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NOTATION :
) Cf Wall-shear coefficient
5 Cp Local pressure coefficient, Equation (1)
;. ! (Cp)b Base pressure coefficient
d f Frequency = w/2m
i H Shape factor, 6%/6 L
g h Thickness of the strut upstream from the trailing edge :
mi : L Vortex formation length 5
- P Static pressure I
= Static pressure far from the strut -
)
p2 Broadband mean-square pressure level f
=5 [f
p (f) Mean-square pressure, filtered in a specified r
frequency band 1
R_ (r,T) Space-time cross-correlation between pressure and 1
PP velocity normalized on rms pressures at each ,}

measurement point, Equation (13)
R u(?,T) Space-time cross-correlation between pressure and
P velocity normalized on rms pressure and local
mean velocity Uo; see Equation (11)

?=(rs,rz,rn) Separation coordinates aligned with local strut surface /8

r=(rx,rz,ry) Separation coordinates

s Streamwise coordinate measured in the plane of the
surface of the strut

U Convection velocity determined from broadband, E
space-time correlations

U Convection velocity determined from cross spectral
density phase; for periodic processes Uc = Uc




p

T
w

¢uu(w)

w

Q. =1/200,

2

Local mean free-stream velocity

U_v1-C

Mean velocity incident on the strut

Local mean velocity

Broadband turbulence intensity, mean square

Filtered turbulence intensity

Distances measured from the leading edge in the plane
of the strut

Value of Yoo at vortex formation

Cross-wake separation between turbulence maxima, as
illustrated in Figures 17 and 24

Cross spectrum phase

Boundary-layer thickness

Displacement thickness defined by Equation (2)
Momentum thickness defined by Equation (4)
Kinematic viscosity of the fluid

Fluid density

Local wall shear coefficient

Autospectral density of velocity fluctuations

Frequency
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1. INTRODUCTION

Influences of trailing-edge shapes on vortex-induced vibrations of
turbine blades were the subjects of an early investigation by Heskestad
and Olberts (1960).1 In that series of measurements it was found that the
most severe hydroelastic vibrations of a flat plate were induced by
blunted trailing edges and edges symmetrically beveled or tapered with
large included angles at the apices. The lowest levels of vibration
occurred for edges which were unsymmetrically beveled with relatively
small included angles and a large curvature at the juncture of the
beveled edge with the main surface of the strut. Toebs and Eagleson
(1961)2 not only characterized some effects of trailing-edge geometry on
vibrations but also experimentally demonstrated some aspects of self-
excitation in the hydroelastic behavior of flat plates. Eagleson
et al. (1962)3 related those results to the development of periodic
disturbances in the wake, finding that the strengths of shed vortices
could be reduced by increasing the taper of the edge. They also found
that if the plate were allowed to vibrate, the amplitude of motion in-
duced by trailing-edge flow would decrease commensurately with the ob-

served reduction in the strength of shed vortices.

1Heskestad, G. and D.R. Olberts, "Influence of Trailing Edge Geometry
on Hydraulic-Turbine-Blade Vibration Resulting from Vortex Excitation,"
Transactions of the American Society of Mechanical Engineers, Journal of
Engineering For Power, Vol. 82, pp. 103-110 (Apr 1960). A complete listing
of references 1s given on page(s) 152.

2Toebs, G.H. and P.S. Eagleson, "Hydroelastic Vibrations of Flat Plates
Related to Trailing Edge Geometry,' Transactions of the American Society of
Mechanical Engineers, Journal of Basic Engineering, pp. 1-8 (1961).

3Eagleson, P.S. et al., "Turbulence In the Early Wake of a Fixed Flat
Plate," Massachusetts Institute of Technology Hydrodynamics Laboratory
Report 46 (Feb 1961).




More recently, Greenway and Wood (1973)4 performed a series of flow-
visualization experiments to establish the flow structures at the trailing
edges of stationary and oscillating flat struts. In those measurements
the edges were blunt and unsymmetrically beveled with various included
angles. The effect of beveling was found to destablize the vortex
structure in the wake but not to influence greatly the strengths of shed
vortices. Greenway and Wood calculated strengths of shed vortices from
particle trajectories in photogréphs. For included angles of less than
30 deg, regularity in the wake was found to be nearly absent for rigid
struts. These visualization results corroborated with the Heskestad and
Olberts hydroelastic data and led to speculation by Greenway and Wood
that a reduction in vibration amplitude arose because of randomization of
the periodic forces on the strut rather than from a reduction in the
mean-square amplitude of the forces.

The influence of splitter plates in altering the formation of
periodic vortex streets in the wakes of flat struts was examined by
Bearman (1965).5 Splitter plates interfered with interaction of separated
free-shear layers at bluff trailing edges. Measurements of velocity
fluctuations in the wakes for increasing splitter-~plate lengths demon-
strated that the disturbances reached maxima at increasing distances
downstream from the edge. Locations of maximal disturbances were found
by smoke visualization to coincide with points between the positions of
the first and second vortices. For long enough splitter plates,

Bearman5 found that discrete vortex formation could be eliminated.
The frequency of vortex formation in wakes formed by blunt trailing

edges was first examined by Gongwer (1952),6 who proposed a particularly

4Greenway, M.E. and C.J. Wood, "The Effect of a Beveled Trailing Edge
on Vortex Shedding and Vibration,'" Journal of Fluid Mechanics, Vol. 61,
pp. 323-335 (1973).

5Bearman, P.W., "Investigation of the Flow Behind a Two-Dimensional
Model with a Blunt Trailing Edge and Fitted with Splitter Plates,'" Journal
of Fluid Mechanics, Vol. 21, pp. 241-255 (1965).

6Gongwer, G.A., "A Study of Vanes Singing In Water,' Journal of Applied
Mechanics, Vol. 19 (1952).




simple form of dimensionless frequency or Strouhal number. He found by
experiment that the shedding frequency scaled well on the free-stream
velocity and a length that was the sum of the edge thickness and the
momentum thicknesses of the boundary layers forming the wake. Later,
Bearman5 found for a blunt edge with a given length of splitter-plate that
the Strouhal number formed with the trailing-edge thickness and free-
stream velocity was nearly constant over a wide speed range. He found,
however, that the Strouhal number varied considerably as the splitter-
plate length was increased. He also found that the static base-pressure
coefficient varied with splitter length but not with Reynolds number. A
relationship between shedding frequency and static base pressure was
shown by Bearman (1967).7 In that paper Bearman noted that earlier
definition of Strouhal number by Roshko (1954)8 did not fit his 1965
results without modification. The definition by Roshko8 was based on the
estimated distance between parallel, separated, free-shear layers in the
wake. This distance was analytically determined by the notched hodograph
method from the potential flow around bluff, two-dimensional cylinders.
The modification by Bearman7 replaced this distance with the estimated
cross wake separation between vortex centers in the fully developed far
wake. This vortex separation was determined by use of the Kronauer
(1964)9 hypothesis that a minimum vortex drag coefficient is exerted on
the wake-producing body and this coefficient uniquely determines the
spatial arrangement of vortices. From measured streamwise vortex sep-
arations, Bearman7 calculated the cross wake separations. His defined
Strouhal number appeared to be a universal function of the mean base-

pressure coefficient for data collected by a number of investigators on

7Bearman, P.W., "On Vortex Street Wakes," Journal of Fluid Mechanics,
Vol. 28, pp. 625-641 (1967).

8Roshko, A., "On the Drag and Shedding Frequency of Two-Dimensional
Bluff Bodies," National Advisory Committee for Aeronautics Technical
Note 3969 (1954).

9Kronauer, R.E., "Predicting Eddy Frequency in Separated Wakes," Paper
presented at the International Union of Theoretical and Applied Mathematics
Symposium on Concentrated Vortex Motions in Fluids, University of Michigan,
Ann Arbor, Mich. (6-11 Jul 1964); also, referred to by Bearman (1967).




various blunt bodies with and without splitter plates. In the definitions
made by both Roshko8 and Bearman,7 the characteristic velocity is that
existing just outside the boundary layers on the body at the point of
separation.

These investigations have shown how details of the wake structure
determine vortex shedding frequencies and how trailing-edge shape in-
fluences the interactions of separated shear layers. When the shear
layers are decoupled, vortex formation appears to become disordered; this
disorder modifies the frequency of formation of vortices as well as the
base pressure or the drag coefficient of the resultant vortex street.

What these investigations do not disclose, however, is the level and

time dependence of dynamic pressures which are exerted on a shedding

body for the various trailing-edge shapes. Many investigations of the
oscillatory lift coefficients on shedding cylinders have been made, but
very little information exists for streamlined aerofoils with vortex
shedding. Recently, however, Hanson (1970)10 measured the mean and
fluctuating base pressures as well as the near-wake characteristics behind
lifting airfoils. His results demonstrated that a relationship exists
among the mean base pressure coefficient, the distance of vortex formation
downstream of the edge £f, and the momentum thickness of the wake 6. The
mean base pressure coefficient was found to increase linearly with the
ratio G/Rf. Apparently, pressure recovery of the flow near the edge is
assoclated with an increase in the formation length. Hanson also

found that the vortex shedding frequency could be scaled on momentum
th:ckness of the wake more adequately than a geometric length, character-
istic of the trailing edge.

This report is a description of measurements of fluctuating pressures
on trailing edges of flat struts and of fluctuating velocities in wakes
that generate those pressures. The measurements were made on a family

of edge shapes, similar to those of Heskestad and Olbertsl and of

1OHanson, C.E., "An Investigation of the Near-Wake Properties Associated
with Periodic Vortex Shedding from Airfoils,'" Massachusetts Institute of
Technology Acoustics and Vibration Laboratory Report 76234-5 (1970).




Greenway and WOod.a The edges (Figure 1) were selected for the range of
random to periodic wakes that they produced. Cross spectral densities of
the pressures on the edges as well as cross correlations and cross
spectra of those pressures with velocity disturbances in the shear layers
near the edges will demonstrate the relationship of the pressures with the
near wake-formation regions of each edge. Chordwise distributions of
fluctuating pressure will be shown, and Strouhal number definitions will
be reviewed. For the trailing edges considered, interrelationsﬂips will
be drawn among those which generate periodic surface pressures and those

which do not.

2. FACILITY AND INSTRUMENT DESCRIPTIONS

All measurements were performed in the Anechoic Flow Facility (AFF)
of the David W. Taylor Naval Ship Research and Development Center (the
Center). This facility combines a low-turbulence wind tunnel with an
anechoic chamber. The broadband turbulence intensity level in the tunnel
at a centerline speed of 150 ft/sec has been shown by DeMetz and Casarella
(1973)11 to be about 0.08 percent. The test section is 21 feet and
1 inch in length and has a cross-section of 8 by 8 feet with corner fillets
to maintain one-dimensional flow throughout. Pressure gradients which
are caused by turbulent boundary-layer growth are reduced by tapering the
test section walls. Flow speeds may be controlled within +0.5 percent
with a maximum velocity of 200 feet per second. Measurements have been
made at the end of the test section where it is jointed by an anechoic
chamber designed for a 150-Hz lower acoustic cutoff frequency. A
description of the acoustic and aerodynamic characteristics of the

facility has been given by Bowers (1973).12

llbeMetz, F.C. and M.J. Casarella, "An Experimental Study of the
Intermittent Properties of the Boundary Layer Pressure Field During
Transition on a Flat Plate,' NSRDC Report 4140 (Nov 1973).

12Bowers, B.E., "The Anechoic Flow Facility-Aerodynamic Calibration and
Evaluation (U)," NSRDC Evaluation Report SAD-48E-1942 (May 1973).




2.1 STRUT AND TRAILING EDGES

The working strut (Figure 1) had a circular leading edge which, due
to laminar separation, tripped the turbulent boundary layer on the
downstream flat section. Excluding the removable trailing-edge sections,
the strut was 3 feet in chord with a uniforu thickness of 2 inches and a
span of 4 feet. Four trailing edges were used; one was squared off, and
three were unsymmetrically beveled. Of the beveled edges, two had an
included tip angle of 25 deg and a length of 6 1/4 inches; the other had
an included tip angle of 45 deg and a length of 4 inches. The 45-deg
edge and one of the 25-deg edges were faired with 5- and 10-inch radii,
respectively, to give a continuously increasing pressure gradient. The
other 25-deg edge had a knuckle, 2-inches from the strut attachment
point; see Figure 1. Both the strut and the trailing edges were con-
structed from pine and plywood and were painted to maintain a smooth
surface.

The strut was rigidly fastened in a vertical position to the floor
of the tunnel at the end of the upstream test section, adjacent to the
anechoic chamber. An end plate in the form of a plywood panel 8 feet
long and 5 feet wide was attached to the top of the strut and to the
walls -of the tunnel. The end plate and tunnel floor together with the
vertical strut resembled a sidewise H. The arrangement effectively
divided the tunnel in half. The measured values of fluctuating wall
pressures on the blunt trailing edge of the strut were uniform over an
8-inch spanwise section, showing that the flow was essentially two

dimensional across the span of the strut,

2.2 INSTRUMENTATION
Static Pressure Measurements

The static pressure variation along the chord was measured using
pressure taps at discrete points along both sides of the strut, including
the stagnation point. Depending on the trailing edge, there were up
to 22 tap locations. Each pressure tap consisted of 1l-inch long
and 1/8-inch-0D, 1/16-inch-ID, copper tubing, glued into position so that
its tip was sealed flush with the surface of the strut. Removable panels
on one side of the strut, permitted attachment of flexible plastic tubes
which ran down through the strut and under the tunnel floor to a bank of

manometers.




Surface Pressure Fluctuation Measurements

The flow-induced, surface-pressure fluctuations on the strut were
measured using a 1/8-inch condenser microphone (Bruel and Kjaer (B & K)
Model 4138) whose sensing area was reduced by placing a cap perforated
with a 1/32-inch-diameter hole in its center over the diaphragm of the
microphone. The 1/8-inch condenser microphone was connected to the
cathode follower (B & K Model 2619) through a 1/4-inch, right-angle
adaptor (B & K Model UA 0122) which was modified to accept the 1/8-inch
microphone. The pinhole perforating the center of this cap led to a
small cavity above the diaphragm. The frequency response of the pinhole
microphone was measured by comparing the response of the microphone with
and without pinhole caps to identical free-field sound fields. The
relative phase shift between the microphones was also measured in this
manner. The Helmholtz resonance frequency caused by the cavity was
measured at 17.5 kilohertz. Response of the pinhole microphone was from
flat to 1 dB from 65 Hz to 10 kHz, and the relative phase shift was from
zero to 5 kHz, 5 deg at 8 kHz, and 14 deg at 10 kilohertz.

The 1/8-inch condenser microphones with pinhole caps were flush
mounted to various positions aloag the strut and trailing edges at the
positions indicated in Figure 1. The autospectra as well as the longi-
tudinal (streamline) and lateral (spanwise) cross spectral densities of
pressures were measured at these locations. The dimensions of the
microphone positions will be described as the measurements are presented.

Besides the 1/8-inch microphone, a 1/2-inch microphone (B & K
Model 4133) with a probe-tube extension (B & K Model UA 0040) was used to
measure the pressure spectra at narrow thicknesses of the trailing edge
as well as the tip. The probe tube acts as a low-pass filter between
the microphone and the fluctuacingz pressure source. Three 3/64-inch-
diameter probe tubes were calibvated with lengths of 1 1/2, 3, and
4 7/16 inches; all obtained a fldt amplitude response to 2 kHz and
approximately a linear-phase response, Calibration of the probe tube

with proper damping was accomplished by using a B & K coupler that
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accepted a probe tube, a 1/2-inch microphone, and a small sound source.
The volume of the coupler is much smaller than the wavelength of sound,
thereby producing a uniform sound pressure level in the chamber over the
frequency range of interest. The source was driven by a frequency
analyzer (General Radio Model 1900) connected in the tracking mode. The
signals from both the 1/2-inch microphone and the probe tube were fed
back into the analyser for frequency analysis and were displayed on a
graphic level recorder (General Radio). The response of the tube was
adjusted by placing damping material (steel wool) into the probe tube

and comparing the amplitude and phase response of the probe tube with that

of the 1/2-inch microphone. Responses are shown in Figures 2 and 3.

Velocity Measurements

Turbulent velocity fluctuations were measured using a heat flux
system (Thermo-Systems Model 1010), constant :emperature anemometer, and
a linearizer (Thermo-Systems Model 1005B). The anemometer was calibrated
for wind speeds using a venturi meter. A 0.0005-inch, platinum-iridium
alloy wire with a 0.3-msec time constant was used for the sensing element
which was attached to an 18-inch probe support. The probe support was
positioned by an electromechanical linear actuator to within 0.01 inch,
+0.005 inch, by reading a dc voltage, fed back from a linear potentiometer.
Probe and probe supports were aerodynamically shaped to minimize vibration
from vortex shedding from the supports. Turbulence intensities were

measured using a B & K true rms meter.

Auto and Cross Spectrum and Correlation
Analyses

All of the wall pressure auto and cross spectral densities as well
as the pressure-velocity, cross spectral densities were obtained with a
real-time analyzer system (Time Data Type 1923/A). The spectral
densities were determined digitally, using a fast Fourier-transform

algorithm with a Hanning window. Sample sizes of at least 256 were used
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with effective analysis bands, ranging from 12.5 to 62.5 hertz. The |
bandwidths of analyses were constant over each complete frequency range,
which was either from O to 2 or from O to 20 kilohertz. Some velocity
spectral densities were obtained in 1/10-octave bands using a sound and
vibration analyzer (General Radio Model 1564).

Broadband correlations were made with a digital correlator (Hewle.t
Packard Model 3721A). This instrument displayed both auto and cross
correlation functions at 100 computed points with time delays from
100 psec to 100 sec possible. The digital equivalent of resistor-~

capacitor circuit (RC) averaging was used.

2.3 STATISTICAL PRECISION
Figure 4 shows measured and theoretical expressions for the standard

deviation of cross spectral density estimates of random signals. The

measurement was conducted by correlating two broadband signals, which were
known to be uncorrelated, using the real-time analyzer. The computed
values of the normalized cross spectrum, theoretically zero, were estimate
errors which decreased with increasing sample size N. For each sample
size a value of the computed cross-spectrum was selected. This value
exceeded 80 percent of the estimates of the spectrum, and it was in-
terpreted as an 80-percent confidence limit on the error of a cross
spectral density estimate. A theoretical estimate, whose derivation is

presented in Appendix A, is

1/2

2
lotey) -1 (1 +2 by (] 19, O] ) %
ha®) A b o (602

where ¢ _(f) = ¢ (f) is the true autospectral density of the input
XX yy

¢xy(f) is the true cross spectral density
0(¢x ) is the standard deviation of the cross spectrum
y estimate.
9




3. CHARACTERISTICS OF FLOW INCIDENT ON EDGES

i3 The measurements described in this section served to establish that
‘o the turbulent flow field, incident on the edges, was typical of that

i which exists in fully developed boundary layers on flat surfaces.

i Measurements of the correlations between fluctuating wall pressures at
different chordwise points as well as of turbulent velocity were made,

These compared favorably to the measured statistics of other investigators;

they, therefore, confirmed proper experimental technique, and standardized

i the incident flow.

. - Figure 5 shows the chordwise static pressure distribution and the
35’ ] cross-section shape of the strut, which was outfitted with the 25-deg--

rounded trailing edge. The static pressures are expressed as a

coefficient

3 2
: P -P U,
5 -6 = ——=x & 5" -1 (1)

1/2 p U,

which, in the absence of a local pressure gradient across the boundary
layer, can be interpreted in terms of the local free-stream velocity on
' the strut Uo' In Equation (1) P_ 1is the ambient pressure far from the
strut, P is the local static pressure on the strut, p is the fluid

density, and U_ is the mean velocity upstream of and incident on the
strut. Locations 1 through 6 in Figure 5 designate single microphone
locations for which the static pressure distribution was trivially

altered by modifying the edges. Measurements at all these locations were

made only once in the course of the experiment, and representative checks i
were made for each edge. The lettered locations near the trailing edge E
are those for which the static pressure was influenced to varying degrees i
by the different edges; measurements were performed at those locations for

N all edges. The edges were attached to the main strut 36 inches from the }

3
L leading edge. L
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The results in Figure 5 show a sharp static pressure minimum forward
of microphone position 1, followed by a steep adverse pressure gradient.
Flow visualization with oil streaks at 100 ft/sec disclosed a separation
region extending from approximately 1 inch to 3 inches downstream from
the leading edge. It is conjectured that laminar separation was caused
by the circular leading edge. Short separation bubbles on leading edges
of airfoils as discussed by Chang (1970)13 play the role of causing
transition for the downstream boundary layer. 1In this type of flow the
separated laminar shear layer becomes turbulent before reattachment.
Likely, the free-stream turbulence level of the wind tunnel (0.08 per-
cent) was low enough to permit laminar separation to occur. The flow
around the cylindrical leading edge in the present case is probably some-
what similar to that around the forward quadrant of a circular cylinder.
In that case (Chang)13 laminar separation occurs, 82 deg removed from the
forward stagnation point for Reynolds numbers, based-diameter, less than
2 x 105. Turbulent separation occurs further around for Reynolds numbers
greater than 7 x 105. In the present instance, for U_ = 100 ft/sec the
Reynolds number based on the diameter of the leading edge, h = 2 inches,
is 1.02 x 105. The conjecture of laminar separation, then, seems
reasonable.

Further downstream, the static pressure varies slightly, becoming
somewhat favorable forward of the trailing edge. Magnitudes of the
favorable and adverse pressure gradients at the trailing edge are
dependent on the shape of the trailing edge; each edge will be discussed
in detail later in the report. For all except the blunt trailing edge,
the favorable pressure gradient from x = 28 inches to x = 34 inches
shown in Figure 5 is typical. Therefore, the statistics of the boundary
layer for all positions 1 through B are expected to be unaltered by
changing the beveled trailing edges but, perhaps, slightly modified by
the blunt edge. This difference in local static pressure is thought to
be caused by the slight change in camber brought about by the use of

unsymmetrical versus symmetrical edges.

13Chang, P.K., "Separation of Flow,'" Permagon Press, Oxford, England
(1970).




The mean and turbulent velocity profiles for positions 4 and B are

shown in Figure 6. The mean velocity U(y) and root-mean-square turbulent

—1/2
velocity u are expressed as fractions of the local free-stream

velocity Uo' Distance normal to the plane of the strut y is normalized
on the boundary-layer thickness 6, which is defined by U(S) = 0.99 Uo'
The mean velocity profiles appear to be similar, indicating that an
equilibrium boundary layer has been formed on the strut. The Prandtl
(Schlichting (1960)14) 1/7-power law for the mean velocity distribution
is also shown, and it compares favorably with the results. This compari-
son further shows that the mean velocity in the boundary layer is similar
to that on a flat plate. Also, the Klebanoff (1955)15 longitudinal

. ! turbulence intensities are shown; levels in the outer region of the

boundary layer on the strut are higher than those of Klebanoff. That

they decrease fiom position 4 to position B suggests that these levels

are caused by large-scale disturbances associated with the leading-edge

separation. Close to the wall y/§ < 0.15, the measured intensities are
lower than those measured by Klebanoff.15 The discrepancy could be due
to a probe-wall interference or possibly (but less likely) to the effect
of upstream history determined by the leading-edge separation.

- Spectral densities of the turbulent velocities at selected locations

in the boundary layer at position B on the knuckle edge are shown in

Figure 7. The spectra are normalized on the local mean velocity U(y),

the boundary-layer-displacement thickness

$
o = I [1 ) U_l(JL)] d(y) (2)
0 o]

and the mean square velocity u2. They are two sided so that

i _ 1l‘Schlichting, H., "Boundary Layer Theory," McGraw-Hill Fourth Edition, )
New York (1960). 4

15Klebanoff, P.S., "Characteristics of Turbulence in & Boundary Layer
with Zero Pressure Gradient,'" National Advisory Committee for Aeronautics

Report 1247 (1955).
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where w is the radian frequency. Near the wall for y/§ = 0.028, the
normalized spectrum is deficient in low-frequency intensity, compared to
spectra further from the wall. Generally the spectra are comparable to
those measured elsewhere, e.g., Klebanoff,15 and Blake (1970).16

Tables 1 and 2 give mean boundary-layer properties, measured else-
where on the strut with 25-deg knuckle and round trailing edges. The

momentum thicknesses

0 - jv_f,xz[lu_lgzz] 2y @
0 o o
and the shape factors
H = §*/6 (5

are shown with 8 and 8* for each location. At position B for 100 feet/sec
the boundary layer on the 25-deg knuckle edge is slightly thicker than
that at the same location for the 25-deg round edge.

The mean velocity profiles at positions A and B forward of the 25-
deg round trailing edge are plotted logarithmically for 100 ft/sec in
Figure 8. Velocities are normalized on the friction velocity

u. =/ /p (6)
where Tw is the local wall shear. The value of UT was determined by curve

fitting to the law of the wall as described by Perry and Joubert (1963).17

16Blake, W.K., "Turbulent Boundary Layer Wall Pressure Fluctuations on

Smooth and Rough Walls,'" Massachusetts Institute of Technology Acoustics
and Vibration Laboratory Report 70208-1 (1969).

17Perry, A.E. and P.N. Joubert, Journal of Fluid Mechanics, Vol. 17,
p. 193 (1963).
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TABLE 1 - MEAN BOUNDARY-LAYER PROPERTIES FOR 25-DEGREE KNUCKLE TRAILING -EDGE

50 Feet per Second

100 Feet per Second

E

Pos ] o ] H 8 &% ] H

A 0.65 0.09 0.073 1.23
B 0.67 0.103 0.074 1.4

C 0.62 0.0705 | 0.0564 1.245
D 0.90 0.084 0.0795 1.055 0.56 0.05 0.0475 1.06
E 0.5 0.07 0.0525 1.34
E-1 1.33 0.45 0.135 3.4 0.88 0.316 0.114 2.765
F 1.6 0.81 0.181 4.47 1.29 0.596 0.217 2.75

All dimensions are in inches, H = §*/8,

TABLE 2 - MEAN BOUNDARY-LAYER PROPERTIES FOR 25-DEGREE ROUND TRAILING EDGE

60 Feet per Second

100 Feet per Second

Pos 6 % 0 H 6 % ) H

4 0.575 0.0735 0.061 1.21 0.435 0.0603 0.048 1.26
B 0.8 0.093 0.08 1.17 0.63 0.073 0.059 1.23
B-1 0.615 0.0668 0.0565 1.16
C 0.5 0.045 0.04 1.14
DE 0.8 0.0915 0.059 1.56 0.62 0.093 0. 0495 1.88
E-1 0.95 0.157 0.082 1.93 0.65 0.118 0.0676 1.74
F 1.35 0.285 0.133 2.12 0.95 0.231 0.095 2.43
G 1.96 0.52 0.215 2.42 1.36 0.451 0.129 3.47

All dimensions are in inches, H = §#/0,
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The local wall-shear coefficient at x = 32 inches and U, = 100 ft/sec

2

C, = Tw/1/2 p U, (7)

f
was found to be Cf = 312 x 10-3, somewhat lower than that given by
Schlichting14 for a naturally developed boundary layer on a smooth wall
at this Reynolds number U_x/v.

The mean-square-wall-pressure fluctuations, measured in 62.5-Hz fre-

quency bands at positions 1 through 6, pz(f), are shown in Figure 9 as
fractions of free~stream dynamic head q and a function of frequency f for
U, = 50 feet per second. At position 1 the narrowband pressures at low
frequencies decrease from an undetermined maximum at f < 120 Hz and then
show a broad peak at 2700 hertz. The levels at position 2 are broadband;
at locations which are further removed from the leading edge, the levels
continue to decrease slightly. At 100 ft/sec the narrowband wall
pressures (Figure 10) at position 1 are more broadband than at 50 ft/sec;
however, they are substantially higher than at other locations on the
strut. There is a broad "hump" centered on 4500 Hz, followed by f.2 be-
havior. The oscilloscope trace of the unfiltered signal showed that be-
tween U = 75 and 100 ft/sec, as speed was increased slowly and continuously,
the pressure fluctuations '"jumped" markedly. This suggests that the
disturbances at position 1 which are associated with the leading-edge
separation changed in character as the speed was increased from 50 to
100 feet per second. Perhaps the separated shear-layer reattachment
occurred immediately above position 1 at 100 ft/sec and a little downstream
from position 1 at 50 feet per second. The presence of the peaks at
2700 and 4500 Hz indicates the occurrence of pulsation associated with
the laminar separation reattachment whose frequency increases nearly
linearly with U,. The pressure spectra at locations downstream from
position 1 are more uniformly behaved through position B.

To determine how the wall pressures behave in relation to earlier

work, the spectra at position B for 2 speeds have been normalized on the
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local wall shear coefficient, the displacement thickness, and inflow U_ in

Figure 11. Normalization has been made so that

— * d()U

2, 2 o W *

p /Tt~ = J‘ ———d (—) (8)
R T U»

s for a boundary

The results compare favorably to those of Blake (1970)
layer on a smooth, flat wall. For wé*/Um > 4 the results diverge because
of the spatial averaging of small-scale disturbances over the microphone
face as discussed by Corcos (1963).19 Those effects become most severe
when wd/Uc > 2, where d is the diameter of the microphone, and Uc = 0.6
U, is the convection velocity of disturbances across the microphone
considered in Section 6. For the current case, d = 0.3 6%, Uc ~ 0.6 u,
(Section 4), and wé*/U_ = 4 so that wd/Uc ~ 2, The spectra also diverge
slightly at low dimensionless frequencies. This divergence was not

16’18), and in this case it may be due to

observed in earlier work (Blake
the influence of the leading-edge separation. It could also be associated
with the fact that the current measurements were obtained at a lower
Reynolds number NR =U, 6/v than in the earlier work. Nonetheless
i

these dimensionless spectra are considered to be in good agreement with
the earlier ones.

The spatial cross spectral densities of wall pressures at position
B were measured with a pair of microphones separated in the streamline
direction by a variable distance r,. The magnitudes of the cross spectrum
|¢(rx,0,w)| are normalized on the autospectrum $®¢{w) and are plotted
against the phase a(rx,w) in Figure 12. For separations of r. = 36* and
L ie 68*%, the magnitude is a function of phase; this behavior is typical
of pressure fluctuations on smooth walls. The dotted curve in Figure 12

is from the data of Blake18 which were obtained on the smooth wall

18Blake, W.K., "Turbulent Boundary-Layer Wall Pressure Fluctuations on
Smooth and Rough Walls," Journal of Fluid Mechanics, Vol. 44, p. 1 (1970).

19Corcos, G.M., '"On the Resolution of Pressure in Turbulence,' Journal
of the Acoustical Society of America, Vol. 35, p. 192 (1963).
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beneath a boundary layer of substantially larger Reynolds number. The
phase of the cross spectrum has been interpreted by Corcos19 in terms of

a convection velocity Uc (note Eg® rs)

a(rx,w) = wrx/Uc (9a)

or in terms of a characteristic wavelength Ac

a(rx,w) = 21rrx/)\c (9b)

Using this interpretation, the data in Figure 12 suggest that in the
present case the coherence of disturbances diminishes to 0.1 within two
wavelengths, compared to three wavelengths beneath the boundary layer at
high Reynolds number. The convection velocities which were determined
from the phases will be discussed in Section 6. Cross spectral densities
for a lateral separation of P = 36* are shown in Figure 13. For

wrz/Uc > 1.5 they are similar to those measured on other smooth walls;
for wrz/Uc < 1.5 they are less than those measured by Blake;18 however,
the discrepancy may be related to an additional separation dependence as

noted by Bull (1967).20

4. PRESSURES AND VELOCITIES GENERATED BY PERIODIC VORTEX STREETS

Disturbances in the wakes of both the blunt trailing edge and the
rounded 45-deg trailing edge were characterized by the development of
periodic vortex streets. In this section we will consider first the
particular details of the flow off each edge separately and second the

general characteristics of the periodic disturbances.

4.1 WAKES OF BLUNT TRAILING EDGES
The wake structures behind blunt trailing edges have been determined

5
'" and Greenway and WOod.4 Current measurements on

in detail by Bearman
the blunt edge corroborate and extend those results, and they serve as a

basis for interpreting the other measurements to be described later.

20Bull, M.K., '"Wall Pressure Fluctuations Associated with Subsonic
Turbulent Boundary Layer Flow," Journal of Fluid Mechanics, Vol. 28, p. 719
(1967).
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The characteristics of the flow field of the blunt trailing edge are
shown in Figure 14. The descriptions begin 29 inches downstream from the
leading edge and extend 4 1/2 inches downstream from the trailing edge.
The stat.c pressure distribution, shown at the top of the figure, be-
comes favorable near the edge; the base pressure coefficient which was
measured at numerous locations on the base including the centerline of
the strut was

-C =0.51
Py
It was uniform across the thickness of the edge and the span. The
Reynolds number, based on chord U _w/v, where w is the chord, extended
to 2 x 106. For the experiments of BearmanS it extended to 2.85 x 105,
and in the case of Greenway and Wood4 it extended to 1.4 x 104 for their
flow visualizations and to 1.3 x 106 for their wind tunnel measurements.

The vortex shedding frequency for the current strut, measured both
with fluctuating pressures on the strut and with the velocity fluctuations
in the wake, was found to be linearly dependent on U_. To compare
shedding frequencies in this and earlier work, we note the Strouhal

number based on the strut thickness h, which is

N, = £.h/U, = 0.23 (10)

This number* is somewhat smaller than that of Greenway and WOod4 at a low
Reynolds number NSt = (0.286; however, it is in agreement with their value
of Nst = (.24 obtained at a high Reynolds number. This difference is
probably caused by laminar separation at the trailing edges at their low
Reynolds number; also, the shed boundary layers in this and the Greenway
and Wood cases are dissimilar. The current value compares favorably with
the BearmanS value, Nst = 0.24, for a blunt edge without a splitter plate.
All of the previously mentioned differences in dimensionless shedding

*
In this case the definition is practically equivalent to that of

Gongwer6 which replaces h by h plus the sum of the momentum thicknesses of
the boundary layers shed off the edge. Thus, h+206=2,1 inch and fs(h+26)/
U, = 0.25 which is somewhat greater than the value 0.19 obtained

by Gongwer.
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frequency are most likely due to variations in the wake thicknesses
occurring in the various experiments, and they reflect the observation
(Bearman)7 that Equation (10) is not a universal scaling number. One of
the purposes of this report is to review various frequency-scaling
hypotheses in light of the current measurements.

The mean velocity profiles of the flow on the strut and in the near
wake of the strut are shown at the center of Figure 14. At the bottom

of Figure 14 are shown the vertical profiles of root-mean-square filtered
- 1/2
fluctuating velocity u (fs); the turbulence velocities were filtered

in 1/10-octave bands centered on the shedding frequency fs. Within

0.5 inch of the strut the profiles display sharp maxima near the corners
of the edge and broader peaks closer to the centerline of the wake. The
sharp peaks in intensity are associated with the primary disturbances in
the shear layers, while the peaks near the centerline are probably
causid by a secondary vortex system. For x > 0.5 inch, the profiles of
— 1/2

u2 (fs) display two maxima which broaden in spatial extent as the dis-

turbances are convected away from the strut. The locus of the filtered
intensity maxima is sketched in the center of Figure 14; it is situated a
distance which we shall call y = yo/2 above the centerline of the wake.

The root-mean-square fluctuating pressure, filtered in a 12.5-Hz
— /2
band centered on the shedding frequency p (fs), was measured at

increasing distances from the trailing edge. The pressures, normalized
on the dynamic head of the inflow, are shown in the upper part of

Figure 14. The fluctuating pressures on one side of the strut were in
common phase, showing no convection as was expected. The frequency
spectra of fluctuating pressure on the surface of the strut (Figure 15)
displayed a single dominant peak at f = fs. (This figure will be more
fully described later.) An autospectrum of the fluctuating base pressure
displayed a single peak at f = 2fs. The narrowband, root-mean-square

base pressure, filtered at f = 2fs, is also shown in Figure 14.
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The growth of coherent disturbances in the near wake can be deduced

from correlations of fluctuating pressure on the edge with fluctuating

velocity at specific locations in the wake. The magnitudes of the
fluctuating pressures generated by the wake should depend on both the
strength of the vortices shed into the wake and the proximity of the
vortices to the edge. The frequency of the pressures is the same as the
rate of formation of vortices, and this is given by the ratio of the local
speed of convected vortices relative to the fixed edge to the streamwise
spaéing of adjacent vortices in a single row. The cross-wake spatial
variation of local fluctuating velocity in a vortex street has been related

to the geometry of the configuration of the vortices by Schaefer and
= 1./i2
Eskinazi (1959).21 They have shown that the maximum of u2 (fs), fizer ,

y = yo/2, coincides with the locus of the peripheries of the vortex cores

rather than the locus of centers of the vortices. The diameter of each

vortex core was shown to extend approximately from the position of

&‘ maximum filtered velocity to the centerline of the wake. The strength of
4 g the vortex 1s proportional to the product of the diameter of the vortex
ﬁ4‘§ ' core and the tangential velocity at the extremity of the core. Therefore,
measurements of the correlation between the fluctuating surface pressure
& and the fluctuating velocity along the y = yo/2 are expected to reflect
R . the structure of vorties in the wake.
\ This measurement was performed by moving an anemometer probe along
f; the locus of filtered turbulence maxima in the upper side of the wake
- ? that is shown in Figure 14. The space-time correlation of pressure and
?r;‘ velocity is written
W i p(rxl = =0.375, ©) u(r,& + 1)
Rpu (rx,T) = = 172 (11)
Pe Uo
f ‘;"; .
"ié 21Schaefer, J.W. and S. Eskinazi, "An Analysis of the Vortex Street

Generated in a Viscous Fluid," Journal of Fluid Mechanics, Vol. 6, p. 241
(1959).
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where pe(t) = p(fx = -0.375 in.,t) is the unfiltered fluctuating pressure
as close as possible to the tip

r = -0.375 inch
il

t is time
u(rx,t) is the local velocity along y = yo/2

L is measured downstream of the trailing edge.

The correlation has been normalized on the root-mean-square fluctuating

pressure at the tip and the local free-stream velocity Uo' By using Uo
— 1/2
rather than the local root-mean-square velocity u (fs) as a normalizing

factor, we can determine the influences of specific locations of the wake

on the fluctuating pressure. The measured correlations for U_ = 100 ft/sec
are shown in Figgre 16. The upper curve is the spatial correlaEion, which
reaches a value Rpu(rx,o) = =0.25 at B ® 0.5 inch and a value Rpu(rx,o) =

+0.25 at r. = 2.1 inch. Zero crossings occur at r_ = 1.1 inch and
— 1/2

r = 3.5 inch. The maximum values of u (£ )/U_, taken from Figure 14,
x s’" 7o —1/2

show an absolute maximum at r. = 1.3 inch; the intensities grow from u

= 0.16 Uo to a maximum O0.29 Uo' This, according to the Bearman5 criterion,
signifies the end of the vortex formation region. The coErelation
coefficient evaluated at constant phase is determined by Rpu(rx,rm), where
T_ increases from zero, and it essentially correlates the pressure with a
single vortex as it moves downstream. We shall call this the moving-eddy
correlation, and it shows that although the coherence is greatest at the

end of the formation region r, = Qf, its magnitude essentially follows
— 1/2 — 1/2
that of u (fs). The correlation coefficient based on u (fc),

therefore, is unity which simply means that the pressure is caused entirely
by a fully coherent vortex street. The values of the time delay Tm for

the moving-eddy correlation are shown at the location of Figure 17. The
varying slope in the curve of Tm versus r shows that when the vortex

begins to form from the free shear layer, the pressure is generated

instantaneously on the surface of the strut. As the vortex continues to




form, it begins to move downstream from the strut while its strength
increases. This acceleration continues until r. = 1.3 inch, at which
point the acceleration diminishes, and it begins to move with a slowly
varying speed of convection. The convection velocity, defined as ﬁc
= Arx/ATm at this point is Uc = 0.64 Uo. This convection velocity, based
on the moving-eddy correlation, was &lso obtained by using a pair of hot
wire anemometers and forming velocity space-time correlations. The
points obtained in the near wake have been included in part d of
Figure 16, and they fully corroborate the pressure-velocity correlation.
In the far wake, i.e., for Ty ¥ 9 inches or rx/h = 4.5, the velocity
correlations give ﬁc = 0.81 Uo. According to the Bearman7 measurements
of velocity correlations, the convection velocity of disturbances in the
wake became constant and equal to 0.88 U for rx/h >4,

To construct a geometric picture of the vortex structure we use the
convection velocities, determined from the data of Figure 16, and the

frequency of shedding fs to determine streamline vortex separations b

from the relationship

U

=fb
c s

Convection velocities are shown at the bottom of Figure 17. In the near
wake, the spatial correlation of Figure 16a 1s interpreted to show that
the first, growing vortex is formed at 2 g 0.5 inch duownstream from the
edge. At the same time, the vortex, shed one-half cycle earlier from the
opposite corner of the edge and grown to full strength, has moved to

r_ = 2.1 inches. The cross wake position of the vortex centers in the
near wake can be estimated by using the Schaefer and Eskinazi (1959)21
semiempirical result, which roughly locates the vortex cores between
y=0and y = yo/2. Using these guidelines, locations of vortices in the
near wake can be estimated and they are shown in Figure 15. 1In this
diagram the circles signify vortex core sizes, and the arrows show the

direction of circulation. The diagram shows the size of the first vortex,




= 0.5 inch, which could not be established using the

not fully grown at r,
previously described criteria so the size shown in the figure is the

largest that can be accommodated by the geometry. The dotted line is the
— 1/2
locus of the secondary maxima of u (fs), and it is interpreted as the

boundary of the region of secondary flow at the trailing edge.

Also shown in Figure 17 is the streamwise distribution of the root-

mean-square fluctuating pressure, which has been normalized on the

dynamic head of the free stream. It is shown that the wake-induced

pressure diminishes to one-third its value at the tip within only one

trailing-edge thickness. These levels were obtained from dimensionless

spectra such as those in Figure 15. In the latter figure the frequency

of shedding has been made dimensionless on the cross-wake distance be-

tween filtered turbulence maxima B = W evaluated at B E 2f and a

speed Us’ characteristic of the shear-layer at the point of separation.

This speed has been defined by Roshko8 through the theory of potential

flow to be related to the static base-pressure coefficient by

U =Uvl-c (12)

b Py

The dimensionless filtered-pressure levels show a maximum at a dimensionless
frequency wsyf/Us = 1. The bandwidth of the pressure levels appears

greater for a speed of 50 than for 100 ft/sec; however, at both speeds

the bandwidths of the measured pressures are controlled by the filter

for which the dimensionless bandwidths are Awyf/US = 0,09 and 0.18 for

100 and 50 ft/sec, respectively. Also apparent are the lower magnitude

harmonics of the fundamental pressure fluctuations. For wyf/Us < 3, the i

broadband-pressure levels at the tip are a factor of 6 to 10 in excess %

of those measured upstream at position 6, Eo) = =13 inches. At the latter

position, spectrum levels are typical of those measured in turbulent

boundary layers with vanishing streamline pressure gradient. @

Correlations of the periodic pressures along the span were determined

at a speed of U = 100 ft/sec for microphone separations to r, = 4 h.




>)
i These correlations have been normalized on the mean-square pressure, which
E was uniform along that portion of the span used for the measurement.

This correlation is written

3 <p(z,t) p(z+rz, t+1)>
Rip &™) ¢ 5 > 172
[p,"(z,t) p (t,z+r )]

(13)

{‘ and the measurements behave as A cos (wsT + o), where A and a are
separation-dependent amplitude and phase functions approaching unity and
zero, respectively, as ry + 0. The space-~time correlations indicated

E that A was a slowly varying function of time delay T. The correlations

at T = 0 produced the lateral coherence function A cos 0; at time delays

Ly a/ws, they produced the maximum correlation amplitude A. The angle

0 is related to the yaw angle ¢ made by the vortex filaments with the

trailing edge by the relationship a = (wS r, tan ¢)/Us. The data shown in

Figure 18 are for both of these correlation functions. The scatter for
Rpp(rz’ T = 0) was caused by the slow variation of this function with f
time, reflecting that ¢ was not constant. The phase of the correlation |
h o, in fact, varied between zero and the absolute value reflected by the

data given in Figure 18. This was determined by measuring the correlation 8
with short averaging times. The data indicate that the vortex filaments ;

= <
were shed at yaw angles to ¢ = 17 degrees. Since IRpp(rz,0)| < Rpp(rz,Tm),

the data of Figure 18 show that for r, > 4 h the lateral correlation will
have some negative values with an absolute value less than 0.2. A

correlation length defined as

o0

zz ) j IRPP(rZ’O)| drz (1) i

-00




b is indicated by the data to be on the order of lz ~ 4 h, Similarly
- defined correlation lengths have been found for vortex streets behind
cylinders to be as low as 3 and as large as 10 cylinder diameters, and

they depend on Reynolds number.

4.2 WAKE BEHIND 45-DEGREE--ROUNDED- i
1 BEVELED TRAILING EDGE

Our discussion of this edge will parallel that of the blunt edge. :
: When the trailing edge is unsymmetrically rounded, using the 45~deg angle ;
‘a and a 5-inch fairing radius of curvature as shown in Figure 1, the K
separation point for the boundary layer on the curved side becomes less

s distinct. This degree of disorder as well as the streamwise displace-

ment of the free-shear layer formation points detunes interaction. B

o Characteristics of the boundary layer and near-wake are shown in

A
]
Figure 19. The figure shows a favorable pressure gradient upstream ”

from tap 11, followed by an adverse gradient downstream from this point
and constant pressure downstream from tap 13. Observation of oil-streak
F 'y patterns disclosed concentrations of oil along spanwise-oriented lines 1
‘ at taps 13 and 17. The former is interpreted as an upper separation i
4 point; the latter, as the stagnation point for the trailing edge. The
constant static pressure and the oil-film patterns indicate that flow is
separated downstream from tap 13.
The center diagram of Figure 19 shows the mean velocity profiles in ‘
the trailing-edge region. The profile at position G is given in 3‘

dimensionless form in Appendix B. Speeds measured at various points

above the surface have been made dimensionless by using a local approxi-

mation of the free-stream speed U, which was determined at each measure-
ment station. The bulge in the profile at tap 11, showing a somewhat
higher speed near the wall than in the outer flow reflects the negative
pressure coefficient at this point. It is apparent that Equation (1) .
is not satisfied by the data because unity minus the square of the

measured UO/Um, where Uo is the local maximum speed just outside the




boundary layer, does not equal the minimum pressure coefficient at the
corresponding point. The discrepancy is probably due to an error in
measuring U, determined at this chordwise location about 1.5 inches above
the surface.

The velocity profiles show the flow reversal, which is characteristic
of regions of separated flow. Profiles of broadband, rort-mean-square
velocity fluctuations are also shown, and they display local maxima at
distances from the wall corresponding to maxima in the vertical gradient
of mean velocity dU/dy. The velocity spectral densities, measured at
U, = 100 ft/sec, disclosed a periodic contribution at w = ws, which is
interpreted as due to a vortex street. Profiles of narrowband fluctuating

velocity, filtered in 1/10-octave bands at the shedding frequency
—1/2
w=w,u (fs)/UO, are shown at the bottom of Figure 19. Above the

surface of the edge and in the wake at downstream distances r, > 1 inch,
there are maxima corresponding to maxima in dU/dy. Very near the edge,
there are secondary maxima which are proposed to be associated with a
secondary vortex system similar to that already proposed behind the blunt
edge. In contrast to the wake of the blunt edge, however, there is an
asymmetry in the wake which persists at least 5 inches downstream from
the trailing edge. In this case, local maxima in filtered intensities
occur at the upper and lower cross wake positions y = e and y = Yo»
respectively. The characteristic cross wake dimension is, then, Ve
= Ye T Y

A characteristic shedding velocity Us will again be defined in

terms of the pressure coefficient -C_ beneath the separated boundary
s
layer downstream from tap 13. Following the Roshko8 definition we write

U =UuA -cC (12)
s ® P

This is the same as the separation velocity of the blunt edge. Spectral

densities of the wake-velocity fluctuations ¢u(w) are nondimensionalized

on the wake variables y and US in Figure 20 (the spacing Y¢ will be

calculated later). The mean-square velocity is
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u J‘ d>uu(w) d w (15)
§ - —o0
- At a distance L, = 1.25 inch downstream from the edge, and 2y/h = 1.10

above the tip, the dimensionless spectra show the periodic contribution
at wsyf/Us = 1 for U, = 100 and 50 ft/sec. The intensity of the
contribution is substantially higher at 100 than at 50 feet per second.
Velocity fluctuations at U_ = 50 ft/sec and 2y/h = 0 are entirely broad-
i; band. A similar nondimensionalization of fluctuating surface pressures

R on the edge also shows a periodic contribution at wsyf/Us =1,

Figure 21 shows the dimensionless spectra of narrow-frequency-band

(12.5-Hz) levels of mean-square spectra at positions 6 and G. For

U, = 100 ft/sec, the periodic contribution is greatest at position G

and substantially diminished at position 6. At 50 ft/sec, the spectrum

at position G shows a broadly peaked contribution which contrasts the
A Snt i weak peridocity indicated by the velocity spectrum of Figure 20. It
appears that the pressure fluctuations extant on the edge at 50 ft/sec
¥ are determined more by local separation than by the vorticity in the wake
field. At 100 ft/sec, the pressures generated by the wake field are
dominant.

Further corroboration for this hypothesis is given by the space-
; H time cross-correlations between the unfiltered trailing-edge pressure at

position G and the wake-velocity fluctuations filtered in 1/10-octave

bands at f = fs’ similar to those of the previous section. For

U, = 50 ft/sec, correlations between the pressure fluctuations at
position G and the wake velocities along y = T and y = y, are shown in
' Figure 22. Normalized on the root-mean-square pressure at G and the
! mean velociEy Uo’ the spatia’ correlation along the locus (rx,yu) shows a
= | minimum of Rpu (O,rx,yu) = -(.04 over the edge whose absolute value is
F: never exceeded for L > 0. This shows that instantaneously the pressure

at position G is dominated locally by separation. The correlations also
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show that the shear layers along Yy and Yo interact to form a coherent
wake; however, the level of coherence with the pressure at position G
decreases as r. increases. The gpatial correlation indicates that the
formation of vortices from the upper and lower shear layers, although
facilitated by mutual interaction of the layers, does not involve total
entrainment of one layer by the other. Figure 22a suggests that the
upper layer forms a vortex first near r = 1 while the lower layer forms
a vortex near r = 1.5 inch. This indicates a lag on the order of one-
eighth wavelength. Further downstream, the mutual interaction brings
the vortices into a more coherent alignment.

This interpretation of the spatial correlation is also supported
by the growth of the root-mean-square--filtered-velocity fluctuations
of Figure 19. The local maximum values of filtered disturbances for both
shear layers are shown as a function of r, in Figure 22b. Along y = Yu
the disturbances filtered at w = w, grow to a maximum at a distance
between 1.5 inch < b < 3 inch, downstream but along y = Yq the
disturbances grow to a maximum at r. = 1 inch. The growth and streamwise
coherence of the disturbances shown by Figures 22a and 22b indicate that
the development of regularly spaced vortices is weakened by the relatively
independent behavior of the upper and lower shear layers as compared to
that behavior of those shed from the blunt edge.

The growth and decay of a given eddy as it moves downstream from
position G as indicated by the moving eddy correlation is shown in
Figures 22c and 22d. The time T has been defined from the maximum

magnitude of the space-time correlation as

>
Ry ot | > IR D]
where r. is fixed. Along the trajectory of the upper shear layer

Yy = Y the absolute value of the correlation grows to give a minimum

at r. = 1.5 inch, Rpu(l.S in., Tm) = =0.052. Along the lower trajectory,
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the value of the space-time correlation is taken at the time delay of
maximum positive correlation since we are interested in a contribution
180 deg out of phase with the observed eddy at y = Yy This phase
reversal is dictated by the necessity for the vortices of each shear

layer tc be of opposite sign. The correlations in the upper and lower

shear layers do not become matched until r. > 2 inches; the time delays
Tm become nearly equal at this distance.

The behavior of the near wake for the 45-deg round edge is strongly
dependent on Reynolds number as can be seen now by reference to I' gure 23,
The correlation measurements were repeated for U = 100 feet per second.
In contrast to the case of low speed, the disturbances from both layers

are seen to grow to maxima at 1.5 inch < r. < 2 inches with the spatial

correlation increasing dramatically with distance downstream from the

tip of the trailing edge. 1In this case Rpu(rx,o) < 0.1, and r, > 0,

compared to Rpu(rx,O) < 0.023 for r. > 0. The contribution to the total
pressure flu:tuation by the local separation is notably reduced, compared
to the contribution at U_ = 50 ft/sec as shown by the lower correlation

| magnitude for r. < 0. It is worthwhile to note that the root-mean-

1 square pressure that was used to normalize the correlation is the broadband
— 1/2
pressure, p . Reference to Figure 21 shows that while the periodic

pressures are higher and dominate the signal at U_ = 100 ft/sec, the

broadband pressures are dominant at U_ = 50 feet per second. For this
reason, p /q, = 1.13 x 10 © at 100 ft/sec; however, p /q

o0

= 2.6 x 10"2 at 50 feet per second. Thus it appears that even though a

development of the periodic wake is weak at low speeds, the continuous

spectrum pressures due to the local separation are important. The
moving-eddy correlation Rpu(rx,Tm) for U = 100 ft/sec not only reflects

the pronounced wake development but the values of Tn show small

ATm/Arx for small r_ - This is behavior quite similar to that observed
| for the blunt edge. Also, the values of Rpu(r ,T_) for the upper and

[ |

p 4
lower shear layers are more nearly matched at U_ = 100 feet per second.
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A wake structure for Uoo = 100 ft/sec as deduced from the measure-
ments is shown in Figure 24. As in Section 4.1, cores of the vortices

are assumed to be bounded by the lines

i L iy

u L

Y >y > 2 and
yu + Yq

——2 >y>yz

with a streamwise spacing given by Rpurx,O) in Figure 23. The dotted

line near the trailing edge circumscribes both the region of flow reversal
- 1/2
as well as the locus of secondary maxima in u (fs) as shown in

Figure 19 for small L Root-mean-square filtered pressures

- 1/2
p2 (fs)/qw are shown to have a maximum at position G(rx = -1.1).

At the downstream position (rx = -0.4) the periodic contributions are

missing; this position is nearly coincident with the stagnation point

rx = =0.6. The convection velocities
U Ar
C 1 X
= gm0 T (16)
u, U, Atm

as determined from Figure 23 show a maximum at Ly t® 0.8 along y = Yu*

Here the velocity disturbance is approximately 180 deg out of phase with
the fluctuating pressure at G, and its phase slowly varies as the eddy
moves downstream. Along the lower layer y = Yg» an opposite behavior
appears; the disturbance convection velocity decreases slightly. This
contrasting behavior could be caused by an uncertainty in determining

the peak in the space-time correlation and would be discounted altogether,
except that Hanson10 made a similar observation in the wake behind a

notched, lifting airfoil. He observed convection velocities on the
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order of 1.7 US. The current measurement indicates that the upper
disturbance speeds up briefly, while the lower disturbance is convected
at a lower speed. The formation length defined as the distance from the
stagnation point on the foil to the value of r, for the maximum in the
filtered velocity fluctuation, is taken to be 2f = 2.3 inches. This

nearly corresponds to the location of the minimum shear layer spacing

Yo = Yy = Yy = Yg-

4.3 CHORDWISE DISTRIBUTION OF
FLUCTUATING PRESSURE

Figures 17 and 24 show that the root-mean-square pressures on each
edge decrease with increasing upstream distance from the extremity of
the edge. In Figure 25, mean-square filtered, 12.°5-Hz pressures* for
each edge are shown together as a function of dis‘ance from the stag-
nation point (x-xs). The measurements were made on each edge for two
speeds, and the pressures, normalized on the dynamic head, have been
grouped for 2 given edge shape. The chordwise variation for the blunt
edge is less dependent on speed than for the 45-deg round edge. This
difference could be due to the occurrence of three dimensionality
associated with a finite, spanwise correlation of the vortex streets.
In this regard, recall that Figure 18 gives a spanwise correlation length
Qc = 4 h =8 inch., The data of Figure 25 show that forward of the blunt
edge for (x-xx) > 10 inches, the rate of decrease of pressure with
further distance is more pronounced. This suggests a three dimensionality
effect on the chordwise pressure distribution which may be speed
dependent. On the 45-deg round edge, the less rapid reduction in
fluctuating pressure with distance at U = 200 ft/sec could be attributed
to greater spanwise coherence at the greater speed. Unfortunately,
spanwise correlation measurements were not made for this edge.

A dimensional argument for scaling these pressure distributions is

derived from the estimated wake structures in Figures 17 and 24. For

*
Filter bandwidth was greater than bandwidths of pressures.
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a vortex situated at lf downstream from the stagnation point, the local

pressure exerted on the strut at x is assumed to be determined in a

general functional form by

P(x.xs) S
P s kf g

X=X
- ) (17)

is the shedding velocity defined earlier on the basis of the
static pressure coefficient in the trailing-edge separation

region
x-x_ 1is the position of the vortex relative to the edge

K is the strength of the vortex.

The influence function g((x-xs)/lf) specifies that the pressure at a
point is governed only by the distance to the vortex. The function is,

in general, dependent on the shape of the edge. For a periodic vortex

sheet, the individual vortices are correlated with a specific spatial

relationship so that the formation length, which locates the first vortex ]

pair relative to the edge, is a dominant space variable.

The characteristic strengths of the vortices in the wake are A

determined by the core radii T given in Figures 17 and 24 and the root-
- 1/2
mean-square filtered intensities u2 (fs) of Figures 16 and 23. The

second vortex is considered to be characteristic of the wake because for

each edge it is the first vortex immediately downstream from formation.
—1/2
2 F 4

In the case of the blunt edge, 4ro/h ~ 0.8, and u“ (f) = 0.29 U,

so that we approximate

— 1/2
/3 o am ul (£) *+ x

A
[}

° (18) .
0.52 U h )
o]




as the typical vortex strength. Greenway and Wood4 have estimated that

0.5 < k/Uh < 1.2

from their flow visualization of blunt-edge flows at chordwise Reynolds
numbers of 1.4 x 104. At the decade higher Reynolds number of the

current measurements, taking U0 = U_, the vortex strength appears to be
—= 1/2

slightly reduced. For the 45-deg round edge, 4ro/h = 0.5, and u2 (fs)
= 0.11 Uo’ so that k = 0.12 Uoh. Thus rounding the trailing edge not only
decorrelated the wake but also reduced the coherent vortex strength.

The normalization of Equation (17) describes a universal distribution
function. To test its validity, the data of Figure 25 have been
replotted in a dimensionless form, utilizing lf as a length scale in
Figure 26. The pressures appear to be well defined by these variables--
some points for 200 ft/sec have been ignored in this representation.

Using reciprocals of integral powers of distance we find that a series
combination of (x-xs)-l and (x-xs).3 would probably describe the

dimensionless distribution over a significant range of the variable

(x-xs)/lf.

4.4 VORTEX SHEDDING FREQUENCY:
UNIVERSAL STROUHAL NUMBER

The vortex shedding frequency has been shown by Figures 15 and 20
or 21 to scale on the shedding speed US and the near-wake length scale
Ye- An alternative nondimensionalization which has been suggested by

Hanson10 involves the momentum thickness of the wake at formation

Gf where

6 = J‘U—[(Jﬂ 1-v. Y
~ o
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His data for 1ifting airfoils show that the Strouhal number

Sg = £, 0./U_
is a universal function of the Reynolds number US ef/v. However, the
data for the current edges only partially support this definition of
Strouhal number.

Figure 27 shows the Hanson results as dots together with the points
which apply to the current experiments. The curve drawn through the

points follows the empirical equation

N = 0.0728 [NR - 1038] (19)
%o b

which was determined by Hanson and which is similar to that determined

by Roshko.8 The dimensionless frequency for the shedding from the blunt

trailing edge 1is only one-half that given by the 45-deg, round edge and

by Equation (19). Apparently, the momentum thickness of the wake at

formation is not a universally applicable length scale for the shedding

frequency. A distinguishing feature of blunt edge, compared to the

45-deg, round edge and the edges of the Hanson study, seems to be the

base~pressure coefficient which is (-Cp)B = 0.5]1 in the first gase and

less thian (~C )B = 0.3 in all of the later cases. The Bearman™ and

Hanson10 investigations with splitter plates have shown that an increase

in base-pressure coefficient accompanies a reduction in formation

length, Also, a relatively low base-pressure coefficient represents

more complete pressure recovery by the flow and this in turn implies

that less momentum has been transferred to the wake in the form of

fluid unsteadiness at the trailing edge. The loss of momentum from the

mean flow downstream from the edge, which determines ef, must be balanced

by the increase of unsteady fluid momentum. The growth of the regular

disturbances associated with periodic vortex streets is undoubtedly

accelerated by the presence of this unsteady motion; however, it is
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probably not fully governed by it. Thus the wake momentum thickness,
while being representative of the overall loss of momentum from the

mean flow, may not be expressive of the dynamical conditions necessary
for the formation of a periodic vortex street, The conditions favorable
for the formation of regular disturbances might be expected to be governed
by ef rather than by a geometric dimension of the trailing edge, e.g.,
the lateral distance between the flow separation points, if the vortices
are formed far enough downstream from the trailing edge that extraneous
flow disturbances associated with the immediate separation region decay.
This is probably not the case for very blunt trailing edges with high
base-pressure coefficients where vortices are formed close to the edge

but may be possible for smoother edges with lower Cp 3
b

The formation of the regular vortex street from the shear layers
leaving the shedding body will depend on the level of vorticity associated
with each layer as it is shed as well as on the cross-wake distance be-
tween the layers. The following diicussion will show the motivation for
suggesting Yg as an alternative to Gf as a length scale. Some theoretical
work has been performed to examine the influences of these factors.
Abernathy and Kronauer (1962)22 have performed calculations of the
growth of disturbances in idealized parallel shear layers. The degree
of shear-layer interaction for a given streamwise wavelength of disturbance
was shown to depend on the separation of the layers. A breakdown in the
shear layers, due to instability to small !isturbances, was shown to
occur with the resultant formation of ideni!:ally structured concentrations
of vorticity. The spatial structure of these disturbances, which
resembled that of a von Karman vortex street, motivated Abernathy and
Kronauer22 to speculate that there is a unique relationship between the
wavelength of the initial disturbance and shear-layer separation
distance which is most likely to generate a periodic vortex street.

Physically, thin sheets of vorticity, such as those which are assumed

22Abernathy, F.H. and R.E. Kronauer, "The Formation of Vortex Streets,"
Journal of Fluid Mechanics, Vol. 13, pp. 1-20 (1962).
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in the idealized calculations of Abernathy and Kronauer,22 appear to have
existed only in the immediate vicinity of the blunt trailing edge as
shown in Figure 14. They are not apparent at all behind the 45-deg round
edge (Figure 19) where the shear layers are relatively thick. To
examine the stability of disturbances in wakes which are characterized
by thick shear layers similar to those of the round edge (Figure 19) a
stability analysis has been performed by Sato and Kuriki (1961).23 They
found that at large Reynolds numbers, small disturbances of a wide range
of wavelengths could be amplified and that the rate of the amplification
was determined by the inflection points in the mean velocity profile.

The calculations were verified by measuring disturbances in the wake of
a thin flat plate. The distance between the inflection points of the
Sato and Kurik123 profile was essentially analogous to the shear layer
separation of Abernathy and Kronauer.22 Also, the amplitudes of the

g owing disturbances were observed by the Sato and Kurik123 combined
measurement and calculation to be maximum at the inflection points of
the mean velocity profile.

The wake stability calculations described in Appendix C were
performed for a variety of profile shapes of the general form of those
in Figure 19. They have further demonstrated that the frequency of the
least stable disturbances in each case depends more on separation of the
inflection points than on the momentum thickness of the wake. The momentum
thickness of each profile is shown to be not uniquely related to the
shear-layer separation for the set of profiles considered.

These considerations motivate the selection of Y¢ as an alternative
to ef as a near wake-length scale for the spectra of Figures 15 and 20
or 21. Use of Us as a speed scale is motivated by the view that it is
representative of the speed of the shear layer as it leaves the shedding
body. Further evidence from past investigations for the use of this

frequency scaling is scant because Ye is not available in the literature.

23Sato, H. and K. Kuriki, '"The Mechanism of Transition in the Wake of a
Thin Flat Plate Placed Parallel to a Uniform Flow,'" Journal of Fluid
Mechanics, Vol. 11, p. 321 (1961).
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Neither the formation length nor yg were determined in carlier investi-
gations other than those of Bearman5 and of Hanson.10 The measurements
of Hansonlo which are among the most extensive in this regard are not

complete enough to determine yg very precisely. Table 3 shows the best

estimates of wsyf/US which can be extracted from data by Bearman and

Hanson.
TABLE 3 - STROUHAL NUMBERS
Edge Shape wsyf/US Position of Ye
Blunt’ 0.97 1.0 %
Blunt with splitter plat:e,5 2/h=1 0.92 1.0 lf
Notched 1ifting'® (N, = 6900) 0.78 0.3 %,
e
6
Notched lifting'® (N, = 4800) 0.83 0.5 %
e
0
splicter,’® ¢/b=1 (N, = 5930) 0.91 0.4 %,
e
6
splitter,t® 2/h=1 (N, = 9800) 0.9 0.5 £,
e
0

The wake position downstream from the trailing edge at which Ye is esti-
mated has also been listed. It is pertinent to note that the lowest
value of wsyf/Us occurs for the case of Ye measured only 0.3 Zf down-~
stream from the edge. Because of wake spreading we would expect the
actual value of Ye to be somewhat greater than that used here. This
nondimensionalization appears to scale the shedding frequency within
20 percent.

Bearman7 has suggested an alternative scaling based on far-wake
variables. This scaling is based on the Kronauer9 stability criterion
which states that the stable cross-wake spacing b of the vortices in a

wake with a periodic vortex street is of such a nature that a minimum
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drag is exerted on the body. The Bearman universal Strouhal number

SB = be/US was determined from the far-wake data of both the blunt

and 45-deg-round edges wusing his calculation procedure. The values are
shown in Figure 28 as a function of shedding velocity US/Um; agreement

with the trend of earlier data continues to support the Bearman definition.

4.5 SUMMARY: PERIODIC VORTEX STREETS

The temporally periodic pressures that are generated on a strut by
the formation of a von Kirman vortex street have been quantitatively
related to the position of the first fully formed vortex in the wake as
well as to the strengths of the vortices. This relationship gives
the chordwise variation of the magnitude of the pressure as a function
of the distance upstream from the edge stagnation point expressed in
multiples of the vortex formation length. This similarity function
appears to be independent of both the speed and the edge geometry over
the range of variables considered. Some influence of the spanwise
coherence of the vortex street on the chordwise behavior is indicated.
A spanwise coherence length of approximately four edge thicknesses was
observed for the blunt edge. For a fixed formation length, the magni-
tude of the pressure is directly proportional to the strengths of the
vortices. Development of the vortex street was suppressed at low
speeds behind the 45-deg-round edge; disturbances decayed as they were
convected downstream from the edge. In this case periodic pressures
could not be detected on the strut. At higher speeds the spatial
wavelike growth of disturbances, typical of the blunt-edge wake, was
detected, and periodic pressures were generated. At the lower speeds,
however, even though the periodic disturbances were suppressed, high-
level, continuous-spectrum pressures were generated by the local
boundary-layer separation.

The frequency of vortex shedding was found to be given by two
Strouhal numbers which are based on either the near- or far-wake

variables. The near-wake momentum thickness was verified as a
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characteristic length for the shapes with low base-pressure coefficients.
The estimated shear layer separation at the end of the formation region
was found to be a characteristic length with more general application.
The Bearman7 far-wake Strouhal number, based on the Ktonauer9 stability

criterion, was found to agree with the current data.

5. SEPARATED FLOW AT BEVELED TRAILING EDGES

The remainder of the report will be concerned with flow near the
nonsinging edges of Figure 1. In these cases the boundary layers
incident on the edges experience adverse pressuré gradienté before
being shed by the strut. For nonsymmetrical edges, the flow on one
side of the'strut separates far enough upstream from the apex, or tip,
,of the trailing edge that periodic vortex street are not formed. This
section describes the mean and unsteady velocities that occur on two
trailing edges; Section 6 will describe the characteristics of
fluctuating pressures that are generated for each case in the separation
process. The purpose of these sections is to account for the separated
flow field which has been shown in the last section to induce high-

level, continuous-spectrum pressures.

5.1 TURBULENT FLOW NEAR 25-DEGREE--
KNUCKLE-BEVELED EDGE

As the boundary layer approaches the edge, it first experiences a
favorable pressure gradient, followed by an adverse gradient just down-
stream from the knuckle. This is shown in Figure 29 for the two tunnel
speeds U_ = 50 and 100 feet per second. The pressure recovery appears
to be more apparent at the higher speed since the pressure coefficients
are less negative at 100 than at 50 feet per second. Boundary-layer
characteristics were obtained at the positions A through F on the
surface of the edge as well as in the near wake downstream from the
edge. These positions are shown for reference in Figure 29. Before
discussing the measurements it is appropriate to mention that an oil-
streak experiment--identical to that described in Sections 3 and 4--

showed separation at position E. 0il accumulated in a streak
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one-tenth of an inch in width at the downstream edge of the knuckle. The
streaks were stagnant downstream from position F. This indicates a

o, steady separation at the knuckle followed by a large-scale and
intermittent separation zone further downstream.

Results of a survey of the boundary layer on the edge, performed at

F U, = 100 ft/sec, are shown in Figure 29. Expanded and normalized
versions for speeds of 50 and 100 ft/sec are shown in Appendix B.

Table 1 gives thickness parameters for the boundary layer. At

L position E, which is one-tenth of an inch downstream from the knuckle,

[ no evidence of the flow reversal that accompanies separation could be

ﬁv found. A single hot wire anemometer probe is expected to sense the

3ﬁ absolute value of the mean velocity inItTe boundary layer; however, a
d(u

sign change in the vertical gradient dy * where |U| is the magnitude

of the mean velocity in the boundary layer, should indicate a reversal

in flow. This sign change was not detected at any location on the

trailing edge. The profile at position F shows a vanishing velocity

gradient near the wall and that at position H shows a nearly vanishing

- gradient at the tip of the edge. The linearized, broadband, root-mean- i
B square turbulence intensities of the boundary layers are also shown as

E dotted lines for each location. These profiles show two important

o features. The first is the display of local maxima in turbulence in- 4

tensity which coincide with maxima in the vertical gradients in mean
— 1/2

velocity. These local maxima show absolute maxima in excess of u /
U0 = 0.23, which occurs near position H. The intensity at position I is

comparable to that at position H. The second feature is that near the /

—2-1/2
wall; where dU/dy = O, the gradient<%; (-E—Tr——-> also vanishes. Further-
o

more, at position F the root-mean-square turbulence intensity in this

region near the wall is approximately one half the measured local mean

, velocity. Peak fluctuations of velocity, therefore, probably exceed
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the mean velocity near the wall. Lines of constant speed, which describe

streamlines, have been drawn in Figure 29. The dashed line encloses

5 the region near the wall for which dU/dy = 0.

! The short dashed lines in the drawings of the mean velocity profiles
at positions F and H reflect the interpretation that the flow near the

£ wall is oscillatory. The nature of this oscillation is shown by reference
to the space-time correlation of the streamwise component of velocity at

1 position F. A pair of anemometer probes was positioned a distance n
above and in the plane with the surface of the strut. In the plane of

ﬁ% } the edge surface, therefore, the probes were separated in the streamwise

direction a distance rs = 0.5 inch and in the lateral direction a distance

| r, = 0.13 inch. Since the probes were at a common height from the edge,
: they were nominally separated a distance .= 0. Correlations were

measured at various distances above the wall as the probes were traversed

together along the y axis. The correlations were normalized as

- - _ _u(x,t) u(x+r,t+1)
. 1/2 (20)
[u™(x,t)u” (xtr,t)]

o

Coordinates x pertain to the location of the reference probe. The
separation coordinates r are measured in the plane of the edge. The

Sl is given to the

interpretation of Favre, Gaviglio, and Dumas (1957)
correlations. The results are shown in Figure 30 ror reference probe .
distances y = 0.1, 0.25, 0.15, 1.0 inch from the wail at position F and
for U, = 50 feet per second. Reference to Figure 29* shows that the /

position y = 0.5 nearly corresponds to the local maximum in turbulence

intensity at position F. At a greater distance above the edge, y = §

= 1.0 inch, the cross correlation shows a maximum at a time delay y

24Favre, A.J. et al., "Space Time Double Correlations in a Turbulen:

5 Boundary Layer," Journal of Fluid Mechanics, Vol. 2, p. 313 (1957).
25Favre, A.J. et al., "Further Space-lime Correlations of Velocity {
in a Turbulence Boundary Layer,' Journal of Fluid Mechanics, Vol. 3, p. 344
(1957). \ \ v.‘.

*
Velocity profiles for U_ = 50 ft/sec and for and for U = 100 ft/sec
X . are similar. y
l /1‘: 41 l‘« ‘f




Lo 0.7 x 10-3 seconds. This defines a convection velocity

C:I (=] ]

£ =(rs/Tc)Uw - 1.2 (21)

[+ ]

That Uc > U, 1s of no concern, since the direction of the vector or
mean flow probably does not coincide with the direction of the vector
of separation so that the measured convection velocity deviates from

the actual convection velocity, e.g., U” by
U, = U"/cos 6 (22)

where 6 is the angle between the vectors just mentioned. At the maximum
of turbulence intensity y = 0.5 inch, maximum correlation is reduced
considerably, and it occurs at a larger time delay. This is consistent
with slower convection closer to the wall, Still closer to the wall at
y = 0.25 inch, corresponding to the outer limit of the region where
dU/dy = 0, the maximum correlation is increased, and it occurs at T = O,

This indicates that the fluid disturbances here occur simultaneously at

both probes. Near the wall, at y = 0.1 inch, the maximum correlation
increases in magnitude, yet it remains at T = 0. The correlations
near the wall are marked by a skiwness toward negative time delays.
This lack of symmetry in correlation can be explained by suggesting that
two velocity components exist in the flow at this position. The
strongest component, with the largest correlation at T = 0, is not
convected; a weaker component, indicated by a reduced maximum correlation
value at T < 0, is convected upstream or opposite to the direction of
mean flow.

Correlations between probes positioned vertically, r, = 0 and
r # Ql.gre shown in Figure 31. The reference probe is set at y = 0.1 inch
above the edge. For r. = 0.22 inch, the space-time correlation at
T =0 is positive. For r. = 0.44 inch, the correlation at T = 0 is

small and negative. At this separation one probe is situated 0.1 inch
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above the wall, and the other is set at the point of maximum turbulence
intensity. The small and negative correlation at T = 0 shows that a
large and positive--directed downstream--velocity disturbance in the
shear layer is weakly associated with a small and negative--directed
upstream--velocity disturbance near the wall. The increased negative
correlation magnitudes at T = -12 msec show that this positive velocity
disturbance in the shear layer is followed by a negative--directed
upstream--disturhance of moderate magnitude. The velocities in the
outer flow and those near the surface are in quadrature; a streamline-
directed velocity in the outer flow is correlated with a deceleration
of the inner flow.

Figure 32 shows spectral densities of the fluctuating velocities* in
the region of the trailing edge, normalized on the total mean-square
velocity as described by Equation (3). At position F, the dimensionless
spectra appear to be similar at all distances from the wall. This
suggests that eddies are convected at a velocity proportional and nearly
equal to U(y), since a wave number w/U(y) can be used to describe the
data. Furthermore, this wave number can be nondimensionalized on & to
give dimensionless spectra which are typical of those measured in .urbu-
lent boundary layers on flat surfaces. This can be seen by comparing
to spectra obtained at position B. Also, we see that the normalization
applies for two velocities.

For distances above the wall greater than 0.3 §, this normalization
of the spectra can be expected because the space-time correlations
(Figure 30) show that the turbulence is convected at velocities which
are comparable to those in the boundary layer. Closer to the wall,
the correlations in Figure 30 show that for the most part, the dis-

turbances at two streamwise-separated locations are recorded

*
It is to be noted that these spectra as well as those in Figure 33 were

not all measured in the Anechoic Flow Facility. Some were measured in
another, smaller facility during preliminary stages of this work. 1In the
smaller facility slight blockage effects caused thinner boundary layers

than those under discussion; however, the dimensionless mean- and turbulent-

velocity prcfiles were basically identical in the two facilities. Thus

the dimensionless spectra from those measurements are included here. Where
spectrum measurements in the two facilities could be made, the dimensionless

data agreed.
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simultaneously rather than being convected. The convection indicated

by the existence of the dimensionless spectra for y < 0.3 § apparently
plays only a small part in the near-wall turbulence dynamics. At these
distances from the wall, the turbulence is distributed over wave numbers
which are large compared to a displacement thickness.

Also apparent in the spectra of Figure 32 are certain peaks at
different low dimensionless frequencies which actually occur at the same
low frequency. Normalized on the free-stream velocity, the peaks occur
at wé*/U_ = 0.25. Returning to the correlations of Figure 30, we see
that the zero crossing of the correlation for y = 0.06 § occurs at
TU,/8* = 24, which corresponds to a characteristic frequency 2m§*/U_t
= 0.26. The correspondence of these frequencies shows that a large-
scale, low-frequency disturbance coexists with small-scale, high-wave-
number, convected disturbances. Furthermore, the low-frequency
disturbances have a vertical scale between 0.22 and 0.44 inch, indicated
by the sign change in the correlations of Figure 31. Examination of the
flow pattern at position F (in Figure 29) shows that this distance from
the surface corresponds to the upper extremity of the estimated
separation region.

The further connection between these measurements and the vortex
structure was made using a '"visualization" with a series of cotton tufts
which were mounted to the strut. Long tufts, 2 inches in length,
moved in an intermittent rotary pattern which was alternated with the
tufts being swept downstream. Then, in an instant, they resumed their
rotary motion. Short tufts, about 0.5 inch in length, were buffeted
in an oscillatory motion up and downstream.

These observations present a picture of an unsteady large vortex
which is formed and then swept downstream. The core size of this vortex
is probably on the order indicated by the closed curve in Figure 29.

The process is only weakly periodic, occurring at the approximate fre-
quency wé*/U_ = 0.25, or wh/U_ =~ 0.6, where h is the thickness of the
trailing edge as indicated by velocity spectra.




We conclude this section with a brief examination of the momentum

balance of the boundary layer as it approaches the trailing edge.

Bidwell (1951)26 has derived a momentum integral equation for thick

boundary layers with streamwise nonuniformity. His relationship gives

the wall-shear coefficient as

o [ duv  ov” 8 3 uv (23)
J os (Bs +8y ) dydy';—z J 32 dy
0 o °°

(o}

All the terms in the equation have been previously defined, except v,

which is the vertical (normal) velocity fluctuation. Bidwell assumed

that v2 vanishes at y = 0 and y = §. In equilibrium boundary layers the

terms on the right hand side are negligible, compared to those on the

left and so they are neglected. In Figure 33 the mean momentum terms

are shown for the flow near the edge at U_ = 100 feet per second. Up-

stream of position E, the difference between the momentum loss

(%g) and the pressure gradient terms agrees with the wall-shear

coefficient, determined by the curve-fitting procedure outlined in

Section 3. At position E, the difference between the mean momentum

terms becomes more significant and indicative of the momentum lost from

the mean motion and converted into the momentum of unsteady Reynolds

stress terms.

26Bidwell, J.M., "Application of the von Karmian Momentum Theorem to 3
Turbulent Bouadary Layers,'" National Advisory Committee for Aeronautics N\\'ﬂél
T™ 2571 (1951).




E 5.2 TURBULENT FLOW NEAR 25-DEGREE--
- ROUNDED-BEVELED EDGE

ﬂ; The surveys of the boundary layer and the static pressure distri-
bution on the 25-deg--rounded-beveled edge are shown in Figure 34.
Downstream of position F, the static pressure was nearly constant for
speeds U_ = 60 and 100 ft/sec; however, the gradient of pressure was
adverse downstream 37 inches from the leading edge. The mean velocity
defects UO-U(y) (for U, = 100 ft/sec) increase markedly downstream from
this point, while the fluctuating velocities increase to an apparent

N, maximum in the vicinity of positions H and I. The balance of mean

i momentum (Figure 35) shows that lost mean momentum is not compenstated by

;k ' the pressure gradient at locations downstream from position E-1. This
suggests that the boundary layer separated downstream from this point.
An examination of the mean velocity profiles, however, shows that the
normal gradient qu venishes somewhere between positions F and G,

dn
suggesting that separation occurs in that region. Apparently, the

separation occurred near position F. Flow visualization by oil streaks
' demonstrated that flow separation occurred just upstream from position F.
Distinct flow reversal was not clearly disclosed because the very low

s velocities near the wall were insufficient to cause significant movement

of the oil. 1In drawing streamlines in Figure 34, position F has been

selected as the separation point. Inequality of the mean momentum
terms at this position as shown in Figure 35 is probably due to the
Zat generation of Reynolds stresses as Bidwell26 has pointed out.

, Table 2 gives the mean properties of the boundary layer on the

rounded trailing edge. Dimensionless velocity profiles are shown in

Appendix B. The favorable pressure gradient upstream from position C
causes the boundary layer to contract so that its momentum and displace-
ment thicknesses decrease, and the shape factor decreases to 1.14. Although
the mean momentum balance (Figure 35) suggests that this is accompanied by
an increase in Cf, compared to the values of local skin friction at

v positions A and B. The survey of the boundary layer was not made with
close enough streamwise separations for the calculated momentum inte-

grals to give local values of Cf precisely.
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Related investigations are those of Schloemer (1967)27 and of
Burton (1973)28 in which boundary-layer turbulence and wall-pressure
fluctuations were measured on surfaces with both favorable and adverse
pressure gradients. Although the surfaces on which their measurements
were made were not trailing edges, the pressure gradients of their
measurements can be compared to those of this study. Figure 35 shows
that the favorable (negative) gradients of the momentum balance in the
current study are significantly greater in magnitude than those examined
earlier,* while the range of adverse (positive) gradients examined in
the Burton measurement is representative of the attached boundary layer
on the 25-deg--rounded-beveled trailing edge. The favorable gradient
of the current di ‘:ussion is more severe than the gradients of the
earlier two.

The frequency spectra of the longitudinal velocity fluctuations in
the boundary layer show the same property of local convection that has
been shown for boundary layers with vanishing pressure gradients.
Spectra, normalized as in Equation (3), are shown in Figure 36; the
measurements were all obtained in the region of adverse gradient. At
position DE, the dimensionless spectra at high frequencies are similar
to those which were obtained on the region of the strut for which

3P
ds
is typical of the high-frequency turbulence. Also, the dimensionless

= 0. This simjlarity implies that the small length scale is 6*, which

spectra show that low-frequency motion which probably is caused by large-

scale motion is reduced near the wall, i.e., near y =~ 0.0148, compared

27Schloemer, H.H., "Effects of Pressure Gradients on Turbulent Wall
Pressure Fluctuations,'" Journal of the Acoustical Society of America,
Vol. 42, pp. 93-113 (1967).

28Burton, T.E., "Wall Pressure Fluctuations at Smooth and Rough Walls
Beneath a Turbulent Boundary Layer with Favorable and Adverse Free-Stream
Pressure Gradients,'" Massachusetts Institute of Technology Acoustics and
Vibration Laboratory Report 70208-9 (1973).

*
Since pressure coefficients were unavailable in that reporting, the
approximation Cp ~ 0 was made in order to calculate the momentum terms.
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to levels at distances from the wall on the order of 6*. Near the point
of separation at position F, the dimensionless spectra at different
heights above the wall are separated into two groups. For y/é > 0.13

to 0.15 the turbulence is controlled by lower frequency (larger scale)

4 disturbances than at points closer to the wall. An alternative non-

1 dimensionalization, suggested by Bradshaw (1967),29 replaces the dis-

4 placement thickness by the distance from the wall. This operation was
performed on the spectra of Figure 36b, and it resulted in a collapse of
high-frequency levels into two groups; the first for y/6 = 0.025, 0.033,
5 : 0.296, and 0.466 and the second for y/§ = 0.127 and 0.152; see Figure 37.
&' At the latter two distances from the wall, the curvature of the profile

i of mean velocity nearly vanishes, i.e., 32U/3y2 ~ 0; see Appendix B.

Spectra which may be nondimensionalized in this manner have been

suggested by Bradshaw to be controlled by eddies in the near-wall region

whose sizes are proportional to distance from the wall. At the location

above the wall where the mean velocity gradient is maximum, the disturbances
appear to be dominated by higher-frequency, wave number, components
compared to those at other locations. Also in contrast to the spectra
measured at position B, the k-s/3 dependence occurs over a very restricted
range of wave numbers. In the region of the separated boundary layer,

position G, Figure 36c shows that the nondimensionalization on &% gives

spectra which are generally similar throughout the boundary layer. Also, ‘
the spectra are similar to those both at position B and at position F
on the knuckle edge for 0.8 < wé*/U(y) < 6. For wave numbers outside

| this range, the dimensionless spectra at position F on the knuckle edge

are dissimilar; however, they are generally greater than those at

position G on the round edge. Thus, the large-scale motion on the

knuckle edge is more intense than that occurring in the separated region

of the rounded edge.
A review of Figures 7, 32, and 36 shows that over the range

1 < wé*/U(y) < 6, the dimensionless spectra are generally similar and

29Chandiramani, K.L., "Interpretation of Wall Pressure Measurements
Under a Turbulent Boundary Layer," Bolt Beranek and Newman, Inc.,
Report 1310 (1965).
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behave approximately as [wd*/U(y)]-S/B. This dependence on wave number

suggests the existence of an inertial subrange, analogous to that which
exists in isotropic turbulence. At higher frequencies the wave number
dependence increases, while at lower wave numbers the spectra occasionally
show various peaks. In both of these extreme ranges, spectra are notably
dissimilar at different locations along the streamline and at varying
distances from the wall. If we interpret the dimensionless wave number
as 2ﬂ6*/kx, where Ax is the streamwise length scale of convected eddies,
the spectra of Figures 32, 33, and 36 show that the intensity of the
large turbulent eddies for which Ax > 2md* are position-dependent. The
lack of similarity of spectra at low wave numbers at a given position on
either of the trailing edges indicates that these larger eddies are not
convected at velocities proportional to U(y). Within the fully separated
flow on both edges, the dimensionless spectra are similar; this would
suggest that §* is a spatial scale for the turbulent disturbances at

some frequencies.

6. PRESSURE FLUCTUATIONS ON NONSINGING EDGES
For both 25-deg--beveled-trailing edges, frequency distribution and
spatial coherence of pressures have been measured. Furthermore,
coherence of pressures with turbulence in the locally separated flow
will be discussed to establish a mechanism for generation of the

pressures.

6.1 PRESSURES ON 25-DEGREE--ROUNDED-
BEVELED EDGE

Autospectral Densities

The boundary-layer flow on this edge has just been shown to be
both attached with an adverse (positive) pressure gradient and separated.
The statistics of the fluctuating pressures on this edge are therefore
typical of those occurring in attached boundary layers with adverse
pressure gradients (Burton28 and Schloemer27) as well as those beneath

fully separated flows; see Section 6.2,
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The region of flow separation on this edge was too small in its
spatial extent to permit correlation measurements. Thus a discussion
of those pressure statistics will be largely deferred until Section 6.2
so that we will first concentrate on the statistics beneath the attached
portion of the boundary layer. 1In Figure 38 the spectral densities of
pressure fluctuations have been normalized on the free-stream dynamic
head and the local displacement thickness. The dimensionless pressure
spectra at positions A and B are identical, and they have been shown to
be typical of pressures beneath boundary layers on smooth surfaces in
zero pressure gradient. Position C is in the region of favorable gradient,
and the spectrum levels are slightly lower than those at position A.
For the other measurement locations as the static pressure gradient in-
creased, the pressure fluctuations became more dominated by low-frequency
disturbances. At separation the pressure levels were the highest at
wé*/U_ = 0.4. The spread in dimensionless spectrum levels exhibited in
Figure 38 is a factor of 5. Burton28 has shown spread of a factor of
10 for the range of static pressure gradients shown in Figure 35. A
comparison of the dimensionless spectra just upstream of separation of
position E-1 of the current measurements and those of earlier studies
is shown in Figure 39. The spectra are designated according to the

dimensionless pressure gradient parameter of Figure 35. The spectra at

4c 1+H/2
0 ZEB-—I:E—- ~ 19 are notably dissimilar, and the difference in shape is
P

possibly due to the influence of the upstream bbundary-layer history.

In comparing the current experiment with that by Burton, we find
that in addition to differences in NR at the measurement points, the

i

momentum thickness upstream from the region of pressure gradient
(position C) is 0 = 0.06 inch, and Cf = 0,003 upstream from position C,
while for Burton,28 0 = 0.28 inch, and Cf = 0.001 at the entrance of the
region of his adverse pressure gradient. The maximum values of
dimensionless spectra are similar for both boundary layers; however,

near wé*/U_ = 3 the spectrum level on the current trailing edge i<
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roughly a factor of 10 higher than in the Burton case. The spectra in
Figure 38 show that as the fluid in the boundary layer of the strut

. moves into the region of adverse gradient (position DE), the pressure
é fluctuations first increase above the upstream, baseline, values at
zero pressure gradient throughout the frequency range. Further down-
stream the pressures at low frequencies continue to increase while
some reduction occurs at high-dimensionless frequencies. Finally when

the flow separates at position G, the spectrum is broad with a peak at

CaRi=atans

wé*/U_ = 0.4. In the Burton case, a gradually increasing adverse
E pressure gradient was also imposed on the boundary layer without
'i separation; however, the value of C. for his incident flow was con-

f

Lﬁ siderably less than in the current case. Thus, since pressure spectrum
1

16,18 28

levels in zero gradient increase with Tw (Blake, Burton, and

Section 3 of this report) the upstream, baseline, pressure levels were

notably lower in the Burton case than on the trailing edge under dis-
cussion. Thus we conclude that upstream history, which affects the

growth of the incident boundary layer as well as the local Reynolds

number, which is based aoan local momentum thickness, affects the level
of local pressure fluctuations on the rounded-trailing edge in the

severely positive pressure gradient.

Figure 39 indicates that the maximum spectrum level attained by
the pressure fluctuations reaches the limit ¢(w)Um/qw26* = 10-4 while

k- the flow is attached. Higher levels are attained after separation.

Spatial Coherence and Convection

Cross spectral densities of the pressures at the trailing edge were

obtained with longitudinally separated microphones. These spectra are

normalized on autospectrum levels and are expressed as functions of

phase in Figure 40. The representation follows that of Section 3
which was used for the boundary layer with zero pressure gradient.

The normalized cross-spectrum represents a coherence which is not a




A ﬁ' unique function of the phase a(rs,w). A nearly identical behavior was 1

determined by Burton28 for the smooth wall with adverse pressure gradient. 3

S Corcos,19 interpretation of the longitudinal phase of Equation (9)
was used again to determine the convection velocities of Figure 41.
Data in the upper figure were obtained about zero pressure gradient at

1
position B. They are typical of measurements taken elsewhere. For I i

T T

the region of adverse gradient, levels are shown in the lower figure. | @
;. All separations are referred to the lettered position, and they are in
the direction of the free-stream flow. The convection velocities are
normalized on U_; frequencies are expressed as in Figure 38, except that !
an average of 0* at the measurement points is used. A comparison of

Figures 38 and 41 shows that the measurements are dominated by the flat

portion of the pressure spectrum. The convection velocities for pressures B

*
in the frequency range %ﬁ_ > 0.1 fall into two classes, depending on

(= -]
whether the reference point is DE or E-1. For the reference position DE,

e

Uc/Um approaches 0.8; for r = 1 inch, Figure 40 shows that the

coherence exceeds that measured with E-1, the refgrence. When E-1 is

the reference, the convection velocities approach 0.55 U at the higher i
}1 dimensionless frequencies. We will assume that the pressures are i

- generated by velocity disturbances which are located in the boundary layer

situated a distance Ye from the wall so that U(yc) = Uc' An examination y

of Figure 37 as well as of the dimensionless data of Appendix B in light 1
of this assumption leads to a specification that the pressures are )
generated in the region for which streamline velocity fluctuations are ¥

largest. This is also the region for which dU/dy is maximum. .

Interpretation of the cross spectrum as the coherence of a pressure

disturbance of wave number w/Uc leads to the further speculation that i
the disturbance loses its identity as it passes down the edge. The
increased production of Reynolds stresses as the pressure gradient
increases is the cause of this disorder. At frequencies of such a

’ | nature that wé*/U_ < 0.1, the convection velocities show two other
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distinctly different behavior modes. For the separation of 0.5 inch with
E-1 the reference location, Uc is increased dramatically with decreasing
frequency. Alternatively, when DE is the reference, the convection
velocities decrease in agreement with the Burton measurements.

Normalized cross spectral densities with laterally separated
microphones are shown in Figure 42 for separation distances ranging from
0.31 to 0.62 inch. The reference location is position E-1. Separations
are normalized on the wave number w/Uc, where Uc is taken from data in
Figure 41 for position E-1 with r, = 0.5 inch. The lateral cross
spectral density appears to be a universal function of wrz/Uc; it is
also insensitive to the nature of the boundary layer. This is
illustrated by the close similarity between the current data and those
of Schloemer27 as well as those for the vanishing pressure gradient in
Figure 42 for large separations.

Overall spatial coherence of the pressures is shown by the broad-
band, space-time correlations for streamline separations relative to
position E-1. Figure 43 shows the normalized correlation function,

defined as

p(x,t)p(x+r, t+1) (24)
1/2

R (r,T) =
ad 2 2, -
[P (xot) P (X+r9 t+T)]

where in this case x is the coordinate of position E-1. For both
positive--the reference sensor upstream from the movable sensor--and
negative separations, time delays for maximum correlation Ume/G* are
the same. Values of the moving-eddy correlations#* Rpp(rS,O,Tm) are
larger for positive separations than for negative ones. Convection
velocities rﬂ/l’mUo° are approximately 0.7. The broadband correlations
are dominated by the low-frequency pressures which, according to

Figure 41, are convected past position E-1 at relatively high velocities.

*
This term is originally due to Chandiramani.z9
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e 1 The rapid loss in coherence in the moving-eddy correlation, which is due
to the rapid boundary layer growth, is apparently similar for both
speeds. Furthermore, the moving-eddy correlation is less than that
previously measured in zero pressure gradient.

‘E To summarize the characteristics of spatial coherence, we note the
auto and cross spectra of the pressure fluctuations have shown that

g while the increased pressufe gradient at the trailing edge causes an

" accelerated increase in the boundary layer thickness, the correlation
scales of the pressures relative to 6* diminish, compared to situations 4
in zero pressure gradient.

F' ) The lateral coherence remains somewhat unchanged by the growth of
the boundary layer. As the boundary layer nears separation the
autospectrum level increases at low frequencies, compared to what it was
when the pressure gradient was nearly zero. Just upstream of boundary-

layer separation at position E-1, the pressure field is controlled by

disturbances for which wé*/U_ < 1. Considering these disturbances as
wavelike, along the lines implied by Corcos19 and (1964)30 and examined
by Landahl (1967),31 we interpret this upper limit in frequency as a limit {
in wavelength for which wé*/Uc = ksé* < 1.8. This effectively places a
limit on wavelengths 2ﬂ/ks = As to greater than 3.5 6* with the disturbances

located at the position in the boundary layer for which dU/dy is maximum, e
and y = 0.7 6% (0.12 §). This is also the location which has been shown - {

to delineate between velocity disturbances with different dimensionless A

spectral forms as shown in Figure 35b.

Correlation between Pressure and
Velocity Disturbances

In order to establish a relationship between the fluctuating wall
pressures and the local boundary layer turbulence as well as to form a

basis for comparison between singing and nonsinging trailing edges, a

30Corcos, G.M., "The Structure of the Turbulent Pressure Field in
Boundary Layer Flows,'" Journal of Fluid Mechanics, Vol. 18, pp. 353-378
(1964).

31Landahl, M.T., "A Wave-Guide Model for Turbulent Shear Flow,'" Journal .
of Fluid Mechanics, Vol. 29, pp. 441-459 (1967). N
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series of pressure-velocity correlations was determined. Correlations like
these have been measured in boundary layers without pressure gradient by
Willmarth and Wooldridge (1963)32 and by Burton (1971).33 In the current
e experiment, the space-time correlations between wall pressure and velocity
; disturbances along the streamline were determined for pressures at

? position B, zero pressure gradient; position F, adverse pressure gradients
near separation; and position G, fully separated boundary layer. The

correlations are defined more generally than Equation (11) as

| = - _P(x,t) u(x+r, t+1) .
i Rpu(x:t:T) 3 3 — 1/2 (25)
B [p”(x,t)u” (x+r, t+1) ]

3 At position B the correlations for r = (O,ry) are practically the

same as those measured in previous investigations at positive values of

5‘ | time delay; however, they differ slightly at negative time delays. The

t current measurements were made at a lower Reynolds number than in the

29

1 earlier work, and there seems to be a consistent variation, with NR &

. e
, 6
shown for correlations at ty/G* = 0.58. Close to the wall ry = 0,36 6%,

the pressure is more positively correlated, compared to ry = 1.06 &*. Jé

With the larger separation, the pressures are more negatively correlated
at negative time delays. As Willmarth and Wooldridge have shown,
correlatioas of this shape may be interpreted as correlations of pressure
and streamwise velocity gradient du/dx. Thus, assuming that the pressure-

producing disturbances are a function of x - Uct

32Willmarth, W.W. and E.W. Wooldridge, '"Measurement of the Correlation
Between the Fluctuating Velocities and the Fluctuating Pressures in a
Thick Turbulent Boundary Layer,' Advisory Group for Aerospace Research and
Development Report 456 (1963).

4 33Burton, T.E., "Cn the Gereration of Wall Pressure Fluctuations for
Turbulent Boundary Layers over Rough Walls,'" Massachusetts Institute of
Technology Acoustics and Vibrations Laboratory Report 70208-4 (1971).
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5= R (x37,1) = -1/ —a—r—ii = -1/U_R ux(x;r,r)

9T pu p

It can be seen by inspection of Figure 44 that Rpu will have a maximum

near T = 0O, u = du/ox. ¥

According to the Kraichnan (1956)34 analysis, the fluctuating wall
pressures beneath homogeneous boundary layers are gererated by a source

field of volume density p %g-%% » which is continuously distributed

throughout the boundary layer. This "turbulence mean shear" interaction
has been argued by Willmarth and Wooldridge32 and Corcos30 to be responsible

for a strong correlation at T = O between pressure and the streamline

gradient of the normal velocity %i-. This correlation they showed to be

strongly positive, and it accompanies a negative correlation maximum with
du/dx. The space-time correlations of Figure 44 zre consistent with the
Willmarth and WOoldridge32 results for ry < §*%, For r, = 1.06 &%, Low-
ever, the shape of the correlation function suggests that an alternative

pressure~producing mechanism exists for eddies in the outer, mixing,

———

region of the boundary layer. It will be shown that this function shape
wil). be typical of the separated boundary layer and so will be further
discussed at the end of this section.

Pressure-velocity correlations, which were obtained at position F

for r = (O,ry) are shown in Figure 45 for U = 60 and 100 feet per second.

At position F the maximum intensity of the turbulence occurs at y = 0.54 &*

for U_ = 100 ft/sec, and y = 0.52 é* for U_= 60 feet per second.

The general functional dependence on T as well as the maximum correlations :
is similar to position B. At a corresponding location in the boundary

layer ry = 0.5 6%, the maximum coherence is reduced at position F,

compared to that at position B. The trend of more negative correlations

with increasing ry is also prevalent at this position.

3l’l(raichnam, R.H., '"Pressure Fluctuations in Turbulent Flow over a Flat
Plate," Journal of the Acoustical Society of America, Vol. 28, p. 378 (1956).
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Correlations obtained above and downstream from position G at 3

U, = 60 ft/sec are shown in Figure 46. In these cases r = (rx,ry

= 0.1 in.), where . is variable. Lettered locations a through d

correspond to values of L which are indicated in Figure 37. The locus

of correlations is just cutside the region of separation. These corre-

lation functions are entirely negative; the level of correlation is high

for positions a through d, and 1t decreases at position e. The temporai

width of the correlation peak AT, measured for coherence to decrease to
AtU
one-half its maximum value, is —3;2 ~ 8, where 6% is evaluated at

*
position G, This corresponds to a dimensionless frequency %Q ~ 0.8,
[e 2]

which is comparable to the bandwidth of the autospectrum of fluctuating

pressure at position G; see Figure 38. On the basis of this similarity

in frequency, it appears that the pressure generated beneath the

separated boundary Javer is caused by a large-scale velocity field, having

a coherent influence that persists slightly downstream from the trailing

edge. Also it appears from the functional form of the correlation that y

the mechanism of pressure generation by the turbulence is different for 4

the separated boundary layer than it is for the attached boundary layer. N

The magnitude of the absolute value of the correlation is also greater

for the separated than it is for the attached boundary layer.

The outer flow at position B is typical of that existing in fully

developed boundary layers, and it is characterized by a nearly vanishing
mean shear; it has been called wakelike by Coles (1956).35 Although

this wake analogy comes about because the mean velocity defect has certain

functional similarities with those of fully developed wakes, a wake ?

analogy may also apply to the mechanism of turbulent pressure generation.

A large-scale turbulent eddy structure is apparently convected at a

velocity nearly equal to U, over the surface and trailing edge. The ﬁ

streamwise components of the velocity field due to the eddies are

negatively correlated to the pressure on surface. In Section 4 it was

35Coles, D., "The Law of the Wake in the Turbulent Boundary Layer," v
Journal of Fluid Mechanics, Vol. 1, pp. 191-226 (1956). \\ oy
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i shown that the surface pressures induced by the wake vorticity were

negatively correlated with the streamwise component of velocity; see

N Figures 16, 22, and 23. For the edges considered thus far, pressures at
|% singing and nonsinging edges are distinguished by the degree of coherence
in the separation of the boundary layer. This is reflected in the band-
| width of the pressure autospectrum as well as in the coherence, and the

I  downstream persistance of the coherence, of the pressure wirth the velocity
fluctuations. This coherence is, in turn, dependent on the coherence of
4 the velocity fluctuations in the separated boundary layer and wake.

The shapes of the pressure-velocity correlations at position B for
‘; T < 0 may be due to the influence of a large-scale eddy structure,

f - generated by the laminar separation at the leading edge and convected
downstream. The mechanism of the pressure production is the same as

" that implied by the correlations described previously: |

- 6.2 PRESSURES ON 25-DEGREE--KNUCKLE-
» BEVELED EDGE

i ' The flow field on this trailing edge has been shown in Section 5 to
' be partially representative of the separated boundary layer downstream
B from position G on the 25-deg--rounded-beveled edge. The scale and

intensity of the boundary layer and its velocity disturbances was shown

1 to be larger on the knuckle edge. This section is therefore an

examination of the statistical structure of the pressure field beneath

a separated boundary layer. The scope of the measurements is the same

as that for the rounded edge.

Autospectral Densities

The dimensional autospectra G(f) are shown in Figure 47; they were
obtained at the lettered positions referenced in Figure 29. At
U_ = 50 ft/sec, the autospectra at positions A through D are similar
within a factor of two; this is expected because the boundary-layer--

displacement thicknesses are comparable for all these positions; see

,
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Tables 1 and 2. At position E, on the downstream side of the knuckle,
the pressures are more dominated by low-frequency disturbances. At
positions E-1 and F, the boundary layer is fully separated, and the
pressures at low frequencies dominate; they are comparable for both
locations. At U = 100 ft/sec, the pressures are again similar at
positions A through C and attain intermediate levels at positions D and
E. At positions E-1, F, and G the autospectra are nearly identical at
low frequencies with some spread for f > 1 kilohertz. Beneath the
separated boundary layer, the low-frequency, pressure spectrum levels
are factors of 30 and 103 higher than the pressures beneath the
attached flow at speeds of 50 and 100 feet per second, respectively.

For comparison of these pressures to those of the other flow situ-
ations, the autospectra are nondimensionalized on the outer flow
variables U  and &* in Figure 48. It can be seen that the dimensionless
broadband, low-frequency pressures are a factor of nearly 102 higher
than those at position G on the 25~-deg--rounded-beveled edge. The

*
spectrum levels in the separation region diminish with %Q_ > 1 in

o0

similarity to those on the 25-deg rounded edge at position G. A notable
feature of the dimensionless autospectra beneath the separated boundary
layer on the knuckle edge is that the levels do not scale on the free-
stream dynamic head, while the spectrum shapes are quite similar when
expressed in terms of wé*/Uw. That the spectrum levels are not dependent

on qi is surprising in light of the fact that the normalized velocity
— 1/2
disturbances u /Uo are similar for both speeds; see Appendix B.

Correlations of Wall Pressures

Space~time correlations of wall pressures on the knuckle trailing
edge are shown in Figure 49. The definition of the correlation function
has been given by Equation (24). As befors, a separation vector pointed
upstream is negative; for the correlatious of Figure 49, position F is

the referenced location. The coherence between pressures at positions
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E-1 and F (rS = -1 in.) is nearly 0.5 at speeds U, = 50 and 100 feet

per second. The mean convection velocity is
Uc = rS/Tm U, = 0.41

which is considerably less than that which has been calculated for
pressures beneath fully attached boundary layers. The streamwise and
lateral spatial correlations Rpp(ri,O), where r,=rgorr, are also
shown in Figure 49. Overall, the correlations show the existence of a
large-scale convected pressure field that seems to be laterally corre-
lated over two trailing-edge thicknesses while instantaneously extending
only a 1/3-trailing-edge thickness upstream. This spatial extent
roughly corresponds to the estimated upstream boundary of the separation
region; see Figure 29. A correlation between pressures at positions F
and G shows convection in two directions. As shown in Figure 50 two
contributions, correlated nearly equally, appear to be convected at

ﬁc ~ 0.35 U, The functional form of the correlation indica'es that the

correlation

P(xgt) B2 (g, t+1)

is a maximum at T = 0. This means that the pressure at position F is
positively correlated with Lhe temporal rate of change of pressure at
position G. Comparison of the correlation magnitude between pressures at
F and G with that of pressures at F and E-1 (rS =+1 inch) shows
comparatively less correlation between pressures at F and G. In

Section 5-1, the unsteady character of the velocity fluctuations near

the edge was described as due to an unsteady large vortex, alternately
formed and swept downstream by formation and ejection of the vortex.
Positive correlation between p(xF,t) and %? p(xc,t) suggests that pressures
at F and G are related to the formation of the vortex and its acceleration
preceeding ejection. They do not appear to be caused by a simple vortex

convection.
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Pressure and Velocity Correlations

Further indications of the pressure-producing mechanism of the
separated boundary layer are given by correlations defined by
Equation (25) with r = (O,ry). The space and time correlations are
entirely negative as shown in Figure 51, The lettered locations denote
the anemometer-probe positions designated in Figure 29. At ry = 0.598%,
the correlation nearly vanishes, while it is negative at ry = 0.0346* and
ry > 1.188*. The increase in the absolute value of the correlation with
increasing ry is somewhat a result of normalization on local turbulence
intensity. This latter factor also decreases with large ry; see
Figure 29 and Appendix B. The maximum value of the pressure-velci:ity
correlation occurs for ry ~ 1,186*%. That the pressure is partially
generated by a convecting vortex field is seen by reference to the
correlation in Figure 52. The locus of points g through k roughly
corresponds to local maxima in turbulence intensity as shown in Figure 29.
It is seen that while intensity decreases with increasing rx, coherence
increases slightly. In comparing the correlations in Figures 46 and 51,
we see that the pressures on the 25-deg knuckle edge are much more
coherently generated by the near wake than those on the 25-deg--rounded-
beveled edge. Also, the pressures are negatively correlated with the
streamwise velocity disturbances in similarity with correlations on
singing edges, Figures 16, 22, and 23. The spatial correlations of
pressure velocity, Rpu(;,O) show that Rpu = 0 at point i, which is just
above the tip of the edge. Here, the correlations change from positive
to negative values, which is a behavior similar to that shown for the
45-deg--rounded-beveled edge in Figures 22 and 23. The magnitude of the
spatial coherence is comparable, i.e., Rpu = «0.02. On the knuckle

edge the disturbances (Figure 31) are generally broadband, showing a

wo* wh
small low-frequency peak at T 0.15 to 0.2-- T = 0.5, where h is the
o [ o]

thickness of the strut--which seems to be more pronounced at position H

for y = 0 than at position F.
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) The sets of correlations in Figures 49 through 52 show the existence
o of a pressure field which is partially generated by a wake that is less
structured, compared to that causing the periodic pressures on singing
trailing edges. The disturbances do not grow as they move downstream in
k- the wake as do those in the flow region of the singing edges; however,

] they are generated by the local vorticity caused by the separation through
: a mechanism of pressure generation that appears to be common to both
singing and nonsinging trailing edges. Although the magnitudes of
pressures which are generated beneath separated boundary layers on both
the knuckle and the rounded trailing edges are quite different, to some
degree their mechanisms of generation seem to be similar as can be

seen by reference to the pressure-velocity correlations of Figures 46 and
51, 53, and 54.

Figures 53 and 54 are shown for corresponding locations on the edges

For both edges the pressure-velocity correlations in

relative to estimated regions of separation.

The correlations are in

the form Rpu(ry,O). For both edges, Rpu(ry,O) corresponds

Au/u
the profile of mean shear 3;73; as well as to profiles of u
y/8*.

to be measured by the reciprocal of the shape factor 6*/0.

The vertical extent of the region of maximum correla

in shape to

-5 o2

/U versus
0

tion appears
Finally

(R_) for the knuckle edge is three times larger than for the 25-deg--

pu’max
rounded-beveled edge. This similarity in Rpu(ry,O) with the velocity

gradient indicates that the source distributions above the two edges are
as similar as are the velocity profiles. The time behavior of each of
the local correlation functions suggests the simplified interpretation
that pressure-producing disturbances are convected at a constant velocity
(or increased) velocity dis-
This

However this

by a fixed point, and a locally positive

turbance is associated with a negative pressure disturbance.
interpretation is drawn from the theory of potential flow.

is only a contribution to the total pressure. Other contributions are
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generated by the disturbances ejected into the wake so that the overall
level of the pressure fluctuations is generated by the coherent effect

both of the convected wake field and of the local shear layer.

Cross-Spectra of Pressure and
Velocity Disturbances

To clarify some of the trends in correlations, cross spectral
densities of pressures at two streamline locations and cross spectra
between pressure and velocity fluctuations were made to show contri-
butions due to various parts of the near- and far-wake flow layer.
Magnitudes and phases of normalized-pressure cross spectral densities are
shown in Figure 55 for a variety of streamline separations. The phase
has been given Corcos19 interpretation as stated in Equation (9a).

Cross spectra (Figures 55a through 55c) show that two frequency ranges

of correlation exist. Overall, from positions E to F, the coherence

is greatest near 40 Hz (wh/Uco = 0.43), which roughly corresponds to the
frequency of the broad peaks in the velocity spectra of Figure 32.
Between positions E-1 and F, the coherence is greatest near 200 Hz

(wh/U°° = 2.1). This frequency is a limit below which the autospectrum

of pressure maintains its asymptotic low-frequency value. Locally
(Figure 55d) the pressures at position F are well correlated throughout
the frequency range. The disturbances are convected between positions

E and F at speeds Uc = 0.32 U_; and between E and E-1 at Uc = 0.35 U_;
however, between E-1 and F, Uc = 0.48 U_. Near position F, Uc ~ 0.4 to
0.6 U_, depending on frequency. These velocities are consistent with
those indicated by the broadband correlations. Convection velocities

of approximately 0.3 U are somewhat less than the mean velocities in the
boundary layer at locations of the maximum streamline velocity fluctuations
which are from 0.5 to 0.6 U_ . These low-frequency pressures are therefore
convected at speeds more representative of the average mean velocity of
the large-scale eddy structure beneath the separated shear layer. The
rore rapidly convected high-frequency disturbances have apparent sources

at the location of maximum streamline velocity fluctuations.
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The cross spectra between pressures at F and the local velocl’ties
at the points g, h, and i in Figure 29 also show two distinctly different
frequency ranges of coherence. In Figure 56, for ry = 0.5 inch and
B 2 inches, point i, the dependence of phase a versus frequency, has
two slopes; the magnitude of the cross spectrum has two peaks. The
high-frequency peak is convected at Uc = 0.9 U, . At lower frequencies,
the slope da/dw is negative; which implies the existence of a negative
convection. This interpretation follows a special definition of

Ja

-1
convection velocity as Uc =r Lsa] . Strictly, Uc is analogous to a

group velocity and becomes identical to Uc (Equation (9a)) when Uc is
independent of frequency. For Be ™ 1 inch, point h, the phase is small
and nearly independent of frequency; for £ T 0, point g, the phase is
negative at all frequencies. 1In the last case the resolvent separation
vector, which is vertical, has a component in the plane of the edge
which is directed upstream, r, = =0.21 inch. The convection velocity is,
therefore, small and positive as designated in Figure 56. This is
representative of the low speed of inner entrained fluid. That the phase
is small for point g suggests that the pressure-producing disturbances

in the flow pass points F and G at the same time. The similarity between
convection velocities in the cross spectral densities of Figures 55 and
56 show that low-frequency pressures are generated by the low-speed

large eddy flow, while the higher frequency pressures £ > 100 Hz are
basically generated by the smaller scale eddies in the shear layer.

Comparisons of Singing and Nonsinging
Edges

Finally, the degree of dependence of the fluctuating pressures on
the eddy structure in the wake has been further indicated by the cross
spectra of pressures on opposite sides of the knuckle trailing edge.
Sensors were positioned at E-1 (Figure 29) on opposite sides of the
trailing edge, and the cross spectra, measured in 12.5-Hz frequency bands,

are shown in Figure 57. The high level of coherence for low frequencies
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further supports the hypothesis that these pressures are generated by the
large-scale disordered wake field. The frequency has been made
dimensionless on h and U . This thickness is selected here as a
convenient scale which is representative of the knuckle-edge--shear-layer

separation, and it is used to draw a comparison with the singing spectra
wy
in Figures 17 and 21. For frequencies ﬁ—i > 1 and wh/Uoo > 1 (taking
s
= h, Us = U_) all the pressure spectrum levels decrease. It is to be

y
ngted that the narrowband dimensionless pressures in Figures 15, 21, and
57 may all be compared directly. It is interesting that even though the
25-deg knuckle edge did not generate a periodic vortex street in the
speed range of the measurements, it did generate high-level pressure
fluctuations in a frequency range not far removed from the frequency &t
which singing would have occurred--wh/U_ of order unity.

In the case of the 25-deg rounded edge, the pressures at position G
are considerably less than those which are generated by other edges;
nonetheless, they are restricted to frequencies wyf/Uoo < 1, where Ye is
the distance between maxima in turbulent velocity intensities shown in
Figure 35, Ye = 0.5 inch. A complete series of measurements was not
made on the 25-deg rounded edge at U_ = 200 ft/sec, however, at this
speed, the pressures at position F began to display a weak tone at
f = 450 hertz. Assuming that Y = 0.5 inch--suggested by the data at
positions H and I in Figure 35--and that Us = U_, this frequency is
equivalent to uuyf/Uao = 1.2, Weakly periodic velocity disturbances were

also measured in the wake at this speed.

7. SUMMARY: TRAILING EDGES AND UNSTEADY PRESSURES
We have seen that all the edges considered in this report generate
high-level--fluctuating-surface pressures, regardless of whether or not
periodic disturbances are formed in their wakes. It has also been shown
that the periodic disturbances occur with Reynolds-number-dependent

strengths on the blunt edge and on the 45- and 25-deg--rounded-beveled

edges. The flow near the knuckle edge was not examined over a large




enough range of speeds to determine if periodic pressures would occur at §
high Reynolds number. When periodic disturbances were not generated, the 1
fluctuating pressures on the edge were distributed over a frequency range

bounded by the upper limit of frequency wyf/Um ~ 1. The spanwise

correlation length of the pressure fluid on the knuckle edge was one~fifth

that of the periodic pressure field on the blunt edge. Both the low-
frequency random pressures on the one hand and the periodic pressures
due to coherent vortex streets on the other hand appear to be generated
g by large-scale vorticity through a common mechanism. Higher frequency
TQ pressures in the random cases appear to be due to a smaller-scale

! convected vortex structure, which 1s located at the upper boundary of

- the region of separztion. Contributions to the random velocity disturbances b

in the separated and nearly separated flow on nonsinging edges which are

locally convected appear to be due to a vortex structure whose length

scale is governed by the local displacement thickness. The other con-
tributions to the velocities which are not locally convected and which

appear to be generated by the near-wake structure occur at frequencies

SN
2 L

dependent on the shear-layer separation in the near wake.

A comparison of the turbulence intensities and length scales of all

€ edges shows that no correspondence exists between the degree of

periodicity of the surface pressures and the value of the maximum

broadband intensity of velocity fluctuations at the edge extremity.
— 1/2

These intensities cover the range 0.16 < u2 /Uo < 0.23. Periodic

B ! pressures have been shown by the experiments to require the growth of /

'f“i coherent wavelike disturbances in the wake, and this growth is therefore
_,lt? — 1/2
S apparently unrelated to u /Uo' This evidence has been supported by

the stability calculations of Appendix C which show the amplification
factors of disturbances to be dependent on Reynolds number and dzU/dyz.

The remainder of this section will be devoted to the practical
questions of

| 1. Establishing whether or not a given trailing edge will generate

| a periodic vortex street




g 2. Estimating the frequencies of pressures that are generated

| 3. Estimating fluctuating pressure levels and length scales.
Although certain dimensionless factors have been shown in the preceeding
sections to describe the measurements quite precisely, these quantities
are probably not very useful for estimations because they involve
parameters which are associated with flow details rather than with
overall geometric details. In an estimation process the quantities are

not known a priori, and they are, therefore, of little practical value.

DY PR S ———
- d s "

The results of the measurements will be summarized and approximated

below so that some simple formulas may be given.

Minimum Reynolds Number for Periodic
Wake Generation

Periodic disturbances were generated on the blunt and both of the

rounded-beveled edges above certain onset speeds. Using a definition of

Reynolds number based on the wake parameter Yes these speeds corresponded

to U, ye/v = 5.2 x 10* for the 25-deg edge, 3.3 x 10° for the 45-deg

edge, and 4.1 x 103 for the blunt edge. Length scales are Ye = 0.25 h

p: and 0.6 h for the 25- and 45-deg round edge, respectively, and 0.75 h for
the blunt edge. Although the onset Reynolds numbers are not the same
for all edges, there appears to be a consistent increase in onset

Reynolds number as the apex angle of the edge is decreased.

Vortex Shedding Frequencies .
Although a universal Strouhal number based on a geometric length of

the trailing edge has not been isolated in this study, an approximate B

dimensionless frequency is fs yf/U°° = 1/2m. The length Y¢ for the blunt
and rounded-beveled edges has been given above. Other dimensionless forms

have been proposed by other authors for specific trailing-edge forms, and A

they may give frequencies more precisely in those cases; however, none

appear to have practical and universal application. When shedding does

4 not occur, the random pressures are bounded by the upper limit in frequzucy ;
fyf/Uoo = 1/2n. Here, values of y¢ are the same as those given previously;

for the 25-deg knuckle-beveled edge, it is approximately 0.6 to 0.8 h.
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Fluctuating Pressure Levels

The surface pressure levels exerted on the struts appdrently are
not governed by any known simple scaling law. In general, at a given
speed the level of the periodic pressures on the rounded-beveled edges
decreases with a reduction in apex angle. When random pressures were

generated on the rounded edges, the broadband mean-square levels were

seen to be comparable to 10-4 qi. For the 25-deg--knﬁckle-beveled edge,
the mean-square levels of the random pressures attained substantially
=2, .2

higher levels, approaching 10 = q_.
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Figure 30 - Space-Time Velocity Correlations above Position F on
25-Degree~-Knuckle Edge at U_ = 50 Feet per Second

(Separations of probes are in streamwise direction.)
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Figure 31 - Space-Time Velocity Correlations above Position F on
25-Degree--Knuckle Edge, Using Vertical Separations of Probes
(U, = 50 feet per second; § = 1.69 inch.)
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Figure 40 - Normalized Longitudinal Cross Spectral Density
Magnitudes of Fluctuating Surface Pressures on
25-Degree~-~Rounded-Beveled Edge
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Figure 42 - Normalized Lateral Cross Spectral Density Magnitudes

of Fluctuating Surface Pressure at Position El1 on
25-Degree-—Rounded-Beveled Edge
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Figure 44 - Pressure-Velocity Correlations at Position B on
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Figure 45 - Pressure-Velocity Correlations at Position F on Rounded Edge
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Figure 45a - U = 60 Feet per Second
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Knuckle Edge of Pressures at Position F and Velocities in
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Figure 53 - Correspondence of Pressure-Velocity Correlation

with Mean Shear for Position F on 25-Degree
Knuckle Edge at 100 Feet per Second
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Figure 57 - Comparison of Autospectra of Pressures on 25-Degree

Wedge

with Cross Spectrum of Pressures on Opposite Sides
of Trailing Edge
(Measurements made in 12.5-hertz bands at El.)
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APPENDIX A
VARIANCE OF ESTIMATE OF CROSS SPECTRAL DENSITY

In the fast Fourier transform analyses, the random variables x(t)

and y(t) are transformed as

1/2
X, (f) = % I x, () AT e (26)

where Xi(f) is the calculated transform of the ith sample, and T1 is the
sample length. The variables Xi(f) and Yi(f) are random variables and
the sample of the cross spectral density [Xi(f)Y;(f)] = [XY]i is also

a random variable; a total of N independent samples are taken. The

ideal cross spectral density function is

by (B = < X (DYR(H) > = (D) (27)

where the brackets < > denote a true ensemble average.

The estimate of the cross spectral density is

N
L 4 _-1— - P
<1>xy(f)-N Z Xi(f)Y;(f) (XY) (28)
i=1

Now, we define the variance of the sample estimate

02 =< (XY -2 >
Xy
(29)

N
1
— .2
<= D) tan, - @2 >
N a1

and the sample mean as
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ey = < (XD, - XY >
(30)
=0
Expanding Equation (29) we obtain
N
2 1 — .2
Oy = ;2 < Z [xY), - 6N ]° >
i=1
N N
1 —— —
+;2 < Z [(XY)1 - (XY)][(XY)j - (XY)] > (31)
i=1 j=1
it
=1 tam? - G0
The variables [(XY), - (XY)] and [xy), - (XY)] are statistically
independent and so (Cramer (1945)36)
<[ED; - @DIEAD,; - @ND] > = < @V, -E&D) > < @), - &) >

=0

Assuming that the random variables x and y are Gaussian distributed, the

correlation function satisfies the relationship (Frenkiel and Klebanoff

1967)37)

(32)

36Cramer, H., "Mathematical Methods of Statistics,'" Princeton University
Press, Princeton, N.J. (1945).

37Frenkiel, F.N. and P.S. Klebanoff, "Higher Order Correlations in a

Turbulent Field," Physics of Fluids, Vol. 10, p. 507 (1967).
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Substituting Equation (32) into Equation (31) we obtain

[x2v2+ 262 ¥HY2 17 - a2

Z|=

ol -
Xy

In terms of the spectral density, this can be written

2 2
2 f f
o “’xlz)z .1 [H&y_(_)_ _ (fr}il) ] (33)
(6, (6)] N ¢ (0 4 _ O

We have assumed that ¢xx(f) = ¢yy(f). When x and y are uncorrelated,

¢xy(f) = 0 so that the standard deviation of the estimate 1is

o, (34)

I
8 () N

When x and y are identical, the ¢xy(f) ¢xx(f) so that the standard

deviation of the estimate of the auto spectrum is

|°(¢ l/— (35)
(f)

In the case of an analog cross spectrum analysis N = 2AfT, where Af is the
analysis bandwidth, and T is the averaging time. Equation (35) is the

well-known expression for the error in the estimate of an autospectral

density.
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F : APPENDIX B
DIMENSIONLESS PROFILES OF MEAN AND TURBULENT VELOCITIES 1

Most of the boundary-layer profiles of mean and turbulent velocity
are given as functions of U0 and y/6. The streamline velocity component
is the unfiltered--broadband-root-mean-squared value. With only a few {
exceptions the profiles are given in each instance for two speeds ?
U, = 50 or 60 ft/sec and U_ = 100 feet per second. Measurements are E

given for all the beveled trailing edges; see Figures 58 through 66.
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APPENDIX C
STABILITY ANALYSIS OF WAKES

Several characteristics of the velocity and pressure fields of the

trailing edges suggest that the flow may be examined using wave

mechanics. The growth of coherent disturbances in the wakes are shown

1 in Figures 16, 22, and 23 as well as the wavelike translation of velocity

; perturbations downstream show the plausibility of calculating the

: stability of disturbances. Similar efforts were undertaken by Hansonlo

. | for turbulent wakes and by Crow and Champagne (1971)38 for turbulent jets.
In a recent publication, calculations of the stability of wakes have

been undertaken for laminar cases by Sato and Kuriki.z3 In their

experiments, they characterized the downstream growth of perturbations

| in the streamline velocity in the laminar near wake of a flat plate.

| The observed amplification rates and wave speeds were closely approximated

F by a theory based on infinite Reynolds number. Use of the stability
;a theory in cases involving turbulent flow has been attempted by Landahl31
g who interpreted the effect of the turbulence on the stability as a
E forcing mechanism. He derived a nonhomogeneous Orr-Sommerfeld equation
<
2 c i v . 2 4 A
(U(y)=c) (¢"-k"9) = U"d + —=— (¢7 -2k"¢"+k'9) = g/ak (36)
R
e

i for small disturbances in an incompressible shear flow of velocity

l distribution U(y). The wavelike perturbation velocities have been

assumed to be of the form

38Crow, S.C. and F.H. Champagne, "Orderly Structure in Jet Turbulence,"
Journal of Fluid Mechani:s, Vol. 48, pp. 547-591 (1971).
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ioa(x-ct)+iBz

(=4

= i(y) e

eia(x-ct)+iBz - ia(x-ct)-1iBz

(37)

<>

= V(y) - 1ad(y) e

- 55) eia(x—ct)+iBz

E >N

where k = Vo +82 is the wave number of the disturbance with wave speed

7 l CR = w/a. Velocity perturbations are assumed to be much less than U(y).

The function q involves all of the turbulence terms; the wavelike

.

dynamics which are assumed to be given entirely by the left hand s.ide of
b Equation (36) are linearly driven by q. For the current discussion all
velocities have been normalized on Uo; all distances, on a cross stream
length scale,* e.g., b.
The solution of Equation (36) for finite Reynolds number is a
difficult task and would have been outside the scope of the current study.

#

§ However, Landahl had developed a complete numerical solution procedure
(Landahl (1966)39 and Kaplan (1964)40) which was modified slightly for this

study to be applicable to wake dynamics. The procedure utilizes an

- interactive digital computer program, originally developed for a time-

sharing capability at Massachusetts Institute of Technology. At the

. Center the program language was translated to Fortran as well as updated
> 44 to handle complex arithmetic more efficiently. Subroutines applicable to
the wake stability were included in the program.

The computation routine utilizes a Runge-Kutta integration inward

from a limiting coordinate in the undisturbed free stream, for instance,

*
For discussions in this appendix all velocities are assumed to be
referred to the local free-stream velocity Uo'

l 39Landahl, M.T., "A Time-Shared Program System for the Solution of the

L Stability Problem for Parallel Flows over Rigid and Flexible Surfaces,"
Massachusetts Institute of Technology Acoustics and Vibrations Laboratory "
Report 116-4 (Oct 1966). ;

AOKaplan, R.E., "The Stability of Laminar Incompressible Boundary Layers |
in the Presence of Ccmpliant Poundaries," Massachusetts Institute of 'f
Technology Acoustics and Vibrations Laboratory Report TR 116-1 (Jun 1964). 3
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y =¥ where U(yl) = 1 to the wake centerline, y = 0 where U(o) = Um < U(y).
The solution is controlled by a linear superposition of the two functions
¢1(y) and ¢3(y). The function ¢3(y) is the same as the viscous solution,

and ¢1(y) is the inviscid, N, =+ ® , solution of the homogeneous Orr-

R
e
Sommerfeld equation as discussed by Kaplan.40 Boundary conditions are

that
0, (y) = 0D ang ¢y = eYOYY y s ¥,

where

s
Yo = iaN, (1-C) + kz, Re{Y} >0

e

At the centerline, it is stipulated that the admittances of the dis-
turbances behave as V/p * © and U/p = 0; p is the pressure disturbance.
That u/p vanishes is a statement of antisymmetry about y = 0. 1In the

computation o is real, and the wave speed is complex, C = C_ + iCI.

R
The mean velocity profile in the shear layer U(y) is given the same
expression as that used by Sato and Kurikiz3
2
U(y) =1-(1-1U) exp [-P7y] (38)

The cross wake length scale b is selected so that

1+Um
U(b) = 5

A series of sample profiles is shown in Figure 67; they roughly approximate
those that were mea.ured at r. = C.1 inch, and 1.25, 2, and 4 inches

behind the 45-deg--rounded-beveled trailing edge with U_ = 100 feet per
second. The fifth profile is given to indicate dependence on the factor P.
An increasing value of P increases the slope dU(y)/dy, and it produces a

more narrow wake. Table 4 lists a series of parameters which are

descriptive of the profiles in Figure 67. The momentum thickness is
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TABLE 4 - SHEAR-LAYER LENGTH AND FREQUENCY SCALES

0 ¢ We
Um P Ty T C @ ame/ b @ Ye /b T
-0.1 0.69 0.518 1.7 0.52 0.94 0.48 1.6 0.85
0 0.69 0.62 1 0.56 0.90 0.56 1.5 0.84
0.308 0.69 0.752 1.7 0.69 0.9 0.68 1.5 1.0
0.6 0.69 0. 1.7 0.63 - - - -
0.22 1.20 0.572 1.3 0.69 1.1 0.63 1.42 0.95

based on the full wake - < y < », and Ve is the cross wake distance be-
tween points of vanishing curvature. The profile for which P = 0.69 and
Um = 0.308 also describes that of Sato and Kuriki.23

Stability calculations were made by checking with the cases con-
sidered by Sato and Kuriki. Straight crested,'undirectional waves for
which B = 0 were assumed for all calculations. Agreement between their
measured and current calculated values of wave speed, amplification rates,
and disturbance amplitude u(y) were excellent. In the process of calcu-
lation, the stability diagram of Figure 68 was determined. The magnitude

of the velocity disturbance can be written

C
|u| = u(y) exp (% El E) (39)
r

thus for CI < 0 the wake is stable to small disturbances. For Reynolds
numbers greater than 8.4 this particular profile is unstable; for

Reynolds numbers greater than 300, the variation of CI with o appears to
Ub

be independent of NR = —%— . For the profiles behind the 45-deg rounded

edge, the Reynolds number based on b is 1.5 x 104 for Uo = U, = 30 feet

per second. In all of the cases calculated no effect of Reynolds number

was observed for NR > 700.
e
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Figure 69 shows the calculated intensity eigenfunction u(y), compared
with the measured intensity at the position downstream of the 45-deg
rounded trailing edge corresponding to r. = 1.25 inch. The absolute
amplitudes have no significance; the value u(y) expresses the intensity
eigenfunction corresponding to the designated velocity profile. Other
calculations were performed for the series of profiles shown in Figure 67
at Reynolds numbers of approximately 4800. Calculated values of the
spatial amplification rate, which is defined in Equation (39), are shown
in Figure 70 for the profiles in Figure 67. The wave number a has been
adjusted to be equivalent to the dimensionless frequency wyf/Uo. The
maximum amplification factor in each case occurred at a wave number,

am = wmb/CR, where C_ is the propagation phase velocity. Table 4

R
summarizes the dimensionless wave numbers and frequencies for each profile.

The most similar dimensionless wave number for all cases is amyf/b = wmyf/CR.

The alternative from wmyf/Uo is calculated because it would seem to have a
more practical significance. The fact that these dimensionless frequencies
are all near unity gives support to the frequency scaling adopted in
Section 4. The alternative scale uhe/Uo can be seen by inspection of the
table to be not a constant number over the range of profiles. The profile
for which Um = 0.6 is shown to be stable for all wave numbers. The
correspondence of calculated values of CR with the measured values of
UC/ILJo along y = L in Figure 24 is encouraging, and it raises a question
about the validity of the high values of Uc near r = 0.8 inch.

Finally, we consider the spatial amplification of disturbances given

by

x/b
CI X
lu(y)| = u_ exp o /vy d (§) (40)

R
o

The integral form of the amplification factor is made necessary by the
fact that CI/CR is a function of x, i.e., CI/CR (x/b). The form of the
integral in Equation (40) reflects the assumption that the gradient
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B(CI/CR)/B(x/b) has not a strong influence in the growth process. Amplifi-
cation factors evaluated at a CRyf/b = 0.9 in Figure 70 for the profiles
of Figure 67 are shown at the bottom of Figure 71. For x/b > 6 the
disturbances are lightly damped, and in reality the wake should begin its
decay process. The evaluation of Equation (40), assuming that u = 0.04,
is shown at the top of Figure 71, Data along both y = g and y = Yy in
Figure 23 are shown for comparison. It can be seen that the calculated
growth rate is approximately half of that which was measured. A similar
comparison was drawn in the case of Crow and Champagne38 in the case of
jet instability at high Reynolds number. Perhaps a breakdown in the
linearized theory leading to the Orr-Sommerfeld equation is responsible
for the underestimated amplification rates.

Also, a comparison of Figures 70 and 20 shows that although the
dimensionless forms wyf/US or wyf/U0 (in the theoretical case we must
accept US = Uo) align the peaks of the disturbances, their bandwidths are
notably dissimilar. Thus, physically the amplification rates are higher,
and the bandwidth of the amplification is more selective, than theory
would indicate.

Landahl (1972)41 has considered the influences of large-amplitude

disturbances on the generation of waves. The initial disturbance pre-

dictable by the linear theory is considered to have reached sufficient
amplitude to initiate a second instability which in turn interacts with
the first. This causes a complex breakdown in the wake structures which
could give rise to the high-level, selectively-amplified disturbances
which are experimentally observed. The alternative theoretical con-
sideration by Abernathy and Kronauer22 examines the larger amplitude dis-
turbances as being caused by a nonlinear interaction of the parallel
shear layers in the wakes. These interactions culminate in the

formation of distinct and localized regions of vorticity. The vorticity
regions have a spatial organization that is similar to that observed in

vortex streets. A complete theory of the overall development of coherent

AlLandahl, M.T., '"Wave Mechanics of Breakdown," Journal of Fluid
Mechanics, Vol. 56, pp. 775-802 (1972).
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wake disturbances would incorporate both the linear and the nonlinear

behavior. The linear calculations as presented in this appendix would
4 be expected to provide the growth rate and wavelength of a preferred, i
| initially unstable disturbance. This disturbance would be an initial
value for the nonlinear problem. The wavelength of the least stable
linear disturbance corresponds to the calculated streamline separation of
the vortices of the nonlinear theory of Abernathy and Kronauer.22 Their
0 results can be interpreted in terms of our wave number a. That theory has E
“ shows a decreasing number of vorticity concentrations with increasing

E values of a; for a = 0.88, two oppositely phased vorticity regions are

i formed within a given wavelength. This value is very close to the values

|53 of o calculated by the linear theory of small disturbances as tabulated |

e e

in Table 4. The equivalence indicates a consistence which makes matching

ikgiad

the linear and nonlinear theories extremely attractive.
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Figure 67 ~ Mean Velocity Profiles Which Approximate Those
Measured behind the 45-Degree--Rounded-Trailing
Edge at Various Positions T

(Factor b is taken to be b = 0.6 inch; velocity is
normalized on UO.)
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STABILITY OF A 2-DML WAKE, U, = 0.308, P - 0.69315

20
J 18 -
t | 2 K
1 16 o ® o :
1 e b STABLE
1 ;
1.2 p— &
E' UNSTABLE I ,_
2 x 10 p— 3
4 ./
; o8 |- /
¥ /
o i osp—
T \
04 [— \
)
02 p=—
\~‘
g | 11 1 ] I | | ] N
2 4 6 8 10 2 4 6 8 100 4 6 7
Nrg Yob
Figure 68 - Diagram of the Stability of a Two-Dimensional
Wake: P = 0.69 and Um = 0.31 3
|
l‘:f‘
3 )
\
\
\
\
[} CALCULATED
2 b :/n<7oo.a-o.s
4
MEASURED, FIG. 19 '
v/ r/b=208 4
1= \\
)
/
’
]
| Lo 1 2 3
—7|/?
tv). 207
UO
Figure 69 - Cross Wake Distribution of Streamline Velocity
Perturbations for Velocity Profile P = 0.69
and U = 0.31
m
| b
g;
o 149 L
i I I ]




‘e

L

Figure 70 - Amplification Factors Computed
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