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1. Introduction

The design of structures reguires that members of the structure be
selected with the capacity to perform under the anticipated loading con-
ditions. The selection of member geometry is often fairly simple, once
the critical loading conditions have been established. However, there
are cases, particularly where the member geometry is complex, that the
selection of an optimum member configuration is Aifficult. TIn these cases
it is of interest to investigate the possibility of using optimization
techniques which can predict the optimum member configuration directly.
The use of direct optimization techniques could also be particularly
advantageous if the maximum permitted stresses are a function of the member
geometry and loading. Probably the most common situation where this inter-
action between allowable stress and member geometry occurs is in column
design, where the critical buckling stress is a function of length and
the rardius of gyration of the section. For most applications the optimum
configurations are tabulated in handbooks and the design engineer can ocuickly

select optimum sections.
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When new design criteria are developed it is often necessary to
develop new information which will ultimately be tabulated for the practicing
engineer who wishes to avoid the tedious calculations required to select
optimum sections. In this paper we will investigate the possibility of

using geometric programming methods to optimize the geometry of a pitched

B

tapered beam subjected to uniformly distributed loads. The beam geometry

o g ol

is shown in Figure 1 and is characterized by the span, 2L, the width b,

the radius of curvature R, the heights at the center H and Hc’ the

Shnai Al

height at the support Hs’ the roof angle B, and the slope of the lower

surface ¢.

In this paper we have chosen to optimize the design of the pitched
tapered beam with respect to volume, Fox (1] presented a computer program
for minimizing the volume of beams using a technique that required s
detailed understanding of the constreints and employed & rather arbitrary
fixed-step search technique to move along constraint surfaces until a
minimum volume was achieved, This method provided optimal designs in many
cases but because of the arbitrary step sizes used in the program it can
be shown that the gttaining of minimum volumes 1s not always ensured,
Since this program was developed it has been shown by Barrett et al, {2]
that the tensile strength perpendicular to grain of timber is not inde-
pendent of member geometry as has been previously assumed. In particular,
given a set of design parameters Xy which characterize the beam geometry,
the stresses and deflection are checked using formulee normally specified

in bullding codes. Stresses and deflections so calculated must not exceed




the maximum (or allowable) values. These relationships can, therefore,

be expressed in the form of inequality constraints
. <F,. 1,
os(x;) <Fy (1.1)

where Uj is the computed stress component and Fj is the maximum
allowable value for that stress component., In addition to stress con-
straints, deflection constraints are usually employed to keep the
deflection D of the member below & specified fraction of the span and

accordingly the constraint will have the form
D(xi) <as (1.2)

where  1is the appropriate fraction and S is the beam span.

In general, there will be other relations which control beam
geometry. For example in beam design often the ratio of beam height to
width is restricted to satisfy lateral stability requirements. In the
cage of the pitched tapered beam there will be requirements for a minimum

length of tangent on the beam lower surface., These constraints can be

written in the form

fj(xi) <1. (1.3)

The allowable tensile strength perpendicular to grain for pitched

tapered beams is given by

e

S W=

PRIy e
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where b is the beam width, H the height at the centerline, Rm the

radius to midheight and ¢ the angle in radians between the centerline

and the tangent point. The allowable stress according to Eq. (1.L4) is
generally lower than the 65 psi used previously, thereby requiring

modification of the beam configurations which have been tabulated in [3].

R e

The optimal beam geometry will be found by formulating the
optimization problem as a generalized geometric (signomial) programming
problem. In the next section the detailed engineering formulation of
the problem will be presented. The signomial programming formulation is
derived in Section 3 and in Section 4 the results of a few sample

designs are given.
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2. Eggineering,Considerations

T

-

Given specifications for the uniformly distributed design dead
load @y and snow load (g5 the total span 2L, and the roof angle B,

the design engineer must develop a beam of adequate capacity. The

Socicnta g
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capacity of a beam is assessed by evaluating stress, deflection and geometric

criteria which are normally specified by building code authorities or

iy e 0 - oA

dictated by manufacturing requirements. For this paper the design

e o g

: criteria for allowable shear and bending stress, Fs and FB and the

deflection constraints are those specified by the Canadian Standard

Al i bt
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Association Standard CSA 086-1970 {4]. Currently the allowable tension
perpendicular to grain stress Fr’ permitted in Canada for Douglas fir,
dry service condition and normal load duration is 65 psi, It has been
shown that this allowable stress is not adequately conservative for large
beams and for this paper the allowable stress shall be that recommended
by Barrett et al. [2].

In design the engineer strives to produce a minimum cost structure !
consistent with the requirements for public safety and protection of
property. This may be accomplished by minimizing the volume of material
used in the members. Accordingly, in our optimization problem the
objective function to be minimized is the volume of the beam subject to
the design constraints developed below.

There are constraints on the bending stresses at the beam center-

line and tangent point (TP, Figure 1), the shear stress at the support

St e L

(A, Figure 1) and tension perpendicular to grain stress at the centerline.
The specific form of these congtraints for the pitched tapered beam
subjected to & uniformly distributed load is as follows.

For the bending stresses og» We require op < FB where FB is i
the given allowable bending stress. Bending stresses must be checked at
two positions, at the centerline and at the tangent point. Therefore at %
the centerline the constraint has the following form

&M

C
o, =5 (1 +2.7 tanp] < F (2.1)
Bb2 B._B

it e el a e e bl
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where Mc, the bending moment at the centerline is given by

mL2 '
i Mc =35 - (2.2) .
] A

Similarly, the bending stress at the tangent point is given by

6
= _& {1+ 2.7 tan B] < FB (2.3)

where MT’ the bending moment at the tangent point is given by

Mp = M, - R sin2 Q/2k . (2.4)

§ Here,
H, HT = beam heights at centerline and tangent point, respectively,
inches,
= half-span, inches,
b = beam width, inches,

roof angle, degrees,

w
i

uniformly distributed load, pounds per lineal foot.

€
I

The beam loading tends to increase the radius of curvature of the

beam, thereby introducing stresses in the radial direction. The magnitude

of the tension perpendicular to grain stress o is given by
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6Mc
- < 4
or-Krbﬂngr (2.5) _ ;
where 3
H g 2 ;
Kr = A + B(ﬁ—) + C(-ﬁ—) (2.6) i
m m ‘
and

R, = radius to midheight (R + H/2), inches

A,B,C = functions of B, tabulated in [L].

The shear stresses T at the support are required to satisfy the

relation 1T < F and this constraint is formulated as follows
- s

-2 N
T2 bH, < Fg (2.7)
where
v = ?% (2.8)
and
HS = beam height at the support, inches
v = shear force, pounds

A constraint on the midspan deflection of beams is normally imposed
to prevent excessive deflection which could damsge ceiling materials. The
maximum allowable deflection Smax’ is usually expressed as a function of

the total span. The corresponding constraint in our case is

"
- %L
= 28T ¥ < ®nax

where
Y=02+08H/M , (see [4]) (2.10)
I=bi/12 (2.11)
and
E = modulus of elasticity, psi
Hc = height at centerline for the double-tapered component of

the beam, inches.
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The final constraints are constraints on geometry. The first is

introduced to ensure that the tangent point (T.P., Figure 1) is

positioned at an adequate distance from the end of the beam. This
constraint is required to prevent springback when the beam is released
from the clamps after curing of the glue is corplete. For convenience

the constraint is formulated as follows

L - R sin ¢ > oH

where ( 1is a given constant.

To complete the engineering formulation it is necessary to specify
the allowable values to be used in the stress and deflection constraints.
These values depend on the species of wood used in the beam. 1If

Douglas fir is used the allowable values are as follows

Fp = 2760(1 - EOOO(t/R)Q) (psi)

t = lamination thickness, inches.
\-0.2
K(bHRm@,

190

7 is in radians)

where we assume £ =




The above formulas for FB and FS include a 15% increase in allowable
stress for snow load conditions.

Firally, the radius of curvature R 1is constrained to be greater
than or equal to 330 inches so that excessive stresses will not be
introduced when the beams are fabricated.

The variable portion of the half-beam volume, to be minimized, is

given by (see Figure 1)
vV = Lb(HS + Hc) + bR (tan ® - Q) . (2.17)

The total half-beam volume is equal to V - Lgb tan B.
This concludes the engineering formulation of the optimal design

problem.

3. Signomial Programming Formulation

In this section we present a signomial programming formulation of
the optimal beam design problem. The main difficulty in reformulating
this problem as a signomial program is that some of the relations appear-
ing in the preceding section are equations, whereas signomial programming
constraints must be inequalities. As will be shown below, some of the
equations of the engineering formulation are used to eliminate variables
and others are converted into inequalities in such a way that hopefull -
they hold as equations at an optimum. Another minor problem arises from
the appearance of trigonometric functions in the design formulas. Taylor

series approximations of these functions are used below to obtain

generalized polynomials as required.

RN RPN - VURPHONE
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Note that converting an equality constraint gi{x) = 1 into two

inequalities g(x) < 1, gi{x) > 1is not practical, since the algorithm

used for the numerical solution is based on the assumption that the é
interior of the constraint set is nonempty. For this reason, equalities
can only be converted into one-sided inequalities. The sense of the

inequalities is usually determined by physical or design considerations

(see, for example, [5]). Unfortunately, there are cases where these

considerations are quite complex and cannot be observed by simple

inspection of the constraints. Conseguently, a trial-and-error approach

is necessary. Simple examples can, however, be constructed showing that
not every equality constrained problem can be solved by converting

E: equations into single inequalities.

b e 03 e St P . o inrfcil i i b

Let us derive now the signomial program for the beam design in
detail. The volume of the beam as given in the engineering formulation
-1 is

4 V= Ib(H, +H) ¢ bR (tan ¢ - @) . (3.1) .

2 Using the identity

i, + Ltan ¢ = H, + L tan B (3.2)

and a three-term Taylor expansion of tan ¢

~ 1 2 5 o
t = + = = ) 3
an @ [} 5 ; + 15 o) \5~3) .;
we obtain the volume to be minimized p
V= 2LbH_ - L°b tan B + Ibyp + % 120 4
[
2 2 5 1. .2 2 .25 _
f—lSme +3bR<p5+—15bch (3.h)

10
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where H_, the beam height al the support, his been eliminated. §
- The variable H_ is defined bty the identity b
. i
. L. - K ~
Ho= H o~ K - - - . Z. :
R fos G (2.5) f

in converting this rela.ion into an ineguality we can ensure tha* in an

o

optimal solution the inequality will hold as sn cnuation by writing

g
. ; 1 . \ 4
i s e Ryl - ————— % !
Hoooof Ril cos © 3.6
H Since in (3.4) we ~ry to lower the value cf HC as much as possible, 3
X k
% the inequality in (3.4) will be tight in an optimal solution. Supstituting N %
3 1 ~1 2 5 4 1k
: IR B L A L R (3.7)
A cos ¢ 2 o ea - :

inte (*.7} and rearrainging yields

- ‘.
: - - }
i 5ok i1
-t H o+ = Ry + == B¢ o= T i LS
: a 5 R4 fh- AR 720 Janst - \/-v)
or
IS 1 -2 10 2 n ‘
. 2R Tt H- =R ¢ . - = o - o< 1. \?.y)
Lo o4 =t —_
3 The bending stress —onstruint a‘ centerline is given by (7.1), 2.2}
i‘ : 1:
. and (2.1%) as K
. B 3
7 o M A1 s 2. Ttan 8) ¥
s L el R PR .\ 2 . | -
i = — < 2T00[1 - 2ecd (2] i%.10)
“ bH .
or o -2 2.,-2 y
Do T v cocee R L (%.11)
where .
11 5
E.
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(1 + 2.7 tan plu. . (3.12)

r= L @700

Turning now to the bending stress constraint at tangent point we have

from (2.2), (2.3), (.4) and (2.13)

2 2 .2 , \ 2 .
o OL _ OB sin @3l * 2. Ttan B . p7eor) - pooo(R)7] 17130
2L o4 g - R
bir,
or
N - ) o _o )
FLdHTg - TE® sin“p H® + 200Ct°RC . 1, \5.1h)

The beam height at tangent point H is related to the other beam heights

T’
by
Hoo= (1 - E_EM) H o+ (R_S.M) no. (5,15
T L c L S
From (3.2} and (3.9 we obtain
i, =H+ R -Rcos @ - R tan 8 sin ¢ . (3,16

Instead of convertiag (3.16) into an inequality and guessing its sense,

we substitute (3.17) into (3.14) and by letting

~ 1 .3 .
sin o = @ - zv * iéa ¢? i%,17)
~ I )
cos ¢ = 1 - % g+ ,,lh (P)* (3,18}

we write the bendiny stress constraint at tangeni point as

L K [dadn it oA
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2 -2 1 -1 4 -1 tan -1..5 o _-p
TL°H +l—2—Hchp +2 tan g H Rm+76QHLch + 2000t°F

2ALE

6 2.2

7 2
- T - -
5 + 2.1 tan ﬁ) N tan g H 2R %

+ 500t% tan 3 H_em Is H—dRew

4 2
+ 200062 1RGP + 2—————@00%5 tan B yolpled + tan? g 2000t?H G

3 . 2 2
; - tc - -
. 3/ o 8) 2000t y-2 b y-lp?

B !

~ oz - R / - - 2 . -
20002 tan BH S - (I + tanfp) 0 oRPGE - (2= T - tan” By 22 b

t

- z
an H qu’

Lovtig - o 8 wel
]

A

_ 2
BB 2Py L 20008 ylp et L kocot? tan p HR N

§
¥

2 2 2
-1 - - ) S -
2000t Utan By izl o 21 tanhsg 2000t° o 2@6 <1, (3.19)

+ Next we consider the constraint on tension perpendicular to

grain stress. We have by (2.5), 2.£) and (2.1k4)

6M A £M B 6M C
— H + —L H-er;l =5 Rf < _—K_‘?-g (3.20)
\bHR_¢ )"
m
or
6M»:‘5‘_ gol-1g0.2. 0.2 | M B H-O.BR-O.BCPO.E . oM HO.ER-1.8®O.2 <1 :
bO'SK m bO'SK m ;678; m - :
. (3.21)
! 5
LR where i,
3 1 5
? = —_— B
i R, =R+ ZH. (3.22) 4

;] Direct substitution of (3.22) into (%.21) would yield a nonsignomial

constraint and, therefore, should be avoided. Consequently, we must treat

(3.22) as an inequality that has to hold as an equation at optimum. !

13
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Since Rm has both positive and negative exponents in (3.21) the
sense of the inequality to replace (%.22) cannot be determined in advance.

Multiplying, however, the left hand side of (3.21) by the identity

(R + H/2)/Rm vields the new tension-perpendicular-to grain stress con-

straint

where all the terms on the left hand side are positive and the exponents

of Rm are all negative. Now we convert (3.22) into the inequality

Note that the above considerations are valid if the inequality (5.23) is
tight in the optimal solution. It may happen, however, that both (}.23)
and (3.25) are strict inequalities at optimum. In this case the sense

of (3.25) must be reversed (such a reversal was in fact necessary in one

of the cases solved).

The shear stress constraint is formulated from (2.7) vy using

(3.5) and (3.3). We obtain

T TR TS e e R RO e
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Sy,

5

WL y-1 -1 1 =1 2
( + L tan pH_ - LgH, 'BLthc - Lo

8bF

S

HY <1, (3.26)

The deflection constraint is formulated from (2.9), (2.1¢), (2.11) and

(2.16) as
mi” + P < (3.27)
where
n = -O—'-E%giﬂz . (3.28)

Multiplying both sides of (3.27) by H, and substituting (3.2) yields

-2

-3
an - ML tan B Hc

3

+ L tan © H; + Ln H;2

<H -Ltenp + L tan @ (3.29)

and by (3.3) we obtain

~3 1 o2 5..-b -1
on H™ + nleH -~ + 3 nLqPHC * g n LetH,T + Lotan g H

-k -1 1 -1 2. 5. -1
-nLtanp H = - LgH -5Lq>3HC _BLCDHC <1. (3.30)

The constraint on the geometry of the beam given by (2.12) is rearranged to

Q 1R s
TH+*TRsing<1 (3.31)

and by (3.17) it becomes

o] 1 L 1
ZH*+ 7RO 6LRQ)3+120LR¢’551' (3.32)
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The last geometry constraint, R »» 330,is not treated explicitly, since
the numerical algorithm for the solution of the beam design problem
requires upper and lower bounds on ali the design variables, thus the
value 330 will be used as the lower bound on R.

The optimal beam design is obtained (after specifying the
appropriate constants) by solving the signomial program of mirnimizing
(3.4) subject to the constraints (3.9), (3.11), (3.19), (3.23), (*.25),
(3.26), (3.30) and (3.32). Tne variables to be determined by the
optimization are H, Hc’ R, Rm’ V and @. Note that an optimal solution
to the signomial programming formulation of the design problem is
acceptable only if the inequalities (3.9),and (3.25) hold as equations
at optimum.

A few sample problems of optimal beam designs were solved by
the computer code GGP, based on the generalized geometric (signomial)
programming algorithm of Avriel, Dembo and Passy [5]. These optimal

design solutions are presented in the next section.

L. Sample Designs

Optimal beam configurations are sought for three different

spans and loading conditions. The specified bLeam parameters are shown

in Table 1.
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£ Table 1

[} & y

3 K Input Parameters for Beam Optimization N

: Lamination

i y Roof Angle Half-Span Width Thickness Load

¢ _é Case B (degrees) L (inches) b (inches) ¢t (inches) o (1b/ft)

k] E~-

1) )

. é 1 9.46 360 a. 15 1.5 1200 1
L 2 9.46 240 £.75 1.5 1200 :
';
. 3 9.46 120 3.00 1.5 400
'

8wty
P RS ST TE

For the above roof angle the corresponding constants are A = 0.0367,

A

B = 0.07T%, C = 0.213. In addition, the modulus of elasticity is assumed
tobe E = 1.9% x 106 psi and a value of o = 1.5 is taken in (2.12).

Optimal solutions were obtained by the computer code GGP in less
than 10 seconds of CPU time on an IBM 370/163 computer. The optimal

5 design variables are listed in Table 2. }

22 e N

Table 2

pa— oo pog >

Optimal Design Variables j

;‘ 7 Volume ) H He K Rp

- 5 Case ft3 degrees inches inches inches inches
1 184.32 3,64 T70.7 68.3 1063 1099
2 71.05 5.01 50.3 L7.0 860 886
3 5.93 A.16 19.5 17.6€ 330 3L0




It is interesting to observe the binding design constraints at optimum

for the above cases (in addition to those which must be tight because

they were originally equations).

Table 3

Binding Design Constraints at Optimum

Case Binding Design Constraints
1 Tensjon L grain stress (3.23); Shear stress (3.26)
2 Tension L grain stress (3.23); Shear stress (3.26)

Bending at tangent point (3.19); Shear stress (3.26)

N

In Cases 1 and 2 constraint (3.23) is tight at optimum and consequently
(3.25), the defining relation for R , is also satisfied as an equution.
In Case 3, however, (3.23) is no longer binding and at first we cbtained
a solution in which both (3.23) and (3.25) were strict inequalities. We,

therefore, reversed the sense of the inequality in (3.24) and (3.25) to

R >R+ % H (4.1)
and

RR +%I{R <1 &.2)

respectively, and (3.25) was replaced by (4.2) in the program. 'This change

resulted in the above listed optimal solution for Case 3 in which, of

course, (4.2) held as an equation.

s
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FIGURE 1.

Pitched Tapered Beam
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