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SUMMARY

ConLemporary aerospace missions inclhding those

involving space flight, rotor wing vehicles, VTOL and

STOL airctraft as well as high speed. low altitude flights. I -

have intensified the probJPms associated ,ith vibration

induced visual decrements. Aiv n

Recent investigations have demonstrated that visual

losses are a function not only of input load and frequenLy,

but also ot" viewing distance. A mechaniLsm involving at

least partial visual tracking of distant targets at low

frequencies to account for these data has been proposed

earlier by this author. M

The tracking hypothesis had been criticized since

it did not consider the nossibility of resonance effects J

either in terms of seat to head or head to eye transmission. 1 2

This experiment was devised to measure the transmission

across a reasonable vibration spectrum through the body

to the eye, and to relate transmission, resonance and

eye movement to visual performance. "

Fifteen human volunteers were subjected to vertical

whole body vibration from 5 to 50 Hz at +0.5 to +2.0 Gz

seat input. Skull movement was measured with a miniature

accelerometer, while eye movement was monitored by

photographic imagery of a corneal reflection spot. These

measures, accomplished simultaneously, and for each

vibration condition, were used to determine seat to skull

and skull to eye transmission ratios.



Consistent results indicate that the vibration trans-

mission ratio from seat to head monotonically decreases

from 1.6- at 5 Hz to 0.21 at 50 Hz. The eye however

apparentJv follows the skull movement in a passive manner

except in the vicinity of 18 hiz. A peak in the trans-

mission ratio curve of 1.33 indicates ocular resonance

at Lhis frequency.

Measured eye movement amplitudes correlated highly

(r = .92) with visual acuity decrements when viewing a

nearby target, but poorly (r = .42) for a distant tat it.

Although the 1.33 amplification factor at the 18 Hz

resonant frequency contributes to total eye movement, it

does not explain the viewing distance dependency of visual

acuity.

The amplitude of apparent movement of a fixed target

was psychophysically measured at two viewing distances.

Perceived movement at frequencies greater than 20 Hz was

proportional to the viewing distance, indicating thaz

the induced eye movement was primarily rotational. At

lower frequencies the proportionality does not hold.

Although this nonlinearity might be explained on

the basis of a variable phase lag between translational

and rotational components of the eye movement, it is more

parsimonious to accept the partial tracking hypothesis

since the latter can account for both nonlinear effects.

Furthermore, the majority of subjects introspectively

reported that they did indeed track the target at low

frequencies.
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A.A

I. INTRODUCTION

The fact that various physiological stresses

encountered in the aerospace environment including vibration

can result in a decrement in human visual performance has

been recognized for some time (Wulfeck et al 1958).

Given this qualitative statement, research and develop-

ment in the field of the aerospace sciences must take two

directions. The first, which to a certain extent is

dependent on the second, is in the area of vehicle design.

Obviously, optimum desig., would eliminate or reduce

those vibrations which would detract from the efficiency

of the system, not only in terms of mechanical factors,

but also to remain within the survival, comfort, and

performance tolerance limits of the human passenger-

operator. This then represents the second direction; the

determination of the permissible limits of vibration.

For several reasons it is inappropriate to demand

of the aerospace engineer that he eliminate all vibration

from the system. Not only would this be a qualitative

impossibility but the very attempt to do so could be

prohibitively expensive, not merely from the fiscal aspect,

but also in terms of possible loss of efficiency of the

vehicle itself. The time involved in designing the more

sophisticated vehicle cannot be measured in money and

furthermore such increas. complexity can, in itself,

result in further pyramiding of complex factors.

11



Moreover, such efforts may, under practical.

conditions, be completely unnecessary. That is to say,

in terms of vibration, as in any other stress modality,

there are acceptable levels that can be tolerated by the

human operator without ill effects or decrements in

performance (Magid 1960).

The task of those involved in the medical aspects

of the aerospace sciences Is that of the determination of

three basic parameters regarding the effects ot

vibration in the human. Firstly, we must determine those

levels of vibration stress that are readily tolerable

by our crew members without seriously compromising safety

or performance. Secondly, we must. in the laboratory, reach

beyond this point in order to carefully evaluate the

significance of stronger vibration effects, not only to

avoid impossible physical or performance demands upon

aerospace crews, but in order to evaluate the extent of

their capability limitations under these conditions.

Thirdly, we must discover those physical or physiological

factors underlying performance and tolerance limitations

so that they may be eliminated, or at least minimized by

appropriate vehicle design.,

2



II. VISUAL PERFORMANCE IN A VIBRATING ENVIRONMENT

Qualitative observations of visual decrements

associated with vibration have been reported and

recognized as a problem in aviation medicine (Chiles and

Custer 1963, Mercier 1962, Wulfeck et al 1958) but serious

attempts to derive quantitative data have appeared only

i in the past decade.

Lange and Coermann (1962) reported on their study

of visuai acuity under controlled sinusoidal vibration.

They carefully explored thie effects of +Gz* vibration

in increments from one to twenty Hz and considered only

the subject vibrating/target stationary display. A

decrement in visual acuity that seems, on the surface, to

increase in a linear fashion with frequency, on close

inspection turns out to be a function of the relationship

between frequency and amplitude. If the reported derrements

in visual acuity are computed for the "G" forces involved,

without regard to frequency, then a minimal effect is noted

at frequencies less than 4 hz while at higher frequencies.

there seems to be some effect on visual acuity that may

actually remain for a short period following the vibration.

The resonant frequency for the entire human body

is usually taken as being in the vicinity of 3-8 Hz, with

*Standardized terminology designptes "Z" as vertical, "Y"
as lateral and "X" as anterior/posterior acceleration
axes.

3



K;;

5 Hz a reasonable average (Magid et al 1960). Harris et

al (1964) reported on their work involving visual tracking

performance under 5 Hz +G stress. Although visual tracking

represents a relatively complex psychomotor function

rather than a single visual parameter, it is nevertheless

pertinent to this discussion. With frequency fixed at

5 Hz, their independent variable was the amplitude of the

vibration, the dependent variable being performance

compared to baseline state testing. Although their data

hints strongly at decrements in performance at any

amplitude of vibration, only at higher test levels were

their results statistically significant. The description

of their experimental procedure is incomplete and neither

the axis of vibration nor the subject-target phase

relationship is specified, nevertheless it was demonstrated S

that moderate vibration is tolerable without decrement

in tracking performance.

Taub (1964) also attacked the problem from a

performance standpoint, by presenting his subjects with a

"dial reading task" under many conditions of sinusoidal

vibration. His experiment was quite broad, covering many

variables never previously investigated. With the subject

in a semi-supine position, he evaluated performance at 6,

11 and 15 Hz in the X, Y, and Z axes, at varying levels of

4
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acceleration, with and without helmet restraint with

both an "easy" and a "difficult" task. The display was

attached to the "shake table" and vibrated in phase with

it and the subject. Although results with the "easy"

task were inconclusive, a significant loss in performance

directly related to the acceleration or amplitude of

vibration (and not frequency) was noted for the

difficult task when the head was not restrained.

The use of -. helmet and restraint to restrict body

movement produced mixed results. Although helmet- restraint
J

attenuated the visual loss during X axis vibration, it

was ineffective with Z vibration and actually resulted

in further performance loss when vibration was at 11 ana

15 Hz in the Y axis. 4
An unpublished inves.igation by Ohioaum and

O'Briant (1970) involving the effects of a helmet also

produced mixed results. At low frequencies (3-10 Hz)

the wearing of a helmet produced greater visual degradation

than was experienced without the helmet. At frequencies

above 12 Hz the visual losses were considerably reduced

when the subject wore a helmet, apparently due to

Sattenuation of the head vibration at these frequencies.M

Dennis (1965) contrasted the effects of Z axis

subject and display vibration. His targets were a

series of numbers subtendinZ 4.4' of arc and subjects

5



AR M - -TýP

!A

were required to read them in a limited time period. His

estimate of performance degradation was based on the

increase in errors during vibration tests compared to

"baseline static performance. Target versus subject

vibration situations were equated by producing identical

j angular velocity and Pmplitude relative to the visual axis.

At 6 Hz, which approximates the frequency for

whole body resonance, target vibraticn resulted in a

greater decrement of visual performance than did subject

vibration. However, at 14, 19 and 27 Hz, subject

vibration resulted in greater visual loss than did display

vibration. Dennis draws these conclusions: (1) Subject

vibration at frequencies in the 14 to 27 cps range cause

greater visual loss than at lower rates because of the

resonance of facial tissues; (2) Whole body resonance

does not affect the eyes or vision as such; (3) The

adjustment of eye movements by labyrinth reflex is quicker

and more reliable than by pursuit movements.

In 1965, Clarke et al repo-ted on the effects of

+Gx vibration at 11 Hz in combination with X axis bias

acceleration. In this study, the visual task was similar

to that uscd by Taub (1964) and vibration of subject

and target were in phase. Although instrumental factors

(harmonic distortion in their apparatus) may have had

some quantitative effects on their data, the experiment

is quite-significant. The compound stresses of

acceleration and vibration did not summate, as might be

6 --
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expected; instead visual performance and subjective
tolerance was actually greater than for either stress

alone. They used as their maximum stress 3.85 Gx combined

with +3.0 Gx so that instantaneous Gx was always positive,

varying from 0.85 to 6.85 Gx. Although it apparently

has never been confirmed, it would seem that the

transition from positive to negative G is at least as

significant as the G load itself.

One must be cautious however and be aware that X

axis effects are not necessarily the same as those

produced in the more troublesome and more frequently

investigated Z axis.

Rubenstein and Taub (1967) evaluated the

suitability of various instruments for use in evaluating

visual acuity under vibration conditions. They rejected

the more common clinical tests as well as the Lange and

Coermann (1962) device as being either unsuitable or

unsafe and developed their own technique based on detection

of a fixed vernier separation under conditions of varying

illumination.

S~The effects of three frequencies (5, 8, 11 Hz) of

the whole body Z-axis vibration were investigated with

subject only vibrating, as well as when subject and

display vibrated in phase. As an additional factor,

they evaluated the effect of a bite-bar to insure in

pnase vibration of the subject's head. When the

7


