TIME DEPENDENT, ANALYTIC, ELECTROMAGNETIC SOLUTION FOR A HIGHLY CONDUCTING SPHERE

Mission Research Corporation
735 State Street
Santa Barbara, California 93101

March 1976

Topical Report

CONTRACT No. DNA 001-76-C-0086

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B323076464 R99QAXEB06964 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.
The time-dependent, analytic solution for the electromagnetic, axisymmetric, highly conducting sphere problem is derived in terms of arbitrary, spatial current sources. In particular, the skin current at the surface is shown to be determined by the modes of oscillation of the sphere together with the field due only to the spatial current sources, at the surface of the sphere.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2 DISCUSSION AND FIELD EQUATIONS</td>
<td>5</td>
</tr>
<tr>
<td>3 QUASI-STATIC SOLUTION</td>
<td>9</td>
</tr>
<tr>
<td>4 TIME-DEPENDENT SOLUTION</td>
<td>12</td>
</tr>
<tr>
<td>5 CONCLUSION</td>
<td>16</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

This report is one of a continuing series of reports dealing with the analytic investigation of the SGEMP problem. In particular, this report is the first to deal with the electromagnetic response of a conducting system.

Photoelectrons, emitted by an object which has been struck by X rays, act as sources for electromagnetic fields. These electromagnetic fields interact with the object producing skin currents and surface charge densities. When the photoelectrons are produced inside the system the problem is usually referred to as an IEMP (Internal Electromagnetic Pulse) problem. When the electrons are produced outside the system the problem is referred to as an external SGEMP problem. The subject of this report will be the external SGEMP problem for a conducting sphere.

It is intended that a two-fold purpose be served by this report. The first is the presentation of the complete, time-dependent, analytic solution for the electromagnetic, axisymmetric sphere problem. This solution is predicated upon a knowledge of the time dependence of photoelectron currents (the sources) in the space external to the sphere. Other reports, in this series\(^1,^2,^3\), deal with the calculation of the photoelectron currents. The analytic solution, for the sphere, is valuable, in itself, because it provides insight into the external SGEMP problem as a whole. It is also valuable because it allows one to predict the entire
electromagnetic response, under arbitrary prescribed source conditions, for at least one system. In contrast, computer codes\(^4\) dealing with the same problem are limited by stability conditions and grid size.

The second purpose of this report is to emphasize that the SGEMP response of a system is really a two-dimensional surface problem. This point of view has been recognized by the EMP community for some time\(^5,^8\). In this report we explicitly demonstrate, for the case of a sphere, that the surface response of a system is determined by the modes of that system together with the fields at the surface, due to the photoelectron sources alone. One of the difficulties, in predicting the SGEMP response of complex objects, is the three-dimensional nature of the problem. The possibility of transforming part of the treatment of that problem, from the realm of three dimensions, to a two-dimensional realm is attractive indeed.

In Sections 2 through 4 of this report we derive the time-dependent solution for the conducting sphere. A future report will provide examples of the use of this solution. The future report will also discuss several specific aspects of the SGEMP problem, based upon the mathematical solution derived in this report.
SECTION 2
DISCUSSION AND FIELD EQUATIONS

Given a highly conducting sphere in space and a piecewise continuous (spatially as well as timewise) current, emanating from the sphere or elsewhere in space, the electromagnetic fields anywhere in space and time can be found. The problem discussed in this report is assumed to be axisymmetric for simplicity. However, the generalization to the non-axisymmetric case is clear and can be done, if desired.

The method of solution used here is to first expand the fields and current in terms of the associated Legendre polynomials $P^0_\lambda(\cos \theta)$, $P^1_\lambda(\cos \theta)$. The spatial coordinates are spherical coordinates. The problem is independent of the azimuthal angle ψ. The fields are solved in the frequency domain and later transformed back to the time domain by means of a Fourier integral. The modes of oscillations of the sphere are manifest as poles in the complex plane with the transform method.

The θ dependence is solved for by an expansion in Legendre polynomials. A transformation to the frequency domain, ω, removes the time dependence. The remaining frequency domain equation is expressed in terms of λ, ω and the spherical coordinate r. These equations are solved by means of a Green's function in the r coordinate. The particular Green's function chosen is one in which: (1) spherical waves of radiation exist at large distances from the source, (2) the low-frequency limit gives the quasi-static Green's function and (3) damped oscillations as opposed to non-damped oscillations are part of the solution.
Maxwell's equations are

\[\nabla \times \vec{B} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}, \]
\[\tag{2-1} \]

\[\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}. \]
\[\tag{2-2} \]

Taking the curl of Equation 2-1 and substituting Equation 2-2 into the result we have

\[\nabla \times \nabla \times \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} + \frac{4\pi}{c} \nabla \times \vec{J}. \]
\[\tag{2-3} \]

For an axisymmetric system, in the spherical coordinates \(r, \theta, \) and \(\psi, \) \(\vec{B} \) exists only in the \(\psi \) direction. Under this circumstance, Equation 2-3 becomes

\[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\partial^2 \vec{B}}{\partial r^2} r \right) - \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{\partial \vec{B}}{\partial \theta} r \sin \theta \right) - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} r \]
\[= \frac{4\pi}{c} \frac{1}{r} \left(\frac{\partial}{\partial \theta} J^\theta - \frac{\partial}{\partial r} J^\psi \right), \]
\[\tag{2-4} \]

where \(J^r \) and \(J^\theta \) are the \(r \) and \(\theta \) component of the spatial current. \(E^r \) and \(E^\theta \) are the only non-zero \(\vec{E} \) field components. They are obtained by solving Equation 2-1. In terms of components, Equation 2-2 is

\[\frac{1}{c} \frac{\partial E^r}{\partial t} = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \frac{\partial B}{\partial \theta} - \frac{4\pi}{c} J^r, \]
\[\tag{2-5} \]

and

\[\frac{1}{c} \frac{\partial E^\theta}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (r B) - \frac{4\pi}{c} J^\theta. \]
\[\tag{2-6} \]

Equations 2-4 through 2-6 can be solved by an expansion in the Legendre polynomials \(P^0_l(\cos \theta) \) and \(P^1_l(\cos \theta) \). The expansion is made as follows:
\[B = \sum_{c=1}^{\infty} B_c(r,t) P_{c1}(\cos \theta) , \quad (2-7) \]

\[E^r = \sum_{\ell=0}^{\infty} E_{\ell}^r(r,t) P_{\ell}^0 , \quad (2-6) \]

\[E^\theta = \sum_{\ell=1}^{\infty} E_{\ell}^\theta(r,t) P_{\ell}^1 , \quad (2-9) \]

\[J^r = \sum_{\ell=0}^{\infty} J_{\ell}^r(r,t) P_{\ell}^0 , \quad (2-10) \]

and

\[J^\theta = \sum_{\ell=1}^{\infty} J_{\ell}^\theta(r,t) P_{\ell}^1 . \quad (2-11) \]

After the substitution of Equations 2-7 through 2-11, Equations 2-4 through 2-6, for each \(\ell \) become

\[\frac{1}{r} \frac{\partial}{\partial r} r B_{\ell} - \frac{1}{r^2} \ell (\ell + 1) B_{\ell} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} B_{\ell} = - \frac{4\pi}{c} \frac{1}{r} (J_{\ell}^r + \frac{\partial}{\partial r} r J_{\ell}^\theta) , \quad \ell \geq 1 \quad (2-12) \]

\[\frac{1}{c} \frac{\partial}{\partial t} E_{\ell}^r = \ell (\ell + 1) \frac{B_{\ell}}{r} , \quad \ell \geq 1 , \quad (2-13) \]

\[\frac{1}{c} \frac{\partial}{\partial t} E_{\ell}^\theta + \frac{4\pi}{c} J_{\ell}^r = 0 , \quad (2-14) \]

and

\[\frac{1}{c} \frac{\partial}{\partial t} E_{\ell}^\theta = - \frac{1}{r} \frac{\partial}{\partial r} (r B_{\ell}) - \frac{4\pi}{c} J_{\ell}^\theta , \quad \ell \geq 1 . \quad (2-15) \]

The method of solution is to first solve Equation 2-12, using the boundary condition that at the sphere \(E_{\ell}^\theta \) is zero. Equation 2-15 will be used to state the boundary condition at the spherical surface. After \(B_{\ell} \) is solved for, the other fields can be obtained from Equations 2-13 through 2-15. To this end we express \(B_{\ell} \), \(J_{\ell}^r \) and \(J_{\ell}^\theta \) in terms of a Fourier integral, removing the time dependence. The integral transformation for \(B_{\ell} \) is
\[B_{\ell \omega} = \int_{-\infty}^{\infty} e^{i \omega t} B_{\ell}(r, t) dt, \quad (2-16) \]

and

\[B_{\ell}(r, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i \omega t} B_{\ell \omega} d\omega, \quad (2-17) \]

for example. With this integral transform, Equation 2-12 becomes

\[\frac{1}{r} \frac{\partial}{\partial r} r B_{\ell \omega} - \frac{1}{r^2} \ell(\ell + 1) B_{\ell \omega} + k^2 B_{\ell \omega} = -\frac{4\pi}{r} \frac{1}{c} \left(J_{\ell \omega}^r + \frac{3}{\ell} \frac{\partial}{\partial r} (r J_{\ell \omega}^\theta) \right), \quad (2-18) \]

where

\[k^2 = \omega^2/c^2. \quad (2-19) \]

Equation 2-18 is a basic equation for the solution of this problem. \(J_{\ell \omega}^r \) and \(J_{\ell \omega}^\theta \) are the Fourier transforms of \(J_\ell^r \) and \(J_\ell^\theta \) respectively.
SECTION 3
QUASI-STATIC SOLUTION

One of the conditions imposed on the general time-dependent solution is that it approach the quasi-static solution, for the low-frequency limit \(k \to 0 \). The quasi-static solution will now be derived as it gives insight into the solution for the general problem.

If the time derivative of \(B \) is neglected in Equation 2-12 this equation becomes:

\[
\frac{1}{r} \frac{\partial^2}{\partial r^2} r B_\lambda - \frac{1}{r} \lambda (\lambda + 1) B_\lambda = - \frac{4\pi}{c} \frac{1}{r} \left(J_\lambda^r + \frac{\partial}{\partial r} r J_\lambda^\theta \right). \tag{3-1}
\]

The method of solution will be to find the Green's function for Equation 3-1. The solutions to the homogeneous equation are

\[
B_\lambda = r^\lambda, \quad r^{-(\lambda+1)}. \tag{3-2}
\]

The Green's function \(G_\lambda(r,r') \) must satisfy

\[
\frac{1}{r} \frac{\partial^2}{\partial r^2} r G_\lambda(r,r') - \frac{1}{r^2} \lambda (\lambda + 1) G_\lambda = \frac{\delta(r - r')}{r}. \tag{3-3}
\]

Since \(G \) is continuous at \(r = r' \), from Equation 3-3 we must have

\[
\left. \frac{\partial}{\partial r} r G_\lambda(r,r') \right|_{r=r'} - \left. \frac{\partial}{\partial r} r G_\lambda(r,r') \right|_{r=r'-} = 1. \tag{3-4}
\]

We construct a Green's function (continuous at \(r' \)) from the solutions expressed by Equation 3-2 as follows:
\[G_\ell(r, r') > \equiv \frac{r^{-(\ell+1)}(dr^{-(\ell+1)} + br^\ell)}{r > r'} \], \quad (3-5) \\
\[G_\ell(r, r') < \equiv \frac{r^{-(\ell+1)}(dr^{-\ell+1} + br^\ell)}{r' > r} \], \quad (3-6) \\

where \(b \) and \(d \) are arbitrary constants to be determined by Equation 3-4 and the condition at the spherical boundary. Equation 3-4 determines the value of \(b \). \(E^\theta = 0 \) at the spherical boundary gives the value for \(d \). If \(d = 0 \) the fields would exist as if the sphere were not present. The problem is thus separated (through the Green's function) into fields due to the source, \(J \), alone (\(d = 0, b \neq 0 \)) and those due to the sources interacting with the sphere. Substituting Equations 3-5 and 3-6 into 3-4 we find that

\[b = - \frac{r'}{2\ell + 1} \]. \quad (3-7) \\

For \(r' > r \), \(B_\ell \) is given by

\[B_\ell = - \frac{4\pi}{c} \int_0^\infty G_\ell < (J^r_\ell + \frac{\partial}{\partial r'} (r'J^\theta_\ell)) dr' \], \quad (3-8) \\

where \(R \) is the radius of the sphere. Substituting Equation 3-8 into Equation 2-15, setting \(E^\theta = 0 \) at \(r = R \), and using Equation 3-6 and 3-7 we find that

\[d = - \frac{(\ell + 1)}{2\ell^2 + \ell} R^{2\ell + 1} r' \]. \quad (3-9) \\

Equations 3-5, 3-6, 3-7 and 3-9 are all the relations necessary for the solution of the problem. They are, in a sense, the solution to the problem.

One important quantity that must be considered in SGEMP problems is the skin current. The \(\ell \)th component of the skin current, \(\mathcal{J}_\ell \), is \(- \frac{c}{4\pi} B_\ell (R, t) \). Using Equations 3-5 through 3-9 we find that

\[\mathcal{J}_\ell = - R^\ell (\frac{\ell + 1}{2\ell^2 + \ell} + \frac{1}{2\ell + 1}) \int_0^\infty r'^{-1} (\frac{\partial}{\partial r'} (r'J^\theta_\ell)) dr' \]. \quad (3-10)
In Equation 3-10, the term $\frac{1}{\lambda+1}$ arises from the sources alone, the term $\frac{\lambda+1}{2\lambda^2+1}$ arises from the source interaction with the sphere. For large values of λ, the contribution to the skin current, from the sources alone (coming directly from the B field of the sources), contributes half the total skin current. For $\lambda = 1$ the sources alone contribute $1/3$ of the total skin current. Integrating by parts and combining terms, Equation 3-10 becomes

$$\mathcal{K}_\lambda = -\frac{R^\lambda}{\lambda} \int_\omega r^{-\lambda} (J^F_\lambda + 2J^\theta_\lambda) dr' . \quad (3-11)$$

Equation 3-11 corresponds to Equation 24 of Reference 4 which was derived by another method.
SECTION 4
TIME-DEPENDENT SOLUTION

We begin with Equation 2-18 and construct a Green's function in a manner analogous to our solution for the quasi-static case in Section 3. The Green's function \(G_{\omega}(r,r') \) satisfies:

\[
\frac{1}{r} \frac{\partial^2}{\partial r^2} \left(r G_{\omega}(r,r') \right) - \frac{2}{r^2} (\lambda + 1) G_{\omega}(r,r') + k^2 G_{\omega}(r,r') = \frac{1}{r} \delta(r - r') .
\]

Equation 4-1

Solutions to the homogeneous version of Equation 4-1 are spherical Bessel functions (Reference 6, pages 539-540). The spherical Hankel function \(h^1_{\lambda} \) represents outgoing waves at infinity; the spherical Bessel function \(j^1_{\lambda} \) is finite at the origin. We construct a Green's function continuous at \(r = r' \) as follows:

\[
G_{\omega}(r,r') = \begin{cases} h^1_{\lambda}(kr)(dh^1_{\lambda}(kr') + bj^1_{\lambda}(kr')) , & r > r' , \quad (4-2) \\ h^1_{\lambda}(kr')(dh^1_{\lambda}(kr) + bj^1_{\lambda}(kr)) , & r < r' . \quad (4-3)
\end{cases}
\]

Equations 4-2 and 4-3 have the property that for \(r > r' \), they represent outgoing waves. \(h^1_{\lambda} \) is chosen as the multiplier of the arbitrary constant \(d \) (\(b \) is a constant to be determined, also) because it allows for damped oscillations. When \(d \) is determined, this latter statement will be obvious. The choice of functions, in Equations 4-2 and 4-3, also allows the Green's function to approach the quasi-static solution in the limit that \(k \to 0 \). Equation 4-1 also implies relation 3-4. Substituting Equations 4-2 and 4-3 into Equation 3-4 we find \(b \):

* \(d \) and \(b \) are constants only in the sense that they are independent of the spatial coordinates. They are functions of the frequency.
By noting that the homogeneous form of Equation 4-1 can be put into a Sturm-Liouville form, and by using the asymptotic forms

\[j_\ell (kr') \frac{\partial}{\partial r} h_\ell^1 - h_\ell^1 \frac{\partial}{\partial r} j_\ell |_{r=r'} \]

it is easy to show that Equation 4-4 becomes

\[b = - i r' k . \]

We note that if \(d \) is set equal to zero, in Equation 4-2 and 4-3, the result would be the Green's function for the situation without the sphere present.

To find the value of \(d \) we impose the condition that \(E^0 = 0 \) at \(r = R \). Utilizing the Fourier transformed version of Equation 2-6 we must satisfy

\[\frac{\partial}{\partial r} (rG_\omega \phi) |_{r=R} = 0 . \]

Substituting Equation 4-3 and Equation 4-7 into 4-8 we find

\[d = i r' k \frac{\partial}{\partial r} (rj_\ell (kr)) \]

The values of \(\omega(k^2 = \omega^2/c^2) \) at which the denominator of Equation 4-9 is equal to zero, will be poles in the complex \(\omega \) space, when we finally integrate over \(\omega \) to obtain the time dependence of the fields. These poles are the resonant
frequencies of oscillation. The frequencies, then, are defined by the equation

\[
\frac{\partial}{\partial r} \left(r h_\ell^1(kr) \right) \bigg|_{r=R} = 0.
\] (4-10)

This is the same equation that appears in Reference 7, page 558, Equation 20, which defines the frequencies of oscillation of a sphere, for electric modes.

Equations 4-2, 4-3, 4-7 and 4-9 constitute the solution for the Green's function in the coordinate \(r \). By using the asymptotic forms (Equations 4-5 and 4-6) it is easy to show that the Green's function we have just found approaches the quasi-static Green's function derived in Section 3 (Equations 3-5, 3-6, 3-7 and 3-9).

Using the Green's function we have just derived we find an expression for the \(P_\ell \) coefficient of the skin current \(K_\ell(t) \) on the sphere. From Equation 2-17

\[
K_\ell(t) = - \frac{e^{i\omega t}}{4\pi} \left(\frac{1}{2\pi} \right) \int_{-\infty}^{\infty} e^{i\omega t} B_{\ell,\omega}(R) d\omega.
\] (4-11)

By using Equation 2-18, 4-2, 4-3, 4-7 and 4-9 and the fact that

\[
B_{\ell,\omega}(R) = - \frac{4\pi}{c} \int_{R}^{\infty} G_{\ell,\omega}(R,r') \left(J_{\ell,\omega}^r + \frac{\partial}{\partial r'} (r' J_{\ell,\omega}^\theta) dr'
ight),
\] (4-12)

we find that

\[
B_{\ell,\omega}(R) = - \frac{4\pi}{c} i k \left[\frac{\partial}{\partial R} \left(R j_\ell^1(kR) \right) h_\ell^1(kR) \int_{R}^{\infty} r' h_\ell^1(kr') (J_{\ell,\omega}^r + \frac{\partial}{\partial r'} (r' J_{\ell,\omega}^\theta)) dr'
ight. \\
- j_\ell(kR) \left(J_{\ell,\omega}^r + \frac{\partial}{\partial r'} (r' J_{\ell,\omega}^\theta) \right) dr'.
\] (4-13)

Letting \(k = \omega/c \) and substituting Equation 4-13 into Equation 4-11 we find
Equation 4-14, which expresses the skin current in terms of the sources, is one of the desirable relations we wish to find. The second term in Equation 4-14 is proportional to the magnetic field at the spherical surface due to the sources alone. Because of the denominator, the first term in Equation 4-14 is expressible in terms of the modes of the sphere.

We could construct the solution for any of the fields, E_x, E_θ, B_z at any point in space, in exactly the same manner that Equation 4-14 was formed, that is, by using the determined Green's function and integrating over ω in the complex plane. The ω integration brings out many of the features of the problem. The fields are retarded in time and those parts of the fields which arise from the sphere are characterized by specific frequencies and damping constants. When the explicit functional form, for the spherical Bessel functions, is inserted into the Green's function, powers of ω^{-1} result. This has the effect of representing the time-dependent solution for the fields in terms of time integrals of the known time dependence of the source. These and other characteristics of the solution will be discussed in a succeeding report.
SECTIONS 5
CONCLUSION

The solution to the time dependent sphere problem, in terms of the source currents in space, has been presented. Equation 4-14 expresses the ith component of the skin current in terms of the ith components of the source current components. One of the notable features of this equation is that the reaction of the sphere can be expressed in terms of the modes of the sphere and the field of the sources alone, at the surface of the sphere. The modes are an inherent electromagnetic characterization of the surface of a system. This fact emphasizes the two-dimensional nature of the surface response even though the Green's function solution presented here was three dimensional.

If we are only interested in the surface currents and surface charge densities on a system we would, in a sense, be getting a lot of unnecessary information by finding the electromagnetic solution, in all of three-dimensional space. Surface currents and charge densities are the important SGEMP quantities. It therefore seems reasonable that some part of future research, in this area, should be devoted to characterizing systems and their SGEMP response in terms of surface modes.
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director
Defense Advanced Research Projects Agency
ATTN: NSR

Director
Defense Civil Preparedness Agency
ATTN: TS, AED

Defense Communication Engineer Center
ATTN: Code 103F, Nicholas A. Sica
ATTN: Code R103P
ATTN: Robert Rostron

Director
Defense Communications Agency
ATTN: Code 800, Fred Bond
ATTN: Code 430
ATTN: Code 950, Monte I. Burgett, Jr.
ATTN: NSR

Defense Documentation Center
ATTN: TC

Director
Defense Intelligence Agency
ATTN: DI-7D, Edward O'Farrell

Director
Defense Nuclear Agency
ATTN: STS1, Archives
ATTN: BSTL
2 cy ATTN: STTL, Tech Library
2 cy ATTN: RAEV
ATTN: RAYN

Commander
Field Command
Defense Nuclear Agency
ATTN: TOPE
ATTN: FCLMC

Director
Interservice Nuclear Weapons School
ATTN: Document Control

Director
Joint Strategic Target Planning Staff, JCS
ATTN: JSTM-2

Chief
Livermore Division Field Command, DNA

Lawrence Livermore Laboratory
ATTN: Document Control for L-395
ATTN: FCPL

National Communications System
Office of the Manager
ATTN: NCCS-TS, Charles D. Bodson

Director
National Security Agency
ATTN: Orland W. Van Gunten, R-425

DEPARTMENT OF DEFENSE (Continued)

OJCS/J-3
The Pentagon
ATTN: J-3, ROTA BR, WACOCs Plans Division

OJCS/J-5
The Pentagon
ATTN: J-5, Plans & Policy RAD Division

Commander-in-Chief
U.S. European Command, JCS
ATTN: ECJ6-P

Weapons Systems Evaluation Group
ATTN: Document Control

DEPARTMENT OF THE ARMY

Director
BMD Advanced Tech. Center
Huntsville Office
ATTN: RMMI-0, F. M. Hoke

Commander
BMD System Command
ATTN: BMSC-TEC, Noah J. Hurst
ATTN: SSC-TEC, L. L. Dickerson

Dep. Chief of Staff For Rsch. Dev. & Acq.
ATTN: DASA-CRM-N, LTC E. V. DeBoois, Jr.

Commander
Harry Diamond Laboratories
ATTN: ANXDO-RB, Joseph R. Miletto
ATTN: ANXDO-TI, Tech. Lib.
ATTN: ANXDO-TR, Edward E. Conrad
ATTN: ANXDO-RBB, Stewart S. Graybill
ATTN: ANXDO-RB, Robert E. McConkey
ATTN: ANXDO-RB, Branch 310
ATTN: ANXDO-HC, Robert E. Oswald, Jr.
ATTN: ANXDO-EM, George Merkel
ATTN: ANXDO-EM, R. Bostak
ATTN: ANXDO-EM, John Bombardt
ATTN: ANXDO-CA, Francis X. Wernenitz
ATTN: ANXDO-RC, John E. Thompson
ATTN: ANXDO-RCC, John A. Rosado

Commander
Picatinny Arsenal
ATTN: SARPA-NH-N-D
ATTN: SARPA-NH-N, Aima Nordio
ATTN: SARPA-NH-E, Louis Avruch
ATTN: SARPA-TN-E, Abraham Grinthe
ATTN: SMUPA-NH-W
ATTN: SMUPA-TN, Burton F. Franks

Commander
Redstone Scientific Information Center
ATTN: AMSNMR, Clara T. Rogers

Commander
TRASANA
ATTN: ATAA-EAC, Francis N. Winars
DEPARTMENT OF THE ARMY (Continued)

Director
U.S. Army Ballistic Research Labs
ATTN: AMXBR-AM, Donald Eccleshall

Chief U.S. Army Communications Systems Agency
ATTN: SCCM-AD-SV, Library

Commander
U.S. Army Electronics Command
ATTN: ANSEL-TL-1R, Edwin T. Hunter
ATTN: ANSEL-NL-0-4
ATTN: ANSEL-00-TE, W. R. Werk
ATTN: ANSEL-TL-ME, W. M. Pomerantz
ATTN: ANSEL-PL-ENV, Hans A. Bonke

Division Engineer
U.S. Army Engineer Blp. Missouri River
ATTN: MRED-E, Floyd L. Hazlett

Commander-In-Chief
U.S. Army Europe and Seventh Army
ATTN: ODCE-E, AEGE-FI

Commandant
U.S. Army Field Artillery School
ATTN: ATSF-CTD-ME, Harley Moberg

Commander
ATTN: ANKST-ISL, Daniel W. McCallum, Jr.

Commander
U.S. Army Materiel & Mechanics Research Center
ATTN: ANCMR-HE, John F. Dignam

Commander
U.S. Army Materiel Dev. & Readiness Cmmd.
ATTN: AMCMD-MN-RE, John F. Corrigan

Commander
U.S. Army Missle Command
ATTN: ANMPM-PE-EG, William B. Johnson

Commander
U.S. Army Safeguard Command
ATTN: Chief, Activation Division

Commander
U.S. Army Test and Evaluation Command
ATTN: AMSTE-EL, Richard I. Kolchin
ATTN: AMSTE-NB, Russell R. Galasso

DEPARTMENT OF THE NAVY (Continued)

Commanding Officer
Naval Ammunition Depot
ATTN: Code 70242, Joseph A. Munarin
ATTN: Code 7024, James Ramsey

Commander
Naval Electronic Systems Command
Naval Electronic Systems Command Headquarters
ATTN: PME 117-21
ATTN: Code 5032, Charles W. Neill
ATTN: PME 117-T

Commander
Naval Electronics Laboratory Center
ATTN: Code 3100, E. E. McCown

Commanding Officer
Naval Intelligence Support Center
ATTN: NISC-61!

Director
Naval Research Laboratory
ATTN: Code 2627, Dorie R. Folen
ATTN: Code 7706, Jay F. Boris
ATTN: Code 7770, Gerald Cooperstein
ATTN: Code 7701, Jack D. Brown
ATTN: Code 6631, James C. Ritter
ATTN: Code 4004, Emanuel L. Brancato

Commander
Naval Sea Systems Command
Navy Department
ATTN: SEA-9931, Riley B. Lane
ATTN: SEA-9931, Samuel A. Barram

Commander
Naval Ship Engineering Center
ATTN: Code 6174D2, Edward F. Duffy

Commander
Naval Surface Weapons Center
ATTN: Code 431, Edwin B. Dean
ATTN: Code XK21, Tech. Lib.
ATTN: Code WA50, John H. Malloy
ATTN: Code 431, Edwin R. Rathburn

Commander
Naval Telecommunications Command
Naval Telecommunications Headquarters
ATTN: N-7, LGDR Hall

Commander
Naval Weapons Center
ATTN: Code 533, Tech Lib.

Commanding Officer
Naval Weapons Evaluation Facility
ATTN: Lawrence S. Oliver

Director
Strategic Systems Project Office
ATTN: SP 2701, John W. Pinsenberger
ATTN: NSP-2431, Gerald W. Hoskins
ATTN: NSP-230, David Gold

Chief Of Naval Operations
Navy Department
ATTN: Robert A. Blaise
ATTN: Code 604C3, Robert Placemi

Chief of Naval Research
Navy Department
ATTN: Code 464, Thomas P. Quinn
ATTN: Henry Mullaney, Code 427

Commander
Naval Air Systems Command
Headquarters
ATTN: AIR-5202, Mueriel L. Scarbough
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Aerospace Corporation
ATTN: Julian Reinhelmer
ATTN: Library
ATTN: Norman D. Stockwell
ATTN: V. Josephson
ATTN: William W. Willis
ATTN: Frank Haf
ATTN: Irving M. Garfunkel
ATTN: C. S. Pearlston
ATTN: J. Benveniste

Avco Research & Systems Group
ATTN: Research Lib., Rm. 7201

Battelle Memorial Institute
ATTN: Robert H. Blazek

The BDM Corporation
ATTN: T. H. Neighbors

The Bendix Corporation
Navigation and Control Division
ATTN: George Gartner

The Boeing Company
ATTN: Howard W. Wicklein, MS 17-11
ATTN: Aerospace Library
ATTN: David L. Dye, MS 87-75
ATTN: Donald W. Egelknot, MS 2K-00
ATTN: Kenneth D. Fridell, MS 2K-00
ATTN: Robert S. Caldwell, 2K-00

Booz-Allen and Hamilton, Inc.
ATTN: Raymond J. Chrisner

Brown Engineering Company, Inc.
ATTN: John M. McSwain, MS 18

Burroughs Corporation
Federal and Special Systems Group
ATTN: Robert L. Davis, BM 321

University of California at San Diego
ATTN: Sherman DoForest

Charles Stark Draper Laboratory, Inc.
ATTN: Kenneth Fertig
ATTN: Paul R. Kelly

Computer Sciences Corporation
ATTN: Barbara F. Adams

Computer Sciences Corporation
ATTN: Richard C. Hallmaier
ATTN: Alvin T. Schiff

Cutler-Hammer, Inc.
ATTN: Central Tech. Files, Anne Anthony

Dr. Eugene P. dePlomb
ATTN: Eugene P. dePlomb

The Dikewood Corporation
ATTN: K. Lee
ATTN: Tech. Lib.

E-Systems, Inc.
Greenville Division
ATTN: Library, 8-50100

EG&G, Inc.
Albuquerque Division
ATTN: Technical Library
ATTN: Hilda M. Hoffman

Exp. & Math. Physics Consultant
ATTN: Thomas M. Jordan

Fairchild Camera and Instrument Corp.
ATTN: Sec. Dept. for 2-233, David K. Myers

The Franklin Institute
ATTN: Ramie H. Thompson

General Electric Company
Space Division
ATTN: Joseph C. Peden, VFSC, RM 4230M
ATTN: Daniel Edelman
ATTN: James P. Spratt
ATTN: John L. Andrews
ATTN: Larry L. Chasen
ATTN: John R. Greenbaum

General Electric Company
Re-Entry & Environmental Systems Div.
ATTN: Robert V. Benedict

General Electric Company
TEPMO-Center for Advanced Studies
ATTN: Rodney R. Rutherford
ATTN: John D. Lillgen
ATTN: DASIC
ATTN: William McNamara

General Electric Company
ATTN: CSP 6-7, Richard C. Fries

General Electric Company
Aircraft Engine Group
ATTN: John A. Ellerhorst, E-2

General Electric Company
Aerospace Electronics Systems
ATTN: Charles M. Hewison, Drop 624
ATTN: W. J. Patterson, Drop 233

General Research Corporation
ATTN: John Ise, Jr.

General Research Corporation
Washington Operations
ATTN: David K. Osiam

Goodyear Aerospace Corporation
Arizona Division
ATTN: B. Menning

Grumman Aerospace Corporation
ATTN: Jerry Rogers, Dept. 533

GTE Sylvania, Inc.
Electronics Systems Grp-Eastern Div.
ATTN: Leonard L. Blaisdell
ATTN: Charles A. Thornhill, Librarian
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

GE Sylvania, Inc.
ATTN: David P. Flood
ATTN: Herbert A. Ulman
ATTN: A. S. M. Dept., S. E. Perlman
ATTN: W & V Group, Mario A. Nurefora
ATTN: Comm. Syst. Div., Emil P. Hotchkok

Hewlett-Packard
ATTN: Tech. Info. Ctr., M. Waite

Hercules, Incorporation
Bacchus Plant
ATTN: 100K-26, W. R. Woodruff

Honeywell Incorporated
Government and Aeronautical Products Division
ATTN: Ronald R. Johnson, Al622

Honeywell Incorporated
Aerospace Division
ATTN: Harrison H. Noble, MS 725-5A
ATTN: Richard B. Reinecke, MS 725-3

Honeywell Corporation
Radiation Center
ATTN: Technical Library

Hughes Aircraft Company
ATTN: John B. Singletary, MS 6-0133
ATTN: Kenneth R. Walker, MS D157
ATTN: Billy M. Campbell, MS 6-E-110
ATTN: Tech. Lib.

Hughes Aircraft Company
Space Systems Division
ATTN: Edward C. Smith, MS AE20
ATTN: William W. Scott, AS A1080

IBM Corporation
ATTN: Frank Frankovsky

IIT Research Institute
ATTN: Jack E. Ridges
ATTN: Irving N. Mindel

Institute for Defense Analyses
ATTN: DI Librarian, Ruth S. Smith

Intelcom Rad Tech.
ATTN: R. L. Mertz
ATTN: Dennis Swift
ATTN: Terry Flanagan
ATTN: James A. Naher

Int'l. Tel. & Telegraph Corporation
ATTN: Alexander T. Richardson

Ion Physics Corporation
ATTN: Robert B. Evans

Jaycor, Incorporated
ATTN: Eric P. Wenaas
ATTN: Andrew Woods

Johns Hopkins University
Applied Physics Laboratory
ATTN: Peter E. Fartridge

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Kaman Sciences Corporation
ATTN: John R. Hoffman
ATTN: Albert P. Bridges
ATTN: Walter E. Ware
ATTN: W. Foster Rich
ATTN: Library
ATTN: Donald H. Bryce

Litton Systems, Inc.
Guidance & Control Systems Division
ATTN: R. W. Maughmer
ATTN: Val J. Ashby, MS 67
ATTN: John P. Retzlif

Lockheed Missiles & Space Co., Inc.
ATTN: George F. Heath, D/81-14
ATTN: Edwin A. Smith, Dept. 85-85
ATTN: Dept. 85-85, Samuel I. Talmody
ATTN: Philip J. Hart, Dept. 81-14
ATTN: Benjamin T. Kinney, Dept. 81-14

Lockheed Missiles and Space Company
ATTN: Clarence F. Kooi, Dept. 52-11

LTV Aerospace Corporation
Vought Systems Division
ATTN: Charles H. Colman

LTV Aerospace Corporation
Michigan Division
ATTN: James F. Sansom, B-2
ATTN: Tech. Lib.

M.I.T. Lincoln Laboratory
ATTN: Jean L. Ryan
ATTN: Leona Loughlin, Librarian, A-082

Martin Marietta Aerospace
Orlando Division
ATTN: William W. Mras, MP-413
ATTN: Jack H. Ashford, MP-537
ATTN: Mona C. Griffith, Lib. MP-36

Martin Marietta Corporation
Denver Division
ATTN: J. E. G. Woodin, Mail 0452
ATTN: Ben T. Graham, MS PO-454

Maxwell Laboratories, Inc.
ATTN: Victor Fargo

McDonnell Douglas Corporation
ATTN: Chester G. Polak

McDonnell Douglas Corporation
ATTN: Paul H. Duncan, Jr.
ATTN: Stanley Schneider

Mission Research Corporation
ATTN: Conrad L. Longmire
ATTN: Daniel F. Higgins
ATTN: Roger Stettner
ATTN: William C. F. rt

Mission Research Corporation
ATTN: David E. Herseweather
ATTN: Larry B. Scott
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

<table>
<thead>
<tr>
<th>Contractor</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Research Corporation, San Diego</td>
<td>V. A. J. Van Lint</td>
</tr>
<tr>
<td>The Mitre Corporation</td>
<td>Theodore Jarvis</td>
</tr>
<tr>
<td>Motorola, Inc.</td>
<td>James R. Black, MS All2</td>
</tr>
<tr>
<td>Government Electronics Division</td>
<td>Tech. Info. Ctr., A. J. Kordalewski</td>
</tr>
<tr>
<td>Northrop Corporation</td>
<td>John M. Reynolds</td>
</tr>
<tr>
<td>Electronic Division</td>
<td>Vincent R. Demartino</td>
</tr>
<tr>
<td>ATTN: Boyce T. Ahlport</td>
<td></td>
</tr>
<tr>
<td>Northrop Corporation</td>
<td>Oral L. Curtis, Jr.</td>
</tr>
<tr>
<td>Northrop Research and Technology Center</td>
<td>David N. Pocock</td>
</tr>
<tr>
<td>Northrop Corporation</td>
<td>Joseph D. Russo</td>
</tr>
<tr>
<td>Electronic Division</td>
<td>Philip W. Spence</td>
</tr>
<tr>
<td>ATTN: Ian D. Smith</td>
<td></td>
</tr>
<tr>
<td>ATTN: Charles H. Stallings</td>
<td></td>
</tr>
<tr>
<td>R & D Associates</td>
<td>William J. Karzas</td>
</tr>
<tr>
<td>ATTN: S. Clay Rogers</td>
<td></td>
</tr>
<tr>
<td>ATTN: Richard R. Schaefer</td>
<td></td>
</tr>
<tr>
<td>ATTN: Leonard Schlessinger</td>
<td></td>
</tr>
<tr>
<td>ATTN: William R. Graham, Jr.</td>
<td></td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>Cullen Grain</td>
</tr>
<tr>
<td>ATTN: Harold L. Flescher</td>
<td></td>
</tr>
<tr>
<td>ATTN: James E. Bell, HA10</td>
<td></td>
</tr>
<tr>
<td>ATTN: N. J. Rudie, PA33</td>
<td></td>
</tr>
<tr>
<td>ATTN: George C. Messenger, F161</td>
<td></td>
</tr>
<tr>
<td>ATTN: John F. Roberts</td>
<td></td>
</tr>
<tr>
<td>Rockwell International Corporation</td>
<td>l-6270, R. G. Despathy, SR I E</td>
</tr>
<tr>
<td>ATTN: Moe L. Atel, MCA 1-323b</td>
<td></td>
</tr>
<tr>
<td>ATTN: James L. Burrows</td>
<td></td>
</tr>
<tr>
<td>Science Applications, Inc.</td>
<td>William L. Chadsey</td>
</tr>
<tr>
<td>Science Applications, Inc.</td>
<td>Noel R. Byrn</td>
</tr>
<tr>
<td>Huntsville Division</td>
<td>J. Roger Hill</td>
</tr>
<tr>
<td>Science Applications, Inc.</td>
<td>Charles Stevens</td>
</tr>
<tr>
<td>Science Applications, Inc.</td>
<td>Sidney Frankel & Associates</td>
</tr>
<tr>
<td>ATTN: Sidney Frankel</td>
<td></td>
</tr>
<tr>
<td>Simulation Tech. Inc.</td>
<td>W. J. Little</td>
</tr>
<tr>
<td>The Singer Company</td>
<td>Irwin Goldman, Eng. Management</td>
</tr>
<tr>
<td>Sperry Flight Systems Division</td>
<td>D. Andrew Schau</td>
</tr>
<tr>
<td>Sperry Rand Corporation</td>
<td>Andrew L. Warren</td>
</tr>
<tr>
<td>Sperry Division</td>
<td>Eleanor K. Daly</td>
</tr>
</tbody>
</table>
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Stanford Research Institute
 ATTN: Robert A. Armitstead
 ATTN: Hel Bernstein
 ATTN: Setsuo Odairiki
 ATTN: Philip J. Dolan
 ATTN: Arthur Leo Whitson

Sunstrand Corporation
 ATTN: Curtis B. White

Systems, Science and Software
 ATTN: David A. Meekan

Tractron-Donner Corporation
 ATTN: Harold D. Morris

Texas Instruments, Inc.
 ATTN: Donald J. Manus, MS 72

Texas Tech University
 ATTN: Travis L. Simpson

TRW Systems Group
 ATTN: Donald W. Fugale

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Systems Group
 ATTN: William H. Robinette, Jr.
 ATTN: Tech. Info. Center, S-1930
 ATTN: Donald Jortner
 ATTN: Richard H. Kingsland, RI-2154
 ATTN: Robert M. Webb, MS RI-1150
 ATTN: Jerry I. Lubell
 ATTN: Aaron H. Narevsky, RI-2144
 ATTN: Paul Molmud, Rl-1196
 ATTN: Philip E. Gardner, MS RI-1028
 ATTN: Lillian D. Singletary, RI-1070

TRW Systems Group
 San Bernardino Operations
 ATTN: J. M. Gorman
 ATTN: John E. Dahnke
 ATTN: Earl W. Allen

United Technologies Corp.
 Norden Division
 ATTN: Conrad Corda

Westinghouse Electric Corporation
 Defense and Electronic Systems Center
 ATTN: Henry P. Kalapaca, MS 3525