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Abstract

The long-range interaction of two adsorbed atoms mediated by the elastic

distortion of the substrate is calculated classically for an elastically

isotropic substrate. For identical atoms, the interaction is repulsive;

for different atoms, it can be repulsive or attractive. It varies as

0-3 with the distance p between the two adsorbed atoms. This is the same

spatial dependence as for the dipole-dipole interaction between two adsorbed

atoms. For two xenon atoms adsorbed on silver, the elastic interaction is

about one order of magnitude smaller than the dipole-dipole interaction.

The interaction energy is inversely proportional to the shear modulus of the

substrate, so that it may become quite large near a distortive phase

transition.

+Supported in part by the Office of Naval Research and the National Science Foundation
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I. Introduction

Atoms adsorbed on the surface of a solid interact with each other

directly as well as indirectly through the substrate. The dipole-dipole
-3

interaction between two adatoms on a metal substrate varies as p with

the distance p between them (1 ). The oscillatory interaction mediated by the

conduction electrons in a metal was discussed by Grimley,(2)'(3)Einstein and

Schrieffer 4 , and appears to have been experimentally observed by Tsong. (5 )

We shall show in a forthcoming paper that this interaction decays more rapidly
-3

than p . In the present paper we investigate the classical long-range

interaction between two adatoms mediated by the elastic distortion of the

substrate. Different aspects of the lattice-mediated interaction has been
(6) (7),(8)studied by Schick and Campbell, and by Cunningham et al. 7  

. We

shall discuss these in Sec. VI.

An expression for the strain of a solid acted on by external

forces, due to the presence of an adsorbed atom, is derived in Sec. II, and

an expression for the interaction energy between two adatoms is obtained in

Sec. III. A rough estimate for the magnitude of this interaction is also

given. Because of the reduced symmetry near a surface, a quantum mechanical

calculation of this interaction is rather complicated and was not carried out.

However, in the appendix, we show that in the case of two impurities in an

infinite lattice, quantum mechanical and classical calculations give the

same asymptotic interaction energy, and we expect that the same is true

in the vicinity of a surface. We show, in Sec. IV, that the interaction

energy between identical adatoms is repulsive. Also the interaction between

any two physisorbed atoms, identical or not, is shown to be always repulsive.

In Sec. V, we calculate the elastic interaction energy between two xenon

atoms adsorbed on the surface of silver, and compare it with the dipole-dipole

interaction of the same system. A concluding discussion is given in Sec. VI.
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II Strain of the Lattice due to an Adatom

Consider an atom on the surface of a solid occupying the space z O.
The adatom exerts forces F on the substrate atoms at positions r f

(xyizi). The strain of the lattice at a point r far away from the

adatom, where the direct interaction between the adatom and the substrate

atoms is negligible, is calculated as follows: We treat the substrate as

an elastically isotropic half-space with Lame moduli & and X, and subject

to external forces Fi acting at the points r.. The displacement u = (u,vw)

at r (x,yz) in a half-space z O acted on by an external force F-(F x,F,F z)

at the origin is given by
(9 )

/X 14 Xu '' Z;1r7r-z }r-T2
+ y xy 1]

4T + 4- rz r

+ 4n Z

; ,1
+rr [ rT +x r -- (2.1)

with a similar expression for v. The z-component of the displacement is

not needed here. We now sum the displacements due to the forces F1

exerted by the adatom at the positions lis The forces are assumed to be

central. For a system with 3-fold or 4-fold symmetry about the axis through

the adsorbate normal to the substrate surface, and taking into account that

the forces on the substrate atoms must add up to zero, the displacement at

a point near the surface far from the adatom is found to be

""e,(+x ] "P.

(2.2)

V - EL+ p' -x ,
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with 1 = (NYJ ,O)

III Interaction Energy of Two Adatoms

The energy of the system consisting of the lattice and an adatom relative

to that of the unstrained lattice is

E - - EL " i (3.1)

For two adatoms, (1) and (2) at r1 and :2 respectively, (see Fig 1), the

elastic energy is

E S F(F(')+ F(2~) (U (iu2(3)
E~ ~ - * -i (u -eiU2) 32

i

where F) is the force on the substrate atom i exerted by adatom a

and uja ) is the displacement of atom i due to F1

The interaction energy is given by

int Zi

where -(x ,y %0), adP1 - -

and X L.. is the Poisson ratio of the substrate.
2 $+X)

The interaction energy can also be expressed in terms of the strains

produced in the subtrate by the adatoms. We introduce the two-dimensional

dilatation (due to adato. a )

4(3.4)
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The quantity 0 0 131s a constant, independent of position. Substitu-

ting this into (3.3) we obtain

Eint 1--a3 0 23 P 12 .)

To obtain an order of magnitude estimate for the strength of the

interaction, let us assume that at Ip-p0!H5a.u. (which corresponds roughly

to the position of the substrate atom nearest to the adatom) 9 (C ) f 0.1.

For most metals a-= k and p f 10- 3 a.u. This gives, for two adatoms

10 a.u. apart, an interaction energy of about 0.05eV.

IV The Sign of the Interaction Energy

The interaction between two adatoms may be repulsive or attractive,

depending on the relative signs of the sums in parantheses in (3.3),

or of M(1) and (2) in (3.4).

For identical adatoms, they have the same sign and hence the inter-

action is repulsive.

We shall now show that it is also repulsive between physisorbed

atoms, where the repulsive potential between the adatom and the substrate

atoms is of shorter range than the attractive potential. Since the adatom

is in equilibrium we have, for forces in the z-direction

(r _()_(a 1
p )7 (Fl~- F~a)- 0 (4.1)

where F(r) and F(a) are the magnitudes of the repulsive and attractive

parts of the force Fi respectively and Ri is the distance between the

adatom and the substrate atom at site i, with zi the z-component

(see Fig 2).

Since the repulsive force is of shorter range, we have F(r) k F( a )  for
sites within a certain distance R 0from the adatom and n

FW)< F(:'I) for sites m farther awaym a

t _ __ _ __ _ _ _ _
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(4.1) can be written as

n'f n Ti m m R (4.2)
n n m m

with each term on either side of the equality positive.

Now, for each layer of substrate atoms, with constant z

(Fir) F (a) z z (r) F(a))

n n Rn < 'n n

and

~ (F a)- F(r)) . > 0 (Fa)- F( r))

so that

~2 F~r - ~'~ ~~ (a) - F (r))( -n Fn-F; m (4.3)
n

We now examlne the sum in (3.3),

2

Pi

2 2.
) (a)) -P. A- (a) (r) Pm

n R n F3 fS rS W

,.
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2
'0

r, Fa) (a) F (~r)j< 0 (4.4)
Ro n' m < )

Thus (4.4) is always negative, i.e., the interaction energy (3.3) is

repulsive between physisorbed atoms.

V Application to Xenon Atoms Adsorbed on Silver Surface

As a specific example, we consider the adsorption of noble gas atoms

on the (111) face of a fcc crystal, with the adatoms at centered sites

(symmetrical between three surface atoms). The attractive potential is

taken to be of the form ._Y IR-Ri;"6 and the repulsive part taken to be
i

some short-range potential. We make the approximation that silver is an

isotropic material.

If we consider only the attractive interaction between the adatom and

the three nearest substrate atoms, we have

~Ii) 2 i>'4Fo a

with F - 6ya

where a - distance between two nearest neighbor substrate atoms

Ro- distance between the adatom and one of the nearest substrate
atoms

Fo= component parallel to the substrate surface of the attractive
force between the adatom and one of the nearest substrate
atoms.

Including the repulsive interaction and the interaction between the

adatom and other substrate atom in the sum, we obtain the value

( . L)h Foa (5.1)
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where oy is a dimensionless number which depends on the distance of the

adatom from the substrate surface.

The interaction energy is thus

9a 4

E 9a (l- () 0
2r'Rb" 12int

4 I-C rC' 0-3Aa (Fk z z 4 P= p z z ( _ 12 (5.2)

where the attractive potential is now written in the form (10)(see Fig 3)

_ y C

(Z-Zo)3 (5.3)

with Z the position of the adatom relative to the first layer of

substrate atoms

Zo the position of the "reference plane"

C the van der Waals coefficient

and A a dimensionless constant depending on oy

For xenon adsorbed on silver, we have, in atomic units, C - 0.813,Z=6.85, Z-Zo 
= 40(10) 0-3

Z 4.10 , a - 5.47, =10 , a - 0.6 and A - 0.65.

This gives, for xenon atoms separated by a distance of 10 a.u. (which

corresponds to monolayer coverage), an interaction energy of roughly

10 - 4 eV. The interaction is repulsive and varies as p-3 with the

distance P between the two adsorbed atoms. This is the same spatial

dependence as for the dipole-dipole interaction of the two adatoms, which

is 24)

Edip-dip=2i 2
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where pI and 12 are the dipole moments of the adatoms 1 and 2

For xenon atoms adsorbed on silver at monolayer coverage, L = 0.2 debye

giving Edip-dipm lO'3eV.

VI Conclusion

The elastic interaction energy of two adatoms is repulsive for identical

atoms and also for any two physisorbed atoms. For arbitrary adatoms, the

interaction may be attractive or repulsive. The spatial dependence is

p , which is the same as for the dipole-dipole interaction. For xenon

adsorbed on silver, the elastic interaction is roughly one order of magnitude

smaller than the dipole-dipole interaction energy, and the same is true

for xenon on other noble metals. For chemisorbed atoms, the interaction

energy between pairs of adatoms at monolayer coverage is roughly 0.01 to

0.1 eV. We note, from (3.3) that the interaction energy is inversely

proportional to the shear modulus p of the substrate, so that it may

become quite large near a distortive phase transition.

Finally, we would like to compare our work with two previous calcula-

tions of the interaction energy between adsorbed atoms mediated by the

substrate lattice.

Schick and Campbell (6)calculated the phonon-mediated interaction energy

of non-localized helium atoms adsorbed on argon-plated copper. They

treated the adatoms as Bloch waves, with two-dimensional quasimomentum

parallel to the surface, ia zontasLata L'e present calcularloa, .IC

deals with atoms localized at definite sites. Cunningham et al. calculated

the total phonon zero point energy of a simple cubic lattice with two

adatoms localized at two sites a distance p apart. They obtained a
-7

weak attractive interaction behaving asp at large distances. This

interaction may be regarded as the leading quantum correction to the

classicaldistortive interaction calculated in the present paper. (In the

particular oversimplified model of Cunningham et al. the classical distortion

is exactly zero). For adatomw at nearest neighbor sites with all masses

and direct interactions taken as comparable they find for their indirect

interaction

Ezero-point 0-- hwL
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where U;l, is a chara, teristic frequency of the lattice. With the same

assumptions the classical distortion energy calculated in the present paper

i: distortion 
o0O2Ka02

where K is an interatomic force constant and a is the lattice constant.
0

Typically, then,

Ezero.point /distQrtion - 10- 3 or 10-4 (nearest-neighbors)

Fgecause of the r<,re rapid fall-off of the zero-point interaction compared

to the distortive interaction, the ratio becomes even smaller, for more

widely separated adatoms.

One of us (K.H.L.) acknowledges with thanks the award of an IBM

graduate fellowship.
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APPENDIX: Elastic Interaction Energy of Two Defects in an Infinite Lattice

We calculate, both quantum mechanically and classically, the elastic

energy of a large isotropic crystal of volume C with two defects in the

interior, at rland ., which exert forces (per unit volume) E(l) a.
F 2) !

F(2 on the atom at sitd land shall verify that the results are identical

far large separations.

To calculate the energy quantum mechanically, we write the perturbing

potential as

8V F - yF2) (2)) (A.1)

and express the displacement vector 94 in terms of phonon operators

'k( a~ +Njeq))Qa(C+ajC(q) (A.2)

with wavevector c, polarization index j and polarization vector a.( ).

We express the force F in terms of the polarization vectors-L

F = F (1) + F(2) = fF(1 ) (q) e q'(G-rl) _ (q) + F( 2 ) (gei ( - ()} (A.3)

-L - - j _j

The energy of the system relative to its ground state is, by second-order

perturbation theory,

1-08vIqj)17 IF- -) (q) 12+ IF(2 () (q)_12 ,(_)_ _ (7 - ))}(

E- m -' -hw dh~e E ~ cos (qR)' (A.

Here d is the density of the crystal, and R = r2- 4" The second term

on the right side of (A.4) represents the elastic interaction energy of

p - --
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the defects:

c-2 c F (q)F"(-q)3E'n -- i -. (q cos \(i • R) d q (,. )
imt d J j u,4(q)

The classical elastic energy of the system is given by

E - -IF(r)'u(r)d3 r (A.6)

with the displacement u(r) determined by the equation

LV2u + (t, + X) 7(7-u) + F = 0 (A.7)

Taking the force F(r)to be of the form (A.3) but with the label j replaced

by the continuous variable r, the solution for (A.7) is found to be

u F ~ F?,F
L / incosw+ l coscosCD - T2 sin(

ur= V FL' Fr

sinsiny +-- cos~sincp +.- coscp e
Cy 2.+ q. (A.8)

W___ L co s e  
- sin

2p.4X-sn/

with e and p the polar and azimuthal angles of q

c4 = 1 or 2 denoting the defects I and 2

and j = L, T1 or T2 referring to the longitudinal or transverse components.

The elastic energy is thus E = - JF-d 3 r

I~ ~ f I (q t2 ... (2) (q~ 12 1 (q) 2 + (F 2)(1)1 2\
21 +U(q 1-1F-q F~)q I

T T L L

q. 21__X

,
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cos(q-R) f2 '((q (2) (-) F (1 )(q) F(2 )
T T + L L (A. 9)
T q+ 

2 i+X 9
The interaction portion of this energy can be rewritten as

ci 2, F!) (q)F (2) (-q)
E cos(q-R)3 (A. )

mt j c2 (O)q2

where c. (0) is the(isotropic) sound velocity at q = 0J

We note that (A.1O) is the same as (A.5) except for the presence of2 2 2

c2(O)q2  in the denominator in place of w. (q). We shall now show

that, for large R, the main contribution to the integral in (A.5) comes from

q-X, so that, asymptotically, the two expressions for the elastic interaction

energy are identical.

The integrand in (A.5) is a function only of the magnitude of q and the

angle e between q and R .It can be expanded in a Fourier series in 6, or in

a power series of the form

F. (q)F. (-q) cos (q-R) (a (q)cosno+b (q)sinEcosnq) eiqRc°s@ (A.11)

j I

so that (A.5) becomes

E ,2J a ()cosn + b (q)sincos I iqRcos2

2 n

a) "I 2n b(q) C))JoqRjd
2 U. I L (iR)n 2qne, qR (iR )n aq I 6q2(.2

For large R, we find (12)

: a n /'sn

a(q) (sin QR)dq
2 *q qR

.. .. . . - ii I II I .. ..-. .. . ...- . j
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2k-i

7,- d n a n (q) I iqR d 2k d a (q) n-2k

nR T- n(I d a n (q),n-2k le s -in qR

dq n I q=O R2 k dq2kl 8qn-2k ( qR q=O (A. 13)

where H(q) is the Heaviside function

0 q<O0H(q) = { (A.14)

Similarly, for m = n or n + 2 (cf.Eq. (A.12))

J b (q)- J (qR) dq

(-1) j dm n Tq)- +T k_ d 2 kl ()qm 2 k J°(qR)j

Sdq m  q k d m q=O

ndm b(q) d 2 k-1b (q) m-2k
is .a w eq qe wqed +r ., oqR)t

-M k~ FflkI A m-2k 0 Q=l

*R dq m Iq-O 2 dq 2- 6q 2k0 1q-0 (A.15)

Thus the main contribution to the integral in (A.5) comes from q:tD, which

is what we wanted to p~rove.

This establishes the identity of the classical and quantum mechanical

result.

.- -- -
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