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ABSTRACT

A theoretical approach is developed and a computational procedure
adaptable to a high speed digital computer is established for the evalua-
tion of the blade pressure distribution of a marine propeller due to
thickness and loading effects. The dual role of the blade thickness is
considered. The contribution of the "nonplanar thickness" to the propeller
Joading and pressure distribution and the effect of the "flow distortion

thickness" are studied by means of the "thin body" approximation.

The surface integral equation which relates the unknown loading to
the known velocity distribution on the blades is solved by the mode ap-
proach in conjunction with the "lift operator"” technique. The analysis
treats both design and off-design conditions in steady-state and unsteady

flows, and the proper chordwise modes are selected for each condition.

The numerical solution yields the blade loading and resulting
hydrodynamic forces and moments and blade bending moments, and, in addition,
the blade pressure distributions on each blade face due to both loading
and thickness effects, thus providing information necessary for the pre-
diction of cavitation inception. Calculations have been performed for a
set of three 3-bladed propellers of different EAR operating in a screen-

generated wake, for comparison with experimental data.
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NONENCLATURE

function defined in Eqs. (33) and (35)

n/J (nondimensional) inversely proportional to advance
ratio at design condition

n/JOd (nondimensional) inversely proportional to advance
ratio of off-design condition

designation of NACA-a meanline

frictional coefficients

pressure coefficient

expanded chord length, ft.

propeller-induced forces in x,y,z direction (see Fig. 1)
camberline ordinates from face pitch line

blade thickness distribution

modified Bessel function of first kind, of order m
defined in Eq. (20)

index

design advance ratio

of f-design advance ratio

Jod-J

index

kernel of integral equation

modified kernel after chordwise integrations
modified Bessel function of second kind of order &
variable of integration

loading distribution in 1b/ft.

spanwise loading in 1b/ft.

spanwise loading coefficients of the chordwise modes in 1b/fz.

vii
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£ integer multiple

Hb blade bending moment about face pitcn line

H(C,D.eo) source strength at point (5,9,00)

m index of summation

m order of lift operator

N number of blades

n blade index

n rps

n order of chordwise node

A unit normal vector on helicoidal surface at loacing point
nt unit normal vector on helicoidal surface at control point
P pressure, 1b/ft2

AP P_ -P+, pressure jump, lb/ft?

P(r) geometric pitch at each radial position, ft.

Qx,y,z propeller-induced moments about x,y,z axis (see Fig. 1)
q order of harmonic of inflow tield

R',R Descartes distance

Rc Reynolds number based on chorc lengtn

r radial ordinate of control point

o propeller radius, ft.

S propeller lifting surface, ft2

5 chordwise location as fraction of chord length

t time, sec.

t, maximum thickness of blade, ft.

u free stream velocity, ft/sec. (design)

Vog free stream velocity, ft/sec. (off design)

u variable of integration

viii
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Fourier coefficients of the known downwash velocity
distribution

normal velocity due to camber effects

normal velocity due to flow-incidence angle

normal velocity due to wake

normal velocity due to nonplanar thickness
longitudinal perturbation velocity (VX-U)
tangential perturbation velocity

measured axial velocity

velocity distribution normal to propeller
defined in Equation (20)

longitudinal ordinate of control point
cylindrical coordinates of control point
Cartesian coordinate system

tan-‘(U/Qr) = tan-](l/ar)

defined in Eq. (12)

chordwise mode shapes

-2t (see Fig. 2)

angular ordinate »f loading point

angular position of loading point with respect to nlade

reference line, in moving coordinate system (see Fig. 2)
subtended angle of projected blade semichord, radians
2n(n=1)/N, n=1,2,...N

geometric pitch angle at each radial position

angular chordwise location of loading point (in

trigonometric transformation Eq. 14)

defined in Eq. (21) (see Appendix A)

e A e s P R AW T 8 [ Y
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Ai”) (y) defined in Appendix A
v kinematic viscosity
£ longitudinal ordinate of loading point
§,0,0 cylindrical coordinates of loading point
P radial ordinate of loading point
Pe mass density of fluic
oy ratio of leading edge radius to chord
] angular measure of skewness from blade reference line (see Fig
Ao o -o® = difference in skewness at control and logding goint
T variable of integration
9 velocity potential
¢ (m) generalized 1ift operator (Eq. (18))
¢ angular ordinate of control point
°o angular position of control point with respect ic slage
reference line, in moving coordinate system (see Fig. 2)
¢u angular chordwise location of control point (in trigono-
metric transformation Eq. 15)
Y acceleration potential
Q magnitude of angular velocity of propelier
W angular frequency of loading
Superseripts |
r refers to control point
o refers to loading point

. 2)
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INTRODUCTION

Davidson Laboratory has been engaged in a series of investigations
concerned with the adaptation of the linearized unsteady lifting surface
theory to the case of a marine propeller operating in a nonuniform flow
field (see, for example, References 1-3), the objective of which has been
the prediction of blade loading distributions, propeller-generated forces
and moments and blade bending moments. In these investigations, it has

been assumed that the 1ifting surfaces (blades) have zeroc thickness.

The linearized wing theory considers that an arbitrary wing cross-
section is composed of a symmetrical part corresponding to its thickness
distribution and an asymmetrical part of zero thickness but with camber
and angle of attack. The asymmetrical part contributes to the lift of
the wing. On the other hand, the thickness distribution contributes

nothing to the lifting properties of a wing unless it is nonplanar.

The marine propeller with its blade describing a helicoidal surface
is one of the few nonplanar lifting surfaces. The blade thickness plays
a dual role, infiuencing both the lifting and non-1ifting characteristics
of the blade. As part of the nonplanar surface, it will induce a con-
tinuous component of velocity on points of the surface itself, thus
affecting the blade loading distribution. On the other hand, the symmetri-
cal flow disturbance caused by the blade thickness will influence the
pressure distributions on the suction and pressure sides of the blade
without contributing to the net blade loading. Both effects, designated
for brevity as due to "nonplanar"” thickness and "flow distortion" thick-
ness, will occur in steady-state flow conditions since the blade thickness

is a time-independent quantity.

The study of the blade pressure distribution arising from both load-
ing and thickness effects has been undertaken so that the necessary
information can be obtained for cavitation and blade stress analyses.

The study treats both design and off-design conditions.

pacary
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The surface integral equation which relates the unknown loading to
the known velocity distribution on the blade is solved by the mode approach
in conjunction with the "l1ift operator' technique. The selection of the
proper chordwise modes in the steady-state flow condition at design advance
ratio J is dictated by the shape of the loading distribution in two-
dimensional flow on a foil with the same camber distribution (NACA -a mean
lines, NACA mean lines of the 4- and 5-digit wing series, lenticular mean
line, etc.). At off-design J in the steady-state condition, there is an
angle of attack due to the difference AJ and the additional loading (to
that at design J) due to this angle of attack is represented by the first
(cotangent) term of the known Birnbaum chordwise modes. The complete
Birnbaum modes, which have the proper leading edge singularity and satisfy
the Kutta condition at the trailing edge, are used to represent the chord-
wise loading distribution in the unsteady flow conditions at both design

and off-design J.

The linearized unsteady lifting surface theory requires the singular
behavior at the leading edge. Although the singularity is integrable, its
presence in the blade pressure distributions is unrealistic. Therefore,
whenever the Birnbaum modes are used, a correction factor to remove the
leading edge singularity based on Van Dyke's“ and Lighthill'sS method is

introduced in the blade pressure distribution.

This research is sponsored by the Navai Sea Systems Command General
Hydrodynamics Research Program, under Contract NQOQl4-75-C-0482, adminis-

tered by the David Taylor Naval Ship Research and Development Center.
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I. AN OUTLINE OF 'T'HE ANALYSIS

In the analysis which follows, the blades of any ship propeller are
treated as warped lifting surfaces which encounter the spatially varying
inflow and, hence, develop unsteady forces which are cyclic functions of
blade position. The blades need not be of a pure helicoidal surface, i.e.,

they may have varying pitch over the radius. However, the reference sur-~

face, along which the shed vorticity is considered to be convected, is re-
stricted to be a pure helicoid whose local pitch is fixed by the joint
action of the forward speed of the ship and the tangential velocity at

U

any radius, or simply the pitch angle of this vortex-wake surface is tan-‘(Fﬁﬂ.

The theory is formulated to give the linearized pressure distribution
on each side of the blade at eight radial locations. These distributions
are made up of an antisymmetric part associated with the 1ifting action
of the blade and a symmetric part developed by the blade thickness distribu-
tion. As the blade surface is non-planar, the flow produced at any element
by all other thickness elements produces a weak normal flow and this flow
is balanced by the induction of anti-symmetric loading elements which, in
turn, contribute to the pressure distribution as well as to the forces
and moments. This small loading is referred to as being the result of
the presence of non-planar thickness; the major part of the asymmetrical
loading is produced by the presence of cam% -, geometric flow angle and
the normal velocity components associated with the hull spatially variable
wake. The anti-symmetric part of the blade pressure distributions are
solely responsible for the forces, whereas the symmetrical and asymmetrical
contributions determine the pressures on each side, the knowledge of which

is essential for prediction of cavitation inception.

A. Propeller Loading Disztribution
1. Integral Fquation

The linearized unsteady lifting surface theory for a marine propel-
ler, with its blades lying on a helicoidal surface and operating in non-
uniform flow of an incompressible, ideal fluid, is formulated by means of
the acceleration potential method. It is based on a small perturbation

approximation and, also, on the assumptions that the propeller blades are

thin and operate without cavitation and flow separation.

o wv— S o ALY e i W W e ST
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It is known that the pressure field generated by a lifting sur-
face S is given by distributed doublets with axis parallel to the local
normal and with strength equal to the pressure jump across the surface.

If the acceleration potential function, ,, a scalar function of position,

is introduced and defined as having its gradient equal to the accelera-
tion vector, then the strength of the doublet distribution is propor-
tional to the discontinuity of y between the values for the positive

and negative oriented surfaces with respect to the direction of the nor-

mal n, i.e.,

by =y, -y_=—(P_-P ) =—n21p (1)

Here use is made of the linearized relation between the acceleration po- §
tential and the perturbation pressure, viz.,

L= (2)

t)f

where P is local pressure and pf is fluid mass density. Thus, the pres-
sure jump is defined as that between the pressure at the back (suction

side) and the pressure at the face (pressure side) of the blade.

The pressure P at any point {x,r,3) (in cylindrical coordinates)
at time t due to all pressure doublets distributed over dummy (loading)

points (7,0,5) will be given by

3 ds (

bot) ==L : ;
P(xyry5t) =4 fsf BP(es0,85t) S T 109,0)

where  is the normal derivative on the surface S at the loading
an point (©,0,06), with ; the unit normal vector having positive
axial component
and RU(xyryisi,0,0) = [(x=E)2+r2 +p2 - 2rp cos(e-cb)]]/2 is the Descartes

distance between the given control point (x,r,¢) and the loading
poirc {4,0,0).
The relation between the velocity potential function ¢ and the

acceleration potential function y has been established by solving the

Euler equation of motion:

é




o(x,r,0;t) = vit, r, it -~ =)dt (4)
where U is the undisturbed forward velocity of the lifting surface and
the integral represents the total effect at time t of all previous ac-

celerations of a fluid particle at present at the observation point X.

For doublets with pulsating strength AP{C,p,O)e'Ut at loading
points (£,p,6) which, together with the observation (control) zoints
(x,r,¢) are rotating with angular velocity - (where the negative sign

is introduced to accord with a right-handed coordinate system), Eq. (3)
becomes

)

y v jwt 3 cS
I -' = <4 P re— . - Q)
u(x,r,¢° t) : hnpf {J & (E’p’eo'E= on R'(x,r,¢°-ﬂt;g,;,uo-ﬂt)
(5)
where w = frequency in radians/sec.
Oo,¢° = angular position of loading, control points with respect

to blade reference line in moving coordinate system (Fig. 2).

Substituting Eq. (5) in Eq. (4) and identifying the Vifting sur-
fact as the helicoidal surface, x =_¢o/a or ¢ =60/a, of an N-blaced pro-
peller yields

hﬂpr n=1
¥ iqla(r=x) =85l 3 ]
[ e!RLTTX T En 3 (g)dds (6) i

where a = /U
q = w/Q = order of blade harmonic
8 = 2rx(n=1)/N, n=1,2,...N
n

R= {(t-g)2+r2+p2-2rp cos[eo-¢°-+5n --a("c--x)]}”2

Then the induced velocity at the control point (x,r,¢o;t) due to |
the loading at (g,p,eo;t), when both points are located on the propeller ;

blades, can be determined from Eq. (6). The normal component of the

!
velocity induced by all elements will be given by _

3 . )
= 0 (x,7,0,5t) (7)
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-
where n' is the unit normal vector on the helicoidal surface at the control

point, naving a positive axial component.

The requirement for an impermeable boundary (i.e., no flow through

the 1ifting surface) is
W+ —2—-¢(x r,o ;t) =0
an' YV

where W is the known (imposed)perturbation velocity normal to any blade
chord

I )
W= - e ¢(x.r,¢o,t)

which expresses the equality of the negative of self-induced normal velo-
city with the imposed velocity ir the downwash (positive n') direction. :
This yields the integral cquation for the unknown pressure change AP at

frequency q:

__igqRt N X . -x) -8
W = ipr nzl {!AP(q)(C,p,eo) 3%7 l; e|q[a(1 x) en] g% (%)drds (8)
where

3
an Ny oL 02 360
(9)

'
R A

It should be noted that the left side of Equation (8) is the com-
ponent of the flow normal to the nose tail line of any section of the
propeller blade, whereas the right side is the induced velocity normal
to the helicoidal reference surface. This lack of precise identity in
resolution of the onset flow and the flow induced by all loading elements

is in keeping with the linearized small-perturbation theory employed.

e L

Specifically, the onset flow normal to the nose tail line is (upon omit=

ting camber for the present) expressed by




U'i'VL

AV,

W= - YU+ VLYZ* (Qr+VT)zsin(6p - tan-] (

where VL and VT are longitudinal and tangential perturbation ve.ocities.

When this is expanded to secure the first order approximation {(defined for

the condition VL = VT = (), we obtain

e - ST 007 < _ - .
W Ué + (ar) an(ep B)'ﬁ-(VLcosep -VTS'nGp)

and, for small values of ep-s, this reduces to the lincar approximation

=2 - 2 - ._ . *
W 2+ (ar) (Gp B) + (VLcosep VTanep)

Here B = tan @ — = tan~' - and 6
ar P

ar is the pitch angle of the propeller.

it is to be noted also that blades with zero camber, zerc thickness
and having pitch angle variation ep = B when set into a flow with zero

perturbation, i.e., VL = VT = Ohwill expericnce no crossfiow and, hence,

will develop no pressure loading. Thus, all these guantities, incicence

angle, camber, hull wake and inductions from non-planar thickncss are

considered as perturbations of the reference flow whose direction is de-

fined by B8 and which, by itself, produces zero locading. The effects of
each of these imposed flows on the blades arc calculated separately and

simply added together as allowed by the linearity of the theory.

The left-hand side of Eg. (8) can be written in the form

() -iq0
W o= qEOV (ri¢ )e o (10)

where 9 = - Qt in terms of a moving coordinate system and V is in

complex form. All but the hull wake are perturbations from the steaay-

state flow only, q = 0, and are analytically computed from the sropeller

geometry. The normal wake velocities are derived from an harmcnic analysis

of the wake measurements as will be shown in a later section.

*See J.P. Breslin, "Determination of the Normal Velocity to a Propeller
Blade Section in a Ship Wake," Tech. Memo. SIT-DL-T6-172, January 1976.

7
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On utilizing Eq. (10), the integral equation (8) requires at each
frequency q that

v =11 ap D (0,0 ) Klrug 0,0_5a)ds (1)
S

where the kernel function is given by

N .= x .
LI -igb, 8 iqa(t-x) 3 1y .
lmpr é_l)g nzl e an' .{o € an(R)dL
6 -0 (12)
and § = -ELE—JE - (x-g).

K(r,¢o;o.0°;q) ==

The time factor has been eliminated from both sides of Eq. (11) and it

is understood that the real part of the solution must be taken at the
end. The limiting process is introduced in the kernel function to avoid
the mathematical difficulty due to the presence of a high-order singular-
ity. The kernel function is one of the most complex of lifting surface
theory since, in addition to its high-order singularity, it presents
other complications arising from the helicoidal surface and from the
interference of the other blades. Thus, attention is given to the numer-
ical solution of the integral equation by means of a high-speed digital
computer. The analysis has been carried t: tic stage where laborious

computations can be efficiently performed by the numerical procedure.

It has been assumed that the shape of the chordwise loading dis-
tribution is the same as that in two-dimensional flow; the spanwise dis~
tribution is left to be determined by the solution of the integral equa-
tion. A method called the ''generalized 1ift operator' techniquel is ap-
plied which reduces the surface integral equation to a line integral equa-
tion along the propeller radius. Then, by the collocation method, the

line integral equation is reduced to a set of algebraic equations in the

unknown spanwise loading distribution.

Co ebpegamin o .
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The mathematical complexity of the problem has imposed a series
of concessions with regard to propeller geometry and helicoidal blade
wake. To save time and expense in computing, a most important concession
was that of approximating the blade helicoidal wake in ''staircase' fashion2
which appears to be physically realistic. However, with improvement of

the high-speed digital computers, the exact treatment of the blade wake3
is being utilized.

Following Ref. (3), the substitutions listed below are made in
EQ' (]l)r

L9 (5,0 )=AP(q)(e: 0,8 ) p6® (1b/ft) (13)
? a ’ ] o b
eo z ¢° 'GE cosé, , O < 8, S (14)
6 = ¢ -8 cos¢ 02¢ S (15)
o b a ' T Ta T
@ im[6 ¢ +6 -a(r-x)] = c L
o gy Do 00Nk tik el R g

for p < r. (if p>r, pand r are interchanged in the modified Bessel
functions Im( ) and Km( ) of the first and second kinds.) Here o is

the angular position of the midchord line from the generator line through
the hub in the projected propeller plane, eb is the subtended angle of the
projected blade semichord, ea and ¢u are angular chordwise locations of the
loading and control points, respectively, and the superscripts p and r

refer to values at loading and control points, respectively.

After the appropriate chordwise mode shapes 0 (n) are introduced,
so that

n max

LD 0 =1 M) o ) (17)

n
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(a,n) ()

where L are the spanwise loading components to be determined by
the solution of the integral equations, the chordwise integration of

the kernel (Eq. (12)) over ea is performed. Then both sides of the in-
tegral equation (11) are operated upon by the '‘generalized" 1ift opera-

tor ; thus,

1 -

;cj) o(m) {Eq. (11} do_ (18)
where

(1) =1 - coscbOt (the Glauert 1ift operator)

p(2) =1 + 2 cosé,

¢(m) = cos(a-l)¢a for m> 2

A set of line integral equations is thus obtained with maximum

order m equal to maximum n of chordwise modes:

(q,m) n max - -
LTLQ= 1 fL(q’n)(o) K(m'n)(r,p;q)do (19)
n=1 p
where )
(q,m) m (q) Ciad, (q) . r -
W (r) _ 1 - vV (r) Jdo  _ vV VU (r) - (m), .
TR ’?£¢(m) T e A
. (20)
- m _ iqf cos}
1("‘) (qe;) = ?‘FI ¢(m) e b °‘d¢a
(o]

l(m)(Y\ is given for various m in Appendix A.

The modified kernel function after the ea and ¢a chordwise inte-

grations is finally (see Ref. 3):

k(a,a) = { -N } r E e-imAc

hnpfuzro a’l+a‘rs m=-
m=q+LN

(o' M2 (nmq) + 2] [2(n-q) +-2] 1™ (qo")a ) (g0?) -
r e

10
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Im(alm-qlp) Km(alm-qlr)

L (G- 596014 (- Kyot)

i a my i —Ao
- = k+— + —
"-fw(a rz)(ak . )e k_a(m_q)
(h) L _ o -iz cosea . (21)
where A"/ (z) = [0 (n)e sinead()Ol and &0 = o' -o°.
o

In Eq. (21), all terms outside the first braces are nondimension-
alized with respect to propeller radius r, as is also p in Eq. (19).

(n)(z) for various n and 0 (n) is also glven in Appendix A,

The integral equations given by Eq. (19) with the kernel given
by Eq. (21) are solved numerically by the usual collocation method, with
the loading L(q n)(D) assumed to be constant over each small radial strip.

Then only the kernel needs to be integrated over the radial strip.

Reference 3 details the analytical development and the various
numerical procedures to obtain the finite contributions of the Cauchy-
type singularity of the k-integral at k=a(m-q) and of the higher order

Hadamard-type singularity when p = r.
2. Chordwise Modes

The proper selection of chordwise modes is dictated by the loading
distribution on a foil in two-dimensional fluw. Thus, in the unsteady
flow case, the unknown loading function is approximated in the chordwise
direction by the known Birnbaum distribution which has the proper lead-
ing edge singularity and satisfies the Kutta condition at the trailing

edge. In this case, Eq. (17)

n max -
L) = T LM o)
n=1
(@) % P T (qR) e
L cot 5+ _Z L {p) sin{n l)eu} (22a)
n=2

in the steady-state flow condition, the chordwise mode shapes
are selected to conform to the observed pressure distributions of the

NACA foil sections. Furthermore, the analysis and corresponding program

is divided into two parts, for design and off-design propeller conditions.

11

Skle)k (Tk[r)dk}

:
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At design advance ratio J, the propeller operates at almost optimum ef-
ficiency and the chordwise loading distribution due to blade camber,
thickness, angle of attack and inflow conditions (mean wake effects)
does not deviate much in shape from the loading distribution of an air-
foil in two-dimensional flow. At off-design advance ratio, however, §

the same propeller in the same wake is subjected to a change in angle

of attack due to AJ, the difference between off-design and design ad-

vance ratio. The additional load distribution, due to this change in

angle of attack in the off-design condition, is in accordance with thin

wing theory represented by the first term of Eq. (22a).

The camber distribution is a decisive factor in the selection
of the proper mode shapes of the chordwise loading distribution in the
steady-state flow condition, since it is known that many properties of
wing sections are primarily functions of the shape of the mean line.
Thus, the program in the steady-state case deals with two different types

of mode shapes.

The first is appropriate to the NACA-a mean lines characterized
by the fact that the chordwise loading is constant from x/c = 0 at the
leading edge to x/c = a (a varying from 0 to 1) and then decreases }inear-

ly to zero at x/c = 1, the trailing edge. For Ebrevity, this type is

designated as ''roof-top' loading. In this case, Eq. (17) becomes
L(0) (0,1) 4 Lyl 0 fuss
(De)L) ‘){L()OI(—]:-)_i),gfxfl (22b)
1-a

and A(‘)(z) of Eq. (21) is as given in Appendix A.

The second type of mode shape in the steady flow case is appro-
priate to NACA mean lines of the k- and 5-digit wing series (including
the lenticular mean line) and to arbitrary mean lines in general which
are characterized by the fact that the chordwise loading is finite every-
where and zero at both edges and can thus be described by a series of

sine mode shapes:

L(o)(o,ea) == 73 L(p)(o’a)sin Bea (22¢)

12
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It is to be noted that, when the complete Birnbaum mode series, Eq.(22a),

or the cotangent term alone,is used and the solutions for the span-
wise loadings are substituted in the chordwise distribution, a correction
for the leading-edge singularity is introduced based on Van Dyke's and
Lighthill's method"s>.

3. Perturbation Veloeity Distributions

As mentioned earlier, the left-hand side of the integral equa-
tion represents the positive normal components of the velocity perturba-
tions from the basic flow due to non-uniformity of the flow (wake), to
blade camber, blade thickness (non-planar) and incident flow angle, in
the design condition, and to an additicnal angle of attack in the off-
design condition arising from the difference between off-design and

design advance ratios.
a) Normal Velocity Due to Wake

This is the contribution of the flow non-uniformity to V(Q)(r)/U
of Eq. (20). The positive normal component (i.e. downwash) of the wake

velocity along the middle chord of each radial strip is given by

vy (r) ) v (r) coss (r) - vp(r) o ()
U U r U SIn P r
where
VL(r) Vx
TR -1 + e , perturbation of ur..form flow
v (r)
T measured axial velocity
v ()
T measured tangential velocity
8 (r) = tan.I P(r)
o} 2nrr
o
P(r) = propeller pitch, ft.
5= propeller radius, ft.

r = radial distance in terms of ro

13




so that

v, (r) v (r) v (r)
NU = | xu - 1] cosop(r) - TU sinep(r) (23)

It is to be noted that the present sign convention requires that,
looking forward, the positive position angles @ are defined counter-
clockwise from o = 0 at the upright position of the blade, that the
axial component of the wake Vx is positive downstream (positive x-direction)

and the tangential component VT is positive in the counterclockwise direc-
tion.

! The harmonic analysis of the measured wakes yields

‘ v, (r) - _
i T ao(r) + qil [aq(r)cosq o + bq(r)sunq o]

VT(r) w .
= Ao(r) + qzl [Aq(r)cosq() + Bq(r)5|nq@ 1

The zero harmonic of the normal velocity is then

Véo)(r)

[‘ —— = (a (r) = 1) cose_(r) A (r) sino (r) (23a)

and the other harmonics are

v{d ()

FJ U

= [aq(r) cosep(r) -Aq(r) sinep(r)]cosqe

i + [bq(r) cosep(r) - Bq(r) sinep(r)]sinqe (23b)

As stated previously (see Eq. (10), the left-hand side of the

integral equation must be in complex form

(q) (q)
o (q) v v -
= g 1 1T




and it is understood that the real part is to be taken eventually. The

real part is

vla) v(a)
(-L‘:J—)R cos qo + (NU )l sin qo

Therefore, the input to the program for the real part is from
Eq. (23b)

(u—jy__qR = aq(r)cosep(r) -Aq(r) sinOp(r) (24)

and for the imaginary part

( 0 )I = bq(r)cosep(r) -Bq(r) sinep(r)

b) Normal Veloeity Due to Blade Camber

The velocity VC normal to the blade in negative direction induced
by the flow disturbance caused by blade camber is independent of time
(since the blades are considered rigid) so that only the steady state
loading is affected. The loading due to camber effect is obtained,
therefore, from the steady-state part of integral equation (19) with
V(o)(r)/U of (20) replaced by

Véo) (r) ST+aZr? ch(r,s)

U cl(r) 3s
_a/iwar ¥ lre) (25)
c(r) sing ¢
a a
where
afc(r,s)
5~ slope of the camberline fc(r,s) given at discrete

points measured from the face pitch line

s = (1 -cosé )/2, chordwise location non-dimensionalized
on the basis of c(r)

c(r)

¢ = angular chordwise position

chord in feet

15
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On application of the generalized lift operator (see Eq. (18))
to both sides of the integral equation, the left-hand side of Eq. (19)

for this particular component, camber, becomes for each order m

=(o,m) .
VI () of de
C 2/1 vaZrZ C "
7] TN f¢(m) N simpOL (26)

where, as can be seen from Eq. (18), ¢(m) can be expressed in terms

of cosm¢a. Integrating by parts

fc(r,s)cosm¢

_9§ﬂ£ = —
(f5 f sing 't de c(r)sing
(r,s)
c(r) f s’ [m sinmé sing + cosmd cos¢ldé (27)

in the small range near the leading edges, 0 < ¢ S cos-1(0.9) or 02s%0.05,
the camberline is assumed to be parabolic and,in the range cos_l(‘.8)ﬁ_¢ Sn
or 0.90 < s £ 1.0 near the traiiing edge, the camberline is assumed to

be a straight line. The integration is done analytically in these re-
gions and numerically over the remainder of the chord.® The required

input information is the ratio of camber ordinate fc(r,s) to chord cir)

at 19 equidistant positions from s = 0.05 to 0.95 of chord. For arbi-
trary camber, these ratios are read into the program. The program has
options to compute them in the cases of NACA-a meanlines (3 =0.8, 0.8
modified, 1.0} and of lenticular (sine-squared) camberline from the ratio
of maximum camber ordinate to chord at each radial position, and in the
case of the NACA-4 digit series from the ratio of maximum camber ordinates

to chord and the chordwise position of the maximum ordinate.
e) Normal Velocity Due to "mon-planar" Blade Thickness

The thickness of propeller blades describing a helicoidal or non-
planar surface, as stated earlier, generates a velocity field on the
blade itself and, consequently, affects its loading distribution (in
the steady~state only since the blades are considered rigid). The nor-

mal velocity component due to the effect is

v_(_‘_’)_ i 3¢ _(x,r,0;0)

1
u 1] an'

(28)
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where 3/3n' is as defined in Eq. (9).

Resorting to the '"'thin body'' approximation, the velocity poten-

tial ¢T is given by that of the source-sink distribution with strength

proportional to the slope of the thickness distribution. [n the case

s, OO0

of an N-blade propeller, the velocity potential is given by

f M(E,D,eo) A T3237
R ap
60 o)

pdpdo (29)

1 N
¢T(x'r’¢0) = = H nz

!
Here the source strength M is

df _(p,0) BFT(E,O,GO)

M(g,o,eo) = 2U /1T +a2p? —a = 2U 5

where fT(E,O,GO) = thickness distribution over one side of the blade
section at radial position p in the propeller plane.

The Descartes distance R is

o [ (wmp)2 4242 - w1 )/2
R = {(x-€)2+r2+p2-2rp cos(eo ¢0-+6n)}
= - r_ r <
where x ¢o/a (o ebcos¢a)/a , O So,-T
= = (= P < 5 < =
£=9 0/a (o Obcosea)/a » 0z s

én = 2n{n-1)/N , n=1,2,...N

If the reciprocal of R is again expressed in a series as in Eq. ( 16},

then

______r_____ z e o 0 n s (ak+—nl-)(|K)m ei(x-g)kdk
m r2

:

i
T
1 +asrs m=-x

where (II()m ={Im(lk|p)Km(|kir) , 0 <r

LUkOK (kfe) o> r

N imd (N form=gN, % =0, 050,
Since | e =

n=1 0 for all other m
and d8_ =¢"sin6 d6 and === —2 O

© b ¢ 98 eﬁsine Bea

Equation (28) can be reduced to




i
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!
i1
(0) . .
v i n) _ iNF ) " imho } [ of (0,0 ) _
v 212 /T +a%r% m=- op LR /T+a%p
m=4LN ¢

w . N _ 0 . ;
i f(ak-f;EJ(IK)"e'AGk/ae'(k am)ebcosua/a |
-2 '

-0 I

. e-i(k—am)OEcos@ﬁ/adk(L)dea (30)
Before the ea-integration can be performed, it is necessary to

supply an analytical expression for the thickness distribution fT(p,ea).

When the NACA 4 and 5-digit wing series were derived, it was found that

the ratio of thickness distribution Yo to maximum thickness to of effi-

cient wing sections were nearly the same when their camber was removed

(mean line straightened).7 The thickness distribution of these sections 3

is given by

Y. t
L. ?O (1.4845/% - .630x - 1.758x2 + 1.4215x3 - .5075x%)

—c—'_'
where ¢ is the chord length, x is the chordwise location, 0 £ x £ 1, and
the coefficient of Vx is equal to VZOO, QO being the ratio of the lead-
ing edge radius to the chord c¢. In general, for any propeller the blade
thickness distribution in the projected plane can be approximated by

t (p)
fT(p,Ba) = 206° {VZDO(OY /;+~€%57— [ax + bx2 +cx3 +dx4]}

l-cosea 1

and with x = —————, 0 ¢ < n :
2 o j

5 o6, tyle) 4 ;

fT(p,ea) =206b {v poZp§ sin -§-+~2753—[ao(0) +nzlan(p)cos nea]} ‘

(31)
where fT and p are fractions of propeller radius o po(p) is the ratio
of leading edge radius to chord length c(p) at a given radial position
and to/c is the ratio of maximum thickness to chord at that radial posi-
tion. The coefficients of the fourth-order polynomial in x are calcul-
ated by the ''least squares'' method and then with the trigonometric sub-
stitution for x, the coefficients a, of £q. (31) are obtained and inserted

in the input to the program.

18
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The slopes of the thickness distribution are, from Eq. (31)

af (p.9) 8, ( b
et ~pe° V20 (pi cos--- 2p8° ——z—j— ) na_ {p)sin nd, } (32)
Beu n=1
letting
7 af (p ) ) i((k-am)az/a)cosea
A((k-am)8p/a) = [ —r——e ds_ (33)
o %

and applying the generalized 1ift operator, Equation (30) becomes for

each lift operator mode m

7™ (r)

iNr z e'lon f mp‘?
272 /T+a2r? me-w p
m=LN

U

- (ak+~£§)(|K)m eiAOk/al(m)((am-k)GE/a)A((k—am)sgla)dkdp
r

(343)
Let Y= k - am, then
(o m)(r)
0 f H+azpz
ZWZJ ] +azrz ¢
) f[au-«iN(a2-+-Q]l (}u-+a£N}g)K2N(§u-+amN]r)eiAUU/a
L=~ -
l(E\) r o
(-ueb/a)A(uGb/a)dudo (34b)
(for p<r).
Finally

V(os%)(r)
T =- m/ /T+alp? f im.Part{e 294/2 (m)( -ué /a)A(uGD/a)}

v 2/ 17 va%r¢ o

. {au\o(up)Ko(ur) +2§} {[au-+1N(a2-¥v%J](2N()u-+a£Nlp)K£N(|u-+a£N!r)

r
+ [au~2N(a? +;§9]!QN()u-alN‘p)KzN(\u-alN]r)]}dudp (3uc)
139
Nttt ) .

he
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(for p<r, otherwise o and r are interchanged in the modified Bessel

functions.) As can be seen from Appendix B

t_(p)
AR =007 /25 5 B0 - 2080 -2 122, ()60 +3a, (o) [66(1) - L& F ()]

+ i 8a2(p) F(x) (35)
+ i -—-A—[los(x) + (x -T)F(A)]}
T ixcos® 8
where B(A) = f e! ACOS cos E-de (See Appendix B, 5)
o
_ sin)
G(A) = 5
F(A) = sink - A cos)\

A2

(1t can be shown that when u = 0 the integrand of (3h4c) is zero.)
d) Normal Velocity Due to Flow Angle

The incident flow angle has been defined as the difference between
the geometric pitch angle ep(r) = tan-](P(r)/an) and the hydrodynamic
pitch angle B(r) = tan-l(l/ar) of the assumed helicoidal surface. The
normal velocity (in the positive direction) Vgo)(r)/U due to this effect
depends only on the radial position, not on the chordwise ¢a position,

and is given by

Véo)(r)
Tt -Vl*-azrz[ep(r) - 8(r)]

Therefore, after application of the generalized 1ift operator, it becomes

V(O'E‘) (r) _
f = =71 +azr2[9 (r) - 8(r)] form=1or 2 (
U = P - 36)
0 for m > 2

since I(‘)(O)=I(2)(O) =1 and I(6:>2)(0) = 0. (See Appendix A)

in €q. (36) a = n/J where J is design advance ratio. At off-design
advance ratio Jod’ the propellier is subjected to a change in angle of
attack due to AJ = JOd - J. The normal velocity perturbation due to

this change in angle of attack is
20
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A\-I(O'E‘) J
f = {~/1 +a°2dr2[6p(r) - tan”! —;:% + 71 +a2r2[6P(r) -8(r)] (U/Uod)}
(37)

for m = 1 or 2, where ay = ﬂ/Jod and Uod is the off-design forward velocity.

Uod

4. Blade Pressure Distributions, Hydrodynamic Forces and Moments
and Blade Bending Moments

a) Pressure Distribution

After the integral equation (19) is solved for propeller spanwise
10ading components L(q,n (p) (1b/ft) due to the various perturbation

velocity distributions, the spanwise loading distribution is determined
from Eq. (17):

L(Q)(r) = L(Q)(r,ea)sineadea

O =
=N

#o~3

ax - _
L9 (1) o(R)sing do_ (38)
1

[}
O =

n
For the unsteady loading due to wake {(q # 0), the complete Birnbaum

series is used with the chordwise loading distribution given by Eq., (22a).

The spanwise loading distribution is, in this case,

LD () =17 (@D (1) (1 + cost )-+; TL0a) (ygin(R-1)6_ sing 1ds
T o n=2 o o o

ERCEI R +_;_ L(e2) (39a)

For the steady loading due to 4J in the off-design condition, the span-

wise loading distribution is the first term of Eq. (39a).

In the steady state case (q=0) for NACA a mean line blade sec-
tions, the chordwise loading distribution is the so-called '"roof-top"

distribution, given by Eq. (22b), which can also be expressed as

1 +cos8
L(o’])(r) s a

L2 () for 0 < 8, < cos-](l—ZS)
L(o)(r)=={

-— for cos™! (1-23) S8 ST
2(1 ~a)

The spanwise loading distribution in this case is

21 i




cos_l(l-Zg)

(o) (0, 1) . ) " .
LY () =L () 0 d§ +—— (1+cos8_)}sinG_d6 }
‘ ’ £ "™ 2(1-3) cos™ ' (1-23) a1
-1y Gen (390)

The steady chordwise loading distribution for NACA mean lines
of the 4- and 5-digit wing series and for arbitrary mean lines in gen-
eral is given by Eq. (22c). The spanwise loading distribution is then

given as

L(o)(r) =

H|—

Y (0,n) -

f Z Lo (r) sinnt¢_ sin0 dé&
- a o o

o n=l

= ;_ L) (39¢)

The chordwise pressure distributions in 1b/ft? are obtained by
dividing the chordwise loading distribution by the semi-chord in feet
(see Eq. (13)).

Whenever the cotangent Birnbaum mode is used, the Van Dyke or
Lighthill correction*s> is applied to the chordwise pressure distribu-

tion to remove the physically unrealizable leading edge singularity.

Their simple rule for obtaining a uniformly valid solution is

6 =_—_S—c

. s+po/2 P

where CP = pressure coefficient according to first-order thin airfoil theory
1
S = (l-cosea)/Z = chordwise location from the leading edge in
terms of chord length

5 = leading edge radius of the profile in terms of chord length :
The modified chordwise loading distribution is then

1 - cosé 6 =
L(q) g ){L(q’])(r)cot 7?-+ ) L(q’n)(r)sin(a‘l)ﬁu}

1
(r’aa)-;r. (l+p - cosd
o a

n=2 (40)

Since the pressure near the leading edge is governed by the first term
. {
of (LO), viz.,

22




! 'COSO“ 0 sinG
93
] +p =cos@ 2 l+p =cosh
o a o a

the location of maximum pressure near the leading edge is determined appar-
ently from
d
d0_ 1 +p_-cosd =
a o a

sin o
2

Thus (cos0 ) = 1/(14+p ). This is the chordwise location of
a’max o
a point where the maximum pressure near the ieading edge will occur after
the application of the Van Dyke-Lighthill correction, provided p, is not
too large. If o > .015, the sine series of (40) will influence the

location of maximum pressure near the leading edge.

b) Propeller-generated Forces and Moments

The principal components of the hydrodynamic forces and moments
which are evaluated are listed below and shown in Figure 1 with the sign

convention adopted:

Forces: F_ = thrust (x-direction)

F and FZ = horizontal and vertical components,

Y respectively, of the bearing forces
Moments: Qx = torque about the x-axis

Qy and Qz = bending moments about the y- and z-axis,

respectively

The total forces at frequency AN(L=0,1,2...) induced by an N-bladed

propeller are determined as (see Appendix C)

!
_ iaNat o, (AN)
F = Re (Nr_e' ™" £ L (r)cosop(r)dr}

Ne oo ] - - ;
Fy = Re {'%2 e ] [L(QN"'“)(r)A(“)(-eE)+-L(£N+1'“)(r)A(“)(6L)]
° A=l

sinop(r)dr}
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Nr ! - - - -
FoaRe (@ T INBE [ [ (N () R) gry (LAY () (@) g1
n=1
sinep(r)dr} (41a)

The moments are determined by:

|
. i2NQt (2N) .
Qx = -Re {Nré e £ L (r)sunep(r)rdr}

Nr2 . 1 - - - -
Q,=Re (=2 & NI [ § (LN (1) ) (Lry 4 L WA (1) ) (o1 peose )
o

n=\
) [L"‘"“""’(r>AfF‘)(-a;)-L“”*"F"(r)A]‘E)(e{;)l(aeg)sinep(manep(r)}rdr:
n=1
2

-NF2 1 - - . -
Q, =Relogy® e ™Mt [ ¢ F LN (1) ) ory - (BN (0, () (6T pagg (v
o

n=1

o TN ) ) Lgryn (NFLR) (06T 0T sin®_ (r)tans (r)}rdr.
L (L1b)
where A(n)(z) and Afn)(z) are as defined in Appendix A,

It is seen from Eqs. (4la,b) that the transverse bearing forces _
and bending moments are evaluated from propeller loading components L(q’n)(r)
associated with wake harmonics at frequencies adjacent to blade frequency,
i.e. at q==RN'tl, whereas the thrust and torque are determined from the
loading L(Q)(r) (given by Eqs. 39a,b,c} at blade frequency q = &N. At &=0
(steady-state) the mean transverse forces and bending moments are deter-
mined at shaft frequency. Thus:

F = Re {219- }[ 1 L“’a)(r)/\(a)(er)]sine (r)dr}
y 2 o - b p

n=1
F e re o2 11T L (a® (67 gm0 (r)ar)
z 2i ° -, b p

n=

24
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= Nrézl oo (Vyng (n),.r
Q = Re {—==[ {[ ] L " (r)In""(0) coso_(r) -
Y 2 b
o -
n=1
(- .
- L(]'n)(r)A{n)(3;)}(ioz)snn0_(r)tano (r)irdr;
n=1
NR 21 - -\
QZ= Re {Tf?'f [ Z L(I")(f)A(n'( i cost (r) -
n=! )
n 7 N SO \ . \ ,
[ ] L(]’n)(r)hf )(gr)](leb)sxnuﬁ(r)tanu (r)lrcr (4ie)
n=1

All forces and moments can be written in the form

io .
Re[c(Q)e q e lqo] = C(Q)COS<'QO+¢Q) = C(q)cos(QS“Qq)

where O is blade angular position, positive <in the counter-clockiise
direction from zero at the upright position (12M), ¢ is order of shaft
frequency, C a) is magnitude of force or morent, and Qq is phase angle
(electrical) determined as the angle whose tangent is the imaginary part

(sine part) over the real part (cosine part . (The program output gives
C(Q) and ¢q.)

In comparing phase angles with those of experiment, care should
be taken to ascertain if measured values refer to lead or lag position
and if the quantity considered is at peak or trough. When the theoret-
ical ¢q is positive, the peak {(or trough) of the quantity is to the
left of the upright position, i.e., leads. When ¢q is negative, the

peak (or trough) is to the right of the upright position and lags that
of input.
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c) Blade Bending toments

The blade bending moment about the face pitch line at any radius
rj of a blade is calculated from the chordwise integrated loading (span-

(q)

wise component) L'’ (r) at any shaft frequency q as

. . }
Méq) o 9T 2 lallt It L(Q)(r) cos[8 (r) -8 (r.))(r-r.)dr
o P P J
] (42)

The positive blade bending moment about the face~pitch line is that

which puts the face of the blade in compression (see Figure 1).

The instantaneous blade bending moment distribution when the pro-

peller swings around its shaft in the clockwise direction is
-igo
My = Re ) Mge v ZEMglcos(qe -6 ) (43)
g q e

where O is the phase angle (electrical) determined by

o )

p = tan Lm
(Mg)ae

and (M) g imagi ~ 9
nd { b’Re’(Mb)lm are real and imaginary parts of Mo

It should be noted that in the program the value of r, of Eq. (42)
. . . . » - . . J
is limited to any of the midpoints of the radial strips into which the

blade span is divided, at which points the pitch angles, as well as other

geometrical characteristics, are given as input. The bending moment at
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any other radial position can be obtained by interpolation or extrapola-
tion. For example, for £ < (r1 - ar), where r, is the midpoint of the
initial radial strip from the hub, Fhe and Ar is the span of the radial

strip (r, = r_ + Ar/2), the bending moment can be estimated as
1 h

M (r.)-M(r =r +ar)]
Hb(rJ)= Mb(rl) -k 1 bArZ 1 (rj -rl)

For the case of bending moment about the root r _, this formula gives

h!

My (ry) = (r))
3

M(rp) = u (r)) +

5. Frictional Thrust and Torque

To obtain the frictional contribution to thrust and torque, one
must resort to empirical formulae for the frictional coefficient in tur-
bulent flow since, in this case, the theoretical analysis is extremely
difficult. Hoerner® suggests a formula based on statistical analysis of
measured velocity distributions across the boundary layer, viz. the Prandtl-
Schlichting formula for the friction coefficient for one side of a smooth

flat plate of length c:

758 (44)

(Tog, R,

where Rc is Reynolds number based on length ¢ {of the expanded chord)

i.e., in the nomenclature of this paper,

Ro(r) = LHLrer c(r)

c
where v is kinematic viscosity.

Because of thickness, the average velocity around a symmetrical
foil section is higher than that of the undisturbed flow, the increase
being proportional to the thickness ratio to/c. for the conventional

section, the total frictional drag coefficient is approximated by®

t_(r)
Cplr) = (2 ¢ (11 +2 2] (5)
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Although no allowance is made for viscous pressure drag, nor drag
associated with the deviation of the local flow direction from that along
the nose-tail line, this formula agrees basically with theoretical analyses

of skin-friction drag and is substantiated by experimental results8.

Taking AFD(r) (elemental friction force) as the friction force per
foot of propeller blade span with

BFy(r) = 3 0pU% (1 +a2r2) c(r) cy(r) (46)

for an N-bladed propeller, the total force in the positive x-direction

and moment about the x-axis due to skin-friction drag are

FDx =N { AFD(r) snnep(r)dr
and

I

%,

W =N { AFD(r) cosep(r) rdr

On substitution of (4k4) - (46) and noting that the expanded chord length
is equivalent to
2rr er
o

c(r) = 2
cosaer)

where r is a fraction of propeller radius o the frictional thrust and

torque become

] t (r)
Fox er> o U2 £2cF(r)[l +2 ﬂo'r')_](] +a2r2)r6; tanep(r)dr
(47)

] t (r)
3 2 o 2.2y.24"
QDx Nro ol £2CF(r)[l-+2 7;(FTJ(1-+a ré)r 6y dr

FDx and QDx are added algebraically to Fx and Qx’ respectively,
as calculated in the preceding section. Thrust will be decreased slightly

and torque increased more noticeably.

As was mentioned earlier, this is a first attempt to incorporate
the frictional thrust and torque in the program; in the event of any
improvement of the estimated frictional coefficient, this portion of

the program can be easily modified.
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B. Thickness Lffects (Non-lifting)

With the propeller in translatory and rotational motion, an addi- f
tional flow disturbance is generated about the propeller blade section
due to the blade thickness distribution; the fluid is pushed equally to
both sides, influencing the pressure distrioution on both suction and
pressure sides of the blade without contrivuting to the net blade load-

ing. As noted previousiy, this effect will occur in steady flow condi-

tions only since the blades are considered rigid. The pressure distrib-
ution resulting from this ""flow distortion' thickness will be studied

in this section by means of the 'thin bedy' approximation.

The velocity potential due to source-sink distributions approximating

the symmetrical thickness distribution of an N-bladed propeller is given by

]

¢(x,r,:o;o)= s Z f[ M(”’S)ds

= - E%-nzl é'if“ §S) /iiiéfgj-pezsineadeadp (48)
where the source strength is
of _(o,s) of _(£,0,8 )
M{p,s) = 2u W—T—ds——-= 2u —-T—O;—O ‘
the Descartes distance R is i
[(x=£)2 + r? + 52 -~ 21p c05(80-¢0+5n)]”2

s is measured along the chord of the blade section and the otner symbols

are as defined in section A (see Egq. (29).

From Bernculli's equation, the linearized pressure PT is

S) = - 9% 39
PT(x,r,yo) PV (ax *a 3¢ )
Hence
pfuz N T af (£,p,8) 31 o
= ——) e i H
P x,ro) = 5= nzl ££ 5t (GGr+a 3%) z) 6y /T+a%0? sing do_d»

(49)




If use is made of the expansion

oim{y =y 40 ) - oo
% - % ;e o o n ! (IK)m el(x g)kdk
m==w -
where
(k) = (1 (kig)k (Jkjr) for o <r
L (jkjr)K ([kig) for r <op
in m
then ( _ )
~ im{t ~¢ +C ) .
-£)k
(Lra =) w=t e © 0 T (keam) (1K) HOBlkg (s0)
JgX go ‘|m=-m Co
Since
£ =9 /a= (c®-8" cosn )/a
QO b’y
of (6,0,v ) 5f_(p,6 )
_ = (51)
9t B o1
Ub sxnju o3
Also ? elmun _JN form= 2N, ¢ =0, tl, fz.
n=1 0 for m # N (52)

On substituting (50) - (52) in Eq. (49), the pressure becomes

"27 ~
PNp US s afT(O,eu)

PT(x,r,¢o) = —~§;z—-f / T /U +a 0%
o p a
oim(s -6 ) e -
;e ° f(k-am)(|K)me‘(x E)kdkdsqdp (53)
m==ro -
m= N

With the trigonometric transformations for 60 and ¢O

inoU e f (o) TR 1CH
g ¢l+azp2 e e

.
cosp, Gbcosﬁa)

) -ik(6 coss -8°cose )/a
"(k-am)(lﬂ)m clkAO/a e b o b

-~

dkdeadp (54)

The ol-intcgral is as before (sce Eq. (33) of Section A)
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5 n of_(p,6 ) i((k-am)op/a)coss,
| A((k-am)egla) = f ——136—-3—-e daa
(o] a

(55)

which is evaluated in Eq. (35).

As in the case of “non-planar’ thickness effects, the thickness
distribution can be represented by Eq. (31) and the derivative with re- A
spect to §_ by Eq. (32). After substituting (55) and folding the m-series
to m=0 to +«, the pressure of £q. {(54) is brought to

infUZ
PT(x.r,¢o) = —nr [ /T +aZpZ
P

@ ik(Aa-chos¢a)/a
- [ Ao /a)k(1K) e dk

M @ i(k-am)(Ao—ercos¢ )/a
+ Z f (1K) [A((k-am)ai/a)(k-am)e b o
m=N,2N - m

. r ’
+ A((k+am)6§;/a) (k+am)el (k+am) (Ad-eb Cos¢a)/a]dk}dp (50)

Let k-am=u in the first term and k+am=u in the second term of the

second k~integral. Then this integral can be written {for p < r) as

M o - r
7 f{A(ueg/a)ue'U(Ac-ebcos¢a)/a]
m=N,2N -

-[lm({u+amlp)Km({u+amIr) + Im(iu-am{p)Km(In-am]r)]du

M @ . _ar
= 7 2i f{lmPart:[A(u«—”;tp)/a)e”"(ch b C°5¢a)/a]}
m=N,2N o

. u[lm([u+amlp)Km(!u+am[r)-+Im([u-am[p)Km(Iu-amIr)]du

and Eq. (52) becomes finally

————

-prU2
‘ PT(X,I’,¢0) =—7——me2—
p

[

. r .
nu(Ac-eb cos¢a)/a] !

'f lmPart[A(ueila)e
o

——

M
‘ . u{lo(up)Ko(ur)4-m=g'2N[lm(u +am|p)Km(]u+amir)
‘ + Im(lu-am|p)Km(lu-am|r)]}dudp (57)
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for o < r. (If p > r, p and r are interchanged in the modified Besscl

functions. Note that a,p,r,u are non-dimensionalized by propeller radius

r..)

o

1t can be proved that the integrand is zero when u=0. When p~+r,

the p-integral has a logarithmic singularity. (This is shown in Appendix
D). Although a logarithmic singularity is integrable, nevertheless,

since the integration is performed numerically rather than analytically,
special precautions must be taken in evaluating the integrand in the re-

gion of the singularity. The procedure is described in Appendix E.

C. bBiude Pressure Distributions Due to Loading and Thickness Effects

on Each Blude Fgce

The total pressure distribution on each blade face is a super-
position of the pressure Pr due to the thickness effect which produces
no 1ift, on the pressures arising from the effects of "non-planar' thick-
ness, camber and angle of attack of the blade and of spatial nonuniformity
of the inflow field. The last four components contribute to the lift be-
cause each produces a pressure difference AP between the back and front
faces of the blade surface. On the suction side (back face) the pressure
due to the loading contributors is 4P/2; on the pressure side (front face)

the pressure is -AP/2.

Since the blade is considered to be rigid, the non-lifting thick-
ness effect will be present only in the steady state. In this case {q=0)

the blade pressure distribution is made up as follows:

a) On the pressure side

(0) P P 0P

b) On the suction side

(o)
(o) _ /AP
3 a (—Z_)W * 2 +P

AP AP AP
—_— + —_—
P ) ) o P

7

—
U
O
~

where the subscripts, w, ¢, f and npt refer to wake, camber, flow angle,

and "'non-planar' thickness, respectively.

For the unsteady flow case, q#0
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|
3 (a)
a -y (60)
(q)
SRR (61)

Having determined the pressure distribution on each side of the
blade for all frequencies contributing significantly, the instantaneous
pressure, which is the sum of the blade pressures due to all frequencies,
can be evaluated as the blade swings around its shaft (see the following
section D). The instantaneous pressure on the front (pressure) or back
(suction) face at a given radial position r is, when the propeller swings
around its shaft in the clockwise direction from its upright position
{at 12 o'clock):

-} O
P (=R T POy Ty 1l () cos(qo -0 ) (62)
P,S - P,sS = (oI q
q=0 q=0
where
(q)
~ (Pp,s )Im
¢ = phase angle = tan :
a "’ ’ > @)
p,s "Re
and the subscripts Reand lmindicate the real and imaginary parts of
Péql(r). (6 and Qq are negative in the clo.+. Tse direction.)

D. Information Relative to Blade Stres: .ouilysis ami CZavitation Study

Having determined a realistic blade hydrodynamic loading at all
frequencies of importance for a propeller operating in non-uniform in-
flow, taking into account the exact geometry (skewed or unskewed blade
on a helicoidal surface) and the .wtual intzraction of the blades, both
the structural analysis of tne blade (displacement and state of stress)

and the cavitation study can now be undertaken.

‘ A stress analysis based cn the finite element approach and the
corresponding program adaptable to high-speed digital computers, both
i developed by Mechanics Research, Inc., are now available at CDC conmputer i

centers world-wide. Designated as STARDYNE, this program has been used

‘ extensively for static and dynamic structural analysis,

33
I




~r

R~1869

Experience at Davidson Laboratory® with this program for the struc-
tural analysis of a propeller blade has suggested the format of the out-
put of the DL program for blade loading distributions to suit the required
input to the STARDYNE program. The DL program provides the mean and time-
dependent blade loadings at all significant shaft frequencies at 19 points
along the chords of eight radial strips. The program can be easily
changed to evaluate the chordwise pressures at a greater number of points.
However, since the number of radial strips governs the size of the kernel
matrix, a finer mesh in the radial direction will be more easily achieved

by interpolation of the values between adjacent radial strips.

The instantaneous blade loading, which is the sum of the loadings
due to all frequencies with proper phasing, is applied as an input to the
static STARDYNE program. The angular interval between successive blade
positions can be refined, depending on the type of wake. In the case of
a container ship with sharp wake peaks at 12 and 6 o'‘clock, a finer spatial
mesh is required and a small angular interval, such as 10 degrees, is ad-

visable during the complete revolution of a blade.

The blade pressure-jump distributions due to loading at each shaft
frequency can be extracted from the output of the main program and recorded
on a magnetic tape to be used in an auxiliary program to evaluate the in-

stantaneous pressure jumps in a format required by the STARDYNE program.

Another feature of the DL program provides information for prediction
of cavitation inception. The blade pressures due to loading and thickness
effects on suction (back) and pressure (face) sides of the blade which have
been calculated at all significant shaft frequencies will be similarly ex-
tracted from the general program and recorded on another magnetic tape.
Another auxiliary program will use this tape for the evaluation of the

instantaneous pressure coefficients,

Cp = T (63)
E-pFU2(1+a2r2)

on suction and pressure sides of the blade separately as the blade swings

around its shaft (see Eq. (62)). These values must be scanned to determine
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the minimum pressure coefficient for use in predicting the locations

for cavitation inception.

Also extracted from the general program and recorded on magnetic
tape, for possible future use, are the loading solutions L(q’n)(r) for
all shaft frequencies g and mode shapes n at the various radial posi-

tions r.
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II. NUMERICAL RESULTS

The theoretical procedures developed in the preceding sections
to determine the blade pressure distributions due to loading and thick-
ness effects have been adapted to a high-speed digital computer (CDC 6600
or 7600). The computer program provides the resulting hydrodynamic
forces and moments and blade bending moments as well as the blade pres-
sure distributions on each blade face in steady and unsteady flow condi-
tions. As noted, the unrealistic leading edge singularity introduced
in the blade chordwise pressure distribution by the cotangent term of
the Birnbaum distribution is removed by the Van Dyke-Lighthill correc-
tion method. |In addition, the frictional contribution to steady-state
thrust and torque has been approximated by using the Prandtl-Schlichting
formula for the friction coefficient, without taking into account the
viscous pressure drag or the drag associated with the deviation of the

local flow direction from that along the nose-tail line.

A set of calculations has been performed for the series of 3-bladed
propellers of expanded area ratio €AR = 0.3, 0.6 and 1.2 which had been
studied in Reference 3 under the assumption of zero thickness, and for
which experimental data were available from controlled NSRDC tests!S,16,17
in nonuniform inflow with wake structure rigidly specified (screen wake).
The propellers, with destroyer-type blade outlines and modified NACA-66
section with a = 0.8 mean line, were one foot in diameter with hub diameter
0.2 feet and pitch ratio 1.08 at 0.7 radius. PRelevant geometric charac-
teristics of this set of 3-bladed propellers are given in the tables below.

The ratios of maximum camber to chord lenath are given in Table |, of

maximum thickness to chord lergth in Table Il and of leading edge radius
to chord in Table (11.
TAELE T
Ratio of Yaximnem Camber to Chord, m /o
Radius FAR = 0.3 EAR = 0.6 EAR = 1.2
.25 .0370 .0228 .0196
.35 .0388 .0231 .0202
.45 .0372 .0224 L0196
.55 .0340 .0212 .0185
.65 .0312 .0203 .0177
.75 .0290 .0198 .0170
.85 .0270 .0189 .0160 i
.95 L0247 L0174 .0147 1
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TABLE II ;
' Ratio of Maximum Thickness to Chord, /¢
H Radius EAR = 0.3 EAR = 0.6 EAR = 1.2
.25 .253 .090 .032
‘ .35 .192 .068 .024
.45 146 .052 .018
.55 113 .0ho .01k
! .65 .087 .031 .011
.75 . 068 .024 .0086
.85 .052 .018 .0066
! .95 . 045 .016 .0057
. TABLE IIT
; Ratio of Leadinmg-edge Radius to Chord, °,
Radius EAR = 0.3 EAR = 0.6 FAR = 1.2
.25 L0410 .00525 . 00066
.35 .0236 .00290 .00039
; .45 L0136 .00170 .00021
i .55 .00817 .00100 .00013
.65 . 00484 . 00060 .00008
.75 .00296 .00035 .00005
) .85 .00173 . 00025 .00003
‘f .95 .00133 .00020 .00002
i
E The coefficients an(p) in the thickness distribution given by

Eq. (31) are presented in Table IV for all three propellers and all
f! radial positions. The thickness distribution variations with EAR and
radial position are determined through the TO/C, L and Ob factors of
Eq. (31). (Note that the procedure for calculating an(p) is given on
| page 18.)

TABLE IV

Coefficients an(p)

I n a (o)
Pl 1 0.5491
f 2 -0.1165
| ; 0
! b 0

The tests had been conducted in the NSRDC 2b-inch water tunnel

using the closed-jet test section with a screen to produce the wake, a
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3-cycle screen for the force along and moment about the longitudinal

axis and a 4-cycle screen for the forces along and moments about the
transverse and vertical axes. The tests were run at a constant speed

of 15 rps with free stream velocity close to 12.5 ft/sec. The design
mean thrust coefficient RT was 0.150 (practically open-water value in

the 3-cycle screen wake), the advance ratio varying slightly from propel-
ler to propeller!?. Wake information is given in Table V for 3- and
Lk-cycle screen wakes. Note that the Fourier coefficients a_, bq, Aq

and Bq of Eq. (23)f can be easily determined from the information given
in this table.

TABLE V
Wake Information from Harmonic Analysis
of 3-Cycle and 4-Cycle Screen Wakes (Reference (16))

Radius Szfycle Wike 42$ycle wzke
3 3 N L

0.2 0.089 18° 0.050 0
0.3 0.186 10° 0.134 0
0.4 0.220 6&° 0.170 0
0.5 0.218  2° 0.184 0
0.6 0.203 0 0.192 0
0.7 0.212 0 0.208 0
0.8 0.230 O 0.224 0
0.9 0.252 0O 0.235 0
0.95 0.251 0 0.243 0

Longitudinal Velocity V /U = Cqsin(qﬂt-+¢q) = Cqsin(—q0-+¢q)
Tangential Velocity VT/U =0

The computations were run for a series of advance ratio in the
steady-state case, design J and J = 0.7, 0.6 and 0.5, and at design J
in the unsteady cases. The values of design J were 0.841, 0.831 and
0.844 for EAR = 0.3, 0.6 and 1.2, respectively.

The calculated mean thrust and torque coefficients at design J
which include the effects of mean wake, camber, flow angle and nonplanar
thickness on the loading and, in addition, the frictional thrust and
torque, are compared with experimental datal? in Figure 4. Calculated
results are also shown without the frictional part.
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Figure 5 exhibits the steady-state chordwise pressure distribution

_ o

at one radial position, 0.65r0, on the suction and pressure sides of the *
blades for all three propellers, at design J. These were obtained from

Eqs. (58) and (59), for the pressure and suction sides respectively.

Figures 6 and 7 compare the calculated blade-frequency thrust and

torque coefficients and phases with the experimental data of Reference

16 using the blade-frequency (third) harmonics of the screen wake given

in Table V. The earlier calculations of Refs. 15 and 3 were based on

wake measurements reported by DTNSRDC which were taken with the screen

open sections at a different position. |In Figure 6, the phases (electrical)
are given in accordance with the Davidson Laboratory definition on page

25 of this report. Figure 7 shows the mechanical phases according to

Reference 16 and to Davidson Laboratory.

Figures 8 and 9 present comparisons of calculated and experimental
blade-frequency transverse forces and moments of the three propellers
at design J. The calcuiations use the harmonics given in Table V for

the b-cycle screen wake in which the tests were conductedl®.

Figures 10, 11 and 12 show the blade-frequency chordwise pressure

distributions at O.65ro for the three propellers calculated as in Egs.

(60) and (61). The leading-edge singularity has been removed by the
Van Dyke-Lighthill correction method (see Eg. (40)).

Calculations have also been conducted for off-design J = 0.5, 0.6
and 0.7 for uniform inflows. Figures 13, 14 and 15 compare the chord-
wise pressure distributions at one radial location, 0.65ro for the three

propellers at design J and J = 0.5 and 0.7. These blade pressure distrib-

utions agree qualitatively with experiments of Mavlyudovl® (USSR). No

other experimental information is availablie for comparison.

Having evaluated the pressure distributions in the design and off-
design flow conditions, it is possible, in principle, to determine the
cavitation inception of an operating propeller. Cavitation is assumed
to ensue when the local pressure falls to the value of the vapor pressure
in the fluid. The speed Vi(r) of cavitation inception is known to be

given by

v
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Vi(r) - a f‘
vir) ¢ ] ‘
Pm :

where V(r) = U Y] +aZr2 = resultant velocity at a blade section at

radial location r

0 = cavitation number or cavitation index
= (total pressure - vapor pressure)/(% pfvz)
and Cp = minimum pressure coefficient, pm/(%pfv2) (i.e., where C
m

is most negative)

Cavitation is assumed not to occur when o > -Cp , but will persist as

long as 0 < -C_ , the critical cavitation indexmbeing when V./V = 1.0
P i

or o, = |C_[.

m

The critical cavitation indices have been evaluated as the absolute

values of the most negative pressure coefficients established by the
theoretical steady-state blade pressure distribution curves. They are
plotted in Figures 16, 17 and 18 for various advance ratios versus radial
position and compared there with the experimental observations reported
in Reference 17 for the same set of 3-bladed propellers operating in

open water conditions. Since the experimental cavitation indices!? were

based on speed of advance rather than resultant velocity, the theoretical

pressure coefficients have also been evaluated on that base (Cp ==pm/(%-pfu4.

Although no experimental values of oF for design J are given in
Reference 17, the theoretical values shown in Figs. 16-18 for design J
are justified by the experimental trends (i.e., extrapolation) in that
vicinity. At off-design J, the theoretical predictions are sometimes
conservative, sometimes non-conservative depending on AJ, EAR and radial

location.

Since inception speed is inversely proportional to the square root
of the minimum pressure coefficient, g, = [Cp |, whenever the index of
inception of cavitation o, of the experiment Ts greater than o, of the

theoretical calculation, i.e.

oi(exp) > oi(calc.)
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then Ui(exp.) < Ui(calc.). This case indicates that the experiments
show that cavitation inception is at a lower speed than that predicted
by the theoretical calculations and thus the prediction is non-conservative.

On the other hand, when
o;(exp) < oi(calc.)

or Ui(exp) > Ui(calc.), the predicted values for cavitation inception

are conservative.

Figure 16, which is a comparison of calculated and experimentally
observed cavitation index for the 3-bladed propeller 4132 (EAR = 0.3),
shows conservat ve predictions when J = 0.7 or design J, whereas the
predictions are non-conservative, somewhat at J = 0.6 and especially so
at J = 0.5, except near the hub and near the tip. In Figures 17 and (8,
for the 3-bladed propellers 4118 (EAR = 0.6) and 4133 (EAR = 1.2), respec~

tively, all predictions are on the conservative side except those for J = 0.5.

Judging from this set of calculations, the predicted values of
cavitation inception are on the conservative side compared with experi-
mental observations as long as 4Jd = Jd - Jod < 0.3. Nevertheless, the
discrepancies which exist between predicted values of the index of cavita-

tion inception and the experimental observations require investigation.

These observed discrepancies must not be solely attributed to the
lack of accuracy of the linearized theory wnen modified by the Van Dyke
correction. It is well known that visual determination of inception of
cavitation is dependent upon the subjective evaluation of the observer
and is highly dependent on the surface finish and accuracy of the model
in the immediate vicinity of the leading edge of the blades. The variant
patterns of the viscous flow at appreciable angles of attack can involve

laminar separation with vortical flow standing off the blade surface

giving extremely low pressures in the core of the vortex (as cited fre-
quently by Eisenberg, for example) and, hence, inception at ¢ values
larger than the minimum pressure coefficient provided by inviscid theory
on the surface of the blade. Also, from the definitive measurements of
Huang and Hannanl!9, it can be conjectured that large pressure fluctuations
can occur on the blade surface at the reattachment zone abaft laminar
separation. In addition, it is never certain that observed inception

is attributed to truly vaporous cavitation or to the expansion of un-

dissolved air.
by
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The fact that the experimental o-values are generally higner than
the calculated |C i at the maximum excursion in J (i.e., J=0.5,2tJ= 0.33)
suggests that the Peal fluid effects alluded to above may be responsible.
However, at the larger J = 0.7 (smaller &4J = 0.13), the disagrecement is
in the opposite direction except for the first propeller, EAR = 0.30,
where the agreement is fine. Here the fluid spceds are of the order of
twice as great as at J = 0.5 and the pressurc peaks on the blades at re-
duced angle of attack, while lower in magnituie, are indeed sharper, i.e.,
the chordwise width of the pressure spike is reduced. One may speculate
that the passage time of nuclei through the region of low pressure is con-
siderably less at J = 0.7 than at J = 0.5 (higher speed, shorter extent)
and that cavitation does not ensue until the o values are dropped below the

c i
pm
The validity of the theoretical curves should be checked by employing

a rational method for finding the effective angle of attack, the effective
camber and the effective thickness of the two-dimensional section (to be
substituted for each bladesection) for which exact steady-state pressure
distributions have been computed. This is not a simple process as was
discovered when attempting to use the families of curves provided by
Brockett29 and a rule for finding the effective angle of attack attributed
to W. Morgan. The effective angle of attac~ was found to be too impre-

cise; a very small error produces a larger .oror in the Cp value.
m
Clearly, further studies of the pressur2 distribution at the leading

edge of propellers are necessary. The results oktained thus far should be
regarded as quite reasonable. Further work may require a precise mechan-
ization of the effective two-dimensional solutions using certain inputs
from the three-dimensional propeller flow field, and local sectional

loadings.
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CONCLUSION

in this study, a theoretical approach is evolved and a computational
procedure adaptable to a high-speed digital computer (CDC 6600 and 7600)
is developed for evaluation of the linearized pressure distribution on
each side of a marine propeller blade, with the objective to obtain suf-~

ficient and reliable information for cavitation and blade stress analyses.

The essential information for the blade stress analysis is the anti-
symmetric part of the blade pressure distribution, attributed to the non-
uniform inflow (wake), blade camber, incident flow angle and nonplanar
thickness of the blade, all of which are associated with the 1ifting ac-
tion of the blade and contribute to the hydrodynamic forces and moments
and blade bending moments. The symmetric part of the blade pressure dis-
tribution, attributed to the planar thickness and associated with the
non-1ifting properties of the blade, contributes to the pressure dis-
tribution on each side of the blade, which is essential for the predic-

tion of cavitation inception.

In addition to the blade pressure distributions at each frequency,
the program furnishes the propeller-generated steady-state and time-
dependent hydrodynamic forces and moments and the blade bending moment
about the face-pitch line at the midpoint of any of the radial strips
into which the span is divided. The program also provides the instan-
taneous blade pressure due to loading alone and the instantaneous pres-
sures on suction and pressure sides, as well as the instantaneous blade
bending moments, as the propeller swings around its shaft. The thrust
and torque due to friction is estimated by using an approximate frictional
drag coefficient; in the event of any improvement of the estimated fric-

tional coefficient, this portion of the program can be easily modified.

In applying the mode approach to the solution of the surface integral
equation, the analysis and the program are divided into two main parts,
one dealing with the steady-state flow case (q=0) and the other with the
unsteady flow condition. The steady-state case is subdivided into design
and off-design conditions. The selection of the proper chordwise modes
in the steady-state flow condition at design advance ratio J is dictated
by the shape of the loading distribution in two-dimensional flow on a

foil with the same camber distribution. At off-design J in the steady-
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state condition, there is an angle of attack due to the difference £J
(between design and off-design advance ratio) and the additional load-

ing due to this angle of attack is represented by the cotangent term of
the Birnbaum modes. In the unsteady flow condition, the complete Birnbaum

modes are used.

The linearized unsteady lifting-surface theory requires the leading-
edge singularity arising from the cotangent term of the Birnbaum modes.
The ''square-root'' singularity is integrable, but its presence in the blade
pressure distributions is unrealistic and has been removed by employing

the Van Dyke-Lighthill correction factor.

A set of computations has been performed for the series of 3-bladed
propellers for which experimental data were available from NSRDC tests in
open water and in the non-uniform inflows due to 3-cycle and 4-cycle screen
wakes. The calculated results for the hydrodynamic forces and moments,
steady and unsteady, compare well with the experimental values. There is
no experimental information on blade pressure distributions for this set
of propellers. However, the blade pressure distribution curves in the
steady-state case agree qualitatively with experimental curves:8shown by
Maviyudov (USSR) for a different propeller model (NACA-16, a=0.8 mean
line section, EAR=0.95) at 0.8 radius. In the absence of experimentally
measured blade pressure distributions for the propellers treated, a compar-
ison is made indirectly through the index ! cavitation inception in uni-
form inflow. It is seen that the predicted values of o, =[Cp | are con-

servative except at the smallest off-design J=0.5 (largest m Ad =0.33).

The cavitation index [Cpm! reflects the blade pressure in the neigh-
borhood of the leading edge and this is dependent on the correction method
for removing the leading edge singularity of the theoretical distribution.
However, the observed discrepancies between theory and experiment cannot
be attributed solely to the lack of accuracy of the linearized theory when
modified by the Van Dyke correction. Experimental determination of the
inception of cavitation is dependent on the subjective evaluation of the
observer. It is also dependent on the surface finish and accuracy of the
propeller model in the immediate vicinity of the leading edge of the blades

and on the undissolved air content of the fluid as well. There is a
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possibility that flow separation and vortex generation occur near the
leading edge and this is not taken into account by the theory. Further
studies, both theoretical and experimental, are necessary. The results

obtained thus far may be considered reasonable.
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APPENDIX A

l. Evaluation of the 7 - and 6}- Integrals of the Integral Equation (19)

n

m 1 - -y .
D 1™ () =< ) eme' V% 4o
o

) =L 7 (ecose) €70 g = 5 () - 10, (y)
Y ﬂg hd Y - o Y ! ] Y

l(2)( ) = 1 4 . iycosy .
y) =5, (1+2cosy) e do = Jo(y) + |2J](y)

)
- Eai . R -
I(m>2)(y) = ﬁ J cos (m-1)0p e' Y057 deg = i ] J_ (y)
0 m-|

where Jn(y) is the Bessel function of the first kind of order n and
argument vy

T -izcosH
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a) Birnbaum distribution
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, “(l)( ) = 2 sin z )

z

(For a =

A(;‘>I ) (Z) = 0

c) Sine series distribution
T i .
. -izcosa

A(n)(z) = de

sin nd sind e
(_.)n-]

- T @ @]

n-1 n+l

Il. Functions Required for Evaluating the Integrandof the Kernel Function
at the Singularity (see Reference 3) and the Propeller-generated

Moments (see section A,4)
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(For a =1, “gl)(z) =‘i;} (cos z - s;nz £y )

¢) Sine series distribution
- \n+2
R E N C RO}
| A
n-2 n+2

It is to be noted that the values for negative argument, i-e-.,

l(a) (-y), Ifﬁ)(-y), A(ﬁ)(-z) and Afﬁ)(-z), are the conjugates of the

values given above.
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APPENDIX 3

TABLE OF INTECKALS OF EQUATICN (E3)

sin~d8 =% sinh = 2G(A) (=2 when A = 0)
sin2adf = = 5}\—' '\s ;\m. - cos’ = =4iF () (=0 when %=0)
) O 8 8 - . 6 .
sin3ddo = ;2\' ‘;\Slﬂ)\\}' ;\—2-/, + = cosh - = 6G(A) - ~ F(n)
(=2/3 when 1=0)
. an L B8l [sink 12 /12 o
sinktdd = = A ] )\ \5 /2/ + COSA '\‘AZ l/;
.28 (LG() + \a- L2 ko, (=0 when A=0)
=5 Y PEAR
. ) o (1" g, = (-1, ()
Jqa =20 ) -4 T Ty tWOR TN (ha-a)
cos 3 of E ) (baeT) "oy (an-1) (4n-3)

n

B(2\) (=2 when A\=0)

or four terms of this series are sufficie
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APPEINDIX C

RESOLUTION OF FORCES AND MOMENTS

With the present coordinate system and sign convention (see
Figures | to 3) the propeller, its N blades rotating with angular

~

velocity -{i, is assumed to lie on a helicoidal surface given by

-1
F(x,y,z) = x +-El: tan -_Z-= 0 (c-1)

where in cylindrical coordinates

x=¢p0/a
y = -r sin®
z=r cosb

7 = - + 2
b=, Tty

The unit nomal to this surface has components

F b F b F 2 2
T x’ y' 'z _ 1, z/ar, -y/ar (c-2)
= —po=te— fr =
~A:; +F 4 FZ J1+a r /ar
Y
so that n = ara = = C0S B
% I +ar
z/r

n = Em=——_s sin 38 cos§
Y 44 +ar

- Yir .

n, = s
I +ar

where B = taﬁ.l ;‘; , the hydrodynamic pitch angle.

sin B .in8
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The elemental forces are then

c-2

AFX = 5P cos B AS
AFY = 4P sin 5 cos(ut-wo'en) 4 (C-3)
BF, = - AP sin B sun(Qt-Qo-Gn) LS |
i
The elemental moments can be expressed as
i ] k
— N
6Q = x y z (&P} (&5) (C-L)
n n n
x 'y z
so that
- - - P ﬁ
6Q = AP(ynZ zny) AS = AP rsinB 4S ;
k-
AQY = - AP(xnz—znx) AS
= pAP-¢ {90 tanB sinB sin(Qt-mo-én) + cosR COS(Qt_ao-én)] LS ‘
- il - si
6Q, = & (><ny ynx) AS :

= AP r [Qotane sing cos(Qt-wo~én) - cosB sin(Qt-wo-én)] AS

The total force in the x-direction (thrust) is

N iq(Qt"én) A a (q)
F. = Re T e J J AP (r,wo) cosB(r) dS
n=} S
. - = Qr ine i
Since dS = rdr dmo ré, sing dwq dr, 0 = Py £m
(q) _ Apla) r
L (F»wa) - AP (F»Q?o) r eb
N tiqén N for g = #N, £=0,1,2,...
and ¥ e = {

1 0 otherwise
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{ Lo ANt e GN) ] N,
F = Re-N e , 4 b (r,*a)cos 5(r) sing  do, dr-
o] r
% |
But j L(LN)(F,J ) sinca dy = L(EN)(r) the spanwise loading
°
o

therefore

) - ! . .
F = Re Nr ean,t L(iN)(r) cos3(r) dr- (C-5)

X . 0

Oc -,

The total force in the y-direction is

iq(nt-= ) . -
n" ;P(Q)(r,30)53” =(r) cos(&t'wo'%n) dsS

-
1
X
]
™M=
m

N i .'“ . ( ) ]( +])(,\t_7 ) |6‘g COS'\;A
z L' (e () () ey, y

]
=
1]

. - = , L r
i(g-1){Ct= ) =is cose
+ e ne b “j'sinqu: dr

N :i(qzi)in N for g =] = iN

=10 otherwise

r r

ic

N coss (ZN+1) -i=
\tL(bN Dirge 0 %4t (rs)e °
o o

o
CIEEEY

cose

o
J d }
or

. sin a(r) sinc_ de¢  dr-
o S Ta

é L (r,SQ) e sin g, dv

.. T
iy, COSY

- (.N+1,n - )
= g P l’n)(r) (n)e o sins dwa

oz O () ) ey (c-6)

where 1™ (leg) is given in Appendix A.




Therefore

A
- sin 8 (r) drI
The vertical force is

-

N Iq(:lt'én) N (q) _ N
F =Rei T e g J o (ro ) sing(r) sin(Qt-9 -6) dS-
n=} S :

and following the steps indicated in the development for Fy , the forc

is finally
-Ne o TaNat ) (2N=1,n) (n) . (EN+1,1) (n) )
Fo=h >%e | I |L (1) & (5) - L (r) n (s
z .21 J - b k
le) n=]
* sin 8(r) dry (c-8)
The moment about the x-axis (torque) is
f N iq(Qt'én) Y n (CI) N
Q =R i- ¥ e [gaP (rg) sing(r) r ds -
n=1 S
and by analogy with Fx this becomes
! 2 1ENOt ] (ZN) N
Q = Re 1= Nr_ e JL (r) sing(r) r dr; (c-9)
X o
o
The bending moment about the y-axis is
[ N sq(Qt-én) ~ e (q) ' o -\
Qy = Re‘n§] e J ) OP (nQO)[rQo tand(r) sing{r) stn(ut-$o'nn)
- S

+ r cosp(r) cos(Qt-Qo-én)] dS}

«nich with the trigonometric transformations employed before becomes
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AN . . - , ,
Q = Re T L L(q)(r ) i" cosg iuziill(Ll(g+l)(‘[ ’ )elj COSQG
y n=l 2 g i ' b Tu cosz(r) L
. —~ - . R
:(q-])(ut-wn) mig, cosy - ig1) {et-5 ) i6, cose
- e ¢ + cos3(r) e e
i(q-])(ﬂt-én) -iﬁ; cos,,
+ e e 1 rosine dg dr
J z o
i ANCit 1 (iN-1) izl coso
"N t« . [ r 7 . ~ e
=Re e Py |9b tan8(r) snnS(r)LL (r,;a)e b e
r o
(IN+1) -ia cosy _
-t (r,g ) e b QJ © cose sing  dog
Ty Y o o
- {(IN-1) is" coss (sN+1) -is" cosc -
- . r . b (o4 . b o
+ cos:(r)LL (r,$a)e + L (r,;a)e i
)
sin;a daa- v dr -
The first © -integral is
o
T (INH) = 15 cosy
DL r,o ) e cose  sinc  dp
¢ [0 o 9% o
)
ﬁ (IN#1,n) . =if coss
=, T L ry «(n) e YowusT sing do
J o @
o n=l
(JN¥1,n) S
= 7L (r) Af“)(+fg) (c-10)
n=1

where Afn) () is as defincd in Appendix A. The second @a-integral

is given by (C-6). Finally,
(, - Re‘ﬂgé eiLN“L glyiﬁg ins(s) toms () Hzl [L(;N-l,ﬁ)(r) Afa)(-e;)
) L(mﬂ’a)(r) -’*1(;')(“7‘(»)] + cos3(r) _Z][L(EN-l’a)(r)/(\a)(-a;)
=
+ L(£N+]’a)(r) m(a)(wg)J~ r dr (c-11)

. _ i"
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The bending moment about the z-axis is
iq(0t-9

Y ) -
QZ = Re nE] e n J g AP(q)(r,wo)[r$o tanz(r) sin3(r) cos(ﬁt-&o'én)

- r cosB(r) sin(Qt-qO-én)] ds -

It can be shown that

,—er ieNGe 1. i (ZN-1,n) (n) .
QZ = Re 37 € g llab sing(r) tans(r) _: [L (r) L] (~6b)
(iN+1,n) (n) (2N-1,n) (n)
+ L " (r) Aln (Bg)] + cos=(r) I E ’ (r) A (—eg)
n=1
(iN+1,n) (n) R .
L (1) i G ]s (c-12)

In the text, and in the program as weill, the hydrodynamic pitch

angle 3(r) of the assumed helicoidal surface is replaced by the geometric

pitch angle ﬁp(r) of the actual propeller.
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APPENDIX D

THE SINGULARITIES OF THE INTEGRALDS OF THE
BLADE PRESSURE DISTRIBUTION

In Equation (49) for the pressure due to thickness (non-

it is seen that there is a singularity when ¢ =r, x = §, GO

lifting)

=g and

o

The singular part of the pressure can be expressed

én =0 (i.e., n=1).

‘ as (see Eq. (53) with the substitutions 8, = af and ¢ = ax):
p U2 o of(p,9) ® .
L f - A 5 ik{x-€)
PTI =i g J Y N 1+a% p? f Jw k(lK)o e dk
o ¢

m=l =

For arbitrary thickness (see Eq. (32)).

] Cn(p) sin no_

LR A

5f(5,3,) 5
—— = C (p) cos = +
3 o 2 n

5%

o1

where the coefficients are obtained as shown insect.A,3,c.

nometric transformation

_ (0 0 .
= (o % cosva)/a

(%At}

s (1K) [(k-am)ei(k-am)(x-§)+ (k+am)ei(k+am)(x-§)1 dk ds_do

(0-1)

Then the trigo-
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sin 2. d» = 2siny cos® dv = =
2 Py x b 1 (Ag)<

~ 0
b
ol |f\.3 M e
sin L+.Z = 8 8] a\: _ L+‘.t, 88 | =] a7
o \ 5 oo N 6 o] 6 e
b b b

and thus the slope can be expressed in the following form:

(5,207, = ({400 +/TT) T 0T + ¢y )E + ¢, ()8 re (g 08

Equation (D-1) can be written as

. A ik -z
poo=—— " r(g,0) L. k0K e k0Tl
b2, . ©
w x - N ~
+ k) [(k-am)el(k an) (x8) (v )| Levam) E)] dk - dEdp
a1 o ™m .
(p-2)
For finite = tie wxpansion of 1/R in the above has no singularity.

The singular behavior is iresent only in the infinite m-series (see Ref-

erence 10). When m 2 M large, the generalized mean value theorem can be

used:
d d
, F) p(k) dk o 1(A) ; plk) dk, c s A=d
c c

where f(k) = glm(lklp) Km(!klr) for p < r

)lm(lklr) Km(lklp) for r < p

h




and f(A) = Im(lAIp) Km(IAlr), etc. with A< <m (order) .

(i)

By using Nicholson's approximation for the product of the modified

Bessel functions when A < <m

|
f(A) = o " where 7 = p/r for p<r

r/p for r<y (D-3)

Then for large m the integral can be written as

@ o= . B
I = ,; Jﬁ F(grp) z l Zm %Cos am(x_g) : ke'k(x %)dk
gp m="M Yo
@ .
) -F ~
tiansinanen ) e o ae; (0-4)
‘e .

(12)

From Jolley's collection of series summations

x® . . =
ia ¥ 2" sin ma(x-£) = iaZ sin a(x-%) = {see Jolley L99)
m=] 1-2Z cos a(x-E)+Z
3 2 0 1 ®
Also = £ = 2" cos ma(x-€) == = Z" cos ma(x-£)
d3Z ~.om z -
m=1 m=1
=) - 7
- cos afx-f) - = (see Jolley 500)
1-2Z cos a{x-3)+Z
Therefore
2 a(x-8) - 7
z - 7" cos ma(x-§) = j €OS alX”4 - dz
m=1 1-2Z cos a(x-E)+Z

1 -
- -E- log [] - 2Z cos a(x-§)+Z J

The m-series of (D-4) then is equivalent to
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/ 2. 20 ik(x-
S = 7 % log [1-2zcosa(x-€)+Z ] | ke ' (x g)dk
= |
iaZsin a(x-£) ® g -
4 iaZsin a(x i Lik(xg o

2
1-2 2cos a(x-8)+Z -®

M ® . v
- T # Pl {cos am(x-€) X k e'k(x-g) dk ;

m=| =0

fm eik(x-g)dk} (D-5)

+ i am sin am{x-€)

-0

e

where the finite m-series can be ignored since it is certainly not singular.

The k-integrals are evaluated as

(s

j eik(x-g)dk = 2m 6(X'§)
5 (D-6)
J . eik(x-§) dk = - i2m &' (x-E)

where 5(x-E) is the Dirac delta function and 8'(x-€) the derivative of this

function with respect to (x-E).

With the substitution of (D-5) and (D~6) and letting x, = x -8,

Equation (D-4) becomes

. 1 2
| = i2m i g F(x-xo,p) {- 2 log (1-2Z cos ax_+Z ) 6'(xo)
al sin ax N
- 5 6(xo)j dx, dg (0-7)
1-2Z cos axo+Z

and integrating over Xxg results in

AF (x=x_)P) 2
b=sim = | o log (1-22+Z ) dp (0-8)
o] o] o]
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With z = p/r or r/g,
2 2
log(1-22+2 ) = log(1-2) = 2log(1-2)

= 2log (Lig) or 2log (Eéi)

hence the p-integral has a logarithmic singularity when p — r and this

has a finite contribution and is integrable.

—
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APPENDIX F

EVALUATION OF THE o-INTEGRATION IN
THE REGION OF THE SINGULARITY (SECTION B) {

Let R(p) represent the integrand of the p-integration. It has been
seen that when p — r, K(p) varies as Ln{p-r). A logarithmic singularity
is integrable, but since the integration is performed numerically, special

precautions must be taken. In the region of the singularity p = r, the

integral is put in the form

r+g
= M p
I GO (E-1)
p=r
r-8

where M(p) = (p-r)K(p) so that M = O when o = r, and 8 = Ar/2.

The function M{p) can be expanded about the singularity

L&)
|

by the Lagrange fomula

3

() " )
= T —— M, Pi=0, i,.... -2
M(p) (oo (o-0.) Hé(pi) i+l c n (

|

where

1, (0) = (p-oo) (p-o,)----(p-pn)

d
) _ o~
dn(oi) = do ﬂn(p) evaluated at p = 5y

hi13) %)y

and M. ., = M(pi) (see Scarboroug and Watkins et al

In the strip from r =B to r + 8 {withn =154 for the 5-point

formula), o, = r = B=r-25 p =r -3, etc where 5 = 38/2. Then
Ty = (N¥ S e (€-3)
and
4 i
L (-1) " (o-r+25) (o-r+8) (0-v) (p-r-5) (P-r-2%)
M) 5“ lz i!(u-l)! p = r + (2-i)% i

(E-4)




where

whe re

then

or

where

R-1869

M_ =0 since 02 =r.

3

The integral is

£

r+2 % . r+2 %
M) N . B 3., 2.2 3 9, .
Coen P F 19, (o7r) 7459, (p-r)"+5%g, (p-r)+2 95 S .97
r-25 ' r-25
(E-5)
Mo+ M M+ M M
o 2 L 3
% T T & 31 0
2(M5 - M‘) (ML+ - M2)
9y T L N 3]
‘-(Ml + M) L+(M2+M4) _SM
9, = Ny + 3 2121 (E-6)
N Z(M] - ME) ] A(M2 - M“)
93 b 31
L
97 2121 My (M3 = 0)
19 3., .3
I —-6-5 Tz(zs) * 579, 2(2%)
_ 16
EE
Lo 16 ., .
=3 (M5 M)+ 3 (M, Mz) (E-7)
M= -8 K'(a =r - B)
Moo= -2K (p=r-2)
2 2 "2 P 2
=+ 2K - 8
ML& = + 5 KL, (p=r + .E)
M5 =+ 3 KS (b =r +3)
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£-3

(E-8)
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