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state solution is ci.lculated for a linearly deflected flap and an exponential

flap. Reoults for she linear flap agree with the known solution for i finite

length air-foil. The loweit-ordezr unsteady exponential flap and the first-order

steady state exponential flap are also solved in detail. The first-order

pressure decreases as the square root of the distance from the trailing edge

like the lowest-oreder result, and in accordance with a full application of the

Kutta condition. The ar1'litude of the correction is of order f n 1/ where

. As- the ratio of the shear layer thickness to flap length. iTt is shown that

the total lift on any section of che trailing edge of length L and flap length

d increases like (L/i ) as L increases -v#:ktot:L bound in the absence of a

shaar layer. An experiment to determze how the shear laycr limits the growth -.

of lift i suggested.
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a8NOMENCLATURE

aa28 local speed of sound

a free stream speed of sound

D -

I D ab"V v + iW :
BX X

PI (z) exponential integral, s.e (4.391

E (Z) see (4.41)
i£

fix) surface deflection, x < 0 £

F(z) D~wson's integral, see (4.18) 1
F(z,C) generalized Dawson's Integral, see (4.27) and

Appendix B "

r(z) see (4.15) and -4.16) I

H(x) Heaviside tep function

t Z:Ale factor in exponential flap, see (4.5) and
5.7

M V/a local Mach numbe-

M V /a. free stream Maeh , wimber

N!(x),, 2(x) see (3.21) and Appendix A I

i(a: see (3.20)

D perturbation pressure/free stream density

xP(X) lowest-order p-essure, see (3.21)I0
p(x) first-order press-re correction, see (3.36)

S(x),P(x) see (3.36) through (3.3)
IX) see (3.30)

; (a) lowe.t-order solution for Q(a) , see (3.26)

j ;( fi'st-order correction to Qo(a) , &f (3.33)
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Q(a) unknown, In dual integral equations, see (3.23)

3t time

V(y) shear layer mean velocity profile

V shear layer velocity at the wall

w vertical fluid velocity

W(x) downwash function, x < 0, see (2.15)

x hinge location of linear flap, see (4.1) and Fig. 5

Carteian coordinates, see Fig. 1

CL Fourier transform variable

see (3-5)

B (I - M2)/2

y shear layer correction factor, see (ii.34)|
a; see (2.6) and Fig. 2 t

r value of r in freE stream, see (248) and Fig. 2

2 V2
MI

S 6 shear layer thickness

6 shear.layer displacement thickness, see (3.47)

1(x) D4rac delta function

6 /6 , see (4.36)
I eC 2j361L

Z (x) see (3.38)

O(Y) shear layer normalized mean temperature profile

3 0 free -ream density

0 see t 3.9)
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I t() see (3.8) and Fig. 4

I flap deflection angle, see (4i.1) and (4.5)

l ts radian frequency of simple haronic motion

() denotes Fourier transform amplitude of any variable

£ )denotes ordinary differentiation with respect to y

3 "sub- or superscript to denote free stream value

I imaginary part of a complex quantity I
Re real part of a complex quantty
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1 I1. INTRODUCTION MIIIn a previous long-range effort tsee Ref. 1,2) under Air ~

Fore -sponsorship,, the author has developed an Integral approach

Ifor Including the effect of the boundary layer in the c c? e n t ianal

~un-teady aerodynamic analysis. The origlnal objective of~ the pro-

g asa to develop the theory to a point wher'e it eauld be used

in- the analysis of stperzonic panel flutter. This dbjective bas-t

Ibeen a--omplished. The 1intet~ral technique has been successf'ully
izi_;tegrated into ,a papel flutter com~puter programa (Refs, 3,14,51-
nder Air Force and NASA sponsorst-Jp. The effect ,:)f the boundary

layer- on panel flutter has b~een cal'culated and covipare_ d withX

expermental results. The agreement I-s remarkably gbz;d.

Because of the sucaese of Itht integral approbach in solvin~g

-ipan,-l flutter problem, a shorter range progrm *-as !it!-ated

to lrrmest..gate -rel-ated applications of the ttieor~y. The particu_ A.

vrolbleiz of~ noise generat'ion and/or reflectioni by a panel surface

itin a shear layer' was a possible source of application. The traillrq

edge prolem was a second possibility. Our work on the acoustic

_Mole has resqlted in a revolutionary nw thoy I ardya1

s u n d generation. This work is reported in two published documents

-see Re"s - ,7). Our final report is concerned solely wi _h the

tmai-Ing edge prob'lem.

To-- the author's knowledge, the first wor'k on the applicatiov.

01 shear layer aerodynamic theory to lifting surface problems iz

Z ~due to Dowell and Ventres (Ref. 8). In a subsequent stzjdy, Ventres

S(Ref, 9) developed the shear layer kernel 41unction in detail for

steady incompressible flow and calculated the effect of -the zhtar

layer on the lift curve slope and cente.- of &P:ess e of various 1v-w-

and thre-dtmenslonal a!.-fo-Us. He Phc-wed that -.he 11ft Curve stie~

1, Is decr-eased while the center of preszure is uria.ffected by the shear

layer. In a related study, Williami, "R 4. 10) has developed a

-~ general approach for solving a gerneralized class of singular 'Integril

equation's that result when the shear layer Is introduced into t)-e

usm-ual aerodynamic theory. More recently, Dowell, Ch-1 and W1l-ai-t



I
i-ef. I-) have been attempting to extend the kernel function con-E cept to unstleady flow by expanding for small frequency about the
sady-statle solution of Ventres.

The present work is closely related to the work of Dowell
- and h s co-workers in that we start with the same basic model of

the shear--layer and focus on the solution of a lifting surface

problem-as opposed tc the panel aerodynamic problem. Our approach
is sozewhat different, howsver, in that we attempt the development
of an analytic solutlcn for a very special airfoil and shear layer
abdel. Specifically, we treat a semi-infinite airfoil and replace5 the al.utl shear layer by a flow with constant velocity and tempera-

ture that arg different from the free stream conditions. -An approxt-
j +mate solution i developed with the Wiener-Hopf technique in the

lItIt of small shear layer velocity defect. Explicit results areS given for the case of a linearly deflected flap and an exponential

-flap. The analytic results should be useful for evaluating our
integral approach and other approximate schemes for solving kernel

tj tunction models.

I2
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I .. 'FORMULATION (OF THE TRAILING FDGE IROBLEM

-Statement -of the Troblem

MWe ,consider the rproblem illust'a, ed in Fg. 1- A two-

dimensionai fl ant sp~a ta ixtents !apon1g ttee negative axis with a

trailing edge zat ithe origln. 'The plate undergoes small oscillatior.

Tfhe f1ow :Ls tunifonm -stb sonic except in a thin layer of tlhicaness

-near the :x-axizs where t1he ;mean velocity Is a Tunction of y only.

The ibasic 1problem is to determine the pressure distribution on the

I ate.
IThe modea iproblem ! have adoped -Is an Ideali:zation of the

trailing ledge of an oscilatting airfoil. The primavy aim is to

.determine ithe efafect kof the zshear layer ion the surface pressure

inear the trailing edge.. The solution of the corresponding invIszid

problem Is known eRef- 12) Jand is readily obtained with the :Wie~er-

oHopf technigue,. In the present .work -we show :ow the same technique

-can Ibe used to obtain Jan .approximate solution for a -simple two-layer

model -of the :shear -a-yer.

:B asic -Equations

iThe equations for the perturbation pressure p and vertical

r velocity -w are (ORef.. 1i) in dimensional for=.

- g - div (0 :grad p) = 2V- 2--L

:a~ Dt

,D._.wKw + ,e = 0 (2.2,
;Dt ;y

where

p = -perturbation -pressure/density

a . = free stream sound speed

i at 7t
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I V V(y) shear layer -veaocity profile

T normalized temperature profile in thei shear layer
(2 .3

Me ass me the notion of the plate to be simple -Lar onic in

time -(q t *Wt) ;so that p and w are sizpe harmonic at every

point in space. Furthermore, -we Fourier analyze the x -dependence

-of each -dependent variable. Thus,

ii lax
(a) dx e q~x)

(21r)/2
-and

where -q is either p or w . The equations for the Fourier

j -amplitudes become

-00,- ) di - LV'T = 9r 2p

dy P

witere

i r , 2 (. V _ + 02 (2.6)

Boundary Conditions

In the region outside the shear layer (see Fig. 1) we obtain

a single equation for p ; i.e.,

M- = 0 (2.7)
dy

werer 2 (2.)

-~ 5
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I We require Lmnt the pressure either decays exponentially or

corresponds to outgoing (acoustlc) waves. Thus,

Ip Ae -  for y - a

and the boundary conditicn is satisfied if we -choose the branch cuts

5 for the cormplex function % (a) as shown in Fig. 2. The branch

points a, and a2 a--e

1 a -+,a -+ (2U10_ a,, V " 2 + Y

andI B,(¢ - l/2(- ]22.)

(1 - M2(2!2

For reasons that will become clear later, we assume that w has a
small positive complex part so that a is slightly above the rea3

-axis and a2  is slightly below the real axis as indicated in Fig. z
On the real axis we can write

O 1/2 1/2

CO 1
oir C <a

= -Igla- -aj 1 ? 2  
_ < (.

which results satisfy the required boundary condition for y

j Additional boundary conditions in the shear layer are the

following. The pressure must be continuous at all points. if 'the

S mean flow properties are continuous, tbern the velocity w is als.

cont Inuous. If we admit a discontinuity in V , then continuity

of particle position requires that

(aV + W)j_ = (aV + W)T(.

where the + and - subscrip-ts refer to the points slightly atore

or below "he y location of" the discontinuity.

I.
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uI

i-T
eU

I A|



I-

I The boundary conditions on the x axis are as follows:

w(x,-o) wx) - ' + 1if for x < 0 (2.15)

I p(x,0) 0 for x > 0 (2.!6)

I where f(x) is the d efection of the plate. Finally, we require

that the pressure tend to zero at tbht trailing edge of the plate.
Thus, we have invoked a form of -the -utta condition.

Comzrents

Thne solution of the- -problem thus -ormulated Is difficult for
an arbitrary shear layer profile, Mach- number, fre-quency, etc. Thus,
we onsider a sim'lified problem by choosing a two-step shear profile
as T-hown in the next section. We remark that. other simp0ificatlons

caa -also be made. For example, in the incompressible case we have

2 2L W~ (2.2?)

and f'rom (2.5) we find that

=- (7 T &. + r ito (2.18)
i dz-

For a linear velocity profile, the equation for can be solved

-exactly in terms of expunential fnction and the pressure follows

by integration. Recently, Goldstein (Ref. 13) has considered the
compressible problem or which there is also an exact solution for

a linear velocity profile.

i

I



lI 1. SOLUTION OF THE TWO-LAYER MODEL

I The Reduced Problem

We consider the simplified shear layer shown in Fig. 3. The

lI velocity and temperature are assumed to be constant in a layer of

thickness 6 . Free stream conditions hold for y > 6

In the layer the pressure p satisfies the ordinary

differential equation.
1: 2-

d 2- (~
- r p = o(3-)

dy

I where

- - (aj+).j (3.2)a[
2

a = a.e speed of sound in the layer (3.3)

The solution of (3.1) is

p=Be- ry + Cery 0<y< (3.4)

where the definition of r in the complex a-plane is precisely

the same as f':r r (see Fig. 2). We have

~~~r = 8a-l)/(a - 2) /

1/21/
_ 8 (1 f 2 1 2

I M V/a

a1~~

a2 -aW- (3.5)

2 +m

The veloc.-&ty in the layer follows by diffp:entiation of (3.4) andf -se of (2.51; i.e.,

19
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ie7(Be- r _ cerY)/(cv + w) < y< (3.6)

For y ' 6 , we have (see (2.9)) _r~y
p" Ae

!I rI

prssr an _continuoust 1 A=

i A

WFry=0, egtfo ((3.7an)(.6

UV

~~The pressure and pa rticle position must L, otluu t

(Note (2.14).) We tlhus solve for B and C in terms of A and

finally calculate the ratio

C- S = oe-

! whereB

-- re(atve+w) 2  r (av+w)2

O u2re(cav..+ + r .(av+W.12

- For y = 0 ,we get from (3.4) and (3.6)

we formally invert this pair of equations to obtain

p(x) 1/2 e-iOx(! + E) - B(c) •dc (3.l1
Ii (2r)

-x 1D 1/ e- ir *(l E- *3(ai) *dai(.?

where

=V + iW

r x
X



These are the basic -equations that we use to study the

-trailing edge problem. T'he function 1(a) is the essential

-unknown. We have cast the -prob, An the above form to facilitate

-application ef the Wienerd-iopf technique. In the complete absence

of a shear layer ve have E -0 and Wiener-Hopf solves the problem

exactly ae we shall see below.

APPlication of WIener-Hopf

I We apply the boundary conditions on the x-axis (see (2.15) and
(2.16)) to obtain the following pair o- dual integral equations:

Sa x
(1 ) l fe Cn + Z)B( )dae 0 x 0 (3.14) 31:

IID

ltechnique (see Re. 12) to partially symmetrize the integrandt r In

(3.114) and 03.15). First, we replace x by x + in (3.114),

som fuctonmultiply by '~ Iucin 1 (g) and integrate from 0 to11

(2?ri1I2 f e- N-(a)(l + £)B(C)dcL 0 , x > 0 (3.16)
(2w) -,

I where
N(a) - j e-XNl(x)dx (3 4

1 0
and N_(a) must be analytic in "zome" lower half of the complex

plane. Similarly, we replace x by x - t in (3.15), multiply

by "some function" N2( ) and integrate to obtain

I
1 1



112 e-iQx(N+()(1 - E)B(=)d

IS (2r) fO

Sfo N 2  (C6)Vj Xd x < 0 (3.la)

where

N O eolaXN I(.x)dx (3.19)

tand N+(a) is analytic in "some" upper half of the complex

plane.

II Nezt, we construct the functions Nl(X) and N2 (x) by

choosing

N (a) = l(a - a1l/2

(a) = ila a2) 2 (3.20)
+i 2

where a and a are the branch points of the function f(a)
S (see (3.5) and Fig. 2). Note that N_(a) is analytic In the

lower half plane (Im a < Im a!) and N+(a) is analytic in the

upper half plane (Im a > Im a2). It is essential for the analytic

continuation used In the Wiener-Hopf technique that the*e two half

planes overlap. This was the reason for assuming a small positive
U_ complex part of w . We also remark that the particular choice for

2 N_(a) and N+(a) establishes the cnaracter of the pressure near

the trailing edge. We shall see that p(x) tends to zero as

for x - 0 in accordance with the Kutta condition.

With (3.20) the functions NI(x) and N2 (x) are easily

evaluated (see Appendix A). We get

ica x+ir/4
N (x) - (Wx) -I/ ei  i  x > 0ii
N2(W)- (Ax)'I/2 e , x > 0 (3.21)

N2(x 13
X



Both N1 and N2  are zero for x < 0
l, x

Finally, we multiply (3.16) by e 1 and differentiate

with respect to x . Our dual !ntegrali equations (3.14) and (3.1")

3 are reduced to the following:

1 1/2 e-laX(l + E)Q(a)dci 0 x > U (3.2;

1 ( -ix(1

0 (2ile - Z)Q (a)da
(2n) 11J

TC N2 d 0 (3.23;

where
~~~Q(a) = (a- a!)i/2B(a) (""'

Once Q(W) is known, the wall pressure is calculated with

p(x) e-iax (I + Z)Q(a) da 2. 1F

(2n1)1 C1

Exact Inviscid Solution

In the absence of any shear defect, we have Z 0 and the

pair (3.22) and (3.23) yield the exact solution of the problem; 4-e.,

(a) = Ie i ~ dx N n] d4 ;.2
( )1/2 x-e

-1 00 0

where 0 - S. and e = i For the surface pressure we get

I i-ix Q ot )(-POW = e - -_-= / da ,x < 0 1 .
(14(-

~1J4



We can reduce these results further with the convolutorb

integral. For (3.27) we get

(Z N - x)Q (t)d ,(

x

where

'ow substitute (3.26) into (3.29) and invert the o raler i Int-

3 +gration to get

Q (x) Nf M2 % [qJdC X 01 0
I Thus, the exact pressure on the surface becomes

0p0 (x) Jfl(s -x)d. J3

wheve N1  and N are defined by (3.21)-

For any specific downwash distribution, Wx'i r te

C e P0 (x) has been reauced to a double quai-',. '+ i.CP

specific examples in the subsequent section.

I An Integral Equation for Q(a)

The obstacle that prohibits the exact solu on §~r ;."

- -7.22) and (3l27) is the complex function -(a) . We -a . d=z-u44z-

our difficulty somewhat by transposing the t:wo te.-E Lt -; in

J rt the right-hand side of the equation and fzrma':: rv : *

result is a singular integral equation for the r. -. *,

I _ _

E)- Q



where Qo (a) is given by (3.30) and the integral is a standard

Hilbert transform (Cauchy principal value integral).
Since we still do not know Q(a) . we have only reduced two

integral equations to one with the last trick. Houever. the form

of (3.28) suggests that we might iterate for Q . If £(,) is in

some sense small, we can expect to obtain useful results. We post-

Ipone the investigation of Z for a moment and formally derive a

first-order result. We have to first order in E

Q iQo + Q 1

and

~.i -"NO
70 dci'3,1

Next, we evaluate the first-order pressure with (3.25). We have P,

( + E)Q (1 4- E)QO + Q, O(z4 )

and we write the nressure in the form of a convolution integrale

Thus, b -( 5

where x

P(x) ( ex(] + )Qo + Q]d (3.36)

Consider

I P. e - ZX[

z(') (-)dr"- ---. r-

e-ix£ (c)Q(cf)da ( 3.37

2 6r)= \ i



T~hus,

, ie (1 e-'al 2)Qo,(a)da :x < 0
'(x) e,2 :./

-o :x > (338)

.and

pI< ) X) + p (-x) < 0 (3.39)

-.where _p0 () .is given 'by (3 31) -and
.00

:p x) f P",( .- P,)dg , < 0 (34o)

fC~t

2
1/2 0 Q )Z*(x - [)d :x < 41 (31,2

.where Q is defined :by (3..30) and
0

e) = e()da , x < 0 (3. 2;(2 .) 1/2 _

The first-order pressure is zero for x > 0 and providing P(x) _

-regular at the origin, p(-) should vanish for x - 0- at the

trailing ,edge.

Analysis of Z

j The first-order result will be useful to study the effect of

the shear layer on the trailing edge pressure providing the

correction is bounded. The magnitude of the correction is determin:

completely by the magnitude of Z . We turn now to a brief' analy,-'_z

of E that we rewrite here for- convenience (see (3.8) and (3.9)).

17



!I

- 24 &V) 2(33)

:where

r-= B(, .12 1/2

T = (-- a)1,2 ((,a- -a:))1/2 (3,44)

'with

W _ _ V 3_1I a--V2 =V-

I 2 I ,3'5

_ We first -examine the relative magnitude of the 'branch points for the

-case -of -an adlabatIc -wail; ie.,

a2 + -I V2  a2 + -IV2 (3. 46)

and 
-

1. --i 2 '2/2~
a,1L.M1 +-M (3.47)

H Thus,

a- = - '[ +( 1 + )(

and

a a V -1 ; " M ( + .=- -M" l + V)]iiD = w = a. -

j Similarly, we find that H
° 2 a_. + V 2 + V 1+M"

< a since OL is negative (3 4i9

18



It follows by inspection of (3.43) that

o(o I 2 ) = -1 +1 U

Ia(-wV) = -1 , C(-W/V) = +1 (3.50)

For a - ± . the paramet-er a becomes independent of aI'
Bv2 - V 2

a e2 2  for lal - (3.51)
$EVf + 83 V

-and

y- ce72S6 1 1  (3.52)

& ~ e also remark that for the steady-state case the expression

(3.51) is valid for all a

The function I is real for a > or a < m2  It is
-bounded uniformly on the real axis and never exceeds unity in

absolute value (see Fig. 4). In the steady state it is bounded by

- . For low Mach number, we have approximately

2 21 - V2V
2 E (3 53)

... + V2/V.

ft

whe-- 1 - V 1 (3.54)

where 6 is the displacement thickness and N is the index of a

power law velocity profile. Thus

V N

and

2N +I

2N2 + 2N + 1

.13 for N 7 7.54

I
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For a steady-state deflection a is of the order of the boundary

i layer velocity defect, and we expect the iteration scheme to work.

A rigorous proof could be developed.
ISince t is only bounded by unity in the unsteady case, we

can not prove a priori that the iteration scheme will work. However,

it seems plausible that it will, at least for sufficiently low

Ifrequency. The question is whether we can ultimately calculate
results for large enough frequency to see any significant nonsteady
behavior near the trailing edge. We remark finally that when I = 1

the two-step shear layer has unstable eigensolutions and when Z = - 1 ,

the wake has unstable eigtnsolutions. This fact may present some

complications in obtaining ,a unique solution of the unsteady lifting I

surface problem. Further analysis of this important point shouid be

carried out before we imbark on a numerical solution of the unsteady

'problem.

Ii
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IV. APPLICATIONSS

We illustrate the foregoing theory with two examples. First,

we calculate the lowest-order solution for the linear flap at zero

frequency. Second, we consider an oscillating exponential flap for

which we calculate lowest- and first-order results.

The Steady State Linear Flap

Consider the steady state deflected flap shown in Fig. 5. The

surface deflection is given by

f(x) = - 4(x - Xh)H(x - xh) (4.1)

where H(x) is the Heaviside step function. The downwash and
surface acceleration are

W Vf- -VFi(x - xh) (4.2)

W VW 2
nD=VW=-V2 6 (x -x(43)Dx Xh)

where 6(x) is the Dirac. delta function. It is tnderstood that x

is negative in all of the subsequent formulas.

1te lowest-order surface pressure is obtained with (3.31). We

have

-oD () -=c - x ds N2 ( )[jd_- l

00

t o
(x N 's-x)

N (s - 2 (s Xh)dS

lMax (x, Xh)

I 0 BE___2____ &

-V N (s - x N (06(s

SMax(x, Xh)

f 1/2  /2 h

Maxnx) + h

= - _ . . ..-.-

/L -Y r _

22
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5 With 8 8 and e 1 the last result is the exact solution of
the linear deflected flap in a i.onshear flow. The pressure is

plotted in Fig. 6.

5 Remarks

We note several asymptotic results. First, the pressure tends

to zero as (X/xh)1 /2 at the trailing edge and has a logrithmic

singularity at the hinge line in accordance with known results for

the finite airfoil (see Ref. 13, e.g.). Arso, the pressure tends

to zero as (xh/x)1 / 2 for x - -- . This means that the total lift

on the plate is noncalculable. In fact, the lift on any length L

of the trailing edge tends to infinity as ' for L -. . This

is in agreement with the known exact solution (Ref. 14) for the
M lift on a finite airfoil with chord c at zero angle of attack, but

with a finite flap deflection. The total lift tends to infinity as

re .We shall discuss the implication of this singular result in

- more detail after we consider the next example.

The Exponential Flap (Zero Order)

The linear flap is a simple example of the lowest-order steady

state solution. However, the algebra becomec very tedious when

higher-order or even unsteady repuits are sought. For this reason,

we consider the unsteady exponential flap illustrated in Fig. 7. The

flap deflection mode is assumed to be exponential; i.e.,

f(x) 0- eXl  (4.5)

p so that
W D -cV(! - ik)eXi £  (4.6)

a.x
and

DW - (I - ik)2ex/t (4 7

where

k wi/V , reduced frequency

"M and * is an effective flap angle; i.e. $ -f'kO)

1214
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Our next step is to calculate the function Qo(X) with (3.29)

and Qo(a) with (3.26). We have

(X i1 f )RDWl

0

#V2 ( k) 2  e' N-(4.8)
SO

With N (x) given by (3.21), we get

f eI ~-&/,t (4.9)

(4)d e,11e
2V f o- (1+ 2 e 2 4))0I

so that

(x) e (20 l+!/2 e X/2 (4.10)1

0 t°

i

Hwhere 2 / V/
C-c2 (.11)

Ii $e(1+iQ2E)11 (21t)

The complex func--o " pe r follows from (3.26):
Ii 0

I eIQ 027d

0

Q 0 / ei x Q

-
IIL

Thus, is a simple pole at a i/L I

The 1owes -- ,'er pressure follows from (3.28). We get

1 2?

N



0

P (x) Nt -x)Q (C)d

11 ~xil fo
SC/ eiw/4 * ex/ f e 1 ds (4.13)I;

The integral in (4.13) can be expressed in several different forms

with the complex error function. However, the simplest form for

computational purposes is to write the real and ima inery parts out

I separately. Thus, we get after substituting for C

p(x W In__ (1 - ik) G2 XO1 (4.14)
(10 + ia 2  71

where

£ G(z) e-z 2 f e(1+iali)t dt (4.15)
0

and z
eZj t2 (f 2 )dt-ReG(z) e e2

0

2f

IT ImG(z) e-z  e t si.n (aIt 2)dt (4.16)

iThe oscillating exponential flap can thus be solved comj. etely in
lowest order and expressed in terms of simple functions.

It is interesting to consider the steady state exponential

flap. We have

p~(x) - ,2 (.17)

where z

F(z) e2f etL dt (4.18)

is Dawson's integral (see Ref. 15). The pressure profile corres-

1 ponding to (4.18) is plotted in Fig. 8. The pressure tends to zero

28
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as ,VC7T as x -, and tends to zero as v-7 x for

x * - . Thus, the total lift is again infinite, a result that

does not seem to depend upon the details of the surface deflection.

The pressure has a Inimum as indicated 'in Fig. 8. Thus|2
IMin po .541 l - -

at -8541 (4.19)

First-Order Exponential Flap (Steady State)

Because of the simplicity of the function Qo(a) , we can
derive first-order results for the exponential flap in ste.dy state.

In principal, the unsteady first-order result can be calculated but

the details are extremely tedious. The pertinent formulas of

Section III are summarized below-

pl(x) p°(x) + p,(x)

_ p'(x) a P'(-)N -

x

P'(x) Q Q ( ~dZ -x-II121T 0(2n):

Z(x) - i((r 4-1/2"--
(27r) 1

where

E(c) = e = 0 (4.2-11

and 2 - V

2422
BGV: +

I Again, it is understood that x < 0 in all Of the formulas (4.200.

340
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'The .reason ifor the -simplicity ,of ,the :steady state ,case is

t;hat -r. defined ib'y (4.22) is independent ,of ,a . 'Thus., 'we can

L e'.¢aLuate -each ,of the functions :needed "in the series of convolution j
inte,grals .in (14.2'),. 'First,, .we ,ca~lc-uate

IfI
2a -2ax'

2S2, T) 11/2 f 'Jo Cs~

-h , . ,,4:4o))n6 t(he4 .23)

We 'subztitute t hs reslult together -with "4-O) into the third

formula -of ((,,..20,) to Obtain

- :') 8C , 6 " e "£d:

=(2 ,)i2 - i (x-) + A406

- S SOs t6 eX/9  / e-s.ds

ex/ .4.2

F The last result can be expressed in terms of exponential integrals,

but it is more convenient to leave it in the simple integral form

for the moment.

Finally, we substitute (4.24) together '.with the definition of

N (see (3.2?.)) into the expression for p'(x) . We get

~0

1 p'(x) = P'()N'(E - x)dE

-~0 CO

- 8CO66 f fE e-F ds(1.)
(210 k -E X) s 4B 6/k

31
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-r after, come manipulacion of the double integral

Vh- ( = - 2aF , (4L26)

wherez 2f t2 s e s
+ _

F(z,)= e -  e t dt • 2  (4.27)

t-z

I The final exprebsion for the first-order pressure is

- 2 F -F1, (4.28)1+ 2 F

The function F(zE) is a generalization of Dawson's integral; i.e.,

Lin F(z,,) = F(z) (4.29)

C.'

where F(z) is given by (4.18). Thus we can also write (4.28) in

the form

p (x) = - f (i 2o)pF( - )lJ

-2oF (4.30)

where

(z,-_) -- e-e 1 - ds (4.31)

;Asymptotic Results

There are two independent oarameters in our first-order shear

layer r'esult. The basic expansion parameter is o and terms of
2order 0 nave been neglected. This parameter is truly a property

of the shear layer as we have shown in Section III (see (3.53) to

(3.56)). The second parameter is 2B6/t and it is the ratio of the

shear layer thickness to the length scale of the flap. We can vary

32



this parameter independently of o . For example, when 6/ 0

the pressure is given by the first term in (4.30); i.e.,

Lir p(x) = - 2OV (I + 2o)F[(- 4.)] (4.32'

6IL-0

in the comnlete absence of a shear layer, we have
2dV 2  1/2]

p [(- 4 j-.LT , 3

so that Dl(X) 8 V2:C VC) ~ ~ ~ ~ ~ 1 x F)_:( a 34'

V

The importance of the :actor 2a is now clear. Without this term

(14-.32) would tell us that the lowest-order pressure is to be

obtained by replacing the entire flow by a uniform flow with the

velocity and temperature (or density) of +he shear layer. This Is

a gross over-correction of the inviscid result a-nd must not be used.

11The correct factor to use is y given by (4.34).

For low Mach number M2 << 1 we can express I in terms of

the shear layer velocity defect; i.e.,

-6 v (4. 352F= 2.---

Then 
2 )]

S(! - A)2[ + 16- A + 2 /

- [! - 2A + O(A2)J[1 + 2A + O'A
: = 1 - 0O(A2 (

The corre:-ion due to the shear layer is 0,A and is therefore

rn:alculable with first-order t-ery when 6'k -



I Ias
For 6/. 0(l) we must in general use (4.30) to calculate

the shear layer correction. For small 6/ we can estimate the

order of the correction with the asymptotic results derived in

g~A pendix B. We have -

I , J i s2'+E j2

I
i F

£ 1[)-i£oe -Inc) -n ( i - 3

2I

Mwhere

dtnn) _ e(

F*(z),a) =-- Iar in < it- 5 J (4.39)f -

H z I 0

Fowhre£ 0 -we72 hav futer' cosatIhs h is-re

IF F +i: C

B''

pnethe vient eo s the trailing edge e wee

(z)-:,c) z n (439)

z.

where 0 we h5772 isuEulerscosat Thstefrtode

whp essre te d(o4eo.sn a4te t a0i)ed e ow v r

3D



the magnitude of the correction is 0(c in l/e) where

c = 2$6/t . We conclude that any expansion of the shear layer

solution In powers of c must fail in the vicinity of the
trailing edge.

For large z it is also shown in Appendix B that F (/r,e)

decays like (1/z3 /2 ) . Thus, the pressure at large distances

w from the trailing edge is given by the lowest-order result with

the mult ulicative correction discussed above (see (4.32)).I I
The Paradox of Infinite Lift - A Suggested Exper-iment I

I We have seen that in the absence of a shear layer the total
lift on any section of the trailing edge of length L grows as

* This result is in complete agreement with the exact solution

for a finite length flapped airfoil (see Ref. 14, e.g.). One can I
argue that in reality this result cannot be true. The total lift

must either reach a maximum or decay as the airfoil chord is in-

-:,eased without bound for fixed flap geometry. The flap

i: aventual!y becomes totally immersed in the shear layer and must

eciome totally ineffective in producing lift. Thus, the "steady

Ifla-ved airfoil" offers a means for investigating the role of a
71ear layer in limiting the lift.

The paradox could perhaps be resolved with a very simple

experiment. A two-dimensional flat plate airfoil could be fitted

.ith a - an of fixed chord. The chord of the airfoil section

forward of the flap could be varied while the total steady state

lift is measured. A plot of in(Lift) versus ln(c/24 would be

expected to appear something like that shown in Fig. 9. The ratio

c/k where the lift starts to depart from the no-shear result

Istraight line with slope 1/2 in Fig. 9) would be a measure of the

Sr! ical rati- of shear layer thickness to flap chord. With more

1 -.af'led theory. this point could also be calculated. The two-step

l does not appear to have the potential for describing the

I-.raicn because the velocity at the surface of the airfoil can-

-, e . edt.ed below a fixed value as the shear layer thickness is

N1 35
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increased. A linear velocity profile or a power law profile

would be more realistic, although the Wiener-Hopf analysis may

become intractable.

The Unsteady Trailing Edge

To continue the investigation of the shear layer effect on the

unsteady trailing edge lift, it would be desirable to carry out the
first-order analysis for the two-layer model. The essential and

I nontrivial step in the analysis is to calculate the inverse Fourier

transform of the shear layer function 1(a) given by (3.8) and

(3.9). Given Z (x) the first-order pressure is a matter of

integration (see (3.35) through (3.38)). These results would be
I of immense value in assessing the role of the shear layer on the

unsteady lift.
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1 V. CONCLUSIONS

I We have investigated the problem of an oscillating trailing

edge that is immersed In a two-dimensional subsonic shear flow.

The ideal problem wherein the shear layer is replaced by a two-step

model is given detailed consideration. An approximate solution is

developed to first order in the shear layer velocity defect (ratio

of displacement thickness to boundary layer thickness) and is valid

for arbitrary length scale of the trailing edge deflection.

The general solution is applied to calculate the steady state

Ilift on a linearly deflected flap and the unsteady lift on an

exponential flap. The latter example is developed to first order

for the steady state. The rpnciple conclusions of our analysis

are as follows:

1. The lowest-order steady state lift distr.bu t ion tends to j
zero as the square root of the distance from the trailin.

edge for small dlstance and as the reciprocal square root

of the distanoe for large distance. 'The linear flao has

a weak logarithmic singularity in lift at the hinge ifne

In accordan2e with- known results.

2. The total lift or. a trailing edge section of length L

_ becomes inf _ te like VI as L is increa,,ed without

b bound. This result is !n agreement with tie thin air- cii

solution for a filrte length flapped airfvil.

3. The flrst-orer lift on the steady exponential flSac is

develooed in detail. It is shown that zhe trailing edge

pressure corrertton varies as /jxj and Is attenzated

IN- by a term. -f O's In lPc) where c = _16/Z is rhe rat i

of shear l~:er thickness to flar, 7e:=gth. We ccnclude

that any atteimpt to expand the so'urion of the trainz

edge problen in a regular perturbaton series :- oai

- near the t:-ailng edge.

%0
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APPENDIX A

IEVALUATIUN OF N (x) AND N 2(X)

Consider the integral definition of N 1(x) ; i.e.,t

Im CL

a

whr h cmlxucin(a -1) 11 is dealined by the loeranfplneh

cut shown iN the folloroifgrsket: xjo 0w s

1~1
"hIotujhw nth bv ktht vaut h nerl

i40



We have

1 e iaX do

- NI(X) - 1 (_ di (A.3)

Let 
P,

I t2ei r/2 (|1;H = a + - x (A. 4)

Then CO
U2 m 1 ia+I/4 o e t 2 t

N (x) e f dt

ia+i r/4

e .... / 1  x > 0 (A.5)

f The evaluation of N 2(x) is similar to N!(x) except that

the contour in the complex a plane must be closed around the

branch cut from a2  into the lower-half plane. We get

._ • . ,e - i (mx

N2 (x) ( _ eic)i da
-~~ ~ (i-c 2 )

-iax-iT/4

.. e. , x>O

=0 x < 0 (A.6)
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APPENDIX B

ii i "ASYMPTOTIC ANALYSIS OF F (z,C)

Consider the function

* ____ ife-G(n.c)
F('Zf) d, (B.1)

13 0
with f

G(n sJ e ds (B.2)

In general, F must be evaluated numerically. We consider below

the asymptotic behavior as c * 0 with z - 0(I) . First, we

evaluate G(n,e) in terms of known functions. We have

G(n,e) - G (n,v) - GI(n,c) (B.3)
0£where

0 (nc) 2 2 (B.14)

I'£e-s ds
G(n.,c) ~-- (B-5)

I -1

The first integral is easily evaluated in terms of the arc tangent.

We get

G. 0 tan (B.6)

To evaluate the second integral we expand the integrand by partial

fractions and translate the dummy variable of Integration in each

part. We get

U

N



G1(nc) =Vi e - - S+i ds

D m~Y iC ~.t e f t ~t)j
-H -n-ic -n1i{

S"[e-i'l(-n - i ) -e:'Elt-n+ ic1 (B.7)

and

G(n,Ic) 1 tan-' Gl(n,C) (B.8)

-- where the exponential Integral is defined by

fi-
z

To obtain the asymptotic expansion o& F for small c we
must first deve.op a uniformly valid expansion of G(n,) . We

use th6 method of matched asymptotic expansion to accomplish this
task. First, we expand G(n,,c) In the limit c 0 and

n - 00.) . Then we expand 0 for c b 0 and =0(c) The
two expanslons are thet shown to have a common domain of validity

by matching. Finally, we form an additive composite expansion

with te two results.

11H Expand G(.nc) for £ * 0 =0) - .)

We use known properties of the exponential integral to carry
out the following prcgam (see Ref. 15, p. 228). Pirst, we
expand E. as follows:

I P
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Ie
E _ dt + EI(q_ 10)

+C
en +c o( e (dtO

E1(.r jI dt + E10)I - iT/ 1

±0 T)-E (n) ; ir t + 0e(e) (810)
n

The last result is valid for all n greater than or equal 0(l)

Now substitute the last result into (B.7) and combine the result

with (B.3) to get
[e +1- en] 2

Lim G(r,e) = - . i(n) + I + O(£2) (B.11)

Expand G(n.e) for e - 0 n 0(e)

h For n and e both small we can write

2

El(-n - L) r len)+ i ± ) -n -. + 1E) - (B.13)

where y - .57721 is Euler's constant, and

Lr(-rim " i) = n 2 21/2 + ir 1- -l ln(n + e - (B.13)

NoWe use (B.12) and (B.13) ir (B.7) and ( B.8) to get

Li. Gf'" ~ , + e2 ) ' i+ y - 1J + 0(E) (.1

C -0

which result is regular nea.- q 0 but is ofl O(e In c)

Uniform Expansion of G(n.e)

Now we expand (B.11.) for small n and (B.114) for- large

We get
Ss

_ -- 4



.!y

Lir L G(n -+ (B.1

n-O ! -0

:-and
Lim /Aim G(,E:) = - (in n + C - ) (B.16)n-0 1), C-

M n= 0(c)

-The last two results are identical so that the two asymptotic

exansions -have a common domain of validity. We form a uniformly

tj ~valid composite expansion by adding (B.11) and (B.14) and sub-
tracting the -part they have in common (either (B.15)or (3.16)).

-The final result is

I7-- -2 12
m, : + 1 in ,21/ + 0()L-[i ,€--, '( '  + E2 ) Z

Finally, we sustitur.e (B-7) into (B.1) to obtain

z

VZ T T1.II Lim F(,rz,) =+- f - ,e ni •~--- -Bn)

Lj Vz-n (n 2  + -2 C J

The last . ,esult- is va '.i for all z and in general must be

evaluated r.mera'aiiy U.4ortunately, the integral is not sub-

stantially more sim .I : than the original integral (B.1) that is

valid for a.-b" "arw .

" We conclu.de ou: analysis of F with results for small and

large i For z - 0 , we use tbe limit value of tue expression

in curly braces it ' " We get

- /Z- E

C,

. ~~~~~~ ~ ~ ~ --- ------: --------- "-- -it i-y z ,



_ l

II I-I
The functional variatior. E- s -he f unc

is positive and the amplitude iS o ! r' .r z -t

the contribution to the '-re" rrc- S:e er r..Ea r

3/2 . .. te Lntear-
of O(/Z ) Thus, we can .z haIIin the approximate fo'rmF

I V~Z

We integrate by parts I

(rZ_,E) L(e~:E)
Vt _I _ -fO

Thus, we see that F decayS fatsae n i"7 r large z

contrast to nawsonfs int r-a- We U ate F with

since we have already neg!-ZI-d TE' lh came c;rder

[
I

[;


