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I. INTRODUCTION

The atmospheric detonation of a nuclear weapon produces a high
temperature air plasma which is commonly referred to as a "fireball".
This fireball begins to emit thermal radiation, mostly in the visible
and infrared regions of the spectrum, into the surrounding atmosphere
immcdiately after it is formed. Although the fireball has a finite
diameter, it is considered to be a point source for calculational purposes,
and the thermal radiation environment produced is expressed in terms of
a time dependent thermal irradiance. The general characteristics of this
irradiance at any point outside the fireball are shown by the curve in
Figure 1. this curve *s generally approximated by 2

2(tj -3.6(10 1.8)
11(t) t 361 0.206 e \ 1

I1 + 1.69 1 +/ t \ 1 0  j
where t is a function of the weapon yield and H is a function of
weapoa yield, distance from point of weapon detonation, andtransmittance
of the atmosphere. Table 1 contains values of to, H and f H(t) dt for
several weapon yields and distances. In theory the thermal environment
is of infinite duration.

TABLE 1. Nuclear Pulse Parameters

Yield Distance t 110-2 f Hdt-
(Kt) (km) (sy (MWm ) (MJm-)

1 0.32 0.04 11.32 1.25

10 0.70 0.11 11.26 3.26

100 1.51 0.31 8.96 7.31

1000 3.26 0.87 4.65 14.08

However, for practical applications the time duration of the environment
is taken to be lOt 0 since lOto0  OJ H(t)dt= O.SSf H(t)dt and H(t)<0.03 Ho0

0 O0

for t >10to.

The effects of the thermal environment on exposed materials are due
to the absorption of all or part of the radiant energy incident on the
exposed surfaces of the materials. The absorption of this radiant energy
by the lateral surface of a cylinder will result in a transient temperature
rise, a knowledge of which is essential for predicting the response of
the cylinder for those effects which are a function of temperature or
temperature change. Because of the transient heating, a numerical

S
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calculation of the temperature using finite difference or finite element
methods is generally employed. Although these methods are of great
value for solving a specific problem, they are not convenient as analytical
methods for nondimensional representation or parametric analysis of the
temperature field in the cylinder.

This report describes a deviation of the transient temperature field
in an isotropic, homogeneous, finite length, solid cylinder of radius r
whose lateral surface is subjected to heating by a nuclear thermal o
radiation environment. Ojalvo's modified separation-of-variables method1

is used to solve the transient heat conduction equation under the
following assumptions:

1. the thermal properties of the cylinder are independent of
temperature,

2. the thermal radiation is absorbed at the surface,

3. convection and radiation heat losses by the cylinder can be
neglected,

4. the transient temperature field in the cylinder is independent
4 of the axial coordinate, and

5. the initial temperature field in the cylinder is uniform.

II. TEMPI.RATURE EQUATIONS

The thermal irradiance at the lateral surface of the cylinder is
expressed by

IIHe0r(t) Cos 0 0O 4O & i 3
110t 0*'0 _• --- (2)H(O't) 0 o (2)

2
it 0f(t) Cos 0 LIs!m

where f(t) is the time dependent portion of (1). The transient temperature
field in th6 cylinder is govenied by the following equations

VcT(r,,t) (3)
V1'(r0,t)at

whore
2 1 a a I a (4-V a r ( r + " j ýý y -2 (4 )

I J.U. OjacZtl'o, "o nduc tion with *m-Deperdent Heat sourcs and Bo au kun

SC o n di t io n s ," Xn te r na t io n a l tro w n a l p yo f e a t a m el I A o o 2 1 m n a e i V o 1 5. .
i 1962, ppq, 110'-200•.
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_Hof cos 0 0 :S --2
Kai T 1 < :, 3n

0 7 - 2
_H H f cos 0 311 <0<211

K 2

at r = ro,

I T 0o (6)
r 36

at 0 = 0, 11 (because of symmetry), and

T(r,6,0) = 0*. (7)

The modified separation-of-variables method assumes that the
solution of (3) can be expressed as

T = *mnCt)Dmm(re) + T0 (r,0)f(t). (8)

m n

By substituting (8) into (3) one has

The method further assumes that

To (10)

and that either

v T0 (,1)
or

VIT. o (12)

No generaZity is Zoot by. aeaw•ir, T - 0 since the tempeature of the
c yZinder "ai be obtainad by addinzg the initiat o• tana t teriipnat.uzwe
to T and onZy the tem'rperatwu; difference io requirad for the aoteooo
and diepZamw~t fioUs.
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The substitution of (10) and (12)* into (9) yields

mu c+ an K~ (13

If (13) is equated termwise and divided by * in and if - XI's are

chosen for the separation constants, one obtains the following
differential equations:

V = 0 (14)

and n d2 K K bnf (15)
-4÷ = -a f f -

inn inn cP in n c.P mnn

The solution of (14) and (15) along with T when substituted into (8)
provides the transient temperature field in the cylinder.

The boundary and initial conditions for 1., T and are
obtained by substituting (8) into (5), (6), an0'(7). This sunbstitution
yieldshLsbtuto

!ii
%T

Om 0 (161)

at r

*M T-;- (17)

at 0 0,11, and

he use~ of (02) i4 xmo naurat tJo~w# theuec of (1211 sixit *W) is a
O o¢iaa ofa)f (IN i i io1h att , W 'a amav 'o.
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at t = 0. From (16), (17), (18) and Figure 1 the following boundary and
initial conditions for Omn To, and *mn are deduced:

mr
O ~mn (19)

at r - rO,

r 0* (20)r3e

at =0,•0,n
Hpcos0 0oen
K 2
0 (21)
W- cos 0 -2

K' _< 2n1

at r r

r- W O o (22)

at o= 0, f. and

+m oO (23)

at t 0.

Equation (14) is a two dimensional Htelmholtzts differontial
equatiui, the general solutions of which are of the form

aD~ ~ ~ I j Ar A, onO(2a

for m 0 and

O)w* (AMnJm{Xar) 8,Y(X, r))(C°cos mO* DMsin mO) (24b)

for m>0.

In order for these solutions to be well behaved at r 0, theB 's rustM•nB
be equal to zero. Also from (20) it is readily seen that the 8,,'s and
the DinS must also equal tero and that m 0., 1, 2, 3, .. , . •quation
(24) c4n now be rewritten as

~ ~AJ.(r)Cos me

Thi GqU4-t-iOf% iKurO.14w hMXWUWh~gtOs boWUXdary ooehtton for' (14).
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The substitution of (25) into (19) gives

jm (OXmnro)= 0 (26a)

or r m+l (X mnr o M (26b)
mn o M (Xmnro)

From (26a) one sees that the X) r 's are the n-th positive roots of
(26a). n o

Equation (11) cannot be used in determining T0 . The solution of

this two dimensional Laplace's differential equation which is well
behaved at r = 0 and satisfies (22) is

T C Cmr cos n O (27)

the substitution of (27) into (21) yields

; Cos 0 0 2
aCm r cos m 6 0 H< 0• S A(8

eal H cos< 211

By expressing the right side of (28) in terms of the following IFourier
cosine series:

I* £°••- n~ cos. o] . (29)

n-2,4.6,,...

one can rewrite (28) asn

i-1 Ila

del1 (30)

even

It is readily seen from (30) that (27) cannot satisfy the boundary
conditions at r w r because of the first term of (27). This term

represents the unifoor heating of the entire lateral surface of the
cylinder, and the form of To which is obtained by solteing the uniform

I0



heating case is
To = .. Jo....2 (31)
0 2'ih~r0

Consequently, it is assumed that

T r2+C0 + Cr cos m (32)
0 21h1o mini

where the values of the C 's, except for Co, are obtained by equating
(30) termwise. From (30) one sees that

C1 J -•(33)

and amn)
- 2..,-L cos -2 (34)

Cm Miw(m2, I)Kr m- 1

for m >1.

".1- In order to solve

*mn4 + oXa"*6 am f CP b mil f

the coefficients, a and b ,n must be evaluated. Ilie a 's can be
evaluated from (10) -and (32T and the 1: 's from (12) and k32). Fo
(10) and (32)

CC r cos a 0 a * cos m 0
m•O n~l(3S)

Equating (35) terswise one obtains

It 2

o -r C aa j (. r)2 Jc~r 1 60oL aon o on (6
0

and

r3 X r). (37)
Id 4., anu a

n-l
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Using the orthogonality properties of the Bessel functions, the am 's
can be evaluated from

00

OJ( dr + C Jo(Aor)dr
2TIKr o on o o on (38)

a =
on r

f rJ2 (Xor)dr

0

and

JrM+l J(X r)dr
amn m . (39)

S rJ2 (• r)dr
o inn

The integration of (38) yields

0a 4H. 0  (40j)

for 0  = 0 and00

a = 2H- r2 (40b)on K (Xoro) r J° (X r)
ono

for n =I. For che remqining a 's the integ:ation of (39) yields
inn

2Cm Xmrom+ I i (Xmnro

a mn [(nlro) I2. 2 f,( lo (41)
X( r)2 n2]J Ar

By substituting (26b), (33) and (34) into (41) one obtains

.2

InXlo (42a)ro

for m>_l and_•~2 .T 211r Cos (mHI/2) 4b

a ca
•nn o00

for w2_1 and n>1. From (12) and (32)

rr)- .E imuon ,., , . 0 (45)

13



,.. Using the orthogonality properties of the Bessel functions and the cosine
functions, the b 's can be evaluated from• # r

rJm(Xnr)dr cos m8d6
b 2HO o 0 (44)

mnn

(Kr°0 r°0 2R

rJ 2 (X r )dr f/ cos 2mede
'f m ms

0 0

The integration of (44) yields

b = 2He (45a)00 xro
flc0

b = 0 (4Sb)

for m2_O and n2_1.

For X00 - 0 equation (IS) reduces to

00 -aoo b f or, (46)o 0 C

the integration of which is
t

a - f(t) + K boofft(t)dt + B (47)Ol (47)0

From the initial condition equation (23), one sees that B must equal
zero, For the remaining X 's. the general2solution of ()can be
obtainad by using the inte•atng factor 9ft

co
The use of this factor results in

•,2 Ic t 2 K2

-41 tf 4M
"-a t 0 -- . -f(t)4 t.B •4

0. (48)

One also sees from (23) that the B. 's must equal zero. The integration
of the right hand side of (48) by parts yields

--Al-o0 t
S= f~wat

o (49)

'14



'Me substitution of (25), (32), (40), (42), (45), (47) and (49) into givws
t 00 x- t t

n= e on cp x on zp-- t
T = 2" f(t)dt + F e

lp cr°lo - JoX (on r o

2 K

J(Xr -o -la
xf(t)dt j O(Xorr) +n P, In

n= 1 J'n T 1] (xi nro

Jt 2 !ý-t O o 22-
xi e f -(t)dt J1 (Xlnr) cos e-2 12=2 n-1

2 -m--t K

cos(mllj2 e Mnc eCjPf c t
• -• X .. . . .2- -Z . . . . . - ! ( t ) d t( r) 2 m Jm (Xnro)

x M(XMI r) cosM (0)

where f(t) is the tima depondort portion of (1).

11I. NW RICAL RE'SULTS

For simplicity and generality, the derived temperaturo field
equstion will be numerically evaluated in terva of the followintg
dimnsionless quantities

• ;;•r to1~ , t
0o (01)

83 K% T T~j~~

0

-k7
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In addition, (1) is approximated by the following Fourier series:

f(t) L + C + d1 sin (52)
0 0

If (1) were used in evaluating (S0), the integrals would have to be
computed numerically. Since the use of (52) allowed for the direct
integration of these integrals, such a representation is both logical
and convenient, regardless of the number of terms required for accuracy.
All of the calculations were carried out by using a UINIVAC 1108 digital
computer and the number of terms used in evaluating the double series
solu*ion were such as to insure at least three digit convergence.

Figures 2, 5, and 4 are plots of the radial temperature distribution
for variol-3 values of 0 , t and 0. A comparison of the temneratures
calculated usinc, (50) and those calculated using CINDA-3G2 , a finite
differencing he t transfer computer program, shows a five percent or less
differenc- in the calcuiated temperatures. Approximately ninety secondsof machine time 4s requiredtto calulate the radial tempexatures using(50) for psiied values of 0 and t and two values of 0.

IV. CONCLUSION

The analtical expression "-f the transient temperature fie)d in an
isotropic, homogeneous, fin2-e length, solid cylinder whose laeeral
surface is subjected to the heating by a nuclear thermal radiation
en,,,ironment has 'een derived. This expression provides a convenient
means for Lhe nondimealsiona. representation end parametriL analysis ofthe temperature field in the, cylinder, In addition, this temperature
equation can bu used ýn tue analysis of thos- effects dependent on
temperature or temperaturm. .hange, e.g.. thermal stress in a cylinder.

: 2
J.D. Gaaki, 12MyZer 1noroved 84rcZD r igAa

3rdC-e-erion&W-t M TI-AP-6?..28?, October 20, 9679 Chryaij
CJprtion DC~s NOW~ O~r~gwo Louisiana.
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GLOSSARY OF TERMS

a = Coefficients defined by (38) and (39)mn
b= Coefficients defined by (44)

c = Specific heat

ff(t) = Time dependent portion of (1)

h = Half length of cylinder

Sr,O,z = Cylindrical coordinates

r = Radius of cylinder

r ,t ,T Dimensionless variables defined by (51)

t= Time

t = Rise time of nuclear thermal pulse0

A A, B
SUnknown coefficients in (24)

n.Br Cm, Dm

" C = Coefficient defined by

Cm = Coefficient defined by
H,H(t) = Time dependent irradiance of nuclear thermal

value

H = Maximum irradiance of nuclear thermal pulse
4 0

J (xW, Y (X) = Ordinary Bessel function of argument x

J 1 (x = dJ(x)m TO
dx

T,T(r,e,t) a Temperature in cylinder
ToT (r,O) a Part of solution to
0: 0

0 = Dimensionless variable defined by

K a =Thermal conductivity

Separation constant of (13)

r Density

n a Part of solution to (3)

Part of solution to (3)

" !6
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