than to use a high-order

method a few times. Ln tfhe ce-ownt cau*, ootimal order is low, whrie in th multipoint

cane, optimal rdar incfe#ses with the .robiam compixity (bW, with litte penalty for

using a r.-atimd of non-optirtl ordar) (Kunig and Traub (73). In addition, op.imal order

ior these pmbia n does not depend on the error criterion; it is computed -or the

limitir4 case as a apptOche3 z&ro.

One may wonder why there is this discrepancy between the resultc for the

inittal-,vtluo pro~Irer svd thosz $or the zero-finding problem, since any initiad-value
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problem may be written as an operator equation, as in Stutter V73) The reason for

this is that the methods used for the two problem differ greatly-those, for the initial-

value problem Compute estimates for Woution values at new points by direbtztioru

while those for zoro-findig compute imsproved estimates for the zero of a function by

In Section 3, we discms h extenrion of these results to classe consist of

methods whos. error functions are somewhat more complicated than those considered

in Section 2.

In Section 4, we introduce the notions of normality and -oeen for a

basic seqiuence of one-step methods. We pr5;v Rhst they gre equivalent under certain

circumstances. A basic sequunce of methods enjoying these properties is Very easy to

deal with in many respects, especially when on. is interested in comparing upper and

lower complexity bounds for such a clas

In Scz lion 5, we apply the theory developed in the preceeding setions o tho

general problem of an autonomous system of equat ons. We show that the optimal

order and complexity behave as escribed by (L.) and (2.) above foe "he class of

Taylor series methods and for various classes vi Runge-Kutta mthods. In .ddition, we

construct new Taylor series methods that are aaymptotically better (as i tends to

zero) than Runge-utta methods for problems of small dcer.nsion.

In Section 6, we look at the problem of a single scalar autonom=otequation,. In

this case, we may use the classes of "nonlinear Runge-Kutta methods" develope by

Brent V741 V76) We show that the behavior described by (1.) and (2.) above Wedrs for

the"e methods. In addition, we prove that among all classes of nonlinear Runge-utts

methods, those due to Brent have the highest order possible.
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SttIon 7 desnribes some numerical &ita that support the above theoretical

results. In particular, these data seeim to indicate that even for modest values of s,

there are considerable maings in using methods of optim&I, rather tn-an fixed, order.

Finally, in Section 8, we draw some conclusions, make some comparisons, point

out some unanswered questions, and defifs raw areias to which this theory should be

extended.



Section 2

LOptimality Within a Strong Basic Sequence

We are interested in the numerical solution of a class of ordinary difterential

equation initial-value problems on a fixed Interval I of finite length; we tak3 I [0, 1)

without loss of generality. More precisely, let .9 be a set of initial-value points in the

real N-dimensional linear space RN, and let 10 be a set of operators on RN , such that

_ the initial-value problem of finding a function x: I RN satisfying(t) - v(x(t)) if t int I,

(2.1)
x(O) X0

I T has a unique solution for every (x., v) j =Jx'V. The autonomous form of this system

is no restriction, since any non-autonomous system may be made witonomous by

increasing the dimension of the system by one.

i The mouel of computation to be used is fairly general. We assume only that all

arithmetic operations are performed exactly in R (i.e., infinite-precision arithmetic),

and that for any algorithm to be considered for the solution of (2.1), a set of

procedures is given for the computation of any information about v required by that

algorithm. (For instance, with Runge-Kutta methods, we must be able to compute v at

any point in its domain.)

In this paper, we are interested in the numerical solution of (2.1) via one-step

methods, using an equidistant arid as defined in Stetter (73). (We limit ourselves to

equidistant gr;ds in order to facilitate the comparisor of methods of different orders;

the other extreme Is taken by Lindberg (741 who considers the problem of picking an

- %
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optimal grid for a given method of fixed order.) Thus the methods considered will

generate approximations x, to x(tj) by the recursion

(2.2) xi+ 1 - xi +hp(x i h) (O<in-1 ,n-h-1)

where h is the step-size and p is the increment function for the method (i-enrici [62Jh

for briefness, we will refer to "the method I." Despite the fact that P(xt , h) will

depend on some Information about v, we will not explicitly indicate this dependence.

Thus, the method tp produces an approximation to the true solution of (2.1). We

want to measure the discrepancy between the approximate and true solutions. Various

error measures have been introduced in the literature. These include the LoL

truncation error per step. the local truncation error per unit te and the &obAkl er.2r

see Henrici [62] or Stetter (73] for definitions. These error measures may be either

absolute or relative (in the usual sense), they miy be measured either at the endpoint

of the interval (as in Henrici [621 Hindmarsh [74]) or over the entire grid (as in

Sandberg [671 Lindberg [74]). There ha; been a great deal of discussion of which

error criterion is the best one to use; for instance, Gear (71] (Section 9.3) uses local

error per step, while Hull et al. [72] use local error per unit step. We take no sides in

this discussion, since any of these error measures may be used in the analysis to

follow.

Before proceeding any further, we will establish some notational conventions.

Let X be an ordered ring; then X* and 3+ will respectively denote the nonnegative

and positive elements of M. (This will be used in the cases X - R, the real numbers,

and X - Z, the integers.) The symbol m neans "is defined to be," while 'P" means

"is identically equal to." The symbol "V" will be used to .anote the gradient of a

.mapping. If X1, X2: R -' R and w: 4R2  R are differentiable, then for I - 1, ., we wil,

write



i I i w(x1lt),x2 i t)

for the result of differentiating w(Xl,X2) with respect to Xi, and than substitutine

X. - X1(t), X2 - 2(t). We use the notations "x I, a" and "x t a" to indicate one-sided

limits as in Bu,- [65. Finely, we shall write "(&b)c" to inidicate the cth part of

eq~uation (a.!), as In Gurtin r-j] 1

Now we are prepared to define our problem. Let V) and V b- as above;

consider a problem (x0 v) in 2)x'. Let o be a class of one-stap methods, and let

v: xI -+ R + satisfying lir h1O e(p,h) - 0 be a gien function that will serve as an

error measure. Choose an error criterion 6 satisfying the technical restriction 0 < s <

1. We then wish to answer two questions:

(I.) Given p 4 $, how may we pick h I I such that

(2-3) (h) ,

and what is the complexity of the process defined by p and h?

(2.) How may one choose among all (qp,h) ( OxI such that (2.3) holds, that pairt (p*,h*) giving minimal complexity?

In order to get useful bounds on r(p,h), it is necessary to introduce the concept
of order. In this section, we will use a highly restritted definition, which we wili relax

in Section 3. Let 0 - {vp: p (V), and suppose that there is an analytic function

k: R+-+ 1R such that lim P-oo x(p)1lP exists and is nonzero and

II(2.4) u(lop,h) - x(p) hP for h (Iand p (Z+

Then ip is said to have strong order p with respect to r,, and 0 is said to be a strong

basic s equence. (Although the error coefficient K will generally depend on the solution

x of (2.1), we do not explicitly indicate this dspendence.) Note that the order of a

method depends on the error measure; for example, the order with respect to the local

error per step is one greater than that with respect to the local error per unit step or

the global error.
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Equation (2.4) is somewhat more restrictive than that which is usually

encountered in practice; more often, we expect x to 1epend vn I. We consider the

extension of our results to this case in the next section.

We now are able to measure the complexity of computing an approximate

solution to (2.1), with error not exceeding s, using a strong basic sequence #. Indeed,

(2.4) Implies that a necessary and sufficient condition for O(p ,h) - a i that

(2.5) h - h(pa) :- (p)l/P , / p ,

where

(2.6) a :- In W l )

(Note that since 0 < a < 1, we have a (R.) Thus, the number of steps needed Is

given by

(2.7) n :- h - x(p)IIP ea/p

(Note that n (as given by (2.7)) need not be an Integer. But this poses no essential

difficulty; see (e.g.) Traub and Wolniakowski (761) Next, suppose that there exists an

analytic function c: iR + -+ R+ such that c(p) is the cost Per sjp associated with the

method p. Finally, we assume that the cost per step does not vary from step to step;

for the classes of methods we consider, this means only that we assume that the cost

of evaluating v (or its derivatives) does not depend on the point of evaluation. Thus

the complexity C(pa) of solving (2.1) to within an error criterion a - e- is simply

given by

(2.8) C(p,) - n c(p) - f(p) • =/ p ,

where we define f: R + - R+ by

(2.9) f(p) :- /(p)l/p c(p)

We now turn to the question of picking for each a R + + that order p giving

4
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minimal complexity. In the analysis to follow, we will drop the restriction that p must

be an integer. However, we will recover optimality over the integers from optimality

over the real numbers in Corollary 2.1. Without loss of generality, we assume that

(2.10) p > 0 implies f(p) > 0

(If there were a p > 0 with f(p) - 0, use of the method fp would yield a solution with

zero complexity, i.e., "with no effort.") In addition, we assume that

(2.11) limoo fp) - +Co.

By (2.9), this assumption maybe viewed as a simple consequence of two conditions,

both of which are quite natural. The first is that limpt. c(p) - +=, the "better" a

method is (i.e., the higher its order is), the more we should expect to pay for Its use.

The second condition is that if lim pt(, i(P) - 0 , thon there must exist a 0 ( I such that

x(p) > OP for p sufficiently large. (For example, in the class of Taylor series methods,

using the worst-case local error per unit ,;tep as the error measure, this secondi

condition would follow from the assumption that any problem (xov) ( 2)xV must have

an analytic solution.)

Thus in order to find a minimum for C( a), we merely differentiate (28) with

respect to p, finding

(2.12) )1 C(p,a) - p-2 f(p) ea/p [G(p) - a],

where G: R++ -# P is given by

.2.13) G(p) :- p2 f,(p)/f(p)

Thus a necesb,:ry condition that p be a minimum for C(" ,a) is that 61 C(pa) - 0, i.e.,

(2.14) G(p) - a.

Sufficient conditions for the existence and uniqueness of a p satisfying (2.14) and

minimizing C( •,a) are given in
I
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Theorem :2.: Let f satisfy (2.10) and (2.11). Suppose also that

(2.15) G'(p) > 0 whanoar G(p) > 0.

Then there Is a function p*: R++" -* R+* such that (2.14) hold3 if and only if p -p*().

Moreover, for all p ( R ',

(2.16) C(a) :- C(P*(W)w) -S C(p,w),

with equality holding if and only if p - p%).

(Since p*() satisfies (2.1%), we call p*(a) the o2piJ1 order C*(a) the 22timal

complexity, and

(2.17) h*(l) :- hp*()

the otimal step-size.)

Proof of Theorem a,: If we write the Maclaurin series of f and substitute it

into (2.13), it is easy to see thot

(2.18) limp4O G(p) -0.

We now claim that

(2.19) limto G!p) - +Co.

Indeed, since (2.11) holds there is a P0 > 0 such that f'(po) > 0, i.e., G(po) > 0. Thus

by (2.15), G is monotone increasing on [po, +w), and hence either (2.19) holds or there

exists a 1 > 0 such that limptwo G(p) ,- y* If the latter holds, then G is bounded, and

we have

f'(t)/f(t) :5 Ot- 2  (1 S t< +co)

for soms I > 0; integrating the above inequality over 1 S t S p yields

f(p) S f(1)e 8 (l - l/p)

so that limPico f(p) S f() es, contradicting (2.11). Thus (2.18) and (2.19) hold;

together, they imply that for any a > 0, there is a choice of p such that (2.14) holds.
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Suppose that for some a > 0, there were two numbors Po < p, with G(pO) -

G(pl) - a. Then by Rolle's Theorem, there is a p2 between po and p, with G'(p2 ? - 0,

contradicting (2.15). Thus for each a > 0, there is a unique choice of p such that (2.14)

holds; we denote this choice by p*(a).

To prove (2.16), differentiate (2.12) with respect to p to find

(2.20) 612 C(pa) - p'* f(p) es/p G'(p) + [G(p) - a) (a/cp) Ep-2 f(p) ea/p].

But upon substituting p - p*(a), the second tern" in (2.20) vanishes and the first term

is positive; so we have

6 2 C(p*(a),a) > 0

Tius p*(a) gives a local minimum for C( -,a), which has only one criti:al point (since

(2.14) has a unique solution) and (2.16) follows. I

Note that we have not said that p*(a) is an integer; in fact, this need not be true

in general. Since the basic sequence 4 is indexed by Z 4+, we have not yet solved the

problem of choosing from among all (Ip,h) such that (2.3) hoWds, that pair yielding

minimal complexity. This problem is solved by

Corollary 2.j: For any a > 0, define p*i(*) ( Z %-t e ti-%t element of the set

{Lp*(a)J, r'p*(a)l} which gives the smaller value of C( ,a). Tht'.

C(p (a),a) s C(pa) for p ( Z ++

with equality if and only if p - p (a).

Proof: Clear:, we need only consider the case where p'(a) is not an integer.

Suppose there exists p0 
( Z +', not equa! to p"(a), with C(' 0,e) ; C(p*(s),a). Without

loss of generality, assume P0 < Lp= )J. Then C(P0 a) < C(Lp*(a)Ja) > C(p*(a),a), which

implies that there is a p, * ( Po , p*(a)) such that c1 3(Plm) "0. Hence, G(p1 ) - a, but

P1 0 p*(a). This contradicts Theorem 2.1. 3
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It may be readily verified that the hypotheses . .. m 2.1 are satisfied for

many classes of functions f. Some of these are

.. :--;jthic: f(p) - In (p .e)

monomial: f(p) - pm (m R++)

exlonential: f(p) - OP (0 > 1),

super-axential: f(p) - pP , and

hyoer-exponential f(p) - OPP

(Wi write "In (p + e)", where e is the base of the natural logarithms, rather than "In p"

as a technical convenience. However, an expression of the form "n (p + -)" with ' > 0

is necessary to guarantee that f(l) > 0.) Furthermore, we find that if f 1. the

monomial-logarithmic form

f(p) - pa tin i,. -)4 (a, b ( R .),

then the hypotheses of Theorvm 2.1 hold. This may be verified either directly, or by

using the following Lemma, along with the fact that the hypotheses hold for f(p) - p

and f(p) - In (p + e).

Lemma .1: Let f hve the form

f~NO - a 1 m (f i(p), ri

where a ( R ++, and for each i (1 S i S m), fi satisfies the hypotheses of Theorem 2.1

and ri E R ++. Then f satisfies the hypotheses of Theorem 2.1.

Proof: it is clear that if each fi saitsfies (2.10) and (2.11), then so does f. If

each ti yields (via (2.13)) a Gi satisfying (2.15), the,, f yields a G in the form

Gp) - m, riG(p),

and so it is clear that G satisfies (?.15). a

Note that for our purposes, we will only be interested in monomiA ard
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mr.,~mial-logaritmic growth. We include the izither extamples of functions that satisfy

the hypotheses of Therm ?.1 to illustrate the wide variety of functimAn that qualify.

So we havfe seen that under the hypothes.u of Theorajci 2.1, there is a unique

choice of order ..id step size minimizing t-* total complexity for any error crl~erion.

What happens to these choices as a changes?

Theorem Za Let f satisfy the hypotheses of Theorem 2.1. Then

(1.) p*(a) and Ct(w) increase monotonically with.

(2.) limatwa P'(C) - lim61t 0 C*(sf) - +

(3.) If there e-,ists M > 0 such that r(p)1/P :S M for all p, then
limn infauo h-*(a) > 0 if a/p(e') is bounded as atmo

Proof:- To prove (1L), noto, tbat p* is the functional inverse of G. Thus p'(uf)

GI(*(a)-l> 0, so that p*(a) increases with M Nw use the chain rule:

C '(9) - 61 C(p*(N),a) P*'(wh) + a2

But the first term on the right-hand side vanishes by thb defin.;'.u of p*(a) So

-'19 c)2 C(P*(4) (p*(a))-l f(pt(&)) ofi** >, 0

Suppose Yriat tim )-c p*(a),' +oo. Since p*(a) increases monotonically with w,

j there is an L > 0 such that lUm.T. p*(a) - L- So MM.4) implies that

jG(L) limw~cO G(p'(a)) -limjt 0 ,a +c

contradicting the continuit% 6- G. Thic proves the first part of (2.) . Nov' for any

a >0, we have

-*a f(p*()) e/P*() > fp()

Lot a1~oo theii (2.11) and the first part of (2.) imply that the second part of (2.) holds.

To prove (3.), let such an M > 0 exist, so that (h'(a)r'l :S M. eIP(a). Then we

see that lirA inflfgc h*(a) > 0 if (h*()F 1 i- bounded as xtco, which itself is true If

a/p'*(a) is bounded as atm
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Therefore under a very general sat of conditions, we see that the more

accur!T-y we want in our computed solution, fhe greater its complexity becomes. Of

coursa, this is just what we would expect. What is iu nev hat surprising Is that the

min',.ial complexity is obtained by letting the order , increase as the error a

decreases, with p increasing without bound as s 'lends to zero. Moreover, the last part

of the theorem says that not ory should the order be increased when trying to obtain

a more accurate solution, but that it may c. tually turn out that the step-size should

not be allmed to Gtnd to zero.

We now determine whether we are saving a great deal by using the opt*mal-

order method. This tnay be thought of in several ways; we will consider how sharply

the cost curve turns at the optimum, the cost-difference between s.ng a nrethod of

fixed order and a method of optimal order, and the cost-ratio of a fixed-order method

to an optimal-order method. We will show that under certain reasonable conditions, all

r,f these measures tend to infinity with a.

How sharply the cost curve turns at the mayimum is measured by 2 C(p*(a),=).

If Y'e consider five of the growth models mentioned above (eg., monomiao, monomial-

logar-thmic, exponential, hyper-exponential, and super-exponential), we find that

Cy12 C(p*(a),a) is monotone increasing for a sufficiently large, and tends to infinity with

a with 't one exception; in the case of "f;near growth" (f(p) - p), we find that

a 12 C(p*(a).) v e. However, in the classes of algorithms we :tudy, the case f(p) - p

dosri not arise, provided that we include "combinatory cost" (see Section 5) in our

complexity measure. Thus in general, we find that the "pointedness" of the cost curve

near the minimum increases witn.nut bound as t1'.o

Next, we will show that for any f satisfying the hypotheses of Theorem 2.1, the
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difference in complexity between using a method of fixed order and a method of

optimal order tends to infinity with .

Pr.osition : For any fixed p0 c R ++ such that G'(pO) ? 0,

limead [C(Po0 ) - C(6)] - +o.

ef: Pick a so large that p*(c) > pO, and let PO < p < p'(). If we write out

the partial derivative in the ts term of (2.20), we :nd that

a12 C(pN) - p-2 f(p) e,/P G'(p) + p-4 G(p)] [(a + 2p) - G(p)] f(p)

Since pO < p < p*(a), we have G(p) < a; it then follows that 6 1
2 C(p,) Is positive and

bounded away from zero as a tends to infinity. Since

C(poA - c'(.) - C)2 C(p,4 [ro - p'(.) 2 / 2

for some p between pO and p5(a), the result follows. m

As for the cost-ratio, a simo3e calculation shows that

limato C(poa)/C'(a) - +o

In all of the examples given above. Thus there are a number of ways in which we

incur a large additional cost by not using the optimal order.

One may wonder whether the result that optimal order increases and tends to

infinity with a is "reasonable." One way of determining this is to examine actual

numerical tests; we cite Hull et al. [72] as a well-known example. Since we are only

dealing with methods of fixed order, our theory deo- not attempt to handle methods

such as Bulirsch-Stoer, Krogh, or Gear. However, let its look at the results of Hull et

al. for the Runge-Kutta methods (which are germane to our discussion-See Section

5.2). Even though there are only three methods (of orders four, six, and eight) and

threi error criteria (i - 10-3 , 10- 6 , and 10-9), Table I in Hui] ot aL (72] indicates that

the optimal order does Increase as i decreases. (Wa give mora extensive numerical

data in Section 7.)
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Finally, we note that the restriction that the grid be equidistant may ba

wtvzs, ."d somew~hat, provided that we us* a locale rror newure. Ined, let I be

partitioned as I - 11 u _ u I, and now aszum that we use a grid that is equidistant on

each subinterval [1-, IL. Then tt, total complexity is given by the sum of the

complexit!es of ail subintervals

C(P !, pLA . , Gi (PA,)

where we set

CllPN) .-- filP'V) SO/ p , fi~P) .'. Ki(p),l/P C(p);

here xi(p) Is the error constant of pp on ir. Since we use a local error measure, we

find that C(pl,..,pLa) is minimized by choosing each pi to minimize Ci( , a). Thus the

earlier results apply; in particular, if we define pi*(a) to be the optimal order on 4i, we

find that if fi satisfies (2.10), (2.11), aW (2.15), then pi*(*) increases and tenda to

Infinity with e.



Section 3

Optimalicy Within a Basic Sequence

There are tNo difficulties with the approach taken in Section 2. Tho first has

- •already been mentioned--we generally expect the error coefficient to depend on the

step-size. The second is based on the fact that there are a large number of pth-order

methods of a given type, and we wish to use the best method possible. In theory, this

would involve finding a pth-order method with minimal cost per :Iep. In practice, this

is not often possible;, there is a gap between tDe minimal cost theoretically possible

and the cost of the best method known. So we now consider the extension of the

results in Section 2 to a more geriral setfing, which will take these two difficulties

into account.

We first refine our notion of order. Let v. Ox -# R be an error measure,

where -{p: p ( Z +' ) is a class of one--tep methods, an suppose that a function

Ir: R+xI -. R + and analytic functions cL ' au : R + R exist such that lim p-+0 L(p) /p

and lim p-4O p )I/P exist and are nonzero and

(3.1) (,ph) - K(ph) hP for h I " p ( Z + ,

where

(3.2) 0 < 'EL(P) S c(ph) S XU(p) < *o forh( I
Then p is said to have order p with respect to or, and 0 is said to be a oasic

...-Quence (as in Traub (64] x(ph) is said to be the error coefficient of p. (Here we

i ,roduce the convention of attaching the subscripts '1" and "U" to quantities that

refer to lower and upper bounds on complexity, respectively.)

- =
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This definition of order is similar to that in Cooper (69] and Cooper and Verner

.721 except that we include a lower bound xL(p) on xJp,h this lower bound is

necessary and sufficient to guarantee that the order of a method is well-defined. Note

that this definition makes sense fur all values of h ( 1; thus, it is non-asymptotic in that

we do not require h 4. 0 in order for it to mako sense. Clearly, a strong basic

sequence is a basic sequence; hence, the definition of order is an extension of t"'e

definition of strong order given in Section 2. Finally, note that the order depands on

the choice of the error measure r for instance, the order with respect to the local

error per step exceeds that with respect to the local error per unit step by cne.

We next discuss the notion of cost per step. As pointed out above, we will

generally have only bounds on the cost c(p) required per step of a given pth-order

method:

(3.3) CO(P) :S c(p) s; cop) .

That is, cL(p) is a lower bound on the minimum possible cost per step, usually derived

via theoretical conb;derations, and cU(P) is an upper bound on the minimum possible

cost per step, which is derived by exhibiting an alkorithm for computing ,p. (In what

follows, we shall assume that cL , cu : R+ -* are analytic functions.)

We now wish to give bounds on -(p,a), the complexity of finding an approximate

solution of (2.1) using the method pp, such that (ph) s o "=. Suppose that (2.3)

holds. Then by (3.1) and (3.2), we must have

(3.4) xWL(P)P S e e, i.e., h S hL(pa) :- RL(p)-'/Pe - a/ p

Hence, the number of steps n - h must satisfy

(3.5) n ;K L(p) I / p e p

Defining (as in Section 2)

(3.6) C(p) n c(p)



j (i.e., total complexity equals number of steps required multiplied by cost required per

step), (3.3) and (3.5) imply that

: i(3.7) C(p,a) >_ CL(Pa) :- f L(p) e*/P ,

where

(3.8) f) : KL(p)'/P CL(p).

That is, regardless of the algorithm used to compute fp, the total complexty finding

* an approximate solution of (2.1) must exceed CL(p,a).

On the other hand, we find that in order to use fp to find such an approximate

solution, it suffices (by (3.1) and (3.2)) to take

(3.9) xU(p) hP - e-2, i.e., h - hu(P,0) M KU(p)-t/P e0/P

so that we need only take n steps, where

(3.10) n - oU&p)1/P ea/ P.

(As in Section 2, the value of n given by (3.10) need not be an integer; again, this is

handled as in Traub and Woiniakowski [761) Thus (3.3), (3.6), end (3.10) imply that

% (3.11) C(p,a) < CU(p,a) - f4,i e~'P,

where

(3.12) fu(p) KU(p) 1/P cu(P).

That is, thee exists an algorithm for computing such that the total complexity of

finding an approximate solution of (2.1) a ir. Cj(p,a). We summarize the above

rresults in

1-

/ -- . -
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Theror.m 3.: Let C(pa) be the complexity of findiig an approximate solution of

(2.1), using the method ,p, with (,(pp,h) S e"*. Then

(3.13) CL(P) < C(p,a) 9 CUPL),

where CL and CU are given by (3.7) and (3.11). Moreover, if h - h(pu) is the maximal

step-size for the method ep such that v sp,h):S e-' then

(3.14) hU(P,) < h(p,a) :5 hL(p). 3

Next, we consider the problem of optimality. Define the optimal complexity by

(3.15) C(a) :- inf {C(p,a): fp ( 4).

We are interested in bounds for C*(a). These are derived in

Lemma ?.I- Let fL and fu satisfy (2.10) and (2.11), and suppose that fL and fu

respectively yield (via (2.13)) GL and GU satisfying (2.15). Then GL and GU ha.-d

respective inverse functions pL*, PU*: R++ - R++ such that for all p ( R +

(3.16) CL*(a) :- CL(PL*(a),a) S CL(PA)

and

(3.17) CU*(a) :- CU(pU*(a),a) :5 CUPa) ,

with equality in (3.16) (respectively, (3.17)) if and only if p - DL*(a) (respectively, p

pu*(,=)).

Proof : This is an immediate corollary of Theorem 2.1. I

We call PL() (respectively, pU*(a)) the lower (r optimal A CL*()

(respectively, CU*(a)) the lower (upper) optimal complexity, and

(3.18) hL*(a) :- hl(pL*(a),A) (respectively, hu*(a) :- hL(Pu(a),w))

the lower (uper) optimal step-size. Combining (3.13), (3.15), and Lemma 3.1, we have

Theorem ?.: Let fL and fu be as in Theorem 3.1. Then

CL*(a) S C*(a) S Cu'(a). 

Note that if we define p*(a) by

-------------------------
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C(p*(a),a) O(w),

we can make no statement relating p*(a), pL*(a), and pu (a). This is because we only

have bounds for C(p,a); we do not know C(p,a) itself. In fact, it is Important to realize

\,hat pL*(a) and pu*(a) tell us. First, consider pu*(a). We can achieve a complexity of

CU*(a) by using a step-size of hu*(a), along with the method of order pu*(a). This will

give optimal complexity within the sequence of algorithms for computing #, with cost

per step of fp given by cu(p). Nsxt, consider PL*(a). It is of perhaps theoretical

rather than computational interest, in that we cannot compute with it. What does

interest us is CL*(a), since it limits the theoretical improvement in CU*(a). Thus, we

are interested in pL*(a) solely as a means of computing CL*(a).

We now consider behavior of these quantities as a increases and tends to

infinity.

Theorem 3.3: Let fL and fu be as in Theorem 3.1. Then

(1.) pL*(a), pU*(a), CL(W), and CU*(e) increase monotonically and tend to
infinity with a.

(2.) If there exists an Mu > 0 such that uMp) I/ P :5 Mu for all p, then
lim infatoo hu*(a) > 0 if a/PU*(a) is bounded as atoo.

(3.) If there exists an ML > 0 such that 'L(p) 1/ P ? ! . for all p, then
lim intatoo hL*(a) > 0 only if a/pL*(a) is bounded as atoo.

Erof.: To prove (1.), It suffices to apply (1.) and (2.) of Theorem 2.2 to PL* and

CL*, and to pU* and CU*. The proof of (2.) and (3.) is similar to the proof of (3.) In

Theorem 2.2. I

Note that (I.) in Theorem 3.3 does not state how p*(a) varies with a as we have

pointed out above, no statement about p*(a) may be obtained from the information

available. However, It is easy to see that C*(a) increases monotonically with a a.;d that

limatcoC*(a) - +co.
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Thus, we have extended the optimality theory of Section 2 to a more realistic

situation. In Sections 5 and 6, the techniques of this section will be applied to some

important basic sequences of one-step methods; we will see that the conclusions of

Lemma 3.1 and Theorems 3.2 and 3.3 hold for these basic sequences,



Section 4

Normality and Order-Convergence

Let 0 be a basic sequence with respect to the error measure q we say that - is

order-convergent if there exists an ho > 0 such that

(4.1) limpj., x p) hP - 0 for h< ho

Clearly, the order convergence of 9 implies that limptw e(,Pp,h) - 0 for h < ho. We

use the term "order-convergence" rather than "convergence," since the latter term

appears extensively in the literature (e.g., Henrici [62]) and is always used to mean a

"step-size convergence," i.e., limh10 r(oh) - 0 for a fixed method t.

It is intuitively plausible that as the order of an approximation increases, the

approximation should improve, especially when one is trying to approximate a very

smooth function. Unfortunately, Gear (71] points out that an increase in order need

not always decrease the error. This situation appears in other situations in numerical

mathematics; for instance, the family of Newton-Cotes quadrature formulae is not

order-convergent. But suppose there exists a step-size h0 > 0 for which the upper-

bound error is exponentially bounded for p sufficiently large; that is, there exists

A > 0 and Po E Z+ such that

(4.2) qUp) h0 P S AP for p > pO

If we define
:1 [ IlU =-max {maxt5p:,p {xU(p)'/P} , Aho-l},

we then have

(4.3) w S (Muh)P for hshp( Z*
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Note that the bound in (4.3) is similar to that given by Cauchy's Integral Theorem

(Ahlfors [661 pg. 122) on the normalized derivatives of an analytic function. In fact,

for several classes of methods, the bound (4.3) holds whenever the solution of (2.1) is

analytic.

We also formalize a weakened version or (4.3), which will be important in our

study of one-step methods. Let 0 be a basic sequence, and suppose that for each

(xOv) ( 9WO, there is a sequence (hp: p ( Z +) c I and a positive constant MU such

that

(4.4) r(p,h) - (Muh)P if h : hp;

then 9 is said to be normal. Note that (4.3) implies (4.4), wh*le (4.4) implies (4.3) only

when the sequence [hp) has non-vanishing support:

(4.5) ht :- lim infpt,, h. > 0.

If hp - 0, normality gives an exponential upper bound on the sequence of principal

error functions (Section 3.3-5 of Henrici (62]), which are an asymptotic measure of the

error as h 10.

There is a simpla relation between normality and order-convergence.

Proposition 4.1: 0 is order-convergent if and only if f is normal with

nonvanishing support.

Proof If (4.1) holds, then (in particular) we have limplt0o qU(p) hoP - 0, so that

eU(p) hoP :5 1 for p sufficiently large; i.e., (4.2) holds with A - 1. Then (as in the

discussion above) (4.3) holds, implying normality with finite support.

Conversely, If (4.4) holds with finite support, we pick a positive ho which Is less

than

t: min (Mu' 1, inf [hp: p Z+l.
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(Note that i > 0 by (4 5).) Let h S h0 be given, so that -or some I with 0 < I < 1, we

have h - (1 - 8)t; if we define iU by

Su(p) :"

we find' (since h < hp) that

e(,p,h) (Muh)P

Thus

xu(p) hP - (uh)P - (MU (1 I- S))P : (1 - )P

(the last step since i s MU-I), so that (4.1) holds. j

We are now intere-ted in normality and order-convergence for a specific error

measure r, we will be interested in rLU, eL, and rG, which are (respectively) defined

to be the maximum local error per unit step, local error per step, and global error per

step over the grid. It is easy to see that a normal (order-convergent) sequence 4, -

{pp: p ( Z ++) with respect to aL naturally yields a normal (order-convergent)

sequence IF p: p ( Z +4) with respect to LU by setting kp :- Vp+1 for p ( Z +.

We now look at the relationships between rLU and vG.

Propositiin 4,: Let v have Lipschitz constant K on RN and le. 4 be normal

(respective;y, order-convergent) with respect to -LU, with MU in (4.4) Independent of

x0 ( domain(v). Then # is normal (respectively, order-convergent) with respect to CG

Proof: Let p be the exact relative incrament function of (2.1) (as defined in

Henrlci (62)), so fhat

x(ti+1 ) - x(ti) + h P(x(ti), h )

Subtract (2.2) (with ip replaced by Vp) from the above to get

e1+ 1 - ei + h [p(x(ti),h) - #p(xi,h)]

whereel:-x(t i )-xforC S i Sn. Thus

- sr-- 3= -- ,-



26

Itejjll 1 lill + h Iip(x(ti),h) - p(xi,h)i + h IIp(xIh) - vp(xIh)I

< (1 + hK) le1 + M UP hP+I if h < hp

this last step follows from the Upschitz coidihion and the "uniforms" normality with

respect to rLU By Lemma 1.2 of FKenrici [62] and the condition e0  CC), we have

Ileill S K"1 r, + hk)i - 1] (Muh)P

<~: 0 " C(t + h) n - 1] (MLuh)P

for all i; this gives

G(,Fph) S K-1 (eK - I (Mh)P < (M4h)P if h< h,

for a suitably-defined M > 0. This proves the normality part; the remainder of the

result follows from Proposition 4.1. I

If It is undesirable to use the "uniform normality" (i.e., the condition that MU be

independent of x0 ( domain(v) in (4.4)), we may use the following result.

Pro osition 4._. Let v be Upschitz continuous, 1et # be normal (respectively,

order-convergent) with respect to rLU, ard suppose that there exists a X > 0 such thct

for all p ( 4 and all x, y ( RN

ih.p(x) - qep(y) s x p lix - yl1

Then I is normal (respectively, order-convergent) with respect to eG"

Proof: Immediate from Theorem 3.3 of ienrici [623. i

Thus normality for vG follows from normality for r.U, a Upschitz condition on v

and the elements of #, and a linezr upper bound on the Lipschitz constants for the

elements of 0.

We now discuss the problem of finding uniform lower bounds on the error which

are similar to the uniform upper bounds which normality provides. This will amount to
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restriction of the admissible problem class Ox'* so as to guarantee thet the

problems are "sufficiently difficult." However, this restriction may be abindoned if we

are interested only in upper bounds. W& shjl assume throughout th ret of. tL

er that there i..s...n lL > , (which will generally deperd on f, v, and the problem

(x0 ,v)) such that

(4.4, (,',h) a (MLh)P for h C I.

Note that (4.6) will hold for u.y situation in which th.. re ;s - ordor-convergence, or in

which the order-convergence (if any) is no faster than an oxponential decay;

moreover, in the methods we consider in Sections 5 and 6, (4.6) is a consequence of

the assumption that all derivatives assume the (sharp) worst-case upper bound

provided by Cauchy's estimate. It it -Iear that if (4.6) holds for vi, it holds for irLU ;

if (4.6) holds for LU and if the m~atrix Vp has only non-negative entries (with at least

one positive entry), then (4.6) holds for eG"

It is possible to present a simplified version of the expressions derived In

Section 3, under the assumption that # is order-convergent. We first look at the

complexity of a single method within an order-convergent basic sequen .e.

Theorem 4.1: Let 4 be order-convergent with respect to a. Then

CL(PA :5 CQpAz : CU(PA)

where

CL(),a) :- N4 cL(p) el/P and CU(pa) :- MU cy~p) el/p

Proof: This is an immediate corollary of Theorem 3.1 and the definition of

order-convergence. a

We may now do the optimality theory of Section 3, finding that

(4.7) GL(p) - p2 CL,(P)/cL(P) and Gj(p) - p2 Cu(P)/cu(p)

%

. _.~-~-~~- ~- = - -
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Note that the assumptions (2.10) and (2.11) now state that cL(p) and cj(p) must be

positive for p > 0 and tend to infinity with p, which is a natural way to expect the cost

per step to behave. The results stated in Theorems 3.2 and 3.3 hold as before.

Moreover, it should be noted that the MU and ML needed In (2.) and (3.) in the

statement of Theorem 3.3 are precisely the MU and Mt in (4.4) and (4.6). Thus

lim infTot hu*(a) > 0 if a/pu*(*) is bounded as a -t o, aW */pL(a) is bounded as

a T o if im infCTOD hL*(a) > 0.

Thus, the order-convergence of a basic sequence is utmful in simplifying the

analysis of its complexity. Of the three basic sequences we will study in this paper,

two are known to be order-convergent. The proof of the order-convergence of the

class of Taylor series methods is a simple consequence of the Cauchy estimate; that of

the order-convergence of the (non-oW'v,,ally ordered) nonlinear Brent-Runge-Kutta

methods (given in Appendix B) invoives using some classical results ;;.I orthogonal

polynomials to sharpen the prooi, .-, Brent (74] . (We note that it is not known

whether the cuptimally-orderv. -2:..oar Brent-Runge-Kutta methods are order-

convergent; it does appear li)ely that they are normal with vX.n~shlp support

However, we do not pursue this class of mrthods, because of their high combinatory

cost, as indicated in Section 6.)

It is not known whether the linear Runge-Kutta methods found in Cooper (69]

and in Cooper and Verner (72] are order-convergent; the best result known is the

(Mu log(p+e))P result given in Appendix A, which involves strengthening the original

proof with other estimates from the theory of orthogonal polynomials. But it should be

pointed out that there does exist a class of order-convergent linear Runge-Kutta

methods: this is the sequence given by using the weights and abscissae for Gauss

Iva~~- _ -- - -----



• "-- - =5t

29

quadrature in the methods defined on page 144 of Stetter [731 The problem with this

class of methods is that each step of Vp requires 2"P(p4.-)! function evaluations; the

prohibitive cost per step outweighs by far any advantage to be gaird from the

order-convergence. Thus, tih ;'es!!an of whether there exist any order convergent

linear Runge-Kutta methods which are more efficient (Le., have smaller cost per step)

remains open.

is

I



Section 5
Applications to Systems of Differential Equations

In the next two sections, we apply the theory developed in the preceding

sections to two of the most commonly-used classes of methods, i.e., Taylor series

methods and Runge-Kutta methods. In Section 5, we shall treat the complexity of

systems of differential equations, i.e., problems of the form (2.1) for which v is an

operator on RN, wnere N is an irbitrary positive integer. In Section 6, we 3hall

restrict our attention to the scalar ease, i.e., the case where *0 consists of functions

v: IV - R; for this case, Brent [74] has discovered a class of "nonlinear Rung-Kutta

methods."

Before discussing the complexity of these basic sequences, we fix our ,rror and

cost mtasures. For the sake of definiteness, we shall choose iG as our error measure;

that is, we willl be interested in the global Nrror, rather than the local error per step

or per unit step. However, the other error measuret may be used with a slight

modification of the di;cus;sion contained in the sequel

We now make precise cur notion of cost We will be concerned with jt4 total

numlber Cf arithmetic oovations required. Let # be a given basic sequence. As in

Traub and WtJ'niakowski (76, we shall express the cost per step "sc,ciated with pp in

the form

(5.0.1) cpW := p(V)) + d p).

Here p(v) is the inforrmakim about v required to perforr ine step of p, and we

write e(91pV)) for the in1rmational 1. of op; we call d'p) the combinatory s

of p-
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Note that we explicitly indicate the dependence of Wp on v, so that we may

compare the cost of (say) an evaluation of v with a scalar arithmetic operation.

Basically, e(fp(v)) measures the cost of getting new data about v required by ip;

while d(p) measures the cost of combining this new data to get an approximate value

of the solution at a new point. For example, Euler's method in RN

xj+1 - x, + hv(x i)

has informational cost 2 1 e(vi,. where v1 , _,vN are the components of v and for

any function w: RN -# R, we define

(5.0.2) e(w) :- cost of evaluating w at one point

The combinatory cost is 2N arithmetic operations, i.e., one scalar nultiplication and one

scalar addition for each of the N components.

Finally, we now assume that .9 and I have been chosen so as to guarantee that

the solution of (2.1) is analytic on L Thus Cauchy's Integrai Theorem guarantees the

existence of a positive M such that for all positive integers p, we have

(l/p!) ix(P(t)1I s VP for t I

wf

* I
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5.1. Taylor Series Methods

The class *T Of TalorM series Mgt.,'ods is defined by expanding x In a truncated

Taylor series. Thus the increment function ppis given by

(5.1.1) 'P,(x1,h) :- ZP- v(k)(x1) hk / (k+1)1 ,

where

(5.1.2) v(k)(xi) -.- (d/dt)k (Ox)]I x(t) - x

The usual method of computing (5Ji.2), as described In "C2S~l numerical analysis

texts such as I-Ienrici (621 invokes the chain rule. This quickly leads to expressions of

horrifying complexity; for this reason, most texts quickly abandon the discussion of

high-order Taylor series methods.

We are interested in faster algorithms for computing pp First, we address the

problem of a lower bound for the combinatory cost d(p).

Proposition 5 .1. There exists a constant a1 > 0 such that any sequence of

algorithms for computing OT must satisfy

(5.1.3) d(p) *a aL

Proof:- Any algorithm for computing tp requires the information

9lp(v) :- {Av: 0:5 01:5p - 1).

(We use the standard multi-index notation found in Friedman (69].) It is then assy to

see that the abovG sat :.ds oAp N) (as p t ao) distinct elements, which ar'e (generally)

independent; this Is an Immediate consequence of Problem 11 in Chapter I of P6lya and

Szegb [251 Thus (5.1.3) gives a linear lower bound.

Note that the constant al. in (5.1.3) depends on N. Since we are treating the

case where N is fixed and p is allowed to very, -me will not indicate this dependence

explicitl*'. We now se- h6w close we can get to an optimum value for d(p).
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Theorem 5.1.1: There exists a constant aU > 0 such that the combinatory cost

d(p , of computing pp O T satisfies the bound

(5.1.4) d(p) :; aU pN In (p+e)

Proof: We first consider the case N -1. Note that xlh) is the zero of

(5.1.5) F(z) = / v(t) - h
x0

As in Brent and Kung (76), we consider the formal power series

P(s) :- F(xo+s) - F(xo)

where s is an indeterminate. Let V be the power series reversion of P. Adopting the

notation of Brent and Kung [761 we see that

X(S) - X+ V(s) - X0 + Vp(s) + O(sp+1)

By the uniqueness of the Taylor coefficients of an analytic function, we see that

pp(xoh) - h'lVp(h).

Since the number VP(h) can be computed in O(p In p) operations from the Taylor

coefficients of v (by Theorem 6.2 of Brent and Kung (76)), the result for N - 1 follows.

For N >_ 2, we use Newton's method (Rail (69]) applied to the formal power

series operator P given by

(Py){s) :- y(s) - X0 - sov~~))d

clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined

recursively. Let a formal power series x(p)(s) satisfying

x(p)(s) - x(s) + O(sP l)

be given. Precompute

(5.1.6) w(s) :- ) v(x(p)(,r)) dr - x0 - X(p)(S) + O(s2p+2),

(5.1.7) Q(s) :- Vv(x(p)(S)) + O(s2p+2),

and let U(0 )(s) :- 0. Then set

X(2 p+l)(S) :- X(p)(S) + U(p+l)(S)

- . t-- A j
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where

s) fS Q5(X) U(k)(i') d' + w(s) + 0(s2p+2 ), 0 ; k S p .(..)u(k+l)(S): 0

Following the proof given in Rail (691 we find that

X(2p+1)(S) - x(s) + 0(s2 p +2 )

We need only consider the cost T(p,N) of computing the series X(p)(S) in

determining d(p), since x(h) may be recovered from the formal power series in O(p)

operations. Clearly, we have the recursion

(5.1.9) T(2p+I,N) :9 T(p,N) + T6 + T7 + T8

where Tm is the cost of step (5.1.m) for m - 6, 7, & Let COMP(p,N) Le the time

required to find the first p term; of the formal power series f(yl(s), ... , yNs)), where

f, Y1 - YN are formal power series, and yl, " , YN have zero constant term.

Theorem 7.1 of Brent and Kung [76] states that

COMP(p,2) - O(p2 In p),

and it is easy to show that for any N ( Z+

COP(p,N+I) - O(p COMP(p,N))

Thus for N a 2, we have

(5.1.10) COMP(p,N) O(pN In p),

and so we see that

T6 + T7 - O((2 p+l)N In p).

Finally, let MiJLT(p) be as in Brent and Kung (761 we see that

T8 - (p+1) (N2 MULT(2p+l) + O(p)] - 0((2p+1) 2 In p)

if Fast Fourier Transform multiplication (Borodin anu Munro (75]) is used. Since N > 2,

we have

(5.1.11) T6 + T7 + T8 - 0((2p+)N In p),

and so (5.1.9) and (5.1.11) imply that
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T(p,N) - O(pN In p),

which completes the proof. *
(Note that the second algorithm is inferior to the first algorithm when applied to

the scalar case N - 1, where we find that the second algorithm requires O(p2 In p)

arithmetic operations.)

We now determine bounds on C(p,a). First, consider lower bounds. Clearly,

there exists eL(v) ? 0 such that

(5.1.12) e(D~v i) ? eL(v) (1 s i s n, i *)

Since Wp(v) has O(pN) elements, there exists a constant bL > 0 such that

(5.1.13) e(j p(V)) '? bL eL(v) pN.

From (5.1.3) and (5.1.13), we have a lower-bound cost per step of

(5.1.14) CL(P) - [aL + bL eL(v)] PN

This leads to

Theorem 5.1.2: CL(pa) - ML EaL + bL eL(v) ] pN ea/P

Proof: This is an immediate consequence of (4.6) and (5.1.14). 1

Note that fL(p) :- MLcL(p) satisfies the cond."lions of Theorem 3.2. So the

optimality theory of Section 3 holds. In particular, we heve

Theorem 5.1.3: CL*(a) - ML [aL + bL eL(v)] (e/N)N aN

Proof: From (4.7), and (5.1.14), we find that GL(p) - No, so that

PL*(a) - aJN and hL*(a) - (MLeN- l

The result follows by letting p - pL*(a) in the definition of CL(p,a). I

However, recall that we assumed that the non-identical mixed partial derivatives

of v are independent. There are a number of systems for which this is not true (for

instance, constant coefficient linear systems);, for sucl systems, it is clear that we may
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be able to use the extra information of non-independence to find algorithms that are

faster than the lower bounds given above. However, we will ignore this case and only

consider the problem for a "general" function v.

Next, we turn to upper bounds on the complexity. Theorem 5.1.1 tells us how to

combine the necessary information to get the solution at a new grid-point; we need

only measure the cost of getting the information. So, let

e(k)(v) - max (e(Dfvi): 1 .5 I N, 101 - k)

Using the result in P61ya and Szeg8 (251 we see that

(5.1.15) e(p(v)) < N ZP- 1 e(k)(v) (N+k-l)! / [k!(N-1)!]k-0
Unfortunately, the right-hand side of (5.1.15) does not fit our general model, so we

must assume that we know hcw e(k)(v) changes as k increases. We will consider the

case where the cost of derivative evaluation s bounded that is, we will assume that

(5.1.16) e(k)(v) S eu(v)

for some eu(v) independent of k. Other cases (e.g., e(k)(v) - O(km) for some m > 0)

may be analyzed in a similar manner; of course, they will give different results. By

(5.1.15) and (5.1.16), there is a bU > 0 such that

(5.1.17) e(2(V)) < bu e(v)pN.

From (5.1.4) and (5.1.17), we have an upper-bound cost per step of

(5.1.18) C(P) - RU pN In (p+e) + bU eu(v)pN.

This leads to

Theorem 5.1.4: There exists an MU > 0 such that

CU(PA) - MU (aU pN In (p+e) + bU eu(v)pN] e / p .

Proof By Cauchy's Integral Theorem, there exists a B > 0 su:h that

IIIx(k+1)Ill / (k+1)! s Bk

where we define

:g
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(5.1.19) Illylll :- max t ( I Ily(t0ll

for any y: I -+ RN Thus by Section 3.3-3 of Henricl-[r-21 we see that a Llpschitz

constant for p in *T is given by

z IIIx(k+I)illl h / (k+l)! S k-0 (Bh) S L :- (1 - Eh0)l

provided that h S h0 < B-1. By Section 3.3-4 of Henrici [62] and Proposition 4.3, there

exists an MU > 0 such that

erG(,pp,h) s (MU hNP .

The result now follows from Theorem 4.1 and (5.1.18). I

We are now ready to consider the coptimal p for CU(A.

Theorem 5.1:

(I.) For all a > 0, there exists pu (*) such that (3.17) holds.

(2.) Pu*(*) increases monotonically with a, and

pu*() - wIN as a t co .

(3.) CU*(a) increases monotnically with c, and

Cu*(a) - MU au (e/N)N aN Inw as a t c.

(4.) hu*(q) ~(MU eN) - 1 as a t .

Proof: Clearly cu satisfies (2.10) ;.d (2.11). Now write

G(P) - Gj(p) +G2(P)

where

Gl(p) - N p and G2(p) - p2 /0 2(p);

here we set

D2(p) :- (p+e)[(p+e)ln(p+e)+l and , :- aU/I/(bUeU(v).

We see Immediately that G1 satisfies (2.15h a straightforward calculation shows thatj G2 '(p) - , [D(p)] "2 ({p (in (p+e)] - 1] + 2e[Y In (p+e) + 1]),
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so that G2 (p) > 0 for p > 0. Thus G2 satisfies (Z15), which shows that GU satisfies

(2.15). Hence PU* and CU* behave as described in Theorem 3.3.

Since pu*(a) goes to infinity with au we see that

a - GIJ(pu*()) - N PLu(w) + PLu() / In pu5*(*) - N pu*(s),

which gives the asymptotic estimate in (2.). The rest of the Theorem follows from this

estimate. I

Unfortunately, the estimates given above are only asymptotic as a T oo; this will

be typical, since many of the equations to be solved involve products of logarithmic

and polynomial terms, and thus cannot be solved exactly. On the other hand, these

asymptotic expressions are sufficient for our purposes, slrice they describe how

quickly pU*(a) and CU*(w) increase with a.

Note that as a tends to infinity, CU(4) becomes independent of eu(v), which

measures how hard it is to evaluate the derivatives of v; this is because the

combinatory cost eventually overwhelms the informational cost. Tiis kind of bahavior

will be typical of the complexity analyses in this paper. Finally, note that the bound

(5.1.20) CL(a) - 0 (aN) : C(a) : 0(*N In a) - CU*(a) as a t co

implies that

CU*(a) / CO() - O(lin a) as a 1 co;

this indicates the gap in our knowledge of the complexity of solving (2-1) via Taylor

series methods.
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5.2 Linear Runge-Kuttea Methods

For many functions v, caculation of the derivatives required by Taylor series

methods is prohibitively expensive. For this reason, we are interested in methods

which use Information that is somewhat more readily available. In particular, we will

consider methods th.t use only evaluations cf v, combined in a highly structured

manner. We say tht #LRK Is a class of linear Runge-Kutta methods (abbreviated, "LRK

methods") if each increment function ,p may be written in the form

(5.2.1) vo(xih) :- I sL

where

(5.2.2) ki :- v(xi+h Zj O1N j kj) forO:1s- I,

the integer s - s(p) is said to be the number of stafes of Opp, the number of stages is

equal to the number of times the vector function v must be evaluated. (In order to

simplify notation, we will not explicitly indicate the dependence of )ij and kj on p.) The

method %ep defined by (5.2.1) and (5.2.2) is exnlicit in that k, depends only on

k0 , , k.. 1; see Butcher [64a] for a discussion of semi-explicit and implicit methods.

Since the function pp is (in practice) always evaluated by using the obvious

algorithm suggested by its definition, we shall Identify an algorithm for evaluating Ip

with pp itself. Thus the problem of finding the best algorithm for evaluating Op in

*LRK Is equivalent to the problem of finding the best ,asic sequence of LRK methods

possible. This is related to the problem of finding the smallest value of s(p) such that

Vp has order p. This minimal value Is given by
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p p- 1,2,3,4

p + 1 p-5, 6

(5.2.3) s(p) -
p+2 p 7

unkrnsn p > 8

For methods of order greater than seven, a gap develops. For instance, eighth-order

methods with eleven stages exist, and it is known that any eighth-order method,

requires at least ten stages. For arbitrary p ?. 8, the best bounds known for the

optimum value of.s(p) are
S(5.2.41 p + d(p) 5 s(p) :5 (p2_-7p +14) /2,

where 6(p) ? c In p for all p sufficiently large (for some c > 0). The lower bound is

given in Butcher [75] the proof is quite involved, and the result is not much bette-

than the "trivial" lower bound s(p) ?- p (Hlndmarsh [741 page 84). A class 0CVRK of

methods such that p requires only (p2 - 7p + 14) / 2 stages is given in Cooper and

Verner (72].

We first consider lower bounds on the complexity C(p,m) using LRK methods.

The "trivial" lower bound s(p) ? p will be used, since the term d(p) will be small when

p is small and will not affect the asymptotic behavior of optimal order and complexity

for p large. It ic '-own (Butcher r64)) that at loast 0(p2) of the subdiagonal elements

of the matrix A (whose elements are the Xij In (5.2.2)) must be non-zero in order for A

to define a pth-order method. Thus there exists aL > 0 such that

(5.2.5) d(p) aL p2 .

since s(p) ? p, we see that

(5.2.6) e(W p (V)) > N eL(v) p,

where we now write

eL(v) :- min l~iSSNe(vi)
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Thus (5.2.5) and (5.2.6) show that a lower bound on the cost per step for pp is given

by

(5.2.7) CL(P) - OL p2 + N eL(v) P

Theorem =,..

CL(P,) - 14aL P 2 + N eL(v) pJ * / P

Er2: This follows immediately from (4.6) and (5.2.7). I

It Is clear that UP) :- ML [aL p2 + N eL(v) p3 ea/P satisfies (2.10) and (2.11).

We claim that fL yields a GL satisfying (2.15). Indeed, write

fL(p) - fI(P) f2(P)

where

f1(p) :- k4l aLP

and

f2 (p) :- p +v, where P :- NeL(v)/ OL

Clearly fI yields a G1 satisfying (2.15). Since f2 is a linear polynomial with a negative

zero, It may be shown thrt f2 yields a G2 satisfying (2.15). Thus fL yields a GL

satisfying (2.15) in fact, we have

(5.2.8) GL(p) - + G2(P) - p [1 + (1 + p

This leads us to

Theorem 5..2:

CL*(ff) - [ML aLe 2 / 4] 2  as a1tw .

Proof; Froi (5.2.8), we see that GL(p) - 2 p as p t c. Since (210), (2.11), and

(2.15) hold, PL*(a) tends to infinity with c. Thus

a - GL(pL*(a)) - 2 PL(a) as a T o,

i.., PL (a) a/2 as a t o. The result now follows from Theorem 5.2.1. *

!
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We now~ 'urn to upper bound~s or. compley~ity. The class ICVRK derived in

Cooper and Verner' (72] has two deficiencies, the first of which is thot no unifcrm

upper Exiund on eti(~p~h) is known for 4CVRK' in addition, the combirnatory cost for

this C12SS Of methods is 0(p4) as p t c. Instead, we turn to the basic sequence OORK

discussed in Appendix A. Thera, we prove that there is an MU > 0 such that

(5.2.9) iVG(f,Iph) :5 (MU In (p + e) hNP,

provided h :5 hp where hp - Wi(n Py) as p T co. Furthermore, there are a large

number of extra zeros in the nratrix A for Vp CRK. Using the notation of Appendix

A, -me see that the number of non-zero entries in A is

S p-i2z~g + p

p 3p- p2/2 + 7p/6

Sp3/3 + 2p2/3

for p E Z +. Finally, note that the number of stages s(p) required for fp 4CRK is

(5.2. 10) s(p) - Up2 - 2p + 41/J :S p2/2 + p

for p EZ ++, which shows that the number of stages required for a pth-order method

in OCRK asymptotically equals the number requires for a pth-order method in OCVRK-

Thus (considering the combinatory costs), the class OCVRK actually costs more per

A step than does OCRK, ignoring the combinatory costs would have caused us to Teach

the opposite conclusion.

First, we look at the cost per step. By (5.2.10),we see that

(5.2.11) e(1R Mv) 12 + p) N ejiv)
2

where

etj~v) :- max 1:9iSN e(v1)

Since we are using OCRK' it is easy to see that there is a bU 2/3 such that

(5.2.12) d(p) V/p3 3 + bU p2).
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Combiling (5.2.11) and (5.2.12), we sem that the total morbinatory cost per step It

bounded by

(5.2.13) cU(p) ', N 2p3 /3 + i p2 + p2 p ],

where

:" eu(v)/2+2bU and 82 :- euv)/2

Using (5.2.9) and (5.2.13) gives

Theorpem 5 :

CU(p,a) - h-: N (2p3/3 -,- 41 p2 +02 ;Jn (p + e) o/P

Now we look at the optimality theory for Me upper bourel.

Theorem §.Z.

(1.) For all a > 0, there exists pu*(f) such that (3.17) holds.

(2.) PU*(C) increases monotonically with * and

pu*() , /3 as T CO .

(3.) CI*(a) increases monotonically with a, and

CU(*) -, [2K4UNe 3 /al ]a 3 In asato.

(4.) huj*(a) ~ (Me 3 In a ) 1 ascz1o .

Proof: We write

f p) != h In (p + e) cu(p)

in the form

fuOp) - fI(p) f2 (P),

where

fi(p) - MjNpln(p+e) and f2(p) - 2p?/3+4 1 P+02 "

As was pointed out in Section 2, f, satisfies the hyrotheses of Theorem 2.1. Now we

consider f 2 . Clearly f2 has no positive zeros it may be seen that the condition
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bU  2/3 implies that f2 has a positive discriminant and hence has no complex roots.

Thus f2 has only negative roots; one may then show that this guarantees that f2

satisfies the hypotheses of Theorem 2.1. By Lemma 2.1, the same may be said for f.

Thus pU* and CU* behave as described in (I.) of Theorem 3.3. We also see that

GV(p) - 3 p as p T co. Thus the estimate in (2.) holds, from which we get the estimLns

in (3.) and (4.). §

So in the class of linear Runge-Kuttp, met-ods, we find that

(5.214) CL*(a) - O(a2 ) < C*(a) S CU*(a) - O(,3 In i)

as a tends to infinity; hence, the ratio

Cu*(a) / C L(.) - Of. In a)

indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods.

Finally, we wish to compare the classes of Taylor serl-,s methods arni LRK

methods. Write CU, * CL*, and CT' (respectively, CjLRK* , CLLJ, and CLRK*)

for CU*, CL*, and C* in the class #T (respectively, the class *Lpj). Since we have

only asymptotic expressio-is for these quantities, we are forced to use an asymptotic

comparison. If f, P + R+ + stisfy lim a) a" lim a, g(a) - +o, we will

write

(5.2.15) f < g iff f(a) - o(g(,0)) as a t co;

we say that f is asymptotically less than g. If . < g, there is an a>0 > 0 such that

f(a) < g(a) for a > ao, so there is a non-asymptotic interpretation of the order

relation <. In addition, we see that if f < g, then g(a) grows much more quickly than

f(a) does as a increases. Using the results of (5.1.20) and (5.2.14), we then have the

following
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Theorem ,- Suppose that (5.1.16) holds.

(1.) If N - 1, then Cu T < CLAM*

(2.) If N - 2, then CU,T < CULRK*

(3.) If N - 3, then

CUT(W) - O(CLRK*(6))

cu .M(,) - O(C4T*(,))

as a O.

(4.) If N 4, then C1JLRK*< CiT* .

If (5.1.16) does nMI hold, then (1.), (2.), and (3.) may be false, but (Q wit!

certainly be true. As an immediate corollary to the above theorem, we have

Theorem .,:

(1.) If N - I and (5.1.16) holds, then CT < CLRK*

(2.) irNa4, then CLRK* < CT* . I

So if de-'vatives are cheap to evaluate, we see that the best Tayior serias

method known is better than the best linear Runge-Kutta method possible for the

scalar case N - 1; but if N 2 4, the best linear Rune-Kutta method known is better

than the best Taylor series method possible.
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Nonlinear Runge-Kutta Methods for the Scalar Case

S°We now consider a generalization of the familiar IRK methods, based on the

description in Brent [74], (76]. A basic sequence NRK is said to be a class of

nonlinear Runge-Kutta methods (abbreviated, "tR methods') If each Increment

function (p may be smritten in the form

(6.1) Vp(xi3h) l ko, - ,s_l)

where

(6.2) kj :- v(yj), yj :- rj(xik; O, - ,kj1 ) (0 j < s - 1)

for suitable functions ,-: RNxRx(RN)i -* RN (0 j S sh as In the linear case, s - s(p)

is the number of gtj es (i.e., evaluations of v) of p. Again, for notational convenience,

we do not indicate the dependence of the kj, yj, and rj on ui and p.

In the remainder of this section, we will only consider the scaler case N - 1,

since it Is ,tiot known whether NRK methods exist for larger values of N. In this case,

(5.1.5) shows how an s-stage NRK method of order p may derived from a (p+I)th-order

Iterative method for solvi&4 the nonlinear equation

(6.3) F(z) - 0,

using Brent-Information (Meersman (76]) of the form

(6.4) 91Bs(F) ;- (F(xo), F'(xo), F'(yj), - , )} .

Brent [741 (75] used this transformation to derive a sequence OMBW of (modifiedl

Brent-Runge-Kulta method- (BRK methods'), in which the s-stage method has orde-

(6.5) p -2s- .

-~ =~- ~ =~ caira
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Furthermore, Meersman [76] proved that this order is the greatest possible in the

class of all such BIRK methods. We now extend Meersman's result to Include all NRK

methods.

Theorem 6.1: No s-stage NRK method can have order greater than 2s, - 1.

Proof: Let 0 be an s-stage method with order p. We will construct (from %P) an

iterative method * of orler q :-p + 1 for finding a simple zero r of an arbitrary

analytic function F : P -+ P.

The method vp is defined as follows. Let xo be an approximation to r such that

F' s nonzero between xo and r. (Since P'(r) ,' 0, such an xo exists.) Write to :

F(xoh without loss of generality, assume to < 0. Now apply one step of P, using a

step-sizA f -to, to the problem

i()- F'(xMtW (to < t < 0) with 0~0) xo

whose solution is the functional inverse mf F

x(O) - F-1(0) r

then 4,is given by

Cx):- x0 - to P(xo,-tO)

By the defin-"on of ordan for iterative methods, it is clear that *has order q;

more~over, 4, uses the generalized Brent information (Definition 11.3. of Meersman [76)

91GE,s :- (F(x 0), F'1(y 0 ), M'y,), F-. , ,)

Suppose that yo 0' x0; then q :5 2s by Theorem 11.33 of hkeersman (76). On the other

hand, if yo - xo, then tk uses the Brent-information (6.4h, by Theorem 11.2.4 of

Meersman (76] (also due to Woiniakowski), we have q:5 2s in this case also. Thus in

either case, we find that

p + I q s 2s

and the desired result follows.

-. k__________
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Thus §MBRK is informationally-optimal in the class of NRK methods, in the sense

that each qp in OMB K uses the minimum number of stages possible for a pth-order
NRK method.

We will now derive lower bounds for the complexity C(p,) via M.K methods.

Clearly, Theorem 6.1 implies that

(6.6) e(%p(v)) > e(v) (p + 1) / 2,

and a linear lower bound on the combinatory cost states that

(6.7) d(p) 2 aL P

for some aL > 0. By (6.6) and (6.7), a lower bound on the cost per step for Pp is

(6.8) cL(P) - (aL + e(v)/2) p + e(v)/2,

which leads to

Theorem 6.2: CL(P) - hi [(aL + e(v)/2) p + e(v)/2J e*/P

Proof: This follows immediately from (4.6) and (6.8). I

Note that fLiP) :- M~l cL(p) is a linear polynomial with a negative zero; it then

folk;. . that fL satisfies the conditions of Theorem 3.2. So, the optimality theory of

Sec:v,. 3 holds; in particular, we have

Theorem 6.3: CL*(a) - ML e [aL + e(v)/2J a as a t co .

Proof: From (4.7), and (6.8), we find that

GL(P) - p2 /(p+#-I), where .: 1 +2a,./e(v),

and so GL(p) - p as p " w, thus pL*(&) a a as a t c. The result follows by letting

P - PL*(a) in the definition of CL(pa). 3

Next, we consider upper bounds on the number of operations required. Instead

of using 4MBRK, we will use the class 0BRK of "unmodified" BRK methods described in

Appendix B, where it is shown that there is an Mj > 0 such that

(6.9) vrG(vpp,h ) :5 (Mj h)P;
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no such bound is known for #MBRK. In addition, MBRpK requires the solution of p - 1

linear systems of equations, the ith having p - I unknowns, In order !o perform a

"reorthogonalization." So the smallest known combinatory cost for this class is about

O(p3 "8 1) arithmetic operations; this is obtained by using Strassen's technique for linear

systems (described in Borodin and Munro [75]). On the other hand, most of the

combinatory cost for fpp in *BRK is involved in finding the coefficients of the

polynomial Pn+1 (see Appendix B); once these coefficients are known, the remaining

combinatory cost is O(p In p) as p 1 o. An estimate of how much work is required to

compute these coefficients is given in

Lemma j: Let xo, Y, -, Yr, w0, zo, - P Zr be given, and let

QWx) :-r+1 xi

be the unique polynomial of degree at most r + I satisfying

Q(x0 ) - wO , Q'(xO) - zo , and Q'(yi) - zi (1Si:Sr)

If T(r) is the time required to compute q0, -, qr+1, then

T(r) - O(r ln2 r) as r t .

Proof. The coefficients q1, 2q2, - , (r+l)qr+4 of Q' may be computed in time

0(r In2 r) by using a fast algorithm for computing the coefficients of the Lagrange

polynomial interpolating the points (Xo, Zo), (yl,z1 ), - , (yr,zr); see Borodin and Munro

[75] for details. Then O(r) ope, ations yield qj, .. " , , and Homer's rule gives q0

with O(r) additional operations. I

Thus there exists aU > 0 such that

(6.10) d(,) :S aU p In2p+e) .

In order to simplify matters a bit, note that Theorem B.i implies that

(6.11) e(V(v)) S e(v) p

-L-- --
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Although the estimate above is not exnct for p > 2, it is asymptotically equal to that in

Theorem 8.1. (If necessary, the sharper estimate given there may be used, but the

calculation of optimal order involves considerably more detail, the results of which are

not particularly enlightening.) Combining (6.10) and (6.1 1), we see that the cost per

step is bounded by

(6.12) cu(p) - e(v) p + au p In2(p+e)

Thus (6.9) and (6.12) imply

Theorem 6.4: CU(p,a) - MU [e(v) p + aU p In2 (p+e)] ea ' p .

We now determine the behavior of pU*(a). Here we find that fu(p) :- Mu cU(p)

may be decomposed as

fup) - f](p) f2 (P),

where

f.(p) :- Mue(v)p and f2 (p) :- 1 I ln2 (p+e),

and 8 :" aU / e(v) . Clearly f, and f2 satisfy (2.10) and (2.11), and f, yields a G,

satisfying (2.15). We need only check that f2 yields a G2 satisfying (2.15). But

G2 (P) - 20p 2 1n(p+e)/D 2(P), where D2(p) :- (p+e) f2 (p),

so that setting

g2 (p) :- 8pln2(p+e)(in(p+e)- 1]+2 eln2(p+e)+(p+2e)ln(p+e)+p,

we find that p > 0 implies

G2 '(p) - 2 8 p g2(P) / 2(P) 2 > 0

Thus the optimality theory applies.
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Theorem 6.:

(I.) pu*(&) increases monotonically with e, and

Pu*(a) - a asatoo

(2.) CU=() Increases monotonically with a, and

CU*(v) - hJ aU e a In2a as a t c.

(3.) hu*(*) - (Mu e) ' as a t .

Proof: (1.) follows from the fzct that (ip) p as p t o; (2.) and (3.) follow

from (1.) and Theorem 6.4. 1

So in the class of nonlinear Runge-Kutta methods, we find that

(6.13) CL() - O(a) < C*(a) < CU*(a) - OXe ln2 a)

as a tends to infinity; so, the ratio

CU(a) / CL*(a) - O(ln2 a) as a t G

indicates the gap in our knowledge of the complexity of nonlinear Runge-Kutta

methods.

Finally, we wish to compare the classes of Taylor series methods and NRK

methods. Adopting tha notation at the end of Section 5.2 in an obvious manner, we

have

Theorem 6.6: If (5.1.16) holds, then CU,T* < CU,NRK*.

Proof: Immediate from (5.1.20) and (6.13). I

Thus if derivatives of v are easy to evaluate, the best Taylor series method

known is better than the best nonlinear Runge-Kutta method known. However, if the

cost of evaluating the kth derivative of v increases faster than O(ln k) as k t 00, then it

is easy to show that the opposite will be true.
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Section 7

Numerical Results

In the previous sections, we computed (for several classes of methods) that

order which minimized the work required to attain a given error criterion. Here, we

consider actual numerical re.-ults of optimal order and minimal cost for various test

problems and classes of methods. The optimal order for a given error criterion was

determined by finding, for each method implemented, the coarsest mesh that allowed

the error criterion to be =atisfied; the resulting complexities were then compared to

determine the optimal order. The error measure used was the "endpoint error," i.e.,

the co-norm (s"me e.g., Stewart (73, pg. 164) of the difference between the true and

computed solutions, evaluated at the endpoint of the interval of interest (the unit

interval I). All testing was carried out on the Carnegie-Mellon University Computer

Science Department's PDP-10 in ALGOL and FORTRAN, using double precision.

The first problems considered were of the form

.T:-t(7.1) W ( ) = X xMt x(0) - I

on the unit interval L Although this problem is easy to handle analytically, any general

problem of the form (2.1) may be locally approximated by a linear system of ord nary

differential equations (see e.g., Hi,,dmarsh (74], pp. 17-i8). If tl., coefficient matrix of

this linear system is diagonalizable, an uncoupled set of scalar equations of the form

(7.1) will result.

These problems were solved via Taylor series methods; the optimal order is

given in Table 7.1 for the choices of Xk indicated. Here the optimal order was taken to
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be that order which minimizes the number of evaluations of the right-hand side of (7.1)

required to attain the desired errr'r criterion. As expect.d, the number of evaluations

required increases as the errt, ,iterion a decreases. Moreover, the optimal order

also increases monotonically as s decreases, just as the theory predicts.

We next turn to the solution of the test problem

(7.2) k(t) - cos2x(t) x(O) - 0

For this problem, we searched for the optimum "unmodified" Brent-Runge-Kutta

method. For this problem, the optimal order was taken to b. that for which the actual

CPU time (in milliseconds) required to solve the problem to within a given s was

minimized. Since there Is a certain amount of randomness in such a measure, the mean

time for ten runs was analyzed. Not surprisirngly, it turned out that the order which

minimized the CPU time also minimized the number of evaluations of the right-hand

side of (7.2). Since the (n + 2)th-order method requires the zeros of the Jacobi

polynomial Gn( 2, 2,' ), and the best set of values available only contained the zeros

for 1 : n < 8 (Table 25.8 of Abramowitz and Stegun [64]), only the methods of order

not exceeding ten were implemented.

The results for problem (7.2) are given in Table 7.2. 1ere, the optimal order p*,

the optimal number of mesh points n*, the minimal number of evaluations Ce, and the

I minimal mean CPU time Ct are given. Note that these all behave as predicted. In

addition, we computed tho ratio of the mean CPU time for a fourth-order method

Ct*(4, ) to the minimal mean runtime. As the theory predicts, this ratio appears to be

increasing without bound as i tends to zero. (The same behavior was found for the

ratio Ce(4, ) / C, where Ce(4, • ) is the number of evaluations required by a fourth-e'

order method.)

Finally, we looked at the "hard" problem
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(7)t )  IF-1 aji(t) xi(t) xj(t) (1 5 I S 2)
(7 3) W + 0-T2 T 1

'ijt  j - exp(-1ij (t - v)2) sin r dr (1 < 1, j S 2)

(where "exp" denotos the exponential function), with initial conditions

xl(O) - x2(0) - 1

The yij were all taken to be one, while tne rij were taken to be

P1 I 1 1 , '12 - 22 _ 10 - 6  ,  "21 = 10 -3

(This system of differential equations is similar to the system governing a two-species

gas chemical reaction; see e.g., Finlayson (711)

Since the system (7.3) is nonscalar and nonautonomous, the Brent-Runge-Kutta

methods are not appropriate. Since the derivatives of xi(t) are not readily evailable,

the Taylor series methods are not particularly easy to apply. Thus we used linear

Runge-Kutta methods for the solution of (7.3). The particular methods RKp of order p

(1 S p s 8) used were as follows.

RKt ... Euler's method
RK2 ... Ralston (66) (5.6-40) "modified Euler"
RK3 ... Ralston (66] (5.6-45)
RK4 ... Ralston [66) (5.6-48) "classical method"
RK5 ... Cassity (66]
RK6 ... Butcher [64b] (first method on page 192)
RK7 .. Shanks (66]
RK8 ... Cooper and Verner (72]

The methods of order less than eight have the optimal number of stages per step,

while the method of Cooper and Verner has the minimum number of stages of all

eighth-order methods known (see Section 5.2).

Most of the work involved in solving (7.3) was In ev ; uating ai(t). An obvious

change of variable reduces this to a Gauss-Hermite quadrature; a twenty-point

quadrature (Table 25.10 of Abramowitz and Stegun [64]) was used for maximal

accuracy. The Chebyshev rational function approximation given on page 356 of
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Frfterg [69) was used to compute (sin r) / r for irl S 1; the system double-precision

sine routine was used for rl > I

Since so much of the time required to solve (7.3) was spent in, evaluating a1j(t),

the measure of cost was the number of evaluations of the set (jp(t) : 1 : I, j < 211

that is, we measured the number of evaluations of the (vector) right-hand side of (7.3).

(Moreover, the amount of computer time required to search for the optimum was so

great iis to preclude running the problem a large number of times and averaging the

results, as was done in the previous example.) Results are given in Table 7.3, where

p *, n*, and C (defined as for (7.2)) are given as a function of the error criterion. Thee

table stops at - -5 , since the eighth-order method (i.e., the highest-order method

implemented for testing) was reached at that level. Again, note that the theoretical

results predicted are confirmed in this difficult examp.e.

So, our three numerical examples yield data which agree with the theoretical

result that the optimal order p*(a) increases with a - In s-1 Moreover, In Sections 5

and 6, we saw that p*(a) - 0() as a t co i.e., the optimal order Increases linearly

with a. The data in Tables 7.1-7.3 support this result.

Further testing still remains to be done. In these examples, we picked problems

that were well-suited to one particular type of method (e.g., it was easy to get the

derivative information required by Taylor series methods for (7.1)). Future testing

should look at problems that are "neutral" in the sense that the informations required

for the various classe- of methods are equally hard to obtain. This would allow the

comparison of various classes of methods. In addition, we point out that "fast'

methods of polynomial ma riulation we,, not used (due to the additional programming

involved in designing such a package), perhaps such a package should he :mplemented

for future testing of the Taylor series arJ nonlinear Runge-Kutta methods.
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TABLE 7.1

Taylor Series Methods for Test Problem

i(t) , X x(t) x(O) i 1

Io6 ) -e )L=-1 ,A -1/e ,N = le X,, 1 X e

1 2 3 1 3

2 9 4 2 2 4 3

31 6 3 3 4 11

4 12 7 4 4 7 12

5 14 8 s 5 8 14

6 1 s 6 6 9 is

7 16 18 7 7 18 16

8 17 11 8 8 1 18

3 19 12 3 3 12 19

Notes:

I. In all cases except X -e, a = 10' 1, the optimal mesh-size was
h - 1.0; for this exceptional case, it was h - 0.5.

2. Entry in table is the optimal order for the given X and s. This equals
the minimal number of function evaluations required to solve the
problem on the entire unit interval, except for the exceptional case
noted above, where four was the minimal number of evaluations.
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TABLE 7.2

Bent-Runge-Kutta ethods for Test Problem

W(t) - co, 2 x(t) x(O) W- 0

-IogiO, p* n* C I Ct Ct( 4 - )ICt

1 1 2 2 2.789 3.93

2 2 2 4 7.824 3.28

3 4 "16 23.144 1.88

4 S 2 8 32.481 i. 38

5 6 2 18 48.837 1.87

6 7 2 12 68.978 2.1S

7 8 2 14 76.613 3.18I
8 9 2 16 32. 52 4.58

9 18 2 18 188.632 6.8S

I
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TABLE 7.3

Linear Runge-Kutta Methods for Test Problem

i 1t 1 a11(t) x;(t) x1(t) x1(O) - I (I si 2)

- m S1 exp(-Pj (t - )2) r.-I sin 'r dr (1 :s , j :s 2)

-10los 0 P c

1 3 8 24

2 4 10 40

3 I4 15 6

4 7 9 81

s 6 99
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Summary and Concluesn

In this thesis, we have conatructed a methodology for studying the

computtional comploxity of one-step methods for the numerical solution of ordinary

differential eautHn Initial-value problems. We developed lower and up po bounds on

the complaxity of a given ms-thod, and taowed how to pick that method within a basic

* svqgonc* which triranlzas complexity. Under very general hypotteses (which were

later verifWe for ;A number of commonly-ued classes of methods), we saw that the

optimal order Increases as the error criterion s decreases, tending to Infinity as a

tends to zero; this i.3 in contrast to 9-4 situation in iterative complexity (Traub and

Wovaowsi E76]. Moreover, in many cet the* specific classes of methods studied, we

swtha the optimal step-size does p~j tend to zero viet s, a recut indicating that it

is i-MPOrtant to not assume that h tends to zero. These rsults of optimal order and

step-ize were then used to find bounds on the complixity of :olving the equation to

within a given s, using a giv&n class of mnethods; using these bounds, we were abis to

compare the wgoodness of ssveral such classes.

ft now turn to some issues that have beon r- '-4 by this study. Probably the

most important point is that we have found eiidn. 1hal high-ord er methods may be

of practical (Le., computational), as well as theoratca; iHirest. However, we need to

learn much more about them the crucial point not being that of getting maximal order

for a given Information set, but that nf gtting nmal complexity for a method of

given order. For example, the op!!mslly-ordared cltss OMB has greater complexity
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than the class (BRK; indeed, the oifferences in combinatory cost far outweigh any

advantages the former has over the latter, as was pointed out in Section 6. (Even if

we were to take the drastic step of ignoring combinatory cost, we would still be faced

with the fact that 0BRK is known to be order-convergent, while no such result is

known for tMBRK.) A similar situation arises when we compare the classes ¢DCRK and

OCVRK of linear Rungo-Ku'ta methods (Section 5.2).

Finally, we consider some open questions.

(1.) In a number of instances, we have only been able to show "trivial" lower

bounds, i.e., lower bounds whch are linear in the amount of information needed.

However, the bes' a!gorithms known have complexity which grows faster than linearly

in the size of the information set. How may we narrow this gap? (Note that this is an

issue that touches almost all areas of complexity theory.)

(2.) What are the possibilities of extending this an~'-i; jo include

"polyalgorithms" for the solution of initial-value problems? It is often wise to vary the

step-size from stbo to step; furthermore, many existing programs allow the order to

vary. It would be useful to have a complexity theory that includes these methods.

(3.) We assumed throughout this thesis that infinite-precision real arithmetic

was available. It would be of great interest to study the complexity of initial-value

problems using variable-precision arithmetic, a far more realistic model.

(4.) What is the complexity of using multistep methods to solve initia;-value

problems? We have some pre;;minary results for the class of Adams-Bashforth

predictor/Adams-Moulton corrector methods, using 08RK to find the necessary starting

values; this work will be reported in a future paper. (This class is order-convergent,

and a result similar to Theorem 3.3 holds; it also appears that the choice of starting
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j method is of great importance in the complexity analysis.) Besides the multistep

methods, many oth, classes of methods remain to be an3lyzed, such as extrapolationI methods, spline methods, multistep Runge-Kutta methods, and special methods for

"stiff" equations. (Of course this list is by no means exhaustive; see Gear [71] or

-Hindmarsh L. 4] for further discussion.)

(5.) The error equation (3.1), (3.2) holds for non-iterative methods for the

solution of a number of other problems such as boundary-value problems for ordinary

and partial differential equations. Hence, we suspect that a great deal of the analysis

in Sections 2, 3, and 4 may go through unchanged. A long-term goal is the study of

such problems from a complexity viewpo-int.

-i '

8
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Appendix A

Error Bounds for a Basic Sequence of
Cooper-Runge-Kutta Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK*)

methods due to Cooper (691 We shall first prove the following

Theorem A.1: There is a basic sequence OCRK' of LRK methods such that

(U.) Each vp ( OCRK' requires

s(p) :- (p2 - p + 2) / 2

evaluations of v per step.

(2.) There exists an M > 0 such that

(A.1) rG(,ph) : (MU In (p+e) h)P

for h s hp - 0( (ln p)-1).

We use the notation of Cooper and Verner (721 Let p ( ++ be given; define

p:Zn (0, p] - Z + by

Z) 0  k E j(j -l) / 2 if j i p
(A.2) p(j) : k

S if j - p

where we write "s" for "s(p)" as defined above. Next, a set {t ,- , f} of integers is

defined by picking :- p, and setting , (i 0 0) to be the unique integer in [1, p]

satisfying

(A .3) 1(- ) < i <5 '(ti) .

We now pick u0 , us E I satisfying

(A.4) u0 -0, uS - I, u i'Oifi '0

and
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(A.5) (Ii- j andi j) implies ui u uj

Finally, we pick a matrix of coefficients A- {Aij: 0 J S < i-1, 1 S I s s) such that

(A.6) Nj o If < j- 1 ( S i, j :)

and

(A.7) j-O )iJ uJ .(+1F1u (0 s r :Sj 1, 1i : I s)

Cooper ano Verner (72] point out that these conditions may always be fulfilled; the

resulting A defines a pth-order LRK method with s stages.

We are interested in a choice of u0 , - , us which will give a small error

coefficient. To this end, we will choose

(A.8) (uj: j - n) - ( +xkn) /2: 1 Sk Sn) (1 r, Sp - 1),

where xln , . , Xnn are the zeros of the Jacobi polynomial Pn :" Pn( 'M (see

Szeg8 [59]). Since these zeros are distinct and lie in [-1, 1] , conditions (A.4) and (A.5)

may be satisfied.

Now we are able to exhibit a solution to the ith system in (A.7). First, note that

,Ie equation for v - 0 may be separated from the others, since u0 - 0. Setting

n :" -1,

we see that

(A.9) ii - ui -Z j ~),j - ui -Z{ .iij: j <i and aj~n ,

the last by (A.6). We wish to determine the nonzero Nij, i.e., those Nj for which n n n

and j < i. So setting

Xij-0 unless j( 0j1,,in),

we see that the remaining Nij are the solution of the system

n ,l-l ui'+1-
Lk- 1 Ujk Nik U ui (1 r S n)

Thus the )ij k are the weights for an Interpolatory quadrature formula on (0, ui) with

- --
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-?,jcissae uj, " ' Ujn" From the usual expression for such weights and (A.6), we see

that[ ijk - ;ikn :- [2Pn'COS 0101 1 5 P(COS 0) / (cos 6 - COS Okn)J sin 0 d#

where xkn - cos Okn (I S k 5; n).

Lemm a A.: Pikn -( N  In n) as n t co.

Proof: Since the zeros of Pn are symmetric about the origin, we may assume

that 0 < Okn : w/2. Using (8.9.2) of Szeg5 (59], we then find

MUikn ' 0(k5/2 n 3 ) fi 1 [Pn(cOs 0) / (cos 0 - cos 0 kn)J sin 0 d6

Case 1: Ol,n+l :5 Oi,n+ 1 < Okn+1/2. We consider the integral over

[0 ln/ 2 , Oin+1] , since Theorem 15.4 of Szeg8 (59] proves that

0(k5 / 2n- 3 ) (I f0 I + I fOn 2 1] - (n1)

here tree integrand is the same as in the preceding integrl. But the proof of (15.4.12)

in Szeg6 [59] extends almost immediately to a proof that the remaining integral is

O(k-2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus 1ikn"

O(n-') - 0(n- 1 In n) for Case 1.

Case 2: Ok,n+I/2 :5 )i,n+l 30k n+/2. We consider the integral over

[Okn/ 2 , Oi,n+1], since Szeg6 (59] shows that

0(k5/ 2n-3) I I0 k2I - 0(n-1)

As in (15.4.13) of Szeg8 (591 we have

ji,n+1 - 0(nk- 3 /2 ) 11 + 12Okn/2

Here

:M f (in+1 D0) sin-.O~kn /2 . ,

with

0(d) :- (cos (NO + v) - cos (Ntkn + dy)) / (cos 0 - cos 0 kn]

where N :- n + 3/2 and y :- -3v/4, and
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12 :- n~ RnO kn) sinl 0 dd O(nI- 3/2),

with Rn the remainder term in (8.&2) of Szegb (59]. Unfortunately, the proof that

(15.4.14) of Szegb (59] is bounded does not, extend to a pr'.)of that 11 is bounded,

since the proof of the former requires that the interval of integration be symmotric

4 about Okn. However, it is straightforwvard to verify that

1- O 0) 'Isin NO / 61d# - 0(ln n)

#Thus Jin- O(n- 2k In n) - NO In n) for Case 2.

Ce 3Lk,n+1 :5 Oin :5 31r/4. We~ consider the integral over

(30kn/ 2, 'Oi,n+l] , since Szeg8 (59] proves that

O0lk5/2n3N I 'r~'in/2'-Q~~

But the proof of (15.4.19) In Szegb (59] extends to prove that the rGsnlining integral is

Q(k- 5 /2n) (as in Case 1). Thus AMk -O(n1) - OWn) In n) for Case 3.

Case 4: 3r/4 :5 ii,n+1 :S un+I,n+l1 We consider the integral over

[3w/4, #)i,n+ I), since Szeg8 (59] shows thg't

00C5/2 ) IF i 0(n 1)

As in Cases 1 and 3, the proof of the above may be extended to p; .Ate a similiir bound

on the integral of intorirot. Thus DPikn 0 (n1) N O In n) in Caso 4, completing the

proori of the Lemma3

Thus (A.9) and Lemma A.1 show the existronce of a X > 0 such that

(A. 10) 1 i- IXijI :S X In ( , + a

here X~ is independent of p. Moreover, the result for the case I - s may be sharpened.

We see that Xs 0, since the uj for the 9th system in (A.7) are the abscissae for

Lobatto quadrature. Thus

the consistency condition in the last equality being a consequence of (A.7) with ' - 0.
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Proof of Theorim A.1: As in Cooper and Verner [723, we define

si :- *(uih) - ki

and

for 0 < i :5 s; note that o- so - 0. Let z(h) be the computed approximation to x(hh

then
h Ilx(h) - z(h)ll - II h-1 x(h) - x(O)] - I-O i ki

(A.12) < 116sll+ -IS i

<5 II6sll + max E, . p-1 IIsill,

the last by (A.6) and (A.11). By the analyticity of x, there is an A1 > 0 such that

i: h II x(uih) - Z ) (uih)lx(')(0) / r! II < (A1 h)

and

I'ij :m II *(ujh) - Z, =0 (ujh) ( ')o) / P! II S (A1 h)

so that the definition of 8i gives
Il~il < + :i-1

OI +l1j,,O INj l -vij

(A.13) s (A1 h) i + ji-I Ij (A1 h) ,

(A2 h) ti

for a suitable A2 > 0. Thus (A.12) becomes

(A. 14) h jlx(h) - z(h)ll s (A2 h)P + max - p-1 1sill •

We now use Lemma 1.1 of Cooper and Verner (72] and (A.6) to find that if L is a

Lipschitz constant for v, then there exists A3 > 0 such that

IIsill S hL 11ill + hL Z'j i Ij-0 INij I max j II6ill

£ (A3 h) ti+1 + (A3 h)In (i + e) max j IIsjll

tha last by (A.10) and (A.13); here, the maximum is taken over all j < i such that

tj ti - 1. A straightforward induction shows that if (1 + In 2) A3 h < 1, then

----- t%- z--- - - - -
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1taill :S (A4 In + e)* e)

for a suitable A4 > 0. Combining this with (A.14), we find

(A.15) h0 I1x(h) - z(hflj :S (A5 In (p4.) h)P,

the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschitz constants

for the increment lunctions. Let L be a bound on II'7viI, and write "V7j(yh)" to

indicate gradient with respect to the vector variable y. Now

IlV7j(y 1h)jI S Zi. I)sij max O~sis-l JjI7ki(y,h)II

-max 0~i:5-l IIVki(y,h)ll ,

where we write "ki(y,h)" to indicate the dependence of ki upon y and h. By the

definition of k1(y,h), we find

Vki(y,h) - Vv(u) 11NxN + h 1j0 - Vkj(Y~h)J]

where u - y+ h MZ.6j kj(y,h) and 1NxN is an NxN identity matrix. Taking norms in

the above gives the result

:S LX* hL)(In( j+e)max { j: ji and - 1)1,

wher ~j:- 1Vk1 ,h)I. Witig ~for the Lipschitz constant for pp,, It is easy to see

that (A.16) and the above inequality imply

K,~P ( j-LJU2 In (p..-k),
lp j-0 k-I

which is bounded for all p, provided that h :S h p (L.\ In (p~e))F1 . Th%.z I.A.I) follows

from this result, (A.15), and Theorem 3.3 of lHenrici (621. 1

The value for s(p) indicated in Theorem X1 may be improved somewhat by

noting that since we are using a Lobatto quadrature, higher order may be exp3cted

with fewer steps. Indeed, it we use the strategy outlined In the comments following

Theorem 4 of Cooper and Verner (72], we have
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Theorem A.2: There exists a basic sequence OCRK of LRK methods such that

(A.1) holds and pp requires

Its(P) up 1( 2 - 2p + 4) 2J

~ I evaluations of v per step.



Appendix B

C Order-Convergence of a Basic Sequen~ce of
Brent-Runge-Kutta Methods

In this Appendix,'we describe 2i subclass of a class of iterative methods for the

* solution of scalar nonlinear equaticns. This subclass will then be used to generate an

order -convergent basic sequence OBRK of nonlinear Runge-Kutta methods.

L~mm* Qj Let F: Dc!? . R have a simple zero I,, and suppose that F Is

analytic at r. Pick k, m (Z + with m + I ? k'. Then there is a setcuence

*km :' thtmn : n ( Z '+) of stationary multipoint methods without memory such that

thi fo!lowing hold:

(1.) The method h'mn uses the information

(the points yi - Yn being suitably chosen) to compute a now

approximation x, to r from a given approximation x0 by setting

(2.) There exists aB >Oand an ho>0 such that if Ix -rjsho then

Ix I - rj s (BIX0 - ri) for all n (

where

(8.1) p -.- min (m +2n + 1,2m +n +1)

Before proving the Lemmas, we describa how the method *kmn computes an

improved approximation x, from the old approximation x0 .
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Algorithm for computing x1 :- I mn).

1.) Let 8 :- IF(x0)/F'(x0 )l.

(2.) Let z, be an approximate zero of

p1(x) :- (x - xo)i F(i)(x 0) i1

satisfying

(B.2) z1 - x0 + 0(0) and IpI(zI) :s (A1 i)m+1

where A1 is independent of n.

(3.) Let

Yi :- X0 + ain Q 'x
0)  U( i S n),

where

=in :- U + x;,,) / 2

and Xjn • ... • Xnn are the zeros of the Jacobi polynomial

Pn(x) :. p(k-l, m+l-k)(X)
n n

(see Szeg8 (59)),

(4.) Let p,n~ be the polynomial of degree at most m + n that interpolates the

information 92kmn , and let x1 te an approximate zero of Pn+1 satisfying

(B.3) x1 - x0 + 0(S) and IPn+l(xt) S (A2 I),

where A2 is independent of n and p is given by (8.1).

Here we use the notation of Brent [74]. Clearly, *k.nn ( C*(k, m, n), the only

difference being that conditions (B.2) and (B.3) replace (2.2) and (2.4) of Brent (74). It

is easy te sor that (B.?,i and (B.3) may be realized by using rlog2 (m+l)l - 1 and

'log2 (P/(m+l))l iterations of Newton's method, with the respective starting

approu. ations of x0 - F(x0 ) / F'(x 0 ) and z, .

Pro of Leonma .: Lot x1 be the exact zero of Pn+I noar V0 . We then find

that there is a between xlj and z, such that
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(B.4) 1F(x 1 ')j f- iPn+l(zl) - F(zI)1 + ijP+i(%) - F'(Q)I Ij' - 711

Using (8.3), the analyticity of F, and standard techniques of interpolation theory

(Trub (64]), it Is easy to show that (2.9) s,d (2.10) of Orent (74] my b= rewritten Pi

IPn+l(x) - F(x)J s (A3 1)m+fl and
(B.5)

ip(+1 (x) - F'(x)' s (A4 I)m n

for Ix - xOl : 45. (Here all constants Ar wi;I be independent of n.) Similarly, we find

that

IxV' - f s (A5 S)m+" and iz - ril : (A6 8)ml,

so that the triangle Inequality gives

(B.6) 1jx,', - z11 S (A7 1)m+1

Using (B.4), (B.5), and (B.6), we see that

ifEU))i I 'Pn+l(zl) - F(zl)i + (A. 8)2'+n~l

(.7) sPnl(zl) - FI(Z*)l + IF2 (z.)l + (A8 I)zm+n+l

,',here

I ( * : 2-n(x " xo)i F( )(xO) / I! and F2(x) :- F(x) - F(x)Fl~x "" i-O

Clearly IF2(x) : (A9 s)m+2n44 -o that (9.7) becomes

(B.8) IjFx 1
1
11 S IPn+l(zl) - F1(zfl) + (A1o I) D

As in Brent (741 we now write

pn+l(x) - rl(x) +r2(x),

where r, (i - 1, 2) Is the polynomial of degree at most m + n satisfying

rj)(XO) - Fi())(x O) (O :S i :S m)

and

ri(k)(yj) - Fi(k)(y j) (1 : S n)

If we let

it P(x) :- r1(x+ xO) -F 1(x + xO)

2I
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and write i : Z, - x0 (in this Appendix only), we find that
P)((0-O (0SiSm) and P(k)(in.}-0 (1 Sin)

We may easily alter the proof of Lemma 4.3 in Brent [74] to show that

rj(z1)-Fj(zl ) - P() - 0

Thus (8.8) becomtr

(B.9) IF(x11 )i < Ir2 (zl)I + (A10 )0

To bound the remaining term, let us write

r) ] aj+m (x - Xo)j+m

recalling that r2 has a zero of multiplicity m at x0 . Using the notation of Stewart [73),

we see that thd nonzero coefficients of r 2 are given by the solution of the linear

system

Wy - c

where

(i= -I U1Si,j Sn)
in'. = aj+m 6j+m (j + m)',/ (j + m- k)t (U :Sj : n), aid

s F2(k)(yi) I m-k+l ( :S i :S n)i :" l k  /°2in ( i n .

S_e WT is a Vandermonde matrix, we find that the entries of U - W- 1 are given by

ij - jn (-ltni 'n-in-I,j / f'r~j (*jn -frn )

where

1;i=,n- ].,j :" a pl,n -- p ,n

the sum being tUken over all multi-indices p, ... p. not incluw.ng j (Gregory and

Karney [69]). Since there are fewer than 2 n summands, each of which lies in (0, 1),

we see that a'n-1,j S 2 n , implying that

1ui11 s 2n  (,j n- arn)"

So we have
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±n 2n  1' Isjsn Ik F2(k)(yj) / (fnlK Gn'(ajn)] I

where
|n

Gn(x) :- Gn(m + l,in+2-k,x) -, lr- x- r

(see Abramowitz and Stegun [64]).

Now it is clear that

maxIM-K m-kmaxtsj<_n *ifjn- % ln

By Theorem &9.1 of Szegb [591 we may show that

"nn ? A1 1 n
2 ;

, usirg this result and (22521) of Abramowitz and Stegun (641 we find that

max 1:5j:Sn ejn- Gn (aJn )]1'

S A1 2 n2 (m-k) (+ 2n + ax s n lxjnl-"
xI Sj<_nn

m

By the symmetry relation (4.1.3) of Szeg& [591 we may assume that 0 S xin < 1. Using

Theorem 8.9.1 of Szeg8 £591 we may show that

JPn'(x jn)j "I :s (AI3)n,

and so (B.IO), (B.1 1), the definition of F2, and the above imply that
414

yielding the result

1r2(zl)I S z; aj+m ei ': s n max lSiSn S (A15 8 )m2n+

So (a.9) becomes

IF(xl')i S (A16 )

By Taylor's Theorem, this implies

I1x1 -rI S (A17 1)D

The desired result then follows from (W.3) and from (2.5) of Brent (74]. 3
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We now describe the basic sequence OBRK The methods in this basic sequence

are given by

jolxO , h) :- vlxo),

'P 2lx 0 , h) :- v(x0 + h v(xO) / 2),

and for p ?, 2,

VNOh) 0 h'* 1,13,p. 2(xO) - 3

with I,1,p-2 applied to the function F given by (5.1.5) and the approximation x, to

x 1 ' being given oy an appropriate number of iterations of Newton's method (as

described above).

Theorem B.1: The basic sequence (BRK is order-convergent with respect to the

global error. Moreover, the number of stages s(p) required by ,p ( tBRK is given by

" p if p s 2
s(p)

p p-I ifp>2

Proof: We use the notation of Lemma 6.1, writing z(h) for the computed pth_

order approximation x, to x(h) and Pn ( •, xO) for the polynomial Pn+1 . The result

of Lemma 8.I is that

h 1 Ijz(h) - x(h)j S (8h)P,

the desired result for a single unit step. To prove the global result, we must consider

the Lipschitz constants for 4,BRK .

We implicitly differentiate the result Pn-t(xI' , xO) a 0 to find

o1 JpO  h) n -h- I Qn~ l(xl, xO) + p(x0 ) ,

where

Qnl(xl', xO) - ( pr ,+ l(x l ', xO) / 1 Pn+l(xl', XO)

and

p( O ) - 1h- (d/dxo) xI - x 1]I

__.__..
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It is easy to see that x1 and x1 ' are anolytic functions of x0  Since their difference

tends to zeco uniformly on tho domain of v as p t o, it follows that

lim ptco 'p(XO) - 0

We claim that

Qn+l(xl/, x
O) - O(h In ) as n T o,

uniformly in x0 . Tc see this, note that we may write the interpolation polynomial Pn+

in terms -f Jacobi polynomial Pn finding 1hat

pn41((xx0) _ (- 1 )n (h/2) Pn(t) dt + h v(x0 ) I n - h,

where

r(x) :- 2(x-x 0 )fIhv(xO )] - I

and

Ikn :- (2 (1 + Xkn) v(Yk ) Pn'(Xkn)]F'1 fx) (t + 1) Pn(t) / (t - xkn) dt

61 pn+(xl,, x0 ) (-1 )n Pn(tl) / v(X0) + U +) r Z k-Ig() L

where

r, :i(x 1
1)

Lkn(x) :-Pn(x) I [Pn'(Xkn) (x - Xkn)), "ind

g(t) : 1 /(1 +t)v( 0 ( +(I + t) hv(x0 ) /2) ]

S6By (8.21.10) of Szeg8 [59, the first term in the expression for 61 Pn+l(Xl ' , x0 ) goes

to zero as n T oo . A minor modification of the proof of Theorem 14.4 of Szeg8 [59)

shows that the , jr.i in the remaining term tends to g(rx(h))) as n t o. So

6 1 pn,4 1(x ' x0 ) , v(x(h)) "1  as nTco .

Usir- Lemna A.1 and techniques similar to those yielding the above estimate, w, find

62 Pn+l(Xl' , x0 ) - 0(h 'n n) - v(x(h)) -l as nTco

j This gives the estimate caimed for Qn+ 1(x1 , xO) .
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So the LiDschitz constant for p( BRK grows as the logarithm of p. By

Proposition 4.3, qbBRK is order-convergent. I

- 4

.=- - ~=
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