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Abstract

‘The purpose of this report is to introduce an adaptive
estimation and parameter identification scheme which'ﬁ§ ;sﬁll-call
gpltiple Model Estimacion Algorithm (MMEA). The MMEA consiéés
of a bank of Kalman filters with each matched to a possible
parameter vector. The state estimates generated by these Kalman
filters are then combined using a weighted sum with the a pos-
teriori hypothesis probabilities as weighting factors. If one
of the selected parameter vectors coincides with the true para-
meter vector, this algorithm gives the minimum variance state
and parameter aestimates. Algorithms for filtering, smoothing,
and prediction are derived for linear and nonlinear systems.

They are described in a tutorial fashion with results stated
explicitly so that they can be readily used for computer imple-

mentation. Approaches for the extension of MMEA to a more general

class of adaptive estimation problems are outlined. Several

further research topics are also suggested.
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I. INTRCDUCTION

During the past decade considerable advances have bheen
made in the theory, algorithms, and applications of stochastic
estimation problems involving linear and nonlinear dynamics. The
linear Kalman filter [1) and its diverse extensions to the nonlin-
ear case ([2,3,4] are well established theoretical and algorithmic
tools with extensive applications.

In most practical applications of recursive estimation
theory, there are difficulties in obtaining an exact mathematical
model of the physical dynamic process. The unceitain parts of the
systerh are sometime represented by an unknown parameter vector.
Examples of this kind include the ballistic coefficient and 1lift-
ing parameters modelled in the dynamics of a reentry vehicle
[4,5,6,7,8). When the state estimation for this type of system
has to be carried out, the variations of these parameters and
their identification play a critical role.

Many approaches have been proposed in attempting to
perform state estimation together with parameter identification.'
One very well-known on-line identification method is to model the

unknown parameter as a Markov process with variance related to

iRefetences in this category are too many to list, one may consult
the IEEE Transactions on Automatic Control (Dec. 1974), a apecial
issue on system identificaiion, and refereance (9) for listing
of related references.
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the system structure and the range of parameter variation. The
restriction of this method is that ita performance is critically
influenced by the system structure, parameter variation, and the
required bias and random errors. This technigue usually works
well within a rather amall region of the state space and the
variance of the process noise can only be determined by engineer-
ing intuition and extensive simulation study. This method how-
ever, has been able to produce excellent estimation accuracies

in reentry vehicle tracking applications (5,6,8].

There uxists an adaptive filtering and parameter identi-
fication method, which we shall call Multiple Model Estimation
Algorithm (MMEA) in this report, which has attracted considerable
attentions in the academic field [10, 11, 12, 13, 14]. This algor-
ithm was first introduced by Magill [10] and later refined by
Lainiotis [ll]). The estimation algorithm was extended to adaptive
control by Willner (12] and Upadhyay and Lainiotis ([13).

The basic concept of MMEA is toc construct a bank of Kalman
filters with each matched to a possible parameter vector value.

The state estimates generated by these Kalman filters are then
combined using a weighted sum with the posteriori hypothesis prob-
abilities as weighting factors. If one of the selected parameter
vectors coincides with the true parameter vector, this method gives

the minimum variance estimates of both the state vector and the

parameter -rector. In most physical problems, one usually has a
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good idea of the possible values that a parameter may attain.
Furthermore, the construction of the MMEA with a steady state Kal-
man filter bank requires only moderate computation. It therefore
has attracted some attention for real-time applications {15, 16]}.
The purpose of this report is to introduce the Multiple
Model BEstimation Algorithm. It will be described in a tuterial
fashion with results stated explicitly so that they can be readily

used for computer implementation. Furthermore, the discussions

on prediction and smoothing are believed to be new. Only the
algorithms for discrete time system will be discussed. This is
because that the modern estimation and control algorithms are
mostly implemented on digital computers. Due to the fact that
MMEA is theoretically more sound than the previous methods, it
may be a potential candidate in trajectory re-construction appli-
cations.

This report is organized as follows. In the next section,
the problem of state estimation with unknown parameters is form-
ulated. Possible solutions are discussed in a tutorial fashion.
In section three, the Multiple Model Filtering Algorithm (MMFA)
is derived. The extensions to prediction (MMPA) and smoothing
(MMSA) are presented in section four. Discussions of the first
four sections assume linear system and measurement equations.
The extension to the nonlinear system and methods of algorithm

realization are presented in section five. A simple second oxrdcr




example is included in section six to illustrate the theory. g
Discussions are yiven in the last sect’on. Two appendices which *
list the linear smoothing algorithms and the Kalman and the ex-
tended Kalman filter algorithms are included for the reference

purpose. _
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2. PROBLEN FORMULATION

2.1 Introduction

Consider a linear stochastic dynamic system whose dynam-

. gL

ics depend on a parameter vector y. Let us write its equations

in the standard state space representation and in the discrete
time case.

state Dynamics

oA @R S ST

x(t + 1) = A(Y)x(t) + B(y)u(t) + L(Y)E(t) (2.1)

Measurement Equation

z(t) = C(y)x(t) + 8(¢t) (2.2)

Next we define the different variables associated with egs. (2.1) :
and (2.2).

P L

The scalar t is a discrete time index

t=20,11, 2, .... (2.3)

The state vector x(t) e R is an n-dimensional vector. The input

or control vector u(t) ¢ R is an m-dimensicnal vector. The

BT s of & adlite Ja e e, ottt

plant noise vector f(t) ¢ Rp is an p-dimensional vector. We

assume that f£(t) represents a zero mean discrete white noise

sequence with known covariance matrix Z(t) - pxp matrix -~ i.e.

E{g(t) } =0 for all t (2.4)

cov [ E(8):E(t) 1 =E { E(0)ET(1) } = Z(6)6(t, 1) (2.5)




where §(t,t) is the Kroenecker delta

1l iPF t =1
§(t,t) = ‘ {2.6)
0 iF t# 1

Note that the plant noise covariance matrix Z(t) is symmetric

and at least positive semideninite

{tn

(t) = =T(¢) 2 0 (2.7)

The measurement noise vector 8(t)eR, is an r-dimensional vector.
We assume that §(t) represents a zero mean discrete white noise

sequence with known covariance matrix 8(t) - an rxr matrix - i.e.

E{8(t) } =0 (2.8)
cov [ 0(t):8(t) 1 =E { 6(8)8T(1) } = 6(t)6(t,1) (2.9)

o(t) = oF

oty = eT(t) > ¢ (2.10)

Furthermore we assume that the plant driving noise £(t) and the
measurement noise 8(1) is independent for all values of t and T,

i.e.,
cov [ &(t);6(1) 1 =0 for all t,t (2.11)

The above fix the dimensions of the different matrices that

appear in egs. (2.1) and (2.2). Thus




A(y) is an nxn matrix
B(y) is an nxm matrix
L(y) is an nxp matrix
C(8) is an rxn matrix

2.2 The Parameter Vector y

We have explicitly shown the dependence of the state
dynamics and/or of the measurement equation upon the parameter ?
vector y. We assume that the parameter vector IERq is a g-dim-
ensional vector whose elements represent the key parameters.

The elements of the parameter vector y are in general !
known only approximately. The degree of accuracy by which the
elements of y are known are strongly dependent upon the accur-
acy of modelling a physical process by egs. (2.1) and (2.2)
and the experiments that have been carried out.

In general, before the initiation of any real time es-
timation and/or control experiments, i.e.,prior to time t=0,
one has some idea of the nominal value of the parameter vecto.,
denoted by Yo and of the degree of uncertainty (e.g.,standard
deviations) associated with the nominal parameter values.

For the above reasons, it is reasonable to view the
parameter vector y as a random vector. All prior information
about y can be captured in its prior probability density function
which we shall denote by p(y). At the very least, our best

guess about y, prior to any additional real time experimentation,
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is tre nominal value Y, which we can view as the unconditional

prior mean
E{yl = Y, (2.12)

The degree to which we "believe" the nominal value Y, can be
communicated to the mathematics by the prior covariance matrix

I, - a gxq matrix - of y, i.e.
cov {y:; Yyl =E{ (y - Y, (x - IO)T } A Iy (2.13)

It is also reasonable to assume that the uncertainty associated
with the parameter vector y has nothing to do with all other un-

certainties. Thus we make the assumption

Y, x(o), E(t), and 6(t) are independent (2.14)
for all values of t and 1

2.3 The role of Y in Filtering Problems

First of all let us consider the filtering problem in
the context of state estimation. To be more precise let us de-
note by the symbol Z(t) the total measurements obtained from the
initial time T=0 to the present time t. These measurements in-
clude both the inputs applied to the system and the actual noisy
sensor measurements. Thus if we assume that the first sensor

measurement is carried out at t=1, and that the first input is

applied at t=0, then the data set 2(t) is defined as follows




2(t) = { 3(1)0 5(2)1 soey &(t)o 2(0)0 2(1)0 eeey R(t=1)}(2.15)

In the state estimation version of the filtering problem one is
interested in obtaining in real-time a "good" estimate of the
actual value of the true state vector x(t) based upon the avail-

able data set 2(t); this state estimate is commonly denoted by
g(t/t) (2.16)
and the state estimation error is denoted by
x(t/t) A x(t) - x(t/t) (2.17)

We can now have several cases, depending upon the relative uncer-

tainty associated with the parameter vector y.

Case 1 Parameter vector known exactly

This is an unrealistic case and corresponds to the random vector

y having zero covariance
=0 (2.18)
so that

Y =Y, (2.19) !

Under these assumption, and the further assumption that all other

random vectors, namely

x(o), E(t), 8(1)




are Gaussian, then the standard discrete time Kalman filter* (1]
generates the optimal estimate of the state in the sense that the

state estimate g(t/t) is the true conditional mean of the state
x(t/t) = E{ x(t)/2(t) } (2.20)

In addition one can calculate off-line, again through the discrete
time Kalman filter algorithm the true conditional covarianca

matrix I(t/t)
Z(t/t) = cov [ x(t) ; x(t}/z2(t) ] (2.21)

Case 2 Parameter Uncertainty relatively "small"

In this case, we assume that the actual value of the parameter
vector Y is "very close" to its nominal value. Thus, in this case,

the parameter vector covariance matrix go is small.

Il r

r, || = small (2.22)

An alternate way of characterizing this is by
oy 1< (L@ [ 1D 11 << | e 1] (2.23)

which means that the parameter uncertainty is much smaller than
the uncertainty induced in the state by the plant noise § (t), and
the errors introduced in the sensors by the measurement noise 8 (t).

Under these circumstances, one can usually trust the robustness

—
The discrete Kalman filter algorithm is stated in the Appendix A.
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of the Kalman filter, as described in Case 1, to still generate

"good" state estimates in the sense that
R(t/t) = B { x(t)/2(0) } (2.24)
L(t/t) = cov [ x(t) ; x(t)/2(t) ) (2.25)

Case 3 Parameter Uncertainty Moderately low

As ||[o|| increases, the errors of modelling the true
values of the parameter vector y by its nominal value Y, become
more significant and the performance of the standard Kalman
filter begins to deteriorate. 1In this intermediate case, and
especially when the major effect of the parameter uncertainty
are reflected in the state dynamics (2.1), rather than the mea-
surement equation (2.2), there have been several cures that have
been suggested.

The basic rationale is that the increased parameter in-
certainty in the system dynamics causes errors in the calculation
of the one-step predicted estimate, f{(t + 1/t), of the standard
Kalman filter algorithm. These errors can only be corrected by
paying more attention to the measurements, which although noisy,
still contain "good" information about the true state. Techni-
cally, this can be accomplished by increasing the magnitudes of
the gains of the Kalman filter and, hence, the bandwidth of the

Kalman filter.

One way of accomplishing this objective is to artificial-




ly increase selected elements of the plant noise covariance
matrix 3(t). This trick has been often referred to as introduc-
ing fake white noise. 1If one can get away with it, in the sense

that the state estimation errors i(t/t) remain acceptably small,
then this procedure is desirable because one can still complete
the (pseudo) covariance matrix I (t/t) and the Kalman filter gains
off-line. Howsver, this process of turning the Kalman filter is
more of an art than a science.

The same philosophy of changing the magnitude of the
plant noise covariance matrix E(t), but on an on-line "adaptive"
mode, is by monitoring the behavior of the residuals of the Kalman
filter. The residual vector of time t, r(t/t;, is defined as the
difference between the actual measurement at time t, £(t), and

the predicted measurement
rt/t) & z(t) - cpx(t/t = 1) (2.26)

In the case of no parameter uncertainty (I = Q) the residuals
are known to be zero-mean white and their covariance matrix, de-
noted by S(t/t), can be calculated from L(t/t). As the parameter
uncertainty increases this is reflected in the nature of the res-
iduals, in the sense that

(a) biases can be observed i.e.,

E{r(t/t) } ¥ o0 (2.27)

12




(b) the residuals become correlated in time, so that
they cease to be a white noise segquence.
A variety of methods that carry out real time tests in the resi-
duals and subsequently changs on-line the slements of the plant
noise covariance matrix can be suggested. One of the simplest to
implement is the one suggested by Jazwinski {2,17). The price
that one pays in these adaptive filtering methods is increased

real~-time computations associated with
(a) real-time tests and computations involving the
residuals
(b) subsequent transformation of the residual-derived
information into changes in the covariance matrix
E(t)
(c) on-line calculations of the covariance equation and
of the Kalman filter gain matrix
From a pragmatic point of view, these adaptive filtering
algorithms change in a time-varying way the gains and the band-
width of the Kalman filter, as modelling errors become significant
and diagnosed in the residuals. If well designed, they can be
effective in adjusting the bandwidth of the Kalman filter.
It should be noted that there is a tradeoff associated
with high-~gain, high~-bandwidth Kalman filters. High-gain Kalman
filters tend to decrease mean errors rapidly:; on the other hand

their high-bandwidth allows a greater amount of measurement noise

13
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power to pass through, and this can cause increased RMS errors in
the estimates. The successful prior timing and/or adaptive filter-
ing algorithms have to take expiicitly into account these mean
errors vs. RMS errors tradeoffs.

Casae 4 Moderate Parameter Uncertainty

As the parameter covarlance matrix zo increases further,
the off-line or on-line turning of the basic Kalman filter cannot
be counted upon to produce good estimation accuracy. This is due
to the fact that the contributions of the parameter errors to
model uncertainty can no longer be taken care of as equivalent
white noise.

In such cases, one has to increase the real time com-
plexity of the algorithm so as to explicitly carry out some
on-line parameter estimation. In other words, in order to be
able to obtain reliable state estimates, one has to obtain better
estimates of the parameter vector y based upon the real time
measurements. In other words, the filtering algorithm has to
simultaneously generate

(a) a state vector estimate, gﬁt/t)

(b) a parameter vector estimate, jjt/t).

Unfortunately, even in the simplest case, the joint
state and parameter estimation problem constitutes a nonlinear

filtering problem. It is well known, ([18] to [22]), that the true

optimal solution to a nonlinear filtering problem, in the sense

14
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v-»kaiitq'-ngtattngﬁtht true conditional mean of the state

-i { x(t)/%(t) } requires the on-line solution of a set of hon-

i fforential ations at each and every time a
ssagepemeny is made. PFor almost all problems of practical im-
portance, the real time computational resources force the de-

signer to use a suboptimal filtering algorithm,
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The simpleat suboptimal filtering algorithm is the so-
calied extended Kalman tilter.' A slightly more complex algori- oy
: £
the is the so-called second order (4] or gaussian [2,23]) filter. &
A

The technique that is used to design the extended Kalman

filter is that of state augmentation. Thus, in addition to

eq. {(2.1) which defines the dynamic stochastic evolution of the

"natural®™ n state variables one writes another set of difference

P

equations of the form

.8
W)

an .r.;;‘i!_ P
-

Yt + 1) = y(¢) (2.28)

in case that it is known that the paramater vector y is indeaed

a constant. If the parameter vector y is known to change slowly

LA R

with time, then the simplest way of modelling this is by the

stochastic difference equation

y(t + 1) = y(t) + pie) (2.29)

‘The extended Kalman filter algorithm is stated in the Appendix A.
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wharo p(t) is a "fake" zero mean white noise process with covar-

iance matrix
cov [ p(t) 3 u(r) 1 = M(t)é(t,1) (2.30)

The covarianca matrix M(t) has to be suitably selected by the
designer to reflect how rapidly and by how much one can reason-
ably expect the parameter y to change or drift from its prior
nominal value. We remark that more complex dynamic models than
that shown in eq. (2.29) can be used if prior information on the
"dynamics" of the parameter y is available. The extended Kalman
filter algorithm that generates the state estimate X(t/t) and the

parameter estimate i(t/t) has much more severe computational re-~

quirements than the algorithms discussed in Case 3. These addi-
tional requirsments are due to the fact that at each measurement 'ﬁé
time one has to
(a) update an (n + q) - dimensional vector, the number (n)
of state variables plus the number (q) of the para-
meters | ;;
(b) propagate an (n + q)x(n + q) (pseudo) covariance Lf
matrix using the standard extended Kalman filter co- f
variance propagation formula.
(c) calculate a new (n + q)xr Kalman gain matrix
We remark that all the "tricks" discussed in Case 3 which involve

the prior turning, or adaptive turning based on the residual be-

16




haviour, can be used in this case also to change the "fake white

noise" covariance matrices =(t) and M(t).

2.4 Discussion

The above brief semiphilosophical discussion points up
some of the issues associated with the effects of uncertain para-
meters upon estimation problems. One can visualize the "robust-
ness" of the varying complexity Kalman filters described in Cases
l to 4 as shown in PFigure 2.1

The way Figure 2.1 is to be interpreted is that if the
true parameter is in band 3, then the estimators discussed in
Cases 1,2 will not give satisfactory performance, while the es-
timators discussed in Case 3 will give good estimates. Needless
to say the relative sizes or shapes of these robustness bands are
next to impossible to calculate.

The point that we wish to stress, is that if the true
parameter is outside the robustness band 4, then the extended
Kalman filter discussed in Case 4 cannot be trusted to generate
good state estimates, cven though on-line parameter estimation is
accomplished. The basic reason for this is that the covariance
linearizations associated with the extended Kalman filter become
invalid.

For this reason we shall explain in the next section how

one can attack the problem of large parameter uncertainty through

hypothesis testing and subsequently suggest a suboptimal procedure
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that Gan be used for problems with large parameter uncertainty,
as well as audden transitions of the parameters (as it is the case

with maneuvering reentry vehicles).
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3. MULTIPLE MODELS FOR HYPOTHESIS TESTING AND STATE ESTIMATION:
FILTERING

3.1 1Introduction

In the previous section we have outlined the different
methods that can be employed to carry out state estimation when
the system dynamics contain uncertain parameters. We have con-
cluded that as the parameter vector variance increases one is
forced to employ nonlinear filtering algorithms, e.g., the ex-
tended Kalman filter, which simultaneously estimate the para-
meter vector and the desired state variables. We have also re-
marked that even these sophisticated algorithms will break down
as the parameter uncertainty increases.

In this section we present the next most obvious level
of complexity to take into account the effect of uncertain para-
meters. The first and simplest case is to subdivide the parameter
space into regions and see wnat happens to the state estimation
algorithm when such a discretization of the parameter space is
carried out.

3.2 Discretization of the Parameter Space

As we have remarked in Section 2.2, the nparameter vector
Y is a g-dimensional vector. In most physical problems, one has
some prior idea of the physical ranges of the elements of the para-
meter vector y. This engineering knowledge can be translated into
a subset QY of Rq; the physical significance of QY is that it re-

presents all reasonable values that the parameter vector y can

20




attain.
The next step is to select a finite set of parameter

values denoted by
Yll Yzl ¢ ey YN (301)

These parameter vectors are scattered in the region QY.

3.3 Towards the MMFA; Assumptions

Let us suppose that the parameter vector y, which appears
in the state space description of the stochastic dynamic system
(2.1) - (2.2) does indeed coincide with one of the Y; defined
above. However, prior to making any measurements we do not know
the "true index" {i.

Needless to say, the above assumption is not true in any
real life situation, in the sense that the true parameter vector

Y will be "near,” but not identical to, one of the y,'s. Once

more, we shall postpone discussion of this issue for the time being.

an ariad € A RAN 51N

Under the assumption that indeed y coincides with one of
the y;'s we can ask two questions:

1. what type of an algorithm can be used in order to
generate

a. the true conditional mean of the state, and

b. the true conditional covariance matrix of the
state

given a set of past measurements. We remark that
this constitutes the standard estimation or filter-
ing question.

21




2. What type of an algorithm can be used to identify

the true parameter y. given a set of past measure-

ments. We remark thAt this constitutes an identi-

fication question.
One may argue that in many applications one may not be interested
in the identification question, but only in the state estimation

*
problem. Nonetheless, it turns out that one cannot answer the
questions independently, but one must obtain the answer to both
questions simultaneously.

We shall next formulate the problem in a mathematically

precise way, and then summarize the solution algorithm.

3.4 The MMFA: Formulation

For each value of y, denoted by y,. let us redefine the

matrices in section 2 as follows

A A A
A(li)aA_i' E(Ii)z_B_i' E(li)=l:i (3.2)
C(y,)4c, ; i=1,2, ..., N

We remark that the matrices A, B., L., gi can be time-varying;

their time dependence is not explicitly shown.

—
In the context of tracking RV's, if one tracks a ballistic RV,
and the ballistic coefficient is viewed as the uncertain para-~
meter, then one is usually interested in both state estimation
for good tracking, and parameter estimation for discrimination.
A similar situation exists for maneuvering re-entry vehicles;
in the MaRV case one is interested in estimating parameters
that are characteristic of the magnitude and direction of the
maneuver accelerations.




Using the above notation, one has a class of N distinct
linear stochastic dynamic systems described by

State Dynamicsa

x(t+l) = A x(E)+Bu(e)+L,6(t) 5 i=1,2,...,N (3.3)

Measurement Equation

z(t) = C,x(£)+8(8) 5 i=1,2,...,N (3.4)

The characteristics of the Gaussian plant noise £(t) are
still given by egs. (2.4) - (2.7), while the characteristics of
the Gaussian measurement noise 6(t) are still given by egs.

(2.8) - (2.11).

In addition to the plant noise, measurement noise, and
initial state uncertainty, we must specify the parameter vector
uncertainty. Under our assumptions, the random vector y can
attain a set of discrete values Yyr YXpr ceer Xy In view of thas,
Yy is a discrete random vector.

We can model this fact by a set of hypotheses. Let H

be a scalar random variable ( a hypothesis variable) and let
Hl' Hz' LI HN (305)

denote a set of events.

The interpretation that we attach to the event

H = Hj is Y=Yy
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and we can think of this phenomenon as that "nature” has select-
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ed the j-th linear system, defined by egs. (3.3) and (3.4) and has
placed it inside a black box.

Before we obtain any data from the system in the black
box, we have to have some idea of the prior probability of which
system is in the black box, or equivalently, the probakility that
1 = Y; for each i.

Let gi(O) denote the prior probability that the i-th

system is in the "black box." Thus

P,(0) A Frob(H=H;) = Prob(y=y,) (3.6)
with
P (0) > 0, fl P,(0) = 1. (3.7)
i=1

Thus, the probability density function, p(H), of the random vari-
able H is

N
p(H) = ), P, (0) & (H-H,) (3.8)
i=1

where §(-) is the Dirac delta function.

Remark: The numerical values of the prior probabilities P, (0)
reflect to the mathematics our best guess on whicﬁ
models are more likely to be in the black box prior
to their generating any data. If initially, i.e., at
time t=0, any one of the models is equally likely,
then we would select the Pi(O) by
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t*find make a set of noise measurements

(1), 2(2), ..., z(¢) £3.11)

"* - from the system in the black box. As we have done in Section 2

we let 3(t) danote the set of all past measurements

Suoomted = { al0), w(l), e, uleel), 201, .., 2(8) ) (3.12)

" ‘Define the probabilities

P, (t) 4 Prob(H=H, /2 (t})

(3.13)
= Prob(y=y,/2(t))

to be the probability, given the measurement set Z(t), that the

i-th hypothesis (i.e., the i-th model) is the correct one.

Clearly

P (t) >0 (3.14)
N
) P,(t) =1 (3.15)
i=]

25
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-.: Given all of the above information and notation, we can list all

the information that we would like to obtain, as well on the re-
quired algorithms to compute the variables of interest.

1. The conditional mean of the state

X(t/t) A E { x(t)/2(¢) } (3.16)

2. The conditional state covariance matrix

Z(t/t) 4 cov [ x(t) ; x(t)/2(t) ) (3.17)

3. The dynamic evolution of the posterior proba-
bilities P, (t); ideally we would like a
recursive *elatlon, i.e., Pi(t+1) can be com-
puted from the Pj(t)

Remark: The conditional mean and the covariance can be computed
once p(x(t)/z2(t)), the true conditional density function
of the state of the system in the "black box" has been
obtained.

3.5 The MMFA: Derivations

We shall obtain recursive relationships of the general
conditional density functions at time t+l given at time t.
We start by evaluating the conditional probability den-

sity function

p(x(t+l) /Z (t+l)) (3.18)
Use of the marginal density yields

P(x(t+1)/2(t+1)) = [p(x(t+l), H/Z(t+1))aH (3.19)

26
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p(gmn JH/B(E+1) )ap (x (£+1) /0, B (£41) JpA/E(E41))  (3.20)

| ‘ﬁ’ “m.iuml probability density p(H/E(t+1)) cun be written
ucinq the noctation of eg. (3.13) as

N
p(u/B(t+l)) = 121 P, (t+1) 8 (H-H,) {3.21)

Substitute egs. (3.20) and (3.21) into eq. {3.19), and integrate
to odtain

px(t+l)/3(t+1)) = 1%1 Pi(t+1)p(§(t+1)/ﬂi.z(t+1)) (3.22)

Remark: We know that the conditional densities p(x(t+l)/H,,2(t+l))
can be generated by a bank of N Kalman filters wh&re each
Kalman filter is "matched" to a distinct model, i.e.,i-th
hypothesis.

T TN * B
R g Loy, ;
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It is important to realize from basic Kalman filtering theory that
the following relationship is true for each conditional probabil-
ity density

p(s(e-o-l)/n .x(t+1))p(x(tﬂ)/ai.z(t))
p(iT€+1)/ ,B(t)) (3.23)

P(x(t+l)/H ,8(t+l)) =

and that

P(x(t+1)/B,,2(t)) = fp(x(t+1)/H;,x(t))P(X(E)/Hy,2(E))Ax(E)
(3.24)
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Aemark: - Under our assumptions all densities appearing in eqe.
(3.23) and (3.24) are Gaussian, and hence thsy can be
characterized by their mean and covariance matrix.

The basic idea is to construct a bank of N Ralman filt-
ers; each Ralman filter is designed using the specific parametesr
matrices A,, By, L;» G4/ B, 8, and L (the initial state covar-
iance matrix). BRach Kalman filter in the bank is driven by the
same input sequence, u(t), applied to the system in the "black
box," and by the actual measurement sequence, z(t), generated by
the aystem in the "black box."

Let ii(t/t) denote the state estimate generated by the

i-th Kalman filter. More precisely, gi(t/t) is defined by.
X, (t/6) 42 x(0)/H, 2(0) } = fx(E)p(x(t) /By, T())Ax(e) (3.25)

Let I, (t/t) denote the conditional covariance matrix
associated with the i-th Kalman filter. More precisely

I;(t/t) § cov [ x(t):x(t)/H;,E(t) ]
= B { (x(8)-%, (£/£)) (X(E) =R, (£/£)) /0, 2(8) )
= fix(t)-x, (/EN(x(£)-K, (£/eNT - plx(t)/H ,Z(£))dx(t) (3.26)

Remark: All the gi(t/t), i=1,2,...N are precomputable.

In essence, from each Kalman filter mean ii(t/t) and covariance
matrix I, (t/t) we can construct the Gaussian density function

p(x(t)/8,,2(¢t)).
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The next problem is to generate an overall esstimate of
the state, X(t/t), according to eq. (3.16) of the system in the
"black box." In addition, it is helpful to generate the true
error covariance matrix, I(t/t), according to eq. (3.17), so that
we have an idea of how accurate the estimate x(t/t) of the true
aystem state x(t) actually is.

We demonstrate below how the overall estimate x(t/t)
can he generated onue

a. The individual Kalman filter estimates x (t/t)
are available, and

b. The true conditional probabilities Pi(t) de-
fined by eq. (3.13) are available.
From eq. (3.22) we have
N
p(x(t)/2(t)) = 12 P, (£)p(x(t)/H,,2(¢)) (3.27)
m]

x(t/t) = E{x(£)/2(t)} = fx(t)p(x(t)/z(t))dx(t)

- 1}: P, (£)fx(€)p(x(£) /H,,2(t))Ax(t)
=]

- 121 Pi(t)x (t/¢) (3.28)

Thus, the overall state estimate is the probabilistically weighted
average, by the posterior (hypotheses) probabjilities Pi(t), of the

state estimate generated by each one of the N Kalman filters.

To derive the true conditional covariance matrix I(t/t)

e




we proceed as follows:
Z(t/t) 4 cov [x(t)ix(t)/2(¢)])
= B{ (x(t)=%(t/t) (x(t)-%(t/t))T/2(¢)}
= flx(£)-R(£/£)) (x(£)-%(£/€)) TP (X () /2 (¢))Ax(¢)
- zpi(t)f(g(t)-f_t(t/t)) (x(t)-&(t/eNT.
+ p(x(t)/H,,2(t))dx(t) (3.29)
After some algebra we obtain
L(t/t) = if_j:lpi(t) [_I;i(t/t)+(gi(t/t)-g(t/t))'
¢ (R (£/0)-R(t/0)T) (3.30)

Note that L(t) cannot be precomputed because it contains the real

time estimates gi(t/t) generated by the Kalman filters in addition
to the posterior probabilities Pi(t) which as we shall see require
real time measurements. The only remzining problem is to calculate

dynamic evolution of the porbabilities Pi(t)

|
:
1
g

Pi(t) = Prob[ﬂ-Hi/Z(t)l

= Prob[y=y;/2(t)] (3.31)

We will relate each Pi(t+1) to the Pi(t) and other quan-

tities that can be found from Kalman filters. The interesting
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aspact of this caloulation is that a truly recursive relation-
ship caa be cbtained relating quantities only at successive meas-
urenent tiwes, t and t+l, with relatively small computational
burden.

Towards this goal we proceed as follows. <Consider the
conditional density

p(H/2 (t+1))

iP (t+1)8 (H-H,) (3.32)
i i

im]

Use of Bayes rule yields

P(H/Z(t+l)) = p(H/2(t+l),2(t))
E(Hii'(tﬂ)éz{t))
plz(t+l) /2 (¢t
- 2(;(t+1)£!~l,z(t))%(H{Z(t))
p(z{t+l) /2(c (3.33)

But
N
P(H/Z(t)) = 2 P, (t)8(H-4,) (3.34)
i=1
Note that according to our notation Z(t+l) = {2{t),z(t+l)}

Equations (3.32) to (3.34) yield

Pz (t+l)/H,,2(t))

Pi(t) (3.35)

P, (t+l) =
pl(z(t+l)/2(t))

The density p(_Z_(t+1)/Hi.Z(t)) is Gaussian and can be
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caloulated from the i-th Xalman filter
P(R(E+1)/H,,8(t)) ~ N(C, (L+1) X, (£+1/8),8, (t+41))*  (3.36)
where
S, (t41) = €, (E+1) L, (£41/€)C] (£+1)48 (£41) (3.37)

Note that the quantity C, (t+1)X, (t+l/t) is the predicted measure-

ment at time t+l generated by the i-th Kalman filter.

The matrix S(t+l) is the residual covariance matrix asso-
ciated with the i-th Kalman filter. Note that the residual co-
variance matrices S, (t+l) can be calculated cff-line for each
Kalman filter.

It remains to calculate the density p(z(t+l)/2(t)) in

eq. (3.35). Use of the marginal density leads to

plz(t+1)/2(t)) = fp(z(t+l), H/Z(t))aH

= fo(z(t+1)/H,2(t))p(H/2Z(¢))dH
N

-jp(g(ul)/a.ut))jz P (£) 6 (H-H,)aH
=1

N
- 2?1(t)p(_z_(t+1)/ﬂj.2(t)) (3.38)

j=1 ]

Remark: Once more all the densities p(2(t+l)/H,,Z2(t)) are avail-
able from the bank of Kalman filters; aee eqgs. (3.36)

—
The notation N(a,A) denotes a Gaussian density with mean a and
covariance A.
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and (3.37). Substituting eq. (3.38) into eq. (3.3%)
yields the desired result that the dynamic evolution of

the probabilities gi(t) is given by

p(!(t+1)/ﬂ 3(t))
P (t4l) = —i ~2, (t) (3.39)

3 Py (t)p(z(t+1)/H,,5(8))
J=1

where if we recall that

r = dim 3(t) = number of measurements (3.40)
then
_r 21
2 2
p(g(t+1)/aj,z (t)) = [(2n] [det §j(t+1)l
@ { 1 - S T -1
xpi-3(2(t+l) gj(t+1)§j(t+1/t)) Sj (t+l)
. (5(t+1)—gj(t+1)gj(t+1/t))} (3.41)
with
§(t+1) = ¢, (t+1)j£_j(t+1/t)g'§(t+l)+9_(t+1) (3.42)

The relation (3.39) becomes more transparent if we introduce a

somewhat simpler notation.

Let us define the residual (an r-dimensional vector)

vector generated by each Kalman filter by

£y (841) § z(t+1)-C, (t+D) %, (E+1/¢) (3.43)

33

' “-u’ f .

M TN




BT WEERRRLNR, .

Ne B

s 7a -—_

i.e., the difference between the actual measurement and the pre-
dicted measurement.
Then from each Kalman filter we can obtain the scalar

gquantity in zeal time
To-1
Wy (e+l) 4 r, (£+1)78.7 (t+1)r, (£+1) (3.44)

Also, let Bi(t+l) denote the scalar precomputable quantity

N -

Bi(t+l) A [2ﬂ] 2-[det. §i(t+l)] (3.45)

Using the above notation, the conditional density (3.41) can be

written as
plz(t+1) /H.,Z()) = B, (t+1) exp{-lw (c+1)} (3.46)
z 5 i 2% .

From egs. (3.46) and (3.39) we can now write the dynamic evolu-

tion of the probability density function as

Bi(t+l)exp{-% W&(t+l)}
P, (t4l) = — P, (t) (3.47)

1
};;Bj(t+l)exp{-i Wa(t+1)}Pj(t)

The above formula illustrates that all measurements up to time t,

Z(t), are captured in the posterior probabilities
Pl(t), Pz(t), ceey PN(t) (3.48)

The new measurement at time t+l, z(t+l), influence all

4




N residual vectors associated with the bank nf Kalman filters

according to eq. (3.43) and generate scalars wi(t+1), i=1,2,...,N.

This then can be used to update the probabilities

according to eq. (3.47). Thus, this represents a true recursive
solution to the problem of probability updates.

A block diagram illustrating the MMFA is shown in fig-
ure 3.1.

3.6 The MMFA: Parameter Identification

In the previous subsection, we have described the basic
idea of the Multiple Model Filtering Algorithm. 1In addition, we
have derived algorithms for MMFA realization. 1In this subsection,
we will show that the MMFA for parameter identification can be
obtained in a straightforward manner. The minimum variance

estimate of the unknown parameter y is the conditional mean i.e.,
$® = fy piy/zienay = Bly/zce)) (3.50)

Recalling the fact that the events H=H.( and =Y; are equivalent,

we can rewrite egn. (3.21) as
N
p(Y/Z(t)) = El P01 s {y-y,) (3.51)

vwhere gi(t) is interpreted as the prob.ojlity that Y=Y, is true
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based upon all the data, Z(t). Using (3.51) in (3.50) yields
y(t) = iilli P, (¢) (3.52)

The covariance of y can be optained similarly. Assuming that y

is unbiased, then
Ia(t) = y(t
o cov(y(t))
= fix - 3N - 3N Teiy/zienay

- z;Pi(t) [y = 3Ny - FeNT) (3.53)

3.7 Discussion

We now discuss the asymptotic properties of this algor-
ithm from a heuristic point of view. If the system is subject
to some sort of persistent excitation, then one would expect that
the residuals of the Kalman filter associated with the correct
model, say the i-th one will be "small", while the residuals of
the mismatched filters (j#i, j=1, 2, ..., N) will be "large".

Thus, if i indexes the correct model we would expect

wi(t) << W, (t) for all j # i (3.54)

3

If such a condition persists over several measurements equation
(3.47) shows that the "correct" probability Pi(t) will increase

while the "mismatched model" probabilities will decrease. To

see this one can rewrite (3.47) as follows,




P, (t+l) - P, () = [jgl Bj(t«o-l)oxp{-i‘-wj(ul)} pj(t)]-l.

Py (t) [(l.-!?1 (t) )Bi(tﬂ)o:p{-%‘wi (t+1)}

- j%, Pj(t) Bj(t+1)exp{«-%‘-wj (u-],)}] (3.55)

Under our assumptions
exp{-§wi(t)} .1
exp{--;‘-wj(t)} ~ 0.

Hence the correct probability will grow according to

P, (t) [1-P, (£) 18, (t+1)

Pi(t+1) - Pi(t) = > 0 (3.56)

N
7y (e}
P, (t + - t+
PR ACIAL 1) exp {-3¥, (£+1)
which demonstrates that as Pi(t) + 1, the rate of growth slows
down.

On the other hand, for the incorrect model, indexed by

j¥i, the same assumptions yield

-p, ()P, (£)B (£+1)
Py(t+]) - Py(8) = g - <0 (3.57)
jz-jl P, (£)8, (£41) exp{--iwj (t+1)}

so that the probabilities decreased.
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The same conclusions hold if we rewrite (3.47) in the

form

N -1
Pi(t+1) - Pi(t) - jga Pj(t)Bj(t+1)QXP{-%Nj(t+1)}]

P, (¢) [j;i Py (t) (51 (e+1)exp{-§wj (t+1)}
-8, (t+1)exp{-%uj (t+1)})] (3.58)

The above discussion points out that this "identification” scheme
is crucially dependent upon the regularity of the residual behav-
ior between the "matched” and "mis-matched"” Kalman filters.

As pointed out in reference [16]), the dynamic evolution
of the residuals may not follow the above regularity assumptions.
This may be caused by errors in the selection of the noise sta-
tistics or using a steady state Kalman filter design, among oth-
ers. To be specific, suppose that for a prolonged sequence of

measurements the Xalman filter residuals turn out to be such that
wl(t) = wz(t) % ... X WN(t) (3.59)

Then
exp{-%wi(t)} T a for all i

Under this condition and using (3.58), we can see that
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S Ry le) T Py (6)- (B (t41) - By(tH1))
. . 2 Pyinsyten)

Suppose that one of the 81'0, say the Bk’ is dominant, i.e.,
Bk > Bi for all igk

In this case, the right-hand side of (3.60) will be negative for
all iy¥k, which means that all the Pi(t) will decrease while the

probability Pk (associated with the dominant Bk) will increase. E
The significance of this effect is that the 81'3 are independent f
of the residuals and their magnitudes are not determined by which ;
model is true. This issue, which has not been discussed in the ﬁg
literature, is believed to tie with the "identifiability" ques- ;E
tion of this schame. '?j

Above discussions merely point out possible shortcomings %%
of thiq scheme. These issues may be adequately answered if we %%
could address the following questions. g%

(1) A rigorous proof to show the asymptotic properties Eg
of the hypothesis probabilities. To the best of our knowledge, 3;
such a proof is not available in the literature. i:;

(2) How would the hypothesis probabilities behave if f
none of the models coincide with the true model? Moor and Hawkes S
{14) uzed a distance measure to show that the probability associa-

ted with the model which is the closest one to the true model
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will converge to unity. If this claim is warranted, one may be
able to design an adaptive parameter discretization scheme which

re-discretizes the parameter vector within the parameter subapace
vhich is the closest tc the true model as determined by the hypo-

theais probability and the distance measure.

(3) Anawers to the above questions will certainly shade

light to the identifiabiliity problem.
Finally, let us re-emphasize the significance of this

schems from the estimation’s point of view. This algorithm is

optimum in the minimum variance sense in state and parameter es-

timation if the discretized parameter space indeed containas the

This is true because: (1) We use the condition-

true parameter.
the algorithm was derived without

al mean as the estimate and (2)

using any approximations.
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- 4.1 Introduotion |
In the previous section, we have derived the multiple
- model filtering algorithm for state estimation when the system
dynamics contain uncertain parameters. The parameter vector is
discretized to cover a range of physical values that it may pos~-
sibly attain. A bank of Kalman filters is built with each match-
ing to a parameter vector. The a posteriori probability of a
given model being true is used to combine the output of these
filters. Algorithms for state estimation and parameter identi-
fication are derived.

In this section, the multiple modes smoothing and pre-
diction algorithms (MMSA and MMPA) are derived.
4.2 The MMSA and MMPA: Assumptions

The system equations, measurement equations, parameter
space, and hypothesis probability assumptions made in the section
3.4 are the same for the MMSA/MMPA derivation. We only modify
the variables of interest to as follows:

l. The conditional mean of the state

x(1/t) A E { x(1)/2(¢) )} (4.1)

2. The conditional state covariance matrix

L(t/t) A cov [ x(1):x(T)/2(t) ) (4.2)




"3, The dynamic evolution of the posterior probabilities
D*(t):rlqain. we would iike a recursive relation.

- hemarke: (1) when t>t, it is called prediction.
B Y R ) when t<t, it is called smoothing.

L = when te=t, it is called filtering and this part of
algorithm has already been presented.

(2) The conditional mean and the covariance can be com-

puted once the conditional density function has been
specified.

In the following, we re-state varioua forms of prediction and

smoothing in terms of the evolution of p(x(t)/2(t)).

(1) Pix lag prediction/smoothing: update p(x(t)/%(t))
from p(x(t-1)/2(t-1)) where t-t is a fixed constant

(2) Pix interval prediction/smoothing: update
p(x(t)/2(t)) from p(x(t-1)/2(t))

(3) Fix point smoothing: wupdate p(x(t)/%Z(t)) from ‘
P(X(1)/2(t-1)) -
4.3 The MMSA and MMPA: Derivations

Similarly, we start by evaluating the conditional prob- i
ability density function

p(x (%) /2(t)) (4.3)

Using the marginal density yields

plx(1)/2(8)) = fo(xi) ,H/z(¢))an

-ﬁ(g(r)/n,z(t))pm/z(t))da (4.4)
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However

p(H/2(t)) = % Pi(t)“a‘“i) (3.21)
{m]
and
Pi(t) - Prob(n-ni/Z(t)) (3.13)

Notice that Pi(t) is interpreted as the probability of the event,
H'Hi' being true conditioned upon all the measurements, 2(t).
Unlike the state and the covariance ((4.1) and (4.2)). The hy-

pothesis probability is only a function of one time varjable, i.e.,

the time index of the measurement space. Using (3.21) and (3.13)
in (4.4) yields

N
P(x(t)/2(t)) = 2, P, (t)p(x(1)/H,2(t)) (4.5)
i=1

This equation is analogous to equation (3.22). Using (4.5), we |

obtain the predicted/smoothed state and covariance as
x(1/t) = E { x(1)/2(t) }
= fx(pix(t)/z(e))ax ()

N
- 2{& P, (t)x, (1/¢) (4.6)

L(t/t) = cov [x(1) ; x(1)/2(t)]

N ~ PN T
= 3 Pi(t)_/(gg/t) = x(t/t)) (x(t) - x(t/t))
i=1
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“P(_x_('f)/aio3(t) )d&(f) '

- 251 P, (®) [L, (t/%) + (gi(r/t) - X(t/¢))

ARy (/8) = R(/eNT) (4.7)

where gt(t/t) is the estimate from the i-th smoother/predictor and
Z;(1/t) is the covariance of X, (t/t).

Renarks: (1) The realization of MMSA/MMPA again requires a bank
of smoother/predictor with each matching to a possible
parameter vector. The algorithms for the individual
smoother/predictor realization have long been made avail-
able, for example, see (3, 24-28]), or Appendix B.

(2) From the above derivation, the hypothesis probabil-
ities Py (t) for smoothing/prediction are the same as

those for filtering. The §ynSﬁIc evaluatiIon of ¥, %) is
stil]l computed by using equation (3.47). Recalliﬁq that 2
Pj(t) is recursively updated by using the filter resi- e
duals. Since the filtering results at time t are ob- S
tained prior to any prediction and smoothing based upon oo

Z(t), the probabilities P;(t), i=1l, ...., N are always 5}96
available. o

(3) PFrom equations (3.52) and (3.53), the parameter
estimate is obtained as the weighted average of discre-
tized parameter vectors. Again, there is only one time
index which is the index of the measurement space. The
smoothing/prediction algorithm for the parameter esti-
mate is therefore the same as the filtering algorithm. -

In summary, we state the following procedure for apply-

ing MMSA/MMPA.

(1) Compute filtering results, i.e., obtain gi(t/t),
L (t/t), P (t), X(t/t), and L(t/t) from the algorithms of the
previous section.

(2.a) For prediction, apply the individual predictor to
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obtain X, (t+k/t) and I, (t+k/t), i.e., iterate

X, (£41/¢) = A, X(t/t) + Byult)

and

T - T

k times with X, (t/t) and I, (t/t) as initial conditions where k
defines the discrete prediction time. The combined estimate
X (t+k/t) and covariance I(t+k/t) are obtained by using (4.6) and

(4.7) with the hypothesis probabilities P;(t) the same as those

cbtained in step (1) (filtering).

(2.b) For smoothing, apply the individual smoother (see

references [(24-28) or Appendix B) to obtain gi(t-k/t) and gi(t-k/t).
The combined estimate X(t-k/t) and covariance EI(t-k/t) are obtain-

ed by using (4.6) and (4.7) while the hypothesis probabilities

P; (t) are constant for all k and equal to those obtained in step (1).
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S. MULTIPLE MODEL ESTIMATION ALGORITHM FOR NONLINEAR SYSTEMS

In this section, the MMEA for nonlinear systems is
discussed. From the pravious section, it is known that the
snoothing and prediction are rather straightforward sxtensions ;
of filtering, only the filtering algorithm will be emphasized
hers.

Similar to the linear case, we define the foliowing non-
linear system and measurement equations corresponding to the i-th
discretized parameter vector, y,.

State Dynamics

l‘(t"‘l) - E(E(t)y ‘_l(t)r S(t): li) (5.1)

Measurement Egquation

The plant noise £(t) is defined by equations (2.4) - (2.7) and
the measurement noise §(t) is defined by equations (2.8) - (2.11).
The same as in the linear case, there are three separate
steps in the multiple model estimation procedure, namely, the gen-
eration of individual state estimates matching to a given para-
meter vector, the evolution of the hypothesis probability and the
combination of the individual estimates. Let each steps be dis~
cussed individually below.

(1) It is well-known that the realization of the cptimum
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state estimation for systems modelled by (5.1) and (5.2) involves
solving a set of countably infinite differential equations {18 -
22). It is therefore practically impossible to obtain these in- i
dividual optimum estimates. Suboptimum filters will have to be E

P
used to construct the filter bank, i.e., to produce gi(t/t)
approximately.

~ (2) The equation for updating the hypothesis probabil- '
1ty is stated in equation (3.39) | %

p(z(t+1) /Hy,2(¢))
P (t+l) = — P, (t)  (3.39)

Y P.(t)plz(t+l)/H ,Z(t)) -

In arriving at this equation, no assumption was made on which type
(l1inear or nonlinear) of systems are being considered. It is
therefore still valid for nonlinear estimation. It howe&ér, can-

not be calculated exactly due to the fact that the exact realiza~

tion of the individual a posterior density p(g(t+1)/Hi,Z(t)) can

not be obtained. It can only be evaluated approximated with a
) *
sub-optimal filter (such as the extended Kalman filter ) for

computing gi(t/t) and I, (t/t).

(3) Assuming that the optimum individual estimate i

ii(t/t) and its covariance Ei(t) are available, the optimum state

estimate and its covariance can be computed by

*The extended Kalman filter eguations are listed in the Appendix A.
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N -
X(t/t) = 121 P, () ), (t/t) (3.28)

and

L
L(t/t) = 3, P (t) [T, (t/t) + (X, (t/t) = x(t/t))
i=1

(R (/8 - Z(e/enT) (3.30)

Similarly, in order to realize (3.28) aﬁd (3.30) for states and
measurements represented by (5.1) and (5.2), one has to use
suboptimum filters to generate the individual estimates ﬁi(t/t)
and I, (t/t).

Let us re-emphasize that équations (3.28), (3.29), and

(3.30) are exact representations for the solution of the nonlinear

estimation problem for systems modeled as (5.1) and (5.2). 1In
Vi other words, the a posterior hypothesis probabilities evolution
and the method of computing the combined estimate are optimum if
each individual estimate can be obtained optimally.

Numerous svboptimum filters have been proposed for non-
linear estimation [2,4,28-33]. The most popular fjlters are the
extended Kalman filter and the second order filter (2,4] among

others. Especially, the extended Kalman filter has attracted

considerable attentions for practical applications [2-8). The

second order filter can generally provide impioved performance
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than the ext . K .man filter with the trade-offs of higher
computational ,urden. A comparison of various nonlinear filters
may be found in [34,35]). All these filters May be used for the
MMEA realization. A specific selection may be based on a partic-
ulaf physical problem and the required performance. For real-time
application, one usually favors a simple filter pending on the
available computer resources. For off-linear processing espe-
cially in the post-mission smoothing application, a sophisticat-~

ed algorithm is usually preferred.
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6. SXANPLE
In this section, we present an example to illustrate
the theory. Only the filtering algorithm is tested.

Consider the following second order continuous system.

xl * 0 u
- + (6.1)
% 0 -y X 1l

This system may be used to describe the motion of a vehicle along
a given axis with drag (represented by "y") and control force
(represented by "u"). 1If 3Y denotes the target range and a radar

is ugsed to take range measurements, the measurement equation is

zZ = xl +n (6.2)

where n is measurement noise. The measurements are taken at

discrete instance of times. A corresponding discrete sys.em of

(6.1) is

1-e-YAt
X, (k+1) 1 == |x % 0 a
= . + |-yt (6.3)
x, (k+1) 0 P x, (k) 3-9;——-

where At is the time interval between measurements. A multiple
model filter is used to estimate X)0 X, and to identify y. Three
Y values are assumed, i.e., y=0., .5, or 1.. The system and con-

trol matrices, A and L for those y values with sampling interval
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at = .1 are ‘ - IR
| (1) vy =o0.
1- 'ol o ' 0.
A= , : L=
o. 1. 01
(2) y = .5
1, .0975 0.
A= » L=
0. .951 .097%
(3) y=1.
1. .095 0.
é ™ 1 & -
0. .9 .095

The measurement noise standard deviation is equal to one. The

time initial state is

X, =100. 3

1 = 50.

X2
The following convention is used to relate the hypothesis to the

parameter values.
Hl - Yy = 0.
1 -t Yy = .5

‘2

H3 — Y.lo
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Two experiments are performed. They are descridbed in-
dividually below.
tgggsip.ag 1: Parameter vy stays constant, control u is equal to

B sexo.

Three cases with the true parameter being equal to one
of the three possible values in each case are tested. The a
posteriori hypothesis probabilities for all three cases are
plotted in Pigure 6.1. The initial hypothesis probabilities are
uniformly distributed. The true system is always identified in
within 10 Qata points
Experiment 2: Parameter y jumps between models, control u is

nongzero.

The control force is assumed to be equal to 50 and

known to the estimator. Assuming the initial time is zero, the

true y time history is

Yy = 0. for 0 <t<2
Yy = .5 for 2 <t< 4
Yy = 1. for 4 <t <6

It therefore represents a y history with sudden jumps. The ¥y
estimates are presented in Pigure 6.2. Notice that the filter is
always able to identify the true system. Two modifications are
implemented in the algorithm in this case.

(1) The hypothesis probabilities are hard bounded.

This is to prevent any probabilities from converging to zero (or
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“one). When it does, it will be very difficult for the probabili-
ties to branch ocut again when the true system has actually switch-
‘¢4, The bound used in this experiment is however, very amall, i.es.,

Pr(R,/2(t)) > .0005 for i=1,2,3

(2) Although there is no process noise assumed in the
system, a process noise term with covariance
1 0
0 1
is used in the filters. This is included also for the purpose
of preventing the filter from being over-confident in its esti-
mates therefore not able to switch to a different system. 1If

there is no process noise added, the estimates of a mis-matched

filter can Arift far away from the true states. When the true
parameter jumps to a different value, i.e., an otiginally misg-
matched filter now becomes matched, it takes extremely long per-
iod of time for the algorithm to identify the true system again. -,
Leaving proper process noise level in the filter will keep the
mis-matched filter estimates sufficiently close to the true state fé
so that the algorithm is adaptive to the parameter jumps. The B
control variable u also plays a critical role in this experiment.
It represents a persistent excitation to explore differences
among these systems. A basic issue which still needs answer is

on the input design for system identification in using MMEA j
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Fig. 6.1 Hypothesis probabilities of experiment 1
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method.

The above two experiments are simple but illustrative.
The first experiment indicates that the NNFA can quickly identitfy
the true systea with a oon.eani parameter. PFor time-varying
parén-torl. some modifications are necessary so that the algori-

thm is adaptive to sudden parameter changes.
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7. SUMMARY, DISCUSSION, AND FURTHER PROBLENMS e

7.1 Summary i&f?;

In this report, we have discussed the problem of sgtate &

estimation with uncertain parameters and presented the solution 4.8
by utilizating the multiple model estimation algorithm (MMEA).

The following summaries pertaining to the properties of MMEA are

listed without any specific order. =9

i (1) Theoretically, the MMEA provides the minimum vari- ;
ance estimates of both state and parameter if one

of the chosen models coincides with the true model.
(2) If the a posteriori hypothesis testing probabilities

converge asymptotically, the true parameter is iden-

Lugedr s

tified with probability one.

(3) The hypothesis probabilities for smoothing and pre-
diction are the same as those for filtering.

(4) The hypothesis probability update equation and the
weighted sum equations are optimum in the minimum
variance sense and they are the same for both lin-
ear and nonlinear systems.

The usefulness of MMEA can only be fully understood and
evaluated after applications to significant physical problems.
Applications to the trajectory estimation area have still to be
carried out. The application to the F-8C airplane real-time con-

trol system [16] has shown encouraging results and suggested

further study areas in theory as well as in algorithm design.
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7.2 Discussion: BExtension to a Class of Time-Varying Para-
_Wmters and Subcptimal Approaches

Strictly speaking, the NMEA presented in this report is
optimum only for systems with time-invariant parameters. The
theoretical and practical implications of using NMEA to systems
with time-varying parameters are not completely understocd. The
example in the previous section has clearly indicated that some
modifications must be incorporated in order to mak; the MMEA to
follow parameter jumps. This is because once the true parameter
is identified, the algorithm is locked an the true system and
the mig-matched Xalman filter begins to drift away from the true
state. When the true parameter has switched to a different value,

it usually takes a long time for the algorithm to branch out

ST P umam,",. YL

again. The requirement for a time-varying parameter MMEA is to

make the mis-matched output still sufficiently close to the true

state and to keep the hypothesis probability from coming too
Cclose to zerc (or unity). i

There is a trivialextension of the MMEA to a special &
class of time-varying parameters. Consider the parameter space -

Rq which contains N parameter vectors each with dimension q,i.e.,

R, = {(y : y=1x; ¢+ i=1,...,N}

At the time t, the true parameter is equal to Xy At the next
instance of time, the true parameter may be equal to any param-

eters in Rq. As time progresses, the true parameter is changing

’
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around with its values within Rq. Defining two types of hypoth-

eses by

H (t) = the hypothesis that Ih at time = t is true, it
is therefore a local ypoehelin

ﬁi(t) = the hypothesis that a giving history for time up to
t of Y indexed by k is true, it is therefore a global
hypothesis.

These two types of hypothesis are related by the following equa-

tions

ﬁk(t) =H (t) H

(t-1) & ---- @ H (1
t k k)

t-1
where the index for kl’ ceeny kt is 1, ...., N, the index for k
is 1, ...., Nt, and ® denotes the "and" operator. It is clear
that each ﬁ*(t) defines a possible sequence of y history. With
this definition, one may proceed in parallel to the development
of this report to obtain a new MMEA for time-varying parameters.
The derivation is briefly stated below.

1) For state estimate and covariance

Let

P, (t) = Prob (H(t) = ﬁi(t)/Z(t)) (7.1)

for i=1, ..., Nt. It is trivial to show that

x(t/t) = E(x(t)/z(t))
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=~ TP (R)K, (£/¢) (7.2)
i=]
JL(e/e) = cov (x(t), x(t)/%(¢t)]
Nt
~ T OPi(t) (L, (t/8) + (X, (£/t) - R(t/t))
i=1
C(Ry (£/8) = R(e/eNT) (7.3)
where X, (t/t) = E(x(t)/H, (£),2(¢t))

I; (e/t) = cov [x(t),x(t) / H (t).2(¢)]

2) For probability update
Using the conditional probability relation yields

PIH(t+1) /2(t+1)) = p(H(t+1)/H(t),2(t+1))p(H(t)/2(t+])) (7.4)
Using Bay's rule on p(H(t+l)/H(t),2(t+l)) yields
p(H(t+1) /H(t) ,2(t+1))

p(z(t+l) /H(t+1) ,H(E),2(t)) -
= P(H(t+1l) /H(t),Z(¢t)) (7.5)

plz (t+1) /H(t),2(t))
J

Define the following probability density functions
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,,,

N
P(H(t+1l)/H(t),2(t+l)) = 3 p(ai(ul)/ﬁ(t) 12 (t+1)) §(H-H,) (7.6)
i=)

: N
P(H(t+1)/H(t),2(t)) = T~ P(H; (t+1)/H(t),2(¢)) & (H-H,) (7.7)

i=1

where P(H; {t+1)/H(t),2(t+1)) = Prob(H(t+l)=H, (t+1)/H(t),5(t+1))
and P(Hj(t+l)/§(t),2(t)) is the probability that the parameter
will switch to Y5 given a past history of y and all the past
measurements. It is determined by the property of the hypothesis
process. If the hypothesis process is a Markov process, this

probability becomes the transition probability, i.e.,

p(ai(tu)/ﬁ(t) , Z(t)) p(ni(t+1)/ﬁ‘(t)) (7.8)

P(Hi(t+l)/H(t))

For example, if the parameter may change to any parameter in R.q

with equal probability, we may assume |

p(ui(t+1)/ﬁ(t), Z(t)) = for i=1, ..., N.

A

Using (7.6) and (7.7) in (7.5) yields
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P(Hi(t+1)/ﬁ(t).2(t+l))

plz (£+1) /H, (£+1) B (E) ,2(¢)) _
- — P (R, (t+1) /H(t) . 2(t)) (7.9)
plz(t+l) /H(t),2(t))

Using the equation

t
N

p(H(t)/2(t)) = ¥ pk(t)a(ﬁ - ﬁk) (7.10)
k=1

in (7.9) yielads

P(Hi(t+1)/ﬁk(t),2(t+1))

: p(z (t+1)/H; (£+1) ,H (£),2(%)) _
' p(g(t*'l)/ﬂk(t),z(t)) (7.11)

where p(g(t+1)/ﬂi(tf1),ﬁk(t),Z(t)) ig the residual density of
the filter which was matched to the k-th history and is now

matched to Y, and

p(z (t+1)/H (£),2(t))

em———— o s

1%
= 3 ;ﬂz(t+l)/Hm(t+l),Hk(t),Z(t))P(Hm(t+l)/Hk(t),Z(t))
m=1 (7.12)

Next, we relate P(ﬁi(t+1)/Z(t+1)) to the conditional
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probability. Using *
P(Hi(t+1)/z(t+1))
-./.P(ai(t+1)/ﬁ(t),Z(t+1))p(ﬁ(t)/l(t+1))d§(t) (7.13)

and equation (7.10) one obtains the following equation for each
Hk(t) .

P(H, (t+1) H (£)/2(t+1))
= P(H, (t+1) /H,_(t),2 (t+1)) P (H, (¢)/Z(t+1))

for i=1, ...., N and k=1, ...., N© (7.14)

where P(Hi(t+1)/ﬁ%(t).2(t+l)) is specified in equation (7.11).
Notice that P(H, (t+1),H, (t)/2(t+1)) is the updated hypothesis
probability. Next, we derive the equation for computing

P(ﬁk/Z(t+1)). Using Baye's rule on P(ﬁk/z(t+1)) yields

{

P(ﬁk(t)/z(t+l))

Pz (t+1)/H (t),2(t))  _
= P(H, (t)/2(L)) (7.15)
plz (t+1)/2(t))

where P(ﬁk(t)/z(t)) is the a posteriori hypothesis probability
at time = t, i.e., Pk(t). The probability density functions of

(7.15) are computed hy using
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p(x (t+1) /B, (t),8(¢t))

N g
= T PE(t+1)/B (), Hy(£+1),B())P(H (£41) /B (£) ,2(¢))

j=l (7.16)
‘and
p(z(t+l)/2(t))
Nt
= 3 plz(t+l)/H (), 2(v))P (t) (7.17)
m=]

The probability update is therefore carried out by using equations

(7.11), (7.14), and (7.15). These relations can be further con-

densed with the following simplified notations.

P(Bi/ﬁk,z(t)) = P(Hi(t+l)/§k(t),2(t)) (7.18)

pl(z (t+1) /H, (£+1) ,H (t),2(t))
R(Eg/E) = i P
Y p(i(t+1)/ﬂj(t+l),Hk(t),Z(t))P(Hj/Hk,Z(t))
jm=l (7.19)

= conditional likelihood ratio

W,

. - I".ﬁ-‘
PR LY gk TP




p(x(t+l)/H, (t),B(¢))
p(z(t+l) /2 (¢))

z(E,‘) -

N
)> p(_l.(t+1)/§k(t).ﬁj(t+l).z(t))l’(a:’/ik,l(t))

« =t
N N
mZ_II (I pa(eed) /A (6) H, (641) 3 (e))P /B8 (6)) 1oy (8)

(7.20)
= likelihood ratio

Using (7.18), (7.19), and (7.20), equations (7.11), (7.14), and
(7.15) may be combined to become

Py(t+l) = L(H,/B )P, /H ,2(6))L(EIP, (t) (7.21)

Notice that for i=1l, ...., N and k=1, ..., Nt, the index for j is
1, ceee, N+l he probability update is carried out with the
conditional probability which characterizes the hypothesis process
itself and the likelihood ratios which use the new information
through residual density functions of each filter.

The MMEA for a constant parameter, i.e., the algorithm
discussed in Section 3, is only a degenerate case of (7.21).
When the parameter is a constant, the local hypotheses, Bi' and
the global hypotheses, ﬁk, become the same. The number of hypothe-

ses is limited to the number of parameter vectors in R_. Purther-

more, the conditional probability of equation (7.11l) becomes

66




P (R, (t+1) /B (¢) ,2(t))

= ] whan ai = i. - nk
(7.22)
= 0 elsevwhere
Using (7.22) in 2(81/3*) and z(ﬁ%) yields
1 when H, = i& = H,
L(H/H) = (7.23)
0 elsevhere
- P(z(t+l)/H, (t+1),2(t))
£(Hk) * N (7.24)
T P(z(t+1)/H (t+1),2 (L)) P (t)
m=]

Using (7.22), (7.23), and (7.24) in (7.21), we obtain eqguation

(3.39), the probability update equation for the constant parameter
case. This completes our a posteriori hypothesis probability

derivation. 14

An obvious problem with this algorithm is that the number

nt, of Hk(t), is growing with ¢. 1In order to make this algo-

rithm practical, one has to limit the growing number of hypothe-

R

ses. In the following, several suboptimal approaches for the

time-varying parameter MMEA problem are outlined. The first two
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approaches are aimed at limiting the number of possible sequences

(or hypotheses). The last two approaches are mainly to reduce

the chance of the algorithm being locked on a particular system. %ﬁ?
(1) Maximum Likelihood Probability Approach

Consider the case that at time t there are only M

hypotheses selected. For the next time period, each
hypothesis may grow with N possibilities. It therefore 7
has M ° N hypotheses after each filter update. These ;f
M « N hypotheses are then limited by selecting only
those M which have the largest hypothesis probabilities.

e
(2) Transition Probability and Pinite Memory Hypothesis ﬁf%
Process Approach B

Suppose that the filtering process has limited mem-
ory so that Ei(t) is replaced by the most recent local
hypothesis Hk(t). Furthermore, it is assumed that the
hypothesis process is a Markov process. Then one is

interested in updating

P(ni(t+1)/2(t+1)) ;7 i=1, ...., N.
from
P(Hi(t)/Z(t)) for all k=1, ..., N.

With this assumption and using (7.13), one obtains
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P(H, (t+1)/8(t+1)) = g:i P(B; (t+1) /B, (t),E(t+1))

© P(B, (t)/8(t+l)) (7.29)

where P(Hi(t+1)/nk(t).z(t+1)) is obtained by an equa-
tion similar to (7.11), i.e.,

P (B, (t+1) /B, (£) ,8(t+1))

P(s(t+l) /H, (t+1) ,H, (t),2(t))
= P(R; (t+1)/H, (¢),2(¢))

P(z(t+1) /By (t),Z(¢)) (7.26)

P(nk/z(t+1)) is obtained by an equation similar to
(7.15), i.e.,

p(z(t+l)/H, (t),Z(t))
p(z(t+l)/2(t))

P(Hk/z(t+1)) = P(Hk(t)/z(t)) (7.27)

where
p(g(t+1)/uk(t),z(t))

R
=3 p(g(t+1)/nk(t),aj(t+1),Z(t))p(ﬂj(t+1)/ak(t),z(t))

=1 (7.28)
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Y TP} /8(6)) = T plm(t+l) /B (), B(E)) R, (¢) (7.29)
o ’ ' =l

FETL T Gsing (7.2%), (7.26), and (7.37) one cbtains an sguation |
© . similar to (7.21), i.e., o £

;pj(e-o-l) = P(aj(ul)/z (t+l1))

N
- Z l(ﬂj/ﬂk)P(leﬂk) l(Bk)Pk(t) (7.30)
k=1

where P(Bj/ﬂk) P(Bj(t+1)/ﬂk(t).2(t))

= transition probability

conditional likelihood ratio defined
in (7.26)

l(Hj/Bk)

likelihood ratio defined in (7.27)

l(Hk)

The difference of (7.21) and (7.30) 1is that with limited

memory, we are interested in P(Bj(tfl)/z(t+l)) and not in f»ﬁ
P(ﬁj(t+1)/z(t+l)). This also limits the number of filters
to the number of y,'s. One critical issue of this ap- L
proach is the selection of the transition probability ‘{i%
P(ﬂj/ﬂk). In practical problems, it may be selected ' ?;,

a priori with engineering intuition and physical reasons.
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(3) Mging Filter Approach
¥hen the system dynamics are uncertain and changing

ReT

M .4‘—‘ o \
Py __1 ‘h»?/.,.‘{s,_‘_‘, % e
Bt bt : ‘.

with time, the aging filter {36, 37) is often used to

-~

place exponentially higher weighting to the more recent

measurements. Its extension to the NMBRA case (e.g., in

the probability computation) is not available. Prelimi-
nary results are discussed in [38). )
(4) Others
There exist many methods that can be applied to
open up the bandwidth of sach Kalman filter and to pre-

.
o

vent the a posteriori hypothesis probability from locking =
on zero (or unity). The method used in the previous s

section, i.e., increase process noise and bound the prob-

ability, is indeed just one of them.
A useful study would be to compare the above apprcaches
by applying them to a significant physical problem, such as the

Re-entry Vehicle Tracking problem.
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7.3 Purther Problem Axeas =

In this subsection, we conclude by suggesting the follow-

ing further problem areas.
(1) From section 3.7, it was found that some fundamen-
tal issues of MMEA pertaining to its convergence ;nd :
identifiability still require rigorous investigation.
(2) It is demonstrated in section 6 that a known input
may be required in some situations to help identify time-

varying parameters. The problem of optimal signal design

LT
.',."g-/‘ :

in using MMBEA for system identification is still an open
issue. S
(3) Purther studies are required tc extend MMEA to time-
varying parameters. The optimum MMEA for a special class
of time-varying parameters and several suboptimal ap~

proaches are discussed in section 7.2. The extension of
MMEA to other types of parameter variation is needed. a
Comparative study of the suboptimal approaches is an

interesting further topic.
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. - In this appendix, we state the discrete Kalman filter
‘algorithm and its first order extension (the extended Kalman

APPENDIX A

THE DISCRETE KALMAN AND BXTENDED

KALMAN FILTER ALGORITHNS

filter) to the nonlinear case.

‘A.1 The Discrete Xalman Filter Algorithm

Consider the discrete system represented by

with measurement equation represented by

where x, U, and gz are state, control, and measurement vectors,

respectively.

x(t+l) = A x(t) +

B u(t) + L §(t)

2(t+l) = C x(t+l) + B(t+l)

5
(a.1) g

(A.2)

¥y
i b

et DA C
U R
K ’gﬁ o
PR, PtY .

E(t) and 8(t) are white Gaussian noise sequences

with zero mean and covariances Z(t) and 6, respectively. The

matrices, A, B, L, and C may be time-varying although not expli- o

citly shown.
balow.
Predict Cycle

x(t+l/t) = A x(t/t) + B

I(t+l/t) = A D(t/t)AT + L 2
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The discrete Kalman filter algorithm is stated

(A.3)

(A.4)
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Update Cycle

X(E+L/t+1) = Z(E+1/E) + W(t+l) (2(t+l) - C g (t+l/t))
wit+l) = Z(t+l/e1cTic Sieel/e)cT + o(e+1)) L
D(t+1/t+1) = [I = W(t+1)C] I(t+l/t)
where
x(t/t) = E(x(t)/2(t))
x(t+1/t) = E(x(t+1)/2(t))
Z(t/t) = covix(t):x(t)/2Z(t))
Z(t+l/t) = cov(x(t+l), x(t+l)/2(t))

Z{(t) = the set of all past measurements

= {u(0), u(l),...,u(t=-1),z2(1),...,2(t)}

(A.S)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

The initial estimate X(0/0) is assumed to be Gaussian with mean

x(C) and covariance £ (0/0).

A.2 The Discrete Extended Kalman Filter Algorithm

Congider a nonlinear system reﬁresented by
X(t+l) = £(¥(t)) + B u(t) + L E(t)

with measurement equation represented by
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z(t+l) = h(x(t+l)) + 6(t+i) {A.14)

where all the matrices and vectors are the same as previously

defined except that f£( ) and h( ) now represent nonlinear system
and measurement equatior ~espectively. The extended Kalman ?2'
filter is derived by expending f£( ) and h( ) in using the Taylor ;%

series expansion up to first order termn. Let

F = Jacobian matrix of £( )

af (x(t))
) x(t x(t) = X(t/t) (A.15)

Jacobian matrix of h( )

I
]

= 3 hx(t+l))
9 X(t+l)

(A.16) 2

X (t+1) = X (£+1/t)

The discrete extended Kalman filter algorithm is stated below. -

Predict Cycle

X{t+l/t) = £(R(t/t)) + B u(t) (A.17)

I(t4l/t) = F L(t/8)FT + L Z(£)LT (A.18)

org ]
gl darid 1t

Update Cy:le

K(E41L/t+1) = R(E41/t) + W(t+1) (2(t+1) - h(R(t+1/t))) (A.19)

1

Wi +1) = L(e+1/c)HT(H E(t+1/8)H + 0(t+l))” (A.20)
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Z(t+1/t+l) = [I - W(t+1)H]Z(t+l/t) (A.21)

i
!




APPENDIX B
DISCRETE LINEAR SMOOTHING ALGORITHMS
The system and measurement equations are re-stated

below.
X(t+l) = A(t+l,t)x(t) + B u(t) + L &(¢t) (B.1)
z(t+l) = C(t+1l)x(t+l) + 8 (t+l) (B.2)

All the definitions and statistical properties defined in the v{
Appendix A still apply. Notice that the time-varying property
of A(r+l,t) and C(t+l) is now explicitly shown. We still use the

following definition for state estimate and covariance
R(t/t) = Elx(1)/2(¢)) (8.3)
L(t/t) = covix(T)ix(1)/2(¢)] (B.4)

Three kinds of smoothing are considered. They are de-

fined below.

(1) Fixed-interval smoothing: given Z(T),
obtain z(t/T) and I(t/T) for all t<T.

(2) Fixed-point smoothing: given T, ‘3
obtain £(1/t) and I(1/t) for all t>r.

(3) Fixed-lag smoothing: advance g (t/t+k)
and L(t/t+k) to x(t+l/t+l+k) and
L(t+1l/t+l+k) where k {8 a positive
constant.




Only the algorithms will be stated here. Their deriva-
tioms may be found in many references, e.g., refs [24-28). These
algorithms are stated individually in the following subsections.
8.1 [Qixgd-interval Smoothing Algorithm

In order to use the fixed-interval smoothing algorithm,

the filtering results must be first made available.

state
£(t/T) = R(t/t) + G(t) [R(L+1/T) - R(t+1/t)) (B.5)
Gain .
G(t) = I(t/0)AT(e+1,6) 1 L (t+1/t) (B.6)
Covariance
I(t/T) = I(t/t) + G(t) [E(t+1/T) - L(t+1/8)1GT(t)  (B.7)

Initial Conditions

AAT/TY . L(T/T) (B.8)

B.2 Fixed-point Smoothing Algorithm

There are several equivalent algorithms in this category.

Only one of them is stated here. Similary, the filterin~ results
are needed for fixed-point smoothing.
State

. F(1/t) = Z(1/t-1) * DIz AHAH/ O ="F(E/E-1) ] (B.9)

¢ e - am ——
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-gatn
D(t/t) = D(t/t-1)L(t/t)AT (£+1,£) I T (t+1/¢) (B.10)
Covariance
L(t/t) = £(1/t-1) - D(/E)M(EIC(E)E(£/E=1)D (1/€)  (B.11)
Initial Condition
(B.12)

x(t/t), L(t/Tt), D(t/%) = 1

where W(t) = filtering gain. defined in (A.6).

I = identity matrix.

B.3 Fixed-lag Smoothing Algorithm
In order to perform fixed-lag smoothing, the filtering,

fixed-interval smoothing, and fixed-point smoothing results must

be available to obtain initial conditions.

State

R(t+1/t+1+k) = A(t+l,t)g(t/t+k) + B u(t)

()L AT (o4l 00 27 (e/0) [ (t/t4ks - 2(E/6))

+L
+ D(t+1/t+1+4k)W(t+1+k) [Z(t+14k) - C(t+l+k)X (t+1+k/t+k) ] (B.13)

Gain
D(t+1/t+14k) = G L(£)D(t/t+k)G(t+k) (B.14)
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Covariance
Z(t+l/t+l4k) = L(t+1/t) = D(t+l/t+l+k)

“W(LHK+K) C(t+1+k) T (E+1+K/E) D (£+1/t+14k)

- 6 (R (Z(t/t) - E(t/e+KR) 16T (R) (B.15)

where W(t) = filtering gain, defined in (A.6). G(t) = fixed-in-
terval smoothing gain, defined in (B.6).

Initial Conditions

£(t0/t0+k) ’ E(to/to"'k) ) Q(to/to“'k)

These conditions are obtained from fixed-point smoothing.
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