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ABSTRACT

The expansions of algebraic functions can be computed "fast" using the
Newton Polygon Process and any "normal" iteration. Let M(j) be the numbex
of operations sufficient to multiply two jth degree polynomials. It is
shown that the first N terms of an e;pansion of any algebraic function de-
fined by an nth degree polynomial can be computed in O(n(M(N)) operations,
while the classical method needs O(Nn) operations. Among the numerous ap-
plications of algebraic functions are symbolic mathematics and combinatorial
analysis. Reversion, reciprocation, and nth root of a polynomial are all

special cases of algebraic functions.
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1. INTRODUCTION

Let R

i (1.1) PM,z) = An(z)wn Foaee + 8,2,

where the Ai(z) are polynomials over a field A. In general we shall take A

[y o———

to be the field of complex numbers; an exception being Section 7. (Many of

the results hold for an algebraically closed field of characteristic 0.)

Without loss of generality we assume Ao(z) £ 0 and An(z) £ 0. Capital letters !

phtainniina

will denote polynomials or series; lower case letters will denote scalars.

The zero of (1l.1), a function S(z) such that P(S(z),z) = 0, is called !

{ the algebraic function corresponding to P(W,z). Let z, be an arbitrary

complex number, finite or infinite. It is known from the general theory of

algebraic functions that S(z) has n fractional power series expansions around

N e e ok i e e B A

;e By the computation of an algebraic function we shall mean the computa- .

tion of the first N coefficients (including zero coefficients) of one of its
expansions. (This will be made precise in Section 3.) The problem we study !
in this paper is the computation of one expansion of the algebraic function.
Our rcesults can easily be modified for computing more than one expansion or

all expansions of the algebraic function,

As described in most texts, the classical method computes algebraic

functions by comparison of coefficients. It is not difficult to show that

the method can take O(Nn) operations, where n is the degree of P(W,z) with

respect to W. Hence the classical method is very slow when n is large.

' The wain result of this paper is that every algebraic function can be

computed fast. Let M(N) denote the number of operations sufficient to multiply

two Nth degree polynomials over the field A. Let C(N) be the number of opera-

tions needed to compute any algebraic function, We prove that

C(N) = O(nM(N)).
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Since M(N) = O(Nz) (or M(N) = O(N log N) if the FFT is used), our algorithms
are considerably faster than the classical method even for moderate n. It is
an open problem whether or not a general algebraic function can be computed

in less cthan O(M(N)) operations.

The '"fast computatiun" of the title is because the coefficients of a
"regular" problem can always be computed fast by iteration (Section 5) and
the general problem can b.: reduced to a regular problem (Section 6) with
cost independent of N,

Brent and Kung [1976] showed that the cost for reversion of a polynomial,
which is a very special case of gn algebraic function (see discussion later
in this section), is O((N log N)§M(N)). We stated above that the cost of
expanding an algebraic function is O(nM(N)). These results are reconciled
by the observation that we are considering the case that the degree n of
P(W,z) with respect to W is fixed and independent of N, while Brent and Kung
considered the case where n = N,

There are known examples of fast computation using Newton-like iteration
in settings such as algebraic number theory (Bachman [1964]}), power series
computation (Kung [1974], Brent and Kung [1976]), and the Zassenhaus construc-
tion in p-adic analysis (Yun [1976]). Fast computation of algebraic functions
raises certain issues not present in these other settings; sec especially
Section 6. As we will see in Section 5, there is nothing special about Newton-like
iteration; any 'normal iteration'" can be used.

Although the complexity results are stated asymptotically, Theorems 5.1

and 6.1 give non-asymptotic analyses of the algorithms. Hence various non-

asywptotic analyses can also be carried out.

We are interested in the computation of algebraic functions for a num-

ber of reasons. These include
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1. A number of problems where fast algorithms are known are special

caszs of algebraic functions. (More details are given below.)

AR ik ATk

2. There are numerous applications. For example, many generating
functions of combinatorial analysis and functions arising in

mathematical physics are algebraic functions. The integrands of

elliptic and more generally Abelian integrals are algebraic func-

tions. See Section 9 for an exwmmple,

3. Algorithms for expanding algebraic functions are needed in systems

for symbolic mathematics such as MACSYMA (Moses [1974]).

‘. Algebraic functions are of theoretical interest in many areas of
mathematics. These include integration in finite terms (Ritt [1948]),
theory of plane curves (Walker [1950]), elliptic function theory
(Briot and Bouquet [1859]), complex analysis (Ahlfors [1966], Saks
and Zygmund [1971]), and algebraic gecmetry (LeZlzchetz [1953]).
Algebraic function theory is a major subject in its own right. See,

for example, Bliss [1933] and Eichler [1966].

We exhibit snecial cases of algebraic functions where fast algorithms

are known.

A. Reciprrcal of a polynomial:

PW,z) = Al(z)w - 1. (See Kung [1974].)

(Actually Kung uses P(W,z) = w'l - Al(z) which is not of the form

(1.1), and allows A,(2) to be a power series.)

B. nth root of a polynomial:

PW,2) = Wt - AO(Z)' (See Brent [1976, Section 13] where the Ag (2)

is allowed to be a power series.)
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¥ C. Reversion >f a polynomial:

Let £ be a g ven polynomial with zero constant term. We seek a function g

such that f(g(z)) = z. To see this is a special case of an algebraic func-.

tion, let f(x) = anxn + an_.lxu.1 + eee + a x. Then we seek g(x)

such that angn(z) + .00 + alg(z) - 2z =0, This is an instance of

AT LA AN
—— T

our general problem with Ai(z) = 3., i=1l,...,n, Ao(z) = -z,

i.’
See Brent and Kung [1976].

We summarize the results of this paper. In Section 2 we show that
without loss of generality we cau take zy = 0 and assume An(O) # 0, Nota-
tion is established and a few basic facts from algebraic function theory
are summarized in Section 3, The concept of normal iteration is introduced
in Section 4 and convergence of normal iterations for regular problems is
established in Section 5. In Section 6 we state and analyze the Newton
Polygon Process, which reduces the general problem to a regular problem.

A symbolic mode of computation with exact arithmetic

is introduced in Section 7., Section 8 shows that C(N) = O(nM(N)). In 3ection
9 Qe give a number of examples, several of which are more general than the
theory of the preceding sections. The final section discusses

extensions of the work presented here.

In this paper we analyze algerithms under the assumption that the coef-
ficient of power series are 'nmon-growing', e.g., all coefficient computations

are done :m a finite field or in finite~precision floating-point arithmetic,

An analysis dealing with variable-precision coefficients is yet to be performed.
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2. nztzintm: AY TRANSFORMATIONS

Uuull :hat we wish to conpute m of the exmim a:md zo of che

gy A e -

R R T . .
glgebttic funutiouaS(z) cortespondins to: - Cﬂf ;Nﬁg . o
Sw i Y . I - ¢

N s . 5 , PR

e “{‘g& N

ﬂo&n“irwa)aauw“*u.;muh‘ S %,Uw

. o
ogh v"” (A

o g.g@,vg(sig):,i) £ 0. I this netm wc nbow thlt after m simple m
ﬁé@jgitéﬁ3~ué‘ﬁéed‘OnnydaﬂEVith=th¢‘¢Q'Q that &, = 0 and ‘n‘”"* 0. 1If ve

v00 transform B(W,z) to B(W,z), then S(2) is defined by B(S(s),&) =-0.
Consider first the case z) = . Let a4

,,/

R )

" vihetre @ = max (deg A ) By definition, an éxpansion of S(z).atéund‘zosr'w
: 0$i<h s :
is an expansion of s(z) around. zo - 0,

Consider next the casé Ehat £y is any finite compléx nubber  Define

Y

Aﬁfgqunéioﬁ'of*§(i) argunigthé«dfiéih 1s an expansion of §(z) around 2z = Zge

For the remainder of this paper we shal] therefore cake zy & 0, Y

]
T

Let A_(0) = 0: Then the algebruic function S(z) corresponding te P(W,r)
his one or more ékpiﬁsiona‘with negative powers. ‘Uﬁiﬁgrthedeiibwing~trahi-
formation, we need only dnalﬁwith expansions with non-negative powers., It

18 conveniént to use ord mnotation.

T

Definition 2:1. Let A(z) be an integral or fractional power geries. 1If A(2) £0,

vthenvéfde)«dgﬁotqafghé degree of tiie lowest degree term in A(z)s If A(2) £0

then. ord(A) = o,

bl i g 5 s i e

S
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Choose non-negative integers y and A to satisfy the follo’ing conditions:

il

u + ord(An) ni,

w+ ord(Ai) z i)\, i=1,...,n-1.

Let
- m A
P(W,z) = 2" P(W/z",z).
L' Then the coefficients of ?(w,z), Ai(z), are polynomials with Rn(O) # 0, and
§(z) hias only expansions with non-negative powers. Since the etpansions of

S(z) are those of S(z) divided by zx, it suffices to compute expansions of

§(z). For the remainder of this paper, we therefore assume that An(O) # 0,

(One should note, however, that the results of Section 5 hold without the

assumption.,)




3. FACTS FKOM ALGEBRAIC FUNCTION THEORY

We introduce some notation and state a basic result of algebraic func-
tion theory which characteriz=s the expansions of the algebraic function

corresponding to

P(W,z) = An(z)wn IR WOR

There exist r positive integers dl,...,dr such that d, + ... + dr = n and the
expansions of the algebraic function are given by

)

2 a
’ (=4 j'eo i
xi,zgi z -

=0

3.D Si,j(z) =

for i=1l,...,r and j=0,...,di-1, where giis a primitive dith root of unity

and the s are complex numbers. ¥For each i, the expansions Si

i, »J’

j=0,...,di-1, are said to constitute a cycle.

The problen considered in this piper is to compute one expansion of an

algebraic function. For notational convenience, let the expansion be denoted

by

Hence our problem can be formulated as that of computing the value of d and
the coefficients SprSyreer (In this paper S(z) represents either an alge-
braic function or one of its expansions, depending upon the

coatext.) Note that since

P(S(2),2) =0,

we have
P(s,0) = 0,




Thus, S0 is a zero of the numerical polynomial P(W,0). We say our

problem is regular with respect to 5o if Sp 15 a simple zewo of P(W,0).
(In this definition, we allow An(o)to be 0 ,) For a regular problem, we
have d = 1, that is, the éxpansion S(z) is an integral power series. In
Section 5, we shall show that a regular problem can always be solved by

iteration. In Section 6, we shall show how the general problem can be

transformed to a regular problem.
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4. NORI‘AL ITERATINNS

We introduce the concept of a normal numerical iteration. We give a
novel definition of the order of a normal iteration which is convenient for
the application to power secries iteration. In the following section we will
show that a normal iteration with order greater than unity will always con-
verge ii used for a regular problem.

Let p(w) be the numerical polynomial P(W,J), let s be a zero of p(w), and

CH N ¢ )

let e =w - s denote the error of the ith iterate. To motivate the

definition of normal iteration we first consider two examples.
Example 4.1. Newton Tteraticn

w(i-+1) - w(i) . pgw(i?; '
p

From the Taylor series expansions

a5 .. :
p(w\L’\ = p'(s)e(L) -+ 2—%11 (e(L)JZ + ...

and (i) i
Y= p(s) £ p" () o w Ll

p'(w

we have

o

(4D _p(s) . (D),2 RN € 5 2N
4.1y o 2p'(s)ke Yo 4+ cj (¢ )

H
L

i=3

where the cj are rational expressions of the derivatives of p at s, w:th

powers of p'(s) as the dencminators, [ ]

Example 4.2, Sccant Iteration

(i) (i-1)
\% -W
o —————— e . § })(\\’ ' v,

(i+1) (1)
W =y . -
p(w(L))-p(\\r(]‘"l ;




3
.
t
:f

Using the Taylor series expansions of p(w(i)) and p(w(l'l)), we obtain

4.2) e(i+1) ='§§4%%7 e(i)e(i-l) + °jz . (e(i))j(e(i.l))ﬂ,
jHe3
js 21

where the c,
il

powers of p'(s) as the denominators. [

are rat.ional expressions of the derivatives of p at s, with

Consider now a general iteration

s’ GO

%.3) 1 G-

(v

(L=m)y

9000y

i which is defined in terms of rational expressions of p and its derivatives.

Assume that by using Taylor series expansions, we can derive

8 . N J ooy J
@4 Do o C e ()0 e lrmy
H Jgoreesd
;: j.20 m
i
é where the ¢, 3 are rational expressions of the derivatives of p at s.
: 0,‘..’ nl

Definition 4.1. ¥ is said to be a normal iteration if the denominator of

each ¢, . is a power of p'(s). ]
5 Jo""’Jm
i From (4.1) and (4.2) we have that both Newton iteratiren and secant itera-

y tion are normal, 1In fact, most commonly used iterations . normal, We
i prove that the classical one-point inverse interpolatory iterations @0 (sce

Traub [1964, Section 5.1}; in particular, wz is the Newton iteccsation) are

(1)

i)
normal. Let q denote the inverse function to p and v p(w(1 Y. Then

V(i)) - q| (V(i))v(i) + 51 q"(v(i))(v(i))z

: s = q(0) = q( Foeee




By definition of ¥ ,

)
. _1yJ .
=40+ ;) L P eDyeePyd,

and 20

. - gy 3l

j=p
Note that
p(w(i)) = p' (s)e(i) +'21' p"'(s) (e(i'))2 + .

and that q(J)(v(I)) is a rational expression of p(k)(w(i)) for k=1,...,j and
(k)

has the denominator (p‘(w(l)))J. Expanding the p (w(i)) around s shows

that Wp is a normal iteration.

Definition 4.2. For a normal iteration § defined by {(4.3) and satisfying (4.4),

we define the crder o of { by

m1 m m-1
- 3 3 j see
p = sup{r|r S jof + 3gr + ..o+ 3 for all (§,, ,i)

such that ¢ . # 0 for some polynomial p.} a8
jos'”st

By (4.1), it is easy to check that the Newton iteration has order 2.
In general, it can be shown that the one-point inverse interpolatory iteration

vp has order p. Consider now the secant iteration. By (4.2), the order of

the iteration is given by
. 2 _ . .
o = sup{r|r” s jr + £ for all j,£ =1},

which is equivalent to o = sup{r|r2 st + 1}, Hence p is the positive root

(1/5)/2.

of r2 = r+l, i.co, 0= ¢
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5. REGULAR PROBLEMS: NORMAL TTERATIONS ON POMWER SERIES

Wz show how normal numerical iterations with order greater than unity can

always compute an expansion of 2n algebraic function for a regular problem.

The main result is Theorai 5.1. As a corollary of this theorem we show that

a Newton-like iteration always "converges quadratically". We also show the
convergence of a secant-like iteration., We end the section with an example

of a convergent first order iterationm.

We begin with some definitions. Recall that a meromorphic series is a

power series with a finite number of negative powers.

T YO R VAT T A

Definition 5.1. Given a meromorphic series A(z) and a real number o, then

by the notation

B(z) = A(2) (mod zc)

we mean B(z) is a finite series consistir, of all terms of A(z) of degree < o5. W

. . , i iem)
Tet ¢ be a normal numerical iteration. Let the numbers w( ),...,w(
in (4.3), the defining relation for ¥, be replaced by meromorphic «eries

(i+1)

W(l)(Z)’...,W(j-m)(z\. Then the iterate W (2) dofined by

(i-m)

Wy = aw® ey, e e

is in general a meromo paic serics, provided that it is wvell-defincd., Lot

i i , A
E(I)(z) = H( )(v\ - S(x) devvete the error of the jth iterate,

Definition 5.2. We say an iteratien on meromorphic tvries conveiges i

-t
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Our wain resilt for regular problems 15 given by the following theorem.

.....

(1) P(85,0) = 0, ? (39,0) #0,

, ,“ (i1) ¢isa formai fterdtion with orded p>1

R
~
[ ond
R o
-
=
<~
~
-
b
St
-
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’°4
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)g“,
~
.
~
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™
R
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"
kﬂ,
%
“'x
L
)
-
e
n;
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I AR

that ord(ET) 2 p! for 420,...,m; whete 5(z) is the expanston

4\*/\-‘3}*\‘»4..

T e

_starting Vith the tera s, ’
@) WP @YD @y, W™ (), tem,mbl,.e, 16 & Velldefined

;2 ' ;l\étduibrplxic series; ‘ o

& _ -then the iterates

. | 14 TR L 441 ?
1 WD @) 2 40P @ WD @ P 6y ot sy 1

satisfy the property that

-

Aol
=3

B\

LA W e, L e B L Tl

[N R
28

. and hence the iteration converges.

b

s
Sy Tacdminnass

Broof. Let 1= m. By (iv), s @ @ ™V e, i %) 15 o well-defined 3
=@ maromorphic series. Since (4:4) is derived by Taylor series expansions and T
since the Taylor seriés éxpansion is valid over meremorphic séries; we have

i A

(5.2) E (ﬂﬂ l):(z) o Z_‘ cj " .:’d :(E (m)(Z)) - o’ ..(E(o)(z) ) n
3120 0> o M

7 4 gan

[P
[N
;
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3 hoidi for meromorphic séries. The constint tevm of P'(S(2),2) is P (5,50 which

is pon-geto by condition (1). Thus by conditions (i) and (iii), (5.2) -

~ N - - N “ b

" iwplies that | S | ST

oxa @™ = mintips® 4 30"V 4 4 g
whété the midimim ic taken over all the (jo,...._] ). such that C i is.
0’00.’
‘mon<zero for some P(W,z): By the deﬁnltmn .of 6 in Section 4, ve have - -
oid (F. (m-l—l) 23 pt] .

By induction; (5 1) cai bé established for i-awl,nﬂ-Z,..., using -umlar arf;u—-
ment:s. The convergénce of thc_ iteration follows umediately from Pef uut:i.on
V‘So“o’ ) ' . e ‘ a i
Réﬁdiklsolu Thus well-défined normal iterations on régular problems aiways
converge; This béhavior is strikingly différent €rom theé behavior of thesé
ite?ati@hé»bn»nqméﬁical polynomials where only local convergence is assured
unléss strong conditions are imposed. Note that the expg{ “on S(z) may con=
verge in only a small disk around the -origin; we shall not pursue ‘the domain ;
of convergence -here, . : 2
Remark 5.2, (5.1) shows that .w('t) is a power séries with nonsnegative powers
only rather than a mercmorphic séries: Until this fact was established ir
‘was necessary to work over the field of méromorplic séries., [
Rémark 5 3. Obsérve that we do fot défine order for pover séries valued
fteration but only Foir normal numérical itérations. ;-

i i a— e - — — _‘"““""é
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Remark 5.4. Note that in Theorem 5.1 we need not assume that An(O) £ 0.

This fact will be used in the proof of Theorem 6.1. ]

We apply Theorem 5.1 to two specific iterations. We begin with a
Newton-like iteration, which is defined by (5.3) below. This iteration is ob-
tained from the numerical Newton iteration. 1In the power series setting we
hesitate to call it Newton iteration, since Newton [1670]} actually used a dif-
ferent method for computing the expansion. His method computes one coeffici-
ent per iteration and in general is not as efficient as the Newton- iike
iteration defined below. We will discuss the Newton-like iteration in some
detail since we anticipate it will be one of the most commonly used iteratioms
in practice. Here and elsewhere we use the notation P'(W,2) E'%%Gﬂ,z). Re-
call that the numerical Newton iteration is a normal iteration of order 2.

From Theorem 5.1 we have

B
Corollary 5.1.c If

(1) P(sO,O) = 0 and P'(sO,O) #£0,

(0) .

(i) W S ord &Py = 1,

then the iterates w(l) generated by the Newton-like iterationm,

(1) i+l
(z) = w(i)(z) SR (2),2) (mod z2 )

pr 0P (2),2)

(5.3) w+D

are well-defined and satisfy
(5.4) ord(E(l)) 2 2t

for i=0,1,2,..., and hence the iteration converges.

WA result similar to Corollary 5.1 has been proven independently by
Professor J. Lipson (Private Communication).
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Psoof. Ve need oniv show that the iterations W' 127 are all weil-defined.

. )] :
This holds since for all i the constant tevm in P'{M° ™ ,z) is P'(so,O),

which is non-zero.

~ord(A)

] Remark 5.5. 1If we define the valuation of a power series A(z) to be b
where b is any positive constant, then Corollary 5.1 follows from a known :

theorem in valuation theory (see Bachman {1964, Ch. 1I, Theorem 4.27).

Tt is easy to siuow that if S(z) is a polynomial of degrec q, then itera-
tion (5.3) wili compute it in ,logz ql + 1 iterations. By a slight modifica-
tion of the hypothcses of Corollary 5.1 we can replace the inequality (5.4)

by equality.

Corollary 5.2, 1f

(1) P(sy,0) = 0, P'(5,,0) # 0, P"(5,0) 0,

G v = 5g» ord &Py =1,
then the iterates generated by the Newton-like iteration satisfy ord(E(l)) = 2", |

Corollaries 5.1 and 5.2 can easily be generalized to any onc-point in-
verse interpolatory iteraticn @p.

As our second cxample we consider a secant-like iteration, One has to
be somewvhat careful in defining this iteration. A straightforward approach

wold generate itcrates by

G (D, (=D

it+1
Py

(s.5) witD o (D crw®y  (mod 2

poe o

where ¢ = (1+ug)/2. Then W(L+1) becomes undefined when w(l) = w(’"l‘. This

happens when there is a "large" gap between the degrces of two consecutijve
terms, in the expansion which we want to compute, A solutinn to the problem

is given in the following Corollary. 7The idea is to use a perturbed w(l) in
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(5.5) so that the denominator is guaranteed to be non-zero.

Corollary 5.3. 1If

(1) P(sg,0) =0, P'(s,0) #0,

(ii) W(O) =54 W(°) =< + 525
then the iterates W(i) generated by
. . - (i) (i-1) . F,
s.6) WD 2§ L FH s 2@ D) (moa 2 )
PW 7)-PW )

are well-defined «nd satisfy

1y o
ord(E*) = Fi+2’

where the Fi is the ith Fibonacci number (i.e., F

(1)

0=0F =landF, , =Fd4F )

and W =W

Proof, Consider the case i = 1. Clearly, ﬁ(l) = w<1) + 22 £ w(o) and

orddﬁ(l)-w(o)) < F3. Since by the Taylor series expansion,
- ) -
e - pw®y = @@y L @Dy @y 4L,
and since P'(w(O)) has a non-zero constant term P'(sO,O), we have

ord(P(ﬁ(l)) - P(W(O))) = ord(ﬁ(l)-w(o)) < F3.

=(1)

Hence P(W (2)

) £ P(W(O)). This ensures that W is well-defined by (5.6).
Note that for i = 1 (4.2) holds : ith E(l) replaced by ﬁ(l) = ﬁ(l) - S,

Thus,




i ey T et

\ .- -
e L e 4%

LT B A T

AT g rt v el

ey

g wrigen B s

e A e A st 3 B st e AN — s
HECE T TR T T ————

ord(E(2\: = ord(ﬁ(l)n(o)) = ord(ﬁ(l)) . ord(E(O))

(1), NN =
),F3) + oxd(R-"") = 1‘,3 + F2 F&‘

2 min (ord(E

By induction, one can similarly prove that for i=2,3,..., w(l) is well-

. (L), o &
defined and ord(E" ') = Fipoe ]

Results similar to Coroliarv 5.3 hold for other suitably modified itera-
tions with memory, (i.c., iterations withm > 0 in (4.3)).
So far we have only dealt with iterations of order - 1, Wc now consider

an iteration with order one. I {ine

w(i+1) = w(i') - P.L____w(j))

p* (W(O))
for i=0,1,2,... . Then
2
teaya(D) o 1w (1)
5.7 GHD) (1) p'(s)e + 2p'(s)e + e
. e =g - — )
p'(s) + p"(s)e + e

= PU(s) (0) (1) _ pl(s) o (1)y2 (0)y 3, (1)) 4
' (5) ¢ € 2p) (8) (e )T+ ci,.ﬁ(e )7 (e )
023 é
jtn, x1 f
where the o, are rational expressions wuose denominators are powers of

s 2

p'(s). This implies that the iteration is normal and has order p = 1. We
may use the iteration cn power series and cbtain the following iheorem which

is an easy consequence of (5.7):

Theorem 5.2. 1If

(1) P(sy,M =0, P'(s,,00 # 0.

o _

(ii) w a
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(1)

then the iterates W generated by

, . () .
w(”l) (z) = W(l%z)- PE__(2) (mod zl+2)

(5.8)
P (P )

are well-defined and satisfy
ord(EP)y = i+l

and hence the iteration converges.

The iceration (5.8) can be used, for example, to find the initial

«f an iteration with memory.

iterates
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6. THE GENERAL PROBLEM: NFWTON POLYGON PROCESS

Recall that our general protlem is to compute the vaiue of d and the ce-

efficients Sp2Syre-e of an expansion

[7) z
S(z) - o Sp ¢
=0

of the algebreic function corresoonding to a given

P(W,z) = A“(z)w“ LT W

In this s<ction, we show tnat the general problem can be reduced to a regular
probl:m by transforming P(W,z) to some ?(w,z). The regular problem can then
be :olved by normal iterations, as described in Section 5.

Since P(SO,O) =0, s, can be obtained by finding a zero of the numerical

b
polynomial P(W,0), In this section we asrume that finding a zero of a nurer-
K3 » 3 3 3 0 03 )': . s :
ical polynomial is a primitive operation, (This assumption will be removud

in the next section bv carvving the rzeras symbelically.) If P'(SO,O) £ 0,
we have a reguiayr problem solvable by a normal iteration. Hence we assume

that P'(sO,O) = 0. shen 0 is a 1oltiple 7z ro of the nuancrical polynemial

P(W,0) and there is wure than one «:pansion of the algebraic function start-

. . . . 0
0° We weal © not expect an iteration starting with w( = 8 o

n

ing with s
converge since the iceration would not Yknow" to which expansion it shonld
converge. InLuitively the converyownce of an itcration reqiires that it

start with an initial segment f a unique expansior. ‘This sv oty that

o il
<

find an initial segment of a unique expancion ¢ rting vith

0’ fhe existence

of the segment is guaranteed only if no ('« expansions coincid., i,e., ~

¥ .
I.e., zeros of a polynomia' can be couputed to any prespecified precisi o,

A
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D

discriminant D(z) of P(W,z) with respect to W is not identically equal to zero. :

Therefore, in this section we shall assume that

D(z) # 0.

The assumption holds when P(W,z) is irreducible or simply when PW,z) is
square-free (Walker [1950, Theorem 3.5]). Hence we can make this condi-
tion hold by using factorization or squarc-free decomposition algorithms
but do not pursue this here.

A classical method for finding an initial segment of a uvnique expansion
uses a geometric aide known as the Newton Polygon, which provides a conveni-
ent tool for analyzing a set of inequalities, (Some authors refer to Puiseux's
Theorem because of the work of Puiseux [1850] but clearly the idea originated
with Newton [1670, p. 50].) The method has not been subject to algorithmic
analysis.

We state the Newtcn Polygon Process adapting, with some modificationms,
the description in Walker [1950]. 1In Theorem 6.1 we show that the Newton
Polygon Process transforms the general problem to a regular problem. Theorem
6.1 also gives the connection between the number of identical terms in at
least two expansions and the number of Newton Polygon stages., Theorem 6.2
gives an a priori bound on the number of stages which differs by at most a
factor of two from the optimal bound. Example 6.1 shows that in general
P(W,z) must be transformed to a new polynomial ?(W,z); it is not enough to
compute an initial segment of a uniqu~ expan<ion and use it as the initial
iterate for a normal iteration on the original polynomial P(W,z).

In the follo:ing algorithm, let A.

: 1,k(2) be the coefficient of W' in

i,k
P (W,2). If Ai,k(Z) #0, let 3; k% be the lowest degree term in A (2.
)
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Newton Polygon Process

N1. ke« 1, Pk(W.z) -~ P(W,2).

N2. Plot the points fi K= (i,ai k) on the xy plane for i such that
? b

Ai,k(z) £ 0. .Join fO,k to fn,k with a convex polygon arc each

of whose vertices is an f, and such that no £

ik ik lies below any

iine extending an arc segment.

N3. If k = 1, choose any seorcat y + Yy X = Bk of the arc. 1f k >~ 1,
choose a segment with Vi > 0. (Such a segment always «vists.)
Let 8y denote the set of iadices i for which fi,k lies on the
chosen segment., Solve the polynomial equation

(6.1 i ai’kx =0,
1€gk

Let o be any of the non-zerc roots. (Such a non-zero solution

always exists.)

N4, If Ck is a simple zcro, go to Nb; else go to NS.
- \I
k
NS. Pk+1(w,z) - 2 -qu (w+ck),z), k - k+1. Go to N2,
N6, t « k. (Hence t represents the number of stages taken by the

Newton Polygon Process.)

-p

PW,e) =z ' - P (a Y,2),

%(W,z) - ﬁ(w,zd),

where d is the smallest common denominator of « ""’\t' (al my
]
be zero. 1If Vi = (0 we assume that *1 has one as its denominator.)

Terminate the process. L
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Lemma 6.1. After the Newton Polygon Process terminates, the following

propertics hold:

(i) The coefficients of ?(w,z) are polynomials in z.

(ii) ct is a simple zero of the numerical polynomial ?(W,O).

Proof. It is easy to verify (i). To prove (ii) we show that.

For notational convenience, let <, v, A, = a, = = =
For not a enience, Yoe T M 35 ¢ T Ay B "B v, =Y, 8. 8

and let g denote the sct complementary to g with respect to {0,1,...,u}.
Let

o o
Dy = (s n n ) 0
Pt(w,/.) (anz + Qn(z))w + ... +(ddz + Qo(z)),

where ord(Qi) > e Then

A . : W_.l"' iv-8 o iveB i
3 . A PURR RS 5 B
P(W,2) ~ aiw ] ” djL Wiz Qi(z)w .
ita jee i=0
Sinee B=w +1/ "o yu -l vy €q,
PW,0) = P(W,0) = aiwl.

icg

Theorem 6.1. After the Newton Polygon Process terminates, the following

propertics hold:

(1) The general problem of computing an expansion S(z) of the algebraic
function corresponding to P(W,z) has been reduced to the iollowing

revular problem: Compute the expansion S(z) starting from c
(%
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for the algebraic function corresponding to f’ﬂ-?,z\. Then

let
|
t-1 1
T Y1+000Y. Y FoooV -
= i 1 t -
S(z) = L ciz + z . S(zd).
i=}1
t vrbeeoby;
(ii) S(z) is the unique expansion with starting segment ) c.z ’
l.li=1
‘j V1+ooo+'\/i
(iii) There is more than one expansion which starts with L c 42
i=1

for every j < t. That is, there are at least two expansions

which coincide in their first t-1l.terms.

Proof. By Lemma 6.1, we conclude that the problem of computing §(z) is regular.
(Note that the leading coefficient of P(W,z) may vanish at z = 0. See Remark

5.4.) (i) follows from P(W,z) = §(w,zd) and

. - (Byte. +8) t-1
PW,z) = z c,z

(=]

i=1

V1+' . .+\li + Y1+l . .+V

2 Y,z .

3 (1i) and (ii ) hold since the Newton Polygon Process does not terminate

until . is a rimple zecro. [ ]

t

Y +o . o'{"\/.
3 Sinca there is only one expansion which starts with L 2 1 1,
i i=1
: we might expect that if th's segment is taken as the initial iterate

g for a normal iteration then the iteration on the original polynomial P(W,z}
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rather than on the transformed polynomial P(W,z) will converge. The follow-

ing example shows this not to be the case; in general we must use the trans-

formed problem.

Example 6.1. This problem appears in Jung [1923, p. 29] although it is not

used to illustrate the point we wish to make here. Let

P(W,z) = w2 - (2+z+z3)w + 1+ 2z+ %zz + 24.

The two expansions are

3/2

=141 P T /-
Sl(z) 1+ 57 + z + eeey Sz(z) =14+ 22 = % S

Suppose that we want to compute Sl(z) by the Newton-li'e iteration. 1If we

take W(O) =1+ %z + z3/2 in
. . (i)
w(1+1) = w(l) _BW T ,2) ,
P'(w(i),z)
we fina w(l) =1+ %z - %25/2 F oeee W(l) differs from S1 even in the co-
3/21 (0)

efficient of 2z ! Though there is only one expansion starting with W , namely,

31, the Newton-like iteration starting from w(°> does not converge to Sl' B

We illustrate the Newton Polygon transformation, the transformations of

Section 2 and the iterative process with another prcblem in Jung [1923, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding
to P(W,z) = -w3 + zW + 22 around 2y = ®, The first transformation of Section
2 converts P(W,z) to -z2w3 + zW + 1, which is then coaverted by another

transformation to -W3 4+ zW + z. The Newton Polygon Process yields



t=1,8 =1, Y1=1/3’ c1=1,d-3andi(w,z)a-w3+zw+1. Take

O ..

] Then the Newton-like iteration (5.3} applied to P(W,z) gives

v =14 03, 0@ 214 2/3 - 2Yer.

Thus
S(z) = z1/3§(zl/3) = 21/3 + 22/3/3 - z4/3/81 + eee o

- - /
Let T(z) = S(2)/z = z 2/3 + z l/3/3 - 21/3/81 + ... . Then an expansion of

the given problem is

1 -
T(;) = 22/3 + ‘%21/3 - 'sli'z 1/3 + see o

The other two expansions are

2

2/3 9§ 1 -
92/ +§'—z/3"-g—zl/3+coo,
2
9222/3 + 221/3 - 8 2-1/3 + ceey
1
where 8 is the primitive third root of unity. .

The followirg theorem gives an a priori bound on the number t of stages
in the Newton Polygon Process which differs by at most a factor of two from

the optimal bound.

Theorem 6.2.

(6,2) t <ord() + 1

Furthermore for all t there exist problems for which t = % ord(D).

Proof. The theorem is trivial if t = 1. We assume that t = 2., Then by
(iii) of Theorem 6.1, there are at least two series expansions S, and S2

which agree in the first t - 1 nen~zexo terms, Write



1 ‘ 3 2
Sp % L%,p% o
. i
i=1

where the {ai}, {bi} are strictly increasing non-negative integer sequences

such that none of the sl,ai’ 32’bi vanish and sl,ai = sz,bi’ ai/d1 = bi/dZ

fer i=1,...,t-1. Without loss of generality, assume d1 < d2' Note that the

cycle which contains S, has the series:

1
a,
© 1
4y
“LiT . sl,aigl "2 350,..004p71,
i=1
and the cycle which contains 82 has the ssries:
b,
“ b, T
S = s QJ i;zz j=0 d.-~1
Z,j . 2,b1~2 ’ 3oy 2 b
i=1
. ™
where 2L /-1 2in -1
d d2

§1=e 1 and §2=e

Note that we do not rule out the possibility that S, and 82 are in the same

cycle and that therefore the cycles {Sl,j} and {Sz,j} are identical. Since

ZTTzJ:i. _______ZTLL—i.b
. = ja i 3P4
a d i jb d, i
€ ? Loe 1 s § i =e .
°1 2

' j= - ' d S, . agree in the first t-1 terms
and ai/dl = bi,d2 for i=1l,..ayt=1, bl,j and S, g

for j=0,...,d,-1. Hence,




(Sl,j(Z)-Sz,j (z))c

Then

ord(D) = ord(V)

a 3

2d) (FH+ )
1 %

2 a + 1.

t-1

Since the {ai} is a strictly increasing non-negative integer sequence,

a1 > t~2, Thus, ord(D) > t-1 which establishes (6.2). Let

i t
S](z) = zJ, SZ(Z) = Sl(z) -z
j=0
and

P(W,z) = (x-y-sl(z))(w-s?(z)).

By Theorem 6.1, the Mewton Polygon Process has t stages., ord(D) = ord((Sl-Sz)z) = 2t

which completes the proof. ]

Theorem 6.2 gives a cowmyutable a priori bound but requires the computa-

tion of ord(D). A very cheap bound is given by

Corollary 6.1,

t Sm(2n-1) + 1

where m = max (deg A.).
. b3
0si<n

Proof. D(z) is a determinant of order 2n-1 whose elements are polynomials
of maximal degree w. Hence D(z) is a polynomial of degrec at most m(2n-1),

Since D(z) cannof vauish identically, ord(D) = m(2n-1). L
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7. A SYMBOLIC MODE OF COMPUTATION

The Newton Polygcn Process involves computing roots of polynomial equa-

tions (6.1). Instead cf actually solving the equations, in this section we

carry the roots symbolically through their minimum polynomials. We assume

o o Cngaid i g e B TSl — STTETYTR,
DR T - DAL A S Ba s

that the underlying field A is one where exact arithmetic can be performed such
as a finite field or the field Q of rational numbers. Then the expansions can
be computed symbolically with exact arithmetic. The following example, whnere

A is taken to be Q, will illustrate the idea.

Example 7.1.

PM.z2) = W3 + (z+22)w2 - 2z2w - 223.

AT o e

We shall compute an expansion of the algebraic function corresponding to

f P(W,2z), using exact rational arithmetic. The first stage of the Newton

! 3 2 -
; Polygon Process yields v, =1, B, = 3 and ¢] + ¢ - 2¢; - 2 = 0. Since

C1+C1

interested in the expansion starting with 2 or -.2. 1Instead of using an

3 2 _ 2c1 -2 = (ci-Z)(cr+1), cy = WE, -WE or -1, Suppose that we are

approximation to M2 or -45, we carry c, symbolically through its minimal
2 .
polynomial Ml(X) = x - 2. That is,

(7.1) ci -2=0,

Since the equation has only simple zeros, the Newton Polygon Process termi-

)ates with t = 1, and

z"3P(zw,z)

W+ (W - W - 2.

§(w,z)

We use the Newton-like iteration (5.3) to compute $(z) such that P(S(z),2) " 0.




()]

let W (2) = ;- Then
3 2
c +(+z)e, ~2¢c.-2
W(l)(z) Fey - 1 3 1 1 {mod zz)
3c¢74+2 (14+z)c,-2
1 1
Using (7.1), we obtain
D,y = 1
W (2) = ¢y - 3%

Similarly all coefficients of z) in w(l)(z) can bhe represented as linear
polynomials in <, with rational coefficients. Ry (il) of Theorem 6.1, a

solution to the given problem is

A };22 + voey

S(z) = <8(2) = ¢ 3

1
;

which represents both the numerical expansions starting with 2z and _-Jz_z.

In gene—al, when the Newton Polygon Process is performed, € k=1,...,t,
can be carxied symbolically through its minimum polynomial Mk(x) over
Q(c],...,ck_l). Then all the coefficients of the expansion S(z) are in the
extension ficld Q(cl,...,ct). To simplify the conputation, one can compute
from Mk(x) the minimum polynomial M(x) for c, where ¢ is a primitive elemenc
of the extension field Q(cl,...,ct\, i.e., Q) = Q(cl""’ct)' Then the
coefficieﬁsi of the cxpansion S(z) can all be represented by polynomials of
the form N qici, where h = deg M and 9y € Q. S(2) can be computed entirely
with exac%aoarlthmetic . Furthermore, S$(z) give a simultaneous representution
of h numerical expansions; $(z) can be used to produce h numerical
expansions by substituting zeros of M(x) for ¢ in the coefficients of §(z).

(This implies that h = n.)




8. ASYMPTOTIC COST ANALYSIS

Jn this section we analyze the cost of computing the first N terms

(inciuding zero terms) of an expansion for large N. Since the Newtcn

Polygon Process is independent of N, by Theorem 6.1 we can without loss of

generality assume the problem is regular. Furthermore, since the asymptotic re-

sults will be the same for any normal iteration with order greater than one,
we shall assume that the iteration (5.3) is used., Our cost measure is the

number of operations used over the field A. If we carry zeros symbolically as

described in section 7, then we work over an extension field A(c) rather
than A. 1If the minimum polynomial for ¢ is of degree h, then operations
in A(c) are more expensive than in A by a factor of O(h) or O(hz).
Since h is independent of N, in our analysis we shall not be concerned with
whether or not zeros of polynomials are carried symbolically,

Let M(j) be the number of operations needed to multiply two jth degree
polynomials over the field A, Assume that M(j) satisfies the following mild

condition: there are o, B € (0,1) such that

8.1) M(Tojl) s (i)

(1)

for all sufficiently large j. Observe that W ' (z) is a polynomial of degree

at most 2° - 1, and that the computing w(i+1)(z) by (5.3) takes O(nM(Zi-l))

operations. Hence the total cost of computing N terms in the expansion is

o(n(MN) + M(MN/20) + M(IN/41) + ...)), which is O(nM(N)) by condition (8.1). (See

Brent and Kung [ 1976, Lemma 1.1].) We summarize the result of this section

in the following
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“heorem 8.1. The first N terms of an expansion of any algebraic runction

‘ can be computed in O(nM(N)) operations cver the field A.




9. EXAMPLES

We ~hoose as our examples calculation of the Legendre pulynomials
through their genersating function, solution of an equation with transcen-
dental coefficients, and calculation of the expansion of a complete ellip-
tic integral. Although the first two examples are not covered by the theory
of this paper, they are covered by easy extensions of our results. Exemples
9.1 and 9.5 are illustrations of the many applications of algebraic function
expansions,

We use the Newton-like iteration (5.3) in all three examples with the

notation:
: . . . _ aP . .
p, = p0 V(2,2 pt = e P (2),2) = w® Y, s = p/p .
: i i aw(1) i R §
i
- Within each iteration step we exhibit enough terms so that w(i)(z) car. be

computed to Zi-l terms.

Example 9.1. Legendre Polynomials

The generating function for Legendre polynomials,

1 «©
(l-2tz+22) 2. - Li(t)zi
i=0
satisfies
2...2

P(Wyz,t) = (1-2tz+z")W" = 1.

Take #<® = 1. Then
= . ' = 9 y = o (1) =

PO 2tz, P0 2, bo tz, W 1+tz .
P, = (1-3t9)27 + @e-2e))2, Pl = 2(1-tz), 8 = :,_1-(1-3::2)22 + 303562,

2
w(z) =] 4+ tz + -%-(St"‘-l) z2 + %(5t3-3t)z3.




Hence the first four Legendre polynomials are
L(t) =1, L () =t, L (t) = 2(3t%1) and L,(t) = 4(5t>-3¢)
0 i e * M2 2 3 2 )

B. Neta, a student at CMU, computed the first 32 Legendre polynomials

i by this iteration using MACSYMA.

Example 9.2
P(W,2z) = w2 + (z+1)W + sin 2z,

. 73 z5 7 )
i Note that sin z = z - 57 +-§7 - %7 + «ve o Take W = ¢, Then
: P, m s B =1, 8y =2, WD =g,
in
‘ 3 3 3
= ..-z—- t = = ..-g- (2) = - -z—-.
P1 a P1 1, 61 W z + A

Example 9.3. A Complete Elliptic TIntegral

Define the integral by

I

£y = 2 (1-6? sin? 0)"Y2gs,
0

P an g

Let

PW,z) = (1--z)w2 -1, z= t2 sin2 0.

Take W(O) = 17, Then

P = owz, P =2, A = - (1) = z
0 . IO 2 5 5 W 1+ 5
» > 173 - .32 5 3
15 7R TR P; =2 -z, "‘3 “g% T SR
) z 32 , _"__”3
W =1+ 5 + -é-z i

w( is an initial seame. Lt of the algebraic function $(z) corresponding: to

P(W,z). Since
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L
: £(t) = j‘ZS(cZ sin? 8)de,
f 0 £
cn s ln 2430 b, 5.6
f(t) = ‘ﬂo + 21]1t + 81]2t + 16T)3t + eeey ﬁ
where :

n

'

et

! ) M = ‘]"2 sinhede.

3N
if
| o

For this simple example the result can be obtained directly by a binomial

expansion but this cannot of course be done in general. [ ]
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10, EXTENSIONS: i

Ouf aim in this paper has. been to .shcw that algeb¥aie finctions form

an interesting and useful domain in which to @6 algorithuic and canplexxty

-analysis and to exhibit fast -algorithnis for commiting any eéxpansion of an

algébraic function, Ii. this 1nitigl,paper we have restricted ourselves go

\chéu‘!pui-é'""«c_asé of algebrai¢ functions where P(W,z) is a polynomial in W

with polyhomial coefficients. We 1ist. some additional problems which we

hope to: discuss in. the: future. For a. nimber of thesé our resilts (especi-

ally on regular probleins). apply with minor modifications; -othérs will require

major new results.

1.

s

Leét W be a scalad variible but takeé z to be a vector variable, Re=
sults similar to thése in Section: 5 should hold. We have seen this

case 1n Examplé 9.1,

Let the coefficients of P, A'ij(iz’)‘,, be power series (rather than poly-

nomials). Resulfs similar to thosé in Section & should hold. See

Example: 9.2,

Lét both W and z be vector variables. This is the fully multivayis
ate éase, which; éxcept for regular problems, is in géneral véry
difficult,

‘The domain over which we have wotrked is nét algebraically closcd
gince problams with polynomial cocfficients lead to soluiions repro-

8énted by fractional pover setries. If thé coefficients areé Frac=

tional powet sertés; the domain is algebraically eloged (Puiscux’s

“T'hééi'éﬁi; §é6; eig.; Lefschetz [1953)) and this is tlierefore a
,natural sétting: The Newton-1ike iteration is §till valid on frac=

tional ﬁ,{)’ﬁgf séties for Fegular problems,
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5. The field A need not be réstricted to the complex number fiéld. L i
It is of particular interest to eitend all the results to finite i
6. An important computational iodél is the “fully symbolic® one where
the coefficients of thé expansion series dre expressed as functions
of the input coefficiénts.
7. perform complexity analysis which includés theé cost due to the
Morowth” of coefficiéents.
ACKNOWLEDGMENTS
We thank W, Wozniakowski, R, Fateman, B. Néta, and A, Werschul- . £or
théir compients on the wanuscript;




3
oy

- -38-

- BIBLIOGRAPHY

Ahlfors [1966] Ahlfors, Lars V., Complex Analysis, Second Edition, McGraw-

Hill, New York, 1966.

Bachman [1964] Bachman, G., Introduction to P-Adic Numbers and Valuat{bn
Theory, Academic Press, New York, 1964.

Bliss [1933] Bliss, Gilbert Ames, Algebraic Functions, Amer. Math. Soc.
Colloquium Publications, Volume XVI, 1933.

Brent (1976] Brent, Richard P., "Multiple-Precision Zero-Finding Methods
and the Complexity of Elementary Function Evaluation," in Analytic Com-
putational Comglexity, edited by J. F. Traub, Academic Press, New York,
1976, 151-176.

Brent and Kong [1976] Brent, R. and Kung, H. T., Fast Algorithms fou
Manipulating Formal Power Series, Technical Report, Computer Science
Department, Carnegie-Mellon University, January 1976.

Briot and Bouquet {1859] Briot, C. sand Bouquet, J., Theorie des Fonctions _
Elliptiques, Mallet-Bachelier, Paris, 1859.

Eichler [1966] Eichler, M., Introduction to the Theory of Algebraic Numbers
and Functions, translated by G. Striker, Academic Press, New York, 1966.

Jung [1923] Jung, Heinrich W. E., Einflihrung in die Theorie der Algebraischen
Funktionen einer Verinderlichen, Walter de Gruyter, Berlin, 1923.

Kung [1974] Kung, H. T., "On Computing Reciprocals of Power Seties,“ Numer.

Math. 22, 1974, 341-348.

Lefschetz [1953] Lefschetz, S., Algebraic Geometry, Princeton University
Press, Princeton, New Jersey, 1953.

Moses [1974] Moses, J., "MACSYMA - The Fifth Year," SIGSAM Bulletin 31,
August 1974, 105-110.

Newton [1670]) Newton, Isaac, "Methods of Series and Fiuxions," in The
Mathematical Papers »f Isaac Newton Volume III, edited by D. T. Whiteside,
Cambridge University Press, 1969.

Puiseux {1850] Puiseux, V. A.,"Recherches Sur Les Fonctions Algébriques,"
J. Mach. 15 (1850), 365-480.

Ritt (1948] Ritt, J. F., Integration in Finite Terms, Columbia University
Press, 1948.

Saks,and Zygmund [1971] Saks, S. and Zygmund A., Analytic Funct‘ons, Third
Edition, Elsevier, New York 1971.




-39-

Traub [1964] Traub, J. F., Iterative Methods for the Solution of Equations,
Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

3

Walker {[1950] Walker, Robert J., Algebraic Curves, Princeton Universxty
Press Princeton University, 1950.

Yun [1976] Yun, David Y. Y., '"Hensel Meets Newton - Algebraic Constructions
in an Analytic Setting," in Analytic Computational Complexity, edited
by J. F. Traub, Academic Press, New York, 1976, 205-216.




