THE EFFECTIVENESS OF AN INTERACTIVE MAP DISPLAY
IN TUTORING GEOGRAPHY

Allan Collins
Marilyn Jager Adams
Richard W. Pew

August 1976

Sponsored by
Office of Naval Research and the
Advanced Research Projects Agency

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.
The Effectiveness of an Interactive Map Display in Tutoring Geography

Allan Collins
Marilyn Jager Adams
Richard W. Pew

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts 02138

Expiration Date, September 30, 1976
Total Amount of Contract - $187,000
Principal Investigator, Allan M. Collins (617) 491-1850

Sponsored by:
Office of Naval Research
Contract Authority No. NR 154-379
Scientific Officers: Dr. Marshall Farr and Dr. Joseph Young

Advanced Research Projects Agency
ARPA Order No. 2284, Amendment 5
Program Code No. 61101E

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the Office of Naval Research, or the U.S. Government.

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
The purpose of this study was to evaluate the teaching effectiveness of different aspects of the SCHOLAR CAI system. The experiment compared how well students learn using SCHOLAR with (a) the interactive map display of Map-SCHOLAR (b) a static labeled map, and (c) an unlabeled map. The results of the experiment showed that the students learned significantly more with the interactive map display, than with either the labeled map. This study suggests that interactive displays might be an effective way to present geographical information in educational settings.
A new method called backtrace analysis was used to assess the effectiveness of specific aspects of the tutoring strategy and the map system used in the experiment.
The Effectiveness of an Interactive Map Display in Tutoring Geography

Allan Collins
Marilyn Jager Adams
Richard W. Pew

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-76-C-0083, Contract Authority Identification Number, NR 154-379. We would like to thank Nelleke Aiello, Susan M. Graesser and Barbara N. Freeman for programming the system and carrying out the experiments and data analyses described.
ABSTRACT

The purpose of this study was to evaluate the teaching effectiveness of different aspects of the SCHOLAR CAI system. The experiment compared how well students learn using SCHOLAR with (a) the interactive map display of Map-SCHOLAR (b) a static labeled map, and (c) an unlabeled map. The results of the experiment showed that the students learned significantly more with the interactive map display, than with either the labeled map or the unlabeled map. A new method called backtrace analysis was used to assess the effectiveness of specific aspects of the tutoring strategy and the map system used in the experiment.
INTRODUCTION

In developing SCHOLAR, Carbonell (Carbonell, 1970; Carbonell and Collins, 1973) took a first step toward a computer assisted instruction (CAI) system that is capable of conducting general tutorial dialogues with students. In SCHOLAR, knowledge is not stored as text, but in a precisely structured semantic network of interrelated facts and concepts (Quillian, 1968; Collins and Quillian, 1972a). Every concept used to describe a given concept can itself be described elsewhere in the network. Thus, in a nontrivial sense, the program can understand the concepts it uses. SCHOLAR also has different subroutines that use the structure of the network to formulate questions for the student, evaluate his answers, answer his questions, make inferences and computations, select new topics for discussion, etc. The attempt is to structure information like a human knowledge, so that the program can use its knowledge as flexibly as a human tutor does.

Because of its inherent flexibility, the system can be extended in a variety of ways. For example, SCHOLAR has been modified to teach different kinds of knowledge (Collins and Grignetti, 1975) and to use different teaching strategies (Collins, Warnock, and Passafiume, 1975). The educational question is which of the possible ways of varying SCHOLAR increase its teaching effectiveness. This
question is being investigated by running systematic experimental evaluations of different system configurations and different teaching strategies (Collins, 1974).

The experiment reported here was designed to test the utility of the map capability recently added to the original SCHOLAR program for teaching geography. The Map-SCHOLAR system was developed to integrate the tutoring of graphic information with verbal information. In view of the evidence that pictorial information may be remembered more easily than verbal information, (c.f. Bower, 1972; Paivio, 1971) we expected this capability to increase SCHOLAR's teaching effectiveness.

Map-SCHOLAR can discuss with the student different maps that change dynamically according to the context of the discussion. To do this, a graphic structure was created which parallels the structure in the semantic network. The elements in the map display can be referred to either by their name, or by pointing to them, or both. Map-SCHOLAR both asks and answers map-related questions and provides relevant map information when the student makes a mistake. In short, Map-SCHOLAR has all the capabilities of the original SCHOLAR with the addition of the map capabilities.

Figure 1 illustrates some of the variety of interactions possible with Map-SCHOLAR. The first panel illustrates how Map-SCHOLAR asks map-related questions,
NOW LET'S SEE WHAT YOU REMEMBER ABOUT THE CITIES OF BRAZIL. PLEASE NAME THE PRINCIPAL CITIES OF BRAZIL NOW BLINKING ON THE DISPLAY SCREEN.

MANAOS SAO PAULO AND LIMA

MANAOS AND SAO PAULO ARE CORRECT. LIMA IS IN PERU, NOT IN BRAZIL. THE PRINCIPAL CITIES OF BRAZIL ARE BLINKING ON THE SCREEN.

RIO DE JANEIRO IS IN SOUTHEASTERN BRAZIL. IT IS ON GUANABARA BAY AND THE ATLANTIC.

BRASILIA IS IN CENTRAL BRAZIL. IT IS FAR FROM THE OCEAN.

Fig. 1 Interactions with Map-SCHOLAR
PLEASE POINTER TO THE FOLLOWING CITIES OF THE AMAZON IN THE ORDER IN WHICH THEY APPEAR BELOW: MANAOS, BELEM, AND IQUITOS. DON'T FORGET TO LET ME KNOW WHEN YOU ARE FINISHED. PLEASE REMEMBER TO TYPE AN ASTERISK * FOLLOWED BY A CARRIAGE RETURN.

**

MANAOS IS CORRECT. YOU DID NOT POINT AT BELEM AND IQUITOS CORRECTLY. THE CITIES OF THE AMAZON ARE BLINKING ON THE SCREEN.

Fig. 1 Interactions with Map-SCHOLAR (cont)
LET'S BEGIN BY TALKING ABOUT THE TOPOGRAPHY OF VENEZUELA.
THE PRINCIPAL LAKE OF VENEZUELA IS BLINKING, PLEASE NAME IT.
I DON'T KNOW
THE PRINCIPAL LAKE OF VENEZUELA IS BLINKING ON THE SCREEN.
LAKE MARACAIBO IS IN NORTHWESTERN VENEZUELA.
THE PRINCIPAL MINERAL IS OIL.
IS THIS COUNTRY COLOMBIA?
YES, THAT'S COLOMBIA
WHERE IS THE CAPITAL OF VENEZUELA?
CARACAS IS BLINKING.

Fig. 1 Interactions with Map-SCHOLAR (cont)
evaluates the student's answers, and corrects his mistakes. First, the dots indicating the location of the cities appear unlabeled on the map of Brazil and start blinking. Then SCHOLAR asks the student to name the blinking cities. When he responds, it tells him which answers were correct and prints their names on the map. Because he erroneously gave Lima as an answer, Map-SCHOLAR pointed out that Lima is in Peru and showed where Lima is on the map. Thus, Map-Scholar gives both verbal and visual feedback to help the student learn the material.

The second panel shows how context affects the map display. The topic is the Amazon, which appears in this context on the map of Brazil, the overall topic. The question asks the student to point at the cities along the Amazon in the order named. The dots for the three cities first appear unlabeled, and only after the student has answered do the labels appear. Unlike the first map, this map shows only the cities on the Amazon and their relation to the Amazon. There is also expansion of detail so that a city like Belem, which was not important enough to be included among the cities of Brazil, is included with the subtopic of the Amazon. Because the map changes dynamically as the context changes and as the student interacts with the system, the student's attention is focused on the relevant information, and questions can be posed in a visual form not possible with a static map display.
The third panel shows the system's potential for tutorial interaction. When the student didn't know about Lake Maracaibo, Map-SCHOLAR showed it on the screen and added the related verbal information about the oil there. This example also illustrates some of the ways in which the student can ask Map-SCHOLAR to clarify or amplify the information given (Collins and Warnock, 1974). For the first question the student both pointed at and named Colombia to ask if it is the country near Lake Maracaibo. For the second question, the student verbally asked where the capital of Venezuela is, perhaps to find out how far away it is. SCHOLAR figured out semantically that the capital is Caracas, and then visually showed where Caracas is by blinking it (it is the double square). These examples illustrate some of the power for tutorial interaction that can be obtained by a close integration between semantic and visual knowledge.

In order to test the utility of the map system for teaching, we conducted an experiment in which each student learned about a different country under one of three conditions: one condition used SCHOLAR on the map system; the second condition used SCHOLAR on a non-graphic terminal, but the student could look at a labeled map of the country; the third condition was like the second, except that the student was given an unlabeled map. Students' learning for each of the three kinds of training sessions was measured by
comparing their scores on a pre-test to those on a post-test given three days after the last training session.

A second goal of this experiment was to investigate how specific aspects of the tutorial dialogue affect students' learning. To study this question, we developed a technique called backtrace analysis. The technique involves marking each piece of information that is discussed according to the kind of exchange involved (e.g., a question requiring a pointing response vs. a naming response). By comparing this data to the student's answers on the post-test, it is possible to identify the kinds of tutorial interactions that most strongly influence the student's learning.

METHOD

Subjects. The initial group of subjects included nine high school students. The study was replicated with nine university students. All subjects were volunteers and were paid for their services.

Design. There were three experimental conditions: a Map-SCHOLAR condition, a Labeled Map condition, and an Unlabeled Map condition. The Map-SCHOLAR condition was run on an Imlac graphic terminal with the screen divided between maps and verbal communications as shown in Figure 1. The student could input questions and answers by a keyboard and an electronic pointer (a "mouse"). The Labeled and
Unlabeled Map conditions were run on a keyboard terminal using a non-graphic version of SCHOLAR called Tutor-SCHOLAR (Collins, Warnock, and Passafiume, 1975). The two versions of SCHOLAR were identical with respect to both teaching strategy and information in the data base, except that Map-SCHOLAR handled all location-related questions in terms of the map, whereas Tutor-SCHOLAR handled them verbally. In the Labeled Map condition, subjects were given a paper map which marked all the places (names and locations) included in the Map-SCHOLAR data base. In the Unlabeled Map condition, subjects were given copies of the same maps, omitting the names of the places that were marked on the maps. For both of these conditions, students were instructed not to mark on the maps. The pre-test, post-test, and the final questionnaire were given in paper and pencil format.

Procedure. Each student participated in a preliminary session, three tutorial sessions, and a post-test session. The first purpose of the preliminary session was to administer the pre-test. The pre-test measured the student's pre-experimental knowledge about the information to be tutored, and consisted of 20 basic questions about the geography of each of the three relevant countries: Argentina, Brazil, and Venezuela. A secondary purpose of the pre-test was to ascertain that no subject was inordinately familiar or unfamiliar with any one of these
three countries, since such inequalities in prior knowledge would confound measures of teaching effectiveness. After having completed the pre-test, the student was given a brief, introductory lesson on a fourth country, Chile, using Map-SCHOLAR. The purpose of this lesson was to familiarize the student with the system and its capabilities or, more specifically, with the kinds of questions he would be asked, the kinds of answers that were expected of him, the kinds of questions he could ask of SCHOLAR, the use of the keyboard and the pointer, and the methods by which he could correct his input errors.

The tutorial phase of the experiment consisted in three, two hour sessions, administered on consecutive days. During these sessions, each student learned about one country in the Map-SCHOLAR condition, one in the Labeled Map condition, and one in the Unlabeled Map condition. Each lesson lasted for one hour. After the student had received one lesson on each of the three countries, the series was repeated. The combinations of countries and teaching modes were counterbalanced and ordered according to a 3 x 3, confounded, factorial design (Winer, 1971, p. 646).

The final session was conducted three days after the last tutorial session. In this session, the student took the post-test and completed a questionnaire on those aspects of the lessons that he had found most and least helpful.
The post-test was divided into three parts. The first part consisted of 36 basic questions (including the 20 that had been on the pre-test) about each of the three countries. For the second part of the post-test, the student was given a map of each of the three countries and asked to label the geographical features indicated. The third part of the post-test consisted of 32 more difficult questions about each of the countries.

Backtrace Analysis. In order to assess the value of specific aspects of the tutorial exchange, we developed the technique of backtrace analysis. This technique involves marking each entry in SCHOLAR's database with respect to the way in which it is treated during a given tutorial session. This information can subsequently be retrieved, enabling us to evaluate the effectiveness of SCHOLAR's various interactive capabilities from the probabilities with which they result in correct answers on the post-test.

More specifically, each item that was discussed in a given session was tagged with information concerning (1) the temporal order, (2) the context, and (3) the training event in which it arose. For purposes of the backtrace analysis, the training events were classified as follows:

a) **True-False Correct** - SCHOLAR presents a true-false question which the student answers correctly. SCHOLAR tells the student he is correct and moves on to new
b) True-False Error - SCHOLAR presents a true-false question and the student answers incorrectly or pleads ignorance. SCHOLAR points out the correct answer and goes on.

c) Name Correct - The student correctly names a geographical feature(s) in response to SCHOLAR's request. Each answer among a set of answers is tagged individually. This category subsumes what and where questions as well as fill-in-the-blanks and naming requests by SCHOLAR.

d) Name Error - The student incorrectly names or fails to name a geographical feature when questioned by SCHOLAR.

e) SCHOLAR Error Correction - If the student completes a fill-in question erroneously, SCHOLAR infers the basis of the student's error and then presents new information to distinguish between the student's answer and the correct answer.

f) SCHOLAR elaboration - If the student misses a question, SCHOLAR presents related information at the same level of importance (See Fig. 1). The related material is tagged as an elaboration.

g) Student Question - Information is introduced as the result of a question the student asks of SCHOLAR.

In addition to the above, there were several categories of training events which occurred only in Map-SCHOLAR. SCHOLAR treated these events like fill-ins, but they were
distinctively marked for purposes of the backtrace analysis:
h) Label - SCHOLAR asks the student to name those features
 of the map that are blinking.
i) Point - SCHOLAR asks the student to point to the
 specified geographical features on the map.
j) Label and Point - SCHOLAR asks the student to name and
 point to a specified set of geographical features.

RESULTS AND DISCUSSION

The pre-test scores were examined using a 3 X 2
(Countries X Groups) repeated measures analysis of
variance (Winer, 1971, p. 518). The only significant
effect was due to groups, as the college students
generally scored higher than the high school students.
The number of correctly answered questions, out of the
possible 20 per pre-test, ranged from 1 to 11
(median = 4.67) for the college students and from 0 to 5
(median = 0.64) for the high school students. Neither
the main effect of countries (F(2,32) = 2.62, p>0.05) nor
the interaction between countries and groups
(F(2,32) = 1.36, p>0.05) approached significance.
Inasmuch as none of the subjects knew much about any of
the countries in advance, the difference between pre- and
post-test scores should provide a fair estimate of
SCHOLAR's teaching effectiveness. Moreover, since the
subjects' prior knowledge seemed to be evenly distributed
across countries, the relative teaching effectiveness of the three conditions could be estimated through direct comparisons of the corresponding pre-test/post-test difference scores.

The average increase in the number of correct responses from the pre-test to the post-test is shown in Figure 2 for each teaching mode. These difference scores were analyzed according to a 3 X 3 (teaching modes X countries) confounded factorial design. Whereas neither the effect of countries (F(2,28)<1.0) nor the interaction between countries and teaching conditions (F(4,28) = 2.08, p>0.05) was significant, the effect of training condition was strongly significant (F(2,28) = 6.05, p<0.01). According to a Newman-Keuls test (p<0.01), the Map-SCHOLAR condition resulted in significantly higher post-test scores than the Labeled Map condition which, in turn, resulted in significantly higher scores than the Unlabeled Map condition.

Separate analyses of the three parts of the post-test indicated that much of the effect of teaching modes occurred in the part of the test consisting of map labeling questions (F(2,28) = 14.09, p<0.001). However, a pronounced effect of teaching mode was also obtained for the easier, non-map questions in the first part of the post-test (F(2,28) = 5.85, p<0.01). Although the
FIGURE 2

AMOUNT LEARNED AS A FUNCTION OF THE CONDITION DURING TRAINING

<table>
<thead>
<tr>
<th>CONDITION DURING TRAINING</th>
<th>AVERAGE DIFFERENCE SCORE BETWEEN PRE-TEST AND POST-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNLABELED MAP</td>
<td>25</td>
</tr>
<tr>
<td>Labeled Map</td>
<td>25</td>
</tr>
<tr>
<td>Map-Scholar</td>
<td>35</td>
</tr>
</tbody>
</table>
scores on the more difficult questions in the third part of the post-test were too noisy to yield any significant effects or interactions under analysis, the same trend was apparent. In short, post-test scores were consistently highest in the Map-SCHOLAR condition and lowest in the Unlabeled Map condition.

These results indicate that the map system not only helped students learn the information necessary to answer the map questions in Part 2 of the post-test, but also to answer the verbal questions in Parts 1 and 3 of the post-test. An important question is whether the benefit of the map system extended only to verbal information that was explicitly about locations, or whether it also extended to non-location information, such as the climate or terrain of a place. Clearly, one would expect the map system to help students learn location information better, but there are two reasons why the map system might help students learn non-location information better as well. First, if map information showing where a place like Manaos is located helps the student remember Manaos better, then non-map facts about Manaos, such as its climate, may be remembered better. This is because the best way to learn something is to relate it to information already known (Collins and Quillian, 1972b; Norman, 1973). Second, if a student sees that Manaos is on the Amazon, then Manaos' climate can be related to any
prior knowledge about the climate of the Amazon (e.g. that the Amazon flows through jungle). Thus, even non-map information may be better remembered in a visual context.

This idea was tested with backtrace analysis by separating the questions during training into map questions and non-map questions, depending on whether the questions were posed visually by the map system. Then the percentage correct on the post-test for the two types of presentation during training were plotted (see Figure 3). For map questions, as expected, students learned significantly more with Map-SCHOLAR than with either the labeled or unlabeled maps. But for non-map information there were no significant differences, and students even did slightly better in the Unlabeled Map condition. Thus, these data suggest that the major benefit of the map system is in learning information about specific locations.

Backtrace analysis was also used to investigate the effectiveness of repeating questions, depending on whether the student answers correctly or incorrectly. Figure 4 shows the percentage of correct responses to each item on the post-test as a function of how frequently the students were correct or wrong on that item during training. The increases in the curves show
POST-TEST PERFORMANCE ON MAP & NON-MAP QUESTIONS FOR EACH CONDITION

MAP QUESTIONS
NON-MAP QUESTIONS

MAP-SCHOLAR
Labeled Map
Unlabeled Map

PERCENT CORRECT ON POST-TEST

FIGURE 3
FIGURE 4

PERCENT CORRECT ON THE POST TEST AS A FUNCTION OF NUMBER CORRECT OR IN ERROR DURING TRAINING

PERCENT CORRECT ON POST TEST

0 ERRORS
1 ERROR
2 ERRORS
3 ERRORS
≥ 4 ERRORS

NUMBER OF QUESTIONS CORRECT DURING TRAINING
that the more frequently a student answered any item correctly, the more likely he was to recall it on the post-test. The separation of the curves for different numbers of errors shows that the more frequently an item was missed, the less likely it was to be recalled on the post-test. This simply reflects the fact that the items that were more difficult to learn were likely to be missed more frequently. The concave shape of the curves indicates that the repeated presentation of a correct item has a decreasing effectiveness. The implication is that, as far as possible, training time should be allocated to those items that the student has correctly answered least often.

When students missed items in answering a question, SCHOLAR provided additional elaboration about some of the items missed. For example, in Figure 1 when the student did not know Lake Maracaibo, SCHOLAR mentioned the oil there as an elaboration about Lake Maracaibo. The backtrace analysis showed that percent correct on the post-test increased from 34% when there was no elaboration of an item during training to 47% when there was one elaboration. This increase is significant (t = 4.01, p<0.01), indicating that elaboration does help students to learn the material better. After one elaboration, the percent correct stabilizes, indicating that further elaborations are of little benefit.
We used a variation of backtrace analysis to determine which kinds of map questions are most effective for learning. In the map system there were three different kinds of map questions that might be asked: (1) **pointing** questions, where SCHOLAR mentioned one or more places and asked the student to point at them (2) **naming** questions, where SCHOLAR blinked one or more places and asked the student to name them, and (3) **pointing and naming** questions, where SCHOLAR asked the student to name a set of places, such as the rivers in Brazil, and point to them in the order named.

Figure 5 shows the percent correct on the second occurrence of a map question about any item as a function of the type of question that was asked on the first occurrence of that item. There were not enough data for naming questions, so they are not shown. The column totals indicate that students did better on pointing questions than on pointing and naming questions, as would be expected because pointing questions are easier. However, the row totals show that students did better on the second question if the first question had required both pointing and naming than if it had required only pointing ($\chi^2(1) = 4.75, p<0.05$). Evidently, students learn more from pointing to and naming a location than from just pointing to it.
FIGURE 5

THE EFFECT OF DIFFERENT TYPES OF MAP QUESTIONS DURING TRAINING

<table>
<thead>
<tr>
<th>TYPE OF QUESTION ON FIRST OCCURRENCE</th>
<th>POINTING</th>
<th>NAMING AND POINTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINTING</td>
<td>49%</td>
<td>33%</td>
</tr>
<tr>
<td>NAMING AND POINTING</td>
<td>61%</td>
<td>51%</td>
</tr>
</tbody>
</table>

P < 0.05

P < 0.10

40%
CONCLUSION

The experiment showed that students learned significantly more with the interactive map display than with either a static labeled or unlabeled map. The advantage of Map-SCHOLAR cannot be attributed solely to the ability of the student to locate places spatially, since the Labeled Map condition allowed the student to identify places just as effectively. The advantage of Map-SCHOLAR also cannot be attributed to novelty or some other generalized facilitation effect, because, as backtrace analysis showed, the effect was specific to location information and did not carry over to non-location information. The advantage therefore must have been due mainly to the dynamic aspects of Map-SCHOLAR and its ability to focus the student's attention on the relevant map information.

The experiment also demonstrated the usefulness of the backtrace analysis technique for evaluating CAI systems. Backtrace analysis is not dependent on the type of information being taught, and is thus transferable to CAI systems other than SCHOLAR. Of course, the specific tags used to mark the data would change, depending on the different teaching strategies and training events that are being evaluated. The ability to perform fine-grain analyses of the effectiveness of different teaching
strategies is a valuable tool for future educational research.
REFERENCES

Collins, A.M., and Quillian, M.R. How to make a language user. In E. Tulving and W. Donaldson (Eds.),

DISTRIBUTION LIST

Dr. Marshall J. Farr, Director
Personnel & Training
Research Programs
Office of Naval Research
Arlington, VA 22217

Director
ONR Branch Office
495 Summer Street
Boston, MA 02210
ATTN: Dr. James Lester

Director
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
ATTN: E.E. Gloye

Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605
ATTN: Dr. Charles Davis

Dr. M.A. Bertin, Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco 96503

Office of Naval Research
Code 200
Arlington, VA 22217

Assistant Deputy Chief of Naval
Personnel for Retention Analysis
and Coordination (Pers 12)
Room 2403, Arlington Annex
Washington, DC 20370

Dr. Lee Miller
Naval Air Systems Command
AIR-413E
Washington, DC 20361

Commanding Officer
Naval Health Research Center
San Diego, CA 92152
ATTN: Library
Director, Navy Occupational Task Analysis Program (NOTAP)
Navy Personnel Program Support Activity
Building 1304, Bolling AFB
Washington, DC 20336

Office of Civilian Manpower Management
Code 263
Washington, DC 20390

Chief of Naval Reserve
Code 3055
New Orleans, LA 70146

Chief of Naval Operations
OP-987P7
Washington, DC 20350
ATTN: CAPT H.J.M. Connery

Director
Training Analysis & Evaluation Group
Code N-00t
Department of the Navy
Orlando, FL 32813
ATTN: Dr. Alfred F. Smode

LCDR C.F. Logan, USN
F-14 Management System
COMFITAEWWINGPAC
NAS Miramar, CA 92145

Navy Personnel Research and Development Center
Code 01
San Diego, CA 92152

Navy Personnel Research and Development Center
Code 02
San Diego, CA 92152
ATTN: A.A. Sjoholm

Navy Personnel Research and Development Center
Code 306
San Diego, CA 92152
ATTN: Dr. J.H. Steinemann
Navy Personnel Research
and Development Center
San Diego, CA 92152
ATTN: Library

Navy Personnel Research
and Development Center
Code 9041
San Diego, CA 92152
ATTN: Dr. J.D. Fletcher

D.M. Gragg, CAPT, MC, USN
Head, Educational Programs Development
Department
Naval Health Sciences Education and
Training Command
Bethesda, MD 20014

STOIAC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201
Attention: H8-1 Code
79986

Director
Naval Research Laboratory
Code 2627
Washington, DC 20390

Defense Documentation
Center
Cameron Station,
Building 5
5010 Duke Street
Alexandria, VA 22314

Chairman
Behavioral Science Department
Naval Command and Management
Division
U.S. Naval Academy
Luce Hall
Annapolis, MD 21402

Chief of Naval Technical
Training
Naval Air Station Memphis (75)
Millington, TN 38054
ATTN: Dr. Norman J. Kerr
Chief of Naval Training
Naval Air Station
Pensacola, FL 32508
ATTN: CAPT Bruce Stone, USN

TACTEC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201
Attention H8-1 Code
79986

Defense Contract Administration
Services Region
666 Summer Street
Boston, MA 02210
Attention: DODAAD Code
52202A

Command Officer
U.S. Naval Amphibious School
Coronado, CA 92155

Dr. James J. Regan
Technical Director
Navy Personnel Research
and Development Center
San Diego, CA 92152

Chief
Bureau of Medicine and Surgery
Code 413
Washington, DC 20372

Mr. Arnold Rubinstein
Naval Material Command (0344)
Room 1044, Crystal Plaza 5
Washington, DC 20360

Superintendent
Naval Postgraduate School
Monterey, CA 93940
ATTN: Library (Code 2124)

Chief of Naval Training Support
Code N-21, Building 45
Naval Air Station
Pensacola, FL 32508
Dr. Frank Harris
U.S. Army Research Institute
for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Dr. Joseph Ward
U.S. Army Research Institute
for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Mr. James Baker
U.S. Army Research Institute
for the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Commandant
United States Army
Infantry School
ATTN: ATSH - DET
Fort Benning, GA 31905

U.S. Army Research Institute
Commonwealth Building
Room 239
1300 Wilson Boulevard
Arlington, VA 22209
ATTN: Dr. R. Dusek

Dr. Stanley L. Cohen
Work Unit Area Leader
Organizational Development
Work Unit
Army Research Institute
for the Behavioral and
Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Dr. Leon H. Nawrocki
U.S. Army Research Institute
Rosslyn Commonwealth Building
1300 Wilson Boulevard
Arlington, VA 22209

Dr. Martin Rockway
Technical Training Division
Lowry Air Force Base
Denver, CO 80230
Research Branch
AF/DPMYAR
Randolph AFB, TX 78148

AFHRL/DOJN
Stop 63
Lackland AFB, TX 78236

Dr. Alfred R. Fregly
Air Force Office of Scientific Research/PM
Bolling Air Force Base
Washington, DC 20032

Dapt. Jack Thorpe, USAF
Flying Training Division
AFHRL/PT
Williams AFB, AZ 85224

AFHRL/PED
Stop 63
Lackland AFB, TX 78236

Instructional Technology Branch
AF Human Resources Laboratory
Lowry AFB, CO 80230

AFHRL/AS (Dr. G.A. Eckstrand
Wright-Patterson Air Force Base
OH 45433

AFHRL (AST/Dr. Ross L. Morgan
Wright Patterson Air Force Base
OH 45433

Headquarters Electronic
Systems Division
ATTN: Dr. Sylvia R. Mayer/MCIT
LG Hanscom Field
Bedford, MA 01730

Director, Office of Manpower
Utilization
Headquarters, Marine Corps (Code MPU)
MCB (Building 2009)
Quatico, VA 22134

Chief, Academic Department
Education Center
Marine Corps Development and
Education Command
Marine Corps Base
Quatico, VA 22134
Mr. E.A. Dover
2711 South Veitch Street
Arlington, VA 22206

Dr. A.K. Slafkosky
Scientific Advisor (Code RD-1)
Commandant of the Marine Corps
Washington, DC 20380

Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters
400 Seventh Street, SW
Washington, DC 20590

Dr. John Ford, Jr.
Navy Personnel Research and Development Center
Code 304
San Diego, CA 92152

LCDR Charles Theisen, Jr.,
MSC, USN, 4024
Naval Air Development Center
Warminster, PA 18974

Military Assistant for Human Resources
Office of the Secretary of Defense
Room 3D129, Pentagon
Washington, DC 20351

Advanced Research Projects Agency
Administrative Services
1400 Wilson Blvd
Arlington, VA 22209
ATTN: Ardella Holloway

Dr. Harold F. O'Neil, Jr.
Advanced Research Projects Agency
Human Resources Research Office
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Robert Young
Advanced Research Projects Agency
Human Resources Research Office
1400 Wilson Blvd
Arlington, VA 22209
Dr. William Gorham, Director
Personnel Research and Development Center
U.S. Civil Service Commission
1900 E Street, N.W.
Washington, DC 20415

Dr. Marshall S. Smith
Assistant Acting director
Program on Essential Skills
National Institute of Education
Brown Building, Room 815
19th and M Streets, N.W.
Washington, DC 20208

Dr. Carl Frederiksen
Learning Division, Basic Skills Group
National Institute of Education
1200 19th Street, N.W.
Washington, DC 20208

Dr. Eric McWilliams
Program Manager
Technology and Systems, TIE
National Science Foundation
Washington, DC 20550

Dr. Scavria Anderson
Executive Director for Special Development
Educational Testing Service
Princeton, NJ 08540

Professor Keith Wescourt
Stanford University
Inst. for Mathematical Studies in the Social Sciences
Stanford, CA 94305

Dr. Bernard M. Bass
University of Rochester
Management Research Center
Rochester, NY 14627

Century Research Corporation
4113 Lee Highway
Arlington, VA 22207

Dr. Robert Glaser, Director
University of Pittsburgh
Learning Research and Development Center
Pittsburgh, PA 15213
Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, NY 14627

ERIC
Processing and Reference
Facility
4833 Rugby Avenue
Bethesda, MD 20014

Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, MD 20850

Dr. Henry J. Hamburger
University of California
School of Social Sciences
Irvine, CA 92664

Dr. Richard S. Hatch
Decision Systems Associates Inc.
11428 Rockville Pike
Rockville, MD 20852

Dr. M.D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, VA 22101

Dr. Lawrence B. Johnson
Larence Johnson and Associates, Inc.
200 S. Street, NW, Suite 502
Washington, DC 20009

Dr. David Klahr
Carnegie-Mellon University
Graduate School of
Industrial Admin.
Pittsburgh, PA 15213

Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, CA 93017
Dr. Andrew R. Molnar
Technological Innovations in Education
National Science Foundation
Washington, DC 20550

Dr. Leo Munday
Vice President
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Donald A. Norman
University of California, San Diego
Center for Human Information Processing
La Jolla, CA 92037

Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265

Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
3717 South Grif
Los Angeles, CA 90007

Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery college
Rockville, MD 20850

Dr. George E. Rowland
Rowland and Company, Inc.
P.O. Box 61
Haddonfield, NJ 08033

Dr. Arthur I. Siegel
Applied Psychological Services and Science Center
404 East Lancaster Avenue
Wayne, PA 19087
Dr. Arnold F. Kanarick
Honeywell, Inc.
2600 Ridge Parkway
Minneapolis, MN 55413

Dr. Roger A. Kaufman
U.S. International University
Graduate School of Human Behavior
Elliott Campus
8655 E. Pomerada Road
San Diego, CA 92124

Dr. Steven W. Keele
University of Oregon
Department of Psychology
Eugene, OR 97403

Dr. Alma E. Lantz
University of Denver
Denver Research Institute
Industrial Economics Division
Denver, CO 80210

Mr. Brian McNally
Educational Testing Service
Princeton, NJ 08540

Mr. A.J. Pesch, President
Eclectech Associates, Inc.
P.O. Box 178
North Stonington, CT 06359

Dr. Steven M. Pine
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Mr. Dennis J. Sullivan
c/o HAISC, Building 119, M.S. 2
P.O. Box 90515
Los Angeles, CA 90009

Dr. Patrick Suppes
Stanford University
Institute for Mathematical Studies
in the Social Sciences
Stanford, CA 94305
Dr. K.W. Uncapher
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, CA 90291

Dr. Carl R. Vest
Battelle Memorial Institute
Washington Operations
2030 M Street, N.W.
Washington, DC 20036

Dr. John J. Collins
Vice President
Essex Corporation
6305 Caminito Estrellado
San Diego, CA 92120

Mr. Charles R. Rupp
Advanced W/C Development Engineering
General Electric Company
100 Plastics Avenue
Pittsfield, MA 01201