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CHAPTER I

MATHEMATICAL BACKGROUND

USE OF THE DECIBEL SCALE

In this report gains and losses will be expressed in decibels, in

conformance with common practice in the field of communications. The "bel"

is named after Alexander Graham Bell, who invented the telephone. It is

defined as the logarithm to base 10 of an energy ratio. Since the bel is

too large a unit for greatest convenience, the use of the decibel is

accepted even though values may get to be over 100 decibels. The definition,

then, is

E
decibels (db) =10 log (1.1)

1

where frequently E is output energy and E is input energy.
2 1

Considerable liberty has been taken with the use of the decibel scale

without much regard for the strict definition. In this report power and

)intensity will be used more than energy, and there will be no hesitancy to

express a power ratio or an intensity ratio in decibels by taking the

logarithm and multiplying by 10. Furthermore, an absolute power or

intensity level will be expressed in decibels with respect to an accepted

reference level. The reference level for power is accepted as oIiA watt.

A That of intensity is controversial. Since standardization is pending at

lk this time, a reference level for intensity acceptable to most of our readers

will be chosen, viz, the power associated with a pressure level of one
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(level of one) microbar when the pressure is operating into a purely

resistive load.

The practice of expressing voltage or current gains or losses in

decibels has sometimes been done incorrectly. We shall consider voltage

gain in an amplifier. Suppose the input voltage is ei across a resistance

R and the output voltage is e across a resistance R . Then power input
1 0 0

is ei2 /Ri and power output is e 2/R so that gain in db is correctly
i i Po0 e 2R,

expressed as 10 log - = 10 log - . Now, only if Ri = R can the R's
P e2R 0 eioo

be cancelled, and only for this case the expression becomes 20 log -. On
ei

the other hand, in this example it is true that the general correct
e R

expression may be written 20 log -5 + 10 log y. While neither term by

itself conforms in general to the definition of decibels, the two

together do conform, and no harm is done by referring to each term as

"decibels" as long as both terms are present. However, we must be sure

that both are present unless the second one is 0.

An example in which considerable liberty is taken without in any way

invalidating the numerical results is in some terms of the echo ranging
R

equation. We may write spherical divergence loss as 20 log -S in which
Ri

R and Ri are output and input ranges from a point source. This expression

is equivalent to 10 log ratio of powers at the two ranges only if divergence

loss is total loss. Therefore, due consideration must be given to other

losses to assure a numerically correct result. This is regularly done by

introducing the remaining loss terms, also in "decibels."

d There is one common situation in which the values of the input and

koutput resistances of an amplifier may be ignored in computing gain in db.

This is when our interest is in gain in signal-to-noise ratio. Here the
ratio of signal-to-noise powers at the input is equal to the ratio of



I3
(the ratio of) the squares of the signal voltage and the noise voltage

because both appear across the same input resistance. Likewise, at the

output of the network resistance is not a factor in the ratio of signal to

noise. If the ratio of signal-to-noise voltages at the input were Y and

at the output were y then gain is correctly expressed as 20 log -i. Let
Yi

it be consciously recognized that this gain is in signal-to-noise ratio.

OPTIMUM VALUES

In underwater sound theory it is frequently desirable to optimize some

function by the choice of the value of a controllable variable. This

variable is often frequency. Every term in the function may be expressible

in terms of frequency. Then again, it may be desirable to hold some of

the terms constant regardless of what frequency is chosen. An example of

this is found in determining an echo excess where there is a dependence

on directivity index. The particular condition of interest may involve a

directivity index that is a function of frequency by using a transducer of

fixed size, or the condition may involve a directivity index that is kept

constant by doubling the transducer dimensions whenever the frequency is

halved. In either case, the term in question may be considered as a constant

or as a function of the variable as desired in order to obtain results

under the desired restrictions.

)The mathematical procedure, then, is to differentiate the function with

respect to the variable in order to obtain the slope and to equate this

slope to 0, which is characteristic of an optimum point. By this procedure,

for example, ve may solve for the optimum frequency at any range. In

general, there is a best frequency for a given acoustic path and a given

range.

lk

i -

-#



(a given range.)

STATISTICS

General

Whenever the processes with which we are dealing fluctuate, thereby

introducing an element of uncertainty, the most rigorous mathematical

treatment is a statistical treatment in which we deal with probabilities

of different results.

Functions with Discrete Values

A probability of the occurrence of an event is the ratio of number of

occurrences to number of independent trials when the number of trials is

very large. It is thus the average number of successes per trial when the

number of trials is very large. Suppose an event has a probability p = .4

of occurrence. Out of ten trials we would expect, on the average, four

occurrences. By "on the average" is meant that after ten trials we might

I take another set of ten, and another, and another, and we might average

the results. We might get, for example, on successive trials, three,

four, two, five, four, respectively. On the first set of ten we would

judge the probability to be 3/10 or .3. On five sets we would judge the

probability to be (3 + 4 + 2 + 5 + 4)/50 = .36 so that we would be getting

) closer to the true value of .4. We might have chanced to hit the

jprobability .4 on the nose on the first trial, but we wouldn't be sure that
we had hit it. Our confidence in the result should increase with more

trials.

A fundamental law of probability relates to the joint probability of two or

more independent events. This Joint probability is the product of the individual

probabilities. This may be expressed as P p pp .... p Let us illustrate1 2 ... .r



(Let us illustrate) this by the case of two independent events. For

simplicity, we shall consider the probability of two heads in two tosses

of an unweighted coin. The following sequences are all of the possibilities,

and each is equally likely: H--H, H--T, T--H, T--T. Since these cases are

equally likely, each must have a probability of 1/4. Thus H--H has a

probability of 1/4, which is p p = 1/2 x 1/2 and thus illustrates the
12

general rule. We must keep in mind that when we deal with probabilities,

we are dealing with average results. We do not say that on just four trials

each of the permutations will occur just once. What we do say is that in

many sets of four trials, this will be the average result.

The last example yields more information than we sought. It yields

the following:

P (two heads) = .25

P (one head, one tail) = .50

P (two tails) = .25

We may ask why one head and one tail is twice as likely as two heads. It

is simply that there is only one way of tossing two heads, but there are

two ways of tossing one head and one tail, either H on the first toss and T

on the second toss of T on the first toss and H on the second. A useful

relationship is evidenced here. If we expand (p + q)2, we obtain p 2 + 2pq + q2 .

Now we let p= .5 and q= .5 so that the three terms in the expansion become

.25, .5 and .25. If p and q are respectively the probability of a head and a

tail, then each term in the expansion is identifiable with the probability of

one of the three combinations.

Now we take a more complicated application of the binomial expansion.

*A
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(the binomial expansion.) Suppose a weather prediction has the probability

3/4 of being correct. What is the probability of all combinations of

success and failure on three independent predictions? We expand

(p + q)3  p+ 3p2 q + 3pq2 + q3

Putting p = 3/4 and q 1/4, we obtain 27/64, 27/64, 9/64, 1/64, and thus

P (3 successes)= 27/64

P (2 successes only) = 27/64

P (1 success only) = 9/64

P (no successes) = 1/64

We may verify this result by the case method. We may set down

sixty-four cases of three predictions in a row. On 3/4 of these the first

prediction will be successful and should be so tabulated in the first

column, and the remaining 1/4 are unsuccessful and should be so tabulated.

Let us say we indicate a success by one and failure by zero. On the second

trial 3/4 of the previous successes will be followed by another success,

and also 3/4 of the previous failures will be followed by a success. All

remaining cases will be failures. Continuing in this way, we may count up

the various results and the probabilities just solved for above will be

;-, found in agreement.
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(found in agreement.)

Bernoulli Distribution

The different coefficients in the binomial expansion represent a

number of ways that n things may be taken m at a time. From what we have

already observed and/or proved, we may write a formula for m successes out

of n trials as follows:

fn! m n-rn (1.2)
Pn(m )  m!(n - m)! P q(.

in which P n) is probability of m successes out of n trials.
n

p is probability of success on one trial

q = 1 - p is probability of a failure on one trial

The values P (i) for the various m constitute what is named a "Bernoullin

distribution." If we list terms in order starting with m = n and decreasing
In

one at a time, we obtain precisely and in order the terms of (p L q)

expanded.

As an example of the application of the Bernoulli distribution, suppose that

we are receiving echoes on a sonar system at a level such that the probability

of an echo exceeding a given threshold and producing a mark on each ping

is 1/3. Let us find the probability of at least two marks out of five

successive pings. Here we have n 5, p 1/3, 2/3. The simplest wayIq
to get this is first to find the probability of just zero or one mark. For

these cases we have m = 0 and 1 so that

P (0) -5 (1/3)' (213) = .132
5 ! 5!

., A

A P (i)-- (1/3) (2/3) = .329

P (0) + P (1) = .461

.. .,r - " ' - ' " '' 5 ... 5 ' : . . .



(1 so that)

P (m < 2) = .461.
5

Now the probability of P (m 2) = 1 - .461 = .539.
5

The preceding example was for a signal present, and it will be noted

chat P (m> 2) > P. It is now assumed that the signal was in combination
5

with noise. Suppose now that we have noise alone with the probability of

exceeding threshold at the range of the target of .01, that is, p .01.

What is the probability of two out of five marks at this particular range

on noise alone? The same steps a3 before give p (m > 2) = .001. So we
5

see that while the probability of detection was improved by requiring two

out of five rather than one out of one, the probability of false alarm was

decreased by an order of magnitude. We should certainly expect to gain

something by using five times as much time (five pings instead of one), and

in this case the gain is apparent.

It is now asserted that when n is large, the binomial distribution is

approximately given by

(m -
1 202

P . e (1.3)

in which 0 2 = npq, = np, n is number of independent trials, p is

probability of success in any single trial, is average number of successes

in n trials, and m is any given number of successes for which the probability

is desired. a is just a convenient symbol for the time being.

We now take a simple example. We shall attempt to find the probability
6a

i :



(find the probability) of m m m in ten trials when p = .1. For this case

= /10 (.1) (.9) = .95, m =np = 10 (.1) = 1, the exponential term is

unity, and we have -  = .42. The true value is given by the binomial

distribution formula

p (1) = .39,
10

There is a deviation of about 8% of .42 from .39. The central part of

the curve, or any part, does better when n is larger. For instance, change p

in the above example to .5 so that m = 5 and a = 1.58. Then we have 2= .252.

We compare this with p (5) = .247. The deviation in this case is about 2%.
10

The two cases worked out above are plotted for all integral values of

m in Fig 1.1 along with an example in which n is small and the approximation is

correspondingly slightly poorer. The approximate form is plotted as discrete

values connected by a smooth curve. If in Eq. (1.3) we replace m - m by r -

and let r vary continuously instead of taking on discrete values, Eq. (1.3)

becomes

(r - V)2

p (r) -- e . (1.4)

2This is the Guassian probability density function.
j Guassian PDF and Distribution

With a random variat'e having a continuous amplitude distribution,

p (r) dr is defined as the probability that the value of the variable lies

* between r and r + dr. The p (r) is called a probability density function (PDF).

A Guassian distribution may be defined by its PDF,
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- 1/2 (r -p)2

p(r) - e 2 - co r < G. (1.5)

A graph of the PDF with the variable expressed as r' = r !' is given in

Fig. 2.

The nth moment of a variable r with a PDF given by p (r) is defined as

M = f]7 r np (r) dr. (1.6)

The zeroth moment is unity provided that the coefficient has been

correctly specified. The value of unity will now be derived for the PDF

of Eq. (1.5) by direct integration:

(r 7 P) 2
1F -  2° /

M _fcOcaj e dr. (1.7)
i0

We let

x=(Wa(

and

dr = odx.

Substituting Eq. (1.8) in Eq. (1.7), we cbtain

x
2

M -"= 1 e 2 dx. (1.8)
0 7

The same form of expression

4. .



T__________________

11L rrimv 1T4 _

F i~ 11 Ii 1 j A. 1 I jL L2 ..... -L_ 1.

Ii 'IT -T F1 7 ' ' !

lit,~~-1 Ali I 1--1it--

b-i-rn
T -u I_ IMrht

4L 1uiL 7i 211 -1

-C~~~~Jj I~IIL - r~~:

L -~~~ii- 2L fT

'Lf~ 'i _ _ _L

14f TL4 fI F{

Li'~~ l i

I j~li I



-13- ....

(form of expression) in Eq. (1.8) would hold if the variable were y. The

value M may therefore be expressed as
0

M f If 1ffe dxdy. (1.9)0 -

In Eq. (1.9) the integral is over all the area in a plane. We may

change to polar coordinates for which r2 = x2 + y 2 and dx dy r d r d 0 and

then rewrite Eq. (1.9) as

M e r d7. (.0)

The intgral with respect to 0 is 1. The integral with respect to r is
- E

2 o l.and therefore M 1. QED.0 0

The first moment is the integral of the variable weighted by the

probability density function and is therefore the average value of the

function. For the Guassian distribution this is

1/2 (r - )2

M r! e 2 dr.

Letting r r we have dr = F drA. Substituting and dividing

H into two integrals, we obtain
-2 -2

r rr' r'fr' 2
=f+- e dr + P -I e dr. (1.12)

- - 't2 2

The first integral is that of an odd function and therefore integrates to

zero. The second integral is the same as M., already evaluated as unity.

Multiplying by its coefficient V, we obtain

I-.



(Vi, we obtain)

The second moment is most readily computed when Vi 0, and we shall treat

this case. The function M is
2

H =J'+~L-e r 1.4
2r

We let

r2

Or r

and then

r2-r 2

fudy uv -fvdu

Uv i: 0

~J vdu= ~fO e d .

We now have

M e dr. (1.15)
2 42
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(We now hove)

This is simply 02 times M given by Eq. (1.7) when Vi 0. Therefore,
0

for p =0 we obtain

M = 02 (1.16)
2

The second moment about the mean is called the variance. If M is computed
2

about 0 when the mean is p, a2 = M _ 2 . The symbol a = + is called the
2

standard deviation.

The distribution function of a random variable (r) is defined as the

probability if the variable not exceeding a specified value of r. This is

(r) = fr p (r) dr

and for the Guassian distribution

-1/2
* (r) = fyO e C 1 dr (1.18)

In tabulating 4 it is convenient to introduce a new variable

r (1.19)

1

In changing the scale by a factor , we mustmultiply the new PDF by a since

dr odr ', obtaining

p (re) 1 -1/2 r "2 = e -1/2 r "2  (1.20)

0i /2 -r 42 -,



(dr = odr', obtaining)

Eq. (1.20) is the standard form of the PDF and may be interpreted as its value

with zero mean and unity variance. Another good interpretation is that r is

number of a units of deviation from the mean. In transformations of this

kind the factor, in this case o, is always derivable by taking the derivative

of the old variable with respect to the new, in this case from Eq. (1.19).

Now the distribution function is given by

i F e-1/2 r
(r') * r e dr (1.21)

The functions p (r') and (r) are evaluated in oft repeated tables (see

Reference 1, p. 167). In Fig. 1.2 p(r') is plotted, and in Fig.l.3,1 -1 (r')

is plotted. The form in Fig.l.3 is most useful for probability of exceeding

a threshold. To get 4 (r) for any given r, we first use Eq. (1.19) to get

r', and then we use Fig.L3 or tables. We may note that

1- 4 (- r) =4)(r) (1.22)

For fairly large r' the tail of the distribution function is approximated by

1 e - 1/2 r'2  p (r&- r A e (1.23)

For example, when r = 4, the approximation gives .000033 and the true value

is .000032, according to tables.

A Rayleigh Distribution

This is the probability associated with a vector in phase space having a

certain magnitude when the x and y components are independent and both have

Gaussian distributions. It is applicable to an envelope detector. It also turns

out to be the kind of distribution we have with a small Bt product (Bt = 1) after
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(product (Bt = 1) after )

a linear detector. In contrast to Guassian distribution, the Rayleigh

PDF is skewed toward high values and always is positive.

Its derivation is from two Guassian distributions in phase space representing

the x and y components of a rotating vector. The density function is the

product of their density functions, giving

- (x2 + y2)120
y) 1 2' e(1.24)

Changing to polar coordinates, we obtain

r 2
r -

p (r, 0) = e (1.25)

The r in Eq. (1.25) is the Jacobian,

3 x a = r. (1.26)

Because of independence from e, we obtain

p (1.27)

and

r 
2

p (r) -r- e (.28)

We replace a by a since this quantity is no longer standard deviation and

write



(deviation and write)

r
2

r -
p (r) - e . (1.29)

This integrates readily to give probability of being below r, that is,

the ":istribution function," as shown below:

r2 r 2

(r) = j p (r) dr -e 2et Y e (1.30)
0 0

The first moment is

r
2

M, 0= a- e dr. (1.31)

This integral is that of Eq. (1.14) with a substituted for a and the new

expression multiplied by v'2T/2a, the 2 in denominator taking care of the

different limits of integration. Therefore, the result is that of Eq. (1.16)

with the substitution of a for a and the multiplication by 4/2,i/2a giving

1 p = a 1.26a (1.32)

We take the second moment about r = 0

S r r2

M r e dr. (1.33)
2 oc

We let

r
4 r2  r

r 2 dv d
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(We let)

r
2

du =2rdr v e - e

r 2  r 2  r 2

-r2e " + 2 f re dr= - 2a 2e 100 22
0 00

a2 = second moment about the mean = a2  (2 - ) = .43a 2  (1.34)

a = .656 a. (1.35)

Substituting a from (1.35) into (1.32), we obtain

p = 1.92 a. (1.36)

Having determined p and O, we now put p (r)[see Eq. (1.29)] in a form

better adapted for plotting. Let

r = or' (1.37)

J = dr/dr'= a (1.38)

12(or")2

p (r') = 2 r'e (1.39)

jUsing the relationship between a and a in Eq. (1.35), we obtain

p (r) = .43 r' e 215 r' (1.40)

p. This is plotted in Fig. 1.4. In order to use this curve, we determine r for

the given r from Eq. (1.37) and then read p (r') from the curve.



f- T~

'-a-

0:Ues -H_

T11 !~L L 1.1 .1 is I i

4' I I -la ' -- -i

-t - t4L . p

* AL- -. - ,



-22-

(from the curve.)

The function 4 (r) is modified for plotting only to the extent of using

Eq. (1.34) so that Eq. (1.30) becomes

.43r
2

1 - W (r) = e . (1.41)

The graph in Fig.L5 is of 1 - 4 (r), probability of exceeding r, for greater

convenience than 4 (r).

Chi Square Distribution

If a number of time series, each having a normal distribution, are squared

and then added together, there is obtained a Chi Square PDF. The number of

normal functions involved here, n~number of degrees of freedom, affects the

particular Chi Square distribution obtained, and we shall therefore use a

subscript n to denote the particular distribution involved. When n = 2, the

Rayleigh PDF of r is obtained with p (X 2) dX 2 giving p (r) dX when X on the
2 2

right is replaced by r. This has already been covered in some detail. All

Chi Square distributions involve a variable squared that is greater than zero.

That is, they range from zero to infinity. As n is increased to very large

values, e. g. 100, the Chi Square distribution approaches the normal distribution.

The formula for the Chi Square follows:

p (Xn2) =n/2 r (21 (x2) 2 e (1.42)

The r function of an integer, a, is given by

r (c + 1) = ct. (1.43)

SV When n is odd, we obtain n/2 as a fraction. In this case, r (n/2) is

--A--A OL -
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obtained using

r (1/2) A. (1.44)

and the recursion formula

r (a + 1) = ar (a) (1.45)

Fig.16 is a graph of the PDF as a function of Xn2 for n 2, 4, and 10.

The distribution function c (X2) is given by the following formula:

2

* (X 2 ) = (X) dX2  (1.46)
0

This function is plotted for n = 2, 4, and 10 in Fig.1.7.

The continuous distributions considered so far are all characterized

* by one factor that is an exponential and another factor that is some power

of the variable. Differences show up in this power to which the variable is

raised.

Student T Distribution with n Degrees of Freedom

The Student T probability density function is given by the following

formula:

r~n~l/2 2 (n +l)/2
P (tn) = r E(n + 1)/21 1/(1.47)

This distribution ranges from minus infinity to plus infinity. The curves

* }are somewhat similar to each other except that for the higher n's; they become

more peaked. All have maxima at t = 0. For larger n the Student T distribution
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(Student T distribution) approaches normal distribution.

Fig.1.8 shows a graph of Student T PDF for the cases n = 2 and 10 along

with the PDF for normal distribution for comparison. Fig.9 shows the

corresponding curves for the probability of exceeding a value t.
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joint Probabilities of Independent Events

We can imagine a time series of n random samples, each sample being a

1 or a 0. The l's represent information calling for a different response

or perhaps no response. We let all samples be independent of each other, butwe

let the probabilities of each sample being a 1 or a 0 be p or q respectively.

What is the probability of exactly m l's being present?

First we consider the probability of m specific l's and the remaining

n - m samples, all O's. For this case of joint probability, we simply multiply

together the probabilities of every sample being what we have specified.

There are then m p's and (n - m) q's multiplied together to give

r m)m n-m (1.48)
n spec

The subscript "spec" means specific samples provide the m l's.

If the question permits any m l's instead of a specific set, the

probability is that for a specific set of m l's multiplied by the number

of specific sets that are possible. As an example, suppose that we are

given a probability of 2/10 that any sample is a 1. Let us find the

probability that three samples will contain any two l's. A specific pair

of l's is selected as I's on the first and second samples with a 0 on the

third sample. The probability of this is .2 x .2 x .8 .032. But l's on

first and third samples and on second and third samples are also counted so

that we have three combinations, each of probability of .032 or a total

probability 3 x .032 = .096.

The formula for this case is

P (m) =C n m n-m
* n m q (1.49)



in which C n is the number of combinations of n things taken m at a time.
m

The whole expression is the mth term in the binomial expansion of (q + p)n.

The case method to be explained next will make the picture crystal clear. This

method may be profitably resorted to in many statistical problems. We shall

introduce some variability here into the probabilities on successive trials

p = .2, .3, .4 respcctively. Of course q = .8, .7, .6 respectively. Let

us consider 1000 cases the number being chosen so that taking some number

of tenths three times will always give integers. Then the following flow

diagram tells the whole story. Lines slanting up mean l's, and lines slanting

down mean O's. After each slanting line the number of cases falling in

that category is given.

FIRST SECOND THIRD
CASES TRIAL TRIAL TRIAL NO I ONE I TWO I'S THREE I'S

6<: 24 24

36 36
20

A 56
<140

1000

800

< 50<224 224

336 336

TOTAL 336 452 188 24

At each trial the assigned probability was applied to all the cases. Let usII
follow a specific case of a 1 on trials 1 and -3 and a 0 on trial two.

First trial (p = .2): .2 x .1000 = 200 indicated after upward line.
Second trial (q = .7): .7 x 200 = 140 indicated after downward line.
Third trial (p = .4): .4 X 140 = 56 indicated after upward line.

The totals at the bottom of the diagram are sums of all combinations.

For two l's out of three trials we have 188 out of the 1000 cases for a

probability of .188.



Returning to Eq. (1.49), we next compute P (m) for five trials (a) with
5

p .1 and (b) with p = .5 in order to show the gain in ability to distinguish

between these cases by establishing a criterion involving multiple trials.

m 0 1 2 3 4 5

P (m) (p = .1) .592 .327 .073 .0081 .0004

P (m) (p = .5) .031 .145 .313 .313 .156 .031

Suppose now that the criterion for action is that there be three or more

l's out of five. For p = .1, P (n 3 3) = .0085 and for p = .5, P (m 3 3) - .5.

The ratio of the two values of P (m 3 3) is about twenty-four times the ratio

of the p's. This is a considerable gain in distinguishing between these cases

by using a multiple sample criterion rather than a single sample criterion.

If the criterion is four out of five, the gain is much greater still, but more

cases requiring action are missed.

The mathematics involved here is extensible to any number of mutually

exclusive answers, for example, "yes," "no," or "maybe." If the probabilities

on a single trial are respectively p, q, and r, and if there are m trials, we

iA

i Al



OIL

(m trials, we) wish to find the probability of i specific "yeses" as oh

trials one, six, seven, and nine, and j specific "noes," and m - i - j

"maybe's." Then the following expression for (Pm) spee applies;

(Pm)Spec = pq r (1.50)

An example is the following: given p = 2/10, q 5/10, and r = 3/10,

we ask what is the probability of three "yeses," one "no," and two

"maybes," each on specified trials out of six total trials. Substituting,

-we obtain

(P6)Spec )(2/10)3 x (5/10) (3/10)2 = 3.6 x 10-4. (1.51)

We consider the basis for Eq. (1.50). Take n sets of six trials each,

with n very large. If we take as our specific case trials one and five

"yes," trials two, three, and six "no," and trial four "maybe," then out

of our n sets there will be np successes on the average on the n trials

one. This action reduces the number of cases that can fulfill our

requirement to np, the remainder, n (1 - p), having failed already to

qualify. Of the np cases, all of which survived the first trial, npq will

2survive the second. Of these npqq will survive the third and ultimately

npqqrpq = np2 q3 r will qualify, on the average. This number divided by

n gives the probability of obtaining the specific result required, and

this checks Eq. (I.5G).

Next, remove the specification of which particular trials must

succeed out of each set and let any i "yeses," J "noes," and m -i - J



("noes," and m - i - J) "maybes" out of m trials suffice. Then the

preceding result must be multiplied by the number of specific ways in

which this result may be obtained. We shall indicate this number by

Cij m . The number of combinations of "yeses" that satisfy the requirement

is C m, standing for i "yeses" out of m trials. For each of these

there are m - i trials per set remaining, and the chance of just j "noes"

m - i
in these remaining cases is C so

j j

Cij = CIm  (1.52)

Let us note that we could start with the "noes" and arrive at

Cij j Ci
-- 4

These last two formulas may be checked against each other. We let

M = 4, i = 2, and j = 1. The first formula give 4x 3ix2 x I x 1 =2
g -ve (2 x IM( xl1) 1 xl

4 x 3x2x 1 _3x 2x1
and the second formula gives(3 x 2 x 1 (2 x 2 x 12.

The final formula for this case is

P (i, j) =Cim m i qj r m - J (1.53)

jFOURIER SERIES
We may consider any function of x having only a finite number of

discontinuities in a finite range of x in which the function is

defined. Consider at first a specific range of x, namely -7 to +7.

This function is expressible in terms of an infinite sum of sines and

cosines with constant coefficients, as follows:



(coefficients, as follows:)

f (x) 1+4.f = I (aj cos ix + bi sin ix). (1.54)

We proceed at once to deriving the coefficients. Multiply both

sides by cos jx and integrate from -w to +I.

The integral on the left is f (x) cos Jx dx.

On the right there is a sum of integrals of the forms f"T a cos ix cos jx dx-TT

and f+4 ai sin ix cos jx dx. All of these may be shown to be zero except

that when i = j and both trigonometric functions are cosines. This result

characterizes a set of functions called normal functions. For the last

case, there is obtained

aj cos2 jx dx = a j # (1.55)

a dx = 2ra (1.56)

Thus, equating right and left integrals and dividing by ff or 27, we

obtain

Ia = +f (x) cos jx dx j # 0 (1.57)I
a= - f f (x) dx. (1.58)0 2Tr -Tr

In like manner, it can be shown that

14 b f+7 f (x) sin jx dx. (1.59)
if j



(be shown that)

-iT < x <0

A simple example follows; we let f (x) 0
1 0O< x <

The work is simplified by noting the f (x) is an odd function. All odd

functions are expressible in terms of the sines only. We have

1 f0 xdx+1 sin jx dx

2 f sin ix dx 2 1- cos jxif
T 0 iT j 0

2 21 -~ 1)iJ

b 0 j =2, 4, 6, 8 ...... (j even)
j

~4
b j - j = 1, 3, 5, 7 ...... (j odd).

Let us plot the sum of the first three terms to see how closely they approximate

the function. This is done in Fig.10. The following observations are

pertinent. In the flat upper and lower portions of the curve, the maximum

deviations from a fit are about 20%, except near x = 0 and near x = ±1800,

at which values the development gives zero. These exceptions are characteristic

of the generality that at a discontinuity the development gives the average

value. Another generality is that the development always describes a

periodic function with one period traversed in the range of definition,

which accounts in our special case for the discontinuities at x = ±T where

• .-.



'~4T 
TI qj

i' I -7. 1 i _1 - - 7

L ,±2 II coI 5L -F'I AL

+0 F __ __ I ,111T ~
L I i . 1.____ AI 

_____ F 4m , HI

___ i- T-~j i 77
F' 10 -1,fil

I~9I

_____~ j__ __H_ I -J-r f L

'IIT'4.. I.A

C) L LL!-L).

_j--J1 _00 _0 F

t7 F - ___

1- !-J-

iF.Ti

* I-.- ...'
C) , , .



-a'-

(at x = where) the upper and lower values of the periodic function average

zero.
X X

The period 2T from -T to -Tr is easily changed to - X to + by changing
2 2ib hagnX

the arguments of the cosines and sines so that when x = the arguments

are iT. This requires that the arguments be Eq. (1.59) converts
X

to the following equation:

X
2 =2a + [ai cos i2xx ix

f ) W a i = -o + bi sin . (1.60)

2

Let us go through the evaluation of the coefficients as before.

We should become very familiar with this step as we may forget the Eqs.

(1.57), (1.58), (1.59), and the corresponding formulas to be derived for

2rrx
the present more general case. Multiply both sides by cos j - and

x x
integrate the right side term by term from - - to + -. All terms will

2 2

integrate to zero except

f21') Xa,

a cos X dx = J # 0 (1.61)

j x

X

a 2 dx = X aj j 0. (1.62)IX
Equating these to the integral on the left, we obtain

X

a = - f (x) dx. (1,63)

X iX: This is the average value of f (x) in the interval " --to + -. For



(to + For) j 0 0, we obtain

= 2 f (x) cos jx dx j3, 0. (1.64)

In like manner of derivation, we obtain

(x) sin jx d.(1.65)

-j -

2

In applying the general Eq. (1.60), we must first determine whether

the function is even, in which case only the a's need be determined. It

may be worth mentioning that every analytic function can be expressed as

an even function plus an odd function. Indeed, in the general expansion

of Eq. (1.52) the constant term and the cosine terms describe the even

X X

: part and the sine terms describe the odd part. Some functions are odd

except for a constant term, in which case only a of the a's needs to be• 0 0

evaluated, e.g. f (x) = 0 [0 f (x) = 1 10. Since a is always average

value in the whole interval of definition, it is obviously 0.5 for the

example.

While the Fourier series properly describes a function defined in an

2 interval X, it is, in fact, periodic with period X so that it repeats as

x goes through values outside of the interval X.

If we substitute for period X, the reciprocal of frequency, and for x,

the variable t, the arguments take the form i2xf t. In most applications

t will be interpreted as time. The set of frequencies if (i = 0, 1, 2...)

constitute the line spectrum of the periodic function. If we put

a i cos (i2tf + bi sin (12 = ai2 + bi 2 cos (12f t - )

0 bi i~nft



(If we put) with

8=tan- b i

ai'

b t

fa2 + bi  appears as the amplitude of frequency if. and tan- -a is the

epoch angle. It is pointed out here for analogy with results brought

out in treating the Fourier integral that even functions have 00 or 1800

epoch angle and odd functions have + or - 900 angle.

Fourier Transform of a Transient Function

The particular function used here is chosen because it will later

be given a physical interpretation. This function is u (t). For the

present, however, consider u as simply a mathematical function of the

variable t. The Fourier transform of u will be denoted by U (f) and is

given by

U (f) = u (t) e- i 2w ft dt, (1.66)

in which i = v--. Since

e-2wft cos 2w ft - i sin 2w ft, (1.67)

J it will be appreciated that when u is an even function, u cos 27 ft is

even and C, = 2 f 0 On the other hand, u sin 2n ft is then odd and- 0
°

-= 0. Thus, for u even we write

U (f) = 2 fo u cos 2n ft dt, (1.68)
0

* tand for u odd we write

U(f) -2i foo u sin 2w ft dt. (1.69)



(even we-write) Very frequently u will be either even or odd, and the

transformation using either Eq. (1.68) or Eq. (1.69) becomes only half as

difficult as using Eq. (1.67). However, Eq. (1.66) may in some cases be

simplest without conversion by Eq. (1.67). Note that the Fourier

integral Eq. (1.66) introduces no periodicity as did the Fourier series.

An inverse transform exists for transforming U (f) to u (t). This is

C i 27r ft
u (t) = _0 0 U (f) e df. (1.70)

Similar comments on the function U (f) being even or odd to those made in

the preceding paragraph regarding u (t) apply here also. We shall

pursue this inverse transform no-further except to say that it is a bit

tricky to reconstruct a transient from its transform by means of the

inverse transform.

Before directing the reader to a reference for very complete treatment,

i dw
we may remark that frequently 27 f is replaced by W and df by - , which

renders the forward and inverse transformations less symmetrical. Discussion

in terms of W rather than f frequently meets with favor, but in this text

we will favor talking about f, which is frequency in most of the problems

with which we shall later deal. Now, for the very complete coverage of

1Fourier transforms, consult Reference 2.

As an example of the transforma ion of a transient function of t,

let us take u (t) = sin 2, f t T Since this is an odd function,

Eq. (1.69) is applicable. We wri e 2
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(applicable. We write)

T

U M) - 2i f sin 27 f t sin 27T ft dt

i 2 [cos 21T (f + f ) t - cos 21T (f-f) tJ dt

sin g (f + f )T sin ir (f - f T

27T (f + f) 2r (f f

i= [sinc(f + f) T - sinc(f - f) T].
2 0

The value U (f) for this case is plotted in Fig.l.ll for T = L for.
0

which u (t) is a single cycle. The significance of the i becomes apparent

when we associate t with time and f with frequency. The function U (f) contains

a component in any interval f, which is an odd harmonic function of time

(not expressed in the frequency expansion). If we had transformed

cos 27 f t, there would have been no i involved, and this would have
0

indicated every component an even function of time. In other words, the

i designates phase shift from the phase of the cosine term. This phase

indicator could be complex for some cases, for example, for the transform

of sin (271 f t - 0), which is neither wholly even nor wholly odd.0

) We speak of U (f) as a spectral density, but in reality, the absolute

value of its square U (f)U *(f) is an energy spectral density, e.g., the

energy per Hertz. We shall now solve for this as follows:

U (f) U * (f) =-2 sinc(f + f ) T - sinc(f - f) T]2. (1.71)
4 ~ 00

As a check on our statements, we are able to integrate over the frequency
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(over the frequency) band from - to +°°and obtain

U (f) U * (f) df = E f_ [sinc(f + f ) T - sinc(f - f ) T] 2 T df (1.72)0 0

in which the T taken under the integral forms T df, the exact differential

of the argument of either sine function. The integral of each squared sinc

is one, and that of the cross product is zero since displaced sinc functions

are orthogonal. Thus we have

* _aU (f) U * (f) df (1.73)

which is half the amplitude squared times the duration, or average power times

time, or total energy, thereby confirming the statement that U (f) U * (f)

is energy spectrum.

CORRELATION FUNCTIONS

Before addressing ourselves to the correlation functions, we shall

outline our objectives in this treatment. First, the cross correlation

and autocorrelation functions will be defined. Then it will be shown that

the average power may be obtained from the autocorrelation function. The

Fourier transform of the autocorrelation function will then be shown by an

example to be the power spectrum that is converted to energy spectrum

previously derived by multiplying by duration T.

For any continuous function u (t), the autocorrelation function is

defined by

limi I
S T-- u (t) u (t - r) dt. (1.74)

2;
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(is defined by) For two continuous functions u (t) and u (t ), the

cross correlation is given by

T
- u (t) u (t - T) dt. •' (1.75)

12 T2

For transient functions these equations are most meaningful if the

limit I+ is not taken. The averaging time should equal maximum overlap in

time, which is the duration of the shorter of the two functions. Integration need

be carried out for any T only to include all t for which the integrand # 0.

This is sometimes less than the averaging time.

Putting T = 0 in Eq. (1.74) obviously gives average power in a one

ohm resistor. We say (4i ) average power.
11 0

We next consider the autocorrelation function of sin 27T f t between

T T 0
- and + - j 0 elsewhere. Then the product sin 21T f t • sin 27T f (t -

0 0
T T
2 2

and - + T for negative T. The autocorrelation function then takes the form

T

sin 2Tr f t sin 2n f (t- T) dt
l T T+11 Tj

for T plus and (1.76)

T
* = sin 21T f t sin 2rr f (t - ) dt

1100

2

for T negative.

The same integration is involved in both expressions, namely

f sin 21T f t sin 2T f (t - T) dt. The quantity sin • sin equals
0 0



(sin * sih equals) cos difference A minus cos sum Z divided by 2. The

arguments E and A are 27T f (2t - T) and 2T f T respectively, so
f 0

(1.77)

Tcos 2r f T sin 2Tr f (2t T) 2
0 tl

The following equations are obtained by using appropriate limits:

1~S in 2r f (T-
41= cos 2T f T (T - T) - 0

0

and (1.78)

l~t1 in 2rf (T + T))= jcos 27 f (T + T) - o<oT0T 21T f,

We note that ' here is an even function since a negative T in the second

expression (that for negative T) gives the same values as the first

expression with T positive. Moreover, P is always an even function.
11

Another characteristic of the autocorrelation function is that it

goes through a maximum for T = 0. This may not be apparent in Eq. (1.78),

but when the slope is determined by differentiating with respect to T, it

j is found that this slope is positive for slightly negative T, zero for

zero T, and negative for slightly positive T, with two terms in the derivative

nicely cancelling each other at T = 0. The maximum at T 0 is never exceeded

by any other maximum. The function 'P for u sin 27 f t is plotted versus
10

T in Fig.1.12 for T 1 f, a single cycle.

0
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(a single cycle.)

The only comments on cross correlation that will be made here are

that usually the two functions being correlated are signal only and signal

plus noise and that this is an effective processing method when the

signal is spread over a medium to wide bandwidth. For this case a filter

would have to accommodate the whole bandwidth and would admit the noise

in this relatively wide band. However, cross correlation is equivalent to

predetector filtering in a bandwidth equal to the reciprocal of the pulse

length regardless of signal bandwidth.

The Fourier transform of the autocorrelation function will now be

computed for the case in which the time series is u = sin 27 f t, and its
0

correlation function is given by Eq. (1.78), with i as the time variable.

Since the whole correlation function is even, we may replace e by

c. 21T f ;multiply all terms of the autocorrelation function by this

quantity, and take twice the integral with respect to T from zero to T since

the overlap of the two functions disappears at just T = T.

We let the Fourier transform be denoted by g. This consists of two

parts:

a '=fT (cos 2wr f T) 2 2cos 2n f T d T (1.79)

and

b f T sin 27T f (T - T) cos 27 f T d T. (1.80)
2w f T 0 00

Starting with a, we express the product of the cosines as the cosine

of the difference plus the cosine of the sum over 2, giving
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(over 2, giving)

a = T - 2 [cos 21 (f - f 0) T + cos 21f (f + f 0 ) t d .(1.81)

We integrate by parts

1 ,,v. I
1 -~ dv ~os 27 (f - f) T + cos 231 (f + f) j d -ru 2 2T 00

du -dT V sin 27 (f- f T sin 2w (f + f )
2T v 27 (f f + 2r (f

0 .

Ttin 21 (f-f) sin 2n (f + f )

UvIT 0 - f vdu. . d
0 2T o' 21 (f f )27 (f + f

0 0

[cos 2r (f + f ) T cos 2 n (f- f T
___[ 431 (f) 72 ) (f

TT 4+---( + f (f- f ) 0

0

+ 0 + 02T+ 4iT- (f + f )° + 4nz (f - f)

T [sin27r (f + f ) T sin Tr (f - f T' ---T-(f + To T2 +  7r (f -fo ) , z T

T [sin c(f + f ) T + sin c(f - f) ] (1.82)4 0 0 T

Continuing with the term b, Eq. (1.80), we express the product of

the sine and the cosine as sine of the sum plus sine of the difference

over 2, giving

b 0 si 27[ T + (f - T] + sin 231 T (f + f T dT4 T f i To 0. TI0

M, -
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(over 2, giving)

b~~~~~~ ~ ~ 1 f si27 T+(f-f T + sin21r f- T--(f+f dT
4n f T io o f (- 0  0 f d

0

cos 2r f T + (f f T c o- (f + f ) T T
4ir f T 27r (f-f )2 (+f)

0 0 0

cos 2r f T -cos 27T f T

4e (f2 - f T T (1.83)
0

Letting f = x + y and f = x - y and substituting, we have
0

cos 21 f T = cos 2Tr T (x + y) = cos 2rr x T cos 27 y T - sin 2n x T sin 21T y T

and

-cos 2r f T =cos 2w T (x - y) =-cos 2r x T cos 2n y T - sin 2Tr x T sin 2T y T.
0

f+f f-f
, Adding and replacing x by 2 and y by 2 we are left with the2 2'

product of the sines only, and b becomes

- sin 7r (f + f ) T sin Tr (f - f ) T
27 f 2 - f 2) T

0

T sinc(f + f ) T sinc(f - f ) T. (1.84)
Ii= 2 0 0

Adding Eq. (1.82) and Eq. (1.84), we obtain the perfect square

g (f)=- T [sinc(f - f ) T - sinc(f + fo) T]2  (1.85)

This differs from U (f) U * (f) given by Eq. (1.71) in that

".



(Eq. (1.71) in that)
1

g (f) T U (f) U* (f). (1.86)

It is therefore the power spectrum of u (t).

By far the easiest way to obtain g (f) is by way of u (t) and Eq. (1.76).

However, the relationship between autocorrelatior. function and power spectrum

is quite useful for general manipulation.

In the course of this development we have obtained average power

by squaring the time series, integrating over its duration, and dividing by

its duration. We have also seen that the power spectrum can be integrated

from -= to +cO to give average power. A statement of the equality of these

two expressions for average power is Parseval's theorem.

It has been brought out that no other maximum in an autocorrelation

function is greater than the one at T = 0. This maximum may be any finite

* Ivalue. For many purposes, as for example when comparing two autocorrelation

functions, it is desirable to normalize by dividing by a quantity that will

make this central maximum unity. This quantity is, of course, the function

itself evaluated at T = 0.

Cross correlation functions generally need to be normalized to bring

Out a part of their significance. This is done by dividing p (-r) by
12

11 (0) '2 (0) with ' and '2 not normalized. When this is done, the11I (0 22 (011t ! 22

normalized value will never exceed unity. Its maximum value is a measure

of the coherence of the two time functions, unity meaning perfect coherence

or, apart from a constant factor, identity.

. - -
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GAMMA FUNCTIONS

The F function is defined for positive real v by:

-
P(v) = a, e t-dt. (1.87)

When V is an integer n, successive integrations by parts reduce Eq. (1.87) to

r(n) (n - 1)! (1.88)

and as with the factorial we have a recursion formula

r(n + 1) = nF(n). (1.89)

Equation (1.89) holds for any n, real or complex, and may be used to give

either ascending or descending arguments (e.g. solving for (-1/3) from F(2/3*'.

2
The Eq. (1.87) may be integrated for V = 1/2 by the substitution t = u

yielding

r(1/2) = /r-. (1.90)

J Then successive applications of Eq. (1.89) yield F(3/2), r(5/2), ... as well

as r(-1/2), r(-3/2).....

We record also:

r(2/3) = 1.35412

r(1/3) = 2.67893. (1.91)
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BESSEL FUNCTIONS

Bessel Functions of the First Kind

In problems involving cylindrical coordinates (e.g. sound propagation in

stratisfied media), we encounter Bessel functions. Most useful functions are

solutions to differential equations. The Bessel functions may be taken up as

solutions of Bessel's equation.

Bessel's equation is

2

d 2Z I dZ V (1.92)
Tz + + (1 - -) Z = 0

and a solution is Z = J (z). By writing Z as a power series, substituting
V

in Eq. (1.92) and equating coefficients of the different powers of z in

the equation independently to 0, we find certain relationships among the

coefficients of the power series for Z that are satisfied by the following

formula when V equals a positive integer n.

J (z) = Z ( -)m (z/2)(n + 2m)
0 m! (n + m)! (1.93)

The value J (z) is called a Bessel function of the first kind of order n andn

argument z. The values of J (x) and J (x) are plotted in Fig.l.13.0 1

For negative integral orders it can be shown that

J n(Z) (-1) n Jn(z). (1.94)

I--

J1
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Equation (1.93) may be expressed in terms of r functions as follows:

(-I)' (z/2)4(n + 2m)
3n (Z) F(m + l)F(n + m + 1)' (1.95)

It develops that for any positive v we may substitute this v for n in

Eq. (1.96) obtaining

OD (-)m (zv 2 )(V + 2m)
J (z) = F(ml+ )F( + m + l)" (1.96)

Bessel Functions of the Second Kind

The solution J (z) evolves from the straight forward procedure just

indicated. The student may substitute the solution in the form given in'

Eq. (1.93) into Eq. (1.92) thereby verifying that Eq. (1.93) is a solution

-of Eq. (1.92). However, there must be a second independent solution of a

second order differential equation. This will be given without derivation.

Because V enters Eq. (1.92) as V2, substituting -V forv gives the

identical equation. Therefore, J_V (z) is a solution of Eq. (1.92). When v

is an integer, J (z) and J (z) are not independent as can be seen from

Eq. (1.94). However, when V is not an integer, it turns out that J_ (z)

is linearly independent of JV(z), and a solution

Z - AJ V(z) + BJV (z) (1.97)

constitutes a "fundamental system" of solutions.

, -
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It should also be apparent that the combination of J (z) and a

function of Y (z) which is a linear combination of J (z) and J-V(z)

constitutes a fundamental system of solutions since

aJ (z) + bY (Z) = aJ (z) + brcJ (z) + d J_ (z)]

= (a + bc) J (z) + bdJ_ (z)

= AJ (z) + BJ_ V(z)

A precise relationship between Y (z) and the i's is commonly used, namely

Y (Z) = dv (Z) COSV7r-d (Z) (1.98)
sin V7T

The Eq. (1.98) defines a Bessel function of the second kind and is called a

Weber function. (Ref. 3)

When v is an integer n, Y (z) is indeterminate from Eq. (1.98). However,
n

it may be defined as the limit of the right side of Eq. (1.98) as v converges

to n. It has been evaluated and is linearly independent of J (z); therefore,n

we have the equation

Z AJ (z) + BY (z) (1.99)V V
which holds for all real V. Y0 X) is plotted in Fig. 1.13. Y 0(0) =

By using kz in place of z in Eq. (1.92) and taking the special case of

V = 0, we obtain

. ,~ 2 Z ] _ d2d + +-- + k2Z = 0 (1.100)
z dz
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a form which may develop in the process of solving the wave equation in

cylindrical coordinates with k2 introduced in the separation of variables.

Since we have substituted kz for z, a solution is J (kz). A fundamentalo

system of solutions is

Z = AJo(kz) + BYo(kz). (1.101)

It sometimes develops that only certain values of k permit satisfying

boundary conditions. These permitted values of k are called eigenvalues,

and the Z obtained for any eigenvalue is an eigenfunction belonging to its

eigenvalue, which in turn belongs to it. Boundary conditions may also

require that either A or B be zero.

Bessel Functions of the Third Kind

There are two functions of the third kind, usually called Hankel

functions, and designated H I and H 2. These functions are given by

H V (z) = J (z) + iY V(z) (1.102)

and

H 2 (z) = j (Z) - iY V(z). (1.103)

Either Hankel function is a solution of Eq. (1.92), and the two together

comprise a fundamental system of solutions. In some solutions to the wave

equations we shall use this fundamental system of solutions. Specifically,

we shall encounter a solution

Z EH 1(z) + FH 2 (z) (1.104)
0 .0
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where E and F are constants. The function H 1(z) will be interpreted as
0

2an incoming* wave and H 0as an outgoing* wave so that the two together may
0

comprise standing waves and in addition traveling waves (when E 0 F).

Since J and Y are real, the Hankel functions are complex and conjugate

to each other. The interpretation of a complex solution is an amplitude

1111' or [Ho
21, and a phase lead tan'(+Y/J), the plus sign for H , and minus

sign for H 2. The amplitude and phase are tabulated in Ref. 9.

+ikz
We should note that this complex form is analogous to our use of e-

to stand for harmonic space functions. As a matter of fact, the limiting

forms of J, Y09 and H as the argument increases without limit are cosines,0

sines, and exponentials as follows:

lim J (z) = (2/7rz) ' 2 cos (z - 4T (1.105)
z4 m 04)

lim Yo(z) = (2/Tz) V2 sin (z- ), (1.106)

and

lim H 12(z) = (2/lz) V/2 e+i(z 2) (1.107)

The phase for each of these functions approaches (z a) at large z. The major

difference from the harmonic functions is the factor z- /2, which will be

associated in our applications with divergence loss characteristic of cylindrical

spreading.

* The respective roles of H and Ho2 are oftU feversed arbitrarily to match
0 0 1

an arbitrary choice of the negative sign in+ e in the solutions of the wave
equation which will follow. We shall use e and this convention determines
the specified interpretations of H and HoLn ofH0adH02
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Modified Bessel Functions*

In physical problems we sometimes encounter negative and complex wave

numbers. As an example, if we have the complex wave number

k = k + ik (1.108)

it follows that

ikx ikox -klx
e =e e (1.109)

The last factor is an exponential damping factor. A factor eklz in the

Hankel functions of zero order with large arguments would emerge from

Eq. (1.107) if z were replaced by kz, k given by Eq. (1.108).

Imaginary wave numbers will often occur in problems of stratified

media. These may appear in the arguments of a Bessel function in such a way

as to render the argument imaginary. Bessel functions of the three kinds

are all given special designations for imaginary arguments and are all called

"modified" Bessel functions. We have the relationships

I (z) = J (iz) (1.110)

K V(z) Y (iz) (1.111)

L '1 2 (Z) H 1
9
2 (iz). (1.112)

It should be noted that imaginary arguments lead to modified functions

which are real. Furthermore, the variable z here is not necessarily depth.

* The meaning of this terminology should not be confused with the meaning of
[.'4 "Modified Hankel functions" to be introduced later on Page 62.

- I - .. .. ; ... .. k 't- , . . . . - -
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The modified Bessel functions which we shall need have some function of

depth as argument;

Up to this point we have shown various forms of solutions to Bessel's

equation and have stated that if z is replaced by kz, k2 being introduced

as a separation constant of undetermined value, it may develop that k can

take on only certain permitted values (eigenvalues) and still permit

satisfying boundary conditions. Even so, there is a solution (eigenfunction)

for each eigenvalue, and a linear combination of eigenfunctions is a

solution. Thus, Eq. (1.104) as an example might more generally take the

form

Z I EiHo1 (kiz) + Fi H 2(k iz). (1.113)
i=l

If there are no restrictions on k, the summation is replaced by an

integration over k.

Solutions of Equation for Depth Function

The following equation occurs in the study of sound propagation in

stratified media

j+ k2(l + ez) - = 0. (1.114)

There are at least two approaches to its solution. The first approach which

we shall describe reduces Eq. (1.114) to a Bessel's equation of order (1/3).

Eq. (1.114) is of the form

4 + (Bz + C)€ 0. (1.115)
dz
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We let

Bz + C ? 3 (1.116)

and

*(z) = (Bz + C)1/2V(E) - (3BE)1/3V(C). (1.117)

Then

= -L(Bz + C)3/2, (1.118)
3B

and

dE3 /3. (1.119)
=z (Bz + C)1/2=(B)13(.19

We then find

dz d Ldz

and

dz dz1/3 V d " (1.120)

Substituting Eq. (1.116), Eq. (1.117, and Eq. (1.120) worked out, into

Eq. (1.115), we obtain

A

d2V + dV + 1+ + - -- )v 0 0 (1.121)
w ii

; which is the desired form.
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Expressing V as Hankel functions we have *

V = AHI(C) + BH2 (C). (1.122)+ +

Finally, the full expression for 4 in terms of Hankel functions involving z is

3K I) + ByH-- (1.123)

in which

y ([k2 (1 + aZ) -a2]. (1.124)

The second procedure is to make the substitution

K2(1 + az) - a20 ( K 2 3 ( 1.1 2 5 )

0

Substitution of Eq. (1.125) in Eq. (1.114) yields the Stokes equation

dd4 + TI = 0. (1.126)

dri

Solutions to this equation may be found readily by expressing 4 in a power

series of ascending powers, substituting in Eq. (1.126), collecting coefficients

of like powers and equating the collected coefficients of each power to zero.

The coefficients a(3n) , n - 1, 2, 3, ..., are all expressible in terms of ao.

A A, This gives one series solution of the following form

f(n) a (1- 1, . - *47n9  + . (1.127)
3. 6 ' 9!

* See reference 6
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The coefficients a3n+l , n = 1,2,3,..., are all expressible in terins

of a , giving a second solution

g(Y) = a (n - 2 +- .,n 25 5 I +-...) (1.128)

Note that in both f(n) and g(rl) the signs alternate but with negative

argument all signs are alike in either function. All other coefficients,

a , a are zero.
2 5

The Airy functions, which have been tabulated, are related to f and g

as follows:

3 3-+
Ai(-n) = f(f) - g () (1.129)

(34 4
Bi(-TI) = v 3 f(n) + 3 g(n)j• (1.130)

The solution of Eq. (1.126) is expressible in terms of the Airy functions

as

= E Ai(-n) + F Bi(-n). (1.131)

Finally, just as we combined Bessel functions of the first and second kind

2to form Hankel functions, so we may combine Airy functions to form modified

Hankel functions

h = 12'1 6 e [Ai(-n) - i B( (1.132)

h = 121/6 e +iF/6 Ai(-n) + i Bi(-f)].

2 L

- ~kUM9...



1.0-

.6 -Ai -xc)

4 Ai x) 
x

.2-

2 6 8 10

-.4-

-.6-

-. 8

Ai(±x),A!'(±I-x)

2.2

1.8 (x
1.6

1.4

1.2

1.0 Bi (-X)

.4-

128-x 6 7

.6

-.6

81 (± x), Bf (± X)



Note that when Ti is psi tive, the sign in the terms f"or Ai and Bi a] ternate

giving rise to oscillating functions. When 11 is negative, which can occur

for example when is negative and z is large, Ai(-rl) is a monatonically

decreasing function with increasing -n and Bi(-i) is a monatomically increasing

function with increasing -TI.

The modified llankel functions are expressible in terms of z by substituting

Eq. (1.125) for qi. The expression for is then

= C h (n) + D h (q). (1.133)
1 2

In contrast to the solution in regular Hankel functions, Eq. (1.123), there are

constants as coefficients of h and h as compared' to y(z) in the coefficients
1 2

of H and Hi . This makes a neater solution.

+ +
The Airy functions and their derivatives are plotted in Fig.1.14 and Fig.1,15

taken from Ref. 4.

LAPLACIAN

The wave equation will be derived from physical principles in the

treatment of sound propagation. In Cartesian coordinates, it is

=1 2
v 2  Y = 1 - --_.(1.134)I7

The operator V 2 called the Laplacian needs to be defined. The definition will

be in terms of Cartesian coordinates and we shall then show how to express

it in any coordinate system.

The operator V is defined in vector analysis as

V i-- + j 2-- + k (1.135)

a a
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in which i, J, and k are unit vectors in the x, y, and z directions

respectively. The dot product of V by itself is

= "2 + a2 + ;
2  (1.136)

The Eq. (1.136) defines V 2 in Cartesian coordinates. When V2 operates on

a scalar quantity T, we have the left member of the wave equation, Eq. (1.134).

Use of Eq. (1.136) in Eq. (1.134) gives the wave equation in Cartesian

coordinates.

An expression for V2 in generalized coordinates, q , q , and q , is
1 2 3

derivable (e.g. see Ref.5) and takes the following form:

h h h -
V2 = h h h-(h h aq ") + aq- h aq + h (137

h 2 3q 2 3 q1 q 2 1q 3h h 3

The h's are given by

aqi
h - (1.138)

in which n is the normal in the positive direction to the level surface

in qi, i.e., the surface obtained with q1 constant.

In spherical coordinates we have a radial distance r from the origin,

the colatitude 0, and the longitude 4 measured from the positive x axis

toward the positive y axis. The level surface in r is a sphere. The
ar

normal to this is radial in direction and - = h = 1.

The level surface in 0 is a cone, and the normal to this is a Vector

normal to the cone giving = h,= . A level surface in 4 is a plane and
n. 2' r
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=n h = 1 Using these h's, Eq. (1.137) for the Laplacianan 3 r sinO0

becomes

V 2 . 71 a (r2 sin a ) + asin 0 a + (- -  a
r sin O r sin or) +-(sin .) a sin 6 ). (119

For a spherical wave in which spheres are equiphase surfaces of constant

amplitude, this reduces to

2 1 r2  a 2  2Vr rr" (1.140)

A third system of coordinates with which we should have familiarity is

that of cylindrical coordinates. Here the three coordinates are r, the

radial distance from the polar axis; z, the distance from the origin along

the polar axis; and 0, the longitude measured from the positive x axis. The
3r

level surface in r is a cylinder, the normal is radial and Tn = h = 1.I n

The level surface in z is a plane normal to the polar axis, the normal is
az

along the polar (z) axis, and an = h = 1. The level surface in 0 is a planean 2

including the polar axis, the normal is horizontal and tangent to a cylinder
301

of radius r about the polar axis and T = h = -

Applying the general Eq. (1.138) with these h values, we obtain

jthe Laplacian

V2 = i[-(r 2- + r a i _

1 a a a2  1 a2S= r D''- r + + aez-6T (1.141)r a ar az r

aI.

,' "f-', -;": 
" '

--- '- -'-- -,V. . g;,.l . . /, "a ""



For cylindrical symmetry in which a sound wave is traveling

inward or outward'with equiphase surfaces which are infinite cylinders,

this reduces to

v2  i r
r= --7 +r Dr (1.142)

'I

I

II

,
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